

Croft, Johansson										Final Version
[image:]

Automatic Control Systems
· In collaboration with Styrteknik (LET085)
A summarized english language report of the LET085 project

John Croft			TIELL
Andreas Johansson		TIELL
1. Introduction
Automatic control systems can be implemented in a variety of different ways, both electrically and mechanically. In this project an automatic logic control system will be implemented using a combination of control circuitry commonly found in real-life applications including Programmable Logic Controllers (PLCs), microcontrollers, combinational integrated circuits and various sensors. 	
As illustrated in [1], the control system in this paper is of the type single-input single-output (SISO), and is based upon the concept that a single user-defined reference value is set on the input, which the control system attempts to match as closely as possible on the output, ideally becoming stable at this value without oscillating around it. The control system does this by sending a control signal proportional to the reference input to the output device, in this case a motor, and then measuring their current state, in this case its speed. The next control signal sent by the control system will then be adjusted depending on this measured value, in order to make the subsequent measured value more closely match that of the reference value. This is referred to as an error driven feedback loop, or more generally, a control loop, since “all control loops are error driven, where error is defined as the difference between the behaviour that is desired and the behaviour that is measured” [1, ch. 1.3]. When we have a control loop which continually adapts its output in order to track a variable input, then we have an automatic control system.

2. Overview
The purpose of this report is to document the design and construction of an automatic control system. This will ensure that our results are reproducible, and will serve as a future reference when encountering similar problems.
Although basic knowledge of electrical circuits and computer science is required when designing the control system, this paper will attempt to keep technical explanations as simple as possible. As the main focus of the project is the behaviour of the complete control system, discrete components and their inner workings will only be included as far as they are necessary.
The system is designed according to a loose specification, which allows the design to take a variety of forms, each valid as long as it results in the desired behaviour. The main hardware limitation is that only certain components may be used. As such, there are multiple ways the problem may be approached in both hardware and software.
The purpose of the actual control system in this report is to regulate the speed of a DC motor and, based on the measured speed, the position of three pneumatic cylinders. The system also monitors external sensory input, in this case from a thermistor (variable temperature dependent resistor), and triggers an alarm subroutine if a certain threshold value is reached.
A practical situation in which such a system may be used is a building’s ventilation system where the motor drives a fan and the cylinders open or close three individual vents, shunting air as required at the different airflow rates. The fan speed is determined by a user-defined value and, in the case that the fan is functioning properly, the resulting measured fan speed is used both to:
· Error-correct the subsequent fan speed with respect to the reference value (this is the feedback loop).
· Adjust the vents to better suit the current air flow.
The temperature monitoring and alarm subroutine may be used to warn the user of abnormally high temperatures indicating some larger problem (i.e. the fan may be broken, causing the temperature to rise).

3. Method
The design of the control system can be described as an iterative process, where experimentation and a trial-and-error approach lead to successively more refined solutions. Other more sophisticated methods were considered, especially from the field of control theory, but would have added another dimension of complexity to the process which was deemed unsuitable for the scope of this project and report.

3.1. Software
The use of both a PLC and a generic microcontroller (PIC16F1827, hereafter referred to as a PIC) necessitates the use of two different programming languages. While the specification explicitly requires the use of Function Block Diagram[FBD] code on the PLC, the PIC microcontroller can be programmed in either C or assembly language, each carrying its own benefits. While assembly language may improve overall responsiveness, the C language was chosen due to its compiler, which provides code optimization and architectural abstraction (such as automatic handling of memory banks) which greatly reduces both the time and programming skill required. The microcontroller’s Integrated Development Environment (IDE) also includes C-libraries with register definitions and predefined, special functions (such as interrupt subroutines [ISR]) that provide a second layer of abstraction, making programming in C more legible.
When programming either of the these devices, textbook examples from their respective programming manuals and datasheets were used to implement basic functionality, before expanding the code to fit our particular application.

3.1.1. PLC Q02
The use of a reference manual is often essential to the programming of the PLC as many manufacturers include proprietary extensions to the official language standards [2]. This includes function blocks (in the Function Block Diagram[FBD] language used in this project) that reduce complexity on the programming side.
	Since FBD uses predefined sequences of code arranged in blocks, much of the code could be ‘sketched’ in pseudocode or written in a more familiar language such as C, and then reduced to a series of these blocks strung together in a fashion similar to sequential logic circuits. As an example, a function that returns TRUE n seconds after x OR y are TRUE, can be broken down into an OR block fed into a TIMER block.
	Unit testing the PLC’s individual functions proved challenging as the system requires sensory input for every output. The solution was to synthesize the input data (in hardware or software) and then check if the result matched our expectations.

3.1.2. PIC 16F827
The PIC microcontroller could be almost fully simulated in software, requiring very little testing of the actual hardware. The IDE provided the means for simulating both the specific chip hardware and the code execution, providing insight into register and variable values while the code was running. Once the code performed satisfactorily in the simulated environment, it was uploaded to the physical chip, where its interaction with peripheral devices (display driver, thermal sensor etc…) could be tested.
	The program code is function-oriented, with individual functions tested to reliably fulfill a single purpose. The main loop of the program consists mainly of calls to these functions.

3.2. Hardware
The hardware design of the system could initially be laid out in block diagrams, with the system divided into its main components (PLC, PIC, display driver etc...). This provided an overview of how the system could be assembled and what was required from the connections between these modules. Based on this, specific small-scale circuitry connecting these components could then be designed. Specific requirements included things such as galvanic isolation between different voltage supplies, logic conversion between 5V and 24V logic and voltage transient suppression as well as other protective and stabilising circuitry.
	Both the PIC and the PLC use a type of prototyping board for the peripheral hardware. For the PLC, each component is fixed in place with only the electrical terminals accessible. The remainder of the electrical circuitry, including the PIC microcontroller, required the use of a prototyping ‘breadboard’ where each component and connection must be manually placed, increasing the risk of electrical error and subsequent troubleshooting.
	The electrical wiring of the PLC to its peripherals was already provided in the specification and, with the exception of the rheostat (variable voltage divider) providing the system’s reference value, all the development for the PLC was done in software.
	The PIC microcontroller was required to interface with many different devices and the main challenge was ensuring that all of the Input/Output (I/O) pins were correctly configured and that the design did not require more connections than the microcontroller had available.
 	This required certain compromises and modifications: for instance, disabling the oscillator output on one of the chip’s pins in order to use it as a regular I/O pin and connecting only the bare minimum of pins to the display driver, making it difficult to extend the system with more displays in the future.
As the PIC and PLC operate at different voltages, opto-isolators were utilized in order to serve two functions, to convert logic signals between them and to prevent electrical interference from reaching the largely unprotected PIC microcontroller (as opposed to the electrically robust design of the PLC). The communication between the PLC and the PIC is therefore completely non-electrical.
I

4. Results & Further Discussion
The behavior of the system matches the desired behaviour set forth by the specification, however, several aspects still have room for further improvement:
1. The corrective action is always of a fixed magnitude. This then results in a dilemma where a constant large corrective action causes frequent overshoots of the target value (and may result in oscillatory behaviour) whereas a smaller corrective action improves accuracy but causes response time to suffer.
2. Instead of conforming to the unit of measurement of the output (revolutions per 5 seconds) and waiting 5 seconds between samples for maximum accuracy, a compromise was made whereby samples are taken more often and simply extrapolated. While this greatly improves the response time of the system, it may give less accurate measurements.
3. The thermistor used in temperature sensing may have an inherent margin of error requiring manual calibration in either software or hardware.

In summary, there may always be a tradeoff between performance and accuracy and deciding where and how much to compromise must be carefully considered depending on the application.

5. References
[bookmark: id.smzesd366w30][1] R. L. James, Control Theory – A Guided Tour, 3rd Ed. London, United Kingdom: The Institution Of Eng. And Technology, 2012, ch. 1, 2
[2]W. Bolton, Programmable logic controllers. Amsterdam: Elsevier/Newnes, 2006, p. 19

image01.png
),
14
Ll
>
-
<
I
O

