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Kapitel 1

Linjärt ekvationssystem

1.1 Lösning av linjärt ekvationssystem

Vi skall i detta kapitel lösa linjära ekvationssystem (ES).

Exempel 1.1 Betrakta följande ES.{
2x− y = 1

x− 2y = 2
⇐⇒

{
x− 2y = 2

2x− y = 1

där vi i det andra ES endast bytt plats p̊a ekvationerna. Genom att multiplicera första
ekvation med −2 och sedan addera ekvationen till andra ekvation f̊ar vi (Observera att
första ekvation st̊ar kvar i ursprungligt skick){

x− 2y = 2

y = −1

Sista ekvation multiplicerar vi med 2 och adderar sedan till första ekvation. Detta ger{
x = 0

y = −1

som är svaret/lösningen.

Kommentarer Man kan rita ekvationerna eftersom de är ekvationer för linjer. Skärningsapunkten
för dessa linjer är x, y = (0,−1).

Exempel 1.2 Lös ES{
2x− y = 1

4x− 2y = 2
⇐⇒

{
Multiplicera 1:a ekv. med −2
och addera till andra ekv.

}
⇐⇒

{
2x− y = 1

0 = 0

7



8 KAPITEL 1. LINJÄRT EKVATIONSSYSTEM

Sista ekvationen är ju en självklarhet och ger ingen information. Lösningen är alla
(x, y) som uppfyller den första ekvationen. Allts̊a (x, y) s̊adana att 2x − y = 1, d..v.s.
y = 2x− 1. Lösningen kan ocks̊a skrivas

(x, y) = (x, 2x− 1) = x(1, 2) + (0,−1), x ∈ R

Kommentarer Geometriskt är lösningen linjen 2x− 1 = y.

Exempel 1.3

Lös ES{
2x− y = 1

4x− 2y = 1
⇐⇒

{
Multiplicera 1:a ekv. med −2
och addera till andra ekv.

}
⇐⇒

{
2x− y = 1

0 = −1

Sista ekvationen är en motsägelse. Detta säger att ES saknar lösning.

Kommentarer

• I ovanst̊aende tre exempel ser vi att vi har 1, ∞ eler 0 lösningar. Detta är typsikt
för alla ES.

Exempel 1.4 Lös ES 
x− y + 2z = 0

2x+ y − 2z = 3

x− z = 1

Lösning

Multiplicera första ekv med −2 och addera till andra ekv. detta för att eliminera
x−termen i andra ekv. P.s.s. multiplicera 1:a ekv. med −1 och addera till tredje
ekv. Detta ger ett ekvivalent ES 

x− y + 2z = 0

3y − 6z = 3

y − 3z = 1
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Multiplicera andra ekv. med 1/3.
x− y + 2z = 0

y − 2z = 1

y − 3z = 1

och multiplicera andra ekv. med −1 och addera till tredje ekv.
x− y + 2z = 0

y − 2z = 1

−z = 0

Insättning av z = 0 i andra ekv. ger y = 1 och första ekv. ger x = 1.
Svar:Lösningen är (x, y, z) = (1, 1, 0) och är entydig.

Exempel 1.5 P.s.s. kan vi lösa ES
x− y + 2z = 0

2x+ y − 2z = 3

x = 1

Detta ES har lösningen {
x = 1

y = 1 + 2z

där z kan väljas fritt (fir variabel).
ES 

x− y + 2z = 0

2x+ y − 2z = 3

x = 3

ger en ekvation av typ 1 = 0, d.v.s. en motsägelse och allts̊a ingen (noll) lösningar.

1.2 Matrisform av ES

Exempel 1.6 Vi skriver om exempel 1.1 p̊a matrisform. D̊a skriver man bara koefficienter
och HL. [

2 −1 1
1 −2 2

]
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I stället för ”⇐⇒” skriver vi ”∼”, allts̊a[
2 −1 1
1 −2 2

]
∼
[

1 −2 2
2 −1 1

]
∼
[

1 −2 2
0 3 −3

]
∼
[

1 −2 1
0 1 −1

]
.

De tv̊a sista matrierna är p̊a trappstegsform. Vi fortsätter genom att multiplicera andra
rad (här ekvation) med 2 och adderar till första rad.[

1 0 0
0 1 −1

]
som betyder att x = 0 och y = −1.

Exempel 1.7 Vi ställer upp ES i exempel 1.4 p̊a matrisform. 1 −1 2 0
2 1 −2 3
1 0 −1 1

 ∼
 1 −1 2 0

0 3 −6 3
0 1 −3 1

 ∼
 1 −1 2 0

0 1 −2 1
0 1 −3 1

 ∼
 1 0 0 1

0 1 0 1
0 0 −1 0

 ∼
 1 0 0 1

0 1 0 1
0 0 1 0

 , som betyder att


x = 1

y = 1

z = 0

.

Definition 1.1

1. För en matris AAA av typ m× n kan skrivas som

AAA = (aj,k)m×n =


a11 a12 ... a1n
a21 a22 ... a2n

...
...

. . .
...

am1 am2 ... amn

 (1.1)

där element p̊a plats j, k,vilket avser rad j och kolonn k är
ajk.

2. Om m = n kallas matrisen kvadratisk.

3. För en kvadratisk matris AAA av ordning n, kallas den diago-
nala följden (a11 a22 a33 .... ann) huvuddiagonal .
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Kommentarer

• Vi observerar att antal rader = m =antal element i en kolonn och
antal kolonner = n =antal element i en rad.

• Matrisen

 1 −1 2 0
2 1 −2 3
1 0 −1 1

 i exempel 1.7 kallas totalmatris (Augmented matrix).

• Matrisen

 1 −1 2
2 1 −2
1 0 −1

, i samma exempel, kallas koefficientmatris.

• Totalmatrisen har tre rader och fyra kolonner och är av typ 3× 4. Koefficientma-
trien är av typ 3× 3 och kallas kvadratisk och av ordning 3.

• Om vi betecknar koefficientmatrisen med AAA, skriver man typAAA = 3× 3.

Definition 1.2 De tre Radoperationerna är

R1 Multiplikation av en rad med ett tal och därefter adderas
(elementvis) till en annan rad.

R2 Platsbyte p̊a tv̊a rader.

R3 Multiplikation av en rad med ett tal 6= 0.

• Tv̊a matriserAAA ochAAA′, s̊adana att man via radoperationerna
kommer AAA till AAA′ kallas radekvivalenta och man skriver det
AAA ∼ AAA′.

• Att använda radopertionerna p̊a en matris kallas radelimi-
nation.

Kommentarer

• Man kan visa att AAA ∼ AAA′ ocks̊a innebär att AAA′ ∼ AAA, s̊a att ∼ är n̊agot stil med
ekvivalens.

• Hitintills har vi utnyttjat radoperationer för ES men matriser behöver inte vara
förknippade med ES.
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Definition 1.3

• Det element i en rad som är det första elementet, räknat fr̊an
vänster, skilt i fr̊an 0, kallas pivotelement.

• En matris s̊adan att varje pivotelement i raden ovanför, st̊ar
till vänster om pivotlementet i raden under sägs ha trapp-
stegsform (Echelon form) .

• För en matris p̊a trappstegsform med pivotlementen lika med
1 och övriga element i samma kolonn lika med noll är p̊a
radreducerad form (Reduced row echelon form) .

• Antal rader i en matris där minst ett element är 6= 0 är en
icke-nollrad. Om alla element i raden är = 0 kallas raden
nollrad.

• Rangen av en matris är antalet icke-nollrader i en radekvi-
valent matris p̊a trappstegsform.

Kommentarer Antal lösningar till ett ES

Ex 1.1: Totalmatris och koefficientmatris har rangen 2. Antal variabler/obekanta är ocks̊a
2. Antal lösningar är 1.

Ex 1.2: Totalmatris och koefficientmatris har rangen 1. Antal variabler/obekanta är 2.
Antal lösningar är ∞.

Ex 1.3: Totalmatris har rang 1 och koefficientmatris har rangen 2. Antal lösningar är 0.

Sats 1.1 L̊at AAA vara en koefficientmatris, ABABAB en totalmatris
samt antal variabler n. D̊a gäller

rangAAA = rangABABAB = n ⇐⇒ Antal lösningar = 1
rangAAA = rangABABAB < n ⇐⇒ Antal lösningar =∞

rangAAA < rangABABAB ⇐⇒ Antal lösningar = 0
(1.2)

Exempel 1.8 Lös ES {
x+ y − 2z = 1

2y + 3z = 2
.
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Lösning

P̊a matrisform f̊ar vi totalmatrisen [
1 1 −2 1
0 2 3 2

]
Den är p̊a trappstegsform. Vi ser att rangen för koefficient- och totalmatris är 2. Allts̊a
finns lösning. Antal variabler är 3. Allts̊a finns oändligt med lösningar. Vidare är

[
1 1 −2 1
0 2 3 2

]
∼
[

1 0 −7
2 0

0 1 3
2 1

]
p̊a radreducerad form,
som betyder


x− 7z

2
= 0

y +
3z

2
= 1

De variabler som motsvaras av pivotelement kallas bundna, övriga fria. Allts̊a är x och
y bundna och z fri. Man brukar införa en parameter för den fria variabeln ex.vis t = z/2,
som ger lösningen 

x = 7t

y = 1− 3t

z = 2t

t ∈ R .

Kommentarer

• Ett ES med färre ekvationer än obekanta kallas underbestämt, jämför, med it
överbestämt ES, exempel 1.9 sidan 13.

• Lösningsmängden, d.v.s. alla (x, y, z) ∈ R3, som uppfyller ES i föreg̊aende uppgift
är en linje p̊a parameterform.

• ES x+ y− 2z = 1 har en bunden variabel, ex.vis x och de tv̊a övriga är fria. Man
kan d̊a införa parametrar y = s, t = z, s̊a att lösningsmängden kan skrivas

x = 2t− s+ 1

y = s

z = t

, s, t ∈ R .

som vi skall senare skall se, är ekvationen för ett plan i R3 .

Exempel 1.9 Lös ES


−y = 1

x+ 3y = 2

x+ 2y = 2

.
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Lösning

Vi löser den med radelimination. 0 −1 1
1 3 2
1 2 2

 ∼ ... ∼
 1 0 0

0 1 0
0 0 1


Vi ser att rangen för koefficientmatrisen är 2 < 3 där 3 är rangen för totalmatrisen.
Allts̊a saknas lösning.

Kommentarer

• ES ovan har fler ekvationer än variabler och kallas överbestämt (overdetermined).

• De tre ekvationer är ekvationer för linjer i planet R2 och tre linjer brukar inte skära
varandra i en punkt.

• Vi skall längre fram lösa detta ES approximativt med Minsta kvadratmetoden
(MK-metoden).

1.3 Homogent ES

Exempel 1.10 Lös ES, samma som i exempel 1.5 men med alla HL= 0.
x− y + 2z = 0

2x+ y − 2z = 0

x = 0

Lösning

Detta ES har lösningen x = y = z = 0 och allts̊a minst en lösning. ar den fler? P̊a
matrisform och med radelimnation f̊ar vi 1 −1 2 0

2 1 −2 0
1 0 0 0

 ∼
 1 0 0 0

0 1 −2 0
0 0 0 0

 .
Vi ser att vid radeleliminationen förblir HL. d.v.s. kolonnn 4 nollkolonnen. Vi ser att vi
har z som fri variabel och sätter z = t.
Svar: 

x = 0

y = 2t

z = t

, t ∈ R .
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Kommentarer

• Vi ser att ett homogent ES har åtminstone en lösning, nämligen 000 en kolonn med
bara nollor (nollösningen).

1.4 Inhomogent ES

Ett ES där HL 6= 000 är inhomogent.

Exempel 1.11 I exempel 1.5 har ES
x− y + 2z = 0

2x+ y − 2z = 3

x = 1

lösningen {
x = 1

y = 1 + 2z

där z kan väljas fritt (fri variabel). Observera att vi kan skriva lösningen
x = 1

y = 1 + 2t

z = t

eller (x, y, z) = (1, 1, 0) + t(0, 2, 1), t ∈ R .

Vi ser att lösningen best̊ar av tv̊a termer. Den andra t(0, 2, 1) = (0, 2t, t) känner vi igen
som lösningen till motsvarande homogena ES. Den första termen (x, y, z) = (1, 1, 0) är
en lösning till det inhomogena ES.

1.5 Matrismultiplikation I

Exempel 1.12 Vi visar först hur matriserna AAA =

 a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 och XXX =

[
x1
x2

]
kan

multipliceras. Speciellt är typAAA = 3 × 2 och typXXX = 2 × 1. Antal kolonner i AAA är
lika med antal rader i XXX. Det är förutsättningen för att multiplikationen AAA ·XXX i den
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ordningen är möjlig. Produkten är en matris av typ 3× 6 2· 6 2 · 1 = 3× 1. Elementet p̊a
plats (1, 1) erh̊alls genom att ”multiplicera” rad 1 i AAA med kolonn 1 i XXX:

[a11 a12] ·
[
x1
x2

]
= a11 · x1 + a12 · x2

och p.s.s. elementet p̊a plats (2, 1) är rad 2 i AAA ggr kolonn 1 i XXX

[a21 a22] ·
[
x1
x2

]
= a21 · x1 + a22 · x2 .

Produkten är matrisen

AAA ·XXX =

 a11 · x1 + a12 · x2
a21 · x1 + a22 · x2
a31 · x1 + a32 · x2

 .

Kommentarer

• Denna produkt kan ocks̊a skrivas m.h.a. kolonnerna som

AAA ·XXX = x1

 a11
a21
a31

+ x2

 a12
a22
a32

 .

Definition 1.4

• Vi definierar först multiplikation av en matrisAAA = (aj,k)m×n,
se (1.1) sidan 10 och ett reelllt (komplext) tal x som matrisen

xAAA = (x aj,k)m×n

• L̊at XXX =


x1
x2
...
xn

. L̊at aaak vara kolonn nummer k.

Beteckna kolonn k i AAA, som aaak för k = 1, 2, ..., n. Vi
definierar multiplikationen AAA ·XXX som

AAA ·XXX = x1aaa1 + x2aaa2 + ...+ xnaaan . (1.3)
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Kommentarer

• Vi skall ge akt p̊a ordningen som multiplikationen sker. För reellt tal x g̊anger
matris AAA skriver vi xAAA och kan även skriva AAAx.

• För multiplikation mellan matriser, s̊asom i (1.3) har den betydelse ty multiplika-
tionen skall ses som (byt plats p̊a xk och aaak)

AAA ·XXX = aaa1x1 + aaa2x2 + ...+ aaanxn =

=


a11x1
a21x1
...
am1x1

+


a12x2
a22x2
...
am2x2

+ ...+


a1nxn
a2nxn
...
amnxn

 =

=


a11x1 + a12x2 + ...+ a1nxn
a21x1 + a22x2 + ...+ a2nxn
...

...
...

am1x1 + am2x2 + ...+ amnxn


• Vi ser ovan principen för matrismultiplikation; rad i AAA multiplceras med kolonn

i XXX. I en produkt s̊asom a11x1 + a12x2 + ... + a1nxn finns lika m̊anga a1k, som
xk, d.v.s. antal kolonner i AAA och antal rader i XXX är lika (= n). Observera att XXX
endast har en kolonn men ovanst̊aende kan generalieras till en matris XXX med fler
kolonner.

Exempel 1.13 I exempel 1.4 har vi koefficientmatrisen

AAA =

 1 −1 2
2 1 −2
1 0 −1


Vi skall multiplicera med XXX fr̊an höger.

Vi multiplicerar AAA med XXX =

 x
y
z

.

x

 1
2
1

+ y

 −1
1
0

+ z

 2
−2
−1

 =

 x− y + 2z
2x+ y − 2z

x− z


som är VL i detta ES. Allts̊a kan detta ES skrivas

AAA ·XXX = BBB



18 KAPITEL 1. LINJÄRT EKVATIONSSYSTEM

där BBB =

 0
3
1

.

Exempel 1.14 Ibland vill man lösa ett ES med fler olika HL. I exempel 1.4
x− y + 2z = 0

2x+ y − 2z = 3

x− z = 1

och


x− y + 2z = 0

2x+ y − 2z = 4

x− z = 0

p̊a matrisform

 1 −1 2 0 0
2 1 −2 3 4
1 0 −1 1 0

 ∼
 1 −1 2 0 0

0 3 −6 3 4
0 1 −3 1 0

 ∼
 1 −1 2 0 0

0 3 −6 3 4
0 1 −3 1 0

 ∼

∼

 1 −1 2 0 0
0 1 −2 1 4/3
0 1 −3 1 0

 ∼
 1 −1 2 0 0

0 1 −2 1 4/3
0 0 −1 0 −4/3

 ←
|

·(−2)

←
|

·2

∼

∼

 1 −1 0 0 −8/3
0 1 0 1 4
0 0 −1 0 −4/3

 ∼
 1 0 0 1 4/3

0 1 0 1 4
0 0 1 0 4/3



.

Svar: De tv̊a ES har lösningen
x = 1

y = 1

z = 0

respektive


x = 4/3

y = 4

z = 4/3

.

Kommentarer

• I dessa tv̊a ES är koefficientmatrisen kvadratisk och lösningarna entydiga. Den

sista koefficientmatrisen är radreducerad. Denna matris

 1 0 0
0 1 0
0 0 1

 =: III är vik-

tig, och kallas enhetsmatrs. Definition och egenskaper presenteras i nästa kapitel.
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• Vi skall senare beräkna invers matris AAA−1 till vissa kvadratiska matriser AAA, detta
för att bestämma matrisen XXX, d.v.s. lösa matrisekvationen

AAA ·XXX = BBB . (1.4)
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Kapitel 2

Matriser

Vi har redan behandlat matriser och gör nu en definition av begreppet.

2.1 Definition av matris

Definition 2.1 En matris av typ m × n är ett rektangulärt
schema av element.

a1,1 a1,2 ... a1,k ... a1,n
a2,1 a2,2 ... a2,k .. a2,n

...
...

. . .
...

. . .
...

aj,1 aj,2
. . . aj,k ... aj,n

...
...

. . .
...

. . .
...

am,1 am,2 ... am,k . . . am,n


= AAA = (aj,k)m×n. (2.1)

Om m = n är matrisen kvadratisk och av ordning n.

[aj,1 aj,2 . . . aj,n]

är rad j och 
a1,k
a2,k

...
am,k


är kolonn k. I denna matris är elementet aj,k är p̊a plats (j, k).
Tv̊a matriser AAA = (aj,k)m×n och BBB = (bj,k)p×r är lika om m = p,
n = r och aj,k = bj,k för j = 1, 2, ...,m och k = 1, 2, ..., n.

2.2 Operationer mellan matriser

• Multiplikation av reellt (komplext) tal och matris sker elementvis.

x ·AAA = x · (aj,k)m×n = (x aj,k)m×n

21
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• För att addera eller subtrahera tv̊a matriser m̊aste de vara av samma typ. Addi-
tionen sker d̊a elementvis.

• Multiplikation av tv̊a matriser är definierat endast d̊a höger XXX matris har bara en
kolonn, av typ n× 1. I det fallet är vänster matris AAA av typ m× n. Det är viktigt
att AAA har lika m̊anga kolonner som XXX har rader. Vi byter beteckning p̊a höger
matris till BBB som vi antar är av typ p× q.

2.2.1 Matrismultiplikation II m.m.

Definition 2.2 För AAA = (ajk)m×n och BBB = (bjk)m×n är additio-
nen, d.v.s. summan

AAA+BBB = (ajk)m×n + (bjk)m×n = (ajk + bjk)m×n .

Matrismultiplikation II
Antag att AAA är som ovan och att typBBB = p× q. Multiplikationen
AAA ·BBB är definierad om n = p och produkten AAA ·BBB = CCC är en matris
av typ m× q. Element cik p̊a plats (i, k) i denna matris är

n∑
j=1

aijbjk = cik .

Kommentarer

• Ett reellt (komplext) x kan ses som en 1× 1−matris, [x]. och vice versa.

• Observera att

cik = [ai1 ai2...ain] ·


b1k
b2k

...
bnk


d.v.s. rad i i AAA g̊anger kolonn k i BBB.

• För att veta vilken typ som produkten AAA ·BBB är, skriver vi

(m× 6 n)× ( 6 n× q) = m× q .

Allts̊a är typ (AAA ·BBB) = m× q.

• I allmänhet är AAA ·BBB och BBB ·AAA inte lika även om b̊ada produkterna är möjliga.,
d.v.s. kommutativa lagen gäller inte.
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• Däremot gäller associativa lagen för multiplikation, allts̊a att

(AAA ·BBB) ·CCC = AAA · (BBB ·CCC) . (2.2)

• Eftersom den kommutativa lagen inte gäller, delas den distributiva lagen in i en
vänster- och högerdistributiv lag.

AAA · (BBB +CCC) = AAA ·BBB +AAA ·CCC .

(AAA+BBB) ·CCC = AAA ·CCC +AAA ·CCC .
(2.3)

för matriser AAA, BBB och CCC av lämpliga typer.

Exempel 2.1 Med

AAA =

 1 −1 2
2 1 −2
1 0 −1

 och BBB =

 1 2
3 −3
1 −1


s̊a multiplikation av AAA med reellt (komplext) tal −3 ger

−3 ·AAA = −3 ·

 1 −1 2
2 1 −2
1 0 −1

 =

 −3 3 −6
−6 −3 6
−3 0 3

 .
Produkten (multiplikationen) BBB ·AAA omöjlig eftersom typBBB = 3 × 2 och typAAA = 3 × 3
och 2 6= 3. Multiplikationen AAA ·BBB är dock möjlig och ger en matris av typ 3× 2 .

AAA ·BBB =

 0 3
3 3
0 3

 = 3 ·

 0 1
1 1
0 1


där vi i sista ledet brutit ut faktorn 3.

Exempel 2.2 Med matriserna AAA =

[
1 2
3 4

]
och BBB =

[
−1 0

2 −1

]
är b̊ada produkterna

AAA ·BBB och BBB ·AAA möjliga. Produkterna är b̊ada 2 × 2−matriser. Men är de lika? Vi f̊ar
att

AAA ·BBB =

[
3 −2
5 −4

]
och BBB ·AAA =

[
−1 −2
−1 0

]
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och allts̊a inte lika. Därmed gäller allts̊a inte den kommutativa lagen.
Vi ger nu ett exempel (inte bevis) p̊a den assocoiativa lagen. Med AAA och BBB, som ovan

och CCC =

[
a
b

]
beräknar vi nu

(AAA ·BBB) ·CCC =

[
3 −2
5 −4

]
·
[
a
b

]
=

[
3a− 2b
5a− 4b

]
och

AAA · (BBB ·CCC) =

[
1 2
3 4

]
·
[
−a

2a− b

]
=

[
3a− 2b
5a− 4b

]
.

P.s.s. ger vi ett exempel p̊a högerdistributiva lagen. Med samma matriser som ovan
beräknar vi först

(AAA+BBB) ·CCC =

[
0 2
5 3

]
·
[
a
b

]
=

[
2b

5a+ 3b

]
och sedan

AAA ·CCC +BBB ·CCC =

[
a+ 2b

3a+ 4b

]
+

[
−a

2a− b

]
=

[
2b

5a+ 3b

]
med samma resultat.

2.3 Enhetsmatris

Definition 2.3 En matris III ≡ EEE s̊adan att

III ·AAA = AAA · III = AAA

kallas enhetsmatris (identitity matrix).

Kommentarer

• En enhetsmatris III är kvadratisk och enhetsmatrisen avordning n betecknas, om s̊a
behövs, IIIn. Dessa fungerar som talet 1, som kan ses som enhetsmatrisen I1 = [1].
1 · 54 = 54 · 1 = 54. Närmare bestämt är dessa mstriser av ordning 1 t.o.m. 3

III1 = [1], III2 =

[
1 0
0 1

]
, respektive III3 =

 1 0 0
0 1 0
0 0 1

 . (2.4)
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Exempel 2.3 För att multiplicera matrisen med BBB =

 1 2
3 −3
1 −1

 med en enhetsmatris,

ser vi att för produkten IIIn ·BBB m̊aste n = 3 antalet rader i BBB.

III ·BBB =

 1 0 0
0 1 0
0 0 1

 ·
 1 2

3 −3
1 −1

 = ... =

 1 2
3 −3
1 −1

 = BBB .

För produkten BBB · III m̊aste III = III2, d.v.s. vara av ordning 2.

BBB · III =

 1 2
3 −3
1 −1

 · [ 1 0
0 1

]
= ... =

 1 2
3 −3
1 −1

 = BBB

2.4 Transponatmatris

Exempel 2.4 Genom att i BBB ovan byta plats p̊a rad och kolonn f̊ar vi transponatet BBBT

till BBB.

BBBT =

[
1 3 1
2 −3 −1

]
och ytterligare en transponering

 1 2
3 −3
1 −1

 = BBB .

Definition 2.4 Givet matrisen AAA = (aj,k)m×n. Transponatma-
trisen är matrisen AAAT = (ak,j)n×m

Exempel 2.5 Ex.vis med AAA =

 a1,1 a1,2
a2,1 a2,2
a3,1 a3,2

 är AAAT =

[
a1,1 a2,1 a3,1
a1,2 a2,2 a3,2

]
.
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Vi ser fr̊an exempel 2.4
(BBBT )T = BBB (2.5)

d.v.s. tv̊a transponeringar tar ut varandra. Vi ser inser att

• typBBB = m× n =⇒ typBBBT = n×m .

• (AAA+BBB)T = AAAT +BBBT .

• Vi bevisar att
(AAA ·BBB)T = BBBT ·AAAT (2.6)

Bevis: B̊ade VL:s och HL:s produkter existerar precis d̊a AAA har lika många kolonner
som BBB har rader. Elementet p̊a plats (k, i) i (AAA ·BBB)T är p̊a plats (i, k) i AAA ·BBB.
Detta element är produkten av rad i i AAA och kolonn k i BBB. Nu är kolonn k
i BBB rad k i BBBT och rad i i AAA är kolonn i i AAAT . Detta är ocks̊a elementet p̊a
plats (k, i) i BBBT ·AAAT och beviset är klart.

• Ett ES p̊a matrisform som AAA ·XXX = BBB kan s̊aledes ekvivalent skrivas

XXXT ·AAAT = BBBT ,

d.v.s. den obekanta matrisen st̊ar nu till vänster om koefficientmatrisen.

• En matris s̊adan attAAA = AAAT kallas symmetrisk. En s̊adan matris är med nödvändighet
kvadratisk. Produkten mellan en matrisAAAT ochAAA är symmetrisk. En enhetsmatris
är symmetrisk.

• Produkten mellan transponatmatris och matrisen själv ger en kvadratisk matris.

Ex.vis med AAA =

 0 1
1 0
4 −1

, är AAAT =

[
0 1 4
1 0 −1

]
. Vi ser att typAAA = 3× 2 och

typAAAT = 2× 3. Produkten AAAT ·AAA existerar d̊a och är av typ 2× 2.

AAAT ·AAA =

[
17 −4
−4 2

]

• Vi bevisar nu (allmänt) att AAAT ·AAA existerar och är symmetrisk.

Bevis: sätt typAAA = m × n. D̊a är typAAAT = n × m. Därmed existerar produkten
AAAT ·AAA =: CCC och är av typ n× n. Vi skall visa att CCCT = CCC.

CCCT = (AAAT ·AAA)T = AAAT · (AAAT )T = AAAT ·AAA = CCC

eftersom (AAAT )T = AAA enligt (2.5).
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2.5 Invers matris

För ett reellt (komplext) tal x 6= 0 finns det inverterade värdet
1

x
, ex.vis är det invert-

erade värdet till −5

3
talet

1

−5
3

= −3

5
. För vissa kvadratiska matriser AAA finns en matris

AAA−1 med egenskapen
AAA ·AAA−1 = III ,

d.v.s. AAA−1 är högerinvers. För denna matris gäller även att den är vänsterinvers

AAA−1 ·AAA = III .

För kvadratisk matris avordning 2

AAA =

[
a b
c d

]
är AAA−1 =

1

ad− bc

[
d −b
−c a

]
. (2.7)

om ad − bc 6= 0 . Talet ad − bc är ett ”konditionstal” av matrisen AAA i (2.7). Detta tal
kallas determinanten av AAA. Vi formular nu följade sats med bevis.

Sats 2.1 Antag att AAA har b̊ada vänster och höger inversmatris
AAA−1L respektive AAA−1R . D̊a är dessa lika.

Bevis:
AAA−1L = AAA−1L · III = AAA−1L · (AAA ·AAA

−1
R ) = (AAA−1L ·AAA) ·AAA−1R = III ·AAA−1R = AAA−1R .

2.5.1 Matrisekvationer

Ekvationen AAA · XXX = BBB med matrisen XXX som obekant metris, kallas matrisekvation
introducerad i (3.13) sidan 47. Vi skall formellt lösa n̊agra s̊adana ekvationer.

Exempel 2.6 Vi skall lösa ES i exempel i 1.1. Detta ES är{
2x− y = 1

x− 2y = 2
eller som matrisekvation

[
2 −1
1 −2

]
·
[
x
y

]
=

[
1
2

]
,

som vi skriver AAA ·XXX = BBB med koefficientmatris

AAA =

[
2 −1
1 −2

]
, och XXX =

[
x
y

]
samt HL BBB =

[
1
2

]
.

Hur kan inversmatrisen till AAA, om den existerar, användas för att lösa detta ES? Vi
multiplicerar matrisekvationen ovan med AAA−1 fr̊an vänster. Vi multiplicerar först VL
AAA ·XXX,.

AAA−1 · (AAA ·XXX) = {associativa lagen} = (AAA−1 ·AAA) ·XXX = III ·XXX = XXX .
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Motsvarande multiplikation i HL ger AAA−1 ·BBB, allts̊a

XXX = AAA−1 ·BBB .

Nu är detAAA = 2 · (−2)− (−1) · 1 = −3 6= 0. Allts̊a existerar AAA−1 och är

−1

3

[
−2 1
−1 2

]
=

1

3

[
2 −1
1 −2

]
.

Därmed är

XXX =

[
x
y

]
=

1

3

[
2 −1
1 −2

]
·
[

1
2

]
=

[
0
−1

]
d.v.s. x = 0 och y = −1 .

Exempel 2.7 Lös matrisekvationen

XXX : AAA ·XXX = 2XXX +BBB

där AAA =

[
1 2
3 4

]
och BBB =

[
3
7

]
.

Lösning

Vi flyttar matrisen 2XXX till VL och f̊ar i VL AAA ·XXX − 2XXX. Här vill vi bryta ut /faktorisera
med högerdistr. lagen. Det skulle ge (AAA−2) ·XXX men talet 2 m̊aste vara en matris. Enda
möjligheten är att skriva 2 ·XXX = 2III ·XXX, allts̊a skriva om 2 som matrisen 2III. Detta ger
(Obs! Vi m̊aste här ha enhetsmatrisen till vänster om XXX!)

(AAA− 2III) ·XXX = BBB .

Vi multiplicerar med (AAA− 2III)−1 fr̊an vänster, ocks̊a viktigt. Detta ger

XXX = (AAA− 2III)−1 ·BBB .

Med de matriserna ovan är

AAA− 2III =

[
−1 2
3 2

]
och därmed (AAA− 2III)−1 =

1

8

[
−2 2

3 1

]
.

Allts̊a är

XXX =

[
x
y

]
=

1

8

[
−2 2

3 1

]
·
[

3
7

]
= ... =

[
1
2

]
.
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Exempel 2.8 Givet matrisekvationen XXX ·AAA = BBB, där AAA och XXX har tre kolonner och BBB
har tv̊a rader.

(a) Bestäm typerna för de tre matriserna.

(b) Lös ut XXX ur marisekvationen.

Lösning

(a) XXX har lika m̊anga kolonner som AAA har rader, allts̊a är typAAA = 3× 3. typ (XXX ·AAA) =
m × 3 och typBBB = 2 × n. P.g.a. likhet mellan dessa m̊aste m × 3 = 2 × n, d.v.s.
m = 2 och n = 3. Allts̊a är typAAA = 3× 3, typXXX = 2× 3 och typBBB = 2× 3.

(b) Vi multiplicerar med AAA−1 denna g̊ang fr̊an höger i b̊ada led.

XXX ·AAA ·AAA−1 = XXX · III = XXX︸ ︷︷ ︸
VL

= BBB ·AAA−1︸ ︷︷ ︸
HL

.

Allts̊a är XXX = BBB ·AAA−1 .

2.5.2 Jacobis metod; Beräkning av invers matris

Vi ser i exemplen 1.6 och 1.7 att vi har kvadratiska koefficientmatriser och att när vi väl
har f̊att radreducerad form, s̊a är koefficientmatrisen en enhetsmatris och i totalmatrisens

HL st̊ar i den högra kolonnen lösningen

[
x
y

]
respektive

 x
y
z

. Vi använder detta för

att bestämma inversmatris (Jacobis metod). För att invertera kvadratiska matriser AAA
av högre ordning kan man se inversmatrisen som en okänd matris XXX, som den matris
som löser ekvationen

AAA ·XXX = III .

Det är d̊a klart att XXX = AAA−1. P̊a matrisform

[AAA|III] ∼ ... ∼ [III|XXX]

d.v.s. till höger om | st̊ar XXX, som är AAA−1.

Exempel 2.9 För att invertera koefficientmatrisen i exempel 1.4 ser vi först att den är

AAA =

 1 −1 2
2 1 −2
1 0 −1





30 KAPITEL 2. MATRISER

Vi skall allts̊a lösa ekvationenAAA·XXX = III och vi gör det genom att lösa detta p̊a matrisform.

[AAA|III] =

 1 −1 2 1 0 0
2 1 −2 0 1 0
1 0 −1 0 0 1


Vi skall använda elminationsmetoden tills dess att vi f̊ar

[III|XXX] .

Detta XXX är allts̊a lika med AAA−1.

[AAA|III] =

 1 −1 2 1 0 0
2 1 −2 0 1 0
1 0 −1 0 0 1

 ∼ ... ∼ [III|XXX] =

 1 0 0 1
3

1
3 0

0 1 0 0 1 −2
0 0 1 1

3
1
3 −1

 .
Allts̊a är AAA−1 =

1

3

 1 1 0
0 3 −6
1 1 −3

 .

Vi verifierar att

AAA ·AAA−1 =
1

3
·

 1 −1 2
2 1 −2
1 0 −1

 ·
 1 1 0

0 3 −6
1 1 −3

 = ... =
1

3

 3 0 0
0 3 0
0 0 3

 = III3 .

p.s.s. är AAA−1 ·AAA = III = III3.

Kommentarer För invers matris gäller bl.a. följande

∗) (AAA ·BBB)−1 = BBB−1 ·AAA−1 , om inverserna till AAA och BBB existerar.

∗∗) AAA ·XXX = BBB ⇐⇒XXX = AAA−1 ·BBB , om AAA−1 existerar.

∗ ∗ ∗) (AAAT )−1 = (AAA−1)T

Vi bevisar ∗) och ∗ ∗ ∗).

Bevis:
∗) (AAA ·BBB) · (BBB−1 ·AAA−1) = {Assoc. lagen} = AAA · (BBB ·BBB−1) ·AAA−1 =

AAA · III ·AAA−1 = AAA ·AAA−1 = III .

P.s.s. visar man att BBB−1 ·AAA−1 är högerinvers.
För att bevisa ∗ ∗ ∗) multiplicerar vi med AAAT först fr̊an höger.

(AAA−1)T ·AAAT = (AAA ·AAA−1)T = IIIT = III .



2.6. MINSTA KVADRATMETODEN 31

2.5.3 Invers matris med komplementmetoden

P̊a sidan 27 ges inversmatrisen till en matris av ordning 2. Metoden att betämma den
kallas komplementmetoden.

Exempel 2.10 Vi tar nu fram inversen till

AAA =

 1 −1 2
2 1 −2
1 0 −1

 ,
se exempel 2.9. Först tar vi fram en matris BBB av ordning 3 genom at beräkna 9 un-
derdeteminanter till AAA. Elementet p̊a (j, k) f̊as genom att stryka rad k och kolonn j
och därefter ta determinanten p̊a den återst̊aende matrisen. Sedan multipliceras denna

underdeterminant med −1j+k. Ex.vis är b12 = (−1)1+2 ·
∣∣∣∣ −1 2

0 −1

∣∣∣∣ = −1. Till slut f̊ar

vi att

BBB =

 −1 −1 0
0 −3 6
−1 −1 3


men detta är inte AAA−1. En kontroll ger att

AAA ·BBB =

 −3 0 0
0 −3 0
0 0 −3

 .
Vi m̊aste allts̊a dividera BBB med −3 för att f̊a AAA−1:

AAA−1 =
1

−3

 −1 −1 0
0 −3 6
−1 −1 3

 =
1

3

 1 1 0
0 3 −6
1 1 −3

 .
Talet −3 som dyker upp som huvuddiagonalens element är detAAA.

2.6 Minsta kvadratmetoden

För överbestämda ES brukar det inte finnas lösning.

Exempel 2.11 ES


y = −2

x = 2

4x− y = 1

saknar lösning. ES är dessutom överbestämt. Som

matrisekvation skriver vi det som 0 1
1 0
4 −1

 · [ x
y

]
=

 −2
2
1

 eller kortare AAA ·XXX = BBB .
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Man kan visa att det felutjämnade ES som erh̊alls genom att multiplicera med AAAT fr̊an
vänster

AAAT ·AAA ·XXX = AAAT ·BBB

alltid har lösning. I detta fall f̊ar vi

AAAT ·AAA =

[
17 −4
−4 2

]
och AAAT ·BBB =

[
6
−3

]
.

Matrisen AAAT ·AAA är kvadratisk med determinant 18 6= 0 och allts̊a inverterbar. Vi f̊ar[
x
y

]
= (AAAT ·AAA)−1 ·AAAT ·BBB =

1

18

[
2 4
4 17

]
·
[

6
−3

]
=

[
0
−3/2

]
.

Svar:


x = 0

y = −3/2

.

Exempel 2.12 Man kan ange ”felet” av lösningen till det felutjämnade ES som i föreg̊aende
exempel. Vi sätter in denna lösning i uttrycket

AAA ·XXX =

 0 1
1 0
4 −1

 · [ 0
−3

2

]
=

 −3
2

0
3
2

 6= BBB =

 −2
2
1


Vi f̊ar som förväntat ingen likhet mellan AAA ·XXX och BBB. I stället anger man medelfelet för
lösningen. Den definieras

η :=
|AAA ·XXX −BBB|√

m
(2.8)

där m är antal rader i AAA. I detta exempel är m = 3 och vi räknar ut att AAA ·XXX −BBB = 1
2
−2

1
2

. Med |AAA ·XXX − BBB| menas avst̊andet mellan origo och punkten (1/2,−2, 1/2)

(eller längden av orstvektorn (1/2,−2, 1/2). Detta ges av√
(1/2)2 + (−2)2 + (1/2)2 =

3√
2

Medelfelet är allts̊a

η =

3√
2√
3

=

√
3

2
.
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2.6.1 Invers matris till icke-kvadratisk matris

Till vissa matriser AAA av typ m × n finns vänsterinvers. Ett nödvändigt villkor är att
m > n. I det fallet finns ingen högerinvers.

Exempel 2.13 Givet matriserna

AAA =

 0 1
1 0
4 −1

 och BBB =

[
1 −3 1
1 0 0

]
.

Vi har att

BBB ·AAA =

[
1 0
0 1

]
= III2 men AAA ·BBB =

 1 0 0
1 −3 1
3 −12 4

 6= III3 .

Vi säger att BBB =: AAA−1L är vänsterinvers till AAA. Med AAA, som ovan och ett HL som är

CCC =

 −2
2
1

 tecknar vi nu matrisekvationen

AAA ·XXX = CCC ,

som vi försöker lösa m.h.a. vänsterinversen genom att multiplicera medAAA−1L fr̊an vänster.
Detta ger

AAA−1L ·AAA ·XXX = IIIXXX = XXX︸ ︷︷ ︸
VL

= AAA−1L ·

 −2
2
1

 =

[
−7
−2

]
︸ ︷︷ ︸

HL

d.v.s. lösningen är XXX =

[
x
y

]
=

[
−7
−2

]
. Är den en riktig lösning? Insättning i den

ursprungliga ekvationen ger

AAA ·
[
−7
−2

]
=

 −2
−7
−26

 6=
 −2

2
1


och allts̊a falsk. Detta beror p̊a att vi enbart har implikationen ”=⇒” och inte ”⇐=”,

n̊agot som bara säger, att om ES har lösning, s̊a är den

[
−7
−2

]
. Med samma matrisek-

vation men med HL =

 −2
−7
−26

 är ju lösningen riktig. Vi kan uttrycka det s̊a att om

den ursprungliga ekvationen har lösning, s̊a erh̊alls den genom att multiplicera med AAA−1L

fr̊an vänster.
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Kapitel 3

Determinant

3.1 Beräkning av determinant

Vi har beräknat determinanten av en kvadratisk matris av ordning 2, se sidan 27. Det
g̊ar att definiera determinanten för matriser av högre ordning p̊a lite olika sätt. För en
kvadratisk matris AAA tecknar vi dess determinant som

detAAA = { men även } = |AAA| .

Vi nöjer oss här med determinant av matris av ordning 3. Allts̊a givet en matris

AAA =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 .
Determinanten, ett tal, erh̊alls genom ”utveckling” längs godtycklig rad eller kolonn och
f̊ar en summa inneh̊allande underdterminanter av ordning 2. Ex,vis utveckling längs rad
2 ger

|AAA| =

∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣ = (−1)2+1a21

∣∣∣∣ a1,2 a1,3
a3,2 a3,3

∣∣∣∣+
= (−1)2+2a22

∣∣∣∣ a1,1 a1,3
a3,1 a3,3

∣∣∣∣+ (−1)2+3a23

∣∣∣∣ a1,1 a1,2
a3,1 a3,2

∣∣∣∣ =

= −a2,1a1,2a3,3 + a2,1a1,3a3,2 + a2,2a1,1a3,3 − a2,2a1,3a3,1 − a2,3a1,1a3,2 + a2,3a1,2a3,1 .
(3.1)

3.1.1 Determinant av matris av ordning 3; Sarrus regel

För determinant av matris (endast )av ordning 3 finns Sarrus regel att tillg̊a. De tv̊a
första kolonnerna skrivs upp en g̊ang till och d̊a till höger. Pilar ↘ ger upphov till
produkt som förses med tecknet + och pilar ↙ ger upphov till produkt som förses med

35
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tecknet −.

detAAA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 a1,1 a1,2

↘ ↙↘ ↙↘ ↙
a2,1 a2,2 a2,3 a2,1 a2,2

↙ ↙↘ ↙↘ ↘
a3,1 a3,2 a3,3 a3,1 a3,2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2+

−a1,3a2,2a3,1 − a1,1a2,3a3,2 − a1,2a2,1a3,3 .

Vi ser att detta ger samma termer som i (3.1).

Exempel 3.1

det

 3 2 1
4 −1 1
1 5 1

 =

∣∣∣∣∣∣
3 2 1 3 2
4 −1 1 4 −1
1 5 1 1 5

∣∣∣∣∣∣ =

= 3 · (−1) · 1 + 2 · 1 · 1 + 1 · 4 · 5+

−1 · (−1) · 1− 3 · 1 · 5− 2 · 4 · 1 = −3 .

3.1.2 N̊agra räkneregler för determinant av produkt av matriser

Vi har följande sats för determinant av produkt av matriser
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Sats 3.1

det(AAA ·BBB) = detAAA · detBBB . (3.2)

det(AAA−1) = (detAAA)−1 . (3.3)

det(AAAT ) = detAAA . (3.4)

det(c ·AAA) = cn detAAA , om typAAA = n× n . (3.5)

Determinanten av en kvadratisk matris

DDD =


d11 d12 ... d1n

0 d22 ... d2n
...

. . .
...

0 0 ... dnn

 (3.6)

med nollor under huvuddiagonalen är

|DDD| = d11 · d22 · .... · dnn . (3.7)

Exempel 3.2 Givet

AAA =

[
1 1
−1 1

]
och BBB =

[
1 3
2 2

]
och därmed AAA ·BBB =

[
3 5
1 −1

]
.

D̊a är

|AAA| = 2, |BBB| = −4 och |AAA ·BBB| = −8 .

Vidare demonstrerar vi (3.7) först för en matris av ordning 2 och sedan ordning 3.

detDDD =

∣∣∣∣ d11 d12
0 d22

∣∣∣∣ = d11 · d22 − d12 · 0 = d11 · d22 .

Fr̊an determinanten ovan f̊ar vi

|DDD| =

∣∣∣∣∣∣
d1,1 d1,2 d1,3
0 d2,2 d2,3
0 0 d3,3

∣∣∣∣∣∣ = {Utveckling längs rad 3} =

= (−1)3+3 · d33 ·
∣∣∣∣ d1,1 d1,2

0 d2,2

∣∣∣∣ = d33 · d11 · d22 .
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Vi bevisar (3.2) för AAA

 a1,1 a1,2 a1,3
0 a2,2 a2,3
0 0 a3,3

 och BBB =

 b1,1 b1,2 b1,3
0 b2,2 b2,3
0 0 b3,3

 . Deras determi-

nanter är enligt (3.6) och (3.7)

|AAA| = a11a22a33 och |BBB| = b11b22b33 .

Nu är (visa)

AAA ·BBB =

 a1,1b1,1
0 a2,2b2,2
0 0 a3,3b3,3


där elementen ovanför huvuddiagonalen när utelämnade. Denna matris har determinan-
ten

a1,1a2,2a3,3b1,1b2,2b3,3 = |AAA| · |BBB| .

D̊a VL är |AAA ·BBB| och HL är |AAA| · |BBB| har vi visat (3.2) i detta specialfall.

3.2 Determinant och radoperationer

Vi skall se hur de tre radoperationerna (sidan 11) p̊averkar en kvadratisk matris’ deter-
minant.

Sats 3.2

1. Multiplikation av en rad med ett tal och därefter adderas
(elementvis) till en annan rad ändrar inte determinantens
värde.

2. Platsbyte av rad ändrar tecknet p̊a determinanten.

3. Multiplikation av en rad med ett tal c 6= 0 ändrar determi-
nantens värde med samma konstant.

Kommentarer

• Det betyder att om vi h̊aller reda p̊a radoperationerna för att f̊a matrisen p̊a
trappstegsform (echelon form) kan vi beräkna determinantens värde med bara en
term.

• För en kvadratisk matris AAA som är radekvivalent med AAA′, d.v.s. AAA ∼ AAA′ gäller
allts̊a att om | ±A| 6= 0, s̊a är |AAA′| 6= 0. Eftersom även AAA′ ∼ AAA gäller

|AAA| 6= 0⇐⇒ |AAA′| 6= 0 och s̊aledes |AAA| = 0⇐⇒ |AAA′| = 0 (3.8)

Specielt gäller (3.8) för AAA′ p̊a trappstegsform.
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Exempel 3.3 I exempel 1.7 beräknar vi determinanten av koefficientmatrisen.∣∣∣∣∣∣
1 −1 2
2 1 −2
1 0 −1

∣∣∣∣∣∣
·(−2)
|←

·(−1)

|←
{1.} =

∣∣∣∣∣∣
1 −1 2
0 3 −6
0 1 −3

∣∣∣∣∣∣ = {3. och 1.} =

= 3 ·

∣∣∣∣∣∣
1 −1 2
0 1 −2
0 1 −3

∣∣∣∣∣∣ · (−1)
|←

= 3

∣∣∣∣∣∣
1 −1 2
0 1 0
0 0 −1

∣∣∣∣∣∣ = 3 · 1 · 1 · (−1) = −3

där vi använt oss av (3.7).

Kommentarer

• Med detAAA = |AAA| av matrisen i (1), sidan 10 m̊aste m = n. Ett sätt att definiera
determinant för en matris av ordning n använder sig av begreppet inversion (inv ).
En determinant där m = 3 best̊ar av termerna i (3.1), sidan 35. En s̊adan term
är a12a23a31, s̊anär som p̊a tecken. Hur bestämmer man tecknet? Ordningen p̊a
kolonnindexen är avgörande. Dessa är 2, 3, 1. Hur m̊anga ”byten” behövs för att
f̊a ordningen 1, 2, 3? Vi byter

2, 3, 1 ∼ 2, 1, 3 ∼ 1, 2, 3

allts̊a tv̊a byten, Detta talet 2 = inv (2, 3, 1). Allts̊a är termen

(−1)inv (2,3,1)a12a23a31 = (−1)2a12a23a31 = a12a23a31 .

Man kan ocks̊a göra bytena

2, 3, 1 ∼ 1, 3, 2 ∼ 1, 2, 3

ocks̊a tv̊a byten. Även om man byter p̊a ett annat sätt är antal byten, i detta fall,
ett jämnt tal.

Exempel 3.4 Beräkna determinanten av

AAA =


1 1 −1 2
0 3 0 3
2 1 2 1
1 −1 −3 1

 .
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Lösning

Vi använder eliminationsmetodens tre radoperationer för att f̊a s̊a m̊anga nollor som
möjligt, helst nollor under hvuvuddiagonalen.

|AAA| =

∣∣∣∣∣∣∣∣
1 1 −1 2
0 3 0 3
2 1 2 1
1 −1 −3 1

∣∣∣∣∣∣∣∣ = {1.} =

∣∣∣∣∣∣∣∣
1 1 −1 2
0 3 0 3
0 −1 4 −3
0 −2 −2 −1

∣∣∣∣∣∣∣∣ =

= {2. och 3. d.v.s. byte av 2 och 3 samt teckenbyte av rad 3} =

=

∣∣∣∣∣∣∣∣
1 1 −1 2
0 1 −4 3
0 3 0 3
0 −2 −2 −1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 −1 2
0 1 −4 3
0 0 12 −6
0 0 −10 5

∣∣∣∣∣∣∣∣ = {3.} =

= 6 · 5 ·

∣∣∣∣∣∣∣∣
1 1 −1 2
0 1 −4 3
0 0 2 −1
0 0 −2 1

∣∣∣∣∣∣∣∣ = {1.} = 30 ·

∣∣∣∣∣∣∣∣
1 1 −1 2
0 1 −4 3
0 0 2 −1
0 0 0 0

∣∣∣∣∣∣∣∣ = 0

eftersom en nollrad ger att determinantens värde är = 0.

3.3 Samband mellan determinant och lösning av ES

Exempel 3.5 I exempel 1.4 har vi koefficientmatrisen

AAA =

 1 −1 2
2 1 −2
1 0 −1


med determinant (Utveckling längs rad 3, obsevera att andra termen är 0)

(−1)3+1 · 1 ·
∣∣∣∣ −1 2

1 −2

∣∣∣∣+ (−1)3+3 · (−1) ·
∣∣∣∣ 1 −1

2 1

∣∣∣∣ = 0 + (−1) · (1 + 2) = −3 .

Att determinanten 6= 0 hänger ihop med att invers existerar och att ES har en entydig
lösning.

I exempel 1.5 har vi koefficientmatrisen

AAA =

 1 −1 2
2 1 −2
1 0 0


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som vi lämpligt beräknar genom att utveckla längs rad 3. Det blir tv̊a termer som är
noll och

(−1)3+1 · 1 ·
∣∣∣∣ −1 2

1 −2

∣∣∣∣ = −1 · (−2)− 2 · 1 = 0 .

Att determinanten är = 0 betyder att ES i samma exempel inte har entydig lösning.

Med HL

 0
3
1

 finns ∞ med lösningar.

Med HL ,

 0
3
3

 i samma exempel, är antalet lösningar 0.

Sats 3.3 Antag att AAA är en kvadratisk matris av ordning n. D̊a
är följande fyra p̊ast̊aenden ekvivalenta.

I rangAAA = n.

II Matrisekvationen AAA ·XXX = BBB har entydig lösning.

III AAA har invers matris.

IV detAAA 6= 0.

Bevis: Vi sätter AAA ∼ AAA′ där AAA′ är p̊a trappstegsform:

AAA′ =


a′1,1 a′1,2 ... a′1,n
0 a′2,2 ... a′2,n
0 0 ... a′3,n
...

...
. . .

...
0 0 ... a′n,n

 .

I⇒II Antag att rangAAA = n och skriv ES p̊a matrisform [AAA|BBB]. D̊a är motsvarande
radekvivalenta radreducerade matris enhetsmatrisen IIIn och lösningen p̊a ES
st̊ar i HL.

II⇒III Betrakta matrisekvationen AAA ·XXX = IIIn. Den har lösningen XXX = AAA−1.

III⇒IV Existensen av invers ger att AAA ·AAA−1 = III. Regeln för determinant av prdodukt
av kvadratiska matriser ger

det(AAA ·AAA−1) = detIII d.v.s. detAAA · det(AAA−1) = 1 .

Allts̊a m̊aste detAAA 6= 0 (Speciellt följer det att det(AAA−1) =
1

detAAA
).
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IV⇒I Vi skall visa IV =⇒ I och visar det ekvivalenta p̊ast̊aendet ¬IV ⇐= ¬I. Om
allts̊a rangAAA 6= n, s̊a är rangAAA < n. D̊a inneh̊aller AAA′ en nollrad och därmed
är detAAA = 0.
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3.4 Bevis av sats 3.2

Vi behöver först en definition av determinant.

Definition 3.1 Determinanten av AAA är summan

detAAA =
∑

(−1)inv (k1,k2,...,kn) · a1k1 · a2k2 · ... · ankn (3.9)

där summan är tagen över alla permutationer (k1, k2, ..., kn) av
(1, 2, .., n).

Exempel 3.6 Antag att n = 3 i (3.9). Antalet permutationer av 1, 2, 3 är 3! = 1 · 2 · 3 = 6
och därmed 6 termer i summan (3.9). Antal termer i en determinant av en matris av
ordning n är n!. Ex.vis är 4! = 24 och 10! = 3 628 800. Ett sätt att f̊a ned antal termer
6= 0 är m.h.a. radelimination att skapa s̊a m̊anga element = 0 som möjligt.

Varje term i determinanten inneh̊aller en faktor ur varje rad och kolonn.

För en matris med en nollrad eller nollkolonn är därför determinanten = 0.

3.4.1 Bevis för radoperationerna 3, 2 och 1

Radoperation 3. Multiplikation av en rad med ett tal c ändrar determinan-
tens värde med samma faktor c.

Genom att multiplicera en rad j i AAA med ett tal c ersätts ajk, k = 1, 2, ..., n med c ajk i
AAA och i detAAA. För determinanten f̊ar vi termer∑

(−1)inv (k1,k2,...,kn) · a1k1 · a2k2 · ... · (c · ajk) · ... · ankn =

= c ·
∑

(−1)inv (k1,k2,...,kn) · a1k1 · a2k2 · ... · ajk · ... · ankn = c · detAAA .

Radoperation 2. Vid radbyte i en kvadratisk matris ändras determinantens
tecken.

Bevis: En godtycklig term i detAAA är

(−1)inv (k1,k2,...,ki,...,kj ,...,kn) · a1k1 · a2k2 · ... · aiki · ... · ajkj · ... · ankn

Antag att i < j och motsvarande rader byter plats och ger upphov till matrisen
AAA′. Motsvarande term i detAAA′ är

(−1)inv (k1,k2,...,kj ,...,ki,...,kn) · a1k1 · a2k2 · ... · ajkj · ... · aiki · ... · ankn
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Det enda som skiljer dess termer åt, är antal inversioner inv (...). Ändring mellan

(k1, k2, ..., ki, ..., kj , ..., kn) och (k1, k2, ..., kj , ..., ki, ..., kn)

behövs ett byte. Allts̊a har

(−1)inv (k1,k2,...,ki,...,kj ,...,kn) och (−1)inv (k1,k2,...,kj ,...,ki,...,kn)

olika tecken. Därmed ändras endast tecknet p̊a motsvarande termer eftersom teck-
net ges av inv (...) s̊a att determinantens värde ändrar tecken.

Vi passar p̊a att ge ett korollarium.

Korollarium 3.1 En kvadratisk matris med tv̊a identiska rader har determinanten
= 0.

Bevis: L̊at rad i och rad j var tv̊a olika rader som är identiska. L̊at vidare AAA′ vara den
matris som erh̊allsd̊a de tv̊a raderna är bytta. D̊a gäller dels att detAAA′ = −detAAA
och eftersom detAAA = detAAA′ f̊ar vi likheten detAAA = −detAAA eller ekvivalent detAAA =
0.

Radoperation 1. Multiplikation av en rad med ett tal c som sedan adderas
till en annan rad ändrar inte determinantens värde.

Bevis: Vi sätter

XXX = [x1 x2 ... xn]

och byter elementen i rad j i AAA fr̊an ajk till xj och definierar

T [xxx] :=
∑

(−1)inv (k1,k2,...kn)a1 k1 ·a2 k2 · ... ·aj−1, kj−1
·xj ·aj+1,kj+1

· .. ·an,kn . (3.10)

Vi l̊ater aaaj vara rad j i AAA. Speciellt är d̊a T [aaaj ] = detAAA enligt definitionen (3.9).
Vi f̊ar vidare att

T [xxx+ yyy] =
∑

(−1)inv (k1,k2,...kn)a1 k1 · a2 k2 · ... · aj−1, kj−1
· (xj + yj) · aj+1,kj+1

· .. · an,kn

= {och använder distributiva lagen och f̊ar likheten} =

= T [xxx] + T [yyy]

d.v.s.

T [xxx+ yyy] = T [xxx] + T [yyy] . (3.11)
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Vi ersätter nu xxx med cxxx, där c är ett reellt tal. Vi f̊ar d̊a

T [cxxx] = c T [xxx] . (3.12)

Vid radoperation 1. multiplicerar vi en rad i med en konstant c och adderar sedan
resultatet till rad j. Vi antar att i < j. Fallet i > j behandlas p.s.s. Vi f̊ar en
matris AAA′, där som endast f̊ar rad j ändrat till

[aj1 + c ai1 aj2 + c ai2 ... ajk + c aik ... ajn + c ain] .

Determinanten är

detAAA′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1k ... a1n
...

...
...

ai1 ai2 ... aik ... ain
...

...
...

...
aj1 + c ai1 aj2 + c ai2 ... ajk + c aik ... ajn + c ain

...
...

...
...

an1 an2 ... ank ... ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Vi skriver den j :e raden som

[aj1 aj2 ..., ajn] + c[ai1 ai2 ... ain] = xxx+ cyyy .

Determinanten detAAA′ kan vi uttrycka med operatorn T , som

detAAA′ = T [xxx+ cyyy] = T [xxx] + c T [yyy] .

Vi har att T [xxx] = detAAA. Nu gäller det att visa att den andra termen = 0. I
determinanten T [yyy] finns tv̊a lika rader nämligen rad i och j, som är [ai1 ai2 ... ain].
Allts̊a är T [yyy] = 0 och allts̊a är

detAAA′ = detAAA

enligt korrolarium 3.1.

Kommentarer

• Det är inte uppenbart att definitionen av determinant (3.9), att begreppet inversion
är väldefinierat. Men man kan visa att inv (k1, k2, , ..., kn) är antingen ett jämnt
tal eller udda tal oberoende hur bytena görs, jämför med diskussionen p̊a sidan 39.

• Man kan visa att detAAA = detAAAT . I fallet n = 2 och

AAA =

[
a b
c d

]
är detAAA = ad− bc och detAAAT =

∣∣∣∣ a c
b d

∣∣∣∣ = ad− cb

och allts̊a lika.
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3.5 Cramers regel

För att lösa ut en variabel i ett ES kan man använda Cramers regel. Vi börjar dock med
ett mer allmänt exempel, med koefficientmatris av typ 2× 2.
I matrisekvationen AAA ·XXX = BBB med

AAA =

[
a11 a12
a21 a22

]
, XXX =

[
x
y

]
och

[
b1
b2

]
,

vill man beräkna enbart x. För att göra detta beräknar vi först XXX och antar att AAA−1

existerar.

XXX = AAA−1 ·BBB =
1

detAAA

[
a22 −a12
−a21 a11

]
·
[
b1
b2

]
=

1

detAAA

[
a22b1 − a12b2
−a21b1 + a11b2

]
Vi uppfattar täljarens element som en determinanter. Med

AAA1 =

[
b1 a12
b2 a22

]
och AAA2 =

[
a11 b1
a21 b2

]
blir täljaren p̊a plats (1, 1) |AAA1| och p̊a plats (2, 1) |AAA2|. Observera att AAA1 är samma
matris som AAA förutom att kolonn 1 är utbytt mot HL. P.s.s. är

Exempel 3.7 Med I1 och I2 som variablerna och motst̊anden och strömmen I kända, f̊ar
vi nedanst̊aende ES {

I1 + I2 = I

R1I1 = R2I2

Antag att vi bara vill beräkna I2. Vi börjar dock att beräkna XXX :=

[
I1
I2

]
. Som

matrisekvation för vi [
1 1

R1 −R2

]
·XXX =

[
I
0

]
som vi skriver formellt som

AAA ·XXX = BBB .

Vi utg̊ar fr̊an att AAA har invers och determinant 6= 0. D̊a är

XXX = AAA−1 ·BBB.

Utskrivet är

AAA−1 =
1

R1 +R2

[
R2 1
R1 −1

]
s̊a att

XXX = AAA−1 ·BBB =
1

R1 +R2

[
R2 1
R1 −1

]
·
[
I
0

]
=

1

R1 +R2

[
R2I
R1I

]
.
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Vi ser att detAAA st̊ar i nämnaren s̊anär som p̊a tecken. Vad st̊ar i täljaren? Vi inriktar
oss p̊a att först beräkna I1. I täljaren st̊ar R2I. Byt ut kolonn 1 i AAA mot HL. Vi f̊ar d̊a
matrisen

AAA1 :=

[
I 1
0 −R2

]
med determinant − I ·R2 .

Vi har allts̊a

I1 =
detAAA1

detAAA
.

P.s.s. är

I2 =
detAAA2

detAAA
,

där AAA2 =

[
1 I

R1 0

]
.

Exempel 3.8 Vi beräkna nu I2 i föreg̊aende exempel direkt med teorin i 1.

I2 =
|AAA2|
|AAA|

=
−R1 I

−R2 −R1
=

R1 I

R1 +R2
.

Sats 3.4 Cramers regel
Antag att matrisen AAA av ordning n har determinant detAAA 6= 0.
Betrakta matrisekvationen

AAA ·XXX = BBB (3.13)

där typBBB = typXXX = n×1. Element xk p̊a plats k i XXX är lika med

xk =
detAAAk

detAAA
≡ |A

AAk|
|AAA|

(3.14)

där AAAk är den matris, som erh̊alls om kolonn k i AAA byts mot BBB .

Bevis: Vi utg̊ar här fr̊an att kolonnoperationer har samma inverkan p̊a en matris som
radoperationer. Vi antar att k = 1. Beviset för allmänt k = 2, ..., n ges p̊a
liknande sätt. Vi börjar med att skriva om täljaren |AAAk| i (3.14). Observera att
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(3.13) ger att bj = aj1x1 + aj2x2 + ...+ ajnxn för j = 1, 2, ..., n. Vi byter därför bj
mot aj1x1 + aj2x2 + ...+ ajnxn och f̊ar likheten

|AAA1| =

∣∣∣∣∣∣∣∣∣
b1 a12 ... a1n
b2 a22 ... a2n
...

...
. . .

...
bn an2 . . . ann

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a11x1 + a12x2 + ...+ a1nxn a12 ... a1n
a21x1 + a22x2 + ...+ a2nxn a22 ... a2n

...
...

. . .
...

an1x1 + an2x2 + ...+ annxn an2 . . . ann

∣∣∣∣∣∣∣∣∣ .
Multiplicera nu kolonn 2 med −x2 och addera sedan till kolonn 1 (Radoperation
1 fast för kolonner). D̊a försvinner termerna aj2x2 i position (j, 1).
Multiplicera sedan kolonn 3 med −x3 och addera sedan till kolonn 1. D̊a försvinner
termerna aj3x3 i position (j, 1) för alla j = 1, 2, ..., n.
Vi fortsätter att eliminera i kolonn 1 m.h.a. kolonn k, k = 3, 4, ..., n tills vi f̊ar

|AAA1| =

∣∣∣∣∣∣∣∣∣
a11x1 a12 ... a1n
a21x1 a22 ... a2n

...
...

. . .
...

an1x1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = {Bryt ut x1 ur kolonn 1} =

= x1

∣∣∣∣∣∣∣∣∣
a11 a12 ... a1n
a21 a22 ... a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ = x1 |AAA| eller ekvivalent x1 =
|AAA1|
|AAA|

Exempel 3.9 Bestäm y i ES 
x+ y − 2z = 1

x− y + 2z = 1

−y + z = 2

.

Lösning

Som matrisekvation kan detta ES skrivas

AAA ·XXX = BBB med AAA =

 1 1 −2
1 −1 2
0 −1 1

 och BBB =

 1
1
2

 .
MatrisenAAA2 är

 1 1 −2
1 1 2
0 2 1

. Nu behöver vi determinanternas värde av dessa matriser.

Med radoperation 1 mer exakt subtrahera första rad fr̊an andra rad, blir
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|AAA| =

∣∣∣∣∣∣
1 1 −2
0 −2 4
0 −1 1

∣∣∣∣∣∣ = 1 · (−2 · 1− 4 · (−1)) = 2 .

Med samma radoperation blir

|AAA2| =

∣∣∣∣∣∣
1 1 −2
0 0 4
0 2 1

∣∣∣∣∣∣ = {Gör ett radbyte mellan rad 2 och 3.} = −8 .

Allts̊a är y =
−8

2
= −4 .


