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Foreword

This is a very unusual book on control reflecting the author’s personal perspective
that it is essential for control engineers to master the mathematical foundations as
well as the applications and the history of the field. The book covers a very wide
range from intuitive discussions of control to sophisticated technical details. It
is sprinkled with historical notes and philosophical reflections; there is an initial
emphasis on concepts rather than on practical detail.

The style is similar to the book Mathematical Modelling Techniques by
Rutherford Aris (1978), although that book deals with a much more limited
domain.

The first edition of the book was published in 1992, the organisation of
the present third edition remains essentially the same. Nine chapters are basi-
cally as before, with minor edits, additions and reorganisations. The remainder
have been updated, in particular to include Matlab and Scilab examples that
illustrate how those tools can be used to solve realistic industrial problems.

The early chapters introduce concepts and ideas without mathematics; they
are followed by several chapters dealing with classical control, Laplace transforms,
frequency response, modelling and non-linear systems. Then follow updated
practically oriented chapters on limits to performance and real-world implemen-
tation, which reflect the author’s industrial control design experience. The main
innovation of this new edition is the introduction of the two linked chapters
Multivariable linear systems and the state space approach and Links between state
space and classical viewpoints. The first takes a formal mathematical viewpoint,
whereas the second is an informal explanatory chapter. These two chapters are,
in a sense, the core of the book, showing the insight that can be gained by com-
bining classical transfer function concepts with state space theory. Then follow
chapters on Kalman filtering, optimisation, /_ control, soft-computing/artificial
intelligence and the history of the mathematical roots that underpin the control
systems subject. This edition also contains new topics such as input shaping,
sliding-mode control, linear parameter varying (LPV) gain scheduling and linear
matrix inequality (LMI) methods for solving optimisation problems.

There is an extensive set of references to suit a wide range of readers, includ-
ing the historically interested. The book concludes with an appendix consisting
of five real case histories drawn from the author’s engineering experiences to
illustrate the importance of the industrial context.

It is amazing to cover such a wide range in a single book but Leigh pulls it
off by selecting a few key facts, omitting details and providing lots of references.
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The use of control is spreading more and more, today you find control sys-
tems everywhere, in our homes, our cars, in factories and in scientific instru-
ments. Control is also an essential element of all life processes. The need to
know about control is therefore spreading. The first two editions of this unusual
book reached a wide audience, I hope that this third edition will follow in their
footsteps. Personally I enjoyed reading it, even if I do not always agree with the
author’s views.

Karl Johan Astrém, Professor Emeritus, Lund University



Introduction

The structure, content and purpose of the book

The book is structured around a number of concepts that are central to control
theory. They are presented with a minimum of detail ‘only the raisins from the
cake’ but are frequently made clear by examples.

The first three chapters contain no mathematics at all, since it is intended
that these chapters will form a useful introduction to the control subject for a
wide class of readers. These early chapters largely answer the questions:

e What is control theory?

e What are the main ideas?

e What are the features that make the subject so fascinating, absorbing and
universally useful?

The features of the book may be summarised:

e Emphasis on concepts.

e Follow up for the reader by reference links from the text to a very wide
bibliography.

e First three chapters entirely non-mathematical: the next three chapters are
gently introductory.

Attempts to apply theoretical control ideas to industrial situations are frequently
constrained or prevented by the realities of the world context. Two chapters
describe the generic aspects of applications that are most likely to limit what
can be achieved in real life.

Appendix A gives a number of Industrial project histories, all based on
the author’s own experiences. They are intended to demonstrate the often over-
riding importance of individual process idiosyncrasies , compared with the
control-theoretic aspects.

The large number of interludes is intended to stimulate interest. Appearing
in a distinctive typescript, they may be omitted without detriment in a first read-
ing of the mainstream text.

There is an extensive annotated bibliography.

The intended readership for the book is:

e Students working at any level on control engineering. Despite the mul-
tiplicity of available control books at all levels, students still struggle to
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understand basic concepts. This book is intended as their companion and
friend.

e Students of science, computing, mathematics and management. The book
will supply these students with the main concepts of control, thus support-
ing the auxiliary control courses that are attended by these students.

e Industrialists, managers and professionals in a wide variety of fields. A large
number of professionals from a wide variety of fields wish to understand
the fundamentals and the potential of control, to an extent that will demys-
tify the subject and that will allow them more effectively to assess the ben-
efits of control to their particular areas.

e Engineers already familiar with control. They will hopefully find the book
enjoyable, paralleling the enjoyment that I have obtained from writing it.

Every worthwhile discipline has a strong structure and underlying principles
and is possessed of a continuous striving towards improved coherence so that
what, at first sight, appeared to be isolated phenomena take their place in the
structure in a consistent way. Thus, the science of physics has been brought, by
generations of dedicated development, to its present well-unified state.

Here, we are concerned with the structure, principles and context of control
theory.

Control theory is a very powerful body of knowledge indeed. It allows the
synthesis of systems having specified characteristics. It can model and include
within its control loops any complex object (for instance, an aircraft) that needs
to be so included. It can produce adaptive solutions that change automatically
as circumstances change. It can combine with pattern recognition, with expert
systems and with artificial intelligence (AI) in general. It makes use of com-
puter power to identify problems, to solve problems, to validate solutions and
to implement final solutions. Control has an impressive track record of suc-
cessful applications across aircraft, ships, satellite and missile guidance, process
industries (chemicals, oil, steel, cement etc.), pharmaceuticals, domestic and
computer goods (automatic cameras etc.), public utilities (e.g. all aspects of
electrical generation and supply), automatic assembly, robotics, prosthetics and
increasingly it lends its basic ideas to other disciplines.

Control theory is built up around a few very simple ideas: such ideas as
feedback loop and stability. The writing of this book has been motivated by a
belief that it is absolutely vital and worthwhile to obtain a robust understanding
of these few simple ideas and not allow them to be submerged below a cloud of
techniques or numerical detail.
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Some historical threads in the development of control
systems technology

motivating stimuli

Bell
telephone:
distortion
at repeater
stations

Stodola:
query on
turbine
stability

Mechanical
systems:
qualitative
behaviour

Steam engine:
oscillatory
behaviour:

A\
. L Maxwell: Nyquist: . -
Hgﬁﬂ;\él:iz(;nStiiggéty ‘On governors’, ‘Regeneration Lyifﬁg?i\;' i;ag; ity
' 1868 Theory’, 1932 '

Seminal papers written in response to those stimuli

The discipline of control systems has strong historical roots that underpin its
present-day strength. Many rival schemas might be put forward to identify the
main such roots and here you have the author’s choice. Interestingly (and per-
haps inevitably) the four stimuli were all triggered by stability questions arising
from particular applications.

The Czechoslovak engineer Stodola, constructing an early hydroelectric sta-
tion at Davos in Switzerland had produced 11 linked equations describing the
dynamics of the plant but could not solve them to check the stability of the
proposed station. He therefore discussed the situation with his ETH' Zurich
colleague Adolf Hurwitz, who, in response, produced his Hurwitz criterion
[Hurwitz (1895)] that provided sufficient stability information from the coeffi-
cients of the equations without any need to solve them.

The Watt governor, an ingenious device that automatically controlled the
speed of steam engines, was at one time of great importance, but it suffered
from oscillatory behaviour, particularly as the steam engines became larger and
more powerful. A proper analysis of the dynamics of the governor had to wait
until Maxwell (1868) whose masterly analysis can be read in his paper ‘On Gov-
ernors’. Norbert Wiener wrote? ‘we wish to recognise that the first significant
paper on feedback mechanisms is an article on governors, which was published
by James Clerk Maxwell in 1868’.

Telegraphic and telephonic communication may seem an unlikely appli-
cation area to be interested in stability. However, it was the need for low dis-
tortion repeating amplifiers that could be used many times sequentially in a
USA coast to coast communication link that drove the research that led to the

'Eidgendssische Technische Hochschule.
*Norbert Wiener in Cybernetics: or Control and Communication in the Animal and the Machine
(Cambridge, MA, MIT Press, 1948), pp. 11-12.
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quantitative understanding of feedback loops as described by Nyquist and
Black, both from Bell Labs.

Nyquist’s contribution (Nyquist 1932) is widely recognised but the work of
Harold Black (Black 1934) has some claims to priority. To quote Black on this:
‘it was on August 2, 1927 that the concept of the negative feedback amplifier
came to me in a flash while I was crossing the Hudson River on the Lockawanna
Ferry, on my way to work.’

Both the paper by Nyquist and the one by Black can be seen in the 2001
compilation, (Banjar, 2001). See also Harold S. Black, ‘Inventing the negative
feedback amplifier’, IEEE Spectrum, vol. 14, pp. 54-60, Dec. 1977.



Chapter 1

Control concepts: a non-mathematical
introduction

1.1 General systems ideas

The objects under study in control theory are systems. A system is any set of
elements connected together by information links within some delineated system
boundaries. Referring to Figure 1.1, note that the system boundary is not a physical
boundary but rather a convenient fictional device. Note also how information links
may pass through the system boundary.

Since control theory deals with structural properties, it requires system repre-
sentations that have been stripped of all details, until the main property that remains
is that of connectedness. (The masterly map of the London Underground system is
an everyday example of how useful a representation can be when it has been
stripped of all properties except that of connectedness.)

— information
link

information system
link boundary
through system

system environment

boundary

Figure 1.1 The structure of a system
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Figure 1.2 Linear system characteristics

Connectedness is a concept from topology. Topology, the discipline that stu-
dies the underlying structure of mathematics, offers fascinating reading to aspiring
systems theorists. Recommended reading is given in the Bibliography. Clearly, a
system is a very general concept; control theory is most interested in certain classes
of system, and to make progress, we delineate the classes. First, it is interested in
dynamic systems — these are systems whose behaviour over a time period is of
interest. Thus, if a system were concerned with population aspects, a similar
dynamic system would be concerned with population growth.

Second, it is most interested in and most powerful when dealing with linear
systems. A linear system is characterised by the property shown in Figure 1.2. The
upper part of the figure shows a system’s response to some arbitrary stimulus. The
lower part shows how, in the presence of linearity, the response to a scaled-up
version of the stimulus is simply a scaled-up version of the previous response, with
proportionality being preserved.

Finally, it is interested in feedback systems — these are systems where infor-
mation flows in one or more loops, so that part of the information entering an
element may be information that previously left that element (Figure 1.3).

Systems are often visualised in the form of block diagrams, illustrating the
main functions, their supposed interconnection and (possibly) their interconnection
to the environment of the system. Thus, a simple representation of the human
temperature regulation system might be as shown in Figure 1.4.

1.2 What is control theory? An initial discussion

Many areas of study are fortunate in that their titles trigger an immediate image
of their scope and content. For instance, the names ‘human anatomy’, ‘veterinary



Control concepts: a non-mathematical introduction 3

\

system
boundary

Figure 1.3 A simple feedback system
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Figure 1.4 A simple representation of the human temperature regulation system

medicine’, ‘aeronautical engineering’ and ‘ancient history’ all conjure up coherent
visions of well-defined subjects. This is not so for control theory although almost
everyone is interested in control in the sense of being able to achieve defined
objectives within some time frame. Rather specific examples occur in the named
professions of ‘financial controller’ and ‘production controller’.

Control theory applies to everyday situations, as in the examples given above,
just as well as it applies to the more exotic task of manoeuvring space vehicles. In
fact, the concepts of control theory are simple and application independent. The
universality of control theory means that it is best considered as applied to an
abstract situation that contains only the topological core possessed by all situations
that need to be controlled. Such an abstract situation is called a system.
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The argument is that if we know how to control a highly general situation
called a system then we shall be able to control any and every particular situation.
This is the viewpoint of control theory and it is this viewpoint that gives it its
extraordinary power.

Thus, any situation, delineated from its environment for study, is called a sys-
tem. When control theory wishes to study temperature regulation in the human body,
it concerns itself with a system involving blood circulation, heat generation and heat
loss mechanisms and decision making by the brain. Systems can usefully be defined
in almost any discipline — they are not confined to science or engineering.

Control theory concerns itself with means by which to alter the future beha-
viour of systems. For control theory to be successfully applied, the following needs
to be available:

(i) A purpose or objective that is linked with the future state of the system.
(Clearly the past cannot be influenced nor can the present, since no response
can take place in any system in zero time.) The objective of any control system
in every case is connected with the performance of the system over some
period of time — the accountant and the industrial manager want to see long
periods of smooth and profitable operation. Sometimes this leads to conflict-
ing requirements, in the sense that short-term objectives are frequently in
direct opposition to long-term objectives. In general terms, this objective can
be considered to be the desired behaviour of the system.

(i) A set of possible actions that offers an element of choice. (If no variation of
actions is possible, control cannot be exercised and the system will follow a
course that cannot be modified.)

(iii) Unless a trial-and-error strategy is to be adopted, some means of choosing the
correct actions (ii) that will result in the desired behaviour (i) being produced.

In general terms, this requirement is met by a model capable of predicting the
effect of control actions on the system state. Such a model may be implicit and not
even recognised as a model or it may consist of a large and complex set of equations.

For the accountant, the model is a balance sheet together with inherited wis-
dom. For the military commander, the model is a map of local terrain and a
knowledge of the types and deployments of men and equipment. For the control of
quantities that can be measured by sensors, mathematical models in the form of
stored curves or sets of equations will usually be used.

We see then that to achieve successful control we must have a defined objec-
tive and be able to predict adequately, over some sufficient time scale, all the
outcomes of all the actions that are open to us. Figure 1.5 summarises the three
requirements needed for successful control.

A major problem in control using a long-term horizon is uncertainty of the
long-term accuracy of models, compounded by the likelihood of unforeseen events.
That is to say, the possibility must be faced that, once uncertainty rises above a
particular level, no meaningful control can be implemented and that policies that
look ahead to anticipate future contingencies may call for immediate sacrifices that
will never be repaid by the creation of more favourable future environments.
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a definition of
desired behaviour (i)

an ability to
generate and
apply actions (ii)

a means to select actions (ii)
or to make

modifications that when applied

to the system will result in the
desired behaviour (i) being obtained

(iii)

Figure 1.5 The three elements needed for successful control design

Feedback control, in which an error initiates corrective action, can be used
only where corrective actions take effect relatively quickly. It is clearly unsa-
tisfactory to wait until electricity demand exceeds the maximum possible supply
level before starting to build a new power station and there is clearly a need for
prediction. On the other hand, it is usually perfectly feasible to control the speed of
a motor by an error-driven feedback correction.

None of the processes that we are called upon to control can be made to change
its state instantaneously. This is because all processes have the equivalent of inertia.
Suppose that we have the task of moving a large spherical boulder from A to B by
brute force (Figure 1.6). Clearly, considerable initial effort must be expended to get
the boulder rolling and a similar effort must be expended to bring it to rest. In the
case illustrated, it will be all too easy to overshoot the target or to spend too long

initial position of boulder required final position of boulder

A B

Figure 1.6 The problem of moving the boulder
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system to be controlled

(factory process
aircraft

ship

military hardware
consumer device)

levers of
power

measured
behaviour

process
operator

Figure 1.7 A manually controlled process

arriving there if any miscalculation is made. The difficulty of achieving control in
this situation is entirely typical and occurs because of the energy that needs to be
stored in and then removed from the boulder to allow the task to be achieved. Only
when we possess a prior quantitative knowledge of the energy storage mechanism
can we hope to achieve fast and accurate control.

A system with internal energy storage is called a dynamic system. Thus, we
can see that one of our chief problems is to synthesise actions that, when applied to
a dynamic system, will produce the response that we are seeking.

1.3 What is automatic control?

Control theory was developed to support the emergent activity of automatic con-
trol. It is therefore a useful motivation to turn our attention to automatic control.
Historically, the discipline of automatic control was concerned with the replace-
ment of the human worker of Figure 1.7 by the automatic controller of Figure 1.8.
Although automatic control is nowadays a complex discipline, no longer pri-
marily concerned with the replacement of human operators, it is a useful starting
point to consider what sort of skills are necessary to move from an existing, manually
controlled situation to a new automatically controlled situation, as in Figure 1.8.

(1) A central idea of control theory is the control loop. All control loops have the
same basic form, regardless of the particular application area. Thus, control the-
ory uses an application-independent notation to convert all control problems into
the same standard problem. We can consider that control theory concentrates on
studying the universal situations that underlie all applications of quantitative
control. In broadest form, a control loop appears as in Figure 1.9. The decisions
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process automatic system to be
supervisor controller controlled

measured
behaviour

Figure 1.8 The process of Figure 1.7 now under automatic control

actions

information on
result of actions

decision

Figure 1.9 A control loop in its broadest form

govern actions that are taken. The effect of the actions is reported back by the
information channel. Further decisions are taken and the loop operates con-
tinuously as described. A control loop provides an extraordinarily powerful
means of control but, at the same time, the existence of the loop always brings the
possibility of the potentially very destructive phenomenon of instability.

All control loops are error driven, where error is defined as the difference
between the behaviour that is desired and the behaviour that is measured.
An important performance measure for a control system relates to rate of
error reduction. Often, performance is quoted in terms of the highest fre-
quency that the control system can follow, when required to do so.

All control loops tend to become unstable as higher and higher performance is
sought. A good understanding of the topic of stability is central to under-
standing control theory.

1.4 Some examples of control systems

Four control systems are illustrated in Figure 1.10. All can be seen to have the form
of Figure 1.11. A user, uninterested in the mechanics of all this, will see the simpler
view of Figure 1.12. We refer to this single block (that has the control loop hidden
inside) as the control system. The following further points are important:

)

Control system performance can only be meaningfully specified in relation to
the (total) control system of Figure 1.12.
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Figure 1.10 Some examples of particular control applications

comparison
error
J B action system
desired decision to be
esirec controlled measu_red
behaviour behaviour
information

Figure 1.11 The general form of all the control systems in Figure 1.10

L >
desired measured
behaviour behaviour

Figure 1.12 A user’s view of the control system of Figure 1.11
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The control system designer almost always has to incorporate into the control

loop an element whose intrinsic behaviour is largely outside his own influ-

ence. (For instance, the control systems designer may have little influence on

the design of a building although later this person will be called upon to

design temperature control systems for it.)

To quite a large extent, the controller must neutralise adverse characteristics

in the process, compensating for non-ideal process configurations and for

short- and long-term perturbations and variabilities.

For (7) to be possible, the process characteristics must be known to some

degree of accuracy and be reasonably constant.

Ideally (see (6)) the control system designer will ensure that the process has

the best possible inherent behaviour, even with no control. The control design

cycle therefore roughly includes the following steps:

(a) Decide on a necessary performance specification.

(b) Quantify the performance of any system-to-be-controlled element that is
to be included in the control loop.

(c) Design, by one or other control design techniques, a controller so that the
control system meets the specification of (a).

(d) Construct, commission and test the control system.

In the next chapter, we take these ideas further.






Chapter 2

Control design ideas:
a non-mathematical treatment

2.1 Initial discussion

In the previous chapter we saw that prerequisites for control design were broadly
as follows: a defined objective, a set of available actions and a model that could be
interrogated to establish which of the available actions would best move the
system towards meeting the objective. Now we add more structure to the concepts
to put forward a possible design methodology (Figure 2.1). In this methodology,
central use is made of a system model. This model is assumed to be able to rapidly
calculate the expected behaviour of the system when subjected to any particular
action.
Questions that immediately arise are as follows:

e In practice can a realistic model be produced? If so how?
e By what mechanism can two sorts of behaviour be compared?

set of all .
. real-world desired
possible > .
: system behaviour
actions

when the best possible action
has been found, it will
be applied to the real system

comparison with
the desired behaviour

system model

one particular

action is : ;
tried on the L eh ex_pectg
model ehaviour is

given by the model

difference between
behaviours

iteration is continued until the best
possible action is obtained

Figure 2.1 A possible methodology for control system design
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e Can the difference between desired behaviour and expected behaviour be
meaningfully used to help the iteration towards the best possible choice of
action?

o How fast would the iterative procedure, involving the model, have to operate in
order for the real-world system to be realistically controlled?

We answer none of these questions directly, preferring to state that Figure 2.1
remains largely symbolic. Meanwhile we ask a further question.

2.2 Question: Can the best possible control actions be
synthesised by some mechanism?

If the system model and the desired behaviour are accurately defined, should it not
be possible, in one pass, to synthesise the necessary actions shown in Figure 2.1
without interactive searching? This question is illustrated graphically in Figure 2.2.

desired behaviour

system model
(but under what
conditions can it be
used inversely?)

<

best possible
control actions

A

Figure 2.2 The idea of using a system model inversely to synthesise actions

2.3 Requirements for an automatic control system

If it is possible to synthesise the best possible actions continuously by some sort of
algorithm, then we have arrived at automatic control.

In the best known and simplest form of automatic control, the desired beha-
viour is specified as a requirement that the measured system response (say y)
should continuously and closely track a required system response (say v) that is
input by the system user (Figure 2.3).

Of course, v may be constant or even always set equal to zero. In such cases, an
automatic control system has the task of keeping a measured value of y always equal
to the specified constant value of v, despite the presence of disturbing influences.
These general requirements of an automatic control system are shown in Figure 2.4.
Moving more towards the realisation of a practical system, Figure 2.5 results.

It is clear that the success of the scheme presented in Figure 2.5 depends on the
disturbances w being measurable and on the existence of an accurate quantitative
understanding of the system to be controlled, for otherwise the ‘generator of control
actions’ cannot be accurately constructed. (Notice that no use is made of any
measurement of the response.)
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v=required system response

——

y=measured system response

Figure 2.3 An automatic control system may be required to force the measured

response y to track a user-specified desired response as closely as
possible

disturbances w

user’s
required
response v

measured
response y
(should be equal to v)

Figure 2.4 Requirements for an automatic control system

disturbance w

' measurements of
)

« disturbance

Y
'
i
generator of system to
user’s control actions be controlled | measured
required ) response y
response v actions u,
algorithmically
generated

Figure 2.5 Realisation of an automatic control system
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2.4 Automatic feedback control

Automatic feedback control overcomes both the above problems (possible
unmeasurability of disturbances, difficulty of obtaining a sufficiently accurate
model) by being error driven as shown in Figure 2.6.

w disturbances

comparator
v N generator system y
'—>—% of control [ to be >
~ —error actions controlled

(controller)

feedback
loop

<
<

Figure 2.6 An ‘error-driven system’: the feedback loop

2.5 Diagrams illustrating and amplifying some of the concepts

(1)

2)
€)

described so far and showing relationships to a software
engineering context

Control theory is interested in systems behaviour and deals with generalised
situations called systems. A system is a set of elements interconnected by
information links and existing within a system boundary outside which is the
system environment. Figure 2.7 illustrates some of the rationale.

A broad task is to go from a statement of ‘desired behaviour’ to the synthesis
of a system exhibiting that desired behaviour (Figure 2.8).

In more specific terms, control theory is first concerned with systems
understanding, second with influencing systems behaviour and third with
designing systems to exhibit particular behaviours (Figure 2.9).

Almost every important application of control theory is closely embedded within a
complex software engineering context. Without attempting to go into details, the
following concept diagrams illustrate some of the interactions between control
design approaches and the software context:

(4)

)

Once systems behaviour is considered, the following questions arise: What
types of behaviour do we have in mind? How can behaviour be quantified?
What factors limit performance? (Figure 2.10).

Elaborating on the points in Figure 2.10, we turn to points of methodology.
How can we find out what type of system is really required? How can we turn
this knowledge into a specification and then into a design? What tools are
available to assist us? Figure 2.11 illustrates these points.
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Figure 2.7 Some basic control ideas

desired

behaviour \\

synthesise
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Figure 2.8 The broad task of control design

understanding the
behaviour of systems

influencing the
behaviour of systems

designing systems that
will exhibit a particular
behaviour

Figure 2.9 The sequence of objectives involved in a typical control project
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How do we measure behaviour?

What sorts of behaviour do we
have in mind?

What factors set limits to
performance?

Figure 2.10 Fundamental questions related to system behaviour and system
performance

(6) Elaboration of the points in Figure 2.11 produces Figure 2.12. Here we see a
stage called ‘requirement capture’, dedicated to establishing what the eventual
user needs. Further stages of systems specification, system design, knowledge
elicitation (aimed at feeding in particular expert knowledge) and data base
design precede the writing of code (i.e. programming) and the proving, com-

missioning and maintenance that are essential parts of all real applications.

(7) Figure 2.13 is a re-run of Figure 2.12 with a few enhancements. This figure
illustrates how a user’s conception of the ideal system is modified by addi-
tional enhancements as well as by restrictions suggested by a systems
designer’s expertise. The role of CASE (computer-aided software engineer-
ing) tools can be seen in the diagram. These tools allow systematic top—down
design, partitioning of work tasks into manageable parcels, continuous checks
on consistency and a graphical overview of the whole design project. The
figure also illustrates how so-called reverse engineering is used to check that
the final codes are in complete and consistent agreement with the initial

system specification.

How can we find out what
‘people’ want from a system?

How can we turn this knowledge
into a specification?

How can we go from specification
to system synthesis, i.e. to design?

How do we test our designs
before building?

What tools do we use for building?

Figure 2.11 The beginnings of a methodology for system design
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requirements capture

i

system specification

I

system design,
including algorithm design

i

knowledge elicitation

I

database design

I

writing of code

I

proving and commissioning

i

maintenance and updating

Figure 2.12  System design from requirements capture to commissioning and

maintenance
user’s conception system
of the ideal designer’s
system expertise
enhancements
N restrictions
(based on knowledge
- of implications of
requirements certain requests)
capture
+_ CASE tools
design -
+ comparison
system system
specification specification
programming reverse
engineering

/ verification

Figure 2.13 A more detailed view of system design showing the role of CASE tools
and the place of verification using reverse engineering






Chapter 3

Synthesis of automatic feedback control
loops: a more quantitative view

3.1 Feedback loops: further discussion

In automatic control, a device called a controller issues commands that are physi-
cally connected to a process with the intention to influence the behaviour of the
process in a particular way. The commands that will be issued by the controller in a
particular set of circumstances are completely determined by the designer of the
controller. Thus, automatic control can be seen to be completely pre-determined at
the design stage.

The controller may be driven by time alone or it may be driven in a more
complex way by a combination of signals. In feedback control, the controller is
error driven. That is, the controller receives a continuous measurement of the dif-
ference between required behaviour and actual behaviour and its output is some
function of this error (Figure 3.1).

In this type of system, excellent results can be obtained in practice with
very simple controllers indeed, even when operating under conditions where the
system to be controlled is not well understood. Roughly speaking, we can imagine
that the controller will keep on taking corrective action until the error is reduced
to zero.

An alternative view of the arrangement of Figure 3.1 is that users see an arti-
ficially enhanced system that has been synthesised to meet their wishes. If we
represent the controller by an operator D and the system to be controlled by an
operator G, we obtain:

controller
error=v -y output
desired \ measured
valuev controller systemto | responsey
—operating > >
be controlled
ST- onerrorv -y
comparator
feedback
loop

Figure 3.1 A feedback control loop. Notice that the output of the controller is a
function of error v —y
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Controller output = De
Controller input=e=v—y

System output = Gu
} 6

The design task is to specify the controller D, connected to a given process G as in
figure 3.1, such that a satisfactory overall performance is obtained. We can imagine
that the controller modifies the process characteristics in ways chosen by the
designer.

We next assume that there exists a desired hypothetical process H. By suitable
connection of a controller D to the actual process, are we able to produce a con-
figuration that behaves the same as H?

If we interconnect G and D as shown in Figure 3.2 and assume some bene-
volent mathematics that allows us to manipulate the symbols, then from the
figure,

y=GD(v—y)
y GD
L — 2
v 1+GD (3-2)
and setting
H
D=—_—"" 3.3
G(1—h) (3:3)

will be found to accomplish the objective of making y/v equal to H. In other words,
this choice of D does indeed make the synthesised configuration behave like the
chosen hypothetical process H.

Here we assume that well-behaved operators can be found to operate on the
sort of functions that exist in the control loop and possess those other properties of
associativity and invertibility that are needed to make manipulation valid (i.e. we
assume that the operators G, D, H are elements in a group).

Laplace transforms or other techniques can produce these operators for specific
examples, but for the moment, it is sufficient to know that such operators exist.

comparator e u
e / y

Figure 3.2 A feedback loop with the system to be controlled denoted G and the
controller denoted D
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Then, from the set of equations above, it is clear that

y=[(1+4 GD) 'GDv (3.4)

and the system represented by the operators in the square brackets can be synthe-
sised by choice of D to behave as the user requires.

We note and ask:
D contains G, the inverse of the plant:

e This may be of high order.

e Is it (G) known?

e Does it (G) stay constant?

e If G changes by (say) 10%, will control become very poor?

(i) Can our requirements be adequately represented by an operator H?

(il)) How is H chosen?

(iii) Is it not disturbing that H is not in any way dependent on G? For instance, can
we turn a low-performance aircraft (G) into a high-performance aircraft (H)
simply with the aid of a clever algorithm? A simple question, but it leads to a
valuable conclusion: high performance can rarely be obtained algorithmically
but almost always requires expensive equipment such as big engines and high
power-to-weight ratios.

(iv) Does D turn out to be a possible, buildable, robust, practical controller?

Comment

Limits on attainable performance are set by the constraints in the process. These
constraints are not at all modelled by the (linear) operator G, nor are they otherwise
easily fed into the design procedure.

A key point is that if H is chosen too ambitiously, then D will simply drive the
process G into saturation.

In practice, a particular process G can nearly always be marginally improved to
(say) a faster responding H, whereas it will rarely be able to be improved by several
orders of magnitude. The chief difficulty therefore lies in specifying H — how
ambitious can we be?

3.2 What sorts of control laws are there?

It would appear reasonable that an infinite variety of control laws might be possible
including some highly exotic versions that would need considerable computer power
for their implementation. However, we shall show that if the control law is restricted
to be linear, then the range of possible control laws is very restricted indeed.

Without much loss of generality, we may assume that the control law is to be
implemented by an idealised computer that occupies the ‘controller’ position in
Figure 3.1.

The output of the controller at any instant of time can be any function of the
current and/or previous error signal that is read into the controller. (Recall that the
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system is operating in real time and that, therefore, future values of error cannot, by
definition, be available to the controller.)

If linearity is now insisted on in the controller, then the possible control laws
are severely restricted to be of the form:

Present output of the controller = some multiple of the present input
+ multiples of the previous inputs
-+ multiples of the previous outputs

In other words, the present output of the controller is constrained to be just a
weighted sum of present and past values of the input to and the output from the
controller.

Corollaries

(i) More ‘intelligent’ control laws may contain models of the process to be con-
trolled, and using these models, for instance, in rapid iterative simulation
mode, they may calculate and produce a control output. Such control laws are
not linear and theoretical calculation of their expected performance is there-
fore a difficult task.

(i) The restricted class of control laws that can be implemented linearly
excludes many optimal control strategies. This is why so often optimal
control solutions appear as pre-specified (open loop) functions of time that
cannot be converted into automatic feedback controllers except in a min-
ority of cases.

(iii) Specifically, non-linear controllers have found very little application. This is
surprising since most processes that have to be controlled are fairly non-linear
and it would seem that non-linearity in the process could surely be cancelled
by ‘opposing’ non-linearities in the controller to give overall good control.
Also, nature is a well-known user of non-linear devices in most of its control
applications, for instance, in the human body, and we might reasonably expect
control design to follow in this direction.

3.3 How feedback control works: a practical view

The illustrations use temperature control and foreign currency exchange control but
the results are valid for any feedback loop.

Block G (Figure 3.3) is a heating process. It receives an input of ‘fuel flow” and
produces an output ‘temperature’.

Block D (Figure 3.4) is a motorised fuel valve. When the control signal is
zero, the valve produces a fuel flow u,. When the control signal is positive, the fuel
flow is increased as shown in Figure 3.5. The larger the control signal, the steeper
the rate of increase (Figure 3.6). Conversely, negative control signals produce
decreasing fuel flows.
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fuel flow temperature
o— >

Figure 3.3 A heating process viewed as an input—output device

control signal fuel flow
o D mm

Figure 3.4 A controller for connection to the heating process
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Figure 3.5 The characteristic of the controller D: how the control signal causes
changes in fuel flow

If now the feedback loop in Figure 3.7 is formed, the input to the motorised
valve D is the difference between the temperature that is desired and the actual
(measured) temperature.

Assume that the measured temperature is 80° C and the desired temperature is
100° C. Then the input received by the valve D will be 100 — 80 = 20. This is a
positive signal and valve D will respond by increasing the fuel flow. Heating pro-
cess G, on receiving an increased fuel flow, will respond by increasing its tem-
perature so that it will climb above 80° C. The error will decrease and the fuel flow
will settle eventually at the value that brings the measured and desired temperatures
to be equal, i.e. to a zero error condition. The operation just described is illustrated
in Figure 3.8.

Notice carefully that the temperature will arrive exactly at the desired value
regardless of the particular characteristics of heating process and valve. For instance,
even should the heating process suddenly and unexpectedly fall in efficiency (thereby
requiring more fuel to achieve the same temperature), the feedback loop will com-
pensate perfectly for this change since the fuel flow will be increased automatically



24 Control theory: a guided tour

control signal

time

fuel flow

time

Figure 3.6 Further illustration of the characteristics of the controller D. How
stepwise increases in control signal are translated into increasing
rates of fuel flow

temperature actual
error fuel flow measured
+ motorised heating | temperature
desired valve D process G
temperature

Figure 3.7 A feedback loop in which the motorised valve is connected to the
heating process

to whatever level is required to give exactly the desired temperature. Here we see the
great attraction of feedback control — an imperfectly understood process, even one
subject to large unpredictable changes of basic characteristics, can be satisfactorily
controlled using a control law that is specified in the vaguest of terms.

Before we move on to consider the implications, let us illustrate the feedback
control principle at work in a different, much wider context (Figure 3.9). Here let
the element G be an economic element whose input is UK bank rate (%) and whose
output is the exchange rate, number of US dollars per pound sterling.

Assume that the Bank of England has in mind a desired exchange rate, say $1.6
against the pound. It is ‘generally accepted’ that increasing the UK interest rate will
increase the exchange rate. The Bank, D, in the feedback control loop, therefore
manipulates the interest rate to whatever level is necessary to achieve the desired
exchange rate (Figure 3.10).

Of course, the Bank does not ramp the exchange rate (as in the earlier fuel rate
example) — but rather moves it in a succession of steps to form a staircase function
that is all too familiar (Figure 3.11). Notice again that (fortunately) the Bank does
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Figure 3.8 Expected behaviour of the heating process when under closed loop
control

o
UK interest exchange rate
rate (%) ($/£)

Figure 3.9 The economic element that relates exchange rate to UK interest rate

UK interest exchange
rate rate $/£
o LG D G
desired Z
exchange Bank of England economic
rate element

Figure 3.10 The economic element under a loose form of closed loop control by
the Bank of England

not need to understand how the economy works to attain the required exchange
rate, using the principle of feedback.

The feedback principle works extremely well provided that the available
actions do not encounter constraints that limit their magnitudes. In the case of
temperature control, there will always be some limit on fuel flow rate. In the case of
exchange rate control, there will always be restraints, often of a political nature, on
the magnitude of the interest rate that can be used. Linear systems have no such
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UK interest rate

time

Figure 3.11 A typical interest rate profile resulting from the Bank of England’s
actions

constraints and hence linear control theory can never deal satisfactorily with the
inevitable boundedness of all real control actions.

We now return to the main theme of practical feedback control. We recall that
the approach has the considerable merit that it offers exact control of vaguely
specified and possibly changing mechanisms, using quite loosely specified control
actions. The underlying rough idea is that the action in the control loop keeps on
increasing/decreasing to whatever level is needed to make the error zero. So long as
the error is non-zero, further action is taken in the direction that will reduce the
error. When the error reaches zero, the value of the controlled variable is, by
definition, equal to the specified desired value.

We have seen that an acceptable level of control can be obtained for imperfectly
understood processes using vaguely specified actions. However, it is now time to ask:

(i) How long does it take for control to be achieved and what is the nature of the
response curve?
(i1) Can a ‘best possible response’ be defined and, if so, how can it be achieved?
(iii) In a particular case, what sets the limit on performance?
(iv) What if the desired target is not constant (a moving target) or there are
external influences outside our control?

(1) Responses may range across the type of behaviour shown in Figure 3.12.
It is clear that, for many applications, the nature of the response and the
time taken to achieve control will be critical, yet these aspects cannot be
predicted in the absence of quantitative data.

(i1) A ‘best possible response’ is only meaningful in general for problems
where constraints are present. By definition, these problems do not belong
to linear control theory.

Linear control systems can, by definition, use signals of any magnitude to produce
responses that, in the limit, are instantaneous — such responses are clearly unattainable
in practice and will be prevented by (unmodelled) constraints or (unmodelled) noise
entering the argument. That is to say, either noise or non-linearity will eventually set
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oscillatory response

sluggish
response

response

time
Figure 3.12  Typical transient responses ranging from highly oscillatory to sluggish

limits to attainable performance. The difficulty is overcome in practice as follows. A
required response that is realistic for the application but that is not expected to violate
constraints is aimed for. If this rather empirical approach shows that constraints would
be violated, the problem has to be altered. In an engineering application, more powerful
motors, stronger practical components or additional amplifier stages may be needed.
The valuable point emerges: The limits of control performance are the constraints
within the system, and these are not at all represented in linear control theory.
We have now reached the stage where ‘imported detail’ begins to crowd in on us,
attempting to force us away from principles into a discussion of technique. At this
point we are content to say that, even under conditions of moving targets, external
influences and other factors yet to be discussed, viable feedback control systems
can usually be designed and implemented.

3.4 General conditions for the success of feedback
control strategies

By the nature of feedback control, corrective action can only begin once an error has
been detected. Therefore, close control will only be possible in those cases where the
rate of corrective action can at least match the rate of disturbance generation. This idea,
of course, soon leads to requests for high bandwidth of control loops to allow, in one
way of looking at it, the control loop to successfully synthesise a signal equal and
opposite to the disturbance signal (Figure 3.13).

signal that
compensates for ﬂ

the disturbance disturbance

\ signal

—\

measured
value

desired
value

Figure 3.13  An (ideal) feedback controller will synthesise an equal and opposite
signal to neutralise the effect of an incoming disturbance
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In many cases, it is not possible to design a closed loop with a high enough

bandwidth, and then feedback control has to be abandoned or relegated to a sec-
ondary role.

3.5

Alternatives to feedback control

Following are alternatives to feedback control:

(@)

(i)

(iif)

Pre-programmed control: Here a standard strategy, recipe or sequence of
controls is calculated in advance and is implemented without regard to any
signals that come from the system during the period of control.
Feed-forward control: Here the disturbing signals are measured and necessary
corrective actions are calculated and implemented with the idea of eliminating
error before it can occur. This approach requires that the disturbances are
measurable independently (as opposed to the feedback approach that allows
the error to be a measure of received disturbances) and that the necessary
control actions are accurately calculable.

Prediction followed by control: Here prediction of future conditions, based
either on extrapolation algorithms or on stored historical records, is used to
allow the best possible positioning of a low-bandwidth control system. A
classical case is in electricity generation where rapidly changing consumer
demand follows a reasonably predictable daily and seasonal pattern, thereby
allowing the cumbersome process (time constant of several minutes) of
bringing new generators onto the grid to be scheduled to match load predic-
tions rather than attempting an unsuccessful feedback control in which the
slow process of bringing new generators on-stream attempts to match the very
much faster rate of change of consumer electricity demand.

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18.



Chapter 4

How the Laplace transform greatly simplifies
system representation and manipulation

4.1 Laplace transform techniques

Many useful techniques depend on the Laplace transform. The Laplace transform
of a function f{f) is denoted sometimes by L{f(¢)} and sometimes by F{(s). The
inverse Laplace transform of F(s) is denoted sometimes by £~ '{F(s)} and some-
times by f{¢). Figure 4.1 makes the relation clear; s is a complex variable whose role
is defined by (4.1).

4.2 Definition of the Laplace transform

By definition

L0} = | ew(-sny () a (4.1)

0

Examples

(1) Let f{f) = a constant k, and let R(s) denote the real part of the complex

number s
=0— <_E) _k (4.2)
0 s s

provided that R(s) is positive (for otherwise the integral does not exist).

L(k) = J:o exp(—st)kdt = — %exp(—st)

f(t) PR

Figure 4.1 The Laplace transform operation
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Let f{f) = exp(at)

L{exp(ar)} = J:O exp(—st)exp(at) dt
1 00

—8)t

(a_s)exp(a s) .
1
s+a

This will be true provided that R(s) > a.

The chore of calculating Laplace transforms of particular time functions and
the converse problem — calculating the time function, by inverse Laplace trans-
formation, corresponding with a particular Laplace transform — can be avoided by
the use of readily available software packages or tables of transform pairs such as
Mobile Reference (Kindle Edition, 2009). Small tables are to be found as appen-
dices in many introductory control textbooks. A very satisfying slim volume of 520
transform pairs for the desktop is McCollum and Brown (1965) and a very com-

prehensive set in Prudnikov et al. (1992).

4A Convergence of the integral that defines the Laplace transform

It is quite typical, as in the last example, for the integral that defines the Laplace
transform to be finite (and hence defined), only for restricted values of s.
However, there seems to be a tacit agreement in the teaching of control theory
to avoid any discussion of the distracting question: What is the significance of
the region of convergence of the integral that defines the Laplace transform?
For example, let @ = 2 in the transform 1/(s + a) that we have just
derived. Then it is clear that the transform is only defined and valid in the
shaded region in Figure 4.2 where the real part of s is strictly greater than 2.

imaginary axis

s=(=2,0)7 real axis

region shaded Y
satisfies R(s) >-2

Y

Figure 4.2 The transform 1/(s + 2) is only defined in the shaded region, yet
the point s = (—2, 0) is the one of interest and the transform is
universally used at that point without further question

e
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However, later in this chapter, we shall see that, for this transform, the value
of s for which s + a = 0 is highly significant (i.e. the point s = (-2, 0)). We,
in common with the whole control fraternity, blithely use the transform at the
point s = (—2, 0) where it is undefined.

Notice also that the region in which the integral converges may be
empty. For example, the function exp(#*) has no Laplace transform for this
reason.

4B Problems with 0~ and 0"

(i) Anyone who has used Laplace transforms to solve differential equations
will be used to obtaining solutions such as

y(t) = y(0)exp(—1)

where by y(0) is meant y(0™"), which has to be calculated independently. One

is expected to know »(0™), but (0 ") is really part of the solution that is to be

determined. Clearly y(0™") will be different from y(0~) only when there is a

discontinuity at the origin. Such a situation occurs for instance in calculating

the step response of a system containing a differentiator. The difficulty can
sometimes, but not always, be overcome by exercising common sense.

(i) A rigorous examination of the Laplace mechanism applied to a delta
function unearths problems again due to the 0~, 0" phenomenon. Taking
the phenomenon rigorously into account shows that £(d(7)) =0, rather
inconveniently, compared with £(d(?)) = 1, that we universally use. The
indispensable reference Zadeh and Desoer (1963) discusses the Laplace
transform rigorously.

4.3 Use of the Laplace transform in control theory

Consider a system (Figure 4.3) that receives an input u(f) and in response produces
an output y(¢). The response y(f) is determined by the nature of the input signal u(f)
and by the nature of the system.

Suppose that g(7) is the response of the system to a unit impulse applied at time
t=0. Then the response to any other input u is given by the convolution integral
(see interlude 4C for further insight).

input - output =response of the
0 system _
system =y(t)

Figure 4.3 A simple input/output system
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However, life is much simpler if we use the Laplace transforms of u(¢) and g(?)
to yield u(s), G(s), respectively, for then, equivalent to (4.2), we have

y(s) = G(s)u(s) (4.3)
i.e. transform-domain multiplication is equivalent to time-domain convolution.
There is an additional advantage in that inverse transformation from y(s) back
to y(f) is often not required — many interesting and significant questions can be
answered most efficiently by reference directly to y(s). The equivalence between
(4.2) and (4.3) is very significant. Refer to Section 4.4 for an alternative viewpoint.
Refer to Dorf (2011) for a more detailed derivation.

4.4 The concept of transfer function

The transfer function of a dynamic system with input u(¢) and output y(¢) is defined
to be the Laplace transform of y(#) under the condition that u(f) is a unit impulse
applied at time = 0; or, more generally applicable in practice:

G(s) = y(s)/u(s), valid for any u, y pair whose transforms exist.

Consider next the interconnected systems shown in Figure 4.4. Let the two systems
have impulse responses gi(¢), g»(¢), respectively.
t

Then y(z) :J &t —1)u(r) dr
0 (4.4)

= J;gz(t ~7) Jrgl (t=p)v(p) dp dr

0
However, using Laplace transformed signals and transfer functions (i.e. Laplace
transformed impulse responses), we obtain, instead of (4.4),

¥(s) = Ga(s)Gi(s)v(s) (4.5)
4.5 System simplification through block manipulation

Block diagrams of any size and complexity can always be reduced to a single block
by successive application of three rules that are summarised in Figure 4.5. The rules
are easily derived as follows (rule 3 of Figure 4.5):

e(s) = v(s) = y(s),y(s) = G(s)e(s)
y(s) = G(s)v(s) — G(s)y(s),y(s)(1 + G(s)) = G(s)v(s)

_ G(s)v(s)
y(s) = TG(S)

Figure 4.4 Two systems connected in series
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Figure 4.5 Three basic configurations and their equivalent single-block
representations

Complicated block diagrams can with advantage be reduced with the aid of
Mason’s rules (see Dorf, 2011).

4.6 How a transfer function can be obtained from
a differential equation

If a differential equation

e L
dr T gt T

is Laplace transformed, we obtain

(s" 4+ a,_15""' 4 - - )y(s) + terms depending on initial conditions
= (bys" + - - -)u(s) + terms depending on initial conditions

Transfer function analysis, but note not differential equation solution by Laplace
transforms, assumes that initial condition effects have died away and that the output
is a function of the input only. In that case, the transfer function corresponding to
the differential equation is

y(S) B b.s" + -

u(s)  s"+a, s

4.7 Poles and zeros of a transfer function

Any value of the complex variable s for which G(s) =0 is called a zero of G(s).
Any value p of the complex variable s that satisfies s - 0 = G(s) — oo is called a
pole of G(s).
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If G(s) can be expressed as G(s) = P(s)/0(s), then the zeros are the roots of the
equation P(s) =0 while the poles are the roots of the equation G(s)=0. In a pole—
zero diagram, zeros are denoted by the symbol 0 and poles by the symbol X in the
complex plane.

The mathematical underpinning of the theory of transfer functions is provided
by complex variable theory. Particularly relevant aspects of complex variable
theory are Cauchy’s integral theorem and Cauchy’s integral formula, Laurent series
and the associated concept of residues. [These aspects can be pursued in Aggarwal
et al. (2011).]

4.8 Understanding system behaviour from a knowledge
of pole and zero locations in the complex plane

The system to be investigated (Figure 4.6) has a single input « and a single output y.
Suppose the transfer function of the system is G(s) = P(s)/O(s), where P, O are
polynomials with real coefficients in s. Since

Evidently Q(s) governs the nature of the system’s response to initial conditions and
hence also its stability (since a response to initial conditions that dies away to zero
belongs to a stable system and a response to initial conditions that grows with time
belongs to an unstable system).

Conversely, P(s) affects the manner in which the system responds to external
Inputs.

Figure 4.6 A simple input/output system

4.8.1 Meaning of pole locations

Figure 4.7 summarises some of the most important points related to the following
question: What is the relation between the transfer function pole locations in the
complex plane and the time-domain behaviour of the system?

Figure 4.7(a) shows how the rate of change of transient solution increases as
the pole to origin distance increases; Figure 4.7(b) shows how any pole in the right
half plane indicates instability; Figure 4.7(c) shows the split of the complex plane
into the real line (poles on the real line indicate exponential responses) and the
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Figure 4.7 The meaning of pole locations

remainder (when poles indicate oscillatory responses) and Figure 4.7(d) shows how
poles nearest to the origin ‘dominate’ the response.

Zeros also have an effect on system response. Figure 4.8 gives examples of
pole—zero diagrams and their associated system step responses.

4.9 Pole placement: synthesis of a controller to place
the closed loop poles in desirable positions

Suppose a given system G has poles as shown in Figure 4.9, but it is required that the
poles are actually at the positions shown in Figure 4.10. Then, preceding the given
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pole locations in complex plane step response
(@) imaginary magnitude
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real axis
time
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Figure 4.8 Examples of pole—zero diagrams and their associated step responses
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complex
plane

Figure 4.9 Presumed initial position of system poles
g

Figure 4.10 The required position of the system poles

complex
plane

complex
plane

Figure 4.11 Poles and zeros of a synthesised system (controller) that when
connected in series with G will ‘move’ the poles to the required
positions

system by an element D having pole—zero diagram Figure 4.11 will cancel the poles
of G and produce the required poles. This technique is called pole placement.
Notice carefully that the unwanted poles of G are not removed — rather their
effect on the external behaviour is cancelled out by the zeros of D.
Two difficulties can arise when pole cancellation is used.

(i) Cancellation may not be exact, or, if initially exact, may not remain so. This is
particularly important where the poles whose cancellation is intended are
unstable poles.

(i) A system in which poles have been cancelled out by coincident zeros only appears
to have a simple form. Internally, the structure representing the cancelled terms is
still present although it does not affect, nor can it be affected by, outside events.
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The redundant internal structure leads to difficulties and anomalies, particularly
in those cases where matrix techniques are to be applied. This topic is discussed
again in Sections 8.10, and 8.11.1.

4.10 Moving the poles of a closed loop system to desirable
locations: the root locus technique

Consider the transfer function system (Figure 4.12):

_c
(s+ 1D)(s+3)
which has poles at s = —1, s = —3. If the same system is connected in a closed loop

(Figure 4.13), then, as shown in Section 4.5, the overall transfer function for the
configuration is

G(s) =

G(s) C /<1+ C ) C
1+G(s) (s+1)(s+3) (s+1)(s+3) (s+1D(s+3)+C

complex
plane

Figure 4.12  Poles of G(s)=C/[(s + 1)(s + 3)]

+ C
Z (s+1) (s+3)

\/

Figure 4.13  G(s) connected into closed loop

The poles of the closed loop configuration are found by equating the denominator
of the transfer function to zero. In this case, the equation to be solved is

(s+1D)(s+3)+C=0
The solutions are s = —2 =1 - C

For C < 1, the poles are real, unequal
C =1, the poles are real, equal
C > 1, the poles are complex conjugates



How the Laplace transform greatly simplifies system representation 39

locus of poles

asCis complex
increased plane

Y
A

Figure 4.14 A root locus diagram for G(s), showing how the closed loop poles
move with increasing values of C

A diagram (Figure 4.14) showing how the poles move with changing C is called a
root locus diagram. With the aid of the root locus diagram, we can decide on the
value of C that will result in the closed loop poles being in desirable positions in the
complex plane. Chestnut and Mayer (1959), Chapter 13, has many examples of root
locus configurations. More recent references, such as Dorf et al. (2011), do not go
into such detail but will be adequate for many purposes.

4.11 Obtaining the transfer function of a process from either
a frequency response curve or a transient response curve

A frequency response curve is a curve that illustrates how a system’s steady state
response to sinusoidal signals varies as a function of the frequency of those signals
(frequency response is discussed in Chapter 5).

A transient response curve is a curve that records a system’s behaviour as a
function of time immediately after the application of a stimulus to the system.

A non-minimum phase system is a system whose transfer function has one or
more zeros in the right half complex plane (the reasons for the name and some
discussion can be found in Chapter 8).

Experimental tests may produce frequency response curves or transient
responses and these may need conversion to transfer functions to start design in the
pole—zero domain. (Truxal (1955), p. 345 et seq., has a masterly and detailed
treatment of these topics — highly recommended.)

4.11.1 Obtaining a transfer function from a given frequency
response curve

The subject of filter synthesis tackles the problem in great detail (Guillemin, 1957).
However, for control purposes, the problem is simpler and, in particular, a transfer
function that has the desired magnitude response is likely also to have the desired
phase angle characteristics. (In fact, for minimum phase transfer functions, the phase
characteristic is completely determined by the gain characteristic (see H.-W. Bode
cited in Truxal, 1955, p. 346).)

Thus, if the magnitude characteristic can be approximated by straight line
segments, then an approximate transfer function may be quickly produced using
(inversely) the rules for straight line sketching of Bode diagrams (Dorf et al., 2011).
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4.11.2 Obtaining a transfer function from a transient
response curve

Let the test signal be u(f) and the resulting transient response be y(f), then the
transfer function G may be determined using the expression

L S}
G = 2l

where & indicates Fourier transformation.

In the days of ‘hand computation’, ingenious methods were devised to
approximate the necessary Fourier transformation. Some of these methods are still
of interest since they give insight into how the shape of a transient curve actually
carries the transfer function information. For instance, Guillemin’s technique (see
Truxal (1955), p. 379) involves approximation of the transient response by seg-
ments of polynomials, followed by repeated differentiation, resulting in a finite set
of impulses from which the transfer function is written by inspection.

4C Convolution: what it is

Let the system of transfer function G(s) have the response g(¢) to a unit impulse
(Figure 4.15). The response to any other sort of input can then be visualised as
the response to a train of impulses that approximates the function (Figure 4.16).

@ I (b)

T

magnitude g(t)

time time

Figure 4.15 (a) A unit impulse at = 0, (b) the response G(t) of a system to
a unit impulse

(@) input (b) approximated
function input function
individual impulse
responses
time time tlme

Figure 4.16 (a) A ramp input, (b) a ramp input approximated by impulses; (c)
the response of a system to the individual impulses of (b)
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Any one of the individual impulse response curves in Figure 4.16(c) can be
expressed as u(7)g(t — r), where 7 is the time of application of the impulse.
Linearity allows us to say that

)= [ ugle — ) n

0

and this expression, unpopular amongst students, is called the convolution
integral.

We can avoid convolution or, more correctly, allow the Laplace trans-
form to take care of it, as follows:

Let y(1) = u(?) * g(?)

Where = indicates convolution.
Then, by the properties of Laplace transforms

y(s) = u(s)G(s)
and
y(#) = £ {u(s)G(s)}

In other words, transform multiplication corresponds to convolution of time
functions.

To complete the discussion, we illustrate the use of the transform
method to calculate the response of a system to a stimulus.

Let the system have the impulse response g(f) =exp(—¢) (this implies
G(s)=1/(s + 1)), and assume the input u« is a ramp function, i.e. u(f) =t,
implying u(s) = 1/s*. Then

- g 1302

(obtained by the use of partial fractions). Finally, inversion produces

yt)=t—1+e"’

4.12 Determination of transfer functions by cross-correlation

The cross-correlation of functions u(f) and y(¢) is given by

T
Ry(7) = TIEIJC%J,TMU —1)y(t) dt

If u is the input and y the corresponding output of a system G, then

) :Jm g(Dult — 1) dr

—00
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And after combination of the two expressions and some manipulation, we obtain

0.0}

Rup(0) = j ()Rl — x) dix

—00

where R, is the autocorrelation function of the signal u.

Under the special condition that the signal u(f) is white noise, whose auto-
correlation function is an impulse, the cross-correlation function R,,(7) is the sys-
tem’s impulse response and the Fourier transform or Laplace transform of this
function is the system’s transfer function.

4D Calculation of resonant frequencies from the pole—zero
diagram

System responses can be calculated from the pole—zero diagram using
approaches that are well described in, for example, Maddock (1982) or
D’Azzo (2003). These approaches are not really competitive as numerical
algorithms but they can be very instructive. Thus, Figure 4.17 has been
drawn to illustrate resonance in a second-order system — resonance occurs
when the product ab of the lengths a, b in the figure is a minimum as the
arbitrary point p on the vertical axis (representing frequency) is varied. The
calculation for the minimum value is carried out beneath the diagram,
resulting in a formula for the resonant frequency.
We define

J = (r2 + (h— w)z) <r2 + (h+ w)z)

Resonance occurs when ab is minimum, i.e. when (ab)* =J is minimum:
dJ

T = (r? + B2 — 2hw + rw?) (2h + 2w)

+ (=2h +2w)(r* + h* + 2hw + w?)

— Aaad P
Thus, the resonant frequency w, must satisfy

wf:hz—r2

W, = (h2 — ;’2)1/2

Now, damping factor { satisfies

r=w,C (since w, is a vector from origin to pole)

h=awn/1-22
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Figure 4.17 Construction in the complex plane for the graphical

determination of resonant frequency

hence,
o = —0;L* + o, (1- )

from which

o, = wy\/1 =28

43

4E Derivation of a formula for damped natural frequency

Following the application of a step input, the output of a stable system having
a pair of complex poles oscillates at a frequency w, within a decaying
exponential envelope, where w, is called the damped natural frequency.
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Let p be a vector from the origin of the complex plane to one of the system
poles (Figure 4.18).

jo
|
|
RN
| @
|
|
| cosi¢
|
k—o0— °

X

Figure 4.18 Construction in the complex plane for the determination of
damped natural frequency

Undamped natural frequency o, is numerically equal to the length of the
vector p.

Damping factor ¢ is the cosine of the angle that the vector p makes with
the negative real axis.

Damped natural frequency is given by the length of the projection of the
vector p onto the imaginary axis.

Then referring to Figure 4.18,

P=F+ wfx
and

q=wyl, p=w,
therefore

2 2 2¢2
wd_wn_wng

wg = w,\/1 =&
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4F The root locus of a system with open loop poles and zeros
located as in Figure 4.19 will include a circle centred on the zero

The closed loop transfer function of the system shown in Figure 4.19 is

C(s+3)
(s+1)(s+2)+C(s+3)

or (for ease of manipulation), putting s = p—3, to move the origin to the point
s=—3.

complex
-3 -2 -1 plane

Figure 4.19 The pole—zero diagram of the second-order system under
study in this section

The characteristic equation is
PP+ (C=3)p+2=0

This is the equation of a circle, with centre at (—3, 0) and radius 2. To
appreciate this, solve the characteristic equation, obtaining

Rp) =22, 1) = 2—(%)2

R(p) +1(p)° = V2

Here R, I denote real and imaginary part, respectively.

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18.






Chapter 5
Frequency response methods

5.1 Introduction

Frequency response methods have a physical explanation that is readily under-
standable without any mathematics. In addition, the methods are design oriented,
link easily between practical results and differential equation methods, and have
been proven to work well in many practical design situations.

The ‘home territory’ for frequency response methods has traditionally been in
servomechanism, process control and aerospace applications, and they have been
rather resistant to applications outside these areas.

5.2 Design using frequency response methods: initial
explanation

Frequency response methods have a distinguished history with Harold Nyquist
(1932) and Hendrik Bode (1945) being credited with early fundamental work that
remains relevant.

Control design in the frequency domain involves the following basic ideas:

(i) The performance of a system H that is to be synthesised may be approximately
characterised by its bandwidth, i.e. by the range of frequencies to which it will
respond.

(i) The bandwidth of any process G that is to be controlled may be measured
experimentally or calculated analytically by straightforward means.

(iii) The necessary frequency characteristics of a controller D may be determined
graphically from information on G and H, such that the performance in (i) is
obtained.

(iv) Sufficient stability of the resulting control loop is easily taken care of as part
of the design method.

5.3 Frequency response of a linear system

A linear dynamic system consists mathematically of the following (repeated)
operations: multiplication by a constant, differentiation, integration and summation,
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Figure 5.1 A linear system consisting of a gain and integrator

and of no other types of operation. Therefore, the response of a linear system to a
sinusoid must necessarily be also sinusoidal — wave shape and frequency both being
invariant under linear transformation.

Hllustration: A linear system has the configuration shown in Figure 5.1. The
input to the system is multiplied by a gain of 3 in the upper arm. It is integrated in
the lower arm and the two signals are added to become the output. Thus, if the input
is a sinusoid of unit amplitude and frequency 1/4 rad/s (i.e. the input is the signal
sin#/4), then the output will be

t t t t
3sin— + Jsinzdt = 3sin— — 4cos—

4 4 4

3.t 4 t

= 5(—-sin—- — - cos—
5 4 5 4 (5.1)

.t . t
=5 (cosa st — sina cos 4_1)
ssn( - o)
=Ssin(-—«a
4
where a = cos™! %, and we confirm that the signal remains sinusoidal of the ori-

ginal frequency, but the amplitude has changed and there is a phase shift a between
input and output sinusoids.

By the frequency response of a system we mean a table or graph showing the
output amplitude and phase difference as a function of frequency when a sinusoid
of unit amplitude is applied to the system (it being assumed that all transient effects
have died away before output measurements are taken).

5.4 The Bode diagram

The Bode diagram allows frequency response information to be displayed graphi-
cally. The diagram (Figure 5.2) consists of two plots, magnitude and phase angle,
both against frequency on the horizontal axis.

5.5 Frequency response and stability: an important idea
If, for some particular frequency w, the block G has unity gain and —180° phase

shift, then the closed loop system shown in Figure 5.3 will be in continuous
oscillation at frequency w.
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resulting magnitude
of output sinusoid

phase angle between
applied and resulting sinusoids

applied frequency

Figure 5.2 The form of a Bode diagram

Figure 5.3 A block of transfer function G with unity feedback

Explanation: A sinusoid of frequency w, once input to the block G, will be
subjected to two phase shifts of 180° (one at G and one at the comparator (multi-
plication by —1 and phase-shifting by 180" having the same effect on a continuous
sinusoid)) and will pass repeatedly around the loop without attenuation, since the
loop gain at frequency w is unity.

In practice, special log-linear axes are used for Bode diagrams with frequency
on a logarithmic scale and magnitude not plotted directly but only after conversion
to decibels (dB). Under these special circumstances, the Bode plots for magnitude
for most simple transfer functions can be approximated by straight line segments.
In the logarithmic domain, products of transfer functions are replaced by summa-
tions of individual logarithmic approximations. Hence, the Bode diagram magni-
tude characteristic for a moderately complex transfer function can easily be
produced by summing a few straight line approximations.

The Bode diagram’s popularity derives from the ease with which it may be
sketched, starting from a transfer function; the ease with which it may be obtained
by plotting experimental results; and from its usefulness as a design tool.

Implication: For stability of the closed loop system shown in Figure 5.3, at that
frequency where the phase shift produced by G is —180°, the loop gain must be less
than unity. Notice that the stability of the complete closed loop is being inferred
from frequency response information referring to the block G alone.
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5.6 Simple example of the use of the foregoing idea
in feedback loop design

Block G of Figure 5.4(a) has the frequency response shown graphically in Figure
5.4(b). Choose the largest numerical value for the gain C, consistent with stability
of the loop of Figure 5.4(c).

e i

() amplitude

|

|

|

|

| increasing
: frequency
|

|

|

|

|

|
~180° \

phase shift

(C)ﬂ* () W

Figure 5.4 (a) A block of transfer function G; (b) the frequency response of G,
(c) the gain C in the loop is to be set to the highest possible value,
consistent with stability of the loop

At the frequency where the phase shift of block G is —180°, the gain of G is 0.5,
i.e. G multiplies sinusoids by a factor of 0.5 at that frequency. Thus, it is clear that
the gain C could be set to C = 2 to bring the system to the stability limit. (The gain
C affects only amplitude — it has no effect on the phase shift curve.)

5.7 Practical point: the need for stability margins

The gain C cannot in practice be set to the stability limit — rather C must be set so
that a stability margin is observed. This ensures that, even allowing for the inevi-
table variations in all real systems, stability will still be obtained. Further, the type
of response to inputs other than sinusoids will then not be too oscillatory, as would
be the case were the loop gain set at the stability limit.
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5.8 General idea of control design using frequency
response methods

Control design in the frequency domain is quite a specialist subject, requiring
considerable experience and detailed knowledge. However, in principle, what is

involved is, in addition to the original process, a compensator D and, as before, a
gain C, to be chosen (Figure 5.5).

(b)  + b ’_>

<

Figure 5.5 (a) A compensator D in series with a gain C; (b) the combination of (a)
in position to control the process G

Treating GD as a pseudo-process, the choice of gain is made exactly as before.
By suitable choice of the compensator D, systems satisfying particular specifica-
tions can be built up. In particular, systems with a flat frequency response up to a
given frequency may be specified. Alternatively, undesirable resonance peaks in
the frequency response for G may be cancelled out by proper choice of D.

Suppose that G is an existing process, like an electromechanical rotating
device whose position is to be controlled.

D is a controller, to be designed, which can contain frequency-sensitive ele-
ments. C is, as before, a simple numerical gain.

The problem: Design D and choose C to obtain a closed loop system having
high bandwidth. The frequency response of the block G is supposedly known (it has
been measured or calculated).

Procedure: Design D so that G and D, taken together, have a phase char-
acteristic that reaches —180° at a much higher frequency than was the case for G
alone, then choose the gain C so that the necessary stability margin is obtained.

In principle: A controller (or compensator) D is being used to modify the phase
characteristics of G in such a way that a high gain C can be used without incurring
stability problems. Such a high loop gain brings the high loop bandwidth desired by
the designer.

5.9 Obtaining the frequency response of a system
experimentally

A frequency response analyser makes the work easy since this device generates the
necessary sinusoids, measures the responses and produces digital displays and plots
of amplitudes and phase angles.
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The analyser injects a pure sinusoid (actually, in commercial analysers, both
sine and cosine waves are usually injected simultaneously for noise cancellation
purposes) at one particular frequency w within this range for an integral number of
cycles N, meaning that the test at this frequency w must last for T’ seconds, where
T = Nn/w seconds and N is an integer.

Let the input to the system be (¢ = a sin(wt)), then under the assumptions of
linearity implied in this test, the output of the system being tested must be (y = b sin
(wt + 0)). Averaging over a sufficient number of cycles to yield reliable results,
the analyser produces estimates of b/a = |G(jw)|, which is the system gain at
frequency w, and ¢ = / G(jw), which is the phase angle between input and output
at frequency w; (b/a; ¢) is just one point on the frequency response diagram but the
analyser sweeps automatically over the selected frequency range to produce a
complete data set.

Note: It can be shown that averaging over a large integral number of cycles
significantly reduces the effects of noise and non-linearity, which in the long term
do not correlate with the pure sine wave input. See Wellstead (2003) for coverage
of all the above aspects.

5.9.1 Obtaining the frequency response of a system
experimentally: some practical difficulties

Even the very simplest of systems can prove surprisingly difficult to identify in
practice. That is just one of several reasons for the much-discussed gap between the
promises of theory and the achievements of practice — if a meaningful model can’t
be obtained, a meaningful control design is necessarily difficult to produce.

Some of the difficulties frequently encountered in practice are as follows:

o It often proves quite a challenge to connect the sinusoidal stimulus signal u(?)
from the analyser to the system to be identified. Few real processes have a pair
of convenient terminals that allow this; many industrial interfaces use mark-
space chopping of power to avoid the cost of continuously variable power
amplifiers; unwieldy devices need to be rigged up to produce linearly reci-
procating sine waves to excite some types of mechanical systems.

o Industrial processes are often already operating in ‘some sort of closed loop
arrangement’ and it is not possible to isolate such processes for testing.

o The product is often a key part of the process that is to be tested. Industrial
processes, in many cases, cannot be considered to exist separately from the
product being produced — managers may not take kindly to sinusoidal varia-
tions being induced into the products.

o Testing takes a very long time if low frequencies are involved. This applies
particularly to large processes that tend to operate in the low-frequency end of
the spectrum.

o Electromechanical systems tend to move in a series of jerks when confronted
with very low frequency signals. They tend to move erratically, giving incon-
sistent results, for high frequencies. Both effects can be attributed to the pre-
sence of non-linearities. Usually stiction is the cause of the low-frequency
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jerking phenomenon, whereas backlash in mechanisms is the source of most
high-frequency erratic behaviour. (At high frequencies, attenuation is severe,
drive signals are of small amplitude and backlash becomes significant.)

e Systems whose output has a non-zero mean level (especially a mean level that
follows a long-term large amplitude ramp) are very difficult to deal with.

This daunting list should not be taken to imply that frequency response testing can
never be applied successfully in practice! However, it is true that only a somewhat
limited class of processes can be successfully tested. Many of these are in the
aerospace field. For industrial processes, other approaches are often used.

5.10 Design based on knowledge of the response of a system
to a unit step input

When an input signal of the form shown in Figure 5.4(a) is applied to a system, the
resulting response is called the unit step response of the system (Figure 5.6). It can
be shown that all the information contained in a system’s frequency response is also
contained in the system’s step response. However, the following points should be
noticed:

(1) The step response of a process is very much easier to obtain than the frequency
response (in some cases just switch it on!). Even industrial processes on which
experimentation is forbidden can be persuaded to yield step response
information.

(a) input signal

time

(b) unit step response

time

Figure 5.6 (a) The input to a system; (b) the output of the system in response to
the input (a) is called the unit step response of the system
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(i) No very attractive design methods exist that use the step response as their
input. However, the semi-empirical Ziegler—Nichols methods (one of which is
based around an experimentally obtained step response) exist to allow the
rapid tuning of coefficients in three-term controllers. Three-term controllers
are the highly successful no-nonsense limited-ability devices that actually
control a very high percentage of real industrial processes. See Section 9.3 for
further information.

(iii)) Computer packages can very easily transform a system’s step response into an
equivalent frequency response. Thus, the easy-to-obtain step response can
serve as an input to frequency-response-based design approaches. However, if
such an approach is used, it is recommended to obtain several step responses
corresponding to different input amplitude changes and to repeat these, start-
ing from different levels, for negative going as well as for positive going input
steps to ensure that asymmetry and non-linearity are discovered so that, if
severe, these effects may be compensated for.

(iv) Many attractive published methods of system identification turn out to be
inapplicable to real industrial situations because they require the process to
be available for experimentation or they neglect other significant realities.
This means that step responses, which can almost always be obtained even
during normal process operation, will often be the only experimental data
available to the modeller. A common sense approach would therefore be
to approximate nothing and to search for that process model (or set of
models) which gives the best time-domain fit to actual unsmoothed
recorded step responses from the process. One monograph that does pur-
sue such an approach (using orthonormal Laguerre functions for the fit-
ting) is by Wang and Cluett (2000).

5.11 How frequency response is obtained by calculation
from a differential equation

Suppose that a system is represented by the differential equation
—4ay=u (5.2)

and that the input u is a sinusoidal signal ¥ = dsin wt. It is not difficult to solve the
equation

dy
— = 0 sin wt 5.3
0 +ay ) (5.3)
using straightforward integration or Laplace transforms. For frequency response
purposes, the transient part of the solution is not usually of interest and only the
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particular integral, describing the periodic behaviour, needs to be considered.
Using the operator D method for this we obtain:

(D+a)y =9 sin wt

in t—LDia)
Dia M T
oD —a) —0(D — a)

=———2=sinwt = ————5>
ol — 2 W2 + a2

_s asin wt — wcos wt
B w? +a?

sin wt

y:

sin wt

B 0 (asin wt — wcos wt)
Vo? + a? Va? + a?
0

= ———(cosasin wt — sinacos wt)

Vol +a?

where a = tan' (w/a)

=% Sin(wr—a)

Vol +a (5.4)
= msin(wt + ¢)(say)
Thus,
Magnitude of output sinusoid 1
m= =
Magnitude of input sinusoid /w2 + 42

¢ = Phase difference between input and output sinusoid = —tan™! (v /a)

If we return to the transfer function of the original system,

1
G =
(s) T a
and obtain
Gljw) = —
1  jo+a

then we find that the magnitude m is the same thing as the modulus of the complex
number G(jw) while the phase angle ¢ is the argument of G(jw). In other words, if G
(jw) is expressed in R/ o form, then R =m and a = ¢. These relations allow the
frequency response of a transfer function to be calculated very simply by determination
of the modulus and argument of a complex number as a function of frequency — there is
no requirement (since these relations are available) to solve differential equations.
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It can easily be demonstrated by simple examples that the substitution method,
as just described, gives the same results as (5.4). The formal justification for setting
s = jw to obtain frequency response information from the transfer function can be
as follows:

Let a process of transfer function G(s) and impulse response g(¢) receive as
input the complex sinusoid exp(jw?). Then the steady state response y,, can be
found by convolution to be

o0

Vs = Jg(r)exp(ja)(t —1))dt
‘ o (5.5)
= exp(jot) Jg(r)exp(fjwt)dr
0

Comparing the term under the integral sign with the defining equation for G(s):

G(s) = Jg(‘[)exp(—sr)dr (5.6)
we see that
vss = exp(jwt)G(jw) (5.7)

i.e. the output is also the complex sinusoid of frequency w but of magnitude |G(jw)|
and with phase difference (compared with the input) of <G(jw).

5.12 Frequency response testing can give a good estimate
of a system’s transfer function

Assume that frequency response testing has produced the magnitude curve of
Figure 5.7. Then it is clear by inspection that the system can be modelled by a
transfer function of the form

C
(1 +ST1)(1 +ST2)

where T, = 1w, T, = Vw,, C = 107?° (to see this, sketch the form of the Bode
plot for the given G(s)).
Questions to be asked about frequency response testing:

G(s) =

(i) On what proportion of real systems can meaningful frequency response tests
be carried out?
(ii) What proportion of successfully completed frequency response tests lead to an
easily interpreted set of data?
(iii) How often can a real control system be designed using an experimentally
obtained frequency response model?
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Figure 5.7  The supposed frequency response (magnitude curve) of an unknown system

(iv) Overall, roughly what proportion of real control systems are actually designed
via these routes?

5.13 Frequency response of a second-order system

A first-order system is abnormally simple. The step response is exponential. The
frequency response (magnitude) plot decays (or for an unstable system, increases)
monotonically. Oscillation and resonance are not possible.

A second-order system, although structurally simple, can in many ways be
considered as a reliable outline approximation for a whole class of systems of
higher order. For instance, when trying to visualise a concept, it will often be
sufficient to think of dynamic effects in terms of their second-order approximation.
For the reasons just given, it is very useful to understand the frequency response of
a normalised second-order system.

Every second-order (linear) system can be converted into the standard form

¥+ 2Lw,y + a),zby = a)iu
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Figure 5.8 Frequency response for a second-order system with different damping
factors C: (a) magnitude curve; (b) phase curve

We can obtain universally useful Bode diagrams of the plot against ‘dimen-
sionless frequency’ w/w,,. Such plots are shown in Figures 5.8(a) and (b).

5A The frequency response of a system with poles and/or zeros
near to the imaginary axis

A system has the poles and zeros shown in Figure 5.9(a). As the applied
frequency moves up the imaginary axis there will be a notch in the magnitude
response as the zero is passed and a peak as the pole is passed. The magnitude
plot of frequency response will have the approximate form of Figure 5.9(b)
(see Dorf et al. (2011) for further background).
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Figure 5.9 (a) A pole—zero diagram in which the poles and zeros are close
fo the imaginary axis; (b) the form of the (magnitude) frequency
response corresponding with (a)
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5B Some interesting and useful ideas that were originated by Bode

Bode (1945) showed that (provided non-minimum phase systems are exclu-
ded) the magnitude and phase characteristics are totally interdependent. That
is to say, given a magnitude characteristic for a Bode diagram, the phase
characteristic is completely determined, and conversely. The following is
based directly on Chestnut and Mayer (1959), which should be consulted for
additional detail.

Bode’s theorem 1 states, retaining his original notation: the phase shift of a
network or system at any desired frequency can be determined from the slope
of its attenuation/frequency characteristic over the range of frequencies from
—aoo to +-00. The slope of the attenuation/frequency characteristic at the desired
frequency is weighted most heavily, and the attenuation/frequency slope at
frequencies further removed from the desired frequency has lesser importance:

7 |dA dA

N 1 J el u
2 | du o T du du 2
where B(w,) =the phase shift of the network in radians at the desired
frequency wy

Blwd) = a4

du (5.8)

] In coth
0
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A = attenuation in nepers where 1 neper = Inle| (Note: 1 neper equals
about 8.7 decibels.)

This curve provides a valuable insight into the relation between magni-
tude and phase characteristics (Figure 5.10).
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ol @y

Figure 5.10 Weighting function for use with (5.8), where u = In w/wq

In most situations, the phase shift is determined largely by the first term
of (5.8). From this point of view, it appears that, for the phase shift to be less
negative than —180° at frequencies in the vicinity of the —1 + jO point, the
attenuation slope should be less than 2 nepers per unit of u or less than 40 dB
per decade over a fairly broad range of frequencies.

The following simple and very useful rule (again due to Bode and
verifiable from the material given above) allows (minimum phase) stable
systems to be synthesised using only the magnitude plot.

‘A system will be stable if the slope of the Bode magnitude plot in the
region of 0 dB is —20 dB/decade and if this slope is maintained for a region of
+0.5 decade about the 0 dB crossing point’.

This simple rule is only approximate and it is indeed rather conservative.
However, it is a very useful rule for making a first cut design (Truxal, 1955,
p. 46).

5.14 Nyquist diagram and Nichols chart

The information in a Bode diagram may be represented in alternative forms.
Representation in polar co-ordinates results in the Nyquist diagram — this is a locus
in the complex plane with frequency being a parameter on the locus.
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The Nichols chart is a plot of magnitude against phase angle. This diagram is
again a locus along which frequency appears as a parameter. The Nichols chart is
used with a special overlay that assists control design.

The Bode diagram, Nyquist diagram and Nichol’s chart are complementary

techniques in the armoury of the frequency-response-oriented system designer.
There is a very extensive literature.

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 16.






Chapter 6
Mathematical modelling

6.1 Approaches to mathematical modelling

Figure 6.1 shows a general situation that is to be modelled. External influences
(controls, raw material characteristics, environmental influences and disturbances)
are contained in vector u. Available information (measurements, observations,
other data) are contained in vector y. The vector x contains internal variables fun-
damental to the situation. This vector may be of no interest whatever, except as a
building block to the modeller. Alternatively, x may be of great interest in its
own right. We assume that there are available data sets {u;,, y;} for the modeller to
work on.

Approach (1) is to fit numerically a dynamic linear input—output model G; to
each data set {u;, y;}. This is very easy, but:

(1) G; may not fit the data well for any i. Such an effect may be encountered when
the situation is non-linear and/or time varying.
(it) Different data sets {u;, y;}, {us, vy} that are supposed to arise from the same
mechanism may give rise to widely differing models G;, G;.
(iii) Non-standard types of information, contained within the vectors u;, y; may be
impossible to accommodate within a standard identification procedure.

Approach (2) is to construct a set of interlinked physically inspired equations,
involving the vector x, that approximate (possibly grossly) the mechanisms that are
thought to hold in the real process. The data sets {u;, y;} are then used quantitatively
to fix numerical values for any situation-specific coefficients and, when best values
have been found, to verify the performance of the resulting model.

Approach (3) is to fit an empirical black box model, typically a neural net-
work, to as wide a range of input—output data as possible in the hope of obtaining

internal
[
inputs u states X outputs y

Figure 6.1 A general situation that is to be modelled
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a single non-linear relation that represents all the cases presented. The expecta-
tion is that the behaviour of the model so obtained will generalise sufficiently
well to act as a useful model of the process. Neural net modelling is discussed in
Section 16.2.

6.2 Methods for the development of mathematical models

Although control theory is a fairly coherent well-defined body of concepts and
knowledge, supported by techniques, the activity of mathematical modelling is ill-
defined and its practitioners are scattered among many disciplines. Thus, in sci-
ence, models are often used to explain phenomena as, for instance, the Bohr model
of the atom or the wave theory of electromagnetic propagation. Such models are
essentially visualisations of mechanisms. Far removed from this are those models,
usually implicit and sometimes fictitious, by which politicians claim to predict
future rates of employment or inflation.

We can propose that the science models contain — and this is their fundamental
characteristic — a representation of physical variables. The second group may be, in
the extreme, no more than extrapolations of past trends. Constructing a model in the
first category is primarily a matter of bringing together, combining and refining
concepts to produce an object called a model (usually it will consist of a set of
equations).

A key question that needs to be answered is: How universally valid is the
model required to be? More specifically, if we are interested only in one particular
process, then perhaps many of its dimensions and other characteristics can be
regarded as constants. At the other extreme, if the model is to be generic, repre-
senting a very wide class of processes, many more variables might have to be taken
into account.

6.3 Modelling a system that exists, based on data obtained
by experimentation

A system that exists may be able to produce data from which a model can be
constructed. The ideal situation is one where:

(a) The system is available for experimentation with no limits on the amount of
data that can be acquired.

(b) The system receives no other signals than those deliberately injected by the
experimenter.

(c) The system is, to a reasonable approximation, linear and time invariant.

(d) The system completes its response to a stimulus within a reasonable time
scale.

(e) The system has no ‘factors causing special difficulty’.

() It is not intended to use the model outside the region of operation spanned by
the experiments.
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The physical meaning of the model is not of interest.
The only system that is of interest is a unique one, on which the experiments
are to be made.

This is a formidable list. It shows why modelling based on experimentation is so
difficult. Discussing the points in turn:

(a)

(b)

(©)

(d)

(e)

Real (for instance, industrial) systems are almost never available for experi-
mentation. This is why pilot plants and laboratory-scale systems are commonly
used — unfortunately they are often quite different from large systems in their
behaviour with such differences themselves being very difficult to quantify.
For this reason, simulations of systems are often used in preference to pilot
plants, but of course simulations need system models. However, real systems
may usually be observed under normal operating conditions and models may
be developed based on the resulting data.
Real systems will usually be subject to operational inputs and unmeasurable
disturbances, in addition to any signals originated by the experimenter. The
experimenter’s signals will always need to observe amplitude constraints
and there always arises the question: Is the signal-to-noise ratio of recorded
data sufficient to allow modelling to proceed to a level of sufficient accuracy?
Real systems exhibit every sort of undesirable behaviour. Lack of repeatability,
hysteresis and asymmetry are the norm and application-specific problems
(ASPs) often dominate the project. Additionally, linearity fails for all systems
in that increasing the amplitude of applied stimuli will fail eventually to pro-
voke proportional responses. Linearity will often also fail at the other end of
the amplitude range, in that, for signals of a sufficiently small amplitude, no
output response may be obtained. All of these factors need to be considered
when choosing the signals to be injected during an experiment that is specifi-
cally designed to produce data for modelling. (Such an experiment will be
called an identification experiment.)

It will clearly be convenient if a complete identification experiment can

be concluded within a few hours. This will not be possible if the system

is very slow to respond to stimuli. The problem will be compounded
if an identification method that requires long successions of test signals
is used.

Problems in this category are often the most severe from a practical point of

view. They include the following:

(i) Systems that cannot operate except under closed loop control. This
situation complicates the identification procedure because some of the
system input signals are dependent on the system output signals.

(i) Systems where the only practically accessible signals are multiplexed
sequential digital signals, often existing as part of a closed loop control
system as in (i).

(iii) Systems where a product forms an essential part of the system, such that
experimentation without the product is meaningless and on a small scale is
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impracticable. Many industrial processes operate for very long runs and the
most important control problems are often intimately linked with the pro-
duction aspect. For instance, keeping thousands of loaves or steel bars
within specification for hour after hour is not something that can easily be
emulated on a pilot-scale plant.

(iv) Systems where there are significant trends, i.e. when, in some sense, the
mean level of operation changes markedly with time.

(f) Identification may form part of a project that is intended eventually to move the
system into a new operating regime. Clearly, a model based on data obtained in
one operating region may have little or no validity in a different operating
region.

(g) The coefficients in an experimentally based model will owe more to the
mechanics of curve fitting than to any physical aspects of the system. This
aspect may limit the usefulness of the model since, for instance, it is not pos-
sible to estimate from the model the effect of a change in system configuration.

(h) Development projects will often aim to design solutions for a class of systems
(rather than for one particular given system). In such instances, it is important
not to base global designs on models of only local validity.

6.4 Construction of models from theoretical considerations

A system can most easily be modelled when every aspect obeys established phy-
sical laws and where, additionally, all the required numerical coefficients are
exactly known. Most usually, real systems have to be heavily idealised before
textbook theories can be applied. Such idealisation naturally means that model and
system differ appreciably.

Turning to numerical coefficients, these can be classified roughly into three
groups:

(i) Universal constants where values are exactly known.

(i) Coefficients whose role in the theoretical framework is well understood but
whose numerical values may vary over a wide range depending on system
configuration and prevailing conditions.

(iii) Coefficients on whose numerical values the appropriate accepted theories
have little or nothing to say.

6.5 Methods/approaches/techniques for parameter estimation

The methodology for mathematical modelling is as follows. Relevant theories are
consulted to yield a tentative set of equations, in which some of the coefficients are
unassigned. Data are recorded from particular systems and the coefficients in the
equations are adjusted until the set of equations (the model) performs as closely as
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possible like the real-world system — as judged by comparison between recorded
system data and model-generated data. The comparison is made unambiguous by
the definition of a scalar-valued criterion that is to be minimised by choice of
model coefficients. Automatic search for the best model coefficients is assisted
by parameter estimation algorithms, often called informally, but accurately, hill-
climbing methods.

These methods search for the minimum in the multi-dimensional and often ill-
conditioned parameter space (ill-conditioned in the sense that the axes are in
practice far from orthogonal and the function that is to be minimised often has
narrow ridges on which an algorithm without ridge-following abilities may termi-
nate its progress before reaching the minimum).

Figure 6.2 shows the scheme by which observations and model outputs are
compared and the difference between them minimised by hill-climbing. Figure 6.3
illustrates the iterative search in parameter space performed by the hill-climbing
algorithms.

plant plant error between
Input plant containing outputs model and plant = e
parameters A

recorded
plant outputs

recording device

x ®
_ squarin integration
model with unknown . q 9 g
ded | vector of parameters A estimated
recorde p outputs
plant inputs
hill-climbing procedure
manipulating A to minimise J J:fgezdt

Figure 6.2 The principle of hill-climbing for the estimation of unknown model
parameters

contours of constant J
minimum
value of J

| (@

e —

0 1 ay

Figure 6.3 Visualisation of an iterative search in parameter space
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Rarely, if ever, does the first attempt at modelling succeed in the sense that it
produces an accurate usable model. Almost always alternative model structures
have to be tried, hill-climbing repeated and the fit between model and reality re-
examined, until eventually a sufficiently good model performance is obtained.
During the modelling procedure, the misfits between model outputs and mea-
sured observations (often referred to as ‘residuals’) can be plotted to assist in
decisions on model changes that might with advantage be made to further
improve the fit. In principle, the residuals should contain no deterministic ele-
ment and should have zero mean — if not, the implication is that there are still
unmodelled deterministic features that should be incorporated into the next ver-
sion of the model.

6.6 Why modelling is difficult: an important discussion

Let X be a class of system for which a model M is to be constructed. M is to
have a theoretically based structure with experimentally determined numerical
coefficients.

It is required that M should represent a large number of actual system examples
S1, 85, ..., S, To allow the experimental determination of numerical coefficients,
sets of operating data are obtained from the ith system ;.

Each of the different data sets from system S; can be denoted Dy, j=1,... and
of course, different data sets D;;, D; may represent nominally identical operating
conditions of the system S;, or they may happen to be different, or they may have
been planned to be widely different especially to assist modelling. With the aid of
relevant theory, we select particular model structures M,,, Mg, ... (such selection
will always involve a compromise between oversimplification and over-
elaboration). Armed with one model structure M, and one data set D;;, we can use
parameter estimation techniques to produce a best fit.

The key question is to what extent is the model structure M, with parameters
determined from data set D;;, meaningful to represent the whole class X? It is clear
that many data sets from different representative systems would need to be ana-
lysed before any claim to universality of models could be made.

The extreme difficulty that this problem represents can soon be appreciated if
one thinks of particular examples. Consider, for instance, the modelling of the
manufacturing of electronic devices or the modelling of biological growth pro-
cesses (as required in the manufacture of penicillin). The choice of approach
somewhere between theoretically based universality and a practically based one-off
solution will depend on the intended use for the model.

A compromise solution to satisfy many short- to medium-term requirements
is to find a general tried and tested piece of software that is intended to represent
(say) a class of production processes, and then customise it by structural changes
and parameter estimation on typical data to represent a particular situation
(Figure 6.4).
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Figure 6.4 The modelling procedure: the route from real system to specified
model of that system

6.7 Fixing of parameters

Clearly (see Section 6.4, list (i), (ii), (iii)), some coefficients are universal constants
and can be fixed for all time; others are specified by the theory to lie in a known
band; for yet others there is no a priori indication of numerical value.

6.8 Parameter estimation

Parameter estimation is the activity of fixing numerical values in the generic model
of the system to particularise it to a specific case. From what has already been said,
it is obvious that coefficients on which there is no theoretical guidance will need to
be specified either by ‘case law’ (i.e. experience from elsewhere) or by observation/
experimentation.

6.9 Regression analysis

(This section is based on Davidson (1965) and, in particular, the graphs in Figure 6.6
are directly quoted from that reference. However, for a very comprehensive, more
recent, reference that adequately supports Sections 6.9 and 6.10, see Mendenhall
(2008).)

Suppose we assume a mathematical model relating a dependent variable y to a
set of independent variables xj, X, ..., X

y=ax; +axy+ ...+ apx; (6.1)

The a; are parameters whose values are to be determined from sets of repeated
measurements that can be tabulated in the form:

Y X Xz ... Xk

Y2 X211 X2 ... X2k
(6.2)

Yn  Xnl Xn2 oo Xnk
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X1

Figure 6.5 The method of least squares considered as the projection of the
observed vector onto a k-dimensional hyperplane

or in vector—matrix notation,

X1 (6.3)

where X is an n X k matrix. It is usually assumed that:

(1) The measurements X have no error.

(i1) Each measurement y has a random normally distributed error, with mean ¢ and
variance 0%; the variance is the same for all observations, and the errors of the y
are statistically independent. There are two approaches to choosing the para-
meters ap, a», ...: Gauss’s criterion of least squares and Fisher’s criterion of
maximum likelihood. Under the assumptions listed above, these two approa-
ches lead to the same results.

Minimising the sum of squares between calculated and observed values for y
involves solving the set of simultaneous linear equations

X"Xa = x] (6.4)
leading to
a=X"x)"'x =cx/ (6.5)

As is shown by Davidson (1965), the method of least squares may be viewed
geometrically as the projection of the observed vector y € R” onto the
k-dimensional observation hyperplane whose basis vectors are the columns of
Xa. The projection of y onto the observation space is j € R¥. Figure 6.5 illustrates
the concept.

6.10 Analysis of residuals

In a perfect model, the residuals y — y display only a random error pattern. Plots of
residuals are most valuable in highlighting systematic unmodelled elements.
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Figure 6.6 Possible plots of residuals (after Davidson (1965))

Figure 6.6 illustrates some of the types of plot that can assist the process of
model development and refinement (from Davidson (1965)). Figure 6.6(a) shows
the desirable pattern. Figures 6.6(b)—(e) illustrate various types of undesirable bias.

6A Doubt and certainty

An interesting fundamental question that arises in mathematical modelling
is to what extent it is ever possible to claim that a particular model structure



72

Control theory: a guided tour

is correct. The following extract from Cormack and Mantel (1990) is
relevant:

‘A theorem in mathematics starts and ends in the mind. Given the initial
premises only logic is needed to reach the final answer. But problems arise
when the argument starts, not from axioms, but from sense data of the real
world. More than one theory will account for the observations and logic may
not, by itself, settle the question. In such a case, a well-designed experiment
may show which of two contradictory ideas is to be preferred.

A scientific theory is accepted not because it is “true” whatever that may
mean, but because it works and is useful. Some helpful rules have emerged.
The prime test of a theory is that it should predict correctly. Second, it must be
consistent with the rest of science. It must have, as Einstein (French, 1979) put
it, both “internal and external coherence”. A crucial experiment never veri-
fies the “correct” idea in any absolute sense; and also according to Einstein
(French, 1979) “As far as the propositions of mathematics refer to reality they

99 5

are not certain; as far as they are certain they do not refer to reality”.

6B Anticipatory systems

Anticipatory systems — defined as systems that contain internal predictive
models of themselves and/or of their environment, and that utilise the pre-
dictions of their models to control their present behaviour — are specially
complex from the modeller’s point of view (Rosen, 1985).

Systems of this type have a variety of properties that are unique to them,
just as ‘closed loop’ systems have properties that make them different from
‘open loop’ systems. It is most important to understand these properties, for
many reasons. Rosen (1985) argues that much, if not most, biological beha-
viour is model based in this sense.

This is true at every level, from the molecular to the cellular to the
physiological to the behavioural.

Rosen argues:

‘An anticipatory system is one in which present change of state depends upon
future circumstances, rather than merely on the present or past. As such,
anticipation has routinely been excluded from any kind of systematic study,
on the grounds that it violates the causal foundation on which all of theore-
tical science must rest, and on the grounds that it introduces a telic element
that is scientifically unacceptable. Nevertheless, biology is replete with
situations in which organisms can generate and maintain internal predictive
models of themselves and their environments, and utilise the predictions of
these models about the future for purpose of control in the present. Many of
the unique properties of organisms can really be understood only if these
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internal models are taken into account. Thus, the concept of a system with an
internal predictive model seems to offer a way to study anticipatory systems
in a scientifically rigorous way.

This approach raises new questions of a basic epistemological character.
Indeed, we shall see that the utilisation of predictive models for purposes of
present control confronts us with problems relating to causality.

The gadgeteers and data collectors, masquerading as scientists, have
threatened to become the supreme chieftains of the scholarly world.

As the Renaissance could accuse the Middle Ages of being rich in
principles and poor in facts, we are now entitled to enquire whether we are
not rich in facts and poor in principles.

Rational thought is the only basis of education and research. Facts are
the core of an anti-intellectual curriculum.

One of the best-studied biological homeostats is one involved in main-
taining an optimal constancy of light falling on the retina of the vertebrate
eye, the so-called “pupillary servomechanism”. Roughly speaking, in con-
ditions in which there is a great deal of ambient light, the pupil contracts, and
admits a smaller amount of light to the eye. Conversely, when the ambient
light is dim, the pupil opens to admit more light. It has been established that
the control system involved here is a true feedback system, whose output is
represented by the actual amount of light falling on the retina.

Thus, the sensor for the controller is at the retina, and the system reacts
to how much light has already been admitted to the eye. The time constant
for this servomechanism is not outstandingly small, but the system clearly
functions well for almost all conditions that the organism encounters.

Now let us consider the analogous problem of controlling the amount of
light entering the lens of a camera to ensure optimal film exposure. Here
again, the control element is a diaphragm, which must be opened when the
ambient light is dim, and closed when the ambient light is bright. However,
in this case, we cannot in principle use a reactive mechanism at all, no matter
how small its time constant. For clearly, if the input to the controller is the
light falling on the film, in analogy to the situation in the eye, then the film is
already under- or over-exposed before any control can be instituted. In this
case, the only effective way to control the diaphragm is through an antici-
patory mode, and that is what in fact is done. Specifically, a light meter is
then referred to a predictive model, which relates ambient light to the dia-
phragm opening necessary to admit the optimal amount of light to the cam-
era. The diaphragm is then preset according to the prediction of the model. In
this simple example we see all the contrasting features of feedforward and
feedback; of anticipatory as against reactive modes of control. [This note has
been added by the author JRL: ‘since those words were written, intelligent
flashguns have become available that, working closely with a coupled cam-
era, do work in feedback mode as follows. The lens is opened, the flash
begins, and light is reflected from the subject back into the lens to make the
exposure and to be monitored and integrated by a through-the-lens light
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meter. When calculation shows that exposure is complete, the flash is ter-
minated. The high velocity of light makes this remarkable feedback loop
possible. To complete this discussion, I note that the latest Nikon Speedlight
can control its length of flash over the range from zero to a maximum of
around 1/1000 second to make this feedback operation possible.’]

If it were necessary to try to characterise in a few words the difference
between living organisms and inorganic systems, such a characterisation
would not involve the presence of DNA, or any other purely structural
attributes; but rather that organisms constitute the class of systems which can
behave in an anticipatory fashion. That is to say, organisms comprise those
systems which can make predictive models (of themselves, and of their
environments) and use these models to direct their present actions.

At the most fundamental level, anticipatory systems appear to violate
those principles of causality which have dominated science for thousands of
years. It is for this reason that the study of anticipatory systems per se has
been excluded routinely from science, and that therefore we have had to
content ourselves with simulations of their behaviour, constructed in purely
reactive terms.’

6C Chaos

Smale and Williams (1976) showed that non-linear dynamic systems of order
3 or more may exhibit chaotic behaviour, first identified by Li and Yorke
(1975). Chaotic behaviour is characterised by the following:

(i) Any individual solution has a completely well-defined deterministic
trajectory.
(i) Very small perturbations, for instance to the initial conditions, can give
rise to very large differences between later trajectories.
(iii) Solutions of equations exhibiting chaotic behaviour may be difficult
or impossible to distinguish from solutions generated by a purely
stochastic process.

The difference equation
x(k+1) =rme(k)(1 —x(k)) = fx(k) (say) (6.6)

can also exhibit chaotic behaviour as the parameter r is varied. (This is

because the delay term implicit in a difference equation represents infinite

dimensionality, as judged, for instance, by the order of s plane poles.)
There are two equilibrium points

1
at x =0 and x = 1 — — Behaviour of (6.1):
r
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Equation (6.1), which arises in population dynamics, will be studied for
the restricted set of values 0 < x < 1. The behaviour of (6.1) may be
understood graphically, using repeatedly a curve relating x(k + 1) to x(k) as
in Figure 6.7.

For use, x(k + 1) is derived from x(k), then

x(k + 2) is derived from x(k + 1), etc. (6.7)

The process can be simplified using a 45° line to transfer each ordinate value
back to the abscissa to start the next iteration as shown (Figure 6.8). (Local)
Stability depends on the slope off near to the equilibrium point. This slope
f’ must satisfy

If'l <1 (6.8)
qar
= r(1 —2x) (6.9)

and at the non-trivial equilibrium point 1 — 1/r

oo (-9 -+

x(k + 1)

x(K)

Figure 6.7 The curve relating x(k + 1) or x(k) (relevant to (6.1))

45° line

x1)  xQ) x(0)

Figure 6.8 Graphical illustration of the iterations in the solution of (6.1)
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Thus, the non-trivial equilibrium point is (locally) stable if
l<r<3 (6.11)

For r > 3, the solution is initially one that, in the steady state, oscillates
between two fixed points. When 7 is increased further the system oscillates
between 4, 8, 16, etc. fixed points. These stable oscillations with periods 2",
n — o0, continue only up to a critical value r.. of . For (6.1), r.=3.57. For
r > r., very long cycles appear and different types of periodic behaviour are
passed through. Between this type of behaviour occurs another type of
behaviour where different initial points produce different totally non-periodic
behaviour. It is this non-periodic behaviour that is called chaotic behaviour.

Segel (1980), Chapter 4, states that, for any particular value of parameter
r, the set of initial conditions that gives rise to chaotic behaviour has measure
zero. According to this, chaotic behaviour is atypical and should not there-
fore be considered as the obvious source of erratic behaviour in observed
data. The most interesting aspect of all the foregoing is probably that very
simple equations can give rise to highly complex solutions.

6D Mathematical modelling: some philosophical comments

It can be rewarding to glance sometimes beneath the mechanistic surface
activity of mathematical modelling to query the hidden foundations. Here we
content ourselves with the following brief discussions:

(1) On causality and time-ordering

Causality causes an awkward asymmetry in mathematics. Time hardly
appears in pure mathematics and, where it does, anti-causality would be just
as valid, feasible and usable.

Difficulties are most likely to be encountered when synthesising an
optimal controller or an algorithm for reconstructing a continuous time signal
from given discrete samples.

As an illustration, let y(¢) be a continuous signal defined for all real vales
of t and let y*(kT) be the properly sampled version of the same signal. If now,
given some specific ¢, it is required to recover y(f) from the sequence of
samples, the recovery algorithm will be found to have the form

W0 =f 3 3 GT) (6.12)
k=—00

for which, when used as a real-time algorithm, only current and past values
of y*(kT) can be available.




Mathematical modelling

It would be desirable, but is not always possible, to insert a priori con-
ditions into derivations to ensure that the solutions will be causal and there-
fore implementable. In transfer function manipulation, causality is ensured
by simply outlawing as anti-causal, any transfer function whose numerator
has a higher order than the denominator.

(2) Time-ordering

Aulin (1989): ‘But sometimes the time-ordering between cause and effect is
left unspecified, and only implied. Examples of this kind of causal law are
Ohm’s law, Coulomb’s law, Biot—Savart’s law and the laws (Boyle, Gay-
Lussac, etc.) that characterise the thermodynamic equilibrium. Examples of
time-specified causal laws are, of course, plenty. Among them are the law
of the freely falling body and other laws of mechanics, as well as the laws of
electrodynamics. Common to all laws of physics mentioned above is that
they are “phenomenological laws”, i.e. more or less conceived of as direct
inductive generalisations from experimental results (or, if they are not, they
can still be considered as such generalisations).’

(3) On the surprising simplicity of the mathematics that suffices to model
very complex physical systems

Dietrich (1994): “This is the old question about the unreasonable effectiveness
of mathematics in the natural sciences or as Davies put it “why the universe is
algorithmically compressible” (i.e. why the obviously complex structure of
our world can be described in so many cases by means of relatively simple
mathematical formulae). This is closely linked to why induction and therefore
science at all, succeeds. It is difficult to avoid asking whether mathematics, as
the outcome of human thinking, has its own specificity which, for whatever
reason, fits to the specificity of what man would see or experience.

As long as this question is not comprehensively answered, science may
explain much but not its own success.’

See also Eugene Wigner (1960) on ‘The Unreasonable Effectiveness of
Mathematics in the Natural Sciences.’

It seems that the Creator had only a few simple mathematical equations
with which to underpin the immensely complex phenomena that the Universe
contains. There are hundreds of illustrative examples of which the best
known is possibly the law of gravity that Newton postulated based around
very sparse and not very accurate observations of falling bodies and of the
motion of the Moon’s path through the sky. Newton’s laws fitted the few
available observations of the time to within about 4%. As observations have
become much more accurate and more numerous, it has been found that
Newton’s gravitational law is accurate to better than 1/10,000th of 1%.

A somewhat different illustration but equally impressive is the case of
Maxwell’s equations (1862) (see Fleisch (2008)) describing the magnetic field.
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Largely for reasons of symmetry, Maxwell enhanced the equations with an
expression that predicted the existence of electromagnetic waves that were
unknown at the time. When Maxwell published his findings that electro-
magnetic waves may exist and propagate through free space, there was no way
to verify that finding. However, there was available an approximate value at
that time for the velocity of light and this was so close to the value calculated by
Maxwell for his electromagnetic phenomenon that he wrote: ‘It is scarcely
possible to avoid the inference that light consisted of transverse undulations of
the same medium that is the cause of electrical and magnetic phenomena’. In
1887, Hertz experimentally verified the existence of the electromagnetic waves
predicted by Maxwell. (See Baigrie (2007) for more details on this topic.)

(4) On determinism and predictability

Strong determinism: the predictability, with certainty, of single future
events in the given dynamical system.

Probabilistic determinism: the predictability of the probability distributions
of future events.

Weak determinism: the predictability of the possibility distributions of
future events.

Interdeterminism: the unpredictability of all future events in the dynamic
system concerned.

Thus, the concept of causality cannot be identified simply with ‘deter-
minism’, but allows three different degrees of determinism and, in addition to
them, a case of complete indeterminism.

(5) On reversibility and irreversibility

What is the general quantitative measure of irreversibility? Nature does not
permit those processes for which she has less predilection than she has for the
initial states. The measure of nature’s predilection was defined by Clausius

as entropy.
Consider the differential equations
d’y(1)
t)=0 6.13
22 430) (6.13)
dy(t)  dy
= t)=0 6.14

The first equation can be seen to represent a reversible process that will have
a similar solution for both # and —¢. The second equation is stable for positive
time but unstable for negative-going time. The lesson from this simple
example is generalisable so that differential equations with only even-order
terms can be expected to represent reversible processes.
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(6) On modelling social and political phenomena

At a deep enough level, both the arts and the sciences are seeking for
meaning. At that level, do the arts and the sciences begin to merge?

Quoting Truesdell (1984): ‘Nothing is easier to apply to socio-political
phantasmagoria than failed mathematics substantiated by experiments pro-
grammed to confirm it.” And

‘Rarely if ever does a scientist today read Newton and Euler as pro-
fessors of literature read Shakespeare and Hemingway, seeking to translate
into today’s pidgin for their students the eternal verities archaically expressed
by those ancient masters, or gathering material to use in papers for rever-
ential journals read only by scholiasts (sic) of literature, who themselves read
only to gather material to help them write more papers of the same kind.’
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6E A still relevant illustration of the difficulty of mathematical
modelling: the long march towards developing a quantitative
understanding of the humble water wheel, 1590-1841

In this example, excessive reliance on a scientific theory that didn’t quite
apply significantly hindered quantitative understanding of the key phenom-
ena involved.

In Britain in the eleventh century there were, according to the Domesday
book, 5624 water mills; by the eighteenth century the number had increased
to as many as 20,000. Water wheels were of great economic importance in
most of Europe over many centuries since they provided the bulk of the
power for many basic installations (mining, metal forming, milling) and they
were also used to pump water, with notable examples being their use on the
Seine at Marly where 14 water wheels lifted water 502 ft to supply fountains,
gardens and palaces, including Versailles.

By the eighteenth century, there was considerable overcrowding of
water wheels on many European waterways and in many locations, no more
wheels could be fitted in. Thus, there was a strong incentive to design water
wheels of maximum efficiency.

The Problem

Few mechanisms seem easier to understand ‘by inspection’ than a basic
water wheel. There are two types — ‘undershot’ (when the wheel dips into a
stream or mill race) and ‘overshot’, where a duct feeds the water over the top
of the wheel, which then turns by the force of gravity (Figure 6.9).
Although it is obvious in the extreme how water wheels work and
although nothing is hidden from our view and all the laws of gravity, force,
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etc. are, and were, well known, the development of quantitative under-
standing contains salutary lessons.

Which is the more efficient, the overshot or the undershot wheel?

A theorem of Torricelli of 1643 states that water spouting from an orifice at
depth H in a tank and water in free-fall for a vertical height H both have identical
velocities (Figure 6.10). (Evangelista Torricelli (1608—1647) was an Italian
mathematician and physicist who worked closely with Galileo and who gave his
name to the Torricellian vacuum at the top of a mercury in glass barometer.)

— =\
\NO O
undershot overshot

Figure 6.9 Modelling a water wheel. There were 15,000 water wheels in Britain
in the 1700s. Among those who studied it then were Huygens,
Maclaurin, Euler, Navier, Coriolis, Lagrange and D’Alembert.
There were huge discrepancies between theory and observation.
The typically British ‘method of coefficients’ overcame this but made
it difficult to know what, in the design, was significant. Accurate
models only became available when systematic (expensive)
experimentation was undertaken by the Franklin Institute,
around 1830, by which time, steam was replacing water power

—>Y
V2

Figure 6.10 Modelling a water wheel. The theory that misled: the velocities
Viand V, are equal; Vi =V, = \/2gH (Torricelli, 1643)

This theorem is correct but it misled a series of scientists into wrongly
assuming that impulse and weight were equally effective as motive powers
and therefore that both types of water wheels (undershot, overshot) must
necessarily have the same efficiency. Some of Europe’s most distinguished
scientists made armchair pronouncements purporting to be the defining rela-
tions for both types of wheels. Most of these pronouncements turned out to be
well wide of the mark, as some sample quotations show (Table 6.1).




Mathematical modelling

Table 6.1 Analyses of the vertical water wheel, c. 1700—c. 1800

Investigator Date Maximum possible efficiency of wheel
Undershot Overshot

Parent 1704 15 15

Euler 1754 15-30 100
Borda* 1767 50 100
Bossut 1770 15

Waring 1792 25

Evans 1795 58 67
Buchanan 1801 59

*Borda’s analysis proved eventually to be substantially correct but this was not verified and
accepted until 70 or 80 years had passed.

As Table 6.1 indicates, there were many rival theories producing quite
different conclusions.

All real progress towards understanding was made on the basis of
experimentation, and in particular, in England, the land of pragmatists, an
approach called ‘the method of coefficients’ had begun to be applied. The
method was to multiply terms in theoretical equations by numerical coeffi-
cients to make theory agree with practice. Thus, two opposing views prevailed:

o That of the British camp typified by Milner (1778) who said:
‘(Continental) writers who published water wheel analyses really had no
intention of making any improvements in practice. They were simply
illustrating the use of algebra or the calculus. Too many arbitrary
assumptions were made for them ever to correspond with reality.’

e And that of the continental theorists who complained that inexactness
was inherent in coefficient equations, since resistance, friction and all
other losses were taken as a block and expressed by a constant coeffi-
cient. Every loss, they argued, depended on different circumstances, and
could not be expressed by a single constant relationship.

Since all losses were included in one figure, it was impossible to study the
influence of each on the wheel’s performance.

So theoreticians continued to derive ever more complicated equations,
pushing the mathematical analysis of the vertical water wheel to new limits,
while practising engineers used the so-called method of coefficients in which
experimentally derived coefficients were inserted into basic theoretical
equations to bring them into close agreement with practice.

By 1835, the steam engine had arrived on the scene and had taken over
more than 50% of industrial applications. As an anticlimax, by around 1850,
extensive experiments had finally allowed the working-out of a fairly com-
plete theory of water wheel operation and an understanding of the effects of
various design features of performance.
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In summary:

Quantitative understanding of real processes is very difficult.
Theory rarely (i.e. never) applies easily in an application context.
o Experimentation is difficult to plan or interpret without a theory.

(Milner I. ‘Reflections on the communication of motion by impact or gravity’.
Philosophical Transactions of the Royal Society of London. 1778;68:344—79)

6F A postscript on the effectiveness of thought experiments
(1) A thought experiment about the water wheel

One of the most impressive steps forward in the development of understanding
of water wheel operation, see interlude 6E above, was made by a thought
experiment by de Parcieux (1754). He imagined a very slowly rotating fric-
tionless water wheel gravity driven by dripping water. He was able to argue
convincingly that no inevitable losses would occur in such a system and that the
efficiency for an overshot wheel could therefore approach 100%, which turned
out to be the case (the work of de Parcieux, which was carried out in the 1750s
has been 1 described as ‘a triumph of experiment over theory’ and it has been
quoted here because it contains some salutary lessons to all would-be modellers.
De Parcieux’ work is described in some depth in chapter 4 of Reynolds (1983)).

(2) Another success for thought experimentation; conjecturing about the
International Date Line

On Thursday, 10 July 1522, the Portuguese explorer Ferdinand Magellan
completed one of the earliest circumnavigations of the world, and on his
arrival back in the Cape Verde Islands, he and his crew were amazed that
they had ‘lost a day’, since according to their carefully kept log, the day was
Wednesday, 9 July.

Among many people who conjectured over this anomaly was Charles L.
Dodgson (Lewis Carroll) who much later (1860) argued along these lines:
‘Imagine that all the Earth were land and that a person could run right round the
globe for 24 hours with the sun always overhead. That person would never see
the sun rise or set. However, at the end of the trip the person would be at the same
point he or she started from, but, 24 hours having elapsed, the day must have
changed. So the question arises: At what point in the journey did the day change?

Dodgson’s simple argument or ‘thought experiment’ makes very clear
the need for some line where the date would change. (The International Date
Line came into being only in 1884.)
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6G Experimentation on plants to assist in model development: the
tests that you need may not be in the textbook!

In order to allow simulation of different scenarios for a not-yet-built automa-
tion scheme, it was necessary to know the load characteristics (inertia and
friction as a function of angular velocity) of an existing composite gear train
that was to be used in the system. The system, Figure 6.11, consists of a 30 kW
motor driving a massive load through a gear train of about 1400:1 reduction.

This must be a common problem but the only reference found (Libby,
1960) was unhelpful. Acknowledged experts on mechanical drives who
were asked to help, sketched expected curves that later were shown to be
qualitatively well wide of the mark.

The following simple test, inspired by an undergraduate laboratory
experiment, provided all the information needed. (Credit for the basic idea
must be given to the unknown author of the Cambridge University Electric
Machines lab. sheet of the day) The DC electric drive motor is switched on to
the supply at voltage v and its steady state current i and steady angular
velocity w,,.. are recorded.

DC drive motor

composite gear
train, overall ratio
about 1400:1

input shaft output shaft driving
massive actuator

Figure 6.11 The motor and load whose overall inertia and torque as a
function of angular velocity were determined experimentally

It is then argued that in the steady state,

(electrical power to the motor — losses in the motor) =
mechanical power delivered to the input shaft (6.15)

vi — motor losses = Wy T (Omax) (6.16)

where T(w) denotes the resisting torque of the load at angular velocity w.
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Leaving out motor losses for purposes of this explanation (since the
principle is unaffected) allows calculation of T(®,,,.) as

Vi

T(wmax) = (617)

wmax

Next we switch off the motor and record the decay of w against time
(Figure 6.12).

wmax

Figure 6.12  Illustrating how dw/dt as a function of o is estimated by
tangents to the experimental curve. Notice also how the
estimate S (not discussed in the text) is a useful measure
of static friction in the drive

The argument now is that at switch-off, the load torque 7T(w,,.,) is the
only agent that slows the shaft, whereas the effective inertia, call this J, of
the whole load as seen at the input shaft is the agent that continues to drive
the load in the absence of power being applied.

The relevant equation is

d
J2 4 0T (Oar) = 0 (6.18)
dt
The inertia .J, assumed invariant for all w, can be found from
_wmaxT(wmax)
J=—————= 6.19
(do/di), . (o1

and by drawing the solid tangent shown in Figure 6.12, the inertia J can be
derived. (In the case described here, a laborious day’s work by the author,
working on engineering drawings and referring approximate inertias all the
way through the composite train, produced a confirmatory figure only 8%
away from the experimental figure.)
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T(®)

81
// (0]
Figure 6.13 The final torque versus @ curve has this form. Here S denotes
static friction (see Figure 6.12)

Next a sequence of tangents (shown dotted in Figure 6.12) was drawn at
frequent points along the w decay curve and at each chosen w. The load
torque at each of the chosen w was then calculated from

_ —J(dw/dt)

Wachosen

T(w) (6.20)
allowing the curve of T(w) to be plotted against @ (Figure 6.13). In use, it
was stored as a look-up table interpolated by a subroutine at every step in an
overall process dynamic simulation.

85

6H Dimensional analysis

Both sides of an equation involving physical quantities must necessarily have
the same dimensions when expressed in terms of the agreed fundamental
units of mass, length, time, electric current and temperature. Dimensional
analysis (see Bridgman (2008)) is a useful methodology that relies on this
fact in a way that can help model building as illustrated below.

Imagine meeting a pendulum for the first time* and wondering what
formula might provide a way of calculating the period 7, using an equation of
the form 7'= (right hand side: structure to be determined).

*Qalileo is said to have been one of the first observers to realise the useful time-keeping
properties of pendula. During a long service in Pisa cathedral, he noticed, using his pulse as a
clock, that the period of a slowly swinging lamp remained constant despite the decaying
amplitude of swing. He incidentally confirmed the old adage that a good scientist doesn't always
need expensive kit!
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Clearly 7 must have units of time, seconds (say). We ask how those units
can be provided in the RHS of the equation. We have only L and M, the
length and mass of the pendulum as obvious physical variables, but they can
provide only metres and kilograms.

With brilliant hindsight, we suddenly think, what about using g with its
units of metres/(seconds)?. We can’t make any dimensional use of M, g will
have to be in the denominator to bring seconds to the top line. We shall need
a square root to get to seconds from (seconds)® and L will have to be used to
cancel the unwanted metres of g. This thought experiment therefore leads us
to the equation:

2
T = k\/é = (dimensionally)\lﬂ (6.21)
g m

with units of seconds on both sides.

Of course, a physically informed analysis will provide an understanding
of the behaviour of the pendulum but the point to note is how much could be
achieved just by considering dimensions, with no consideration of the
mechanism or forces and accelerations involved.

Next we take an approximate look at the comparative digestive systems
of a mouse and a cow, supposing that a cow might be about 40 times bigger
than a mouse in linear terms. That means that its surface area would be about
1600 times greater and its weight about 64,000 times greater. I postulate that
the surface area of the cow’s intestines should be proportional to its weight
but if a cow’s interior was just a scaled-up version of that of the mouse, the
surface area of the cow’s intestines would be 1600 times greater than those of
the mouse, whereas to be proportional to weight, they should be 40 times
greater than that. In fact, a cow’s small intestine is about 20 times longer than
the animal, whereas that of the mouse is probably about half the length of the
animal; theory appearing to tie up with facts.

Model builders also need to be interested in the question of scale-up,
which appears whenever small-scale experiments and pilot plants produce
results that must be extrapolated to apply to industrial-scale plants. Most
demonstrative of scale-up effects is perhaps that of attempting to use ship
models in small tanks. Here, the equation describing the power needed to keep
a ship moving in a straight line at some constant speed is a function of the two
dimensionless parameters, Froude number and Reynolds number. The first
contains g and models the power consumed by wave generation, the second
models viscous resistance. If a 1/100th size scale model is to be used of a
particular ship, then the model would have to move at 1/10th of the speed of
the full-scale ship to keep the same Froude number, but the fluid used in the
tank would need to have a Reynold’s number 1/1000th of that of water and no
such fluid exists. (Air has a viscosity 15 times greater than that of water.)
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61 Distributed systems: the cosy idealisation that a system can be
characterised by its behaviour at a point in space

Because of exposure to school physics and what in the United Kingdom is
called applied mathematics, we are conditioned to accept without question
that, for instance, an object, missile or projectile, flying through space, can be
truthfully represented by a single point located at the object’s centre of mass.
This practice, while allowing neat examination questions, leads us into a
false sense of simplistic security. For instance, as soon as a projectile is made
to spin about its axis of travel (a common practice), we may be unprepared
for the escalation of complexity of the problem that this simple addition to
the problem causes.

Physically large systems can rarely have their characteristics approxi-
mated at a point in space without severe and often unacceptable levels of
approximation. It seems to be a very interesting law of nature that increased
size brings increased non-uniformity.

For instance, a small sample of the Earth’s atmosphere, say a few metres
square, will be approximately uniform. However, seen on a scale of hundreds
of kilometres, there is extreme non-uniformity in the atmosphere, with dis-
crete cloud forms separated by cloudless atmosphere and there are gusting
winds interspersed by calm regions.

Given a system whose spatial behaviour needs to be modelled, there are
three possible approaches:

(1) To model the global behaviour by a single set of partial differential
equations. Solution is then obtained by numerical methods that, depending
on discretisation, approximate one partial differential equation by a set of
ordinary differential equations.

(2) To spatially discretise the physical problem into regions within which the
behaviour can, with sufficient accuracy, be representable at a point. For
each region, an ordinary differential equation is needed. This equation is
formulated, identified and solved in the usual way for such equations.

Note, however, that, when the solution from the set of differential
equations is patched together to yield the overall system solution, there
may be spurious results generated at the (physically non-existent)
boundaries that separate the notional regions used in the discretisation.
Rosenbrock and Storey (1966) has illustrated spurious results of this sort.

(3) ‘Fourier type’ modelling in which the distribution is modelled approxi-
mately but to any required degree of accuracy by a weighted sum of basis
functions f;. More specifically, if the function to be approximated on the
interval [xg, x;] is g(x), then scalars a; are chosen to minimise

” 2
J <g(X) Zaiﬁ(k)> dk (6.22)
0

X0 =
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Preferably the basis functions f; satisfy
(fifi) =0, i#j (6.23)

i.e. they are orthogonal. This produces the (related) practical advantages:
there is no danger of the series becoming ill-conditioned and the values of a;
do not depend on #; i.e. let Zle af; be the best third-order fit to some given
function g(x) then the best fourth-order fit Zj’:l af; to g(x) will have
unchanged a;, values for i=1 to 3.

Alternative approaches to the modelling of distributed systems
The representation of a spatial region as the summation of elemental regions

This approach, familiar to all who have studied mathematical physics,
proceeds by defining a small element of dimension dx, dy and dz and then
using equations of conservation and continuity, in conjunction with the usual
methods of calculus, in which the size of the element is reduced by a limiting
process to have dimension dx, dy and dz, to obtain a partial differential
equation in the four variables x, j, z, £. The approach produces classical partial
differential equations that have been extensively studied and that have known
solutions.

Difficulties that may be encountered are as follows:

(i) The region under study may not divide naturally into regularly shaped
elements so that approximations or awkward accommodations at the
boundaries may have to be made.

(ii)) The ‘natural’ element spatial regions will often, in an industrial appli-
cation, be variable shapes that may change position.

(iii)) Numerical solutions will nearly always involve a return to approxi-
mation of the region by a finite number of discrete regions, in
each of which an ordinary differential equation governs the local
behaviour.

(iv) Fictitious discontinuities — present between the regions defined in
(i) above but not present in the real process — may cause spurious
effects, such as travelling waves, to appear as part of the model
behaviour.

(v) For a typical industrial process whose detailed mechanisms are very
complex, it will be the preferred approach to set up a simple model
whose structure is determined from theoretical considerations and
whose coefficients are found numerically using parameter estimation
techniques on process data. Such a modelling identification procedure is
difficult or impossible to carry out on most real processes, using a
classical partial differential equation approach.
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A ‘Fourier type’ approach, in which an arbitrary function f on an interval
[0, 1] is approximated by a summation of functions f;

We postulate that
o0
[=)Y e (6.24)
i=0

Where f'is the function to be approximated on [0, 1], f; are basis functions,
each defined on [0, 1] and the ¢; are scalar-valued coefficients.
Many questions immediately arise:

(i) Under what conditions on f and f; will the infinite series be
convergent?

(ii) Define f, = >_7_, ¢;fi. We ask: Can f, be used as a reasonable approx-
imation to f? Can we obtain an error estimate for f'— £,? Can we, oper-
ating with £, instead of £, still work within a sound theoretical framework?

(iii)) What choice of functions f; will form a basis for the function space?

(iv) What choice of functions f; will be numerically convenient and
widely applicable (we have in mind orthogonality (is it necessary?) and
behaviour at the end points 0 and 1 (we would like to avoid the enforced
condition, typical of Fourier series that, necessarily, 1 (0) = (1))).

(v) Is it an advantage if the functions f; are the eigenfunctions of some
operator? If so, can that operator be found in a real situation?

(vi) Do the set of functions {f;, i=1, ...} form a state in the rigorous sense?

(vii) How may the coefficients c; be determined from numerically logged
process data?

(viii) Can an equation x = Ax + Bu,x € X,u € U, where X is the set of
system states, U is the set of input functions and 4, B are operators, be
set up, identified and used analogously with the usual finite dimen-
sional control equation of the same form?

(ix) To what extent can the theory of operators, compact operators, closed
operators, self-adjoint operators and semi-groups be usefully exploited?

(x) Can specific use be made of the projection theorem whereby a func-
tion (infinite dimensional) is approximated by its projection onto a
finite dimensional subspace?
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6J When can the behaviour in a region be well approximated
at a point?

An interesting question is: are there fundamental guidelines to help the
decision on whether a given situation can be well-approximated by the
behaviour at a point? (If such guidelines can be found, they might be
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extremely useful in helping to choose the size and shape of regions, when
spatial discretisation does turn out to be required.)

One such guideline, attribute to Roots (1969), is as follows:

Let f.x represent the highest frequency of interest to which a spatial
region is subject. Let / represent the largest physical distance in the region.
Then provided that

I < 1/fmax (6.25)

a point representation (i.e. an ordinary differential equation model) will be
justifiable. The argument appears to be that, if the physical size of the region
to be modelled is much smaller than the shortest wavelength of externally
applied stimuli, then the speed of propagation of effects may be regarded as
instantaneous.

The relationship proposed above leaves a number of unanswered ques-
tions. For instance, in the heating of a solid object, the thermal conductivity
of the material would clearly influence the uniformity of temperature that
would be achieved under conditions of externally applied periodic heating
stimuli, yet the proposed relation can take no account of this.

Even where a situation can be modelled exactly by unapproximated
partial differential equations and the solution is obtained analytically, there is
still a possible anomaly in that (for instance) the temperature distribution in a
long bar is supposed to evolve as shown in Figure 6.14.

That is, the implication is that the speed of propagation is infinite (see
John (1975), pp. 175, 176).

(a) temperature (b) temperature
distance distance

Figure 6.14 (a) A supposed initial temperature distribution in a long bar at
t=07; (b) the form of the temperature distribution at t = 0"

6K Oscillating and osculating approximation of curves

For Fourier series and for other series of orthogonal functions (Hermite,
Laguerre, Legendre, etc.) the approximating series approaches the required
function through closer and closer oscillations. In marked contrast, the Taylor
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series approaches the required function by osculating at the point around which
the expansion is being made. At that point, the approximation and the function
approximated have exactly the same derivatives up to and including the nth
derivative, for an nth order Taylor series. Figure 6.15 shows successive terms
of a Taylor series being fitted to the function sin x. This section follows
Sommerfeld (1949), which should be consulted for further details.

first-order
. Taylor
Taylor // app_roximation
expansion e to sin x
made about x =0 4 1 fifth-order
7~ -~ Taylor
\\\ approximation
? \
) -
N\ third-order X
N Taylor y = sin
e 7 approximation
i /7
4
7/
7/

Figure 6.15 The approximation of sin x by three different orders of Taylor
series expansions







Chapter 7
Non-linear systems

7.1 What is meant by non-linearity

If John gets 10 hectathrills by taking to a ball a lady aged 24 and of height 5 ft 5 in.,
how many hectathrills would he obtain by taking to the same ball a lady of height
10 ft 10 in. and aged 48? (With apologies for the failure to use SI units and with
acknowledgments to Linderholm (1972)).

In the linear world, the relation between cause and effect is constant and the
relation is quite independent of magnitude. For instance, if a force of 1 N, applied
to a mass m, causes the mass to accelerate at a rate a, then according to a linear
model, a force of 100 N, applied to the same mass, will produce an acceleration of
100a.

Strictly, a linear function f must satisfy the following two conditions, where it
is assumed that the function operates on inputs u;(¢), ux(¢), ui(f) + uy(f), au(t),
where « is a scalar multiplier.

@) @) + f(ux()) = f(r(1) + ux(0))
(ii) flawu (1) = af (ur(1))

Any system whose input/output characteristic does not satisfy the above conditions
is classified as a non-linear system.

Thus, there is no unifying feature present in non-linear systems except the
absence of linearity. Non-linear systems sometimes may not be capable of analytic
description; they may be sometimes discontinuous or they may contain well-
understood smooth mathematical functions.

The following statements are broadly true for non-linear systems:

(1) Matrix and vector methods, transform methods, block-diagram algebra, fre-

quency response methods, poles and zeros and root loci are all inapplicable.

(i) Available methods of analysis are concerned almost entirely with providing
limited stability information.

(iii) System design/synthesis methods scarcely exist.

(iv) Numerical simulation of non-linear systems may yield results that are mis-
leading or at least difficult to interpret. This is because, in general, the beha-
viour of a non-linear system is structurally different in different regions of
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state space (where state space X is defined for a non-linear system according to
the equation

x =f(x,u) (7.1)
y=g() (7.2)
and

xeX (7.3)

where the n-dimensional state vector x can be visualised as being made
available for control purposes by a non-linear observer with inputs u and y
and with output x, where as usual the superscript indicates an estimated
value).

Thus, the same system may be locally stable, unstable, heavily damped or
oscillatory, according to the operating region in which it is tested. For a linear
system, local and global behaviour are identical within a scaling factor — they are
topologically the same. For a non-linear system, it is generally meaningless to
speak of global behaviour.

Very loosely, we can organise our thinking about non-linearity in real-world
systems with the aid of Figure 7.1. We comment as follows:

(a) very few real-world systems are strictly linear;

(b) a large class of systems can be regarded as approximately linear;

(c) a strongly non-linear class exists, but such systems may often be linearised;

(d) aclass whose non-linearity is its most important characteristic exists and needs
special consideration.

Linear methods will normally be applied to class (b) without any discussion.

(a) linear systems

(b) approximately
linear systems
(c) strongly
non-linear
systems

(d) class of
systems whose
non-linearity is
their most
important
characteristic

Figure 7.1 A loose classification of systems in terms of linearity/non-linearity
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Systems in class (c) will often be linearised to allow certain types of controller
synthesis to be carried out. Checks by numerical simulation of the complete
unapproximated system plus controller will then be used to determine whether the
designs (based on linearised approximation) will be sufficiently valid in practice
over a choice of envisaged operating conditions.

Systems in class (d) have their behaviour dominated by non-linearity. Such
systems include:

(i) Stable oscillators: Governed by continuous non-linear differential equations
such as the van der Pol equation. This type of equation exhibits, for the right
choice of parameters, limit cycle behaviour. This stable oscillatory behaviour,
essentially non-linear in its origins, is very interesting and has been much
studied (see Andronov (1973) and van der Pol (1927)).

(i) Relay and switched systems: The systems appear deceptively simple, but,
because of the discontinuous non-linearity, special techniques of analysis are
required. Because switched systems are both cheap and high performing, they
are frequently applied in industry, even in situations for which they are not too
well suited (see Tsien (1954)).

(iii) A variety of systems exhibiting jump resonance, stick-slip motion, backlash
and hysteresis: All of these phenomena can be present as insidious and per-
sistent degraders of performance of control loops (see Gibson (1963)).

7.2 Approaches to the analysis of non-linear systems

As discussed in (ii) above, available methods of analysis are concerned almost
entirely with providing stability information.

7.2.1 Lyapunov’s second or direct method

This is the only approach that involves no approximation. However, the informa-
tion produced by application of the method is of limited value for routine system
design. For instance, with the aid of the method, a control loop of guaranteed
stability may be synthesised. This means that the designed system, if perturbed,
will return to equilibrium — maybe in one second, may be in ten-thousand seconds
or more. Information on actual performance is totally lacking.

7.2.2  Lyapunov’s first method

A beautiful method that depends on local linearisation. It is summarised later in this
chapter. Again, the method has little or no design applicability.

7.2.3  Describing function method (described later in this chapter)

This is a linearisation method in which sinusoidal analysis proceeds by the expe-
dient of neglecting harmonics generated by the non-linearities. Thus, the approx-
imation consists in working only with the fundamental of any waveform generated.
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The describing function method can be a powerful design tool for a very restricted
class of problems.

7.2.4 Sector bound methods

A non-linear function f may be contained within two straight line boundaries.
Each of these boundaries is a linear function (Figure 7.2). Envelope methods
(a description that is by no means universal) are based on the idea of ensuring
system stability in the presence of any and every function that can reside in the
envelope. Clearly, the stability results obtained by envelope methods will be suf-
ficient, but not necessary, conditions, since the worst case within the envelope has
to be allowed for. Envelope methods are made more interesting by the existence of
two famous conjectures. These are as follows:

Aizerman’s conjecture: Roughly states, let S be a system containing a non-
linearity that can be contained within the linear envelope (Figure 7.2). If, when the
non-linearity is replaced by any linear function within the sector as visualised in
Figure 7.2, the resulting loop is stable, then the system S is itself stable. Aizerman’s
conjecture is false, as may be shown by counter-example.

Kalman’s conjecture: Roughly states, if a system satisfies Aizerman’s con-
jecture, together with additional reassuring constraints on derivatives, the system .S
will be stable. Kalman’s conjecture is also false, as shown by counter-example (see
Leonov (2010)).

It is interesting to speculate on the reasons for the failure of the two con-
jectures. The easiest line of reasoning, although not necessarily correct, is that
harmonics present in the sinusoidal response of the non-linear system have no
counterpart in the linear systems that represent the bounds of the approximating
sector.

output linear

from envelope

non-linearity <«an example
of the
non-linear
functions in

the envelope

input to non-linearity

Figure 7.2 A linear envelope that bounds a class of (memoryless) non-linearities
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7.3 The describing function method for analysis of control
loops containing non-linearities

This method is specifically applicable to a closed loop containing dynamic non-
linearities that can be decomposed into a non-linear, non-dynamic block of gain
N(a) followed by a linear dynamic block of transfer function G(s) (Figure 7.3). The
notation N(a) emphasises that N is an amplitude-dependent gain.

As a simple illustration of the nature of N(a), consider a non-linearity that on
receiving a constant input a produces a constant output *. We can see that gain,
defined as

Output  a?
Ly (7.4)
Input a

Referring to Figure 7.4, we shall assume for linearisation purposes that the
output of the block in Figure 7.4(a) is to be approximated as closely as possible by
the output of the block in Figure 7.4(b).

For purposes of illustrating the approach of the describing function, we con-
sider a non-linearity fthat does not induce a non-zero mean level or cause a phase
shift in response to a sinusoidal input. In such a case, the bracketed terms in the
output of the block in Figure 7.4(b) disappear and we are left to find the & that
causes best agreement between the terms f{a sin wt) and ka sin wt. We define the
error between these terms as e(f) and then proceed to choose k& to minimise the
integral of squared error.

oW |20 |

Figure 7.3 The loop containing a linear dynamic system and a non-linear non-
dynamic system that is analysed by the describing function method

(@ non-linear
element

asin wt N(a) f(asin wt)

(b) linear
element
asin wt ka sin wt+(ky+k'a cos mt)

Figure 7.4 (a) A non-linear element; (b) a linear approximation to the non-linear
element in (a)
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This approach is considered more satisfying than the usual approach of simply
neglecting harmonic terms in a Fourier expansion, although the two approaches
lead to the same result. Hence, let

e(t) = f(asinwt) — kasinwt (7.5)

we wish to minimise

= %Ln e(t)*d wt (7.6)

substitute for e and differentiate

of_ 2 JZHV( sinwt) — ka sinwt](—asinwt)d wt
~_Z —ka —
ok 2x), 1 asme
1 27 27
—J kazsinzwtdwt:—J asinwt f(asin wt)d wt
I Jo T Jo
, (7.7)
1 tosin2wt\2r 177
;ka2<w7_sm4w> . :;L asinwtf(asin wt)d wt
k 1 27
ﬂ:ka:fj asinwt f(asin wt)d wt
T T Jo
finally,
1 27
k:;J sin wt f (a sin wt)d wt (7.8)
0

k can be seen to be the first term in the Fourier expansion of the output of the non-
linear block of Figure 7.4(a).

To see how the describing function method develops from this point onward,
see Gasparyan (2008).

However, it can be said that, briefly, the further development consists in
deriving two loci, one for the non-linear element N(a) (which, recall, has no
dynamics) and one for the dynamic element G(s) (which, by definition, is linear).
The first locus is a function of amplitude (@) only, while the second is a function of
frequency (w) only.

Especially interesting is the point or points where G(jw)N(a) = —1, because at
such points, there is potentially continuous oscillation around the closed loop. Such
points are revealed by plotting loci of G(jw) and —1/N(a) in the same complex
plane and seeking their points of intersection.

The describing function method allows the user to know whether stable
oscillations will occur at an intersection of loci (i.e. that the system is ‘attracted’ to
such points) or whether it is ‘repelled’ from them.
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7.4 Linear second-order systems in the state plane

Note that the name phase plane is used for the special case where (see below) x; is
the derivative of x;.
Every linear second-order system with zero input can be expressed in the form

X1 = anxy + apx; (7.9)

Xy = anX1 + anx; (7.10)

where the x; are state variables and the a;; are numerical coefficients, or x = Ax
where x and A4 are defined by the equivalence between the two representations.
The system has one critical point, where x = 0. This point is always the
origin (0, 0).
A graph of x, against x; is called the state plane (Figure 7.5). Solutions of the
equation

x=4dx, x(0)=x (7.11)

plotted in the state plane, with time as a parameter along them, are called trajec-
tories. A state plane supplemented by representative trajectories is called a state
portrait. The trajectories of a stable system reach or approach the origin of state
space with increasing time. Conversely, the trajectories of an unstable system start
from the origin and move outwards from it with increasing time.

If the matrix A4 has two real and distinct eigenvectors, then these eigenvectors
are important fundamental trajectories and every solution that is not an eigenvector
is a weighted sum of both eigenvectors. The rate of movement of a solution
along an eigenvector depends on the magnitude of the associated eigenvalue.

elgenvector 2

with 4,=5 :
eigenvector 1

with 4,=0.2

phase
plane

\

Figure 7.5 The state plane diagram for a second-order linear system with two
real negative eigenvalues A;, A,
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perpendicular to
radius vector

¢ tangent
to locus

X

N

this angle is
constant for all

e N« radius vectors and
1>y v all intersections
\\y X1 with the locus

Figure 7.6 The state plane diagram for a second-order system with complex
eigenvalues

(An eigenvalue of large magnitude implies rapid movement of the solution along
the eigenvector.) All of these points are illustrated in Figure 7.5.

If the matrix 4 has complex eigenvalues, then the solution is an expanding
spiral if the real part of the eigenvalues is positive, and a shrinking spiral if the real
part of the eigenvalues is negative. All the spirals are equiangular spirals — i.e. the
spirals move outwards or inwards at a constant angle — measured against a rotating
vector centred at the origin. These points are illustrated in Figure 7.6. Thus, the
global behaviour of a linear second-order system may be characterised by the
eigenvalues and eigenvectors of the system matrix A4.

7.5 Non-linear second-order systems in the state plane

Consider the set of non-linear second-order systems that can be written in the form,

= fi(x1,x2)

X2 = fo(x1,x2) (7.12)

X

where f and f; are differentiable functions.
The system has a number of critical points, given by solving the equations

filx,x2) = fo(x1,2%2) =0 (7.13)

Let these points be denoted ¢y, ¢;, ..., Cp,.
The equations may be linearised (see Section 7.8 onward for a description of
the procedures involved) to produce the 4 matrix with typical element

_ o
o

By substituting the co-ordinates of the separate critical points into the general expres-
sion for the 4 matrix, we produce n, generally different, 4 matrices, Acy, ..., Ac,.

ajj

(7.14)
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Now in a small region around each of the critical points, the actual system
behaviour is governed by the eigenvalues and eigenvectors of the appropriate 4
matrix. Thus, the behaviour of the non-linear system in the immediate behaviour of
critical points may easily be determined, and for many, but not all, non-linear
systems, a phase portrait of the complete behaviour may easily be approximately
constructed by continuing the solutions found around each critical point until they
join together in a feasible way. (A few numerical solutions of the original non-
linear equations can serve to check on the behaviour of any particular trajectory.)
A simple example illustrates all these points.

Example The non-linear equation is
)'61 =X (715)
).Cz = —X] 7)6% — X2 (716)

Critical points are (0, 0) and (—1, 0).
The 4 matrix is

4= <_1 . _11) (7.17)

so that

0 1 0 1
A(o,o)=<_l _1>7 A(I.O):(l —l) (7.18)

Ao,0) has complex eigenvalues with negative real part. 4_ ¢ has real eigenvalues
+1.08 and —2.08 with associated eigenvectors

(0.6118)’ (—1.1618> (7.19)

The local behaviour around the two critical points is therefore found to be as in
Figure 7.7(a) and the feasible state portrait obtained by continuation and joining of
trajectories is shown in Figure 7.7(b).

7.6 Process non-linearity: large signal problems

Consider the operations of

(i) accelerating a load using an electric motor;
(ii) heating a block of metal in a furnace;
(iii) growing a population of micro-organisms;
(iv) filling a vessel with liquid.
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(@ X2

/\ Q/ %

(b) X

region where
solutions
approach the origin

Figure 7.7 (a) The nature of the two critical points of the equation
%2 = —x1 —x} — Xz, (b) the ‘feasible’ state portrait for the equation

used in (a)

Each operation has upper limits on its achievable rate of change. In every case, the
upper limits are set by rather basic aspects of the design, and the upper limits can
only be increased by fairly fundamental redesign of the operations.

Linear control theory (by definition) knows nothing about these limiting fac-
tors. Therefore, we may arrange for the limits to be so high that they are never
encountered. The process then appears linear but possibly at a high cost in equip-
ment. A more usual approach is to design on linear assumptions although knowing
that upper excursions of signals will be sometimes affected by non-linearities. Such
an approach needs to be followed by an assessment of the effect on overall per-
formance of the non-linearities. (Such an assessment can be undertaken by either
deterministic or stochastic simulations.)

7.7 Process non-linearity: small signal problems

Consider (school physics for once comes in useful) a wooden block at position x on
a rough level surface. A small force f'is applied where shown (Figure 7.8) and f'is
gradually increased until, when /"> f; (Figure 7.9), the block suddenly accelerates
away. It is now clear that the block will either not move at all (if /< f;) or, if /> f,,
move by some minimum amount. In accurate positioning control systems, stiction,
for instance in bearings, causes precisely the same difficulty, i.e. there is a
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wooden
¥ block
applied rough
forcef — > / surface

Figure 7.8 A block of wood on a rough surface

frictional
resistance
between block
and surface

fs

velocity

Figure 7.9 The supposed friction characterisation between block and surface in
Figure 7.9

minimum unavoidable distance that a shaft must move from rest, if it is to move at
all. This phenomenon is sometimes referred to as stick-slip motion.

Other types of small signal non-linearity occur in gear trains.

Considering large- and small-scale linearities simultaneously, it does emerge
that, quite often, a high-performance requirement will necessitate the purchase of
equipment that is linear across a very wide signal range. Such equipment is very
expensive, and, sadly, we cannot usually obtain high performance by attaching a
clever control system to a cheap process that has only a narrow range of linear
operation.

7.8 Linearisation

7.8.1 The motivation for linearisation

The most powerful tools for analysis and design of control systems operate only on
linear models. It is therefore, potentially, very attractive when undertaking the
design of a controller for a non-linear system to replace the non-linear system
model by a linear approximation.

Questions that arise next are as follows:

What is meant by linearisation?
How is it undertaken?

e To what extent are designs, produced using linear approximations, valid in
practice when applied to the original non-linear system?
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7.9 What is linearisation?

7.9.1 An initial trivial example

The volume V of a sphere is given by

41
V p—
3

(7.20)

where 7 is the radius of the sphere.

Suppose g = 10, then V' = 4188.79.
Suppose r; = 10.1, then V' = 4315.7147.
Suppose , = 11, then V' = 5575.27956.

These are the full solutions of the non-linear equation for three different » values.
To linearise the equation we operate as follows: Let V' = Vo + dv, r = ro+ Or,
then

47 (rg + 6r)3

Vo+ 0V =
A (7.21)
= (3)75(}’8 + 3r20r + 3rg0r? + 0r°)
while from earlier
4 3
y =270 (7.22)
3
Subtracting the last equation from the one above it yields
4 2 2 3
ov = gn(3r06r + 3rgor” + or’) (7.23)
Linearisation consists in neglecting terms in dr,, dr3, etc., i.e.
4 5
ov = gnroér (7.24)
and this result could have been obtained directly by using
dv 4 5, Ov
= ~ 7.25
dr 3 o or ( )

To complete this simple illustration, we will see how good the approximations are
for two cases, keeping ry = 10:

(i) Whenr, = 10-1,0r = 0.1, 0V = 47(10)°0.1 = 125.6637 yielding V; = V, +
OV = 4314.45 (true solution = 4315.7147).
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(ii) Whenr, = 11,0r = 1,0V = 4n(10)*1 = 125.66 yielding V, = Vo + 0V =
5445.28 (true solution = 5575.28).

Clearly, as the perturbation (in this case dr) moves further from the point about which
linearisation is performed (in this case r), the approximation becomes less valid.

7.9.2 Comments

Thus, linearisation (which we shall discuss in more depth below)

(a) amounts to a local approximation of differentiable functions by derivatives;
(b) is only valid for small perturbations (with small being dependent on context).

However, this is a point of considerable practical importance, we can overcome
problem (b) to a considerable extent by linearising a function, not about some
constant value (Figure 7.10(a)) but rather about a nominal solution that is expected
to be followed approximately (Figure 7.10(b)).

An interesting side-question now arises. Suppose that the linearised equation
is itself generating the solution about which successive linearisations are being
performed (Figure 7.10(c)). If the perturbations are too large, the accuracy of the

AT

nominal value about
which linearisation is
undertaken

(a) perturbations

)

time
(b) i
solution . .
M nominal solution
- \\
—— N
7 .

perturbation =~ ——=

time

©

perturbations

linearisation about the
current solution

time

Figure 7.10 (a) Linearisation about a constant value; (b) linearisation about
a nominal solution; (c) linearisation about the current solution
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linearisation will be poor, and the generated solution will be invalid and the errors
cumulative, so that the whole approach will fail. This leads to the topic of numer-
ical solution of differential equations, where, in general, it is not found efficient to
use linearisation but rather to use several more terms (say 4) of the Taylor series
approximation of a non-linear function to produce the Runge—Kutta approach to
numerical solution.

7.10 Linearisation about a nominal trajectory: illustration

Let the equation

5=/ (x) +g(w) (7.26)

represent a non-linear industrial process that repeats the same routine day after day.
Each day it receives a nominal input u,(f), in response to which it produces a
nominal output X,(7) (Figure 7.11(a)). Linearisation about the nominal trajectories
consists in producing the perturbation equation

(SX*a—f 0. +% ou

= 7.27
Ox x=xy(t) " Ou u=uy(t) ( )

This linear equation models the process behaviour about the nominal trajectories
(Figure 7.11(b)).

In practice (for instance if the application is a repetitive batch process), the
nominal trajectories will often be taken as the mean of a large number of typical
performances. Any individual performance can then be modelled as x(f) = xp(¢) +
the solution of the perturbation equation.

@ ()

uy (D) u(®
ou (t) X(t)
Xn (1)

Sx(t)

t t

Figure 7.11 (a) The nominal input uN(t) provokes the nominal response xN(t);
(b) perturbation about the nominal trajectories
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7.11 The derivative as best linear approximation

We can, if we wish, define the derivative of a function f{x) as the unique linear
function df |, that best approximates f near to x (Figure 7.12).

f(x) +hdf]|
f(x)

x plane

[]

Figure 7.12  The derivative approximates the function f locally by the tangent
plane shown

In the usual system of co-ordinates, the linear transformation df has the matrix

o o
Ox; Ox,,

F=1|.. (7.28)
I W

which is called the Jacobian matrix of f at x.

The goodness of the approximation depends on df |, . If df |, is non-zero then, in
general, the approximation is good. To understand this, look at the approximation
of sin x at two values x = 0 and x = 71/2 as sketched in interlude 7A.

7A The inverse function theorem

The inverse function theorem gives an interesting view of approximation. It
says that, if the derivative df of f'at x has an inverse then so does flocally, i.e.
in some region U in x there exists a function g such that

g(A(x) = xforallxin U
fle)y) = yforalyinV

i.e. fhas an inverse, g, on the restricted regions U, V.
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Figure 7.13 The curve y = sin 2x is well approximated by its first
derivative y = 2x at x = 0. At x = 7/8 we have as linear
approximation y = sin w/4 + 0 = 1, a poor approximation

Within the regions U, V' we can replace the x co-ordinates by the cor-
responding y co-ordinates (see Poston and Stewart (1976), p. 9) and then over
the region U the function f'is completely linearised without approximation.
However, if df is not invertible (tested by checking for singularity of Jacobian
matrix), then such approximation is not possible. Overall, the following
result holds: If f has a non-zero gradient at x then we can find a smooth
change of co-ordinates in some ball U around x by which the expression of /'
on u becomes linear.

Where the gradient is zero, the Jacobian is, by definition, zero and
approximation has to be carried out by relying on the matrix of second
derivatives, i.e. on the Hessian matrix H.

As can be seen in Figure 7.13, the non-linear function sin x can be well
approximated at x = 0 (by the linearisation y = 2x), but at x = x/8, the
linear approximation y = 1 is poor because the Jacobian is zero there.

7B The concept of transversality

When a line pierces a plane a slight variation in either the line or the plane
will not affect the nature of the intersection.

However, if a line touches a plane tangentially, then slight variations
will affect the nature of the meeting, resulting in, e.g. two piercings of the
plane, or no meeting with the plane at all (Figure 7.14). These ideas, which
are closely connected with catastrophe theory, have obvious connections
with robustness as defined in terms of insensitivity to parameter changes.
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Figure 7.14 (a) As a typical situation in three-dimensional space — a loop
touches a place tangentially. (b, c) Typical situations in three-
dimensional space — a line (b) pierces the plane in two places,
(c) fails to meet the plane

7C The forced pendulum: a simple example of chaotic behaviour

The linearised equation of a simple undamped pendulum is
9+%9:9+w59:0 (7.29)

where, as usual, 6 represents the angular deflection from equilibrium, / is the
length of the pendulum, g is the gravitational acceleration constant for the
location and

wn =1/ (7.30)

is the natural frequency of the system. Setting w,, = K = I (K is brought in
as an intermediary to remind us that w,, will no longer be the constant natural
frequency for the enhanced system we are about to introduce.

We now move to the enhanced, forced, unlinearised equation

0”+%sin0:cosa)t (7.31)
or

0" + K sin 6 = cos wt (7.32)
and setting K = o = 1

0" + sin 6 = cos(t) (7.33)

We note several features of the above equation:

The magnitude (unity) of the forcing term is very large and will pre-
sumably soon take the system out of the linear range regardless of the chosen
initial conditions. The forcing frequency is the same as the natural frequency
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of the linearised system. The restoring force of the non-linear system will be
significantly less than that for the idealised linear system for every dis-
placement 6 since, for any 6,

SO0 ) ana (SR Z .84 (7.34)
16| 1
. y X(0) = 1
X'(0) =0
t X
X 0 x(0)=0
X'(0) = 1
t X

Figure 7.15 Time responses for the equation 6" + sinf = cos(t) for two
different sets of initial conditions

The time responses for the equation
0" + sin 6 = cos(¢) (7.35)

for two different sets of initial conditions are sketched in Figure 7.15. Per-
haps the right-hand (phase plane) sketches are the most illuminating and
although this is a casual exploratory analysis, the chaotic interactions
between the forcing term and the inherent natural periodic behaviour are
already indicated.

A final small lesson to be learned from this example: In the right-hand
phase-plane diagrams, the trajectories are seen to cross. Such crossing of
trajectories is seldom seen in phase-plane diagrams, because in autonomous
(unforced) systems such crossing is not possible. Here, trajectory crossing is
possible because of the presence of the periodic forcing term, meaning that,
from the same point in phase space, different future trajectories can evolve at
different times.




Chapter 8
Limits to performance

Most closed loop systems become unstable as gains are increased in attempts to
achieve high performance. It is therefore correct to regard stability considerations
as forming a rather general upper limit to control system performance. Also, as will
be discussed in this chapter, achievable rates of change are always constrained in
practice by equipment limitations.

8.1 Stability: initial discussion

A stable system is one that, when perturbed from an equilibrium state, will tend to
return to that equilibrium state. Conversely, an unstable system is one that, when
perturbed from equilibrium, will deviate further, moving off with ever-increasing
deviation (linear system) or possibly moving towards a different equilibrium state
(non-linear system) (Figure 8.1).

All usable dynamical systems are necessarily stable — either they are inherently
stable or they have been made stable by active control techniques. For example, a
ship should ride stably with its deck horizontal and tend to return to that position
after being perturbed by wind and waves (Figure 8.2).

Stability occupies a key position in control theory for the reason that the upper
limit of the performance of a feedback control system is often set by stability
considerations, although most practical designs will be well away from the stability
limit to avoid excessively oscillatory responses.

It is possible to check whether a system is stable or not by examining the beha-
viour with time, following an initial perturbation (Figure 8.3). To establish whether a
system is stable or not, we do not need to know the solution of the system equations,
but only to know whether after perturbation the solution decays or grows.

(a) (b)

Figure 8.1 (a) Stable system, (b) unstable system
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(a)

Figure 8.2 (a) Equilibrium position of ship; (b) ship when perturbed tends to

equilibrium
(a) response (b) response
initial initial
perturbation perturbation

time time

Figure 8.3 (a) Response of a stable system after perturbation; (b) response of an
unstable system after perturbation

Notice that, for a linear system, the responses to initial perturbations of dif-
ferent magnitudes are identical except for a scaling factor. That is, let x, be the
initial perturbation and x(¢) the resulting response, then the response to a pertur-
bation kxo will be kx(#). Therefore, if a system is stable in response to one magni-
tude of perturbation, it will be stable in response to all other magnitudes.

8A Stability theory: a long-term thread that binds

Stability analysis has a long and honourable history providing a thread that
pre-dated control theory and then linked in with it.

Stability studies were applied to problems in planetary motion before
control was even considered and most famously to the problem of the nature
of Saturn’s rings (Figure 8.4), for which Maxwell was awarded the Adams
Prize. (Maxwell conjectured correctly that for the rings to be stable they must
be particulate.)

I took the ‘top’ example in Figure 8.5 from an examination paper that
Maxwell set for an undergraduate class at King’s College, London. It is not
recorded how many, if any, answered the question with any degree of success,
but at the time no suitable stability criterion existed and the student would
need to invent one. To make the question even more demanding, Maxwell
added a rider to his question asking the student to state whether any invented
stability criterion in the solution was necessary and sufficient!
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stability

Figure 8.4 Saturn’s rings. Maxwell’s Adams Prize essay showed the rings
to be particulate

stability
R

=i

The disc of a spinning top can be moved to three possible positions:
(i) in the top 1/3 of the rod
(ii) in the centre 1/3
(iii) in the lower 1/3.
Show that the device will operate stably as a top only in positions (i) and (iii)

Figure 8.5 Maxwell’s exam question to King’s College London

The Hurwitz, Routh and similar criteria (see interlude 8B) require
knowledge of the differential equation of the system that is to be analysed.

Lyapunov’s two powerful theorems (Section 7.2) have both algebraic
and geometric interpretations that have allowed them to link with many
aspects of non-linear control.

The Nyquist and Bode criteria that came next in the development require
knowledge only of frequency responses in graphical form. These can be
obtained experimentally and can form the basis for synthesis of controllers
that will yield desired stability margins. This development allowed the ear-
liest robust control systems to be systematically designed.

8.2 Stability for control systems: how it is quantified

Let X be a linear system that is in an initial condition x, at time £, then the state of
the system for ¢ > ¢, is given by an equation of the form

x(t) = Ae™ + Be™ + - - (8.1)
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where the number of terms depends on the dynamic complexity of the system, and

A, B, ... terms depend only on the initial condition x,, and where the exponents
a, B, ... depend on the parameters of the system.
In general, the exponents «, 3, ... are complex and it is clear that, if even one

of the exponents has a positive real part, then part of the solution of x(¢) will
increase without bound as ¢ increases and the system is seen to be unstable (since
e” — oo as t — oo if the real part of « is positive).

Stability therefore is governed only by the real parts of the exponents a, 3, . ... If
our main concern is with stability, we therefore look in detail at these exponents. Let
the dynamic systems have the mathematical model H(s) = P(s)/Q(s). Then the
exponents are the solution of the equation O(s) = 0 (the auxiliary equation). These
exponents are also called the poles of H(s). Solutions of the equation P(s) = 0 are
called the zeros of H(s). It is useful to plot the poles and zeros of a system in the
complex plane. Poles (marked X) and zeros (marked 0) appear always on the real axis
or in complex conjugate pairs, arranged symmetrically above and below the real axis.

Recalling that if any exponent (pole) has a positive real part then the system is
unstable, we can see that if any pole is in the right half of the pole—zero diagram
then the system X is unstable and this is a major stability test for a system
describable by a transfer function G(s).

Therefore, the solution yielded by a system after perturbation is governed by
the roots of its auxiliary equation if the system model is a transfer function, and by
the roots of the characteristic equation (i.e. by the eigenvalues) if the model is a
matrix. The situation is summarised in Table 8.2.

Control theory uses the stability tests indicated in Table 8.2 to yield qualitative
stability information (‘the system is stable’ or ‘the system is unstable’) from

Table 8.1 Some milestones in stability theory

A long-term thread that binds

e  Maxwell: governors, Saturn’s rings, spinning top

e Lyapunov: two stability theorems

o  Hurwitz Routh: stability information from the coefficients of the (unsolved) differential
equation

Nyquist: graphical frequency response method

Bode: developments of Nyquist approach

Evans: root locus interpretation of Nyquist approach

Jury: sampled data formulations

Doyle: contributions to developing robust control methods

Table 8.2 Stability aspects of system models

System model Stability governed by
Bode diagram Gain and phase relationship
Differential equation Roots of auxiliary equation
Transfer function Poles of transfer function

System matrix Eigenvalues
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differential equations, difference equations, transfer functions or system matrices.
Table 8.1 highlights some of the famous names of stability theory.

The three forms of tests in Table 8.2 are all virtually the same test with rela-
belled variables. They all suffer from the same disadvantage — each test requires the
solution of an equation of the form

STt a "+t as' +ag=0 (8.2)
In detail, this means finding every complex number a that satisfies
a"+ap "M+t aa +ap=0 (8.3)

to yield the set of complex numbers {a;, ..., a,} that are the roots required by the
stability test that is to be administered.

Ifin (8.2), n <2, the solution follows ‘almost by inspection’ if 2 < n < 4, then we
can use analytic methods (Tartaglia’s method for » = 3, Ferrari’s method for n =4),
while if # > 4, then by the celebrated proof due to Abel, no analytic solution can exist
(see Turnbull (1963) and for a detailed discussion, Burnside and Panton (1892)).

It is, of course, possible to solve any particular equation of any order compu-
tationally, provided that it has numerical coefficients throughout. However, in the
inevitable iterations of a systems design project, it is very useful to be able to work,
at least partially, with as yet unassigned coefficients.

Thus, for n > 4, it would be extremely useful to be able to answer the question
(applied to (8.2) and using only a knowledge of the coefficients [a;]): In what
region of the complex plane do the roots [a,] lie?

8B The ingenious method of Hurwitz

One solution to the problem came about as follows. The engineer A.B. Stodola,
working on the dynamics of water-driven turbine systems, had been able
already in 1893 to solve the stability problems that arose from his highly
approximated model of order 3 (» = 3 in our (8.2)). Although he was not in a
direct position to apply the tests outlined in our Table 8.2 (not yet invented),
he was equivalently able to apply the known work of Maxwell (1868) on
systems of that order.

However, when Stodola produced a more complete model, with fewer
approximations, for his turbine systems, he encountered the same problems
that are described here. In modern terms, he wanted to know the location of
the roots a; of (8.2) from a knowledge of the coefficients @;. The mathema-
tician A. Hurwitz, working at the same institution (ETH Zurich) as Stodola,
produced the Hurwitz criterion to solve precisely this problem. Stodola was
able immediately to apply the criterion to ensure the stability of the design
for a new hydroelectric power station that was being built at Davos.
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Almost simultaneously, and independently, the Cambridge mathemati-
cian E.J. Routh developed an equivalent test, now called the Routh array test,
to achieve exactly the same result as the Hurwitz criterion. Many control
engineering texts explain one or other of the tests and with loose terminology
indeed refer to it as the Routh—Hurwitz criterion.

Notice carefully that the Hurwitz criterion and the Routh array test apply
to differential equations and hence also to the transfer functions and 4
matrices corresponding to such differential equations. They cannot be used to
determine the stability properties of difference equations, since for difference
equations a different question has to be asked; i.e. are all the roots a; inside
the unit circle in the complex plane? Equivalent to the Hurwitz test for dif-
ferential equations is the Jury test for difference equations. (See Kuo (2009)
for details of the Jury test.) Unfortunately, Jury’s test can be unwieldy and
this writer finds the so-called w transformation method preferable. In this
method, the difference equation is transformed into a differential equation
that has the same stability properties. The differential equation, obtained by
transformation, is then tested as usual by (say) the Hurwitz method.

8.3 Linear system stability tests
Table 8.3 summarises the stability tests that are available for linear systems. Fre-
quency response methods are widely used to synthesise closed loop systems having

predetermined stability characteristics (refer back to Chapter 4).

Table 8.3 Linear system stability tests

System description Recommended stability test

Continuous time systems

Differential equations Roots of auxiliary equation
Transfer functions Poles
System matrices Eigenvalues

(Apply Hurwitz or Routh criterion)
Discrete time systems

Difference equations Roots of auxiliary equation
Transfer functions Poles
System matrices Eigenvalues

(Jury test or w transformation then Hurwitz test)

8.4 Stability margin

From what has already been said, it can be inferred that there is a boundary between
stable and unstable systems. A usable system must not only be stable but it must be
away from the boundary of instability by some sufficient safety margin.
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8.5 Stability tests for non-linear systems

Why stability testing of non-linear systems is difficult

For a linear system, all solutions are ‘topologically similar’. For instance (Figure 8.6),
for a linear system, all responses to initial perturbations of different magnitudes are
similar (in a geometric sense). Thus, if an initial perturbation p(0) causes a response
x(%), then a scaled-up perturbation kp(0) will cause a scaled-up response kx(f).

However, the behaviour of a non-linear system can exhibit many surprising
features. For instance, it is easy to synthesise a non-linear system whose response to
two different initial perturbations p;(0), p(0) is as shown in Figure 8.7.

It should be immediately obvious that even the definition of stability for a non-
linear system will need to be carefully thought out.

response

different
initial
perturbations

all responses are
topologically
similar

time

Figure 8.6 The family of responses to perturbations of different magnitudes for a
linear system

P20
P1(0)

time

Figure 8.7 It is possible for a non-linear system to be stable for a perturbation p,;
(0) while being unstable for the perturbation p,(0)
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8.6 Local and global stability

In this treatment we consider non-linear differential equations and operate in the
phase plane, thus effectively limiting illustrations, although not results, to second-
order systems. (We note in passing that non-linear differential equations do not
yield transfer functions, poles, matrices, eigenvalues, frequency response descrip-
tions, superimposable time responses or decomposable time solutions — i.e. aux-
iliary equations and complementary functions.)

The response to an initial perturbation as in Figure 8.8(a) can also be shown in
the phase plane as Figure 8.8(b), where time is a parameter along the trajectory.

A non-linear system where solutions starting at all points in the phase plane tend
to the origin will be called globally stable — we can imagine that the origin is an
attractor of solutions and that the domain of attraction is the whole of the phase plane.

In the case when the domain of attraction of the origin is a finite region in the
phase plane, we call the system locally stable around the origin (Figure 8.9).

(a) x

time

(b)

Ty

()
7

Figure 8.8 (a) A time response; (b) the same response plotted in the phase plane

dx/dt

L)

region of
local stability

@

Figure 8.9 A region of local stability in the phase plane
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8.7 Lyapunov’s second (direct) method for stability
determination

Lyapunov’s second method (often equivalently referred to as his direct method) has
the following properties:

(i) It can be understood most rapidly by reference to the energy contained in a
system and the rate of change of that energy.
(i) Notwithstanding (i), it can be applied to abstract mathematical systems in
which energy cannot be defined.
(ii1) It has a very valuable geometric interpretation.

We can bring point (i) to life by noting that a moving railway train whose brakes
are applied will come to rest when its kinetic energy has all been dissipated in the
brakes. If we wanted to calculate the stopping distance of such a train, it is possible
to imagine using a method based on energy and its rate of change. Moving to a
second viewpoint, it is obvious that the ball in a cup is at a point of minimum
potential energy, whereas the ball on a dome is at a point of maximum potential
energy (Figure 8.10). The relation between the energy minimum/maximum and the
stability/instability of the balls is no accident.

The geometric interpretation of Lyapunov’s second method is that ‘a system is
stable to the origin provided that every closed contour described by the so-called
Lyanupov ¥ function is always penetrated from outside to inside by solution trajec-
tories of the differential equation and never in the reverse direction (Figure 8.11).

(@ (b)

Figure 8.10 (a) Ball in a cup; (b) ball on a dome

contour described
/ by ¥ function

solution
trajectory

plane

all solution
trajectories
penetrate from
outside to inside:
Lyapunov test
confirms stability
of system

Figure 8.11 All solutions penetrate the V function contour from outside to inside



120 Control theory: a guided tour

solution trajectory

contour described
/(ﬁ by ¥ function

phase
plane

contour is penetrated

at least once from inside to
outside: stability test fails even
though system is stable

Figure 8.12 Contour is penetrated from inside to outside — stability test fails

x(7)

contour of
constant V'

e origin of phase plane

Figure 8.13 A trajectory crosses a contour of the V function

V' contour
origin
Figure 8.14 Figure 8.13 enhanced by gradient vector and tangent

Notice that some ¥ functions will fail to confirm the stability of some stable
systems as illustrated in Figure 8.12.

Lyapunov’s test fails because at least one trajectory penetrates from inside to
outside. We can see that the Lyanupov test is a sufficient condition for stability — it
is not necessary.

8C Geometric interpretation of Lyapunov’s second method

Consider a solution trajectory x(¢) crossing a contour of constant / on its way
towards the origin of the phase plane (Figure 8.13). Let the tangent to x(f) be
x(¢) and let grad ¥ and —grad ¥ be drawn in as shown (Figure 8.14).
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Define 1 = (%,5&(,) indicates inner product i.e. 1 is the projection of
x onto the gradient vector VV. Note from Figure 8.14 that 1 is a vector,
orthogonal to the 7 contour and that if 1 is negative, pointing towards the
origin for every solution x(#) and for every V contour, then the system is
stable to the origin within the outermost of the V" contours investigated.

Assume that V' is positive definite and that lines of constant / form an
increasing basin with the origin at its lowest point. Then the usual test that
dV/dt must be negative definite for stability to the origin can be seen to be the
same as asking that the vector 1 in Figure 8.14 should point inwards. This is
so since

dV  dVdx
—=——= X 4
i~ wa VY (8.4)
which is the same (except for a scaling factor) as the expression for 1 in the
figure.

8.8 What sets the limits on the control performance?

Let G(s) be a model for any process, connected into a control loop with a controller
D(s) whose transfer function is under our control. Let the overall model of the loop
be represented by H(s) (Figure 8.15).
We ask: For a given G(s), can we, by choice of D(s), synthesise any H(s)? The
following discussion is a continuation of an earlier discussion in Section 3.1.
From (3.4) and (3.3) (repeated here for convenience), we know that the overall
transfer function H(s) of the loop is (3.4)

(8.5)

to be chosen fixed
v e // u 7 y

477 D(s) G(s)

v — y
— H) ——

Figure 8.15 Choosing D(s) to achieve a given H(s)
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and that the controller D(s) can be chosen using (3.3)

H(s)
D(s)=——""—— (8.6)
G(s)(1 — H(s))
As an illustration of an ambitious design, let
G(s) = oo (87)
14 1000s '

i.e. G(s) has a time constant of 1000 s. We ask: Can the controlled system be forced
to have a transfer function of

_ 1
1+

H(s) (8.8)

by the connection of a suitable controller, i.e. can the system, when under control,
be forced to respond 1000 times faster, with a time constant of 1 s?

This is a generic question of great practical importance: What sets an upper
limit on the performance that can be obtained by adding control to a particular
process G? The complete answer will not be found by application of control theory
but let us continue the example and then discuss the result.

Putting the values into the equation for D(s) yields

D(s) = H(s) _ 1/(1+s
G(s)(1 = H(s))  (1/(141000s))(1/(1 = (1/(1 +5))))
1410005 _ u(s)
B s e(s) (89)
or
u(s) = @ + 1000e(s) (8.10)

This controller can be realised by the hardware of Figure 8.16.

G(s)

/ e(s)/s

Figure 8.16 A hardware realisation to synthesise the required controller D(s)
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Physically there is no reason why the system of Figure 8.16 cannot be built.
However, we note that, when the value v is changed suddenly to produce an error
(v — ), the output from the controller will instantaneously be 1000 (v — y), which
may saturate the actuator of the process G(s) for any significant perturbation of v
and, additionally, noise entering the loop may be expected to cause problems. Thus,
we conclude that if we are over-ambitious in our attempt to obtain high perfor-
mance, we may meet limits caused by the finite power rating of signals that the
process G(s) can receive.

However, in applications, we frequently do need to work around the loop from
small sensor signals whose task is to carry information to the point where a large
load of one sort or another may have to be moved, sometimes very rapidly. Such
targets are not achievable by using large numerical gains in control loops but rather
by power amplification.

To progress, consider particular applications. Imagine a hydroelectric power
station where a huge controlled valve varies the flow of water to a set of turbines
driving generators to vary the power generated and hence maintain the frequency
of the whole supply. Such an application can be found at the Swedish hydro-
generating plant at Harspranget near the Arctic Circle. At 939 MW, produced by
1000 m®/s of water falling from 107 m, this is Sweden’s largest hydroelectric sta-
tion. Interestingly, although there are quite a number of large hydro plants all
connected to the Swedish grid, Harspranget has the main task of controlling the
frequency of the whole grid. A delicate frequency sensor produces a signal of only
a few mV and a closed loop system must drive the very large water valve in this
application. This is achieved through an increasing sequence of amplifiers, motor
generators and finally through a hydraulic actuator (Figure 8.17). This enormous
amplification is seen to be stage-wise power amplification and not simply multi-
plication of gain. Most other applications will meet a maximum rate constraint in

desired frequency, 50 Hz @ e

electronic

- amplifiers
O=
measured

grid frequency

to massive sluice
gate that controls
water to turbines

large
hydraulic
amplifier

Figure 8.17 How power amplification is obtained in hydro frequency control
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the form of the diameter of a pipe, the capacity of a heating burner, the power
limitation of a motor or even a biological constraint such as that on the rate of
organism growth.

8.9 How robust against changes in the process is a moderately
ambitious control loop?

Suppose that a control loop is designed to improve the rate of response of a process
G(s) by a factor of ten times. How robust will the resulting loop be against changes
in the process? We take a very simple example where

1

G(S):l—|—s

(8.11)

and we shall design a controller D(s) such that the resulting closed loop H(s) has the
transfer function

1 10

H = =
(5) 1+0.1s 10+s

(8.12)

so that the closed loop system will respond ten times faster than the uncontrolled
process. The necessary controller will have the model (see again Figure 8.15)
H(s) 10/(10 + ) _10(1 +5)

PO = emt—aE) ~ 0T —10/(0%s) s

(8.13)

This controller in closed loop with the given G(s) will produce the required transfer
function H(s).

The purpose of this section is to check the effect of process changes on closed
loop performance. We therefore postulate a significant but feasible change in the
process time constant to yield the modified process model

1

1(q) —

) =157 (8.14)

and calculate the resulting model, say H'(s), of the closed loop as
1/(1+ 1.4s))(10(1 10(1
i) — WO 14)000 +9) 1001 +9 5.15)
14+ (1/(1+ 1.4s))(10(1 +5)/s) 1.4s2 + 11s+ 10

H'(s) has two real poles at approximately s = —2 and s = —5 so it is not imme-
diately obvious how the response of H'(s) will differ from that of H(s) (one pole
at s = —10). To investigate this we shall calculate the step response of H'(s) and

compare it with that of H(s).
(As a piece of reinforcement learning, we note that the step response of H'(s)
can be found by taking the inverse Laplace transform of (H'(s)u(s)), where u(s) = 1/s
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is the transform of a unit step time function. Alternatively, we can argue that the
response of H'(s) to a unit step must be the integral of the impulse response of H'(s).
Since in the Laplace domain, the operation of integration is accomplished by mul-
tiplication by 1/s, we again need to introduce this term before inverse transformation.
In this short reminder, we have shown that the possibly puzzling fact that 1/s is
simultaneously the transform of a unit step time function as well as the Laplace
domain variable representing integration does not lead to any inconsistency.)

Therefore, the step response of H'(s) as a time function will be found by
inverse Laplace transformation as

(1 1001 —5)
£ 1<§(1.4s2+11s+10)> (8.16)

(@) 1.5

— Response of G(s)
1 e e e --- Response of H(s)
e - Response of H'(s)
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(b) 1.05 — Response of H(s)
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Figure 8.18 (a) The step responses of processes G(s), G'(s) alone and under
closed loop control (H(s), H'(s)); (b) detail showing overshoot in
response of H (s)

Figure 8.18(a) shows plots of the step responses of H(s), H'(s) with, for comparison,
those of the processes G(s), G'(s).

The response of H'(s) is remarkably close to that of H(s), considering the large
change in the process that has taken place. Closer examination (Figure 8.18(b))
shows, however, that the response of H'(s) suffers from an overshoot that decays
with a long time constant that is a legacy from the failure of the fixed controller
D(s) being unable to cancel the pole of the changed process G'(s).

Overall, though, the result confirms the hoped-for robustness of a single
feedback control in the face of process changes.
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8.10 Limits and constraints on synthesis: summary of points

Given any process G(s) and any required overall transfer function H(s), it is always
possible to calculate a controller D(s) to ensure that the required H(s) is obtained by
substitution of G(s) and H(s) into the relevant equation.

Clearly in, say, aircraft design, G(s) could be a model of a low-performance
aircraft, H(s) could be the model of a high-performance aircraft and G(s) could
be ‘turned into’ H(s) merely by the addition of a suitable controller D(s).
However,

(1) Not every D(s) that can be written down is physically synthesisable.

(i) Even though D(s) may be synthesisable, a very ambitious choice of H(s) will
necessarily lead to signals of large magnitude being generated during tran-
sients, necessitating the use of expensive powerful components.

(i) A very ambitious choice of H(s) may lead to a control system whose perfor-
mance is excessively sensitive to small changes in the process characteristics.

8.11 Systems that are difficult to control: unstable systems

Unsurprisingly, an inherently unstable system is usually difficult to control. Yet the
combination of an inherently unstable aircraft, made usable by active stabilisation
and control, is often attractive on grounds of overall efficiency and such a combi-
nation is often used in high-performance military aircraft design.

There are also examples of deliberately near-unstable systems in nature. For
instance, over many centuries, flying insects have evolved from stable passive
long-tailed shapes, able to glide without exercise of brain power, to more efficient,
but inherently unstable, short-tailed versions that include fast-acting measurement
and closed loop control and stabilisation (Dudley, 2002).

Unstable systems have one or more poles in the right half complex plane and
the most obvious control strategy would be to cancel the unstable poles by coin-
cident right-half-plane controller zeros (Figures 8.19 and 8.20).

Questions arising are as follows:

(1) Can complete coincidence between poles and zeros be obtained and
maintained?
(i1) If complete coincidence cannot be obtained, what are the consequences?
(iii) If the method proposed is not workable, what other approaches might be
used?
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Figure 8.19 An obvious strategy to cancel an unstable pole by a zero at the same
location in the s plane



Limits to performance 127

complex
plane
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/ \{ ?y\ process pole
controller  process controller zero
pole Zero

Figure 8.20 The cancellation strategy of Figure 8.19 illustrated in the complex
plane

8.11.1 Cancellation of an unstable pole by a matching zero
in the controller

Perfect cancellation of a pole at s = 1 would imply a term like (s — 1)/(s — 1) in the
overall transfer function (although it would be perfectly permissible, mathemati-
cally, to cancel both brackets, so concealing the still present potentially destabi-
lising internal structure). However, assume that there is a mismatch of ¢ in the
calculation so that the term above is of the form

s—(1+¢)

8.17
s—1 ( )
This term has the step response

Is—(1 1 1

Is—(+e_ 1 _ 1+4e (8.18)

s s—1 s—1 s(s—1)
equivalent to the time response

exp(t) — <l—+18> (1 —exp(s)) = (1 + &) +exp(t) — (1 + e)exp(t)  (8.19)

We see that perfect compensation implies that two exponential curves, going off to
infinity in opposite directions, will precisely sum to zero (Figure 8.21).

Therefore, cancellation cannot work in practice since the instability is still
present and we are relying on its effect being cancelled exactly by an equal and
opposite effect.

(The differential equation would show the complete structure but the transfer
function, having been subjected to cancellation, masks the true situation. This is an
important point to note and shows a significant structural difference between the
two different system representations that will resurface when state space repre-
sentations are discussed.)
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time
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Figure 8.21 The components of the step response when there is a mismatch
between pole and compensating zero

8.11.2 Shifting an unstable pole by feedback

As an alternative to attempted cancellation of an unstable pole, it may be possible
to shift the pole by feedback (Figure 8.22). Taking the same unstable process
as before, we examine the effect of the feedback shown. The overall transfer
function is
s+ 1 _ s+1
s—14+cs+c (1+c)s+c—1

(8.20)

and the system is genuinely stabilised provided that ¢ > 1. The literature is fairly
sparse on the control of unstable systems but see the practically oriented reference
Padma Sree and Chidambaram (2005).

+

S+1
S S_1
()

Figure 8.22 Feedback to shift an unstable pole

We can look at this same approach in another way. Consider the differential
equation

d
Y —wytu, y(0) =y (8.21)

where we imagine that a is a process constant that is outside our control and that u
is under our control. Leta = 2 and u = 0.
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Then, clearly, the system is unstable with an exponentially increasing response
for any yo # 0.

Now we introduce feedback; we measure y, compare it with a desired value
(here set to zero for simplicity), multiply it by a gain k£ and set u = ky, this action
modifies the equation to produce

dy

=@ +ky, o y(0) =y (8.22)
or

dy

o= (@t k), y(0) =y (8.23)

and since the loop gain & is under our control, the system can clearly be stabilised
by feedback in this way. One is bound to ask: does this strategy work in practice?
The answer is a qualified ‘Yes’. Qualified since one must never forget that the
underlying real system remains inherently unstable and the stable behaviour is only
maintained by the constant activity of the (hidden from view) control signal u and
that a component failure (for example) could immediately bring back instability.

The literature is fairly sparse on the control of unstable systems, but see the
practically oriented reference Padma Sree (2005).

8D Control of quiet vertical standing in humans

An inverted pendulum is the classic unstable device that can be found
mounted on a motorised trolley in many control systems laboratories as a
first exercise for students in designing feedback algorithms for a process that
is clearly unstable. In this case, stabilisation consists essentially in rapidly
compensating for every perturbation of the pendulum from the vertical by
continually moving the motorised base to maintain verticality. (Many of
these demonstrations make control easier to achieve by constraining the
pendulum so that it can move only in one vertical plane.)

Physiologists studying the quiet standing of humans in the vertical
position find the situation is quite analogous to the inverted pendulum,
except that humans do not maintain verticality by rapidly shifting their feet in
imitation of the agile laboratory trolley. Instead, human static balance is
maintained as shown in Figure 8.23 by two main mechanisms that operate
independently. See Winter (1995).

The fact that standing people who become unconscious rapidly collapse
into a more horizontal position confirms the natural instability of vertical
standing and also indicates that consciousness is required for that control system
(summarised in Figure 8.23) to operate properly. (Although sleepwalkers seem
able to successfully manage posture control on their nocturnal wanderings!)
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The human body contains interrelated control and co-ordination systems
allowing us not only to stand vertically but also (for example) to race across a
river from stone to irregular stone or to jump so as to strike a fast-moving ball.

Within the body, generally, a remarkable hierarchy of interdependent
systems from unconsciously operating cellular level up to purposeful and
goal-seeking level have evolved.

When standing vertically with feet side

by side, the hips compensate for lateral
perturbations, whereas the ankles compensate
for forward/backward perturbations

0,
When standing vertically with feet in the
tandem position, roles are now reversed,
KX the ankles now compensate for lateral

y perturbations and the hips for
forward/backward perturbations

Figure 8.23 Summarising how the mechanisms for maintaining static
balance in the standing human change over when foot
positions change

8E Understanding, with the help of the full Nyquist stability
criterion (Nyquist, 1932), how simple feedback control can
stabilise an unstable process

The full Nyquist stability criterion is of real value when dealing with pro-
cesses that have right-half-plane singularities as in the example below.

We consider the inverted pendulum and attempt stabilisation by con-
tinually moving the base so as to prevent departure from the vertical. The
ultra-simplified, linearised model is derived as follows:

A normal, non-inverted pendulum has the lossless equation

10" = —g0 (8.24)

[ being pendulum length, 6 being angular departure from the vertical and g6
being the gravitational restoring force. But for the inverted pendulum, we
need to write

10" = —g6+u (8.25)

where u represents the externally applied attempting balancing force.
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Setting all units to values yielding the simplest possible representation,
we obtain the transfer function

o 1 1
u -1 (s—Ds+1) (8.26)

Clearly, the open loop system is unstable, as expected, having one open loop
pole in the right half plane.

We now demonstrate the extraordinary power of the Nyquist theorem by
setting a proposed controller u(s) = k(s + 4) so that the enhanced open loop
gain becomes

(8.27)

and plotting the Nyquist diagram for L(s) — note carefully L(s) is the open
loop transfer function of controller plus process — for two different values of
gain k.

From that diagram we shall obtain stability information about the
expected closed loop behaviour. In principle, as in Figure 8.24, we sweep
around the right half plane, following the clockwise-going contour I" and
mapping into the L(s) plane to produce the two L(s) contours shown in
Figure 8.25.

By Nyquist’s criterion, the number A, of clockwise encirclements of the
minus one point in the L(s) diagrams, will satisfy the relation

N=Z-P (8.28)

Nyquist’s stability theorem

X axis L
semi-circle

of infinite radius

real

axis
\ . L(s) = _ks+4)
1" contour in (s+D)(s—=1)

complex s plane
(no singularities
on this contour)

s plane

Figure 8.24 The I contour n in the s plane
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Figure 8.25 The L(s) plot in the complex plane

where Z is the number of zeros of 1 + L(s) and importantly therefore, also Z
is the number of poles of the (proposed) closed loop system, i.e.

L(s)
Z=——— 8.29
1+ L(s) (8:29)
and P is the number of right-half-plane poles of L(s).
If we examine Figure 8.25, we see that both L(s) contours are closed
ellipses with anti-clockwise orientation, but the smaller one, corresponding
to a gain value £ = 0.2, does not encircle the minus one point, therefore
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yielding N = 0, whereas the larger ellipse, corresponding to a gain k£ = 0.5,
encircles the minus one point, anti-clockwise, therefore yielding N = —1.

This result shows, in a very appealing topological way, that the closed
loop system with £ = 0.2 would have Z = N+ P = 0+ 1 = 1 pole in the
right half plane and therefore would be unstable.

The closed loop system with k = 0.5 wouldhave Z = N+ P = -1+ 1 =
0 poles in the right half plane and therefore would be stable. This rather
beautiful result gives real insight into the nature of the problem, even with an
ultra-simple model.

This type of closed loop system is unstable for low loop gains but can be
stable for higher loop gains (so long as perturbations do not destroy the initial
assumptions of linearity).

Now our intuition is confirmed that if you want to balance a stick, then
to succeed you will surely need some minimum level of acceleration that
can be equated with the minimum gain for stability that we have just
demonstrated.

8F Examples of systems that are deliberately designed to be
unstable

Unsurprisingly, an inherently unstable process is usually difficult to control,
as earlier sections of this chapter have demonstrated, yet there are applica-
tions where an inherently unstable system is deliberately designed as the
following discussion of aircraft stability illustrates.

Considering only the longitudinal stability of an aircraft, it can be shown
(Abzug and Larrabee, 2002) that to achieve stability, the aircraft’s centre of
gravity (CG) must always be forward of the neutral point (NP), which is
defined as the point in the aircraft fuselage where the orthogonal aero-
dynamic forces of lift and drag can be considered to act. Therefore, com-
mercial aircraft will have their points CG and NP always disposed as shown
in Figure 8.26(a). Now, although the CG is a function of the distribution of
mass and for any particular aircraft is load-dependent but approximately
fixed, the NP moves significantly, for aerodynamic reasons, as flight condi-
tions change; in particular, it moves rearwards as the airspeed increases,
increasing the stability margin. This means that an aircraft that is stable at
low flying speeds may become excessively stable with loss of agility and
manoeuvrability at supersonic speeds. Figure 8.26(b) illustrates this situation
diagrammatically. Military aircraft with characteristics of instability at sub-
sonic speeds and high agility at supersonic speeds will almost certainly




134 Control theory: a guided tour

depend critically on high degrees of automated active stabilisation and gui-
dance to assist the pilot, particularly during subsonic manoeuvres.

Aerodynamic
lifting force

Gravitational

(a) force

(®)

Figure 8.26 (a) The neutral point (NP) is a civil aircraft must always be
behind the aircraft’s centre-of-gravity (CG), to ensure
longitudinal stability. (b) The NP in an advanced Military
aircraft may be designed to be forward of the CG (position 1)
at low speed, although that implies longitudinal instability. As,
the airspeed increases, the NP naturally moves backward to
position 2, ensuring stability at high speeds, but not excessive
stability which implies poor manoeuvrability.
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It will surprise no one that, in matters of ingenuity of design, Nature
usually got there first! There are many examples of deliberately unstable
systems in nature. For instance, over many centuries, fossil records confirm
that flying creatures such as bats have evolved from larger stable passive
‘designs’, able to glide with little exercise of brain power, to smaller more
efficient, but inherently unstable, agile, versions that include fast-acting
closed-loop control and active stabilisation.

See ‘The importance of the nervous system in the evolution of animal
flight’ by Maynard Smith (1952) and The Biomechanics of Insect Flight:
Form, Function, Evolution by Robert Dudley (2002).

8.12 Systems that are difficult to control: non-minimum
phase systems

Systems with this unwieldy name have the unpleasant characteristic that, when
steered in one direction, they may initially respond in the opposite direction and
only later move off in the required direction. For these interesting systems, we
ask:

(i) What features in the mathematical model of a system lead to the behaviour
described above?

(il) What is the motivation for the ‘non-minimum phase’ naming of the systems?

(iii) What sort of physical phenomena are responsible for creating the non-minimum
phase behaviour?

(1) Right-half-plane zeros in the system model can be identified with the beha-
viour (or for a discrete time model, Z plane zeros outside the unit circle).

Example  The model
lOyA = 9yk71 — Up_1 + 2up_2 (830)

has the pole-zero diagram shown in Figure 8.27(a) and the step response of
Figure 8.27(Db).

(2) Systems having no right-half-plane singularities are called minimum phase
systems. Systems having right-half-plane singularities are called non-
minimum phase systems. Therefore, we say that a strictly stable system is
minimum phase if it has no finite zeros in the right half plane.

Caution: Clearly the numerators (1 + s) and (s + 1) are identical.
However, the numerators (1 — s) and (s — 1) are very different in their
phase characteristics. The first goes from 0° to —90° with increasing fre-
quency, whereas the second goes from +180° to +90° with increasing
frequency.
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Figure 8.27 (a) Pole—zero diagram for a simple non-minimum phase system;

)

(b) step response of the system whose pole—zero diagram is in (a)

Physical phenomena that give rise to non-minimum phase behaviour. It is
usually possible to correlate non-minimum phase indicators in mathematical
models with physical phenomena. Examples:

Control of the level of a volume of boiling water. When cold water is
added to raise the level of a mass of boiling water, the initial effect is the
collapse of bubbles with consequent initial fall in water level.
Hydroelectricity generation. A requirement to increase the level of gen-
erated power from certain hydroelectric configurations results in an
initial decrease in power during the time that the water in the pipeline
feeding the turbines accelerates to the necessary increased velocity.
Sequences of interacting processes. Suppose that a sequence of interact-
ing processes is operating in a steady state and that it is to be brought to a
new steady state. Quite frequently the transient behaviour will move in
the opposite direction to that intended. In a general sense this is because,
at a call to increase activity, early processes in a chain immediately use
additional shared resources, whereas the benefits of their increased
activity take time to work through the system.

Spatially distributed systems, being limiting cases of interconnected
processes, often exhibit non-minimum phase characteristics.

8.12.1 The effect of system zeros on the step response of a system

System zeros affect the dynamic behaviour of the system, usually adversely,
compared with that of the equivalent system without zeros. Step responses either
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have characteristic ‘inverse responses’, meaning that, initially they move off in the
opposite direction to what is required or that, despite all the poles being real, the
step responses exhibit overshoot.

These can be serious problems that are difficult to overcome algorithmically
and, as with dead-time problems, they should be engineered out of the system at the
design stage if at all possible.

Ships have many interesting problems of motion control and stabilisation. See,
e.g. Chapter 8 of Perez (2005) and Hearns and Blanke (1998) (Professor Mogens
Blanke having kindly supplied Figure 8.28).

Many other large-scale processes such as hydroelectric power stations, with
their huge masses of moving water, have their right-half-plane zero characteristics,
caused because a request for more power involves increased opening of a sluice
gate and an initial fall in power during the time that the additional water is accel-
erated to the new required velocity.

A demonstration of the effect of numerator zeros (right and left plane) on dynamic
behaviour.

The step response of the standard second-order system

w2

G,(8) = ———"2—— 8.31
O = srai s (8.31)

4
ship heading (degrees)
0
0 \/ time (seconds) 60

Figure 8.28 The simulated response of a large ship when making a turn of a
few degrees. Right-half-plane zeros in the ship’s dynamics
cause the (presumably) disconcerting inverse response of a degree or
so. The oscillation is due to interaction between different dynamic
modes
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with behavioural rather than physically meaningful parameters has been discussed
and plotted for different values of damping factor & in Section 5.13.

Here we shall discuss systematically the behaviour of the same system
enhanced by a zero. The ingenious approach used here is due to Astrom (2008).
The enhanced system is

Wy s + Bw,

= 8.32
B $? +20w,s + w? ( )

G(s)

where § is a numerical parameter that will be used to make clear the effect of the
location of the system zero on the step response.
We can write

L $G(s) (8.33)

with the left term Gy(s) being the familiar (no zeros) second-order system and the
right term being responsible for the additional response terms caused by the zero.
We can also write

1 dh,(1)
Pw, dt

h(t) = h,(¢) + (8.34)

Two things are clear:

(1) In the time domain, the right term represents the derivative of the left term
(multiplied by two constants). What it means (Astrém is always, admirably,
searching for structural meaning amongst the numbers) is that wherever the
derivative of the step response of the no zero system #,(f) is zero, the right-
hand term in the above equation will also be zero. This means that the whole
family of step response curves for different 5 must necessarily coincide at
such a point, as we shall attempt to demonstrate.

(2) Reducing the values of B can be expected to increase the effect of the added
Zero.

Below is the step response of the second-order system whose transfer func-
tion is

Wy s+ Bw,

Gls) = B 5%+ 2Lwus + 0?2

(8.35)

for the case with no zero present and for two values of . It is clear that negative
values of f result in a so-called inverse response, whereas positive values of
B cause overshoot (Figure 8.29).
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Figure 8.29 The effect of a zero on the step response of a linear second-order system

General points: For a minimum phase system, the two components of the frequency
response (i.e. gain and phase) are related by a known fixed bijective function —
effectively meaning that either of the components contains all the frequency
response information that exists. This fact is exploited in Bode’s theorems on sta-
bility (see Chapter 5).

8.13 Process dead time: a difficult dynamic element in the
control loop

Dead time (also known variously as pure delay; time delay, transport lag; distance—
velocity lag) is the name given to a process element whose output in response to an
input is simply the input shifted by the time delay 7},

(Clearly, industrial processes are rarely so obliging as to remain constant for
long, and in practice, process dead time 7, will usually vary, sometime quite
widely, complicating the control systems designer’s task. However, in the discus-
sion that follows, T,; will be assumed to stay constant.)

An incoming periodic signal of frequency w will, on encountering a dead-time
element, be phase shifted by the angle w7, and it is clear that for some frequency w
that phase shift will be exactly 7 radians. Assuming that the dead-time element was
the only dynamic element to be considered, this would obviously mean continuous
oscillation would occur if feedback control with unity gain was attempted.
Figure 8.30 helps to explain the above discussion.

In physically large processes involving flows of liquids or material, significant
dead time frequently appears because of the time taken for information to reach
measuring sensors or for mixing or some other physical or chemical process to occur.

Although dead time may not feature prominently in control text books, it is
nevertheless, from a control point of view, a dominating feature of many real-world
industrial problems.
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no input dead time
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"vThe multiplication by minus one produces an additional phase
shift of 7 radians, equivalent to 60 seconds at the frequency of oscillation.

Figure 8.30 A process dead time of T, = 60 s in a unity feedback loop leads to
continuous oscillation with a period of 2T,

The presence of significant dead time in a process will severely limit what
even the best-designed control can achieve and ideally a ‘control presence’ at the
process design stage should ensure that all possible steps are taken to ‘design out’
all but the most unavoidable sources of dead time.

Note: The transfer function of a dead-time element is e *7, which, being irra-
tional, may not be acceptable by some software programs. In that case, the Padé
first-order approximation

1—STd
1+ 5Ty

—sTq ~
~

(8.36)

is often substituted.

(Notice that this approximation to dead time has a right-half-plane zero indi-
cating a family resemblance between the two difficult process elements, dead time
and minimum phase elements.)

8.13.1 How to control processes that have significant dead time

The text book approach is to use the old established Smith predictor or a more
recent algorithm based on the same principle that is basically to use a process
model (which may be learned or corrected online via a loop that makes use of the
delayed measurement) in real time to estimate the undelayed process output and to
use that to drive a feedback loop. Figure 8.31 shows the principle.

Clearly, this is a sound methodology under ideal conditions but rather than
blindly applying this or any other algorithm, it is usually preferable to look in detail
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Figure 8.31 The general principle for control of a process with a significant dead
time caused by a measurement delay

into the fundamentals of the process and to develop, just for this purpose, a process-
knowledge-based model that can generate an alternative near-instantaneous
pseudo-measurement to be used in the feedback loop, leaving the actual, delayed,
measurement in the role of model calibrator.

Each application tends to be so specialised that in-depth process knowledge is
much more important than a knowledge of or expertise in control theory. Although
every application is unique with widely differing features, there is nevertheless a
generic pattern to all. Therefore, one particular application where dead time has
been successfully overcome will be described in detail as a case history in
Appendix A towards the end of the book.

8.14 Some interesting theoretical limitations on performance

It is well known that Shannon’s theorem sets a fundamental upper limit on the
maximum error-free capacity of a communication channel. Less well known but
important in the control field are a number of other fundamental design limitations,
of which examples will now be given.

8.14.1 Sensitivity functions and their interrelation

(These interrelations play a major role in the loop-shaping techniques that will be
introduced in Chapter 15.)

8G Motivation for the name: non-minimum phase systems

Consider first the ‘usual’ system of transfer function

(1 +ST1)

GI(S) - (1 +ST2)(1 +ST3)

(8.37)
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and compare it with the transfer function

(1 —STl)
(1 +ST2)(1 +ST3)

Gy(s) = (8.38)

It is clear that both transfer functions yield identical plots of magnitude
as frequency varies.

However, the phase plots differ markedly, for, as the phase plot corre-
sponding to the (1 4 s77) term in G; moves from 0° to +90° so the phase plot
for the (1 — s73) term in G, moves from 0° to —90°. Thus, the high-fre-
quency asymptote for the phase angle is —90° for G; but —270° for G,.

Alternatively, consider

(s—2)

Gi) = ;12 (8.39)

This has constant magnitude at all frequencies but the phase angle is +180°
at low frequencies, decreasing to 0° at high frequencies.

If two transfer functions are strictly stable with the same gain at each
frequency, then the one with all zeros in the left half plane will have least
phase shift. Figure 8.32 illustrates the point.

(@ (b)

complex
complex plane
O plane

Figure 8.32 (a) The pole—zero diagram for a normal (minimum phase)
system; (b) the pole—zero diagram for a non-minimum phase
system that has the same characteristics as the system in (a)

w

D(s) — G(s) y

Figure 8.33 Feedback configuration
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Consider a process G(s) in a closed loop with a controller D(s) (see Figure 8.33).
We define two dimensionless sensitivity functions 7 and S as follows

1
g— T— GD
1 +8D 1+GD

(8.40)

and note that at any frequency w where 7(w) = 1, we will have y = v, i.e. output =
desired value.

Thus, T links output y with desired value v, whereas the function S links dis-
turbance output y with the disturbance input w.

Relations between T and S and their consequences:

By inspection,

S(s)+ T(s) =1 for all s (8.41)

This relation can be regarded as a constraint on design, preventing independent
choices being made in regard to reference following and disturbance rejection
performances.

8.14.2 Integral constraints in the time domain

Example 1  If the open loop combination G(s), D(s) has the form

P(S)
200 (8.42)

i.e. has two poles (a double integrator) at the origin, assume the closed loop to be
stable. Then, irrespective of what other (linear) elements the brackets in (8.42)
contain, the error e(?) following the application of a unit step applied at # = 0 must
satisfy the relation

ro e(t)dt = 0 (8.43)
0

so that equal areas of positive and negative error must result as indicated in
Figure 8.34.

Ilustration of the effect discussed as Example 1
Assume that

105+ 16

GD .

- (8.44)

so that

GD  10s+16
1+GD s>+ 10s+ 16

(8.45)

with poles at —2, —8 and a step response in the time domain as shown in
Figure 8.34.



144 Control theory: a guided tour

closed loop
step response

0.1 \ o
equal areas

0.08
0.06

0.04

0.02

0 05 I s 2
time (seconds)
Figure 8.34 The closed loop step response of the open loop system
G(s)D(s) = (10s + 16)/s°. Note the equal areas marked, confirming

that the double integrator leads to the error e(t) satisfying the equation
Jo e(t)dt = 0, e() following the application of a step at t = 0

If the open loop combination GD has right-half-plane poles or zeros, then
evaluation of the integral

r e(r)dt (8.46)

0

following the application of a step will, in each case, show that there are inevitable
under- and overshoots in the closed loop responses, so that for instance, when a real
open loop zero is present in the right half plane then the step response will inevi-
tably begin with a negative-going response that is typical of so-called non-
minimum phase systems (see interlude 8G).

8.14.3 Design constraints caused by Bode’s theorem

Bode’s theorem states that

r In[S(jo)|de = 0 (8.47)

This shows that the average value of the sensitivity function S must be 1 on the
imaginary axis so that if very small values of S are forced on the system for some
range of frequencies, values greater than 1 will have to be accepted as payback over
some other frequency range.
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If one imagines that the loop can be shaped so that the undesirably high values
of S occur at frequencies well outside the system bandwidth, this strategy turns out
to be prevented by other constraints as Seron et al. (1997) shows (this is yet another
manifestation of the well-known NFL (no free lunch) syndrome!).

This section is based on Seron et al. (1997), an interesting and comprehensive
reference where more results can be found, and on Freudenberg and Looze (1985).
Bode’s theorem can be found in Bode (1945).

8H Mapping of complex functions: a few points that underlie
classical control theory

Given y = f(x), where x and y are real scalar-valued functions, there is only
one path for x to follow, i.e. from —oo to oo and the resulting value of y is the
usual ‘graph’ of y against x. No variation is possible.

However, for a complex (valued) function, g = f{s), with complex
argument s, the values taken by g depend on the path chosen for s in the
complex plane. For instance (McCollum and Brown, 1965, p. 85), if s is
allowed to vary as shown in Figure 8.35(a), then G(s) = 10/(s — 2) varies as
shown in Figure 8.35(b).

@ J@ (b)
axis

B C

N

s=2 | complex
plane
(s plane) C  complex plane

(g(s) plane)

F B

Figure 8.35 (a) A path in the complex plane; (b) the corresponding path for
G(s) = 10/(s — 2)

Notice that the left contour encircles the pole at s = 2 in a clockwise
direction, whereas the corresponding contour for g encircles the origin of the
complex plane in an anti-clockwise direction. Further investigation would show
that the direction of rotation of the g curve and its encirclement (or not) of the
origin is directly related to the presence or absence of poles and zeros within the
region that is encircled by the s curve. Figure 8.36 gives further examples.
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Figure 8.36 The lefi-hand diagrams (a), (c), (e), (g) show paths in the

The foregoing material is part of the subject ‘functions of a complex
variable’, which underpins all of the control work (stability, poles and zeros,

etc.) that relies on transfer functions.

Returning to the mapping and encirclement discussion, if s is allowed to
encircle the right half of the complex plane, then the behaviour of the transfer
function G(s), as s varies, can indicate the presence of poles in that region.
Since such poles imply system instability, this idea forms the basis for a

major stability test — the Nyquist criterion.

complex s plane. The right-hand diagrams (b), (d), (f), (h)
show corresponding paths in the G(s) plane
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Because we are interested principally in negative feedback systems, the
function that we need to consider is not really G(s) but rather G(s)/[1 + G(s)].
The form of the denominator shifts the emphasis from the origin to the point
—1 + jO; this is the point whose encirclement or non-encirclement yields
stability information for feedback systems.

8I Derivatives of a complex function G(s)

Not all complex functions are well behaved in the complex plane. Some are
able to possess more than one value of derivative at the same point,
according to the direction in which s is varied. Such behaviour is not possible
when the function satisfies the Cauchy—Riemann conditions at almost all
points in the plane. The function is then called an analytic function.

8J Singularities of a complex function G(s)

Singularities are the points at which G, or its derivatives, do not exist. The
location and nature of the singularities determine the behaviour of the func-
tion in the entire plane.

There are three types of singularities: poles, essential singularities and
branch points. If a positive integer » exists such that

lim (s —s1)"G(s) = k (8.48)

§—81

Where £ is some finite non-zero value, then s; is a pole of G(s) of order n.
An essential singularity, roughly, is a pole of infinite order. In control

theory, essential singularities usually arise as models of dead-time processes.
A branch point is associated with a multi-valued function such as +/s.

Behaviour of G(s) near to a pole:
G(s) may be expanded in a Taylor series about a pole at s; as

(s—51)"G(s) =A_p+A_ppr(s —s1) + -+ A_1(s — 1)

+Bo(S—S1)n+B01(S—S1)n+1 qF oo (849)
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Hence,
A, A_(n-1) A, Ay
G(s) = 7+ ot + +B
) (s=s1)"  (s—s1)"" (s—s)F (s—s)
+Bl(S—S1)+"' (850)

which is called a Laurent series (study of the Laurent series and its connec-
tion with the behaviour of functions in the time domain can be pursued in
Truxal (1955), pp. 4-29).

A_ is called the residue of G(s) at s. Near to the pole, the term in 4_;
dominates the series.

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18.



Chapter 9

Some practical aspects of control design,
implementation and justification

9.1 The variables that really matter may be difficult
to define, measure or control

In real-world situations it is rare for the variables that are most important for
success/viability/profitability to be agreed upon, well defined and measurable.

Taking an everyday example, in the care of an individual patient by a medical
doctor, what matters most could perhaps be defined as the patient’s well-being. That
complex variable is obviously not easily inferred from the readily available measure-
ments of pulse rate, temperature, heart rate and brain activity. In practice, information
on well-being is often provided by patient—doctor dialogue, while the success or
otherwise of a treatment by drugs may again be assessed mainly by dialogue.

Industrial situations are not so different. In a typical industrial process, the
online available measurements will usually be rather peripheral to the variables that
are needed for control or that relate to ‘customer satisfaction’ (in the widest sense).
For example, it is all too easy to measure the (unimportant) temperature of the
flames inside a heating furnace but all too difficult to measure or even estimate, as a
function of time, the internal temperature contours of a massive object that is being
heated. Important (to the customer) product variables, (say) the clarity of plate,
glass or the texture and taste of a food product, are typically difficult to define and
even more difficult to measure online.

Further, the effects of those many interacting, constrained, manipulable and
non-manipulable, known and unknown process variables that influence product
quality are not easily quantified or modelled.

9.2 How efficient is it to control a process by a controller
that consists only of a high gain of value C that,
in the limit, becomes a relay controller?

9.2.1 Rudimentary on—off control

In view of the evident efficiency of feedback controllers in controlling unknown
phenomena, is it not feasible to attempt control of all processes by some very
simple standard strategy?
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controller

G(s) >

<
<

Figure 9.1 The simplest possible controller — a gain C

The simplest possible controller (Figure 9.1) involves just multiplication of the
error by a scalar C; the overall transfer function is CG(s)/(1 + CG(s)) and if C is
very high, then the overall transfer function is approximately

Q

G (s)

Q
Q
=

i.e. provided that C » 1, near-perfect control can be obtained.
Question: What happens as C — o0? Will this give better and better control?

Answer:

(i) As C is increased, the system may become unstable and unusable.

(i) Assuming that the system remains stable as C — oo (another question left for
the moment is when does this arise?), then we have arrived at a switched
(relay) control system (Figure 9.2). Such a system does indeed have a high
performance, and the low cost of a switching controller also makes such sys-
tems economically attractive.

However, there are two disadvantages of (infinite gain) switching systems:

(i) They are essentially non-linear (for instance, they respond (initially) in the
same way to the input step v = 1 as to the input step v = 10).

(i) The system never, under any circumstances, comes to rest: full power, in one
direction or the other, is always being applied. For many applications, such
behaviour is not acceptable.

Summary: A controller that consists only of a high gain C may give good control of
a totally unknown process, though the upper bound for C may be set at a low value
by stability considerations.

switching
controller

— O G()

~

\/

Figure 9.2 The limiting condition: as C — oo, the controller becomes a relay
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Where stability conditions allow, increasing the gain C will eventually result in a
relay as the controller. Such a relay does indeed frequently give good control of an
unknown process but brings problems (non-linearity, continuous oscillation) of its own.

Despite these disadvantages, relay control, also known as on—off control, has
significant practical advantages that lead to its being widely applied across indus-
try. The chief of these advantages is the very low cost of on—off actuators,
compared with the continuously variable actuators needed for continuous control.
On—off control manages to be surprisingly versatile; for instance, it can

(i) achieve temperature control of a gas-fired furnace by switching between high

and low gas/air flow rates using only a pair of simple solenoid valves;

(i) operate conveyors or other large material handling devices at any chosen average
flow rate by alternately switching between two different ratios of a gearbox;

(iii) achieve continuously variable control of many devices, such as electric motors,
by on—off modulation of an electrical power supply. For large applications, the
savings achieved by avoiding the need for continuously variable amplifiers/
actuators often outweigh any disadvantage of the discontinuous operation.

Rapid advances in continuously variable actuators have considerably reduced, but
not eliminated, the cost advantages of on—off (relay) systems, particularly for
physically large systems.

Relay control systems can be analysed and designed using phase plane and
describing function methods — see Chapter 7 — and there is a specialist methodology
for relay control systems that can be found in, for instance, Kochenburger (1950)
and Flugge-Lotz (1953), two of the pioneers in the field. Tsien (1954) devotes an
interesting chapter to the topic as do many of the older books on non-linear control.

9.2.2 Introduction to variable structure systems and sliding
mode control

In Section 9.2.1, we discussed the use of simple on—off control via a straightfor-
ward feedback loop. Here we demonstrate how, with the application of switching
logic, interesting further possibilities can be exploited. We shall introduce switch-
ing lines, switching surfaces, sliding modes and variable structure systems.

Whereas theoretical aspects of simple relay control are seen largely as only of
historical interest, sliding mode control is a current research topic.

Consider a feedback loop where the controller is a simple switch whose only
output is +C or —C, where C is a constant gain. The switch-over from +C to —C will
usually be designed to depend on some function of the error in the loop. The line in
the phase plane, where logic changes the sign of C in such a controller, is called a
switching line, or in higher dimensions, a switching surface.

The following illustrative examples are reproduced by kind permission of
Professor Stanislaw Zak from the reference Zak (2003):

Consider the system

X]Z)Q
X, =C
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X2

Figure 9.3 Phase-plane diagram showing the two families of solutions for the two
possible choices C =2, C = =2

where C is constrained to take on only the values £2.

The following phase plane sketch shows the two families of solution curves
yielded for selected initial conditions for the two possible choices C =2, C = -2
(Figure 9.3).

It is clear that both sets of solutions are unstable with solutions that, because of
the double integration, include ever increasing terms in both ¢ and .

However, once a switching line is introduced that switches the sign of u, all
trajectories that encounter it, at least in the neighbourhood of the origin, are cap-
tured onto it, after which they slide towards the origin in what is called sliding
motion (Figure 9.4).

But what is really happening as the system state progresses along the switching
line in such a satisfactory manner and what is the value of C during that progress?

From an idealised point of view, the value of C is moving between its two
allowable values infinitely often and the state stays exactly on the line as it pro-
gresses towards the origin.

In all practical cases, no such idealised switching is possible and looking in
fine detail at behaviour on the switching line soon reveals that the system is fol-
lowing a discontinuous trajectory made up of very many tiny elements of C = 2
trajectory, alternating with C = —2 trajectory as shown in Figure 9.5.

From two unstable systems of little practical interest, with the aid of simple logic
and some knowledge of sliding mode theory, we have constructed a simple but
potentially valuable control system that would be expected to be robust, since factors
such as model uncertainty presumably cannot influence the behaviour significantly.

Our next illustration, again provided by Professor Zak, makes the point that two
systems that are only marginally stable can, when controlled by sliding mode logic,
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2
Switching line
X +x,F0
X2
) |

T Vi
-2

-2 0 X1 2

Figure 9.4  All possible trajectories in a region around the origin will be captured onto
the switching line and then will approach the origin by sliding motion

elements of the
v = +2 trajectory

= elements of the
v = -2 trajectory

Switching
line

Switching line with trajectories
sliding towards the origin

Figure 9.5 A magnified view, showing that when a trajectory theoretically slides
along a surface, it is, in any actual realisation, not sliding, rather it is
switching rapidly between alternate trajectories at a frequency
determined by the magnitude of the delays (unmodelled in our
treatment) in the particular physical realisation
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combine to produce a third, stable system. Such possibilities are the reason for the name
variable structure control that is sometimes attached to sliding mode approaches.
This example (which Professor Zak actually credits to Utkin (1977) as the
original source) is as follows:
Consider the system

X1ZX2
XQZ— ux,

where u can take only two possible values, u = 1/5 for case (a) or u =5 for case (b).
The two cases are sketched in the phase plane in Figure 9.5 where it can be
seen that both systems have trajectories consisting of families of ellipses; certainly
not asymptotically stable to the origin in either case.
Next, switching logic is introduced, such that

X2 4

X1

() .
Y

@ (b)

X2

©

Figure 9.6 Phase plane sketches for (a) the system with u = 1/5; (b) the system
withu = 5; (c) the system with u controlled by switching logic
depending on the sign of X;X,
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u takes the value 1/5 if x;x, <0
u takes the value 5 if x;x, >0

With the introduction of this switching logic, a new stable structure is pro-
duced, as shown in Figure 9.6(c).

A significant current research literature exists often aimed at practical
exploitation of sliding mode control in applications where significant in-process
variations occur. A typical paper is ‘Real-time application of discrete second order
sliding mode control to a chemical reactor’ by Milhoub (2009). See also the book
Misawa (2012).

9.3 An off-the-shelf approach to the control of an
unknown process

Perhaps 90% of control problems encountered in industry can be solved routinely
and do not require an extensive modelling and control design exercise. For such
processes, a fixed-structure, commercially purchased, three-termcontroller will
probably prove adequate. Such devices can be discrete instruments fixed in racks or
they may be invisible library algorithms within an overall monitoring and control
package.

9.3.1 The three-term controller

(Three-term controllers are very frequently referred to simply as PID controllers:
PID being an abbreviation for Proportional, Integral and Derivative; describing
the actions performed by the three terms that go to make up such a controller.)

Three-term controllers are the control practitioners’ everyday workhorses.
They are highly successful in practical situations but are looked down upon by
theoreticians and are not even mentioned in many undergraduate texts. The idea of
a three-term controller, already introduced in Section 5.10, is as follows:

(i) To use a gain C that is to be set not too high, to avoid the problems of non-

linearity and continuous oscillation that can arise from too high a C value.

(il) To add an integrator into the controller to ensure that, regardless of the value
of C, a constant desired value v will result (after transients have died away) in
a constant measured value y, with y being exactly equal to v.

(iii) To add a differentiator into the controller to give independent control of the
degree of damping. If this appears to be a rather unadventurous low technol-
ogy solution, it is worth remembering two things:

(1) Non-linear controllers are quite a rarity; hard experience having shown
their limitations. If one is restricted to using a linear controller, then a
combination of multiplication by a constant, differentiation and integra-
tion pretty much spans the range of what one can undertake and still
remains linear!
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(2) A very high proportion of essential control loops across a wide span of
industry is under efficient and reliable PID control, a fact confirmed in
the paper Desborough and Miller (2002), which reported that 97% of
more than 10,000 process controllers surveyed were under PID control.

9.3.2  Illustration of the value of an integral term in removing
any constant error

Assume that the process to be controlled has the transfer function

1
s+

G(s)

In closed loop in series with simple controller of gain C, the steady state response to
a unit step as t —» oo is
C 0 C
——— as s> 0=——
s+1+C 1+C
Thus, for finite C, there is a constant error of 1/(1 + C). When an integrator is added
to the controller (in parallel with the gain C), the steady state response to a unit step is

sC+1

1 0
s(s—&—l)—l—sC—i—lH s

i.e. with the integrator present, the steady state error is zero.

9.3.3  Illustration of the value of a derivative term to control
the degree of damping

The transfer function of the closed loop system of Figure 9.7(a) is

C
s+1)(s+3)+C

(@) +

O () i
T \_/ (s+1)(s+3)

by _* 1
(s+1)(s+3)

as

Figure 9.7(a) A system under closed loop control with a simple controller of gain
C; (b) the system of (a), enhanced by a derivative term
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If we now fix C at some numerical value, say C = 65, the closed loop poles will be
located at

s=-2+VI—-C=-24,8

Very light damping is indicated by these pole positions.
If, now, referring to Figure 9.7(b), a derivative term as is included in the
controller, then the closed loop transfer function becomes

C+as
s+ 1)(s+3)+C+as

and, keeping the value of C set at C = 65, it is found that the closed loop poles are
now located at

s:—(2+%)i\/<2+%)2—3—c

And it can be seen that, by choice of «, the poles can be moved to positions
giving any required degree of damping, although of course the effects of the
introduced zero on overall performance will need to be considered.

This ingenious diagram (Figure 9.8), which is reproduced here by the kind
permission of Professors Astrom and Hiagglund (2006), shows how at any time ¢ the
output of a PID controller is made up of

o the proportional term equal to the instantaneous error;

o the integral term equal to the summation of all the past error (that is
indicated by the shaded area in the figure);

o the derivative term equal to an estimate of future error, based on a linear
prediction,obtained by projecting the instantaneous slope forward for a time

T,
present
error
past future
- B
~N
| time
t t+ T,

Figure 9.8 Visualisation of the principle of action of a three term controller
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Figure 9.9 A three-term controller

9.3.4 How can the three coefficients of a three-term controller
be chosen quickly in practice?

For most processes that need to be controlled, we cannot expect to have available
an accurate or even an approximate model, since modelling is an expensive and
time-consuming procedure.

For routine situations, all we wish to know is how to set the three coefficients:
gain, derivative action, integral action, that are required by the three-term controller
(Figure 9.9). There are three basic approaches.

9.3.4.1 To apply a step to the process that is to be controlled and
use the response to calculate the coefficients
We shall outline that approach and give an illustrative example.

This approach is simple and reliable but it does require that the process is
available and at one’s disposal to have an open loop step test performed. The
procedure is as follows. The process, regardless of its actual (and in any case
usually unknown) structure will be modelled by the approximation

G'(s) = % 9.1)

i.e. by a first-order system in series with a finite time delay 75. The three coeffi-
cients K, T, T, are read off from the open loop step response of the process using
the graphical construction shown in Figure 9.10.
The three controller coefficients are then found from the Ziegler—Nichols
(1942) equations
Controller gain C = 120
K T,
Integral time constant 7; = 27, /C
Derivative time constant Tp = 0.5CT,

(9.2)
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Figure 9.10 How the coefficients of equation (9.1) are determined

Notice carefully that these controller coefficients are suggested to achieve control
of the very large class of processes that can be approximated by (9.1) and further
that the aimed-for step response of the resulting closed loop system is underdamped
with the characteristic that the magnitude of each overshoot/undershot shall be one
quarter of the previous one. This type of response may not of course suit every
application but the logic behind the choice is that such a response comes near to
minimising the error criterion

J= Joc\e(t)|dt

0

where e(?) represents the error y(f) — v(¢) following the application of an input of a
unit step to the input v at time ¢ = 0.

Thus, the Ziegler—Nichols rules are an attempt to design an optimal controller
for the unknown process.

Hllustrative example

(Explanatory note: In real life, we shall rarely, except in simulation exercises, have
a known, accurate, mathematical model of any actual plant that we might be called
on to control. Often, we shall have to make do with a few response curves from
which we will need to construct a data-driven model as an intermediate step in
controller design.

In the example that follows, you are to suppose that we have obtained a step
response of the plant to be controlled and, with the aid of that step response, will
proceed to design a controller. How well will that controller work when it is
implemented on the real plant? Normally, we would need to carry out plant trials to
find out, but within this example, we are in a privileged position, because in this
unrealistic case we do know the true transfer function model that generated the step
response and will be able to see how the controller works on the ‘true’ plant.)

We choose as the process that is to be controlled a plant with true model

4
AS R Py Py Py 93)




160  Control theory: a guided tour

but to be realistic, we don’t (yet) allow ourselves access to knowledge of this
model — only access to its response to a unit step (Figure 9.11(a)). From that
figure and its amplification Figure 9.11(b), using the graphical construction given
in Figure (9.10), we extract the approximate model

0.5¢ 04

Gl (S) = m (94)

Figure 9.11(c) and (d) compare the actual response with the approximation.
Then using (9.2), we find the three-term controller coefficients to be

127 (12)(2.12)

Gain C = -
am KT,  (0.5)(0.4)

=12.72

Integraltimeconstant = 7; = 27,/C = 0.0629 (9-3)
Derivativetimeconstant = 7p = 0.5CT, = 2.544
yielding the controller D as
D(s) = §(15.89 + 12.72s + 2.5445%) (9.6)
and the combination of controller and process in series as
G(s)D(s) = 4(15.89 + 12.72s + 2.544s%) (9.7)

ss+1)(s+2)(s+4)

We have now allowed ourselves access to the true model G(s) so that we can
determine the step response of the closed loop, containing the three-term controller
calculated via the approximation route.

The transfer function of the closed loop system GD/(1 + GD) is

GD 4(15.89 + .12.72s + 2.544.5%)
14+GD  s(s+ 1)(s+2)(s +4) + 4(15.89 + 12.72s + 2.5445?)

(9.8)

To find an expression for the step response in the time domain of the closed
loop system GD/(1 + GD) shown above, we need to take the Inverse Laplace
transform of {(1/s)(GD/1 + GD)} as shown below

1 GD
)=L"(-
/) <S 1+ GD)
(! 4(156.89 + 12.725 + 2.5445?)
ss(s+1)(s+2)(s+4) +4(15.89 + 12.72s + 2.544s?)

(9.9)

If we use a Matlab command for the inversion in one sweep of the above
transform, there is a danger of losing sight of the nature of the solution, so instead
we factorise the expression and then take partial fractions to obtain
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— —— response to unit step 0.45

- ZN approximation 0.40
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Figure 9.11 (a) Response of the process G(s) = 4/[(s + 1)(s + 2)(s + 4)] to a unit
step input, (b) response to unit step (graph expanded near origin);
(c) real process response and its approximation, (d) expanded detail
from 9.11(c)

) = <0.995 . 0.04 0.125 1.079(s + 1.17) )

s s+2.164 *3 +3.374 2+ 1.478s + 8.747

(9.10)
The last term has denominator with complex roots expressible as

(s 4+ 0.739 +2.864) (s + 0.739s — j2.864)
which can also be expressed as
(s 4 0.739) + (2.864)°

still considering the last term in (9.10), we note that it has the form

1.079(s + a)
(s + b)* + w?

which has the inverse transform

f(t) = 1 \/(a — b’ +w? e sin(wt+ ¢)

(0]
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Figure 9.12 Step response of the closed loop system G(s)D(s)/(1 + G(s)D(s))

and in our case the time function corresponding to the complex term is therefore

1.079(0.35)(2.896) exp(—0.739¢) sin(2.864¢ + 1.42)
= 1.093 exp(—0.739¢) sin(2.864 + 1.42)

and the time function f{f) corresponding with (9.10) can now be written as

f(t) = 0.995 — 0.04e 2164 1. 0.125¢ 3374
+1.093¢"75in(2.864¢ + 1.42) (9.11)

It is easy to see that the response will be dominated by the sinusoidal term in its
envelope of decay and this is confirmed in the plot of Figure 9.12. It is clear that a
good closed loop response meeting the criteria outlined above has been obtained
with little effort using only information form a single step test at the process.

9A How to learn something from the first part of a step response

The initial part of a step response gives information about the order of the
process (Figure 9.13). For a first-order system, the steepest part of the
response is at the origin but for higher order processes the response clings to
the time axis before rising. To understand this, let A, B be first- and second-
order processes, respectively, and let a, b, ¢ be process parameters with
obvious meanings, then the respective step responses are:

)= =, fol) =5 (1 (e be—cf>>

and the derivatives are

f4(t) =ae™ and f{(0) =a
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and this value a, the inverse of the process time constant, represents the
steepest part of the response curve

, 1 1
50 = =0 b—0
It is clear that the initial part of the step response of second-order process B
has zero slope, since the second term in the expression for the derivative is
zero at t = 0.

The step response of a linear process and its frequency response both
contain exactly the same information and both can be considered to be non-
parametric models of the process (as opposed to transfer function models
which have an order and contain parameters whose numerical values need
to be chosen.

(bcefct . bcefbt) — (676t . efbt)
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Figure 9.13 High-order step responses cling to the axis! Comparison of the
initial parts of unit step responses for first-, second-, third-,
fifth- and tenth-order processes all with unity steady state gains

9.3.4.2 To fit the controller into a closed loop with the process to be

controlled and go through a tuning procedure online
The method is more difficult to conduct on a real plant since it first requires that the
controller with integral and derivative actions disabled be fitted into closed loop
with the process. The controller gain C must then be increased until the loop
oscillates continuously at a constant amplitude. (This is not so easy as it sounds!)
The controller gain C* that causes continuous oscillation of the loop and the period
T* of the resulting oscillation are noted. From these two pieces of information,
the three-term controller coefficients can again be determined from (additional)
Ziegler—Nichols (1942) rules as follows:

Controller gain C = 0.6Cx
Integral time constant 77 = 0.5 T (9.12)
Derivative time constant 7p = 0.125T*

An exercise for the reader to compare the two tuning methods: Starting with G(s) as
given in (9.3), devise and apply any theoretical method to determine by any method
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C* and T* as described in this section. Calculate the controller coefficients
using (9.12). Compare with the controller coefficients found above in Section 3.4.1.
Comment constructively.

9.3.4.3 To fit a so-called self-tuning controller into closed loop

with the process. After a learning period, the controller

will hopefully have chosen its own coefficients
There are quite a number of self-tuning algorithms, many of them quite com-
plex. Some approaches use an expert system that emulates a skilled human
control engineer, other approaches emulate approach 9.3.4.2, exciting the loop
and then interpreting the responses. Every practical self-tuning algorithm must
necessarily have some sort of confidence test to pass before it can be allowed
to implement its choice of coefficients onto the real process. There is an
extensive literature.

A paper describing a method for data-driven tuning of a three-term controller

without any use of a model is Keel (2008).

9B New York to San Francisco telephony: an early illustration of
the spectacular success of feedback in achieving high-fidelity
amplifications of signals

In early long distance telephony, messages travelled along a land line with
repeater stations (audio frequency amplifiers) at intervals to boost the signal
strength.

Early electronic amplifiers were highly sensitive to variations in ther-
mionic valve (USA tube) characteristics and variations in supply voltage.
This meant that the gains were not constant and that consistent high-fidelity
amplification was not possible. If, say, ten such amplifiers each reproducing
a signal with 90% fidelity were connected in series (as repeater stations must
be), then the fidelity of the overall line would be 100.(0.9)'° = 35%. Because
of the poor robustness of available repeater amplifiers it was decided that no
more than six such repeaters could be tolerated along the whole 3000 mile
(4800 km) line. The signal strength was kept high by the use of massive
power cable capable of carrying 50 A and weighing half a ton per mile
(300 kg/km).

No doubt motivated by this problem, Hendrik Bode, Bell Telephone
Laboratories, c¢. 1927, invented and implemented feedback amplifiers to pro-
duce highly insensitive (i.e. gain robust to parameter changes) amplifiers for
transcontinental telephony.

These amplifiers using feedback were of such high fidelity that 600
could be used sequentially as repeater stations when a new New York to San
Francisco light weight cable was laid in 1941.
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Figures 9.14-9.16 illustrate this example.

six (non-feedback) repeater amplifiers
compensating for loss of signal strength

Francisco | ~ Vf‘-’ ~ York

massive power cable had to
be used to make transmission
possible

Figure 9.14  First trans-US telephone cable. No more than six amplifiers
could be used because of the cumulative distortion effect

600 feedback repeater amplifiers

/N

San PP New
Francisco M York

o 0O

lightweight coaxial cable

Figure 9.15 By 1941, the availability of Bode's feedback amplifier allowed
600 amplifiers to be connected sequentially and a low-cost
lightweight cable to be used for the connection

y= 11i(1;<G u nominal process
y= M perturbed process
1+K (G+AG)

Figure 9.16 If the amplifier gain K is sufficiently high, the feedback loop is
insensitive to process perturbations AG or gain perturbations AK

9.4 Control systems for batch process

The essential difference between a batch and a continuous process (both making
the same identical product) might be looked at simplistically but usefully as
in Figure 9.17.
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a) add ingredients Batch Process o

b) mix ingredients Characteristics

c) heat ingredients one fixed ‘point’ location

¢’) possibly monitor (i.e. ordinary differential
and adapt equations)

d) after a fixed time, different activities
terminate the batch according to time

e) prepare for the
next batch possibly monitor

Continuous Process

/ ~— ~—

\ and adapt

a) continuously  b) mix ¢) heat X d) continuous flow
add ingredients  ingredients ingredients of product

Characteristics

Distributed location (i.e. partial differential equations)

(Ideally) Overall, Process ‘snaphot’ is always the same

At any chosen point x along the process, the behaviour is always the same

Figure 9.17 Schematic diagram emphasising the structural differences between

batch and continuous processes

From the figure, it becomes clear that the control of a batch process involves at

least three stages:

0]
2

3)

“
6))

Set the initial conditions.

‘Launch’ the batch along a desired (optimal (an additional problem compared
with a continuous process: how determined?)) trajectory, specified, for instance
in terms of temperature (or in general a vector of variables) against time.
Possibly monitor the progress of the batch and ensure that the trajectory is
followed or (more sophisticated) modify the desired trajectory as necessary to
maintain its optimality.)

Terminate the batch at a time chosen to maximise profitability. (That time may
be influenced by scheduling factors including those of downstream processes.)
Possibly based on experience from the current batch n, modify the initial
conditions or trajectory for batch n + 1.)

It is clear that the control of batch processes involves more challenges than the

control of continuous processes, yet control theory in general concentrates its
attention on the continuous process.

In reality there are relatively few processes that are really continuous. Nearly

all have difficult start-up and end-off situations (think take-off and landing!) to
contend with as well as step disturbances (raw material change or order change).



168  Control theory: a guided tour

Control systems design for batch processes: should one design for the worst case?

Except when safety issues are involved, it is rarely economic to design a sys-
tem to behave normally even when very rare, very large disturbances present
themselves. A good pragmatic approach invented by a colleague, John D. Gifford,
is to examine the challenges represented by a large number of previous batches and
to choose a single ‘difficult, but not untypical’ incoming disturbance profile and to
design controls that deal satisfactorily with that. More difficult, very rare, untypical
profiles will not be fully corrected, it being considered uneconomic to over-
engineer the system for those few cases.

A related interesting contribution has been made by Lane (2005) with his
mathematically defined concept of ‘Approximately worst’ situations that can be
used as part of design specifications.

A great deal could be written about the scheduling of batch processes, but here
we will mention just two of the chief issues.

Many companies operate a group of (say) six to ten batch reactors all making
the same product. Batch operations often have to be planned so that the flow of
semi-product fits into the pattern of downstream flowline processes.

Considering just a single batch process, there is frequently the issue, for how
much longer to run batch n. Often, by running longer we can extract more value
from the ingredients but we may produce less product overall, since we are
delaying the next run, n + 1, of our process.

Of more interest to control engineers is batch-to-batch adaptation and in-batch
control to improve product yield and batch efficiency. In-batch control involves
some very interesting techniques, possibly involving trajectory following with local
linearisation along a trajectory, and within-batch updating of the desired trajectory.

One of the simplest possible approaches to batch-to-batch adaptation is, in
principle, as follows:

A batch process converts an initial condition in state x(#,) into a final condition
with state x(¢,), hopefully satisfying x(t,) = x4, where x, is a desired product speci-
fication state. We can write

x(tr) = f(x(t), u(r), 7 € [to, t7]
u(7) being a control policy on interval [, .

After several well-behaved similar runs of the batch process, it should prove
possible to estimate the sensitivity coefficient
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and to use these to attempt batch-to-batch improvements, using rules such as

Ox(tr)
8x(t0)
where Ax(tr), = xq— — Ox(t7),

x(t0) 1 = x(t0), + Ax(tr)

(Several case histories involving control of batch processes will be found in
Appendix A.)

9C The idea of a probing controller

Akesson and Hagander (2000) have proposed a so-called probing controller
that uses a generic idea for tracking just below invisible varying and
unknown constraints that occur in a batch process. The idea is to make
probing pulses in the glucose feed rate and to monitor the responses that
change as the constraint is approached. By this method, it is possible to detect
and avoid a characteristic saturation linked to undesirable by-product for-
mation. Figure 9.18 shows how in Escherichia coli fermentations, the opti-
mal carbon feed rate will run along invisible constraints. The probing
controller finds these boundaries by pulsing the feed rate as shown in
Figure 9.19 and observing the nature of the response.

oxygen transfer limitation

ideal feed rate clip
constraints

Figure 9.18 Carbon feed rate constraints in Escherichia coli-based
expression systems. The trajectory should be as close as
possible to the three upper (invisible) constraints)

time

The idea could be adapted to other processes where variable invisible
constraints have to be approached as closely as possible.

See Akesson M., Hagander P. ‘A simplified probing controller for glu-
cose feeding in Escherichia coli cultivations’. Proceedings of the IEEE
Conference on Decision and Control; Sydney, 2000, vol. 5, pp. 4520-5
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pulse added to normal feed rate

segment of normal nutrient feed trajectory

at constraint measured response

. ) (dissolved oxygen)
nearing constraint

constraint too distant

control control operational
immobilised

Figure 9.19 How the nearness to the constraint can be inferred from the
measured responses to the injected pulses

9.5 Input shaping

Input shaping refers to a control method in which a specific transient behaviour is
obtained from a system by the input of a specially synthesised input signal. Quite fre-
quently, input shaping strategies are used to change the position of a highly oscillatory
mechanical system quickly with minimum transient oscillation. Professor Patrick Parks
once demonstrated the technique very effectively with a quite sizable rope, alongside his
talk ‘How to shake a piece of string straight’ (Bell (1972)), on a conference platform.

For a more industrial application, consider (Figure 9.20) the idealised overhead
travelling crane used extensively in heavy industry and for handling containers. It
runs on girders and can travel in two dimensions but, for simplicity, is restricted to
one dimension in our diagram. This diagram shows three stages in the typical
movement of a load.

Astute crane drivers have, of course, learned by experience how to minimise
the time-consuming load oscillations by cleverly modifying the pattern of how to
move the crane along the track. Probably they cannot quantify exactly what their
strategy is, but in control system parlance, it is called input shaping.

Although very simple indeed, it can be a remarkably effective strategy.

We shall here only illustrate an important general principle — how to cancel out
the inevitable oscillation that must occur in this type of application and then show
how to progress to input shaping (Figure 9.21).

The very readable paper Singh (2010) should be consulted to see how input-
shaping techniques can be developed and applied in practice. The paper is strong on
practical robustness issues; examining and quantifying how modelling errors will
convert into residual, uncompensated oscillations.

The transient oscillation from the initial impulse can be cancelled completely
after the first half cycle by inputting an exactly timed anti-phase impulse of just the
right amplitude.
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travelling overhead crane
a b c crane track

flexible cable o

/load oscillates .
load / about target

]

Figure 9.20 An idealised overhead travelling crane. (a) The load is lifted
vertically off the ground; (b) the crane travels at a uniform rate
towards the target position with the load following, left behind by
angle 0 because of load inertia; (c) the crane stops at the target
position, the load arrives later and then oscillates pendulum-like
about an eventual equilibrium point

In order to be of any practical use, signals such as steps need to be used, for
example to move a load by crane from one location to another.

It is explained in Singh (2010) how the two-impulse sequence that cancels
oscillation after the first half cycle may be convolved with any other desired command
signal and the convolution product so arrived at will then (ideally) carry out a desig-
nated task with oscillation cancellation. Figure 9.22 demonstrates this command signal

-3
10 X107 : : . : . ' -

initial N\ .-response to initial impulse
— 1§ . .
impulse g}/ | compensating impulse = 4
| 1./~ response to compensating impulse

| ! |
6 H f \ . ]
(it kY resultant compensated response
ab | ‘

1

magnitude

L

2.5 3 35 4 4.5 5
time

Figure 9.21 The principle of input shaping
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synthesis for an undamped load. In this simple example, a finite length step is con-
volved with a two-impulse sequence to produce a stepped command signal.

Note: The convolution operation, denoted (*), of two time signals g(#), 4(?), is
defined as

g(t)h(r) 2 j gt — )h(x)dr

and this operation is frequently carried out graphically by reflection in the y axis and
translation of one of the functions, followed by graphical multiplication of the two
resulting functions. For the simple case of an undamped load of period 2A it can be
seen, a shown in Figure 9.22 that the convolution of the long rectangular command
signal with the two-impulse oscillation-cancellation duo results in a stepped oscilla-
tion-cancellation command signal. [Note that the operation of convolution is much
easier in the s domain for, let g, 4 have transforms G(s), H(s) then convolution is
simply performed by transform multiplication since convolution in the time domain
is equivalent to transform multiplication G(s), H(s) in the s domain].

9.6 Gain scheduling (to allow a control system to operate
successfully when the process to be controlled changes its
characteristics over so wide a range that no constant
controller can be found that performs adequately)

Gain scheduling is the name given to a large group of techniques, ranging from the
empirical (in which a current control algorithm is somehow chosen and imple-
mented from a set of stored algorithms) to the sophisticated (in which controller

unshaped finite length step

time
0 T
A A
55 shaped finite length step for an undamped —
load of oscillatory period 2 A
time

0 T T+A

Figure 9.22 (Top) The unshaped step signal that will move the load as required but
with swinging oscillation; (bottom) how an oscillation-cancelling
command signal may be shaped by convoluting two impulses separated
by half a period with the original step required by the application
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parameters may be pre-calculated and implemented as a priori functions of the
process state).

Some processes are so severely non-linear that no single linear controller with
constant parameters can yield a satisfactory stable performance as the operating
point of the process ranges over the non-linearity. If the non-linearity is smooth,
known and constant over time, then a small number of linearised models of the
process, say G to G, and a set of linear controllers D, to G, could be arranged in a
gain scheduling strategy to be switched in to control the process as the process
operating point ranges through the approximate models G, to G,. The reader will
probably have guessed that the hard part of this approach is to find a practical and
reliable switching strategy that does not produce spurious and possibly destabilis-
ing transients of its own making.

The more sophisticated approaches to gain scheduling merge into the topic of
adaptivity, learning and robustness. All those topics are concerned in essence with
attempting to obtain maximum system performance while guaranteeing stability in
the presence of noise, significant process variability and uncertainty.

Because of this merging of approaches, gain scheduling will be discussed
again with adaptivity, learning and robustness in Chapter 16.

9.6.1 Gain scheduling: traditional ad hoc and modern linear
parameter varying (LPV) based

Gain scheduling is the name given to a group of strategies that aim to provide
reliable pragmatic adaptivity for systems whose characteristics change significantly
over a range that no single robust controller can span satisfactorily.

Gain scheduled systems are open loop pre-programmed in that their controller
gains (and possibly other parameters) are directly linked with an online measurable
variable, such as airspeed in an aeronautical application, or with operating point.
Gain scheduled systems differ from adaptive systems in that they take no account
of the actual system response and are essentially open loop rule-based. Their
behaviour, in a given set of circumstances, is always reassuringly, reliably and
predictably the same.

9.6.2 LPV gain scheduling as a step forward from traditional
gain scheduling

If there is such a thing as a traditional approach to gain scheduling (Figure 9.23),
then it is performed roughly as follows:
Given a non-linear process

x =f(x,u),y=Cx
where the non-linearity is assumed smooth,

(1) Choose a number of operating points x,,(1), ..,x,, (k) that together span the
expected operating range (in state space) of the proposed system when under
control.
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control actions for intermediate points
to be found by interpolation k fixed linear controllers

(@) o

state space

Figure 9.23  Traditional gain scheduling shown symbolically. At all times the
control action to be implemented is found by interpolating between
the actions of the pre-calculated controllers (It being assumed that
the current state of the process can be measured at all times)

(2) At each operating point, linearise the process model to yield

o, NN ,
= (o), top (7)) + 5 - (xop () ap (/)

Each of these k£ models is linear and time invariant.

(3) For each of the & linear models, design by usual feedback control methods one
feedback controller L(), j =1, ..., k.

(4) In use, measure the state x and continually interpolate in the ‘controller space’
to determine the currently required control action.

Gain scheduling techniques have traditionally been a rather ad hoc set of approa-
ches, driven more by industrial needs than by academic researchers.

More recently, however, LPV approaches to gain scheduling have begun to
offer more theoretically sound, yet industrially applicable algorithms: they offer the
possibility of a single smooth parameter-varying model, representing continuously
a non-linear process over its whole operational range.

A further advantageous possibility is to use the single parameter-varying model to
design a single parameter-varying to cover an agreed range of operation of the process.

There are some requirements that need to be met before LPV gain scheduling
can be applicable. The LPV controller must have constant access to the process
state and there must be no significant discontinuities in the process behaviour over
the chosen LPV region. Also, there will naturally be an application preference for
processes where the state-dependent parameter changes only slowly.

Finally, note that quite a number of industrial processes and aerospace appli-
cations change characteristics during operation to such an extent that switching of
controllers, rather than smooth transitions, is required.

A good example is in batch steelmaking in large electric arc furnaces. During
the initial melting of 100% scrap, a short, thick arc with high current and low
voltage is used and automatic positioning of the electrodes keeps the gap between
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electrode tips and molten bath controlled so that the power input meets a specified
level. At a later refining stage in the process, a long, thin arc is required with a high
voltage and low current. Because the operating point on the highly non-linear arc
characteristic reverses its slope during this refining stage (compared with during the
melting stage), it is necessary automatically and routinely to insert a negative sign
into the electrode positioning feedback loop when changing between melting and
refining stages.

9.6.3  Outline of the LPV approach to gain scheduling

Given a process described by the non-linear smooth equation

x =f(x,u)

we seek a LPV model of the form
x=A(p)x+Bp)u, p € Q

where Q is the ‘box’ over which the state-dependent parameter p(x), which needs to
be measurable online, is allowed to range.

Once a single LPV model of the process is available, the aim is to design a
single LPV controller that can control the non-linear process over the chosen box of
validity with guaranteed stability. This is not too difficult and many approaches
have been suggested in the literature. As is usual, obtaining a process model of
sufficient accuracy over the necessary range of operation will be the hardest step in
the procedure. For this reason, there is considerable interest in methods for
obtaining LPV models of real processes from measured process data. See Laurain
(2011) and also Ali (2010).

Matlab provides a command hinfgs for the synthesis of gain scheduled H™
controllers.

The user must provide a parameter-dependent process model, whose time-
varying parameter moves within a specified box Q. The command returns a
parameter-dependent feedback controller K(p) that minimises an appropriate
quadratic H performance index.

9.7 Converting a user’s requirements into a control
specification

A user’s requirement will usually be application specific (keeping a ship on a
desired course to a particular accuracy; dispensing a certain weight of soap powder;
neutralising a liquid effluent before discharge to a river; maximising the yield of
pharmaceutical product from a given batch of raw material etc.).

An unrealistic (oversimplistic) conversion of the user’s requirement into a
control specification, against which the system will be built, will result in the
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Figure 9.24  Alternative design approaches

building of an unsatisfactory system. This aspect (conversion of a user’s require-
ments into a specification) is frequently a weakness in the control design chain.

Let us switch our thoughts temporarily to the amount of freedom that a
designer has in designing a simple control loop. First, the control loop will need to
be stable with a reasonable stability margin. This stability margin will need to be
more or less the same, regardless of the application; hence, although the designer
has to fix the stability margin, that margin will be virtually the same regardless of
application and therefore this aspect cannot be regarded as a variable design
parameter. The other variable that can be fixed by the control designer is the speed
of response or the closely related parameter, system bandwidth. Both of these
quantities are related in a well-defined way with pole locations and with system
natural frequency.

Thus, in the design of a simple control loop, the designer will often be seeking
to achieve a particular bandwidth or a particular speed of response by fixing pole
locations, by fixing natural frequency or by fixing bandwidth in the system to be
synthesised. Figure 9.24 illustrates the design route.

Two important questions arise:

Question I: How can diverse user’s requirements be converted into very simple
speed of response or bandwidth specifications?

Answer I: They can’t, except in a small minority of cases that are mostly confined
to the servomechanism field. In most other cases, the designer spends huge pro-
portions of his time coping with application-dependent problems, using general
engineering knowledge and ad hoc methods.

Question 2: What sets an upper limit on the speed of response (or bandwidth) that
can be obtained in a particular application?
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Answer 2: Very interesting! In linear control theory, there are by definition no
upper limits on anything. Thus, linear control theory can produce a system that will
turn a supertanker onto a new course in microseconds or less, provided that the
linearity is not violated.

Thus — the upper limits on performance are set by factors that do not appear at
all in the design process — clearly this is very unsatisfactory!

In practice, the designer must choose, for example, an electric motor to give the
acceleration that he or she needs. As larger and larger motors are considered, so the
acceleration will approach that given by an unloaded motor. If this acceleration does
not meet the specification, another approach must be found. The point to note is that
none of this procedure is part of the control design procedure but is injected by the
designer in what is usually called engineering interaction with the design process!

9.8 Methodologies for deciding the scope and attributes of
automatic control schemes for industrial application
(in particular, methodologies for economic justification
of investment in automation)

For a control engineer working in industry, economic justification is not an optional
extra. Improved control implies better and more powerful actuators and the pur-
chase of expensive novel sensors. No well-managed company will sanction the
necessary expenditure without a water-tight justification that each increment of
expenditure will lead to sufficient payback.

9.8.1 Methodologies and illustrations

Given a set of interlinked industrial processes that together constitute a plant pro-
ducing some product from incoming raw materials, control theory and practice will
tell what might be achieved at each of the processes. The list of all possible
schemes that might be designed would be formidable indeed. The question we want
to consider here is, given a particular industrial configuration, how can one describe
on the scope, configuration and functionality of appropriate control systems to be
integrated into the manufacturing facility in something close to an optimal way.

Here we review some of the available methodologies but it has to be said that
there is a distinct shortage of methodologies — in fact most of those described below
were originated by the author. The lack of literature is a sign not of lack of
importance of the approaches but rather a result of the methods being unglamorous
and theoretically undemanding, making them unattractive to academics because of
their unsuitability for publication.

The first suggestion is to define for a whole production sequence a broad
sweep performance index of the form

J = APP (price at which one tonne of product sells — cost of manufacturing one
tonne of product)

where APP is the annual production, in tonnes, of prime product.
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Figure 9.25 Calculation of the cost (y) of production for an entire plant or for a
single process in most of my work z has been omitted

costs of incoming strip = 206.9
priced per tonne of output product y

operating ﬂ scrap net benefit = 6.0

cost 34.4
cold strip mill |:>

cost of non-prime
output 5.3

cost (y) of producing one tonne of
prime strip = 240.6

yield balance = prime (83.5%) + non-prime (8.4%) + scrap (8.1%)

Figure 9.26 Sample cost calculation: cold strip mill (strip from strip production)

costs of incoming slab = 176
priced per tonne of output product y

operating
cost 20 scrap net benefit = 3.15

hot strip mill |:>

cost () of producing one tonne of
prime strip = 192.85

yield balance = prime (95.5%) + scrap (4.5%)

Figure 9.27 Sample cost calculation: hot strip mill (strip from slab production)
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costs of incoming materials, sinter 33.55, ores 10.2,
fluxes 0.15, coke 26.25, oil 2.5; total 72.65
priced per tonne of output product y

operating ﬂ gas benefit = 4.95
cost 13.35 blast furnace
2=7.65 —

!

cost (y) of producing 1 tonne of
molten iron = 81.05

Figure 9.28 Sample cost calculation: iron-making (molten iron from sinter
production)

possible
automation
projects

resource
allocation
but how decided?

Figure 9.29 How do we choose automation projects and what should be the
resource allocation for each?

Our broad aim in choosing between alternative strategies will then be to
maximise J, but how do we calculate the cost of manufacturing one tonne of pro-
duct. The solution is to develop a model of the form shown in Figure 9.25 for every
process in the production sequence and eventually through the use of these inter-
connecting models we can link right back from product leaving the factory to raw
materials entering the factory. The operation of the models is self-explanatory but it
remains to mention that the models have to be parametrised by analysing masses of
real industrial data. The examples given here as Figures 9.26-9.28 relate to the steel
industry and show how the product, steel strip, links back to the basic raw materials
of iron ore and coking coal. The figures given here are realistic but they have been
modified for confidentiality reasons. The models allow the economic context of the
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Figure 9.30 Justification histogram

process to be understood with the main areas for possible savings being visible to a
large extent by inspection.

Figure 9.30 shows a ‘justification histogram’ produced by the author with
colleagues from measurements on 2000 batches of steel strip. It shows that almost
10% of the lengths of strip produced were outside the allowed thickness tolerance
and allows quantification to be made of the benefits of tighter control.

Figures 9.31 and 9.32 show what I call an ‘Economic Dynamic Programming’
approach to choosing the best control configuration for a set of closely interlinked
sequential processes. The idea is that, at each stage of the process, there are, in the
example, three control design choices — let us say — ‘minimum cost’, ‘medium

process 1 process 2 process 3
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Figure 9.31 Investment strategy tool for n linked processes (author has used this
tool with a dynamic programming approach to eliminate all
definitely sub-optimal strategies)
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Figure 9.32 Investment strategy tool for six processes with three choices at each
stage
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Figure 9.33 How an overall project may contain uneconomic increments

cost’, ‘high cost state of the art’. This means that, in a six-stage process, there are
3% =729 possible configurations.

The assumed aim of the control system in this simple example is to reduce
product variance, and the dynamic programming approach eliminates all non-
optimal ways of achieving a particular variance so that, by coarse discretisation, we
can obtain, as shown in Figure 9.32, four possible levels of performance, and for
each we offer the unique minimum cost way of achieving that performance.

(For each of the three possible solutions we have an implementation cost and
of course we need either a deterministic or stochastic simulation that can generate
estimates of the intermediate performances.) The method allows the designer to
allocate the task of reduction of variance optimally between several closely linked
sequential process stages.
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Figure 9.34 Typical time to obtain project benefits for a major project

In calculating the rate of return for a possible automation scheme, there will
usually be a lowest acceptable rate of return, dotted in Figure 9.33, and all schemes,
to receive funding, must normally generate a return at a slope greater than this.
Note though that most automation schemes can be broken up into several compo-
nent parts (Figure 9.33) and that as shown in the figure unprofitable components
may be hidden by the compiler of the diagram.

Figure 9.34 shows a typical time history for the increase in performance for the
commissioning of a typical large and complex automation scheme. The char-
acteristic performance fall before rising degrades the return on capital very sig-
nificantly and may make a whole automation project uneconomic.

Finally, Figure 9.35 shows how, for many processes, there is another technico-
economic consideration — how to decide on an optimal throughput rate that is a
compromise between high yield and high throughput. Such problems arise across a
wide range of applications from pharmaceuticals — where pushing production will
usually lower yields from the expensive raw materials — to the scheduling of the
speed for a supertanker carrying oil over several thousand miles — where high
steaming speeds get the oil to market earlier but use a disproportionate amount of
extra fuel in doing so. For all these cases, a market-dependant operating point,
shown by the asterisk in Figure 9.35, needs to be chosen as yet another economic
aspect of practical control.
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Figure 9.35 Matching throughput to market conditions
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Chapter 10
Discrete time and digital control systems

10.1 Introduction

Many of the problems that were created in the early days of using online computers
for closed loop control have largely disappeared or at least become de-emphasised
by the ready availability of ever-increasing computer power and computer speeds.

It nevertheless remains true that, despite the many well-publicised practical
advantages of digital control systems over their analogue equivalents, the sampling
on which they depend does introduce inevitable performance degradation, as a
comparison of Figures 10.2 and 10.4 in this chapter demonstrates. (Note also how
the time signal from a digital radio lags that from an analogue device.)

In summary

(i) the delays introduced into a feedback loop by sampling are necessarily desta-
bilising; and

(i1) very rapid sampling of noisy continuous signals can amplify the noise content,
particularly if differentiation of the signals is envisaged.

10.2 Computers as system components: devices that can
change their state only at discrete times

A system that can change its state only at discrete points in time is called a discrete
time system. Among the many examples of discrete time systems in everyday life,
the rates of exchange for foreign currencies charged by retail banks could be
mentioned. Typically, these rates may be updated once every working day and stay
constant otherwise.

Computers are the discrete time systems that interest us here; in particular,
computers that perform the same calculation repeatedly. Such computers are used,
usually in the form of programmable logic controllers (PLCs), as controllers within
closed loop systems. It turns out, perhaps surprisingly, that the discrete time effects
of a computer, when used as a controller, are sufficiently profound to require a
whole new batch of design techniques — these are introduced in this chapter.

To get a feel for what is going on, let us look at a very simple control loop first
not containing a computer (case A), and second, containing a computer (case B).
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The control loop (case A) simply comprises an integrator with negative feed-
back (Figure 10.1). Everything is at rest and set at zero and then v is moved
instantaneously from v=0 to v=1. Simple calculation will show that the system
output y moves as shown (Figure 10.2).

In case B, a computer ‘looks at’ the signal e every 1.5 s, multiplies this signal
by unity and puts this out to the integrator where it remains constant for 1.5 s.

Essentially, cases A, B differ only in the interposition of a discrete time device
in case B (Figure 10.3). To work out the response, we note that over the first 1.5 s
period, the input to the integrator is fixed at v=1. Thus,

Y(O|ers = Jye(t)dt = [ de=1.5
e()mis =v(O)|=1s —y({t)y s =1-15=-05

and

3
y(t)|1:3 = J —0.5dt+1.5=0.75
1.5

Figure 10.1 A continuous typical feedback loop with an integrator in the forward
path (case A)

time (seconds)

Figure 10.2 The step response of the system of Figure 10.1

the computer multiplies the signal by unity, i.e. only
its discrete time effect is being considered

output remains constant
over 1.5 s intervals

vV + - e_ |computer sampling f y
'_i)__# every 1.5's L

Figure 10.3 The system of Figure 10.1 with the addition of a computer that
multiplies by unity and has a sampling interval of 1.5 s
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and the response y(¢) is as shown in Figure 10.4. The significant differences
between the responses in Figures 10.2 and 10.4 are due entirely to the effects of
sampling.

0 I I I I I
0 1 2 3 4 5

number of samples

Figure 10.4 The step response of the system of Figure 10.3

10A A simple and informative laboratory experiment

It forms an interesting laboratory demonstration to reproduce the results of
Figures 10.1-10.4 experimentally and then to vary the sampling interval of
the computer, which is only a sample and hold device in reality, and observe
the results. As the sampling interval is increased, instability will eventually
occur. The demonstration can then be enhanced by connecting a frequency
response analyser to determine approximately the phase shift characteristics
of the computer as a function of applied frequency. A Bode plot check on
stability will, very satisfyingly, be found to agree with experimental findings.

10.3 Discrete time algorithms

In this chapter, we are concerned with the discrete time control of continuous time
processes (Figure 10.5). A discrete time algorithm is an algorithm that operates
on a sequence of error signals to produce a sequence of command signals. The

A/D DIA measuring
converter  converter actuator device

1

digital Y continuous

)
computer process

Figure 10.5 A continuous process under digital control

Y
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importance of discrete time algorithms lies in the fact that they are directly rea-
lisable in a digital computer controller. Such a digital controller samples the error at
regular intervals of 7 seconds and produces a sequence of output commands,
spaced at the same interval.

A continuous signal e(f), when sampled every T seconds, is denoted e* and the
command sequence produced by a discrete time controller is denoted u*. The discrete
time command signal #* must be converted into an analogue signal before being
applied to a continuous process. Exact reconstruction of a continuous signal from
samples is impossible to perform in real time since the reconstruction algorithm
necessarily calls for unavailable future samples of the measured variable. Approxi-
mately correct reconstruction is possible but the necessary algorithms are relatively
complex and they have undesirable frequency-response characteristics. Usual prac-
tice for conversion of the command sequence u* into a continuous signal is a very
crude piece-wise constant approximation. The device that performs such recon-
struction is a digital to analogue converter whose input is updated every 7 seconds.
Seen as a mathematical component, rather than as a physical device, the operation of
piece-wise constant reconstruction is equivalent to that of a zero-order hold device.

10.4 Approaches to algorithm design

Roughly, there are two approaches to algorithm design.

10.4.1 Direct controller synthesis

Procedure in outline:

(1) Convert the specification that the final system must meet into a desired transfer
function H(z). This step will very often involve a considerable amount of
approximation — particularly in those frequently encountered cases where the
original specification is expressed in terms far removed from those pertaining to
transfer functions.

However, if the specification can be expressed in terms of a desired
natural frequency and a desired damping factor, then Figure 10.6 may be used
directly to choose the poles of H(z).

To use Figure 10.6, decide upon the required natural frequency w,,
damping factor §, sampling interval 7, and use the diagram to locate the
intersection in the complex plane of the w, and the & loci. Suppose
this intersection is at a + jb, then the poles of the sought-for transfer
function H(z) have to be located at a + jb. That is, the denominator of H(z)
should be (z — a + jb) (z — a — jb).

Choice of the numerator of H(z): In choosing the numerator of H(z), the
following factors need to be considered:

(a) Steady state response

(b) Frequency response

(c) Physical reachability and computational time requirements for the
controller D(z)
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Figure 10.6 Diagram to assist in choosing the poles of H(z)

Considering (a), recall that the steady response to a unit step, for stable H, is H

(z) as z — 1. Considering (b), one point of view is that the response of H(z)
when ws = ws/2 should be zero. Such behaviour can be obtained by placing
one or more zeros at z=1. Considering (c), notice that if the order of
numerator and denominator of D(z) are equal, then ‘instantaneous’ calculation
of control outputs is implied. Choosing the order of numerator in H to be one
less than the order of the denominator allows one sampling period 7 for the
control algorithm to be calculated.

Produce a transfer function G(s) representing the process that is to be
controlled.

Form the transfer function G'(s) = Gy(s)G(s), where G, is a model of the
interface between controller and process.

Discretise the transfer function G'(s) to produce the discrete time equivalent
G'(2).

Use the relation D(z) = H(z)/{G'(z)[1 — H(z)]} to synthesise the necessary
controller for insertion into the loop (Figure 10.7).

Convert D(z) into a difference equation and use it as a real-time algorithm.

Li;_ D(2) G'(2) >

Figure 10.7 The combination of controller D(z) and process + zero-order hold

G'(z), in closed loop
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10B A clever manipulation: how the digital to analogue convertor
(zero-order hold) is transferred for calculation purposes to
become part of the process to be controlled

(1) Notice carefully that in the approach described above, the digital to ana-
logue convertor at the output of the controlling computer is grafted on to
the process to form the artificial process G', made up as G'(s) = Gy(s)G(s).

The design procedure is thus to control G’ rather than G. Thus,
insofar as there are distortions caused in the analogue signal recon-
struction at the digital to analogue convertor, they, being embodied in G,
will automatically be compensated during control algorithm design.

(i1) Notice also that

Z{Go(5)G(s)} # Z{Go(s)}Z{G(s)}

In fact,

_ fl1—exp(—sT)\ (1—-zYz
2{Go(s)) = 2(+= 20T L=

i.e. a zero-order hold unconnected to another analogue device is invisible to
the Z transform.

Comment: It can be seen that the equation for D(z) contains models both of
the process and the desired behaviour. In effect, the controller cancels out the
existing process characteristics and replaces them by those of the required system.

10.4.2  Gain plus compensation approach

Idea in outline:

(i) Ifa controller consisting of only a simple gain of numerical value C is used as in
Figure 10.8, then the performance of the resulting system (of transfer function
CG(2)/[1 + CG(z)]) may be manipulated by choice of the value for C.

(i) As C is increased, the speed of response of the system increases but, in gen-
eral, the response becomes oscillatory, and as C is increased further, the sys-
tem becomes unstable.

(iii) By incorporating a suitable compensator M into the loop (Figure 10.9),
improved stability characteristics can be given to the loop and then the value
of C can be further increased with a consequent increase in speed of response.
This process of juggling the design of compensator M and the value of gain C
can be iterated until a best possible response is achieved.

-O—>—O— @ |1
Y

Figure 10.8 A controller consisting of a simple gain C in a discrete time loop
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H
Y

Figure 10.9 Incorporation of a compensator into the loop of Figure 10.8

The compensator M primarily needs to improve the stability margin of
the loop, hence allowing higher gain C to be used, resulting in faster response.
M may be an approximate differentiator, as in the three-term controller (the
three parallel terms are again C, a differentiator D and an integrator / that is
present to remove steady state error).

Three-term controllers are favoured by practitioners on the following
grounds: one form of controller satisfies all applications; the controller is
easily ‘tuned’ for application using Ziegler—Nichols rules (see Section 9.3.1);
the controller is a successful workhorse being applied in huge numbers across
industry.

Seen from a frequency response point of view, the compensator M is a
phase-advance network and frequency response techniques, usually used in
the s domain, allow the design to be matched to the application.

(iv) Discretise the MC combination to be directly implementable in a digital
computer.

10C Takahashi’s algorithm (The algorithm described here is interesting
from a tutorial viewpoint, but see, for instance, Johnson (2005) for
a treatment of more industrially applicable algorithms.)

In representing a typical process by discrete data points (assuming that a
constant value of sampling interval 7 is to be used), in order to capture the all
important initial curvature, a rather short value of 7 is indicated. However, in
order to capture the (also important) final value, a large value of T is indi-
cated — so that the number of points to be logged will not be excessive.

Takahashi solves this problem nicely by taking frequent samples initially
in the step response and then using a formula to generate further points until
the correct steady state is reached (Figure 10.10). Notice that these generated
further points will not, in general, lie exactly on the curve.

Takahashi’s algorithm then uses the model coefficients to synthesise a
controller for the process (the one that generated the open loop step response)
as follows (Figure 10.11): The model of form

—n

= nZ
Zgl 1 l—pz

is fitted to the first » data points and the parameter p is fixed to give the
correct steady state value and approximately correct decay rate. Takahashi
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then derived formulae (Takahashi ez al., 1970) by which the n + 1 coeffi-
cients in the controller (Figure 10.11) may be calculated directly from the
n + 1 model coefficients (g, ..., g P).
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Figure 10.10 How many points are needed to capture a step response?
(a) Too few points fail to capture the essential shape; (b) too
many points to handle (bearing in mind that the order of the
online algorithm will be the same as the number of points);
(c) Takahashi’s approach. Early points capture the essential
shape. Approximation (shown dotted) completes the response

integral
gain

process Y@

y(2) O

Kn state feedback
controller

Figure 10.11 Takahashi’s algorithm
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10.5 Overview: concluding comments, guidelines for

(M)

(i)

(iif)

(iv)

v)

algorithm choice and some comments on procedure

Very broadly, there are two approaches to algorithm design. The first, synth-
esis of D(z) to achieve a specific closed loop transfer function H(z), is theo-
retically sound but suffers from two defects: choosing H(z) usually involves
massive approximation; D(z) ‘contains’ both G(z) and H(z) and is therefore
often unwieldy. The second approach, using a gain plus compensator, is not
very scientific but it has the great merit of simplicity.

Every continuous time algorithm can be discretised — this is one source of
algorithms. Note, however, that the performance of a discretised algorithm is
always degraded to some extent compared with that of the original continuous
time algorithm. The extent of degradation is governed by the choice of sam-
pling interval.

These are, however, discrete time algorithms that have no (apparent)
continuous time equivalents. These are the most interesting algorithms and
they tend to be incorporated as part of advanced control packages for solution
of demanding problems.

Some industries, like aerospace, tend predominantly to use frequency response
continuous time design methods and only later to discretise. Process industries
tend to use off-the-shelf three-term algorithms integrated within diagnostic
and monitoring supervisory software.

In general, it is recommended to use simple solutions (for instance, off-the-
shelf three-term controllers) for routine problems. However, it is important to
match the level of sophistication of the controller to the inherent difficulty of
the problem.

Many alternative methods have been put forward for the selection of sampling
interval 7. The one suggested here, based on closed loop bandwidth, is a
reasonable compromise between ad hoc methods and theoretical overkill.

10D Some difficulties in moving from differential equations to

Suppose that we have a differential equation

Suppose also that we have discretised the differential equation, by any sui-
table method, into the form

for some chosen time interval 7 and with numerical values being found for
a, b, c.

approximating difference equations

y//l+3y//+2y/ +y:0 (10-1>
»(0) =10, y'(0) =2, y'(0)=5

y(k) =ap(k — 1) + by(k — 2) + cy(k — 3)
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Suppose, finally, that we wish to use the difference equation to generate
an approximate numerical solution for the differential equation that it
approximates. The differential equation has three initial conditions and the
difference equation needs three starting values. However, it is not clear how
to proceed or at least how to get started.

10E Discretisation

By discretisation, we mean the move from continuous to discrete time;
differential equation to difference equation; s domain to z domain.

The most obvious approach to discretisation might appear to be repla-
cement of s by its equivalent function in z. However, z = exp(s?); hence, the
required substitution would be s = (Inz)/7T. Substitution would then produce
an ugly polynomial in Inz.

Discretisation methods that are actually used are as follows:

(1) Replacing derivatives dy/dt by their finite difference approximations
Vil =Yk Yk = Vi1 (k1 +30)/T) = (k = 3%-1)/T)
T ’ T ’ T
(i1) Mapping the poles of a continuous transfer function G(s) to the correct
equivalent points in the z plane as dictated by the definition of z.
(iii) Using the relation
G(z) = Z{L ™' (G(s))}
(iv) Converting G(s) into multivariable {4, B, C} form and using ®(7), ¥(7)
as discrete operators (see Chapter 11 for more background).
(v) Using any numerical algorithm for the time solution of differential
equations, e.g. Runge—Kutta methods.

Discretisation needs care since it is easily possible for a stable G(s) to be
transformed into a G(z) of quite different, even unstable, character.

10F A simple matter of quadratic behaviour

We investigate the problem: Given that G(z) has the form
z—a
(z=b)(z—1)
determine from first principles in the z plane the maximum value of C that
does not produce instability in the loop (Figure 10.12).
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v(z) +? @ G()

Figure 10.12 The closed loop system whose poles are studied in this section

Approach: The loop has the z transform

C(G(2) _ Clz-a)

1+CG(2)l1 +CG(z) (z—b)(z—1)+C(z—a)

We seek the largest value of C for which the roots of 1+CG(z) = 0 satisfy |z| < 1.
Now, from an examination of the equation, we can see that as C — oo,
the two solutions will have asymptotes z — o0, z — a.
It could seem to the uninitiated that the value of C we are seeking might
be the value of C that brings one root of the equation to z=—1.

Question: When will the simple stability test
1+ CG(),._, =0 (10.2)

yield the required value of C?
Test cases (Figure 10.13)

_ z+0.2

@ G(Z)_(Z—O.?))(z—l)
z+0.2

S )

The point to note from these diagrams is that in Figure 10.13(a) the root locus
leaves the unit circle at z= —1, whereas in Figure 10.13(b), the locus enters
the circle at that point — numerical checks on stability can be misleading
unless the locus is drawn.

Applying the simple test (10.2) to the two cases leads, respectively, to
the solutions:

(i) 2132403+ Cz+02C|,_, =0=C=325
(ii) 2 — 1.4z +04+Cz+02C|,_, =0=C=35

Case 1 with C=3.25 leads to roots at z=—0.95, z=—1
Case 2 with C=3.5 leads to roots at z=—1, z=—1.1

i.e. for case 1, C,,= 3.25 is confirmed as correct, but for case 2, we find that
C,<35.

To investigate, we plot the loci of the roots of (10.12) as C varies. It is
now clear that the difficulty in case 2 arises because the loci leave the unit
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circle at points where z has complex values. Calculation shows that this
behaviour occurs whenever

1-b
< (—= 10.
“= (3 ¥ b) (103)
and that the value C,, of C at which the loci leave the unit circle is then
1-b
== (10.4)
|al

Using this equation we obtain the correct value of C,, for case 2 as C,, = 3.0.
Of course, when the inequality (10.3) is not satisfied, C,, can be determined
using (10.4).

Using only a knowledge of elementary quadratic equations, we have
obtained an interesting insight into the behaviour of a closed loop discrete
time system.
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~ _7 unit

- ;
S - circle

(®) == T~ root locus

N
~_ for case 2
AN

s
AN 7 unit
S~ -7 circle

-

=~ =

Figure 10.13 Root loci (upper halves only shown) for the system of
Figure 10.12: (a) with G(z) =(z + 0.2)/(z — 0.3)(z — 1);
(b) with G(z) = (z + 0.2)/(z — 0.4)(z — 1)
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10G Continuous is not the limit of discrete as T— 0

Consider the transfer function

1
Gl = s+ 0.1

The equivalent discrete time transform, obtained by taking the Z transform

L7YG(s)} is
G(z) =

2
z—exp(—0.17)

If we set T at some reasonable value, say T'= 1, the behaviour of the inverse
transform of G(z) in the time domain approximates reasonably well the
behaviour of the inverse transform of G(s).
We might assume that as 7 — 0, the approximation will improve until, in
the limit, the two behaviours coincide. However, note that
Z

G@lr0=—7

whose s domain equivalent is 1/s, an integrator. (Attempts to investigate this
effect by numerical methods tend to run into problems of word length.)

10H Non-uniqueness of inverse Z transforms

From the point of view of the Z transform, the three signals shown in
Figure 10.14 are identical. This leads to many practical problems, since, if the
signals are input to a system, the effect of the three signals will be markedly
different. Similarly, a signal that is apparently constant, according to the
transform, may actually be oscillating widely between sampling instants.
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Figure 10.14 The three signals shown have identical Z transforms
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10I The stability of a system can usually be considered
independently of the nature of the inputs that it receives,
but here is a counter-example

Stability is normally considered to be an inherent property of a system so
that, for any bounded input, a stable system should produce a bounded

output.
However, note the following: A system of transfer function
1
G(z) =5——
@) =57

in response to a step u(k)={1, 1, 1,... } produces the bounded output
y(k)=1{0,0,1,1,0,0,1,1,0,0,...}

but in response to the input
u(k)={1,0,-1,0,1,0,—1,...}

it produces the unbounded output
y(k)=1{0,0,1,0,-2,0,3,0,—4,0,5,0,—6,0,...}

(Further investigation will show that the input for the second case has
u(z) = 1/(z*+1) so that G(z)u(z) has replaced poles on the unit circle.)

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18.



Chapter 11

Multivariable linear systems
and the state space approach

11.1 Introduction

The classical control approaches described in earlier chapters were largely devel-
oped in the period 1930-1960. Those approaches, mostly based around frequency
response foundations, were, in general, easily understood and directly industry
applicable. Since 1960, when, not coincidentally, the first World Congress of IFAC
(the International Federation of Automatic Control) was held in Moscow, the
mainstream efforts of control systems researchers have increasingly centred around
multivariable systems described by state space representations.

Universally available computer software now makes most of the manipulations
required in control systems analysis and design a routine matter. However, it is still
essential to look deeper than mere manipulation, and for the state space approach,
acquiring a good intuitive understanding of what is happening takes quite an effort.
This chapter concentrates on establishing the mainstream structure of the state
space approach and Chapter 12 will assist that development of understanding by
linking back to the earlier chapters on classical control.

The biggest change for the reader, coming to state space methods for the first time,
is possibly that state space representations abandon the input—output viewpoint of
classical control in favour of an input-state, state-output viewpoint. The state vector,
always denoted x, is absolutely central to the state space viewpoint.

11.1.1 State space representations

In the state space modelling of linear systems, it is assumed that there exists an nth
order vector called the state vector, whose value at every instant of time completely
characterises the dynamic state of the system. The order # is, in general, equal to
the sum of the orders of all the individual differential equations that together
describe the system.

11.1.2 The state vector

Imagine the ongoing time solution of an nth order linear differential equation and
track the progress of the » initial conditions. This progress can be visualised as the
trajectory of a point in n-dimensional linear space — the state space. At any time ¢,
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zero input response
x(0) [

A

resultant state response

zero state response

Figure 11.1 Illustrating how the trajectory of the state through state space is the
vector sum of the response to initial conditions and the response to
forcing inputs

that trajectory can be completely specified by an n-dimensional vector: the state
vector. To qualify for the name, state vector — it must completely describe the
dynamic state of the system of that time (with ‘completely’ being defined by
axioms that will be encountered shortly).

Linearity allows the state response trajectory to be very usefully decomposed into
two parts (i) that part of the response due only to initial conditions x(0) and (ii) that part
of the response due only to external inputs u(z), T € [0, £] as indicated in Figure 11.1.

Every nth-order single-input, single-output linear system can be decomposed into
n first-order equations and described in state space form. We choose such a system to
illustrate some simple state space ideas. Let the single-input, single-output process be

d’y  2d%y 3dy
LT 4y = 11.1
dt3+dtz+dt+y " ( )

To move to a state space model we let

X1 =Yy
Xy =X]
X3 :X'Q

Then, equivalent to (11.1), we can write

X1:XQ
XZZX3
X3=—4x1 —3x, —2x3 tu

This is the state space form. It would more usually be written

X1 0 1 0 X1 0
Xy | = 0 0 1 x| +{0|u
X3 -4 -3 -2 X3 1

X1

y=01 0 0| x
X3
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which is usually written

xAx+Bu} (112)

y=0Cx

And this formulation is the same for all multivariable linear systems.
(Although for completeness it should be noted that the last equation is sometimes
augmented to become

y=Cx+ Du

to allow for those (rare) situations where the system output has direct non-dynamic
links to the system input.)

The remainder of the chapter establishes state-variable techniques for the
representation and analysis of both continuous time and discrete time systems with
an analogous development for the two cases. Canonical forms are introduced for
the structural insight that they create and it is also indicated how canonical forms
may be useful in control system design.

11.2 The concept of state

Consider a mathematical model that consists of # linear time-invariant, first-order
ordinary differential equations:

Xi = Eainj+Zbij'Mj (113)
j=1 j=1

Define the vectors

If we are given x(y) and u(z) for all T > t,, then we can determine x(f) for any
t > to. We do not require information about x(¢) for ¢+ < ¢, since all necessary
information is assumed to be contained in the vector x(#;). A vector having this
property is called a state vector. It is often useful to consider the state vector as an
element in an appropriate linear space, which is then defined as the state space for
the system.

For a particular system X, the state space is not uniquely defined and many
possible descriptions exist. However, the minimum possible dimension for the state
space is fixed for any particular system X. (In the above example, no vector of
dimension less than # can have the required properties needed by a state vector.)
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11.3 Alternative system descriptions

A linear continuous multivariable process is shown in Figure 11.2. The » input
variables uy,..., u, can be represented as a vector u in an r-dimensional linear
space U. Similarly, the state vector x is an element in the state space X and the
output vector y is an element in the output space Y. Table 11.1 summarises this
information.

The process will be referred to by the symbol X. Assume that the process X is
time invariant, then it can be represented mathematically in three ways:

(a) By two linear mappings (we shall designate these ¢ and #) linking the three
spaces U, X, Y. The process X can then be represented in mapping form

2={LUX,Y,¢,n} (11.4)

where [/ is the space representing time.
(b) By a set of n ordinary differential equations of the form

)'ci:Za,»j-xj—I—Zbguj, i:1,...,n (115)
J=1 J=1

and a set of m algebraic equations of the form

yi:Ecijxj, i=1,....m (11.6)
j=1

The equations can be collected into vector—matrix form

x=Ax+Bu} (11.7)

y=0Cx

The vector x is required to have the state property.

Figure 11.2 A general model for a multivariable system

Table 11.1 The usually accepted designations for input, state and output spaces

Vector Space
u r dimensional Input vector U Input space
X n dimensional State vector X State space
y m dimensional Output vector Y Output space
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(c) By a set of ¥ x m transfer functions, g;(s), linking each of the inputs with each
of the outputs. Define the transfer matrix G(s) as the matrix whose elements
are the g;(s), then to represent £ we can write

¥(s) = Gls)u(s) (11.8)
where

y1(s) uy(s)
yis)=1 + |, uls)=1] :

ym(s) ur(S)

Equation (11.8) is the transfer matrix representation of the system.

11.4 The mapping representation of =

The mapping representation is valuable for developing insight into system funda-
mentals and the unification of the subject through simple broad theorems.

The description of the process X by the sextuplet {/, U, X, Y, ¢, n} is completed
by the following assumptions, or axioms.

I ¢:XxU->X P(to, u()), t1, x(19)) = x(t1)
@) n: XY 5ty x(1)) = y(t)
The mappings ¢, », operating as shown, are linear mappings. For a
continuous time process, / is replaced by the real line R' representing the

underlying continuous time set. (For a discrete time process, / is replaced by
the set of integers, denoted Z.)

() Plto. u(?), t2, x(10)) = P(t1, u(t), 1o, (P(to, u(t). 11, x(fo)))
This, the semi-group property, simply ensures that the solution at time

t, is the same whether calculated in one large time step #, — f, or in two
smaller time steps #; — fy and £, —

4 P(to, u?), to, x(10)) = x(to)
This property is clearly necessary.

(5)  @(to, ur(0), 11, x(t0)) = P(to, u2(0), 11, x(t0)), 11> to
provided that

u1 (1) = up(¢) on the interval [y, #]

This interesting axiom ensures that the system is causal (i.e. it cannot
respond to a stimulus before the stimulus is received) and hence physically
realisable. It also ensures that x really does have the property necessary in a
state vector, as follows:

Given a knowledge of the state vector x(#y) at time 7, and a knowledge of
the input on any time interval [#,, f], f > f,, the stafe x(f) can be determined.
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The implication is that x(#y) contains sufficient information to make
knowledge of events before time 7, unnecessary, i.e. x is a state vector.
(6) U is a space of piecewise continuous functions on /.
One consequence of the axioms is that we can write

P (to, u(t), t1,x(t0)) = ¢(t0,0,11,x(t0)) + p(t0,u(t), 11,0).

The right-hand terms are called the zero-input response and the zero-state response,
respectively.

Let X be a linear space of finite dimension #, then X is called a linear finite-
dimensional system.

Let X be a linear system of infinite dimension, then X is called a linear infinite-
dimensional system.

To appreciate the simplicity of the axioms, they should be visualised
in a geometric setting. For instance, axiom 3 can be visualised with the help of
Figure 11.3 and axiom 5 with the help of Figure 11.4.

The study of systems through their mappings is most rewarding.

B(to, U(b), o, X(to))

$(ty, u(t), ty, x(to) B(ty, u(t), t, X(ty)

Figure 11.3  Visualisation of axiom 3

The modelling of continuous-time systems

| initial state x(t;) |

uy(t)

uy(t)

uy(t)

uy(t) and u,(t) E
| T ()

1
f time t t

Figure 11.4 Visualisation of axiom 5
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11.5 The modelling of continuous time systems through state
space equations

11.5.1 A general non-linear model

A general model for a multivariable system was shown in Figure 11.2. The system

receives r input signals denoted u, ..., u, and gives out m output signals, denoted
V1, -.» Vm It is convenient to define the vectors
uy N
u= ||, y=1:
Uy Ym

The input vector u carries information on the external influences (applied
controls and disturbances) affecting the system. The output vector y represents the
system measurements.

To complete the description, » internal states, x, ..., x,, are assumed.

X1

Xn

is recognised as the state vector of the system. The state vector has been defined in
Section 11.2.

The input, state and output vectors are considered to be members of the input,
state and output spaces, respectively, denoted U, X and Y.

With this background, we are ready to represent the general multivariable
system by the following set of equations:

)'C[ :f,-(xl,...,xn,ul,....,ur,t), iZl,...,I’l (119)
Vi=gi(X1,. X0 t), i=1,...,m,

in which the f; and g; are non-linear functions and ¢ represents time. We assume that
t € I, where I=R'. The inter-relation of the functions and the spaces can be
expressed by the relations.

fi: XxUxI—X
g XxI—Y

11.5.2 Linearisation of the model

Multivariable control theory rests on a foundation of algebra and operator theory
and the model (11.9) derived above must be linearised before proceeding further.
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Suppose that the functions f;, g; defined in (11.9) are in fact linear, then
necessarily (as a consequence of the representation theorem of real analysis) the
following relations hold:

X; = ail(t)xl + - +a,»,,(t)xn +bi1(t)u1 + - +bi,.(t)ur, i=1,...,n
yi:Cil<t)xl+"'+Cin(t)xn> i:17"'7m

(11.10)
Or in vector—matrix form
fan(t) - an(t) bi(t) -+ bi(1)
X = X+ u
Lan () -+ am(1) bur(t) -+ bult)
(11.11)
Fen(f) ] ... [eml)
y= X
Lemi(2) 177 Lepn(2)

x=A(t)x+ B(tu, y=C(t)x

Returning to the general case where the functions f, g are non-linear, then,
provided that the functions are differentiable, local approximations to the matrices
A(t), B(f) and C(¢) can be determined from the following relations (the operation is
performed along nominal trajectories for x and u):

Af) = (%;) . (11.12)
B(t) = (%) . (11.13)
c(t) = <g—§) x (11.14)
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11.6 Calculation of time solutions using the transition matrix

11.6.1 The time-invariant case

11.6.1.1 Definition of the matrix exponential in terms of an
infinite series

. . . AT . . .
First, we define the matrix exponential e as an infinite series:

1 1
eAT:I+AT+§(AT)2+§(AT)3+---

the series being convergent for any finite 7.

11.6.1.2 The transition matrix
Given the equation

X = Ax + Bu (11.15)

put z=e “'x. Then (the reader should confirm the next step from first principles

using the infinite series definition of ™),

2= —deMx + e M5
= —Ade 'x + e~ (4x 4 Bu)

= e By

Integrate from ¢, to ¢

z(t) = z(tp) + Jt e~ Bu(7)dr
ey = e Mx(ty) + Jl e "Bu(r)dr (11.16)
x(1) = & )x(19) + Jt "I Bu(r)dr

to
The transition matrix ®(t — ty) is now defined such that
t
x(t) = @t — tp)x(f) + J ®(t — 7)Bu(r)dr (11.17)

to

Numerical solution can be achieved by choosing a time step 7, such that over
every T, u(f) can be considered constant. Then (11.17) can be integrated to yield

x(T) = ®(T)x(0) + 4 (®(T) — I)Bu(0)
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and, in general,
x((k+ 1O)T) = ®(T)x(kT) + P(T)u(kT) (11.18)
where W(7) is defined by the relation
W(T)=A4Y®(T) - 1)B
11.6.1.3 Laplace transform approach
Consider the equation
X = Ax
in which 4 is an n x n matrix. Laplace transformation gives
sx(s) — x(0) = Ax(s)
(s — A)x(s) = x(0)
x(1) = % H(sT — 4)”}x(0)

from which, by uniqueness,
O(r) =% {(sI —4)""}

11.6.1.4 Diagonalisation approach

Let A, e, i = 1,..., n be the (distinct) eigenvalues and eigenvectors, respectively,
of the system matrix 4. Define the modal matrix E by the relation

E=(e,ez,...,e,)
and define v = E~'x. Then,
EV = AEv
M 0
v=E'AEv=E"AEWv=E"'|E v=Av

where A is a diagonal matrix
Al 0
0 An

of eigenvalues. Because of the diagonality of A, the transition matrix is particularly
simple and we can write

ey 0
vey=| ¢ ot [v(0) 2 M)



Multivariable linear systems and the state space approach 209

Should we wish to return to the original system co-ordinates, we have to make
the substitution v=E"'x to obtain

x(t) = E ME'x(0) = E & B E~1x(0)
from which
O(t) = EME!

A variety of other methods is available for the calculation of the transition
matrix but these three methods (infinite series, Laplace method, diagonalisation
method) will cover all our needs. Commenting briefly on the comparative merits of
the three methods we note:

(a) The Laplace method is always applicable but its use entails the inverse Laplace
transformation of »n? terms that becomes unwieldy for large systems. The
method is relatively difficult to mechanise because of the inverse transforma-
tion step.

(b) The diagonalisation method only works unmodified for systems with distinct
eigenvalues. It is relatively easy to mechanise.

(¢) The series summation method is simple to mechanise although scaling and
convergence problems may arise. For large ¢, very many terms have to be taken
before convergence is obtained. The result from the series method is a matrix
of numbers rather than of mathematical functions and this may limit the use-
fulness of the method for some applications.

Example  Compute the transition matrix ®(¢) for the matrix

=

by the three methods given above.
Laplace method

—1 1 5 1
VN O AP . ]
4 s+5 s(s+5)+4| -4 s
s+5 1
O(1) = %! S2+_Si+4 S2+§S+4

$2+55+4 $2+55+4

4 1 1
713_1 s+1 s+4 s+1 s+4

3 —4 n 4 -1 n 4
s+1 s+4 s+1 s+4
4

G HES )
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Diagonalisation method Eigenvalues are found from the characteristic equation
A% + 5] + 4=0 yielding 1, = —4, 1, = —1. Eigenvectors are

)]

The modal matrix

Series summation method

(a) With r=0.1,

A%(0.1)?
2017

©(0.1) = I +4(0.1) + =,

Let Sk be the summation after R terms, then evaluating numerically we
obtain the sequence in Table 11.2.
(b) With T = 1,
2

A
O1) =1 +4+5 4

we obtain the results shown in Table 11.3.

Table 11.2 Steps in the convergence of the series
summation method when calculating the
transition matrix using T= 0.1 second

R Sk R Sk
| (10 s 0.983  0.0781
0 1 ~0313  0.592
) (101 6 0.9830 0.7817
|04 05 ~03127 0.5921
3 0.98 0.075 ; 0.9830 0.7817
| 0.3 0.605 ~03127 0.5921
A 0.983 0.0785
| 0314 0.59
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Table 11.3 Steps in the convergence of the series
summation method when calculating the
transition matrix using T= 1 second

R SR R SR
1 1 0 1 [ 0.46 0.09
10 1 | —0.36  0.006
[ 1 1 [ 049  0.125
2 | —4 —4} 12 |-0.5  —0.13 ]
[—1 —15 [ 048 0.11
3 | 6 6.5} 13 | —0.45 —0.09}
23 2 [ 048 0.12
4 | -8 77,6} 14 | —0.47 70.10}
5 [—1.17 =15 15 [ 048 0.116
| 616 6.5 | —0.46  —0.097
6 [ 1.6 1.3 16 [ 0.484  0.116
|-52 —48 | —0.466 —0.098
; [—0.22 —0.6 (7 [ 0.4844  0.1165
238 278 | —0.4660 —0.0982
9 0.85  0.49 18 0.4844  0.1165
|—1.95 —1.58 | —0.4661  —0.09821
9 [0.31 —0.05 . [ 0.4844  0.1165
1021 058 | —0.4661 —0.09821
10 0.55 0.18
| —0.74 —0.37

The disadvantage of poor convergence of this method is seen here.

11.6.2 The time-varying case

Consider the equation
x(t) = A(O)x(¢), x(t) =xo (11.19)

where x € R” and 4 is a square matrix of absolutely integrable functions defined on
(t, 11); i.c.

a;(t) € Li(ty,t1) for i,j<nm

Notice that the elements of A(#) are not required to be continuous for the sys-
tem to be well posed.

In fact, if ||A(?)|| < g(¢), V¢, while t;‘ g(t)dt < oo, then (11.19) has a unique
solution over (#y, t;) that is continuous in 7.

The solution of (11.19) can still be written x(¢) = ®(z, t9)xo, where @ is the
transition matrix associated with A(z).
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However, the transition matrix is more difficult to determine than for the time-
invariant case, and before discussing this aspect we need more theoretical back-
ground concerning the transition matrix.

First, we define the fundamental matrix.

Given an equation

x(t) = A(t)x(¢) (11.20)
consider the associated equation
X =4(x (11.21)
where X is an n X n matrix.
Given X(ty) = Xp, with det X, # 0, (11.21) can be solved to yield a solution

X(t), and X(¢) is called the fundamental matrix associated with (11.21). It satisfies
the condition

det X(¢) #0, V¢

Now let X(#y) =1, then the solution X(¢) of (11.21) is called the transition
matrix of A(?). (This is the general definition of the transition matrix @ as opposed
to that given in (11.17), which applies only to the time-invariant case. Note care-
fully that in the time-invariant case, @ is a function of an interval, whereas here, ®
is a function of initial and final times.) The transition matrix has the important
characterising property

9 (@(1,10)) = AD®(1.10), ¥ 1> 10

ot (11.22)

q)<t0, l()) =1

The transition matrix transforms the initial condition x(#y) into the state x(¢) and
gives the complete solution of the autonomous equation (11.19). To show this,
differentiate the solution

x(1) = (1, 10)x(10)
yielding

x(1) = ©(t,19)x(to)

using (11.22)
x(t) = A()D(t,10)x(t0) = A(¢)x(2)

which is the same as (11.19).
As we have seen

D (1,19) = A(1)D(1, 1) }

P (11.23)

has the solution ®(¢, #y), which is the transition matrix we require.
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The solution of (11.23) is given by the Peano—Baker series.

t t 7|

A(Tl) J A(Tg)dfzd‘[] + - (1 124)

fo

O(t, 1) =1 + J A(ty)dr; + J

to to

Theorem 1If A is a matrix of constant coefficients, then

¢(z,to)=1+A(t—zo)+A2“27,’°)z+ (11.25)
Proof Since A4 is constant we can write
D(t,00)=1+4 JI dr; + A? Jt Jﬂ drpdry + - -- (11.26)
i1 11 T
but it is important to no‘:e that, in ge(r]ler:ll,
D(1, 1)) # exp (Jl A(r)dr) (11.27)
1
However, the equality dooes hold if
A1) JZ A(t)dr = Jt A(7)dzA(t) (11.28)
to to

i.e. if the matrices (4(?), J"tt A(t)dt) commute.
0

These matrices commute in case the elements of A(f) are time invariant or if
A(?) is a diagonal matrix or in case 4(f) can be decomposed into a constant matrix
M and a scalar a(f) so that A(f) = a(H)M.

It is only in the case where the above matrices commute that A(¢f) can be
brought out of the integral during the derivation to yield

% (exp (J: A(r)dr)) — A(t)exp (J: A(t)dr) (11.29)

In the general case, the transition matrix is not the exponential of the integral
of A.

Therefore, for linear time-varying problems, ®(¢, #y) has to be determined by
numerical evaluation of the expression (11.24). For simple cases, however, (11.24)
can be expanded and solved analytically.

Not only is this much more time consuming than the evaluation of @ for time-
invariant systems, but also the same matrix cannot be used repetitively to advance
the solution as in the time-invariant case.

If the system is time varying in a known deterministic manner, it may be
possible to make a transformation such that the system appears invariant with
respect to a new substituted variable. Cases where such transformation can be made
are understandably rare.

Section 11.6.3 describes the periodically varying case, where such a transfor-
mation can be made with advantage.
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11.6.3 The periodically time-varying case

In the modelling of rotating devices, such as radar antennae, periodically time-
varying parameters are encountered.
Consider a model of the form

x(t) =A(0)x(t), A+ T)=A() (11.30)

where T is the period of variation.
The transition matrix ®(¢, t,) is periodic in 7. Define a matrix R by the relation

et = &(T,0) (11.31)

Such an R exists if @ (7, 0) is non-singular, since @ can then be diagonalised to
give

[ #11
L ¢nn
so that R could be chosen as
[1n on
L ln ¢nn

Define an operator P(f) by

) = o,
q)( ) = (D(tv
— l(t eRt Rtop( )

)
= P ()M P()

e

0)
0)®(0, )

From (11.30),

x(t) = ®(t,10)x(to)
= P71 ()R P(19)x(to)
Put z(¢) = P(¢)x(t), then
P~ (0)z(1) = P71 (0)e" ) P(19) P (10)z(to)
2(1) = eRU0)5(1y)

This equation has a time-invariant transition matrix and is the solution of the
transformed version of (11.30),

(1) = R0 z(4) (11.32)

This procedure is known as the Floquet—Lyapunov transformation.
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11.7 Properties of the transition matrix

Identity property

@(fo, lo)x([o) = x(t())
Inverse property If

D(1, 19)x(ty) = x(¢)
then

(10, 1)x(t) = x(10)
or

(1o, 1)(P(2, 20)x(t0)) = x(to)
d(to, 1) is defined as the inverse of ®(, t,), denoted @ (1, tp). (For the time-
invariant case, ®'(f) = (e’) ' =e ' = B(—1).)
Semi-group property

(1, 1) @(11, 10)x(t0) = P(2,11) (P (11, 10)x(t0))
O(t,11)®@(t1, 10) )x(to)
(t)

—~

=

Differentiation

& (@(,1)) = A9, 1)

11.8 Relation between the transfer-matrix description
and the vector—matrix description

Assume that the process can be described by the equations

(11.33)

X =Ax+ Bu
y==Cx

and by the transfer matrix G(s).
Assuming zero initial conditions in (8.33) and Laplace transforming, we obtain

y(s) = C(sl —4) ' Bu(s) (11.34)
from which, by uniqueness of solution, it follows that

G(s)=C(sI —A)"'B (11.35)
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11.9 Equivalent systems

Two system representations

X=Ax+Bu z=Hz+Ju
y==Cx y=Kz

are said to be equivalent if
H=040"', J=0B K=CQ"

where Q is any n X n non-singular matrix with real elements. (We see at once that a
diagonalised representation, as used, for instance, in Section 11.6.1, is equivalent to
the original system with the modal matrix £ playing the role of Q.)

The impulse responses of the systems are given by

L7YC(sl —4)'B} and LYK(sI —H) 'J}
or
C eB and Ke''J
However,
Ky =co'0e"0'0B = Ce'B (11.36)

i.e. the impulse responses (and hence the transfer functions) of equivalent systems
are identical. Thus, to one transfer function correspond many alternative state
representations. A positive result is that G(s) fixes the zero-state response but not
the zero-input response.

The set {4, B, C} is called a realisation of G(s) if

C(sl —A4)'B = G(s)
The realisation is minimal if there exists no other realisation {4’, B’, C'} for which

dim 4’ < dim 4

11.10 System realisation

Section 11.8 showed that, to a particular system realisation {4, B, C}, there cor-
responds a transfer matrix

G(s) = C(sI —4)"'B

We now consider the converse problem. Given a particular G(s), does there
always exist a corresponding realisation {4, B, C}? If such a realisation exists, is it
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unique? In general, how are realisations {4, B, C} to be constructed from a
knowledge of G(s)?

11.10.1 Existence

A realisation of G(s) exists provided that G(s) satisfies the following conditions:

(a) For each term of G(s), the degree of the numerator does not exceed that of the
denominator
(b) Each term of G(s) is a rational function of s

11.10.2 Uniqueness

It is clear from the discussion on equivalent systems, Section 11.9, that the state
space realisation corresponding to a particular G(s) cannot be unique.

This leads us to ask the weaker question. Are all the realisations corresponding
to a particular G(s) equivalent to each other? More formally, does G(s) define a
unique equivalence class of realisations?

It is easy to show by counter-example that the answer to this last question is
also no. However, it is true that G(s) defines a unique equivalence class of minimal
realisations.

11.11 Stability

A system is defined to be asymptotically stable if for any initial vector x(¢y) and
assuming zero input

()] — 0 as ¢ — oo (11.37)

where || || is a measure of the magnitude of the vector. One suitable measure is
given by

= ()" (1138)

A system is defined to be stable if given an initial vector x(#y) satisfying
[|x(#0)|] < O, there exists an ¢ > 0 such that ||x(#)|| < ¢ implies that

[lx(f)|]| < e forall ¢> ¢ (11.39)

11.11.1 Stability tests for continuous time systems

Let @(¢) be the transition matrix of a system X whose state description is given by
{4, B, C}. The system X is asymptotically stable if

@) —0 as t—0

The system X is stable if
||®(¢)|| remains bounded for all # > 0.
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The system X is asymptotically stable if each eigenvalue 4; of the matrix 4
satisfies

%(/1,’)<0, i=1,...n
The system X is stable if each eigenvalue satisfies

éR(/l,)SO, i:l,...,n

11.12 Reachability, controllability, observability and
reconstructibility for continuous time systems

Reachability A state x; is defined to be reachable if some control u(f) applied over
a finite interval (¢, #;), #; > ty, transfers the system from an initial state x(#y) =0 to
the state x(#;) =x;. A system is defined to be reachable if every state is reachable.

Controllability A state x; is defined to be controllable if some control u(f) applied
over a finite interval (¢, t,), t; > fo, transfers the system from an initial state x(#y) =
x; to the state x(¢;) =0. A system is defined to be controllable if every state is
controllable.

Observability A state x(#y) of a system is observable if it can be determined from a
knowledge of the values of the system outputs y(¢) over a finite interval (¢, 1), t; >
to. A system is observable if every state is observable.

Reconstructibility A state x(¢y) is reconstructible if it can be determined from a
knowledge of the values of the system output y(¢) over a finite interval (¢, #y), #; <
to. For continuous time systems, reachability is equivalent to controllability and
observability is equivalent to reconstructibility. The definitions will be seen to
differ when discrete time systems are under consideration.

11.12.1 Controllability and observability tests for continuous time,
time-invariant systems by the matrices Q,, Q,

Define the matrices

Q.= (B,AB,..., A" 'B)

C

CA
Qa =

CAn—l

Then the n-dimensional system with state space description {4, B, C} is completely
controllable (completely observable) if and only if rank Q. (rank Q,) =n.

The proof of this theorem is omitted. However, the analogous theorem for
discrete time systems is proved.
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11.12.2  Controllability and observability tests for continuous time,
time invariant systems by the diagonalisation method

Given a system described by the equations
X = Ax + Bu

11.40
b= Cx (11.40)

Then provided that 4 has distinct eigenvalues, the system can be diagonalised by
putting x = Ez in (11.40), where E is the modal matrix (see Section 11.6.1), to yield

> =E 'dez+ E 'Bu
: - } (11.41)

y=CEz

Since the matrix E~'AE is diagonal, the controllability and observability of the
transformed system (11.41) can be tested as follows (proof by inspection):

The system is uncontrollable if any row of the matrix £~ 'B consists solely of
Zero entries.

The system is unobservable if any column of the CE matrix consists solely of
zero entries.

Controllability and observability are invariant properties under the transformation
x = FEz. To see this, define matrices

O., = (B,AB,..., A" 'B)
O., = (E7'B,(E"'AE)E-'B,...,(E"'AE)" 'E~'B)

Since rank £~ ' =rank E = n, then rank Q,, = rank Q,, and the invariance is proved.
Thus, the tests based on diagonalisation can be used to check whether the
original system is uncontrollable or unobservable.

11.13 The unforced state equation in discrete time

The general (i.e. time-varying) unforced discrete time equation has the form

x(k+1) = Apx(k), x(0) given (11.42)

11.13.1 Existence and uniqueness of solution

The equation has one and only one solution for each integer k& if and only if the
matrices A, are non-singular.
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Proof
x(k) = Ag-14k—2 -+ Aox(0), k>0 (11.43)

If any of the matrices 4;, 0 <i < k — 1 is singular, then by arguments based on the
rank of mappings or otherwise, the solution is not unique—hence, it is necessary
that all matrices 4;, 0 < i < k — 1 are non-singular.

It is also true that
x(k) =44ty - ATixo, k<0 (11.44)

And from (11.43) and (11.44) it follows that non-singularity of the matrices 4y is
sufficient to ensure that a unique solution exists.

11.13.2  The transition matrix for the discrete time equation
Define

(I)(k7 k()) =Ar 1Ar—r - Ako, k >k (1145)
and
D ko, ko) = I (11.46)

The transition matrix can be used to generate solutions of (11.42) according to
the relation

x(k) = @(k, ko)x(ko), k > ko (11.47)
The transition matrix has the properties

®(ko, ko) = I (stated above and clearly necessary)
D(ky, k1 )D(ky, ko) = D(kp, ko), ko <k <h
while if all the matrices A, are non-singular for all %, then the expression holds for

all ko, k1, k» regardless of their ordering.
For constant non-singular matrices A

d’(k — k()) = Ak_ko
q)(kl + kz) = (I)(kl)q)(kz), for all &y, k
(k) = @ '(—k)

and in this case, ®(k) can be calculated by inverse % transformation as

O(k) =% "{zI — 472} (11.48)
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11.14 Solution of the discrete time state equation with forcing
Given the equation
x(k 4+ 1) = Ax(k) + Bu(k) (11.49)

we can write successively

=

~—
—

=
I

Ax(0) + Bu(0)
x(2) = A(Ax(0) 4+ Bu(0)) + Bu(1)

until we can produce the desired result
=1
x(k) = A%(0) + > A/Bu(k —j — 1) (11.50)
=0

In some ways this equation is rather easier than the equivalent continuous time
equation. For instance, if we know 4 and B and are given a sequence {x(k)}, itis a
simple matter to calculate a necessary control sequence {u(k)} to steer the system
through the given state sequence.

11.15 Obtaining the % transform equivalent of the state
equation

Given the single-input, single-output equations

W) = Cx(h) (11.51)

x(k+1) = Ax(k) + Bu(k) }
% transformation gives

zx(z) — zx(0) = Ax(z) + Bu(z)
x(z) = (2 — A)'2x(0) 4 (zI — A)"'Bu(z)

Compare with (11.50) and it can be seen that
F{A} = (2 — 4) 7'z (11.52)

But also from the definition of & transformation,

g{{Ak}:ZAkZ_k:[+AZ_1+AZZ_2+"' (1153)
k=0
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From (11.51), we obtain
y(z) = Cx(z) (11.54)

If we form the transfer function y(z)/u(z), say G(z), then in terms of the above
equations, we have

G(z) = C(zI —A)'B (11.55)

and if we use the series expansion of (11.55), then we obtain

G(z) =) Ca"'Bz* (11.56)
k=1

11.16 Stability tests

Let a discrete time system X be described by the equation

x(k +1) = Ax(k) (11.57)

Theorem  The system X is asymptotically stable if each of the eigenvalues 4; of 4
satisfies

4] < 1

Proof When A has distinct eigenvalues we can write (11.57) in terms of a new
variable ¢ = E~'x, where E is the modal matrix, as

M 0
g(k) = (E'4E)*q(0) = q(0) (11.58)
0 aw

and the statement is clearly true.

(The theorem applies also to the case where A has repeated eigenvalues. A mod-
ification is required to the proof, using the result that ||4¥|| — 0 as k — oo, if each
eigenvalue of 4; of 4 satisfies |1 < 1.)

11.17 Reachability, controllability, observability and
reconstructibility for discrete time systems

The properties of reachability, controllability, observability and reconstructibility are
defined for discrete systems exactly as for continuous time systems (Section 11.12).
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However, there are some important differences in the tests for these conditions
between the discrete and continuous cases.

For instance, in a time-invariant continuous system, controllability implies
reachability — a continuous controllable system can be transferred from any arbi-
trary state to any other arbitrary state in some interval of time. For a discrete time
system to have the reachability property, the condition is also required that the
system matrix 4 is non-singular.

If the discrete time equation has been obtained from the continuous time sys-
tem equation, x = FX, then since 4 = e/”, A always satisfies det 4 # 0. However,
discrete time equations that represent inherently discrete phenomena do not
necessarily satisfy this condition.

Consider the system

x(k +1) = Ax(k) +Bu(k)} (11.59)
y(k) = Cx(k)
It has the solution
x(k) = A*x(0) + A*"'Bu(0) + - - - + ABu(k — 2) 4+ Bu(k — 1)
= 4*x(0) + (B, 4B, ..., A" 'B)(u(k — 1),...,u(0))" (11.60)
y(k) = Cx(k)

Test for reachability For reachability, set x(0)=0, then any state in the
n-dimensional state space can be reached in n steps provided that the vectors (B,
AB, ..., A" 'B) span the state space. This leads to the definition:

The system of equations is reachable if rank (B, 4B, ..., A'“]B) =n.
It also follows that the sequence

u(n —1) = (B,A4B, ..., 4" 'B) " (x(n) — 4"x(0))

: (11.61)
u(0)

will transfer the single-input system from state x(0) to state x(n).

Test for controllability Referring to (11.60), we set x(k) =0 and note that for
controllability the equation that must be satisfied is

A"x(0) = —(B,..., A" 'B)(u(n — 1),...,u(0))"

X(O): —(A*”B,AfnJrlB,’A71B>(u(n_ 1)7’1/{(0))7* (1162)

The condition for controllability then follows as:

The system of equations is controllable if

rank(4 "B, ...,A"'B) = n (11.63)
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(Note: 1If the matrix A is non-singular, the conditions for controllability and
reachability are identical.)

Tests for observability and reconstructibility The following conditions apply:
The system X is observable if the matrix

C
CA

CA”71

has rank n.
The system is reconstructible if the matrix

CA™"
CA*nJrl

CcA™!

has rank n.

Again, it can be seen that the two conditions are equivalent if the matrix A4 is
non-singular.

11.18 Canonical state space representations

11.18.1 Introduction

Given a system X, we know that there are many possible state space representations
{4, B, C} corresponding with X. In a general sense, all state space representations
can be thought of as representable by Figure 11.5.

Particular representations may arise in the first instance because of the physical
background to the original problem. However, it is often advantageous to transform
an arbitrary representation into one of the canonical representations that are to be
described.

The advantages of the canonical representations are that they allow the system
structure to be easily understood.

x(k + 1) x(K)
o> B @ T c s

Figure 11.5 Discrete time state-variable representation
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Let a single-input, single-output system X have some arbitrary but fixed state
space representation that we designate by the suffix 4.

xa(k+1) = Agx(k) +BAu(k)} (11.64)

y(k) = Cux(k)
Assume also that the system X can be represented by the difference equation
(2" + ap 12" A ag)y(z) = (by1 2 - bo)u(z) (11.65)
which can be written in the concise form
E(z,a)y(z) = F(z,b)u(z) (11.66)
First we consider the simpler equation
E(z,a)q(z) = u(z) (11.67)

E ! can be realised in two alternative ways. They are illustrated in Figures 11.6 and
11.7 for a third-order version of (11.65). From Figure 11.7, it follows that

u(z) = (23 + @ + aiz + ao)q(z)

Returning now to the general equation (11.66), it can be written either as

¥(z) = F(z,b)(E(z,a)"'u(z)) (11.68)

uk) ~ q(k + 3) LAk akes )] ak)

“ag
Figure 11.6 Realisation of (11.67) for a third-order system

u(k)

O PO PO Py

Figure 11.7 Alternative realisation of (11.67) for a third-order system




226  Control theory: a guided tour

or as

y(z) = E(z,a) ' (F(z,b)u(z)) (11.69)

The alternative ways of realising £~ in conjunction with (11.68) and (11.69) yield
four different canonical realisations.

It should be understood that many alternative realisations are possible and that
the names given here are by no means completely standard.

After the four canonical realisations have been given for single-input, single-
output systems, the generalisation to multi-input, multi-output systems is con-
sidered. Finally, the Jordan canonical form is presented.

11.18.2 The reachability canonical form

From Figure 11.8 we can write

0 0 —a 1
xptk+1) = |1 0 —ay |xg(k)+ |0 ]|uk) (11.70)
01 —a 0
= ARXR(k) —|—BRu(k)
y(k) = CRxR(k) = (CRUCRN CRS)XR(k) (1171)

To fix values for C we note from (11.65) that
¥(z) = (22> + b1z + bo)q(2)
Then by careful use of the figure it can be seen that

Cr = (b2, b1 — ayby, by — arby + asby — azby)

) Cx) Cx)
- . T XR T XR, . T XRg

1

Figure 11.8 The reachability canonical form
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The reachability matrix for an arbitrary system {4, B, C} is given by
R = (B,AB,...,A"'B)

and here by

Rg = (Br,ARBg, ..., A% 'Br) =1 (11.72)

The substitution x = Rxy transforms the arbitrary system representation
{4, B, C} into the reachability form, i.e.

Ag = R'AR, Bg = , Cp=CR

The coefficients of the matrix 4z can be computed conveniently from the char-
acteristic equation of the matrix A.

Example Conversion of an arbitrary system to reachability form: A system is
described by the equations

1 1 0 0
xtk+1)=1|-1 =2 —1|x(k)+ |1 |u(k)=Ax(k)+ Bu(k)
0 1 -1 1

y(k) = (1 0 1)x(k) = Cx(k)

To convert to the reachability form, 4z can be calculated from the relation,
Agr = R'AR, where R is the reachability matrix R = (B, 4B, AZB) of the given
system. However, it is easier to calculate the characteristic equation and then to use
(11.70):

z -1 0
(zZl—A)=|1 z+2 1
0 -1 =z+1

leading to the characteristic equation

2432 +42+1=0
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Thus,
0 0 -1 1
AR = l 0 —4 5 BR - O
01 -3 0

Cr = CR = (B, AB, 4*B)

0 1 -3
=(1 0 |1 =3 5|=(11 —6)
1 0 -3

11.18.3 The controllability canonical form (phase-variable form)
(Figure 11.9)

0 1 0 0
x(k+1)=1] 0 0 1 |xc(k)= |0 |u(k) (11.73)
—ay —a; —ay 1

= Acx.(k) + Beu(k)
y(k) = (b, by, ba)xc (k) (11.74)

The controllability canonical form can be written down by inspection from a given
difference equation.

We can transform an arbitrary representation {4, B} into the controllability
representation {4., B.} by inspection of the characteristic equation. From 4, B, 4.,
B. we can then construct a transformation L between the two representations that

)
() gg
4
T > T T %
XC3 XC2 1
D ® @
< < () <

Figure 11.9 The controllability canonical form (phase-variable form)

y

(o)<
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we may use to obtain C,, or to return a control design undertaken in terms of A4, B..
to the real-world co-ordinates of the A, B system.
To proceed we form

Q.= (B,A4B,...,A" 'B)

0. = (B.,A.B,,...,A"'B,)
and seek a transformation L such that x = Lx.. We note that

Ax(k) + Bu(k) = x(k+ 1) = Lx.(k + 1)
= LA.x.(k) + LB.u(k) = ALx.(k) + Bu(k)

from which
A=LA.L"', B=LB.
therefore,

O = (LB, LA.L""LB.,...) = LQ.

c

For a controllable single-input, single-output system, Q., Q'.. are square and
invertible. Therefore, we can construct L or L™ from the expressions

L=0.0)" L' =00,
Example  Transform the system

x(k+1) = [; _lz]x(k) + mu(k) — Ax(k) + Bu(k)

to controllability canonical form and determine the transformation L, linking the
original representation with the canonical form.
A, can be written down from inspection of the characteristic equation

(z—=1D(z+2)=-3=2+2z-5=0
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We obtain immediately

1
-1
= Acxe(k) + Beu(k)

0. = (B,AB) = “ ﬂ

x(k+1)= [2 x.(k) + u(k)

We may check this by verifying that 4 =LA.L ™"

=3 1 211 [ -

Continuation of the example to show an approach to control system design
Having reached this point, we cannot resist the temptation to continue to show how
useful the controllability canonical form is in the design of feedback controllers,
although we are being premature, since the topic is not treated until Section 11.20.

Suppose then that we have to use feedback by setting u = Dx to ensure that the
resulting closed loop system has poles at z=0 and z= 1. We need the closed loop
characteristic equation (recall that it is the same for all the different representations
of the same system)

z(z=1)=0

Let D, be the necessary feedback matrix in the co-ordinates of the controll-
ability form, then we can write down by inspection of the required closed loop
equation

A +B.D, = [8 ”
Since 4., B. are known, the elements d;, d, of D. must be chosen to satisfy
{o 1}+{0 0}{0 1}
5 -1 d d 0 1
from which

Dc:(_s 2)
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It now remains to determine D using the relation

D=D.L"'"= (-5 2)[12 _31} = (=9 11)

Check

(A + BD) = [:2 192]

which has the characteristic equation

Z2—z=0

as required.

0]
2

3)
“)
)
(6)

(7

Notice carefully the line of reasoning that we have used:

We are given a process description in the form of state space equations.

We are required to devise a state-variable feedback strategy to place the
closed loop poles at given locations.

From (2) we can construct a characteristic equation having the required
closed loop poles as its roots. (We are aware that the characteristic equation
of a system is invariant under a similarity transformation.)

We transform the process equations from (1) into a convenient canonical form.
By inspection, we choose the coefficients of a feedback matrix D,. such that the
required characteristic equation will be obtained for the closed loop system.
D, needs to be returned to the real-world original co-ordinates. We, therefore,
determine a matrix L that can achieve the necessary transformation of D, into
the required feedback matrix D.

We check that the matrix D, when used to provide feedback, does in fact
achieve the desired effect.

11.18.4 The observability canonical form
See Figure 11.10 for a diagram depicting this form.

0 1 0 bot
Xo(k+1) =10 0 1 | xo(k) + | bor |u(k) (11.75)
—ap —a1 —a bo3
= Ayx,(k) + Bou(k)
y(k) = Coxo(k) = (1,0,0)x, (k) (11.76)

The matrices 4, B, C, are related to the matrices {4z, Br, Cr} in the reachability
representation by

A, =A% B,=CL C,=B}



232 Control theory: a guided tour

u

XO3

O HOA T O

h o/ o/ h

Figure 11.10 The observability canonical form

Define
C
CA
D= :
CA"71

then given an arbitrary representation {4, B, C}, the observability form can be
obtained from the expressions

A,=D"'AD, B,=D'B
(C, is given by (11.76)).

11.18.5 The reconstructibility canonical form

Refer to Figure 11.11, from which the representation below follows:

0 0 —a bo
xpk+1)= |1 0 —ay |x,(k)+ | b1 |u(k)
01 —a by (11.77)
= Apx,(k) + Byu(k)
W) = (0 0 D(k) = Goay(k) (11.78)

The representation can be written down by inspection from a transfer function. Like
the observability canonical form, it has the simplest possible output matrix. Other
properties follow analogously to those of the three canonical forms described
previously.

The four canonical forms described above have the considerable advantage
that their patterns are simple and their coefficients always real.
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O— O
& &) & |

Figure 11.11 The reconstructibility canonical form

11.18.6 State equations for multi-input, multi-output processes

A process with 7 inputs and » outputs can be represented in discrete time by a set of

n* difference equations linking the » input variables u, ..., u, with the n output
variables yy,..., y,. Define
Uy Y1
u=|:1 Yy=1:
Up Yn
then »” difference equations can be written with the aid of matrices 4;, B; i=1,...,n)

and the operator z in the form:
(IZ" + Ay 12V -+ Ao)y(2) = (Bur 2" 4 -+ + Bo)u(z) (11.79)
Analogous to the derivations for single-input, single-output systems, state

equations can be written. For instance, analogous to the derivation in Section
11.18.3, we obtain

xi(k+1) 0 I - 0 x1 (k) 07 [w(k)
o= : ]
xu(k+1) Ao —Ar - —Apad | x,(k) Il | u,(k)
(11.80)
x1 (k)
y(k) = (Bo,...,By-1) | (11.81)
X (k)

as a state representation in which (note) each of the x; is itself an n vector.
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Example  The example will resolve any problems of interpreting the notation of
this section. A process is described by the equations

yilk+2) +yi(k) + 32k +1) = wi(k) +ua(k + 1) + 2uz (k)
Zyl(k)+y2(k+2) = ul(k+2)+u2(k)

% transforming produces the equations

2y1(2) + 202(2) +31(2) = zua(2) +u1(2) + 2ux(2)
2y2(2) + 201(2) = zui(2) + ua(2)

In matrix form (as 11.80)

([0 ]2+ [8 3 [ 8= ([0 S [8 2]

leading to the state space equations.

[’“E?P} [8 g} [(1’ (1)] {xl(k)]

BB A
1A
120 ][]

11.18.7 The Jordan canonical form

Suppose that a transfer function G(z) can be decomposed into partial fractions to
yield

S = O O
—_ o O O

G(z) = ao + Z 4 (11.82)

zZ—2z

(ag is zero if the degree of the denominator exceeds that of the numerator).
Define a state vector x such that

¥(2) = agu(z) + Zn: aixi(z) (11.83)
i-1



Multivariable linear systems and the state space approach 235

xi(z) = ! u(z) (11.84)

zZ—Z

which in the time domain becomes
xi(k+1)=zxj(k) +ulk), i=1,...,n

or in vector—matrix form

2 0 - 0
0 z --- 0 1
x(k+1)=|. . x4+ | ulk) (11.85)
0 0 - 2 1
y(k) = (a1,az,...,0,)x(k) + au(k) (11.86)

The z; are the roots of the characteristic equation of G(z). In case some of the roots
are repeated, the form of the partial fractions is modified in a manner that is pre-
sumed well known to the reader.

For instance, if the real root z; has multiplicity p, then G(z) has the expansion

aj as %p Op+1
et e ey e e
“ (11.87)
+ (z—zm)
Define
1 1
xl(z):Z_Z]x(z (Z_Zl)pu(z
o 1
(2) = () + =) ru(z)
1
56 = —u)
1
@ = ——uld)
xu(z) = ! u(z)
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In the time domain, the following vector—matrix equation corresponds to (11.87).

a p x p block
z 10 0 -+ 0 O\ p-1
0 z 1 0 - 0 .| zeros
0 0 z 1 -~ 0 0 0
x(k+1)=] : =+ @ = x(k)+ | 1| u(k)
0 0 0 0 7 1
Z2 .
0 1
Zm
(11.88)
y(k) = (a1, ..., an)x(k) + aou(k) (11.89)

These diagonal or block-diagonal representations are called the Jordan forms.
Jordan forms decouple the modes of a system and allow the dynamic behaviour of a
system to be appreciated by inspection.

11.19 The state-variable approach to control system design

Suppose that a single-input, single-output process can be described by the discrete
time state equations (referred to below as the model)

x(k 4+ 1) = Ax(k) + Bu(k)y(k) }

b (11.90)

The control problem can be defined in a very general way as follows: Deter-
mine a control sequence, #(0), u(1), ... such that the output sequence y(0), y(1),...
behaves in some desired manner. If y has to be kept constant, this defines a reg-
ulator problem. If y has to follow a preset trajectory, this defines a tracking pro-
blem. If the control sequence has to be chosen such that y behaves in some desired
manner while, at the same time, some profit function J(u, y) is maximised, this
defines an optimal control problem.

All the above problems are open loop control problems in that the control
sequence is determined from a prior knowledge of the model with no account taken
of the actual system response.

In practice, no model is complete nor can its parameters be specified exactly.
Realistic control can only be achieved by feedback control in which the control
sequence #(0), u(1l),... is calculated from a knowledge of the measured output
sequence ¥(0), y(1),....

One group of powerful feedback control algorithms requires that the control
sequence be calculated from a knowledge of the state vector x(0), x(1),.... Such a
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strategy is called a state-variable feedback strategy. It is central to state-variable
control theory that if the model is linear and the cost function J is quadratic, then
the optimal control sequence can be generated as a linear function of the state
vector x(k).

When the state vector x is not accessible or is corrupted by noise, but is
required for feedback, then it can be estimated by a state observer (noise-free case)
or a state estimator (noisy case). When both the model parameters and the state
vector are to be estimated, a combined state and parameter estimator can be used.

11.20 Design to achieve a specified closed loop
characteristic equation

Control techniques, some of which will be outlined below, allow, within the limits
of physical realisability, any process whatsoever to be given any desired closed
loop dynamic performance.

The techniques basically amount to pole-shifting by appropriately weighted
state-variable feedback.

11.20.1 Control design based on state-variable feedback

Assume that a discretised single-input, single-output continuous process is descri-
bed by the equations

x(k+1) = ®(T)x(k) + ‘P<T)u<k>} (11.91)

y(k) = Cx(k)
State-variable feedback consists in replacing all or part of the input vector u by

a linear combination of states, Dx, where D is a diagonal matrix to be chosen. The
equation becomes, assuming all of the vector u is replaced,

x(k + 1) = ©(T)x(k) + ¥(T)Dx(k) (11.92)

The equation can be ¥ transformed (neglecting initial condition effects) to
yield

(z —® — ¥D)x(z) = 0 (11.93)

Suppose now that the closed loop poles of the system are required to be at
given locations a4, a,,..., a, in the z plane.
Control design then consists in choosing D so that

ZI—®—-¥YD=(z—a;)(z—03)...(z— ay) (11.94)

We first note that, for an nth order process, a suitable matrix D always exists to
allocate the poles to n arbitrary locations in the z plane, provided that the process is
controllable.
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The calculation is particularly easy in those cases where the process equations,
(11.91), are in one of the canonical forms (Section 11.18), since then the char-
acteristic equation can be written down by inspection. The following section makes
this clear.

Let the system to be controlled be transformed into the controllability cano-
nical form (Section 11.18.3):

0 r .- 0 0
x(k+1) = E : : x(k) + : u(k 11.95
ktn=| o xR ) (11.95)
—ay —dap —dy—1 1

State feedback is introduced by setting
u(k) = Dx(k) = (do,d1, - . ., dn—1)x(k) (11.96)
The state equation then becomes

x(k+1) = (4 + BD)x(k)

0 1 0 0
= : ; x(k 11.97
5 1 (k) (11.97)
(—ao + do) oo (=an-1 +dyt)
The characteristic equation is
det (zf — (4 +BD)) =0, (11.98)

(610 — do) + -4 (d,,,1 — dn,I)Zn_l +z2"=0

The state feedback matrix D can be chosen to modify the characteristic equa-
tion as required. In particular, the closed loop poles can be located where required.

Example  The process

k4 1) = [82 ”x(k) + mu(k)

is to have a double pole at a z=0 when under closed loop control. By comparing
with (11.95), we find ay=0.2, a; = 1. We require z* =0 as the closed loop char-
acteristic equation, i.e. we required dy= 0.2, d; = —1, to make D = (0.2, —1). Check

0 1
vm-[0 ]

and the object is accomplished. (See also the example in Section 11.18.3.)
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Note that if the state feedback matrix D is chosen so that in (11.98)
ai—di:(), i=0,...,n—1
then the characteristic equation of the closed loop system becomes
Z"=0

and this would lead to so-called finite settling time (dead-beat) control where, in
response to a step, the controlled process reaches a steady state in a finite number of
sampling intervals and then stays exactly at that steady state at all later sampling
times.

However, note carefully, that the process behaviour between sampling intervals
is not modelled and it is easy to produce simplistic designs that exhibit perfect
behaviour at sampling instants but that oscillate wildly between those instants.

11.20.2 Modal control by state feedback

Let the system to be controlled have distinct eigenvalues and be in the Jordan form
(Section 11.18.7):

A oo 0
k+1) = k) + Bu(k
x(k+1) x(k) + Bu(k) (11.99)
0 - A
= Ax(k) + Bu(k)
Let state feedback be applied by setting
u(k) = Dx(k) (11.100)
The state equation becomes
x(k+1) = (A+ BD)x(k) (11.101)

The closed loop eigenvalues can be moved by choice of the feedback matrix D.
If the matrix BD is diagonal, then the closed loop eigenvalues or modes can be
moved independently. This depends on the form of B. The technique loses much of
its simplicity when generalised to multi-input, multi-output processes.

Notice finally that, in common with all design methods involving a transfor-
mation of form, the implementation must be considered with care. Either the con-
trol design must be transformed to real-world co-ordinates or measured state
variables must first be transformed to Jordan form and the calculated control vector
must be inverse transformed before application to the actual system.

Worked example 11.1
A system has the equation

y+8+7y=0, p(0)=100
3(0) =0 } (W1)



240  Control theory: a guided tour

Setting x; = y,x, = y, express the system in state variable form
X =Ax (W2)

Determine the eigenvalues of the system. Is the system stable? Give reasons. Is the
system oscillatory? Give reasons.

Determine the transition matrix for the system.

With the help of the transition matrix or otherwise, determine the time 7* at
which x, takes on its greatest absolute value.

Using a time step of 1 s and again using the transition matrix, express (W2) in
the form

x(k) = Px(k — 1) (W3)

What is the relation between the eigenvalues of the matrix P and those of the matrix
A? Check your assertion numerically.

Use a time step of T* to recalculate P for (W3) and hence determine the
maximum absolute velocity.

Return to the original (W1). Solve it analytically and use the result to sketch
the transient behaviour of y and y.

Worked solution 11.1
x1 =y, therefore x; =y = x, and y = x,. Equation (W1) can be written as two
equations

5(?1 = X2
5(?2 = —7)C1 — 8.X2
where
Xl o 0 1 X1
Xz o -7 -8 X2
or
X = Ax
This is the system in state-variable form.
To find the eigenvalues, we need to solve the characteristic equation
det (Al —4)=0
Now

A0 0 1
M—A4= -
0 2 -7 -8
(4 -1
L7 A+8
with determinant 4> + 84 + 7 and the characteristic equation is

2+814+7=0
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Hence, the eigenvalues are the solutions of this equation, i.e.
M=-1, Ah=-7
Since both eigenvalues have negative real parts, the system is asymptotically
stable.
Since no eigenvalue has an imaginary component, the system is not oscillatory.

Each eigenvector e; must satisfy (4,/ — A)e;=0 by definition. So we must have
putting 4, =4, =—1,

sRER

el —en =20

or
Put e;; =1 then e;; = —1. Similarly, putting ;= A4, = —7, we obtain
-7 -1 €2 |
7 L]

—Teiy —exn =0

or

putting ej, =1 yields e;p = —7.
The modal matrix

_ e €12 | _ 1 1
E_|:821 822}_{—1 —7]

The inverse of E is found to be

1 7 1
-1 _ 1
E _6{—1 —1}

M0 ],
d>(t)—E[ o o |E

Now

(see Section 11.6.1). Hence,

wo-[ 1 [ &)1 )2

is the required transition matrix.
Considering only x,, we have

02(0) = (2101 (0) + p2202(0))
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But x,(0) = 3(0) is zero in this question. Hence,

w2(t) = (=7 + 7e ), (0)

6
and we can find maxima or minima by differentiating, i.e. setting
100
%o(t) = e (7e™" —49¢™™)

to zero. This leads to the condition for maximum or minimum as

Te' = 49¢~ 7

eft — 76771

—t =In7-"T7¢t

66t =In7

t = 03243 =T*

as required.
Putting =1 into the transition matrix yields

~ [0.42904  0.06116
~ | —0.428 —0.06025

(1)
and this is the matrix P required by the question, since
x(k) =®()x(k —1) =Px(k—1)
Suppose that A were put in diagonal form 4’, it would have the values

[k o}

10 A
and P would have the form

[t 0] [ 0
L0 | [0 e~
since =1 in this particular case.

Now eigenvalues are invariant under diagonalisation; hence, we can make the
statement that

P =

in this case.

Check
The eigenvalues of P are 0.36788 and 9.1188 x 10~ and these same values are
found by calculating e, &*' for A, = —1, A, =7, t=1.
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To recalculate P for a time step 7%, we use the relation

1| 4958 0.61973

P(T*) = &(T*) = [ }

6| —-4338 7.96 x 107
_ [ 0.8263 0.1033
1 =0.7230 1.327 x 107

The absolute maximum velocity is then found as

x(T7) = [-0.723  1.327 x 105][

100]
=_-723

0

The analytical solution of (W1) is found to be

y = —16.67¢7 7 4+ 116.67¢~"
¥y = (7 x 16.67)e™"" — 116.67¢™*

The transient behaviour is sketched below in Figure 11.12.

time

seconds
[Xolmax = 72.3 ( )

Figure 11.12  The initial response of the system described by equation W1

Worked example 11.2
A single-input, single-output process described by the equations

X = Ax + Bu
y = Cx

243

is subjected for a long time to the input signal shown in Figure 11.13, which

switches between zero and unit magnitude.

Let y", y« be the upper and lower limits, respectively, reached in the steady state
by the response y(7). Using the transition matrix, derive expressions for y* and y-.
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u(t)

0 T 2T 3T 4T 5T 6T

Figure 11.13 The input sequence

Calculate y" and y« for the process with

A:{_g _;] B:H], c=[1 0], T=1

Worked solution 11.2
Since a long time has elapsed, it can be assumed that the upper and lower values are
now constant and that the following relations hold

x = ®(T)x
x =®(T)x- +¥(T)u

Substituting and setting 7=1, u=1
x = ®(1)[®(1)x- + ¥(1)]
(I = @(1)")x = @(1)¥(1)

xe = (1= (1)®(1)) " (@(1)¥(1))

®(1) =exp(4) =

0.6004  0.2325
—0.4651 —0.0972

Y1) = 4 (®(1) - I)B
0.1998
- 02325
(02093
=\ —0.1497
B L [ —1.9525 —4.6708
¥ =) x*‘( 9.3415  12.0598 )x*
~(0.2907
=\ 0.1497
Since y = Cx = [1 O]x, then

y. =0.2093, y =0.2907
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See Figure 11.14 where the steady state response is sketched.

y, u
1F -
y* y(t)
v / A /&
0
T 1 7 time

Figure 11.14 Solution to worked example 11.2

11A It seems remarkable that an oscillatory solution can be
generated by repeated multiplication by a constant matrix
(Figure 11.15)

4 initial condition

: : /’\\/
(_Tw time
|

Figure 11.15 The points marked on the transient solution form a time series
that can be generated by repeatedly multiplying the initial
condition vector by a constant transition matrix

11B Conservation of dimension under linear transformations

Let L: P —» Q be a linear transformation from
P=R"to Q=R"
Dom L is defined as the subspace of P on which the transformation

operates.
Range L is defined as the subspace of Q satisfying

range L = {Lx|x € dom L}
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Ker L is defined as the subspace of P satisfying
ker L = {x|Lx = 0}

Then the conservation of dimension insists that
dim(range L) + dim(ker L) = dim(dom L)

This means that the dimensionality of the range of the transformation L may
be less than the dimensionality of the domain. Such a situation will occur
whenever dim (ker L) > 0.

This ‘loss of dimension into the kernel’ is exactly the mechanism by
which a system becomes uncontrollable. Tests for controllability amount to
tests for ensuring that dim (ker L) =0, where the transformation L is con-
structed so as to represent the operation of mapping x(0) into x(#). In this we
have

L(x(0),u(z),1) : x(0) — x(¢)

i.e. the mapping depends on x(0) and on the particular function u defined on
the interval /= [#,, t/. The actual tests for controllability have been derived
from linear algebra. See Chen (1984) for detailed descriptions of the
techniques.

In a system that is not controllable, there are some states that cannot be
reached in finite time by any control strategy. In fact, some subsets of the
state ((iii) and (iv) in Figure 11.16) cannot be influenced by the input.

. ar
o 0) O
+

(i)

(iii)

(iv)

Figure 11.16 Every linear system can be decomposed into four blocks:
(i) controllable and observable; (ii) controllable but not
observable; (iii) observable but not controllable, (iv) neither
controllable not observable
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Observability is a dual of controllability. It is concerned with the ques-
tion: Does measurement of the output y of a system allow complete knowl-
edge of the state vector to be determined?

An interesting view, due to Kalman, sees every system as representable
by four blocks. The idea is illustrated in Figure 11.16.

11C A deeper look at controllability and observability

A celebrated paper of R.E. Kalman (1962) demonstrates that the state vari-
ables of an linear time-invariant system can be separated into four disjoint
categories, those states that are

(a) controllable and observable

(b) controllable but not observable

(c) observable but not controllable

(d) neither controllable nor observable

Here we will look only at the states in category (a) and ask the Orwellian

question: Are all the states in category (a) equally controllable and obser-

vable, or are some states ‘more controllable and observable’ than others?
To investigate further, we recall that the state equation

X = Ax + Bu
y=Cx

may be transformed into a variety of different forms, by the substitution
z=Px

where P is any invertible matrix.
With this transformation, the state equation then becomes

5 = P APz + PBu
y=CPlz

In earlier parts of Chapter 11, such transformations were used to produce
different canonical forms but here we have a different goal; we seek a
transformation that will allow the relative importance of the states in cate-
gory (a), in terms of input/output energy or information transfer, to be
displayed.
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To proceed, we introduce two matrices: the controllability Gramian
W, defined by

o0
We = J exp(A4t)BB” exp(At)dt
0
and the observability Gramian W, defined by
Wo = J exp(4”t)CT C exp(At)dt
0

As an aside, let us note that these are well-established matrices in control
theory and they have the following significance.

If the matrix W, is non-singular, i.e. has full rank for every ¢ > 0, then
the pair (4, B) is controllable.

If the matrix W, is non-singular, i.e. has full rank for every ¢ > 0, then
the pair (4, C) is observable.

The next step to our goal is to note that, remarkably, there exists an
invertible matrix P such that

o 0 - 0
PWePT =P TWoP =Y = 0 o 0
0 0 - o

The individual entries in the matrix ) . are called Hankel singular values and
their relative magnitudes represent the relative significance of each of the
states in category (a), in an input/output sense. (Noting though that in a real
application care would need to be taken that unbalanced scaling of individual
variables did not invalidate the results).

See Glad (2000) Chapter 3 and Damm and Homeyer (2010) for proofs
and further background.




Chapter 12

Links between state space
and classical viewpoints

12.1 Introduction

The purpose of this chapter is to increase intuitive understanding of state space
representations by linking to situations that are already familiar in a classical
transfer function or frequency response setting.

(It has to be admitted that it is easier to see meaning in a curve showing
frequency response than it is to understand several rectangular arrays of numbers or
symbols.)

However, although frequency response methods are quickly understood, the
foundations of those methods are quite involved and require a knowledge of the
theory of functions of a complex variable and an understanding of Cauchy’s integral
theorem and Laurent’s series.

The first link is an illustration of how the numerical entries in a system’s
A matrix can, intriguingly, be identified with the frequency-dependent rectangular
co-ordinates of points on the corresponding (inverse) Nyquist diagram.

Two well-known textbook control systems; position control and cascade con-
trol, are analysed by state space methods. The ease of modelling and the power of
the analysis in the state space domain are apparent and the linkage (state space to
classical) quite obvious.

Modal analysis of state space systems is accomplished through eigenvalue/
eigenvector analysis and can be nicely linked to the individual fundamental
physical behavioural components of a time response as well as to the component
trajectories in a phase space representation of system responses.

All of the various possible system representatives (time responses, frequency
responses, pole—zero representations, transfer functions, diagrammatic representa-
tions, state equations, sets of linear differential equations) can be linked conceptually
and computationally through a passive central core that lists all the qualitative and
numerical data necessary to completely specify any finite-dimensional linear system
that is describable by sets of ordinary different equations. Of course this is the basis
for the operation of Matlab, Scilab, Octave etc. and is immensely useful for practical
application and for learning the subject. We illustrate this aspect with a few
examples.
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This material, by linking ideas of single-input, single-output (SISO) systems
with matrix representations and applications of eigenvalues/eigenvectors, is inten-
ded to help readers make the transition from classical frequency response ideas into
the less intuitive but very powerful matrix-dominated world of multivariable
systems.

12.2 A state space view of cascade control

Cascade control finds valuable application in certain situations where a relatively
fast inner loop sits inside a slower outer loop (Figure 12.1). In classical terms,
cascade control may allow the inclusion of an additional measurement or an
additional actuator into what is seen as essentially a SISO system. Here we take a
state variable view and illustrate the power and flexibility of that approach. For
concreteness, we choose a jacketed reactor (Figure 12.2) as a specific example.

- ™ inner loop

outer loop

Figure 12.1 The usual classical control viewpoint of cascade control

M temperature of reactor
contents
water mixing valve [ C
-~ -~
re -~
- /
< -
~ stirrer -
= C:-LD 2
o S~ -
B
- i
-~ _~1 waterjacket ~ |Water
temperature of ~ outflow
water jacket
N N+
— controller controller -
+ desired reactor

temperature

Figure 12.2 A jacketed reactor



Links between state space and classical viewpoints 251

X2—Xq

Xa

_,<V > K Ci > s

C, 1/s

this is not a loop as such but a
representation of the heat
transfer mechanism between
jacket and reactor contents

inner control loop

< Kc <

outer control loop

Figure 12.3 A simple model of a jacketed reactor

Here the water jacket temperature is the intermediate variable being controlled
in the inner loop with the temperature of the reactor contents being controlled by
the outer loop.

The right loop is virtual only and is a simple invention to ensure that heat flows
in response to a temperature gradient, meaning that jacket and reactor contents tend
towards the same equilibrium temperature. (The reason for placing the gain K. in
the feedback, rather than the forward path, is to make it easy to put the cascade loop
out of action by simply setting K. =0 when required.)

12.2.1 Establishing the state space equations by inspection
from the block diagram

Figure 12.3 shows the simple model of a jacketed reactor, with the water jacket
J having a thermal resistance and heat capacity C; and the reactor interior, with
contents, having a thermal resistance and heat capacity C, (we shall assume that
C;=5C,, i.e. the jacket can respond five times faster than the reactor contents).
For this illustration, we assume that the two controllers consist only of scalar
gains and initially, we shall assume that K. =0, that is we shall first see how the
system performs without benefit of the inner loop. The only unusual feature of
this model is the right-hand loop that ensures that heat transfer from jacket to
reactor contents takes place at a rate proportional to their temperature difference,
X, — xj: this is not quite the normal transfer function for a cascaded reactor but
the state space approach is very flexible indeed as the following analysis will
show.
From the diagram,

X1 =Crx2 —x1) = —=Cx1 + Coxz
Xy = Ci(Kxs — Koxz)

= G(K[y —xi] — Kex2)

= —KCx; — K.Cixy + KCv

(12.1)
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leading to the state space matrices

-G, C,
A =
—KC; —K.G

= (ac)

and since we shall want to monitor both state variables, we shall choose C=(1 1),
meaning we shall have y; =xy, y, =x;.

Inserting the numerical values C,=1, C;=35, K. =0 (for the first part of this
demonstration there will be no inner loop feedback), we next seek a value for the
main loop gain K, such that a reasonable damping factor, say, { = 1/+/2 results.

This requires a small side calculation.

From the two state equations that we derived,

(12.2)

1 = —Gn -G (12.3)
= — Cx; — C{—KCx; — K.Cix, + KCjv}
Initially K = 0, so we can write
X1 + Cx1 + KC;Cxy = KCiC,v (12.4)
and inserting the chosen values yields
%1 4% 4 5Kx; = 5Kv (12.5)

Comparing this equation term by term with the canonical second-order equation
(s + 28w,s + @)y = w?v (12.6)

and inserting the chosen ¢ value yields

1
2w, =2—w, = \/iw,, 12.7
g 7 (12.7)
which should equal 1 (or, equivalently, 2w? should equal 1) and w? should equal
5K, so we must have 5K =1/2, K=0.1. Using that value yields the 4, B, C matrices

A:(:(l).s (1)>’B:<8.5)’C:(1 1) (12.8)

Now, setting the value § = % in a second-order linear differential equation
should result in the eigenvalues of the equivalent 4 matrix in the state space
representation having complex eigenvalues whose real and imaginary parts are
equal.
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The eigenvalues of 4 = 05 0

A 2=-0.5 £ 0.5, having equal real and imaginary parts as expected.

-1 ! ) are found to be

12.2.2 Bringing the inner loop into the model

Recall that we set the main loop gain K at the value K = 0.1, chosen specifically to
yield a particular damping factor ({ = 1/+/2). We now propose to fix a non-zero
value for K. to bring the inner loop into operation. It is reasonable to expect both
from physical and mathematical viewpoints that the effect of a non-zero K, will be
a stabilising influence (mathematically, the new 4 matrix of the enhanced system
will have a non-zero a,; element on its leading diagonal — see interlude 12A for
further discussion). Therefore, we propose to multiply the main loop gain by a
factor of 10, to K =1, and attempt to fix the value of inner loop gain K. to bring the
overall damping factor to & = 1/+/2, as in the first case.

Repeating the calculation above with K now set to unity, we find that a value of
K. =3 will achieve the required damping factor. With the new values K=1, K. =3
and the C;, C, values unchanged we arrive at the new 4, B,, C; matrices (where the
subscript 1 indicates the control system with inner loop operational):

A1—<_; 1_3>,Bl—((5)),c1—(1 1) (12.9)

As before, we check the eigenvalues of matrix 4, they are
Mp=-2%j2 (12.10)

They have equal real and imaginary parts as expected for that particular choice
of damping factor.

12.2.3  Looking at the performance of the jacketed reactor under
control, first with the single loop and then, for comparison
purposes, with the inner loop operational

To make a comparison, we have several choices, but real-world jacketed reactors
usually operate in batch mode, e.g. melting waxy substances that will later be made
into a product. It is therefore logical to look at the step response and to look at the
temperature of both the jacket and the reactor contents during that period.

Here I have solved the pair of simultaneous differential equations

X =Ax+ Bv (12.11)
and
x =Aix+ Byv (12.12)

directly using the Scilab routine ODE with the desired reactor contents temperature
v fixed in each case at a constant value to yield a steady state temperature of 100.
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180 -
] jacket temperature x,
160 - cascade .
1 single loop control
140 4 control
o 120-
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S 1 single loop control
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60 1/ cascade
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Figure 12.4 Transient behaviour of the jacketed reactor both without and with
inner loop cascade control

The two graphs are plotted on the same axes and show the jacket temperature
X, and the reactor contents temperature x; against time for single loop control and
for control with the additional inner loop (so-called cascade control). Loop gains
have been set as derived in the text above (Figure 12.4).

Comments on the above exercise: The model, although initially little more than
a thought experiment, was quickly made into tractable physically related state
equations that could generate potentially valuable time-domain results. A normal
transfer function analysis of this SISO system might well have overlooked the
extreme overshoot of the jacket temperature that is seen above.

(Naturally, if this was a real problem, the maximum temperature that was
allowable and achievable in the reactor jacket would have to be carefully
investigated.)

The naive simplicity of the model hopefully makes it easy to appreciate the
strengths of the approach.

12.3 An inverse Nyquist view of the entries in the 4 matrix
of a system representation

Recall that the usual classical Nyquist approach to determining the expected closed
loop behaviour of a dynamic system G(s) is to make a polar plot of the open loop
response of G(jw) as a function of w and then consider the shape of the plot,
particularly in the region of the point (—1, j0).

The inverse Nyquist approach is exactly similar with the difference that now
the open loop response of the inverse transfer function G(ja))_l is plotted and again
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imaginary axis

real axis

! open loop frequency responses for two different
inverse transfer functions G;%(s) and G, (s)

\ this system will be stable when put into closed loop

increasing @ . . .
9 \ this system will be unstable when put into closed loop

inverse Nyquist diagram
Figure 12.5 An inverse Nyquist diagram showing plots for two transfer functions
Gl_l(s)’ Gz_l(s)

is viewed with particular reference to the point (—1, jO). Roughly speaking,* the
system G(s) will be stable provided that the inverse Nyquist plot does encircle the

point (—1, j0), otherwise it will be unstable (Figure 12.5).
Now consider the state space model for a SISO process
(12.13)

X =Ax + Bu, y=Cx
1 0

(readers will realise that the structure of this 4 matrix is the same as the one used
previously to model the jacketed reactor).
We now wish to show the frequency response significance of the four 4 matrix
entries [, m, p and q.
First, we derive the equivalent transfer function
(12.14)

1
(s) = (s* 4+ Is> + ms> + ps+q)

* The full formal stability criterion involves encirclements and an appeal to the Cauchy integral

theorem.
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and its inverse

G(s)™' = (s* +Is° + ms> + ps + q) (12.15)
Next set s =jw to obtain
Pt £ 1P} + mPo? + pjo +q 1216

= o* — jlo® — mw? + jpo + q

and we see that the co-ordinates of every frequency-dependent point on the inverse
Nyquist diagram can be directly identified with elements in the system’s 4 matrix.
In the inverse Nyquist diagram that follows, I have attempted to make this

interesting link clear (Figure 12.6).

imaginary axis

real axis

/each point on the locus can be generated in the same way

K increasing @
i

this diagram shows how entries in a time-domain system matrix A can
generate the frequency-dependent rectangular co-ordinates for every point on

the same system’s inverse Nyquist locus

Figure 12.6 Inverse Nyquist diagram for the system described above

12.4 Illustration of modes and modal analysis

Here we demonstrate how modal analysis can assist process understanding. Modal
analysis makes use of the fact that all unforced transients in a linear system
(i.e. arising from non-equilibrium initial conditions) must necessarily be a sum of
individual modal responses.

It is well known to mechanical engineers that a large flexible structure may
have many modes of vibration and that each of these possible modes can, in a
possibly simplified analysis, be identified with a particular eigenvalue that corre-
sponds with the frequency of oscillation of that mode of vibration.
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However, modes and modal analysis do not need to be confined to mechanical
systems and seeking out modes and identifying them with particular forms of
dynamic behaviour can be very useful in understanding the transient behaviour of
any linear system.

Figure 12.7 shows three connected water tanks with levels xi, x,, x3 with the
interaction ensuring that in the steady state and with no inflow or outflow, equili-
brium will be reached with x| =x, =x3

Ignoring, for this particular illustration, all non-linearity and setting, for sim-
plicity, all coefficients to unity we obtain:

Rate of increase of level x; = (difference in level between x, and x;)

X1 =x =X (12.17)
and similarly

X3 =x2—x3 (12.18)
with the central tank satisfying

X2 = (x1 —x2) + (¥3 —x2) =x1 — 2x2 +x3 (12.19)

and as a vector matrix equation

i -1 1 0\ /x
=k )=1 2 1]|[x]|=4x (12.20)
i3 0 1 -1/ \x

We need to solve the above equation with the initial conditions (6, 14, —20)
shown in the figure, i.e.

6
0)=| 14 (12.21)
-20
1 2 3
X, =67 Xp=14 1 equilibrium

......................... level zero

X3 = -20

Figure 12.7 Three interconnected water tanks
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We can solve the equation numerically using repeated multiplication by the
transition matrix

x(n+ )T = @x(n)T, n=0,1,2,... (12.22)

with a time step of (say) 0.1 s.
@ can be calculated using the Scilab/Matlab command {expm(0.1*4)} to yield

0.9092217 0.0863939 0.0043843
®(0.1) = | 0.0863939 0.8272121 0.0863939 (12.23)
0.0043843 0.0863939 0.9092217

Note that an inspection of the terms in the transition matrix does not readily
provide a feel for the dynamics of the process, although there is an unsurprising
degree of symmetry and an obvious diagonal dominance.

The time behaviour is shown in Figure 12.8. Notice that the level in tank 1
initially rises before falling to the equilibrium level.

Modal analysis allowed us to break down the responses of a multivariable
system into individual modes with physical meanings.

Here, the modal analysis of three interconnected water tanks revealed two
dynamic modes:

(i) Mode number one involved both outer tank levels rising together with the
central one falling twice as fast.

(i1)) Mode number two involved the central level remaining stationary with the two
outer levels moving in opposite directions.

X, level in tank 2, initial value 14

4y S x; level in tank 1, initial value 6

Xz level in tank 3, initial value —20

Figure 12.8 Transient response of the three-tank system
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We require the eigenvalues and eigenvectors of the 4 matrix. Using Scilab,

Matlab or similar software we obtain the eigenvalues as 4, =-3, 1, =—1, 13=0
with eigenvectors
—0.408 —0.707 0.577
er=| 0816 |,e;= 0 ,e3s= | 0.577 (12.24)
—0.408 0.707 0.577

Modal analysis involves representing the transient behaviour as a summation
of these eigenvectors (which are by definition the modes of the system) varying in
length with time as in the equation below, where the eigenvalues dictate the rate of
decay or growth

X(f) = elltx(o)mode 1 + ehtx(o)mode 2 T (1225)

The modal analysis viewpoint will now help us to completely understand the
dynamic behaviour of the three-tank system.

To proceed, we set the initial conditions for modes 1 and 2 so that each one is a
multiple of its related eigenvector (mode 3 will make no contribution since its
eigenvalue is zero). 6

We must have x(0) 4o 1 +%(0) 0402 = X(0) = | 14
-20
and by inspection
-7 13
x(o)mode 1= 14 3x(0)m0de 2 = 0 (1226)
-7 —13

and now the transient response of the system can be calculated as

X(f) = elltx(o)mode 1 + ehtx(o)mode 2 (1227)

as plotted in Figure 12.9.

The above graph relates directly to the physics of our simple process — we can
go further in that direction by realising that the two modes we have identified have
a satisfying physical interpretation. Eigenvectors have arbitrary scaling (those
shown earlier were normalised to have unit length), so for ease of understanding we
rescale our eigenvectors to obtain

—1 —1
er=| 2 |,ee=| 0 |,es=1(1 (12.28)

We now see (brilliant simplicity) how the system works. All possible transient
responses have to be made up of the following:

(i) A fast mode, time constant 1/3 s, in which levels (recall — measured from
equilibrium level) 1 and 2 are always equal to each other while level 2 is
always twice as great and of opposite sign (Figure 12.10).



260  Control theory: a guided tour

15
125 {

X1 slow mode

5 - \ X, fast mode
251
0 ————
951 < xgslowmode

_;z 1 ) X and x; fast mode
=109
125
0 015 1 li5 2 2l.5 3 3.5

Figure 12.9 The dynamic response of the three-tank system to an initial
disturbance in terms of the separate modes

Xo = 2X1 e
equilibrium
level zero
xll

X3 = XII

Figure 12.10 Mode one (the fast mode) for the three-tank system

(i) A slow mode, time constant 1 s, in which levels 1 and 2 are always equal and

opposite whereas level 2 remains at zero at all times (Figure 12.11).

It can be seen that the modal analysis of the three-tank system, as just per-
formed, gives an excellent understanding of the possible forms of dynamic beha-

viour that the three-tank system can perform.

Finally, for completeness, displayed below is a plot of the transient response of

the system and plot of the separate modal responses (Figure 12.12).
You may like to consider the following:

What, in general, does it mean to have a zero eigenvalue, a complex pair of

eigenvalues and repeated eigenvalues?
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1 2 3

X3 = _X1$
equilibrium

_________ - - - level zero

Figure 12.11 Mode two (the slow mode) for the three-tank problem

modes, fast and slow of x;
107 X, = level in tank one
) X, = level in tank two this is the fast mode of
5 tank 2, it has no slow mode
0 -
51 modes, fast and slow of x5
X3 = level in tank three (starts from the initial value —20)
—10 - / 3
—15 T T T T T T T 1

0 0.5 1 15 2 2.5 3 35

Figure 12.12  Complete display of the transient behaviour and of the separate
modes

12A An interesting approach to modal analysis for a third order
system with two complex eigenvalues

This Interlude demonstrates how to split the three dimensional state space of a
third order system with complex eigenvalues to reveal the modal behaviour.
Our starting point is example 34 from chapter 5 in (the still very worthwhile
reference) Zadeh and Desoer (1963) and we use the book’s rather nice




262  Control theory: a guided tour

derivation, (noting though that the complex eigenvectors quoted in the book
are unfortunately incorrect). However, following the Zadeh derivation but with
corrected eigenvectors produced an interesting result with oscillatory second
order behaviour in the u//u” plane.

The Zadeh and Desoer example is derived from an RLC circuit that has
the following A matrix

2 0 -2
A= 0 -1 1 (12.29)
0 -1 0

We calculate the eigenvectors E to produce the modal matrix (note —
those vectors quoted here are correct):

1.00000 + 0.00000i —0.63246 4 0.00000i —0.63246 — 0.00000:
E = 10.00000 + 0.00000; 0.47434 — 0.27386i  0.47434 + 0.27386i
0.00000 + 0.00000;  0.47434 + 0.27386i  0.47434 — 0.27386i

(12.30)

and the eigenvalues L are

—2.00000 + 0.00000;  0.00000 + 0.00000  0.00000 + 0.00000:
0.00000 + 0.00000;  —0.50000 + 0.86603:;  0.00000 + 0.00000:
0.00000 + 0.00000;  0.00000 + 0.00000;  —0.50000 — 0.86603:

)

(12.31

The transition matrix

0.13534 0.36177 —0.70525
® = | 0.00000 0.12619 —0.53351 (12.32)
0.0000 —0.53351 0.65970

Now taking as initial condition a vector x,, being a multiple of the first
(real) eigenvector

1
xo=[0 (12.33)
0

we find that the solution in three-space, a representative point of which must be

0.13534
x(f) = dxo = | 0.00000 (12.34)
0.00000

is a mode that is necessarily confined to a line (in this case the x, axis) along
which it decays monotonically. This is a real mode of the system defined by
the real eigenvector e;.

We carry on to find the plane defined by the complex eigenvectors.
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The first of the two complex eigenvectors has the form

—0.63246 + 0.00000;
0.47434 — 0.27386i (12.35)
0.47434 + 0.27386i

So using the approach advocated in Zadeh and Desoer whose justifica-
tion (not reproduced here) requires using the reciprocal basis we define a
plane in three-space by the two (real) basis vectors

! !

u u
[—0.63246] [0.00000]
[0.47434] [—0.27386]
[0.47434 ] [0.27386]

Now, if we choose any initial condition vector lying in that ', «” plane,
then we shall find that, although this is a third-order system, only second-
order behaviour is excited and that in the physical circuit, responding to the
same specially chosen initial condition, all currents and voltages will have
the same angular frequency, 0.866 rad/s, and the same exponential decre-
ment, —0.5. This response is shown as curve (b) in Figure 12.13.

magnitude

e (b)

0.2 @

1 2 3 4 5 6 7
—01 © time (seconds)

Figure 12.13 Three time responses of the system whose A matrix is

2 0 -2
0 —1 1 |:(a) the response of the real mode y=e '
0 -1 0

to an initial condition on the x; axis; (b) the response of the
oscillatory mode y =e~"'(cos 0.866t) to an initial condition
vector in the u', ' plane, defined in the text above; (c) the
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response of the system to an arbitrary unity initial condition
in three-dimensional state space. It has the form y=ae %'
(c0s0.8661) + Be " a and B being dependent on the direction
of the chosen initial condition vector

12.5 Moving between different system representations:
the relationship between state space and transfer
function representations

Although a transfer function contains the minimal parameterisation that can char-
acterise the dynamic behaviour of a system, a state space representation of the same
system may contain a great deal of additional structural information that does not
necessarily have any effect on the input—output behaviour.

To see this, assume a particular system is described by the matrices {4, B, C,
D3}, where A4 is an m X m matrix.

That means that there are potentially m® entries {a;} in the 4 matrix that can
influence the input—output behaviour of the system. However, if the system is
decomposed into four disparate parts (controllable and observable/controllable but
not observable/observable or controllable/neither controllable nor observable), then
it can be seen that only an #n x n subset of the 4 matrix, representing the con-
trollable and observable part, can affect the input—output behaviour, so only n*
possible coefficients, n < m, need to be considered.

(This is not to suggest that response to initial conditions can always safely be
ignored — consider, for instance, the dynamics of the planetary system of which the
Earth forms a part.)

So continuing on, take the # x n subset of the 4 matrix, defined as above, and
assume that it has » distinct eigenvalues A,, i =1, ... , n, then it can be diagonalised
by the manipulation

A 0 - 0
0 A
—1
E'AE=A=| . | (12.36)
0 0 - A,

where E is a square matrix whose columns are the n eigenvectors of 4. Note
that many authors, including this one, call £ the modal matrix E = (eile;| . . . |e,), so it
is clear that A is in a sense a minimalised 4 matrix having » (diagonal) entries.

An important conclusion from the discussion above is that, to every transfer
function G(s), there correspond many state variable representations {4, B, C, D}
with the same input—output behaviour, and conversely, many state variable repre-
sentations will have the same transfer function.

We can summarise this fact by thinking of a transfer function as con-
taining sufficient information to fix the dynamic input—output behaviour (and
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equivalently to fix the input—output response of a whole range of representations
{4, B, C, D}).

The state representation {4, B, C, D} on the other hand contains structural
information, over and above that necessary to define the input—output response.

12.5.1 Poles and zeros of state space systems

To look further into the relation between transfer functions and state space repre-
sentations, it is instructive to look at the definitions of poles and zeros for each. For a
transfer function G(s), poles are those values of s for which the magnitude of G
approaches infinity whereas the zeros are those values for which the magnitude is zero.

Now considering the state space representation, we write the system equations
in terms of the Rosenbrock system matrix

(e 5) ()= (o) (1237
from which

(s] — A)x(s) = Bu(s) (12.38)

Cx(s) + Du(s) = y(s)

x(s) = (s — A) " Bu(s)

¥(s) = [C(sT — A)"' B+ Dlu(s)

s0 G(s)=C(sI-A)'B+ D

Now recall that in one method of inverting the matrix (s/—A4) ' by hand!, an
intermediate stage is reached where we have

_ di(s] — A)
[—a) =2 E 12.39
o) =S (12.39)

where adj indicates the adjoint of a matrix. Therefore, we can write
adj(sI — A)B
=C———+D

G(s) 5T — 4| +

G(s) :Cad]'(sl—A)B+|sl—A|D (12.40)

|sf — A|

Examining the last equation, it is immediately obvious that only the matrix 4
can influence the poles of the whole system {4, B, C, D}, whereas all four of those
matrices are potentially involved in determining the zeros.
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The above equation hopefully explains why there are several different cate-
gories of zeros of state space systems, and thankfully, in practice, they do not need
to be explicitly determined very frequently.

State space system zeros could be further investigated by considering the rank
of the Rosenbrock system matrix, but that matrix is in general not square and its
determinant is therefore, in general, not defined.

12.6 The relative gain array (RGA) and singular value
decomposition: two useful tools to help in the task
of controlling a multivariable process using a set of
individual SISO control loops

Despite the proliferation of available design techniques for control of multivariable
processes, it remains the case that industry often has a preference for using multiple
single loop controllers, each one with a recognisable understandable task, rather
than one monolithic multivariable controller.

Here we explain briefly two different approaches. First, the semi-empirical
relative gain approach (RGA).

12.6.1 The RGA: in its simplest form, a forecaster of steady
state interaction

The RGA, in its simplest form, is a forecaster of steady state interaction between
possible loops in proposed designs to control an m x m process using m SISO loops.
This pragmatic method quantifies interaction and recommends which input u;
might best control output y; for all possible 7, ;.
For a multivariable interacting process, a useful tool in the early stages of
investigation is the concept of relative gain, introduced by Bristol (1966). Let a
process in the steady state be represented by the equations

Xi =filx1, . Xn,thyy . ty), i=1,...n (12.41)

The open loop, steady state sensitivity of state variable x; to control input u; is
defined to be [gTZ] iy
The closed-loop steady-state sensitivity of state variable x; to control input uy is
found by assuming that all other values of x;, i=1,..., n, i # j are held constant by
closed loop operations. Substituting to take this into account yields the equation of closed
loop operation. Differentiating the closed loop equation yields the closed-loop stgady-
Xj

state sensitivity of state variable x;, to control input u;, which is defined to be [5;/].

The relative gain for the relation between u; and x; is then defined to be

- 8xj axj
. = [M] Y [ML (12.42)

The system described above has n” relative gains that can be arranged in a
square matrix having the property that each column and each row sum to unity.
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Inspection o1 the matrix ylelds valuable information on tne nature ot tne control
problem and on the degree of interaction between variables. When o = 1, there is
no interaction between this particular control mechanism and any other. If all the
values are positive, then clearly they all satisfy the relation 0 < @ < 1, and under
this condition, the system can be expected to be stable. Control loops will normally
be chosen to operate between those variables linked by the largest values of a.
Negative values of « in general indicate a more difficult control problem with
possibilities of instability for at least some of the possible control configurations.

12.6.2 lIllustrative example

A process with state variables x; and x, has input controls #; and u, and is
described in the steady state by the equations

X1 = U + 05u2
x, = —0.075u; 4+ 0.1u, (12.43)
The closed loop equations are, for x;, assuming that x, is held constant,
10. 0.75 4
X1 =1u +M=—[uz+10xz]+@ (12.44)
2 3 2
and for x,, assuming that x; is held constant,
up
X = ~0.075 [x, - 7} +0.1uy (12.45)
It then follows that
10) 10)
S, |2 21375, ay = 0.727 (12.46)
81/{1 o 81/11 c

and the complete relative gain matrix may be determined from the property that
rows and columns sum to unity.
The matrix of relative gains is therefore found to be

0.727 0.272
<0.272 0.727) (12.47)

In this example, control u; can control variable x; and control u, can control vari-
able x, without stability problems being expected to occur. The interaction can be seen to
degrade the control performance. Notice that dynamic effects were not considered at all.

Consider a different set of process equations in steady state

X1 = u; +2uy

12.48
Xo = Uy + up ( )

This system yields the following matrix of relative gains.

(21 _21) (12.49)
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The minus signs indicate a change of polarity in the appropriate sensitivity
coefficient between the open and closed loop conditions. More care is needed with
this type of control problem than in the case where all the a coefficients are positive.

The decision may be made to design a decoupling controller to obtain a more
favourable control situation. However, analysis shows that processes having relative
gains outside the [0, 1] range and under decoupled control are excessively sensitive
to small changes in parameters and may, in a practical situation, easily be brought
into an unstable region by such small parameter changes (see Shinskey (1988)).

Notice that the RGA approach (restrictively) assumes that the process has the
same number of actuators as sensors (a so-called square process).

Notice also that in an application of control to a process with strong but not
destabilising interactions, the pairing of actuators with sensors will often be further
influenced by speeds of response, with the fastest acting actuators being allocated
to controlling the most critical process variables.

Matlab commands for RGA determination

The Matlab command

R =rga(G) (12.50)

returns the RGA
while the command

R =rga(R) (12.51)

applied repeatedly, eventually returns a matrix consisting only of zeros and ones
with exactly one ‘1’ in each row and in each column, this is called a ‘selection
matrix’, S, by Matlab (since it implies that SISO control of a given multiple-input,
multiple-output (MIMO) process can best be carried out by linking the inputs and
outputs where indicated by the unity entries).

Both matrices R and S can be obtained by the one command

R, S] = rga(G) (12.52)

Our discussion above was limited to the steady state. Matlab subroutines are
available to calculate frequency-dependent RGA, for any frequency or for a sweep
of frequencies and can therefore be a useful pre-design checking tool and an aid in
pairing, i.e. choosing m SISO control loops u; = y;: i, j €[1, ..., m] with which to
control an m X m process where there is thought to be a danger of destabilising
interactions between variables at frequencies other than o =0.

See the reference Monshizadeh-Naini (2009).

12.6.3  Singular value decomposition

The second design approach we discuss uses singular value decomposition
(SVD).

Controlling n-dimensional multivariable processes by diagonalisation (or
similar techniques), followed by the design of single loops:

Straightforward diagonalisation can be applied to ‘square’ systems with n
inputs and » outputs and with » real distinct eigenvalues.
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For example, let

A= {_04 _15} (12.53)

with modal matrix

N I S U T N I |
=Y et (259

Matrix 4 can be diagonalised to produce the equivalent matrix A" given by

(||
A ==
314 1 4 —5|| -4 -1
[-4 0
=1, (12.55)

The idea is as follows: If we have an n-dimensional linear process with n
actuators and » sensors and if the process model has real distinct eigenvalues, then
the square process matrix 4 may be diagonalised to yield

A=EAE (12.56)

where A is a diagonal matrix of eigenvalues and E is the modal matrix of 4 with
eigenvectors as its columns.

If now, the process is preceded by £~ 'and followed by E, then the combination
becomes diagonal with the possibility of designing »n non-interacting individual
control loops. Note that the variables now being controlled will no longer be the
original process-meaningful ones — but instead linear combinations of them.

SVD decomposition works in much the same way as just described but without
the severe limitations of squareness and realness.

Using the Scilab or similar command [U, G, V] =svd(4) will decompose any
rectangular matrix to yield three matrices satisfying the relation

A=UGV (12.57)

where G is a rectangular matrix with the singular values of 4 arranged (traditionally
in descending order of magnitude) on its initial leading diagonal, with the matrices
U and V playing the role of the £ and £~ ' matrices discussed above.

Note that again, using this approach, the variables being controlled will no longer
be the original process-meaningful ones — but instead, linear combinations of them.

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18.






Chapter 13
Optimisation

13.1 Initial discussion

Optimisation is concerned with finding the best possible solution, formally referred
to as the optimal solution, to a particular problem. The term optimisation is often
used very loosely in general speech, but in control theory it has a precise meaning:
the action of finding the best possible solution as defined by an unambiguous cri-
terion (or cost function).

Optimisation has, to some extent deservedly, acquired a reputation for being
out of touch with reality. This is because the analytic techniques for optimisation
are highly involved, and in order to make headway, many workers have resorted to
drastic modification of the original problem to allow application of some particular
optimisation technique; i.e. simplistic assumptions about the problem have,
unsurprisingly, produced simplistic solutions. Currently, more healthy attitudes are
beginning to prevail. For instance, it is becoming accepted that, for large complex
problems, it may be better to encode optimality criteria in more vague but more
realistic terms that parallel human evaluation criteria, than to force unwilling pro-
blems into an ill-fitting straitjacket to allow rigorous optimisation. With these
reservations having been made, it is possible to turn to the ideas and techniques of
optimisation theory and practice.

13.2 Optimisation: a few ideas that can form building blocks

Case 1: A mathematical function may take on a maximum value (Figure 13.1).

(a) If we know the ‘formula’ for the function £, the maximum value can be found
by the methods of elementary calculus.
(b) If fis not known as a function, but nevertheless particular values, f{x;), fix,),
.., can be generated for chosen values x|, x, ..., then it will clearly be
possible to find the maximum value, to any desired value of accuracy, by
numerical search. The efficiency of such a numerical search will vary widely
according to the approach used, but almost any conceivable approach would
succeed in approaching the maximum to whatever accuracy is required.
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maximum

< value

&)

X

Figure 13.1 The function takes on a maximum value where the first derivative
df/dx is zero

f)

/

d

X
; restricted

interval

Figure 13.2 The function takes on a maximum value at the upper end of the
restricted (closed) interval. Notice that here dfidx # 0

Case 2: A mathematical function, on a restricted interval of x, will always take on a
maximum value (Figure 13.2).

Strictly, any continuous function defined on a closed interval will take on max-
imum and minimum values on that interval.

This is Weierstrass’ theorem (see Hardy (1963)).

Note in this case that, as suggested in Figure 13.2, the maximum value may be
at a boundary point and that, at a boundary point, the derivative of f will not
necessarily be zero and that therefore the ordinary methods of calculus will not
suffice to find such maxima.

Case 3: A scalar-valued function of n variables, i.e. f:R, — R|, may take on a
maximum value.

A scalar-valued function for n =2 is illustrated in Figure 13.3.

(a) If the formula for f'is known, then, again, ordinary methods of calculus will
suffice to determine the maximum (i.e. Vf = 0 at the maximum).

(b) If the formula for f'is not known but nevertheless particular solutions can be
generated numerically, then it is possible to imagine searching in the parameter
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contours of
Xy constant

S(xy, x5)

maximum
value of /

Figure 13.3  The scalar value functions of two variables take on a maximum value
where 0f/0x,;, Of/0x, are both simultaneously zero

space to find the particular values of xy, x5, ..., x, that maximise the function,
but, whereas in case 1(b) it was clear that any algorithm, however amateur,
would eventually locate the maximum value when x was a single variable, it is
now by no means obvious how to search n-dimensional parameter space in a
meaningful way. Even in the simple case sketched in Figure 13.3 for n=2,
considerable ingenuity has to be exercised in devising search algorithms.

Should the function f'have a less circular shape in parameter space (i.e. as in Figure
13.4), then successful searching can be expected to be increasingly difficult.

Case 4: A scalar-valued function f: R, — R, defined on a closed region of para-
meter space, will take on its maximum value on that region (Figure 13.5).

Case 5: One particular function among a set of continuous functions on an interval
may maximise a scalar-valued cost function (Figure 13.6).

A specimen problem is as follows: From the set of all continuous real-valued
differentiable functions, u(f) : [to,tor] — u(t) € R? x t, choose that particular
function u*(?), t € [to, ty], that maximises

fu(®),f: R xt - R!

maximum
Y2 value of f
X1
contours of
constant
Sy, x0)

Figure 13.4 Another scalar-valued function of two variables. Here the elongated
contours make numerical searching for the maximum difficult
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*2 closed region

s

maximum
value within
the closed
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\/ Xq
contours of

constant f(x, x,)

Figure 13.5 A scalar-valued function of two variables will take on its maximum
value within the closed region shown. If the maximum is on the
boundary of the region, 0f/Ox; and 0f/Ox, will not usually be zero
there

u(f)

fo time Iy

Figure 13.6 A specimen continuous function defined on [t,, t

fis a scalar-valued criterion (cost-function) operating on the set of all real-valued
continuous functions u(f) that are defined on the interval [z, #]. Even a casual
inspection will show that this problem is very much more difficult than those
defined earlier as cases 1 to 4.

An infinite set of candidate functions u(f) exists, and although it is quite easy to
envisage finding a numerical approximation to u(f) using some form of computa-
tional search algorithm, the analytic method of determining u(f) exactly is a clas-
sical mathematical method of great power and beauty.

This analytic method forms part of the subject usually called the calculus of
variations, a subject that traditionally was founded by Queen Dido when she
maximised the area of land available for founding the city of Carthage about
850 BC.

In its simplest form, the method determines the curve u(7) that, passing through
two fixed end points, minimises a given integral.

J= Jl/f(u,w)dt (13.1)

0
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u(@) + egp(?)

t=0 [:;/.

Figure 13.7 The supposed optimal curve u(t) and an arbitrary variant u(t) + ep(t)

Figure 13.7 shows the supposed optimal curve u(f) and one arbitrary variant
u(t) + €¢(t), ¢(¢) an arbitrary function and e a scalar. The variant function is
approximated by the first two terms of a Taylor series. Manipulation then produces
the condition for optimality.

brof d (of
JfL ¢<audz(aa>)dto (13.2)
However, ¢(f) was chosen arbitrarily; hence, the optimality condition reduces to
of d (of
() = 13.
Ou dt <8u) 0 (133)

This is the Euler-Lagrange necessary condition for optimality of the curve.

Use of the calculus of variations to solve control problems: In optimal control
problems, the differential equations that model the process to be controlled must be
satisfied at all times, while, simultaneously, the Euler—Lagrange conditions have to
be met. The extension of the calculus of variations to meet this requirement is
usually performed by the use of Lagrange multipliers.

Suppose that the optimal control problem is to choose u(?) on the interval [0, #/
so that the process with model

)'Cl = X2

. (13.4)
X =X1 — U
behaves so as to minimise
Iy
J:J F5,0) (13.5)
0

The Lagrange multipliers 4, A, are introduced by enhancing the expression for J to

]
J=J/f(x,5c,t)+/11(5cl—xz)Hz(fcz—xl+u) (13.6)
0
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Minimisation of the enhanced expression for J, still using the calculus of variations
approach, will now minimise the original J while satisfying the equality constraints
imposed by the process. After the Lagrange multipliers have served their purpose in
this way, they are eliminated by substitution. The result obtained is an optimal
control strategy, specifying a curve u,,/f) on the interval [0, #,] that, when input to
the process (as modelled by (13.4)), will result in a performance that minimises J.

Case 6: One particular function among a set of functions satisfying an inequality
constraint may maximise a scalar-valued cost function.

A specimen problem is as follows: From the set of (not necessarily continuous)
functions

u(t) : [to, tr] — u(t) x R x ¢ (13.7)

that satisfy the constraint ||u()||<m (m is a constant, for all ¢ in [t,, t])
(|Jx||indicates the norm, being a scalar-valued measure of a vector, matrix or
function.) Let us choose that particular function u*(¢) : [#, t] — that maximises

f(@®), f:R' xt—R (13.8)

Notice that u(f) has to remain within the admissible region shown in Figure 13.8.

We observe that many practical optimisation problems arising in control
applications are subject to a constraint on signal magnitude similar to (or possibly
more complex than) the constraint outlined here. Very often, the optimal function
u*(f) will be found to take values on the boundary of the admissible region for some
or all of the time period (%, #), as in Figure 13.9.

This problem may turn out to be either more or less difficult than that of case 5.

It is more difficult than case 5 in that the presence of the constraint makes it
more difficult to apply methods analogous to ordinary calculus. The problem may
be easier than that of case 5 in those cases where it is possible to say in advance that
the optimal solution u*(¢) operates along the boundaries of the region during the
whole of the time period (7, #;) with a finite number of switchings between these
extreme values. Finding the optimal solution #*(¢) then amounts to the simpler (?)
problem of determining the finite set of switchover times.

admissible region

u(f) %for u(r)

| 4

time

fo l

Figure 13.8 The admissible region in which u(t) must remain
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a function u(7) that lies
on the constraint for

u () ){almost all 7

fo i

Figure 13.9 The optimal u*(t) will often take values on the boundary of the

admissible region

The above six problems, cases 1 to 6, illustrate in a simplified way the range
and nature of optimisation problems that are encountered in control theory. It must
be emphasised though that the problems 1 to 6 as described concentrate only on the
core features. Any realistic optimisation problem requires a quite extensive fra-
mework involving dynamic system models, a possibly complex criterion function
and, where appropriate, mechanisms for taking constraints into account.

13.2.1 Discussion

We begin by listing some general points:

(M)

(i)

(iii)

(iv)

V)

Even the simplest optimal control problem involves a process model and a
cost function J. The process model can be considered to impose equality
constants on the minimisation of J.

The choice of J is difficult in every real case — a compromise always has to
be reached between relevance and mathematical tractability. Forcing a
complex, often unquantifiable, problem to have a simplistic cost function is
likely to lead to results that have little practical value.

In most control problems, the magnitude of the controls must not exceed
certain upper limits. The upper limits can be considered to be inequality
constraints on the minimisation of J.

Inequality constraints (see iii) prevent the calculus of variations being
applied. Pontryagin’s maximum principle or the method of dynamic pro-
gramming then need to be used. (The situation to be dealt with is essentially
a generalisation of that where a function defined on a closed interval is to be
maximised — the methods of ordinary calculus cannot be used because the
maximum may not be a turning point — see Figure 13.2.)

The methods discussed above all yield open loop optimisation strategies,
i.e. they specify u,,(t) for all # in the time interval of interest. It is usually
impractical to implement open loop optimisation, except in a few special
cases, and the strategies need to be converted to closed loop algorithms. This
conversion is always possible provided that J is a quadratic form and that the
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process model is linear. Under these, very restrictive, conditions the optimal

feedback law is yielded by the solution of a Riccati equation. Even then, the

Riccati equation has time-varying coefficients, making it difficult to imple-

ment, unless the optimisation horizon is infinite.

(vi) The optimal feedback algorithm produced by the solution of the Riccati
equation usually requires all of the process states to be measurable online. If
some of the process states are inaccessible, a state estimator will need to be
developed to make those states available online.

(vii) If a state estimator feeds an optimal feedback algorithm, the question arises:
Does the combination of optimal estimator and optimal controller yield the
overall optimum solution (since usually, a set of interconnected optimal
subsystems would not combine into an overall optimal system)? This pro-
blem is addressed by the separation theorem. This roughly states that, if the
system is linear, the noise signals Gaussian and the cost function quadratic,
then overall optimisation will be yielded by a combination of optimal state
estimator and optimal feedback controller.

(viii) The effects discussed in (i)—(vii) add together to make realistic optimisation
of a real process a very difficult task indeed. There is nevertheless a great
potential for optimisation techniques to lead the way in approaches to the
co-ordination of complex processes involving many hundreds of elements
and in extracting additional productivity from systems containing complex
process mechanisms (such as micro-organisms).

(ix) The literature on optimisation is enormous. Some suggestions are made in
Section 18.9.

(a) We now go on to discuss one particular optimisation problem — that of
time-optimal control. This topic forms just one aspect of optimisation as
discussed above and in no sense is it different or isolated. Here, it has
been singled out for amplification because the development is quite
pleasing, leading to a geometric interpretation and a link across to
operator methods of system representation.

13.3 Time-optimal control

Assume that, in the system of Figure 13.10, the shaft is at rest at position 6, and it is
required to bring it in minimum time to a new rest position 6.

We can think of the problem in the following way: the quantity (6, — 6) is fixed
and all possible solutions can be sketched as velocity—time graphs. It is clear that, to
obtain a minimum time solution, we must have the steepest initial rise in velocity
followed by the steepest possible fall (since, in graphs like that of Figure 13.11,
we need to generate maximum area beneath the graph in the shortest time interval;
i.e. the ideal velocity profile is rectangular with infinite acceleration/deceleration).

Idealised situations in which there are constraints on velocity but not on
acceleration (case a) and vice versa (case b) are shown in Figure 13.12. It can be
seen that the minimum time solution is only meaningful if there are constraints on
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shaft
angular
position 0

motor

power to
motor

Figure 13.10 A motor driving an inertia load

(a) (b)
area= 6, - 6,
2 time to > time to
8 complete 8| area= 6,- 6, complete
g movement g movement
time time

Figure 13.11 Two possible velocity profiles that each result in the movement of
the shaft from position 6, to position 0,

€ (b)
maximum
maximum . allowable
> aIIow_abIe > slope
'S / velocity 'S
E E
-+ area= 6, - 6, area= &, - 6,
time time

Figure 13.12  (a) Minimum time velocity profile for the case where velocity is
constrained but acceleration is unconstrained; (b) minimum time
velocity profile for the case where acceleration is constrained but
velocity is unconstrained

velocity or acceleration — for otherwise the minimum time would approach zero as
the acceleration/deceleration increased without limit (Figure 13.13).

Thus, we can see that the minimum time solution requires maximum accel-
eration followed by maximum deceleration, with the only decision being the time at
which the changeover is to be made between these regimes. A control that stays on
one constraint or another all the time (rigorously — almost all the time) is called a
bang-bang control.

It is a result in optimal control theory that every minimum-time control pro-
blem has a bang-bang solution and it therefore follows that if the minimum-time
control problem has a unique solution then that solution is a bang-bang solution.



280  Control theory: a guided tour

™M
area= 6, - 6,
2
'S
o
°
>
time to
complete
/ movement
time

Figure 13.13 A minimum time solution with no imposed constraints tends in the
limit to an infinite velocity spike

13A Time-optimal control: a geometric view

Let the system of Figure 13.14 be at an initial state x, at time #,. Consider a
time #; > t, and let Q represent the set of admissible (i.e. constrained) con-
trols defined on the closed interval (y, ¢;).

Now let R represent the region in state space X to which the state x can
be driven in time #; — f#, by the application of all possible admissible controls
in Q;. Consider next a time #, > #;, and let Q, represent the set of admissible
controls defined on the interval [#,, t,]. It is clear that the region R, in X to
which the state can be driven in time ¢, — #, must contain the region R .

Thus, considering times ¢, t», ..., t,, with ¢, > ... t, > t;, the reachable
regions in state space will have the form shown in Figure 13.15. The meaning
of these regions is that any point x in region R; can be reached in time #; — #,.
Under reasonable assumptions of smoothness, the region R grows smoothly
with increasing time, so that, given any chosen point x,, there exists some
unique time, say ¢*, for which x; € OR(¢*), i.e. x4 is a boundary point of the
closed set R (¢*).

This means that:

(i) x4 cannot be reached from x, by the application of admissible controls in
any time ¢ < t*

(i) x4 can be reached in time ¢* and, because (i) applies, £* can be seen to be
the minimum time.

To summarise, a point x,; can be reached in minimum time ¢* if and only if x,
belongs to the boundary OR(#x) of the reachable set R (¢*) (see Figure 13.16).

In Figure 13.15, x, cannot be reached in time ¢;. x, can be reached in
time #* and this will be the minimum time solution. x; can be reached in time
1, but this is not the minimum possible time. In this case, if the requirement is
to reach point x,; at time #,, the problem is not a minimum time problem.
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Figure 13.14 The system whose time-optimal control we study

Ry R, Ry

[ [/

Figure 13.15 Reachable regions in state space

R(*)  OR(*)

Q ()

R(t1)

Figure 13.16 x4 belongs to the boundary of the region R(t*)

The shape of the reachable set R

We have already observed the useful property that the set R grows smoothly
with time. Now we turn to examine the shape of R. If the system that we are
studying is linear then it can be represented by a linear transformation, say P,
operating on the initial condition x, and the chosen control u(#) to produce a
new state, i.e.

P (xo,u) —x (13.9)
where x € X, u € Q(ty, t) for some fixed 75

xeXx (13.10)
And in this sense we can define R(tr) as

R(ty) = {x|u € Q} (13.11)

This can be stated more simply as

P:Q—>TR (13.12)
1.e. the linear transformation P maps the region Q into the region R.




282  Control theory: a guided tour

We now note that convexity is invariant under linear transformation (see
Hardy (1963)), and thus if the set Q is convex (strictly convex), then R will
also be convex (strictly convex), provided that the system under study is
linear (Figure 13.17).

@ (b) ©

the line joining any the line joining any the line joining

2 points in the set 2 points in the set some pair of

is in the interior of lies in the set points in the set

the set is partly outside the set

Figure 13.17 (a) A strictly convex set; (b) a convex set; (c) a non-convex set

Geometrically, a set C is convex if the line joining any two points in C
belongs wholly to C. (For strict convexity, the line joining every two points
must be in the interior of C.)

The shape of the set Q of admissible controls
It is surprisingly rewarding to examine the shape of Q as it relates to practical
constrained control problems. For simplicity, we will concentrate on the case
where the control input u is a vector with two elements u(%), u,(?).

The most common constraints encountered in practical applications are
as follows:

(@) uy(f)y + uy(f), < m for all ¢, m a fixed scalar
(b) [u1(9)] + |ux(f)| < m for all ¢, m a fixed scalar
(c) max{|u;(9)|, |ux(¥)|} < m for all ¢, m a fixed scalar

The shape of these constrained sets for the three cases is shown in
Figure 13.18. (This is the usual Euclidian norm on the space U.)

(a) /i>\ (b) (c)
m m
\p 7

Figure 13.18 (a) The set Q for the Euclidean norm; (b) the set Q for the
absolute value norm; (c) the set Q for the maximum value norm

All the sets are convex but only case A has a strictly convex constraint
set. (Almost all comparisons seem to end up confirming the superiority of
least squares as a criterion.)
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Thus, for linear systems with constraints on U defined by approaches
(a), (b) and (c), the set R will have one of the shapes sketched above.

The significance of the shape of the set R

It can also be shown that, if the set R is compact, then the optimal control u
to reach x, is unique if x; € R(¢) for some ¢. The interior mapping theorem
then shows that # must attain its maximum if it is to be an optimal control.
Finally, Lyapunov’s theorem that the range of a vector measure is closed
allows the bang-bang nature of a unique time-optimal control to be proved.
Geometrically, this shows that time optimality requires x, € R(z*) and that
the pre-image of x; in Q belongs to 0Q (Figure 13.19).

R(1%)

50 .

OR(r*)

Figure 13.19 Time optimality requires that the pre-image of Xq belongs to 0Q

13B The following geometric argument can form a basis for the
development of algorithms or for the proof of the Pontryagin
maximum principle

Letx; € R(¢"); then there exists a hyperplane M that supports R at x,;. M can
be represented as the translation of the null space of some non-linear func-
tional g on the space X i.e.

M = {x|g(x) = C}, C a real number (13.13)
can also (Riez representation theorem) be written

(x,2) (13.14)
where g is normal to the hyperplane M

Xg ER({E)NM (13.15)
and

(x,g) = sup,(x,g) (13.16)

i.e. x4 is the farthest point from x in the set R (#*) in the direction g but x = Pu,
while if x; = Pu with x; € R(¢), then u is an optimal control on [0, #*]. Further,
if x, is an extreme point of R (#*), then u is the unique optimal control.
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13C Construction of time-optimal controls

A linear dynamic system has equations
x(t) = A()x(¢) + B(#)u(z) (13.17)

or equivalently

x(t) = @(2)x(to) Jr ®(z — 7)B(1)u(r)dr

(13.18)

t
= ®@(1)x(ty) + @(I)J ®(—7)B(1)u(r)dr
fo
The control problem is, given x, € X, choose u(t) € Q where Q = {u||u(?)| < k}
such that

(1) x(t*)=xq
(i) % =inf{tx(t) =xq t > to}

and define
e(t) = D () (xg—x(to)) (13.19)
The control objective then is to choose u such that
t t*
e(t) = J & ! (7)B(t)u(r)dr 4 J O(7)u(t)d(7) (13.20)
fo to
Assume there exists an optimal control, then, necessarily,
e(t") €0A(") N M (13.21)
where
AE) 2 {r()u e Q x o]} (13.22)

A 18 called the attainable set

t

M = {xlg(x) = C},r(r) = J O(v)u(z)dr (13.23)

fo

(M is a hyperplane, g is a functional on X) for some function g and for some
constant C.
Now, as we have seen, for optimality,

(e(r),8) = sup(r(r'), g) = sup Jt O(v)u(r)gdr

u u fo

-~ 1/q o 1/q
< (] 1owerar) ul, < k([ 10merar)

(13.24)

The condition for optimality is that equality should exist in the
inequality chain, i.e.
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u(r) = alQ(v)g|""sign(Q(r)g) (13.25)
where a is a constant to be determined and

1 1

— 4+ =1 (13.26)

qg P
When U is an L™ space, the optimality condition reduces to

u(t) = asign(Q(1)g) (13.27)
but ||#||., = k for optimality; hence, a =k to give

u(t) = ksign(Q(1)g) (13.28)

t* and g have to be computed, and Kranc and Sarachik (1963) suggest
appropriate methods.

13D The (matrix) Riccati equation: some history

The matrix Riccati equation is most often encountered at an intermediate stage
in the numerical calculation of quadratic optimal control/optimal observation
algorithms. The equation looks quite forbidding but is now easily solved
numerically by a Linear Quadratic Regulator (LQR) algorithm (for instance)
but one can understand how, before about 1975 and the arrival of easily
available high-level software tools such as MATLAB, the Riccati equation
was too intractable to be solved without significant effort. Other methods were
therefore used to solve optimisation problems and Riccati equations were
rarely mentioned except in specialist mathematical journal papers.

This observation was confirmed by a point sampling of a few main-
stream control references from the past — e.g. Truxal (1955), Zadeh (1963)
and Beveridge (1970) contain no references to LQ or Riccati and it is not
until Sage and White (1977) (Chapter 5.1) that the first in-depth coverage can
be found in the mainstream literature.

Therefore, it may come as a surprise that Count Jacopo Riccati published
his equation in 1724 and that Daniel Bernoulli’s earliest mathematical pub-
lication in 1725 offered a solution to it and that it was the centre of con-
siderable intellectual activity before descending into relative obscurity. The
pedigree of the equation is complete once it is realised that the name was
bestowed on it by none other than Leonard Euler in 1733.

It would surely be interesting to have samples of the applications that might
have motivated Riccati to publish examples of his differential equation in, for
instance, Riccati (1724) and which drew a response from Daniel Bernoulli.
According to Bittanti (1996), one such motivation was the following problem

] = [ e[e] 1320




286  Control theory: a guided tour

which describes the trajectory of a point in the (@, ) plane.

Riccati was interested in the behaviour of x = f—P which is governed by
the eponymous Riccati equation ¥ =ax* + bx + x, where a=—w,,
b= —Wjpo —Wj1, C=Wpj.

Some interesting references:

Bernoulli D. ‘Solutio problematis Riccatiani propositi’. ASct. Lips. Suppl.
Tom. VIII, p.73. ActaEruditorum. 1725:473-75

Bittanti S., Laub A., Willems J. The Riccati Equation (Berlin, Springer-
Verlag, 1991)

Bittanti S. ‘History and prehistory of the Riccati equation’. Session Origins
of the calculus of variations and optimal control, IEEE Conference on
Decision and Control, Kobe, Japan; December 1996 (300 years after the
publication of Bernoulli’s paper on the ‘brachystochrone problem’ in the
ActaEroditorumLipsae (1696))

Riccati J.F. Animadversiones In Aequationes Differentiates, Acta Eruditorum
Lipsiae. (1724). Re-printed by Bittanti S. (ed.). Count Riccati and the Early
Days of the Riccati Equation (Bologna, Milano, Pitagora Editrice, 1989)

13.4 Linear quadratic optimisation

13.4.1 LQR problems with infinite time horizon

LQR problems are Linear Quadratic Regulator problems, meaning that they deal

with linear dynamic models, that the usually unique solutions are those that minimise

a quadratic (i.e. least squares) criterion and that the assumed underlying problem is

regulation (i.e. to control some process so as to minimise the effects of disturbances).
The relevance of the infinite time horizon is that, in such cases, the optimal control

strategy is always time invariant and, thus, one is seeking a steady state strategy.
Given the standard continuous time state equation

x' = Ax + Bu (13.30)

it is assumed that all elements of the state vector x are accessible to be fed back
directly through an appropriately dimensioned gain matrix K, so that ¥ = —Kx and
the state equation becomes

X' = Ax + BKx

= (4 +BK)x (13.31)

Notice that although the control signal is no longer visible in the above equation, it
is nevertheless very active and in any proposed design its magnitude and rate of
change need to be kept under review to ensure that the inevitable linearity
assumptions are not too drastically violated.
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It is a useful viewpoint to consider the matrix (4 + BK) to be the new system
matrix that we, as system designers, can modify through choice of the feedback
gain matrix K.

Clearly, we might attempt to specify and then achieve pole locations for the
matrix (4 + BK). However, it is not easy, in a multivariable situation to decide on
the pole locations that will achieve a desired real-world performance and the LQR
approach uses a more understandable scalar-valued time domain cost function

J= r (x"Ox + u" Ru)dt (13.32)
0

O, R are (usually chosen to be) diagonal weighting matrices that indicate the cus-
tomer-specified relative priorities on tight control of the states (Q) and minimisa-
tion of the costs of control actions (R). To guarantee the existence of a solution, it is
necessary that Q is positive semi-definite and that R is positive definite. J can be
calculated and minimised by an LQR optimisation routine that operates by solving
the continuous time algebraic Riccati equation

A™X + XA - XBR'B'X +0=0 (13.33)

where X is an n X n symmetric matrix to be determined and 4, B, O, R are given
real matrices that specify the problem.

Once we are in possession of the matrix X, we are able to calculate the optimal
control signal u,,, that will minimise J from the equation

Uope = —R'BT Xx = Kx (13.34)
so that
(Ax + Bugp) = (A + BK)x (13.35)

We proceed to a simple example with an open loop stable process that we shall
solve for widely different choices of O and R and then shall repeat the procedure for
an unstable process. Some of the benefits of the design approach will hopefully
become apparent.

13.4.1.1 Solution of the LQR problem for three different choices of
cost function: open loop stable process (see Figure 13.20,
where the dynamic performances are compared)
The process has two states and one input and it is assumed that both states are
available to be fed back.
Our process can be thought of as a motor with inertia and friction having
angular position x; and angular velocity x; (so that x, = x).
In what follows, we use for conciseness, inline representations of matrices, so
we have 4 (2 x2)and B (2 x 1):
A=][0, 1;-2, -3]; B=[0.85; 0.68]; //two states, one input
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Figure 13.20 Simulated time responses of the four systems, cases 0—4, given an

initial condition of x = [10; —10]

Case 0: For comparison

This is a stable open loop system with real poles at s = —1, s = —2 and will have
reasonable disturbance attenuation properties even without feedback. The transition

matrix ®(7), ¢+ =1 for this open loop system is

0.600, 0.233; —0.465, —0.097]

(13.36)

(In the comparisons that follow, the transition matrices will be quoted for f=1 in
all cases, in the belief that, perhaps after a little practice, they allow a rapid view of

a system’s transient response.)

Case 1: Cost of control is important
O=diag[l, 2.5]; R=4
X=[1.466, 0.1378; 0.1378, 0.455]
K=[-0.335,-0.107]
A + BK=[-0.285, 0.909; —2.227, -3.072]
Eigenvalues of 4 + BK=-1.679 £ j0.288
Transition matrix of 4 + BK=[0.435, 0.167; —0.410, —0.078]

Case 2: Disturbance attenuation is important
O =diag[4, 10]; R =1 needs redoing with R =1 not 4
X=[3.149, -0.425; —0.425, 1.459]
K=[-2.39, -0.631]
A + BK=[-2.029, 0.463; —3.623, -3.429]
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Eigenvalues of 4 + BK=-2.729 £ j1.09
Transition matrix of 4 + BK=[0.067, 0.025; —0.192, —0.007]

Case 3: Disturbance attenuation is very important; cost of control negligible
0 =diag([400,400]); R=10.1

X= [41.393, -40.709; —40.709, 52.051]

K=[-75.02, -7.92]

A 4+ BK=[-63.77,-5.73; —53.01, —8.39]

Eigenvalues of 4 + BK =-68.80, —3.36

Transition matrix of 4 + BK=[0.00268, —0.00306; —0.0283, 0.0322]

Comments on the results

Case 1: Quite low feedback gains, little change to the original 4 matrix except that
the zero element a; is replaced by a non-zero element in the 4 + BK matrix. The
response of case 1 shows little improvement on the open loop system.

Case 2: Modest feedback gains, nevertheless produce significant changes to the
original 4 matrix and to the performance.

Case 3: Very high feedback gain, drastic changes to the system matrix and
an ultra-rapid correction of the initial condition with x; being reduced even
at the cost of initially sending x, off in the wrong direction. (Note though that, in
this particular case, x, = x| so that the two variables are highly dependent.)

It would be valuable to look back at the results of the three sets of calculations
above to obtain a quantitative feel for the feedback gains, A + BK matrices,
eigenvalues and transition matrices for =1 that are produced by the basic LQR
method.

We now proceed to repeat the above treatment for three similar cost functions,
but now on a process that is open loop unstable. What we shall find is that the LQR
method, with its guarantee of producing a feedback gain that guarantees to stabilise
an unstable process and allows us to view a wide range of possible responses, has
quite a lot to offer.

13.4.1.2 Solution of the Riccati equation for three different
choices of cost function: open loop unstable process

Case 0
We have reversed the signs of elements a,; and a,, in our previous open loop stable
example to obtain

A=10, 1; 2, 3]

as before B =[0.85; 0.68]

Eigenvalues of the open loop system are +3.56 and —0.56, confirming the
expected instability and the transition matrix

O(1)=[5.28, 8.40; 16.8, 30.5] confirms the rapid exponential growth of the
unforced response.

This response will not be plotted.
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Case 1

Q=diag([1, 2.5]); R=4
K=[-3.43, -6.47]
A + BK=[-2.91, 4.50; —0.333, —1.400]
Eigenvalues are —3.60, —0.718.

Case 2
0O =diag([4,10]); R=1
K=[-3.32,-8.859]
A + B*K=[-2.82, -6.53; —0.259, -3.02]
Eigenvalues are —4.23 and —1.618749.

Case 3
0O =diag([400, 400]); R=0.1
K=[-5.93, -101.73]
A + BK=[-5.04, —85.47; —2.03, —66.17]
Eigenvalues are —68.9, —2.32.
The three responses to initial conditions x =[10; —10] are shown in Figure 13.21.

20
— case 3, QO = Diag(400, 400)
L R=0.1 _
15 7 — ;aie12, O = Diag(4, 10) case 1
- B 0 = Diag(1, 2.5)
- R=4
10 |
5
' ]
-5 N (open-loop system is unstable and its
Xy | response cannot be shown)
—10 T T T T T T T T Ll
0.0 0.5 1.0 15 2.0
time

Figure 13.21 Simulated responses of the three LOR calculated state feedback
algorithms when applied to the open loop unstable test process A =
[0, 1; 2, 3], B = [0.85; 0.68]. The effect of the close linking of x,
and x, (one being the integral of the other) is most clearly seen for
case 3
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We use again the unstable process 4 =0, 1; 2, 3]; B=[0.85; 0.68] and set
0=I[1,0; 0, 50]; R=0.01.

Using the LQR software, we obtain

X=1[0.217, -0.226; —0.226, 1.402]

K=1[-3.0779182, —76.133013]

A + B*K=[-2.6162305, —63.713061; —0.0929844, —48.770449]

Eigenvalues are —48.89, —2.48.

Next, the weightings in the O matrix are drastically changed over to

0=[50,0; 0, 1]; R=0.01

Now we obtain,

X=1[9.979, -12.36; —12.36, 16.748016]

K=[-7.274, -87.61]

(4 + B*K)=[-6.18, —73.46; —2.95, —56.57]

Eigenvalues are —60.55, —2.21.

The responses to initial condition xo=[10; —10] are shown in Figure 13.22
below. It can be seen that the strong dynamic linking between the two state vari-
ables has prevented the widely differing priorities expressed in the two O matrices
from being achieved: the two sets of responses are the same for practical purposes.

N
o

weighting matrices QO = [diag(50, 1)], R = [0.1]
feedback gain K =-7.274 -87.61

[N
3]

weighting matrices Q = [diag(1, 50)], R = [0.1]
feedback gain K= -3.08 -76.13

=
iy

=
o

I T N N N T O O O N N T |

ol

o
|

|
(S]
L 4 1 1 1 1

=
N)

710 T T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
time

Figure 13.22  Although in this example, two widely differing QO matrices were
specified, reflecting widely differing priorities on desired responses,
the two sets of responses are almost the same. This example
demonstrates that the structure of the dynamic model and its
internal links will necessarily limit independence of action
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13.4.2 LOR problems with finite time horizon

Next we demonstrate the solution to an ultra-simple but easy-to-appreciate finite-
horizon optimisation problem that is posed in discrete time. The same simple
problem is solved by hand four times, each time with different weights in the
optimisation cost function, allowing the reader to see clearly how the nature of the
cost function affects the nature of the solution.

The author would like to thank Professor Guy Beale (George Mason
University, VA, USA) for permission to publish the following extracts from his
Discrete-Time LOR Example #1

A discrete time state space model will be used

Xp41 = Axp + ug,x9 = 100 (1337)

The matrix 4 will be a scalar, either 0.5 or 2, with the second choice leading to an
unstable process that needs to be controlled and, as we shall see, requires more
control effort.

The cost index

3
J= o.s{SNxﬁ +> (0% +Ru§)} (13.38)
0

is used with two values for O and R and with Sy (always taking the same value)
representing a fixed cost for the final value after four time steps. Thus, there are the
following four situations to be evaluated (Table 13.1; Figures 13.23-13.27).

Because of the fixed time horizon, the control law will necessarily be time
varying and will take the form

Uy = _kax (1339)

where the feedback gain matrix Gy is given by

K; = (B" X4 1B+ R) 'BTX; 14 (13.40)
o AXi 1
K, (in this scalar case) = —— 13.41
i )= (13.41)

Table 13.1 Parameters for the four cases

Case number A [ R

1 2 20 2
2 2 2 20
3 0.5 20 2
4 0.5 2 20
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Figure 13.23 Responses of the state variable x for the four cases. Notice that

20, a high cost was put on

cases 2 and 4, where, by setting R

control actions, are slower to eliminate the initial disturbance than

are cases 1 and 3

optimal control trajectories
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Figure 13.24 Plots of u for the four cases. Notice that cases 1 and 2, where the

2, require more vigorous

process is open loop unstable with A

control action than the open loop stable cases 3 and 4
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LQR gain values

L2f

amplitude
=

0.8

discrete time steps

Figure 13.25 The time-varying values of the feedback gains for the four cases.
They are ordered from the highest: case 1, unstable process, high
weight on state deviation, to the lowest case 4, stable process,
corrective action penalised by the cost function

100 whx“' case 24 x X No control
10 \ B A ./
Y

01 /

0.01 \

Case 1l u x\

0.001

0.0001 \
0.00001 D
discrete time

magnitude (log scale)

Figure 13.26 Control signals u and responses x for cases I and 2, (A = 0.5),
together with a plot of the response of x when no control is applied
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Figure 13.27 Here, for clarity, we show only the results (linear scale) for time steps
k = 0andk = 1. This graph shows that for case 3, an initial value
uy = 186 quickly drives x towards the origin and after that (see Figure
13.26) quite low values of u suffice to attain the optimal behaviour

and the Riccati equation for X is
Xi = A" (Xjs1 — Xi 1 B[B" X4 1B+ R 'B" X1 1)A+ O
A*RX 4

Xiy1 +R
But X4 2 100, from the problem definition

= (for scalars) (13.42)

For case 1 where 4 =2, Q =20, R=2, we solve the Riccati equation for the
discrete times k=3, 2, 1 and 0, in that order, in other words in backwards time, to
obtain, for k= N-1 to k=0 the following values for X}:

X3 = ;jiX;JrQ =%+zo =27.843 (13.43)
X, = ;jixjeﬁ-Q:%—i—ZO:ﬂAM (13.44)
X = %—1—20 = 27.457 (13.45)
Xy = %Ho = 27457 (13.46)

Given those values for X}, the values for K; and the control signal u, can then
be determined and this has been done for each of the four cases where simulations
were also run to yield the overall tables of results below.

Cases | and 2 involve an unstable process with system matrix 4 =2 whose free
discrete time response to the initial condition xo= 100 would be as follows:
x1 =200, x, =400, x3 =800, x4 = 1600.



296  Control theory: a guided tour

As the tables and graphs will confirm, that cases 1 and 2 require quite vigorous

control activity.

Case ] A=2,0=20,R=2

k Xk Kk Uy X .lk

4 100 - - 9.7.1073 4.69-1073
3 27.843 1.9608 —0.4845 0.2471 8.5.107!
2 27.464 1.8660 —3.4399 1.8435 4.67-10"

1 27.457 1.8642 —25.315 13.579 2.53:10°
0 25.457 1.8642 —186.42 100 1.37-10°
Case 2 A=2,0=2,R=20

k Xk Kk Uy Xk Jk

4 100 - - 3.4552 5.97-10%
3 68.667 1.6667 —17.276 10.366 3.69-10°
2 63.955 1.5489 —35.589 22.977 1.69-10*
1 62.942 1.5236 —73.475 48.226 7.32-10*
0 62.709 1.5177 —151.77 100 3.14-10°

Cases 3 and 4 both use the model 4 =0.5. That is an open loop stable process that
without control would successively halve the initial condition xy = 100 to yield the
discrete time response x| = 50, x, =25, x3 =12.5, x4 =6.25. Thus, the process has
quite a lot of inherent disturbance correction ability and it can be expected that
significantly less control action will be required than for the unstable case (4 = 2).

Case 3 4=0.5,0=20,R=2

k X K, u X Ji

4 100 - - 8.65-107° 3.74-1077
3 20.490 0.4902 — 43231073 8.818-107° 7.97-10~*
2 20.456 0.45554 —9.034-1072 0.1983 4.02:107"
1 20.455 0.45547 —2.0283 44533 2.03-10%
0 20.455 0.45547 —45.547 100 1.023-10°
Case 4 4=0.5,0=2, R=20

k X, K, u; X Ji

4 100 - - 0.6057 1.834.10"
3 6.1667 0.41667 —3.0284 7.2681 1.629.107
2 3.1783 0.11783 —2.241 19.018 5.748.1%
1 2.6856 0.06856 —3.0223 44.081 2.609.10°
0 2.5919 0.05919 —5.919 100 1.296.10*
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Inspection of the tables above shows the effect of the O, R matrices on the
responses with case 1 having energetic control action and corresponding rapid
change in the state variable x, where, in contrast, the control action in case 4 is
much less and the rate of reduction in the value of x is not much greater than would
occur ‘naturally’ because of the exponentially decaying free response of the open
loop system.

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18. See in particular Section 19.8.






Chapter 14

State estimation: observers and the Kalman
filter and prediction

14.1 Introduction

Most of this chapter will be devoted to methods for determining the current value of
a not directly measurable state vector from measurements of the outputs y and the
inputs u of some linear system. If the system is observable, then, by definition, the
state can be determined from linearly processed measurements of y. If the state is
varying under the influence of active inputs u, that effect may be calculated exactly,
given an exact process model. Such an arrangement, with noiseless measurements
and with an exact model available, is usually called a state observer.

A more realistic problem situation, in which models are known only approxi-
mately and measurements are subject to noise, goes by the name state estimation
and is the main topic that follows.

14.2 The separation principle

A key structural result that allows optimal state estimation to be considered as a
dual to optimal control is the separation principle (Kalman, 1960). The paper
shows that the optimal feedback control of a process whose state is not available
may be separated, without loss of optimality, into two linked tasks

(1) that of optimally estimating the state x by a state estimator to produce a best
estimate X and

(i1) that of providing optimal state feedback based on the estimated state X, rather
than the unavailable true state x.

The two sequential problems form a pleasing pair with symmetry in that,

assuming the original process has the equation

d
zj:Ax—i—Bu, y=0Cx

then the estimator involves multiplication by the matrix (4 — K,C), whereas
optimal feedback involves multiplication by the matrix (4 — BK ,101), Where K
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and K_,,.o; are the optimal estimation and feedback gains, respectively, that need
to be chosen to give overall optimal feedback control.

14.3 State estimation: what it attempts to do

Many powerful feedback control strategies require the use of state feedback
(Figure 14.1). However, in many important practical cases the complete state
vector is not available to be fed back (certain states are said to be inaccessible). In
such cases, a state estimator may be used to reconstruct the state vector from a
measured output (Figure 14.2).

v + u
M process | —2  »

state
X

\V4

state feedback
controller

Figure 14.1 Application of state feedback

v + u
) process 4 >

state
estimator

state feedback
controller

=> Z_l

Figure 14.2  Application of state feedback when the state is inaccessible: a state
estimator reconstructs an estimate X of the true state x

14.4 How a state estimator works: the Kalman filter

We assume that at time 7 = 0, the state x is exactly known, with value xy. We have a
process model that, given x,, can make a model-based prediction 7 seconds into the
future, to yield the prediction x,(7).

We also have a measurement y and a known relation x,, = ay, applying at all
times. In particular, we have x,,(7) = ay(T).

Both the model used for prediction and the measurement y are assumed to be
subject to errors. Thus, we have, at time 7, two estimates of the true state x(7).
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process -4

process
model

Figure 14.3  Simple illustration of the principle of the Kalman filter

These are

x,(T), predicted by a model
x(T), based on measurement

The best estimate of x(7) is denoted X(7') and is determined by the relation

X(T) = 0x,(T) + (1 = 0)xu(T)

(where 6 is a coefficient between 0 and 1 whose value is determined by the relative
statistical confidence that can be placed in the accuracy of the model and of the
measurement (see Figure 14.3)).

A whole armoury of techniques, under the generic name Kalman filter, deal
with all aspects of the application to different situations.

14.5 The Kalman filter: more detail

Figure 14.4 shows the Kalman filter connected to a process with inaccessible state
vector x(j). It is assumed that the process state and the measurement vector y(j) are
corrupted by white Gaussian noises w(j), v(j), respectively, with diagonal covar-
iance matrices O, R.

This means that the noise signals satisfy the following:

Ew()] = EP()] =0
Ew()wW' (k)] = Q, for j=k, Ew()w' (k)] =0, for j#k
EpGIVI(K)] =R, for j =k, EPGI (k)] =0, for j#k

and independence of the noise signals is also implied and assumed, i.e.

Ew()v (k)] =0, for all j,k
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and finally, the initial condition x(0) is assumed to be a further random variable as
follows:

where £ denotes expected value.
The process is assumed to have the model:

x(j) =Ax(G—1)+Bu(j— 1)+ Ew(j — 1)

y() = Cx(j) +v() (14.1)

At time t = (j — 1)T, the discrete time, linear model [4, B, C] is supplied with a
previous best estimate of the state, designated as X(j — 1/j — 1) and with a mea-
sured value of u(j — 1). Then, noting that x(j/j — 1) means a prediction of x(j)
made at time (j—1) and using the equation

X(G[j—1) =Ax(G—1/j = 1)+ Bu(j— 1)

) = Cx(ifi=1) (14.2)

a one-step ahead prediction of the state and of the corresponding output is made.
(Note that since w, v are Gaussian, they have zero mean and hence do not appear in
the prediction (14.2)). When time ¢ = ;T is reached, the output prediction error y(j)
can be calculated from the equation

¥0) =x0) = 30) (14.3)

Finally, we obtain the current best estimate %(j//) by adding to the model prediction
x(j/j — 1), a correction term, proportional to (), according to the equation

X0/7) =xG/i = 1)+ K({y() (14.4)

K(j) is called the Kalman gain matrix and it must be chosen so that the estimates
x(j/j) are optimal in some sense. However, before considering optimality, it can be
seen from the block diagram that the Kalman gain is within a feedback loop, and
the wider question arises: Will the sequence [X(j/j)] converge to x(j)? If so, how
quickly will it converge? Will there be a bias in the estimate? How accurate must
the process model be? What if the process is non-linear? How accurately must
covariance matrices O, R be specified? What if w, v are non-Gaussian? What time
step T needs to be chosen for the discretisation? What if the process is time-varying
or some of its parameters are not known a priori?

The practical questions will be considered later, but now we return to the
question of choosing the optimal gain matrix K(j).
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14.6 Obtaining the optimal gain matrix
From (14.3) and (14.4),

X0/ =xG/7 = 1)+ KGQ)DG) — Cx(/j = 1)] (14.5)
Then using (14.2),

X(/7) = A5G = 1/j = 1)+ Bu( = 1) + K(G)() — GG - 1] (14.6)
The state estimation error is defined as

%(j) = x() - 2(7/)) (14.7)
but

x(j) = Ax(j — 1) + Bu(j — 1) + w(j — 1) (14.8)

and

y(i) = Cx(j) +v(j) = ClAx(j — 1) + Bu(j — 1) + w(j — 1)] + v(j) (14.9)

Substituting (14.9) into (14.6) yields
x(G) = —-K()ClAx(j — 1) + Ew(j — 1)] — K(j)v(j) (14.10)

Define
P(j) = ER()X()"]

where £ indicates expected value and where the superscript T indicates transpose.
P is a covariance matrix that indicates the accuracy of the state estimation. The
system of Figure 14.4 is linear and the disturbing signals are Gaussian. Under these
conditions, the solution of (14.10) to yield the gain matrix K(j) that minimises the
estimation error is yielded by application of classical optimal control theory. In
fact, the optimal estimation problem and the optimal control problem lead to the
same equations, and for this reason the two problems are often considered to be
duals.

After some manipulation whose detail is omitted (but see for instance Astrém
(2008) or for a more comprehensive derivation (that does not assume that the filter
should be recursive) Fieguth (2011), Section 4.2), the optimal gain matrix is found
to be

K(j) = M(;)C"(CM(j)CT +R) ™!
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process with
> - inaccessible -
v(J) u(j) | state x(j) ()
not available
unit estimated state | Tor feedback
delay vector used as
. feedback
u(-1) 5(7l)
C Kalman gain )+
correctionto | Matrix K(j) | £ :_
be made to Y
o error y(j) in
unit prediction estimating 50)
delay output A
x(-1/-1)
A BO C
x(jlj-1)
B

Figure 14.4 The Kalman filter connected to a process with inaccessible state so as
to feed back an estimate of the process state for closed loop control

where

M(j) = AP(j — 1)AT + EQE"
P(j) = (I = K()C)M())

Notice that the equations for K(j) contain no measured data and that therefore they
may be solved for all values of j in advance, off-line, if need be.
The optimal state estimator is given by

x(i/7) = (1 = KG)COHAx(G = 1/j = 1) + Bu(j = )] + K()y()

and we can return to Figure 14.4 to understand how the algorithm is coupled in real
time to the process whose state is to be estimated.

14.7 Prerequisites for successful application of the Kalman
filter in the form shown in Figure 14.4

(i) There must exist a ‘sufficiently accurate’ linear, discrete time, time-invariant
process model (4, B, C, E).
(il) The disturbing noises v, w must be Gaussian with zero mean and their cov-
ariance matrices R, Q must be known.
(iii) Online computing power must be available, capable of performing the
necessary calculations within a time interval that will usually be dictated by
the process dynamics.
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14.8 Discussion of practical points arising

(@)
(i)

(1ii)

(iv)
™)

(vi)

(vii)

Time-varying processes: The Kalman filter theory is applicable directly to a
time-varying process {A(y), B(j), C(j), E(j)}.

Continuous time processes: Most processes to which the Kalman filter is to be
applied will operate in continuous time. Such processes will usually be approxi-
mated by discrete time models, or, at least in theory, the Kalman—Bucy filter
(1961) could be applied. The discretisation process is easily performed, but care
must be taken not to introduce spurious errors during the discretisation process.
Non-linear processes: Most important processes are non-linear and the usual
procedure is to use a different linear approximation {A(j), B(j), C(j), E(j)} to
represent the process at each time step j7. This procedure is equivalent to
linearising about a time trajectory. The filter operating in the way described is
usually referred to as the extended Kalman filter.

Complex processes: The Kalman filter for a complex process will, of neces-
sity, be based around a low-order approximation to the process.

Processes that vary with time in unknown ways: A process that is changing
with time may have some or all of its model parameters estimated numeri-
cally in real time from measured process data. The procedure may be per-
formed separately from the Kalman filtering operation. Alternatively, the
required model parameters may be estimated, along with the process states,
using the Kalman filter. In essence, such model parameter estimation is per-
formed by relabelling as state variables those parameters that are to be esti-
mated. Such relabelling clearly introduces artificial non-linearities into the
process equations. These non-linearities are dealt with by linearisation in the
same way as when the process equations are inherently non-linear.
Non-Gaussian disturbance signals: A non-Gaussian signal (say, 7(z)) can be
treated by synthesising a filter transfer function (say G(z)) such that

where v(z) is a white noise signal.

Thus, by adding a new element G to the process model, the requirement
that v shall be a Gaussian signal of zero mean may be met. The element G
used in this way is sometimes referred to as a colouring filter.
Disturbing signals v, w have covariance matrices R, Q that are unknown:
Experimental observation of signals may give some quantitative information
on the numerical values for R, (. Simulation studies of the Kalman filter
coupled to a process model will usually give considerable guidance of the
choice of R and Q since these matrices affect the convergence of the estimate
of the state to its true value (the true value of the state is, of course, known in
a simulation study). By performing simulation runs with different choices of
R and Q, it is usually possible to choose compromise values that will yield
good convergence over a wide range of conditions.
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14.8.1 Use of the innovation sequence to modify R and Q

The sequence {7(j)} is known as the innovation sequence. Under ideal condi-
tions, when all the initially stated assumptions are satisfied, the innovation
sequence will be Gaussian with zero mean. It therefore follows that bias or non-
Gaussianness in the innovation sequence may be used in a corrective online
feedback loop to modify parameters, e.g. in the colouring filter G(z) described in
list (vi) above.

The Kalman filter idea (combining a model-based estimate with a measure-
ment-based estimate) is remarkably robust in industrial situations where signals
are subject to drift, do not have zero mean and whose variances are unknown.

In such cases, the O and R matrices perform, to some extent, the role of tuning
parameters, being adjusted on site according to results obtained.

14A A Matlab demonstration of the Kalman filter at work,
estimating a true system output from the noise-corrupted
output

This is a summary: The full demonstration is available at the quoted web
address*. It shows the calculation steps for both a steady-state and a time-
varying Kalman filter applied to the third-order discrete time process:

x(k + 1) = Ax(k); y(k) = Cx(k)

1.13 —0.49 0.11 —0.38
withd = | 1 0 0 |,B=| 059

0 1 0 0.52
C=[1 0 0]

Noise covariances are preset at O (process noise) = 2.3, R (measurement
noise) = 1

Note (Figure 14.5) that there is a process with a significant process noise
(Q = 2.3) whose supposed real-world output y’ is corrupted by inevitable
measurement noise with variance R = 1.

This being a simulation, we have access to the ‘true’ process output y
that of course is carrying the effects of the significant process noise.

The task of the Kalman filter, connected only symbolically in the figure,
is to remove the measurement noise and to generate a best estimate .

Using Matlab command ‘Kalman’ yields the steady-state Kalman gain

0.53
K= 0.0l
—0.48
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i measurement noise,
process noise,

: covariance R
covariance Q

input u /L noisy output y”
/

noise-free output y

process

kalman
filter
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Figure 14.5 Main input-output variables considered in the Matlab Kalman
filter demonstration

In the demonstration, simulation plots show the time behaviour of the three
output variables in response to a sinusoidal input. From the simulation results:

(i) The covariance of the measurement noise y—)’ was found to be 1.1138

(compare with R = 1).

(ii) The covariance of the estimation error y — )’ when using the steady-
state Kalman filter was found to be 0.4309. Compare with (i).

(iii) The time-varying Kalman filter converged to the same gain K as the
steady-state version after about five time steps.

(iv) Nevertheless, the performance of the time-varying filter did show a
small improvement over the steady-state version, yielding an estimation
error covariance for y—y’ of 0.4303.

*The demonstration can be found on the Mathworks website by seeking
Control System Toolbox — Kalman Filter Design Demo.

14.9 Prediction and predictive control

Prediction is discussed briefly here because accurate estimation of process states
from noisy data usually requires a model-based prediction, say x(j/j — 1) meaning
a one-step ahead prediction that, in a Kalman filter approach, will be combined
statistically with an instantaneous measurement-based estimate to produce an
optimal overall estimate x*(j).
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Since almost every human action is based on prediction, even if it is uncon-
scious prediction, it is no surprise that many controllers have been designed (even
the D in PID controllers is doing it!) using predictive models. One such example is
discussed in interlude 14B.

14B Model Predictive Control (MPC), also know as
predictive-iterative control

In this approach, pioneered by Coales and Noton (1956), a fast online model,
preferably one hundred or more times faster than the process, is fed with trial
control inputs and in response generates a large number of possible future
trajectories. Rapid automatic evaluation of the trajectories leads to a choice
of a best strategy to actually implement.

It is good practice, and is usual in most forecasting, to use a prediction
horizon that is considerably longer than the implementation horizon.

The strategy can produce performances close to time-optimal for the
control of switched systems. Figure 14.6 illustrates the main ideas.

process whose state
must follow a
given trajectory

stored strategy
for T time units

actual process state is always the
starting point for every trial trajectory

fast process model
taking 77100 time units to
generate one possible
trajectory 107 time
units long

trial trajectories of

L length 107 are evaluated

and a choice of the next
strategy is made

generator of
possible control
strategies

<

strategy is updated every 7'time units

Figure 14.6 The principle of Model Predictive Control (MPC). A fast model
receives possible future strategies and rapidly predicts how
successfully each would perform. This is performed in real time
with every trial trajectory having as its initial condition the
real current location. Like many empirical strategies, this can
be a very successful approach to real problems

Note: Source material and suggestions for further reading to support the topics of this chapter will be
found in Chapter 18. See in particular Section 18.6.



Chapter 15

An introduction to robust control design using
H ., and related methods

15.1 Motivation and introduction

Many promising optimisation techniques have, in the past, failed to live up to their
promise; one of the most important reasons for this failure being the lack of
robustness in the methods. In particular, very complex plant models were often
produced and then naively assumed to be accurate representations of the real world.
The inevitable mismatches between the assumed (let us say, nominal) models and
the real-world processes destroyed the viability of many approaches.

H., approaches, by specifically taking into account modelling uncertainty, and
doing so in a worst-case sense, allow complex control design problems to be solved
in a theoretically rigorous way while guaranteeing robustness of the implemented
solutions over a pre-specified range of model incorrectness or (equivalently) of
process variability.

Here, we review the linear spaces that underlie much of the modern operator-
based control theory with particular emphasis on the theory underlying H
approaches. Some of the H,, control design methodology is then introduced in very
simple terms to establish the basic principles.

Controller design by interactive loop shaping of sensitivity functions in the
frequency domain is demonstrated through a tutorial worked example. This is a
powerful, yet intuitively transparent design approach.

The v gap metric is explained. It is a useful visualisable quantitative tool for
grouping and classifying system models in terms of their expected behaviour under
closed loop optimal control. Perhaps the biggest gap between theory and practice in
optimal control has been caused by the near impossibility of providing an indust-
rially meaningful cost function that was also mathematically tractable. With the
arrival of Linear Matrix Inequalities (LMIs) software routines, it is now possible to
insert a realistic cost function into an optimisation algorithm and, using standard
Matlab or similar routines, to deliver the required controller designs using efficient
numerical search methods based on interior point methods.

So-called u-synthesis methods are introduced and explained. In essence, they
are basic H,, controller design algorithms with additional subdivision of the model/
controller block diagram in such a way that the design parameter i emerges as a
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key quantity and, most importantly, the designer using the algorithm is able to input
directly, in engineering units, the magnitudes of the uncertainties that the sought-
for robust controller must be able to tolerate.

15.2 Hardy spaces (H,, p > 0 spaces) and their relevance
to control problems

Hardy spaces (see interlude 15A) are of value in control problem formulation since
they provide a rigorous theoretical foundation for representing the Laplace or
Fourier transform models of linear dynamical systems together with an easy link to
equivalent time-domain representations. The spaces H, and H., are the spaces of
primary interest.

Linear multivariable optimisation problems with quadratic cost functions can be
formulated and solved very satisfactorily in an H, setting in a coherent way. Opti-
misation in an H, setting can in fact be considered as a more modern replacement for
linear quadratic Gaussian (LQG) approaches. Note that, by convention, the H, norm
is applied to transfer functions/transfer matrices and the L* norm to time functions.
H,, is the Hardy space of all stable linear time-invariant continuous time system
models, and the H,, norm is a scalar measure of the upper limit of the gain of a
transfer function G(w) of a matrix of such transfer functions as frequency o is varied.

15.2.1 The suffix p

The suffix p indicates that the space Hp is furnished with the p norm, so that given
any element x (and such elements will normally be functions) belonging to Hp, we
can measure the ‘size’ of x by a norm such as

It = (] |x<r>")l/p (15.1)

15.2.2 Elementary illustration: the effect of choice of p
on the nature of the norm

Figure 15.1 shows a time function. We evaluate its norm using (15.1) for values of
p=1,2, ..., 256 and have plotted the results in Figure 15.2. We observe (as
emphasised by the starred arrow in Figure 15.2) that as p — 0, ||f]lcc = finax i
other words, the H,, norm of a function simply measures the peak value of the
function over a specified interval. H,, then is a convenient function space where
the functions are normed according to their maximal values (strictly suprema).

In our example of Figure 15.1 and the plot of Figure 15.2, it was the case that

1fllp =11 f g P >4

and this is a general rule with equality holding only for functions of constant
magnitude.



An introduction to robust control design using H,, and related methods 311

20 .

| |
I f

190
0 I time 50
Figure 15.1 Test function to illustrate the effect of the choice of p
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Figure 15.2  Illustrating how the norm of the function of Figure 15.1 is affected by
the choice of p

15.2.3 Non-elementary aside

Note carefully though that two functions that differ only at isolated points (i.e. they
differ only on a set of measure zero) will have identical norms. This point is of
considerable mathematical interest in the theory of Lebesgue integration.

In control applications, it will be rare to use values of p other than p=1, 2
or o0.
The choice of p=1 leads to ‘integral of absolute error’ criteria that are
sometimes used in loop tuning criteria. The choice of p=2 leads to quadratic
criteria that are ubiquitous since they lead to convexity and tractability, convexity
being perhaps second only to linearity as a desirable quality. Note (Figure 15.3)
how the unit ball satisfying

[Fxllp =1

looks for various values of p. From Figure 15.3 it can be seen that the unit ball has
the highly desirable property of strict convexity only for the case p =2.
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Figure 15.3 The shape of the unit ball in real two-space for different values of p

What about H,, for p < 1? It will be found that when p < 1, H,, is no longer a
normed space since the hoped-for norm fails the triangle inequality (which is one of
the necessary conditions that a norm must satisfy):

[xulF+ [lx2]] = [ %1 +x2 ]
as the following simple example for the real plane with p = 0.5 demonstrates.
Let
x1=(1, 0), x,=(0, 1) so that x; + x, =(1, 1)
Then,
) 2
Ixll=lxl=1 but |lx+x = (Z |xi|1/2> —4

i=1

which contravenes the triangle inequality.

15.3 A simple view of H., control loop design

15.3.1 Guaranteed stability of a feedback loop

Zames (1976, 1981) is credited with founding H, theory around the basic idea that
a control loop can be represented by operators whose maximum gain across all
frequencies (speaking loosely) can be represented by the H,, norm.

It is a key result of elementary control theory that the loop of Figure 15.4 will
be input—output stable provided either

(1) the gain of the GD combination is less than unity at all frequencies or
(2) the phase lag of the GD combination is less than 180° at all frequencies.

But we can now express condition (1) in H,, language as the closed loop of
Figure 15.4 can be guaranteed input—output stable provided that || G(w)D(w) || < 1
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Figure 15.4 Basic feedback control loop

60

*
@ In frequency

Figure 15.5 A possible Bode magnitude plot for D(s)G(s)

(it being understood that for this example the H,, norm represents the maximum gain
at any frequency).

Figure 15.5 shows a Bode magnitude sketch for a possible G(s)D(s)
combination.

It has a peak value of around 60 dB at frequency w*. This means that

[y(s) |

TS < G()D(s) oo e 41

[l e(s) |
(converting 60 dB to a linear gain) and it can be seen that the H., norm is simply the
peak value of the Bode magnitude plot.

15.3.2 Robust stability of a closed loop

Consider next the closed loop of Figure 15.6 in which G represents the best available
(nominal) process model and AG represents a deterministic model of the maximum
model uncertainty. This closed loop can be guaranteed stable provided that

1 (G(@) +AG(w))D(0) [« <1

and this inequality is the very essence of robust control design using H,, methods.
Quoting Lunze (1989), it can be seen that D(s) might be considered to be a
stabilising common controller for the family of process models that exist within the
G + 4G envelope.
What more needs to be done or discussed before H., ideas can be applied in
anger? Very roughly the following:

(i) Above, we considered only input—output stability — below we shall consider
total internal stability. This will involve considering a matrix of four transfer
functions even in the single-input, single-output case.
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<«

Figure 15.6 Feedback control of a process with uncertainty AG

The implication of (i) above is that we need a method for defining the H,
norm of a matrix, not necessarily square, of transfer functions. Of course,
matrix transfer functions are also involved in the generalisation to multi-
variable problems.

(i) Ensuring stability by simply keeping loop gain below some peak value is only
an important elemental idea. A complete design procedure will ensure good
dynamic and steady state responses and rejection of disturbances despite
process model uncertainties while guaranteeing stability. Such design proce-
dures will need to trade stability margins with performance targets, using high
gains in those regions of the frequency spectrum where performance is critical
with carefully chosen lower gains where stability is most critical.

(iii) As would be expected, making a deterministic model of uncertainty is bound
to be difficult since uncertainty is sure to be poorly defined and difficult to pin
down. Three structures are explained below to allow the modelling of dif-
ferent types of uncertainty.

(iv) We need to be able to define numerical algorithms for calculation of the H,,
norms of process model/controller combinations.

15.4 Total internal stability and design for disturbance rejection

15.4.1 Setting the scene

Consider a dynamic process with impulse response g(f). The output of such a
process in response to an input u(¢) is given by the usual convolution integral

y(t) = L gt —t)u(r)dr (15.2)

and provided that the convolution integral is bounded on L*[0,..), then we can take
Laplace transforms and write

y(s) = G(s)u(s)
where the transfer function G(s), being bounded, belongs to H,, and
G lloc = sup [[y |l

flull2<1

Now consider the feedback loop of Figure 15.7 where a process of transfer function
G is in a loop with a controller of transfer function D.
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D

Figure 15.7 Closed loop control; G is a process and D a controller
It is easy to show from the diagram that the following matrix relation holds

1 G
uy_(1+GD 1+GD V2
-7 w2

Vi
1+GD 14 GD

and the feedback system is internally stable if all four of the transfer functions
within the matrix of (15.3) belong to the space H.. A sufficient condition for this is
that

IGD|, < 1 (15.4)

15.4.2 Robust stability

Although a system such as the one in Figure 15.7 is guaranteed to be stable under
the condition (15.4), there is for all practical systems a further requirement that the
system should remain stable despite variations from nominal in the process G.

A feedback control system that can be guaranteed to remain stable under a
specified range of process perturbations is said to possess robust stability. What we
are discussing is the very common situation where the real process and its model
differ by some margin, either because the process varies in quite complex ways,
whereas the model is constant, or because the model is a considerable simplifica-
tion of the real-world process.

Some examples: the characteristics of a strip rolling mill differ markedly
according to the width, thickness and metallurgy of the product being rolled; the
stabilisers of a ship interact with the effect of the rudder and vary according to ship
speed; an industrial biological process varies in a complex way as the batch pro-
gresses. For all these examples, no single model can exactly allow for those vari-
abilities. Even with a fixed known process, the modeller will almost always have to
neglect effects such as high-order dynamics in the interests of keeping model
complexity within bounds.

As the examples hopefully demonstrate, process models can only represent the
real process to within some margin of error that we will name A4G.

We assume the feedback loop for which a robust controller D is to be designed
is as shown in Figure 15.7 and we also assume that the perturbation 4G is bounded
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by the H,, norm, i.e.

|AG(w)| < |R(w)] (15.5)

for almost all w

for some R. A key result is that the system will remain internally stable under all
perturbations possible within inequality (15.5) if and only if

IRD(1 + GD) ™ || < 1 (15.6)

To allow the concept to be appreciated in a Nyquist diagram context, we
rearrange inequality (15.6) into the form

R(0)|G(w)D(w)| < |1 + G(w)D(w)| (15.7)

The diagram Figure 15.8 shows how the circle of model uncertainty must
not enclose the —1 4 ;O point, if stability is to be guaranteed in the closed loop
system.

The robust control design procedure is then to choose the controller D to
satisfy the inequality (15.6) while simultaneously meeting all performance speci-
fications such as response rates, accuracies and disturbance rejection requirements.

It should be noted that

(1) the designer is given no guidance for the choice of controller D except that the
frequency-dependent inequality must be observed,;

(i1) the choice of a high value for R in an attempt to obtain a high degree of
robustness will force down the inequality ‘ceiling’, resulting in a possibly
unacceptable performance. Thus, not surprisingly, the overall design must
balance performance and stability requirements.

(=1, j0)

|1+ G(o)D(w) | t
G(0)D(w) I

open loop frequency
response of nominal
system

circle of radius R(w) | G(w)D(w) |

Figure 15.8 Nyquist diagram illustrating the stability inequality (15.7)
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15.4.3 Disturbance rejection

Disturbance rejection requirements can be injected into the A, design procedure as
follows. Suppose 7 is a disturbance signal whose effect on system output y is to be
minimised and suppose also that r(s) is generated by the transfer function W from
any disturbance signal v; satisfying

r(s) = Wishn(s)  [vi(o)]2 <1 (15.8)

Then it can easily be shown that the disturbance effect can be minimised by
minimising the quantity

| W1 +GD) ™ |l (15.9)

If we look at the two relations (15.6) and (15.9) relating to robust stability and
noise rejection, respectively, another design compromise can be appreciated.

Setting G=1 and D=k, i.e. an ultra-simplistic situation to emphasise this
point, we have from (15.6) that

k
k+1

needs to be as small as possible, while from (15.9) that

b
k+1

also needs to be as small as possible.

The first inequality is asking for k to be as small as possible, whereas the
second expression requires k£ as large as possible. The usual approach to this
compromise will be to minimise

T=|D(1+GD) | (15.10)

over that part of the frequency spectrum where accurate control is most critical and
to minimise

S=|(1+GD) |« (15.11)

over that part of the frequency spectrum where disturbance rejection is most
important. (S and T are often referred to as the sensitivity coefficient and com-
plementary sensitivity coefficient, respectively.)

This leads to the concept of ‘loop shaping’ in which the design of the controller
D can be viewed as an interactive operation to achieve the best possible perfor-
mance by satisfying a number of competing frequency-dependent targets and
constraints.

Ideally, since we would like

T(w)=1 Sw)=0 forallw
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magnitude

0.01 0.1 1 10 100 1000
frequency

Figure 15.9 The loop shaping concept showing variation of S and T with
frequency

this would give perfect following and perfect noise rejection. However, it can be
seen that in every case the following limits obtain

lim |7(w)| = 0
lim [S(w)| = 1
w—00

so that the design procedure consists in getting the best overall system
behaviour within the above constraints. This leads to a controller synthesis
methodology sometimes referred to as the mixed sensitivity approach, which results
typically in magnitude versus frequency plots for S and 7 as shown in Figure 15.9.

Note that near-optimal designs will have sharp roll-off characteristics requiring
high-order controllers and an iterative interactive design approach such as used by
Kwakernaak (1993) where a detailed example is worked through.

Because of the simple correspondences between time and frequency domain
properties of H,, spaces, design approaches can be expressed and utilised equally
well in the time domain using state space approaches.

15.5 Robust control design using a mixed sensitivity H
loop shaping approach: worked example

(I am pleased to acknowledge that this example has been supplied by Dr Victor
Becerra of Reading University.)

This generic worked example will show how a robust controller can be
designed to achieve a required level of performance for a single-input,
single-output process. The generalisation to the multivariable case is
usually straightforward. It will be seen that the plots on which the design
will be based are magnitude plots with no mention of phase plots. (That is
always possible for minimum-phase systems whose phase plots are always
completely determined by their magnitude plots.) However, phase angle
considerations do constrain any loop-shaping that calls for the system
sensitivity curves to climb or fall very steeply. A further disappointing and
limiting consequence of Bode’s ‘laws’ is what has been sometimes called
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the ‘Robust/Fragility trade-off’. This consequence means that extra
robustness designed into a system over one range of frequencies will
inevitably have to be repaid by accepting an increase in fragility over
some other range of frequencies. (Yet another NFL (No Free Lunch)
theorem to add to the list!)

There are several unavoidable constraints and compromises when a high-
performance robust control loop is to be designed in the presence of uncertainty.
The need for high performance implies a high gain controller, whereas the need for
a sufficient stability margin implies a cautious design with a low gain. In terms of
sensitivity functions, we would like S to be low at all frequencies and 7 to be equal
to unity everywhere. However, the constraining conditions S+ 7=1; S - 1,7 — 0O as
o — oo mean that we need to keep S low from zero frequency until the upper limit of
the chosen bandwidth is reached and then allow it to increase towards unity. This will
allow the (stabilising) curve for 7 to be moved lower for frequencies above the
chosen system bandwidth (Figures 15.10-15.12). As system designers, we hope that
the given problem conditions will always allow the performance/robustness speci-
fications to be split on low-frequency/high-frequency lines as just proposed.

Given a process described by the transfer function:

G( )_s2+0.18s+0.08
T 2035+ 0.02

We shall design a controller K(s) such that the closed loop system defined by the
relation

G(s)K(s) _ L(s)
14+ G(s)K(s) 1+ L(s)

and with the associated sensitivity functions

1 L
=11 T_1+L [sothat (S+T) = 1]
satisfies the following: bandwidth, w,= 0.1 rad/s; steady state error = 1%; sensitivity
function S'to be as low as possible at low frequencies and to satisfy |[S(w)| < 1 forw > 1.

Structurally, this can be seen to be an H,, problem, since in shaping the loop
we shall be asking that || w,S || < 1.

The complementary sensitivity function 7{(s) is to be bounded above,
in order to meet robustness targets, by the given shaping function
wr = (1.9s 4+ 1)/(10s + 0.33).

Since this is an exercise in closed loop shaping, we begin by defining a
weighting performance function

/M xs+wy

W,,(s) S+ wp,x A

whose inverse 1/W, will be the required upper bound and shaping function for S.
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Figure 15.10 The system step response
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Figure 15.11 The S curve beneath its constraining curve
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Figure 15.12 The T curve beneath its constraining curve
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Setting wj, =0.1 for the bandwidth, M =1 for the high-frequency asymptote
and 4 =0.01 as a suitable low-frequency asymptote, and inserting all required
values into the problem produces the following Matlab code:

% Plant model

s=tf(’s’); G= (872 + 0.18%s + 0.08)/(s"2 +0.3%s + 0.02);
% weight Wp

M=1; wb=0.1; A=0.01; Wp = (1/M*s+wb)/(s+wb*A);

% Uncertainty weight Wt.

Wt = (10%s+0.33)/(1.9*%s5+1)

%Control weight

Wu=0;

% Controller design

[Kss,N,N_norm, INFO]J=mixsyn(G,Wp,Wa,Wt); K = tf(Kss);

L=GxK; % locp transfer function
S=inv(1+L); % Semsitivity

T=1-8; % complementary semsitivity
figure; step(T,100); figure;
w=logspace(-5,3);

frsp_S5 =freqresp(S,w);

frsp_T = freqresp(T,w);

frsp_bound_S=freqresp(1/Wp,w);

frsp_bound_T = fregresp(1/Wt,w);
loglog(w,abs(frsp_S(:)),w,abs{frsp_bound_S(:)),”.-’ );
title(’[S|(-) and |1/Wp| (-.)’);figure;
loglog(w,abs(frsp_T(:)),w,abs(frsp bound_T(:}),’ .-’ );
title(’|T|(~) and |1/Wt| (=.)}’);

and the resulting controller X is

K(s) = 0.0361s" + 2.344s° + 1.918s% + 0.412s 4 0.02436
54+ 13.785% 4+ 2.54152 4 1.09 + 0.001088

Notice that this design approach delivered a fourth-order controller to control
the given second-order process. That is fairly typical for this approach. It does
suggest that the controller would need to be simulated and evaluated over a
range of typical implementation conditions before being taken forward to a real
application.
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15.6 Specification of the 4G envelope

Clearly, it will be difficult to specify AG in a standard generic form that fits a wide
range of applications while remaining mathematically tractable. Considerable
effort has been expended on the topic of ‘identification for robust control’ (Chen,
2000) since the overall credibility of H,, design approaches depends on realistic
specification of the 4G envelope.

In the general case, where G will be a matrix transfer function, it will be
appreciated that the envelope of allowable uncertainty that we are calling AG must
be able to represent the effects of, e.g. individual parameters varying significantly,
stochastic variation across a range of parameters and neglected dynamics that are in
the real process but not in the model. Having noted the difficulty of specifying the
AG envelope in a case-independent way, we show in Figures 15.13—15.15 the three
most common configurations for representing AG. The so-called coprime factor-
isation model (Figure 15.15) allows for the most general modelling of mismatch
including the mismatch of neglected dynamics.

15.7 Deriving H,, norms from dynamic process models

15.7.1 Singular values and eigenvalues

Singular values and eigenvalues play a central role. Let 4 be any m X n matrix.
Then singular value decomposition consists in finding orthonormal matrices U, V,
i.e. satisfying

vuT=vvt =1

AG

Figure 15.13 Additive uncertainty model (G + AG)

R P00

Figure 15.14 Multiplicative uncertainty model G(1 + AG)
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A h

Figure 15.15 Coprime factorisation uncertainty model. Factorising G to form
G = M N and then perturbing M, N, separately, leads to the
diagram shown

and
A=USr"

where

L0
S—lo 0] (15.12)

where X is a diagonal matrix of non-zero singular values o; of 4, usually arranged
in descending order such that

01>20>...20.>0

Note that the range space R(A) of 4 is generated by the set

{u;}, i€l,r]

and the null space N(4) of 4 by the set
{u;}, i€r+1,n]

By convention, the largest singular value is denoted
o
and the smallest singular value by
g
Consider the equation

y = Ax
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Then it can be seen that

o(1) < X <)

and therefore the operator norm is
|4l = o (4)

since the operator norm is defined as

A
4] = sup 22
x£0 |x|2

and if G(s) is a matrix transfer function such as
G11 (S) Glz(s) ce Glr(s)
Gis)= |
Gni(s) ... coe Gup(9)
then an important result is that

IG(o)ll = SBPE(G)

15.7.2 Eigenvalues of a rectangular matrix A

Consider the equation

y=Ax

el = (k) = Vi

(15.13)

(15.14)

(15.15)

(15.16)

where * indicates adjoint. (The adjoint of a vector or matrix is obtained by first

transposing and then complex conjugating the elements.) Then

W = |4x]* = x*A*Ax

Note that a complex-valued matrix A is self-adjoint (Hermitian) if A" = A. Self-
adjoint matrices are always diagonalisable and always have real eigenvalues. Note

also that (4B)" =B"4".

The matrix A4 is always square and self-adjoint (Hermitian) since

It therefore has real non-negative eigenvalues 4,. Let these be ordered such that

M>A>...>0.
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15.7.3  Singular values and their relation to eigenvalues

The singular values of a matrix A4 are defined alternatively as
oi = /A (15.17)

where /; are the eigenvalues of 4"4 and

— 71/2 *

o(d)=41"(4"4) (15.18)
where /1 is the largest eigenvalue of 4.

15.7.4 Relations between frequency and time domains

Of course the domains are linked through the convolution integral
y(t) = J g(t —t)u(r)dr (15.19)
0

where g(¢) is an impulse response and provided that the convolution integral is
bounded on L*[0,00), then we can take Laplace transforms and write

y(s) = G(s)u(s) (15.20)
where the transfer function G(s) being bounded belongs to H., and

1G]l = sup |lyll,

[faellp <1

(15.21)
I|Gllo = sup (G(w))
wel0,271]
and in the time domain
IIy(t)II
|G| 2 (15.22)

u;éOH u(t)l

and the H,, norm on G can be seen to be the usual norm on a mapping from the
space of time functions U to the space of time functions Y.

(Note that [l (0|, = /() w(0)d)

Finally, we note from Parseval’s theorem that
[l = [lx]12 (15.23)
where x is a time function in L*[—o0, c0] and
% in L*[—jo,jo]

is the Fourier or Laplace transform of x.
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15.8 A promising visualisable design tool that works within
the H_, frame: the v gap metric

15.8.1 Introduction

The following interesting quotation is from Vinnicombe (2001), as are all the
results and examples in this section:

One of the key aims of using feedback is to minimise the effects of lack of
knowledge about the system which is to be controlled. Yet, one clearly
needs to know something about that system in order to be able to design an
effective feedback compensator for it. So, how accurate need a model be,
and in what sense should it be accurate? Or, in other words, ‘how much do
we need to know about a system in order to design a feedback compen-
sator that leaves the closed loop behaviour insensitive to that which we
don’t know?’

Let G, be the transfer function of a process that is to be controlled and let G,,
G5 be perturbed versions of Gy. G|, G, and G5 may be regarded as three possible
models of the same process for which a single (robust) controller is sought. The
‘distance’ between any two processes G;, G; in terms of similarity of behaviour
when connected into a closed loop can be quantified by the v gap metric that has
the property

6V(G1, Gz) = 5V(G2, Gl) S [0, 1] (1524)

An algorithm for the calculation of dv will be given after an illustrative
example.

15.8.2  Simple illustration of the use of the v gap metric

The following very simple example shows the value of the v gap metric as a
guidepost in deciding how to group processes that may have widely differing open
loop responses into clusters that can be successfully controlled by the same con-
troller D. The value of such insight can hardly be overstated.

Define three process models

100
G pr—
S P
100
= %1
100
Gy= —
(2s+1)

Then (G, G,)=0.02, whereas ov(G,, G3) =0.899, showing that the two
models Gy, Gs are very different from the point of view of the v gap metric, which
(recall) has a maximum value of unity.
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One of the conclusions of this worked example is that the two processes G,
G,, one stable and the other unstable, would be expected to have very similar
closed loop behaviours when controlled by the same controller D.

Fixing the controller D= —1 for both cases, we calculate the closed loop
transfer functions for the two cases to be

G B 100 ~ 100
1—-GD  2s+14+100  2s+101
G, 100 100

1—G,D 25+ 14100  2s+101

confirming the utility of the gap metric in clustering open loop models according to
their predicted closed loop behaviour.

15.8.3  More about the two metrics ov and bg p

Provided that certain continuity conditions relating to right-half-plane poles are
satisfied (see Vinnicombe (2001) for details), the following algorithm allows dv to
be calculated:

GG G,
1+GiGy, 1+GiG
-GGl = T (15.25)
1

1+ GG, 1+ GG,

The v gap metric approach also makes extensive use of another metric, the
quantity b, defined by the relation

(Cla—oortiop 1" irlo.oissane

bgp = H %
0, otherwise
. _ (15.26)
From Figure 15.16 it can be seen that

G —-GD

Y 1-GD 1-GD |(n
_ 15.27
1-GD 1-GD

wy W2
V1 uy+ + 4
z + Vy
D

Figure 15.16 Configuration for discussion of the measure bg p
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(where for simplicity the weights w; have been set to zero) and the expression
inside the norm sign of (15.26) is the transfer function between

b [
2
Properties of bg,p

e bgpe |0, 1] forany G, D.
b, p 1s a bound for all eight transfer functions linking inputs and outputs in the
closed loop.

e bop=bpa.
Let p be the ‘distance’ between the two frequency responses G(w), D(w). Then
be.p=1infw p(G(w), D(w)), i.e. bg p is the smallest distance between the fre-
quency responses of G and D.

e We also define b,,(G) =supp bg p, i.e. this is the largest value over all pos-
sible linear controllers D.

We want b to be as large as possible since then the quantity in the norm signs of
(15.25) will be as small as possible. (This will correspond to minimising S and
making 7=1 as we discussed before in Section 15.4.)

Theorem 15.1 Given a nominal plant Gy, a controller D and a scalar 3, then (G,
D) is stable for all plants G, satisfying ov(G,G,) < B if bg p > .

Theorem 15.2 Given a nominal plant Gy, a perturbed plant G, and a scalar
B satistying B < B, (G1) then (G,, D) is stable for all controllers D satisfying
bg,p > B if w(G,,G>) < B.

15.8.4 The insight provided by the v gap metric
The three quantities

bé,p, be,p,0,(G1, G2)
obey the following triangle inequality, visualisable in Figure 15.17:
bG,p > bg,p — 0,(G1, Gz) (15.28)

The distance between models G|, G, may be considered to be model uncer-
tainty, and the idea can be taken further as follows.
Consider the set of process models

{G:0,(G1,Gy) < B} (15.29)
Then any controller D satisfying
bGID > ﬁ

will stabilise every process model in the set specified in (15.29). Figure 15.18 is a
visualisation aid to accompany the above result.
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bg,p

G, bG,p
Figure 15.17 Visualisation of the triangle inequality

set of G for which

hop(G) oGy, G)<f

bg.p>p

Figure 15.18 The controller D can stabilise every process whose model is within
the inner circle

15.8.5 Taking into account the weights shown in Figure 15.16
to allow loop shaping

In order to reflect the performance and robustness requirements of individual
designs, it will be necessary to include the weights wi{(w) shown in Figure 15.16
into the definitions to achieve loop shaping. The general idea as outlined above will
be unchanged but robustness will now need to be achieved while observing loop
shaping constraints that have been built into the definitions.

15.8.6 A discussion on the two metrics ov and b p

Consider two quite different industrial design scenarios:

(i) A cruise (automatic highway speed) control is being designed that must
operate on a range of trucks having different engine/transmission types. Fur-
ther, each truck, in service, will operate with a range of loads over a range of
highway gradients.

(i) A steel strip rolling mill rolls a variety of products of differing widths, thick-
ness, temperatures and hardnesses and is to have an automatic thickness con-
trol system designed.

In both cases, it would be quite routine to design the necessary controllers using
well-established classical techniques were it not for the large envelope of
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Gy
G
0,(Gs3, Gy)
Gs

Figure 15.19 How the v gap metric and the b metric combine to provide powerful
quantitative insight into stabilisability and robust control

variability in the processes to be controlled. Almost every real industrial control
task has either feature (i), where a single controller is to be designed to be fitted into
a wide range of products and the hope is to avoid having to customise for each
application, or feature (ii), where a single process has to produce a range of pro-
ducts whose varying characteristics form part of the control loop.

Suppose we were able to write a small number of transfer functions G; that
together spanned the required range of process variability. The G; might vary in
terms of parametric uncertainty or in terms of structure, or both. The v gap metric
would then allow us to plot the G; in a visualisable plane mutually separated by
distances

o (Gi, Gy)

as indicated in Figure 15.19.

Now encircle each of the G; in Figure 15.19 by its own circle of radius f,,, (G;)
as shown in Figure 15.20.

Each circle defines the region within which stabilising controllers D;, for that
particular G,, certainly exist. In the illustration given here, a range of constant
controllers exists, in the region marked by the starred arrow in Figure 15.20, any
one of which can stabilise any of the processes G,, G and G,4. The diagram indi-
cates that a stabilising controller may not exist for the process Gj.

The v gap metric approach is most valuable for multivariable problems where
intuitive classical loop shaping cannot be applied.

Vinnicombe (2001) is the source for all the material of this section and that
reference contains a systematic and detailed exposition with examples and proofs.

15.9 Using LMI methods in control systems analysis and design

At one stage in the development of control systems design methods there was a
phase during which optimisation techniques were applied intensively to a wide
range of problems. Although the resulting control loops that were synthesised in
that way would almost always perform as expected when tested by simulation, they
tended to fail when applied to real problems. There were many discussions on the
‘gap between theory and practice’. Frequently, the real reason was the excessive
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(=) .y‘/

Figure 15.20 The same processes, as in Fig. 15.19, now surrounded by their
circles of radius b, (G)

idealisation of the original problems necessitated by the demands of the clean
mathematical lines of the available optimisation algorithms that failed to work
reliably when applied to real processes.

Largely, this was because the algorithms were excessively sensitive to quite
small mismatches between the process models used in control design and the pro-
cesses themselves. Control engineers working in industry were well aware of the
vagaries of their own processes whose behaviour could certainly not be described by
constant parameter models with superimposed, well-behaved, zero-mean Gaussian
disturbances. In fact, most processes tend to have some reasonably constant periods
punctuated by large changes when operating conditions are changed and in addition
there are superimposed short-term and long-term deterministic drifts.

At that time, it was quite impossible to even begin to pose an optimisation
problem realistically taking into account the known variabilities and idiosyncracies
of real processes.

That problem was partially solved using some of the early robust control
techniques and more realistic design approaches slowly developed. In particular,
the publication of Linear Matrix Inequalities in System and Control Theory by
Boyd (1987) was significant.

Current, highly applicable LMI approaches allow, to quite an extent, what
engineers always knew about plant variations to be fed into the design process in a
highly intuitive way. To give an illustration: In the design of a control system to
stabilise an electric power system network, it is now possible to reliably design a
control system to be robustly stable over a wide envelope of different network
configurations, different electrical loads, different generator interconnections and
under certain envisaged fault conditions. All this is achieved by designating and
then creating regions in design space that are realised mathematically as the
intersection of a number of LMI-defined regions. Such problems, so defined, can
only be solved numerically and iteratively, usually in two main stages. In the first
stage, the algorithm searches to ensure that there are some solutions that satisfy the
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usually three requirements that characterise the LMI problem (these are (a) an LMI
that specifies the required region in design space, (b) a linear matrix equality (LME)
that is a process model and (c) a cost function (J) that will be used as the scalar-
valued function to be minimised during optimisation). This first stage is often called
the feasibility stage. It generates a set of candidate solutions. Note that this set may be
empty. The second stage, the optimisation stage, delivers the final design. It is
iterative and terminates only when the cost function J has been minimised.

15.9.1 Definition of an LMI
An LMI can be concisely described by the general form

m
F(X) =Fy+ inFi >0
=1
where X € R” is the variable whose value is sought and the m symmetric matrices
F;=F! € R"*" are given. Importantly, the set {x: F(x) > 0} is convex.

15.9.2 Solving an LMI: the feasibility stage: worked example

Computationally, LMIs are usually solved in two stages. The first stage is to
establish, numerically, that some solutions exist that satisfy all the constraints of the
problem. That is called the feasibility stage and the result is that a set » of feasible
solutions is generated or it is discovered that there are no solutions — i.e. the set of
feasible solutions is empty.

Below is an example of the feasibility stage for a simple problem where the
feasibility may be investigated by manual calculation.

Check the feasibility of the problem; find the unknown set of X (the feasible
set) that satisfy the two inequalities below, where the F; matrices are given, or find
that no such X exists (i.e. the problem is infeasible).

X1 X2
X = >0
X2 X3

with F = Fy + Fix1 + Foxo + Fax; <0

2 3 2 -2 21
where Fo=1|3 5 2|, Fi= 2 0 0
2 2 4 1 0 1

-1 -3 2 0 -2 0

Frb=|-3 2 1|, F/=]|-2 -4 2

2 10 0 2 0

This simple example can be solved by inspection as follows.
F < 0 requires that all diagonal elements satisfy F; < 0, by inspection, diag-
onal element F33 =4 + x;, so that we must have x; < —4.
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Meanwhile, the condition X > 0 requires that all diagonal elements satisfy
x;; > 0 and in particular x; > 0. The contradiction indicates that no X exists that
satisfies the stated requirements and the set of feasible X is empty.

Of course, had a non-empty feasible set been identified then the next stage
would normally have been to search within the feasible candidates to identify a
unique solution that was optimal in that it minimised a given cost function.
(Author’s note: I picked up the numerical example above from the midst of a dis-
cussion forum on LMI methods, but do not have sufficient information to attribute
authorship.)

15.9.3 LMI applications to control: simple examples

A familiar stability example that is in essence due to A.M. Lyapunov in his 1892
thesis is the following.

15.9.3.1 A linear system

X =Ax
where x isan n x 1 vector, 4 an n x n matrix of constants is stable if and only if
there is a positive definite matrix P satisfying

V(x)=xTPx>0, forx#0
xTPAx +x"4"Px < 0, forx #0

To prove stability, one must find some P that satisfies the two LMIs
P>0, PA+A4'P<0

15.9.3.2 The discrete time linear system
x(k+1) = Ax(k)
is stable < V(x)=x"Px, P>0
and V(x(k+1))—V(x(k)) <0
or xT(k)ATPAx(k) — xT(k)Px(k) < 0, x(k) #0

the last inequality reduces to the LMI
A"PA-P <0

So, as in the continuous case, stability of the system can be proved provided
that a suitable P matrix can be found that satisfies two LMIs.

(There is a converse instability theorem, sometimes referred to as Chetaev’s
theorem, which is a mirror image of the above, allowing conditions for guaranteed
instability to be determined provided that a negative definite Q matrix can be found
that satisfies exactly opposite conditions to those stated above for P.)
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15.9.4 Motivating example: robust pole placement using LMIs

A good example of realistic specification of an industrial problem in LMI terms is
given in Rao and Sen (2000), where the task was to design a stabilising controller
for a power systems network. The approach was to linearise the non-linear power
systems model at a large number of different operating points and to design a
controller that can work stably at every one of those operating points. The authors
define a corresponding LMI region in design space, which in their case is the
complex plane, by forming the intersection of several more basic LMI regions.

First, they note that a subset D of the complex plane is called an LMI region if
there exist two m X m matrices a, § such that

D={zeCla+z8+zp" <0}

Then, since the intersection of any number of LMI regions is also an LMI
region and convex regions of the complex plane that are symmetric with respect to
the real axis are also LMI regions, the authors are able (as shown in Figure 15.21)
to define a target region in the complex plane that suits their control design

application.
For example, Rao defines LMI region (1) of the complex plane by
o< —05 by

z24+z2<2(-05)=14z4+2<0
herea; =4, =1

and LMI region (2), which is a conic section that makes an angle 6 with the ima-
ginary axis, is defined by

cosf(z+z) —sinf(z—z)
<sin 0(z—2) cos 0(2—1—2)) <0

(o )
ora,; =
0 0
8, = cos @ —sin6
> \sinf cos@
Finally, setting 6 =0.1, corresponding to a damping factor of {=10%, and
combining the a and j values lead to

1 0 0 1 0 0
a=[10 0 0], =10 0995 —0.1
0 0 O 0 0.1 0.995

and the required LMI region D is defined.

The paper (Rao and Sen, 2000) then goes on to plot simulation results of
possible state feedback schemes in which trial configurations of power system
stabilisers (used to minimise low-frequency network oscillations) were tested under
different system loading conditions. The results show how the robustness (as
quantified by the closed loop pole positions in the LMI region D described above)
can be quantified for different feedback control arrangements.
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|:| LM 1 region (1)
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this region, which is the [:I LM 1 region D
intersection of a shifted \

half-plane LMI and a \

sector LM is the target \
design space LMI for the angled o
power stabiliser design 0.5 5(
project.

Figure 15.21 A desired LMI region in the complex plane where the poles of a
synthesised system will be placed in two stages: First, a feasibility
stage will show that some solutions can be produced whose poles lie
in the designated LMI space. Second, an optimisation stage will
search for the best among the feasible solutions

15.10 An outline of how H_, design works and how its
practicality can be usefully extended through u« synthesis

Figure 15.22 shows the standard configuration that both Matlab and Scilab require
to be presented to H_, and many other controller design programmes.

In the figure, the fixed parameter process model P = {4, B, C, D} is decom-
posed in an obvious way with the B, C, D matrices and the input—ouput signals
being split according to whether they participate in the closed loop through the to-
be-designed LTI (linear time invariant) controller K or are part of the external
connection.

The H,, design algorithm hinfsyn, given the populated Figure 15.22, will, by
choice of parameters in the controller K, minimise

ma, (22)
[l
which is the H, norm, to be visualised as the highest possible ‘gain’, over all
frequencies, of the ratio y,/u,, where u,(s) = Ky,(s).
In a real application, the user will input minimum acceptable performance

requirements that will need to be combined into the overall minimisation compu-
tation. This is where human interaction with the programme comes in; asking too
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Figure 15.22 The standard configuration for H., robust controller design

much in terms of performance may well result in the routine failing to find any
solution that can meet both performance and stability requirements. In such cases,
the designer will possibly relax the performance specification or the requested
stability margin or revisit the modelling assumptions.

15.10.1 The u-synthesis method

This method can be considered as a further useful development from the H,
method that allows for process parameter uncertainty to be more specifically taken
into account.

In the u-synthesis approach, the diagram Figure 15.22 is still broadly applic-
able but additional input and output weighting factors are incorporated in such a
way that dimensionless input—output signals of unity peak magnitude are
generated.

The u-synthesis programme then searches for a controller K that yields a
maximum singular value o satisfying

)l
"“”‘”<|u<s>||> =1

From a user’s point of view, this method has the great advantage that physi-
cally understandable uncertainty about process model parameters can be directly
encoded in everyday process operator’s language. For example, suppose that the
process model contains parameters a, b, ¢ with nominal values a=1, b=10,
¢ =50, then the u-synthesis programme can be run with those values: let us suppose
that such a programme run delivers a solution for K and a value of o = 0.9. Clearly,
we have a candidate solution that satisfies our requirements. However, we now
learn that the process parameters are subject to the following uncertainties:

a=1£01,56=10£05,c=50=+1

The Matlab u-synthesis programme allows such uncertainty intervals to be
inserted and if the programme is re-run with such uncertainties included, it is certain
that the value of ¢ will have increased and may no longer satisfy the relation o < 1.

The purpose of this illustration is to demonstrate how the u-synthesis approach
has such a long practical reach.
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The Matlab u-synthesis programme can be called by the command dksyn,
because it makes use of a so-called D-K iteration in which candidate LTI con-
trollers K are iterated with candidate frequency-dependent scaling matrices D(w),
until a solution is found that may or may not satisfy the required inequality o < 1.

For more information on the theoretical background, see the Matlab Robust
Control Toolbox literature, which also contains further lists of references.

For an application that uses this technique, see Chen et al. (2011).

15.11 Robustness or adaptivity?

A robust controller is designed to control all processes having transfer functions,
loosely speaking, in the range G + AG where AG represents either

(i) a bound on modelling uncertainty or
(i) an estimate of the envelope of variability for the process over different
expected situations.

Where 4G, the region of process uncertainty, is large, the performance with any
fixed robust controller may be inadequate for the application. In such a case, there
may be an advantage in introducing a degree of adaptivity into the controller,
allowing it, as far as possible, to track the parameters of the actual process, instead
of having to allow a priori for the possible spread of parameters.

The decision on whether to use robust design, some type of adaptive control or
a combination of the two will need to be made on a case-by-case basis, taking into
account the rate of change of process characteristics and the identifiability of the
process parameters. (See Section 16.5.1 for a further discussion.)

15A A hierarchy of spaces

Figure 15.23 shows how spaces are axiomatically defined with increasing
structure as one passes down the diagram starting from topological spaces
with few properties except connectedness, down through metric and normed
spaces possessing measures of size and distance, to the Lebesgue and Hardy
spaces that give theoretical underpinning to much of control theory.

Lebesgue spaces L”[a, b]

Lebesgue spaces L” [a, b] (named after Henri Lebesgue (1875-1941) who
developed the modern rigorous theory of integration based on a foundation of
his pioneering work on measure theory) are defined as spaces of functions f
where the integral exists.

(jb v<r>|f’)w, pellol

a
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| (1) Linear (vector) spaces (2) Topological spaces |

Topological vector spaces having both
properties (1) and (2)

| Metric spaces with concept of distance defined |

| Normed spaces with ‘size” of elements defined |
I
Banach spaces—normed spaces possessing

‘completeness’

LPand [” spaces

/ Hilbert spaces—Banach spaces where an
inner product <, > is defined

Hardy
2 2
spaces/ L“and /< spaces

Lebesgue spaces

Figure 15.23 A hierarchy of spaces showing increasing structure as the
diagram progresses downwards

The L” spaces are linear (vector) spaces since the sum of two integrable
functions is again integrable and the scalar multiple of an integrable function is
again integrable. Note also that in I” spaces we are always dealing with
equivalence classes of function rather than with individual functions. This arises
because functions that differ only at isolated points (more formally, functions
that differ only on a set of measure zero) are identical from an L” point of view.

Sequence spaces /7
Let X be a set of sequences {x;} of real numbers. Let every such sequence
satisfy

0 1/p
(Z |x,~|p> <m< oo
i=1

where p is a real number
pE(l,o)

Then m is a norm for X and X is called an I? space. When p = oo, we define
|Ixlloe = sup(xil)

Inclusion relations between spaces

Let P be the space of all polynomials, C, be the space of all n times
differentiable functions, C be the space of all continuous functions and let
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1 < p < g < oo. Then, assuming that all the functions are defined on the
same finite interval

PcCc®ccClcCccl®clicr cl!

Let C be the set of all convergent sequences, Cy be the set of all
sequences convergent to zero, and let 1 < p < g < oo. Then the following
inclusion relations apply amongst the sequence spaces:

lcPclcCcCcl®

The norm of a linear mapping 7

The norm of a linear mapping 7T is usually defined in terms of a ratio of L?
norms on the domain and range spaces.

Hardy spaces

Hardy spaces have become increasingly important in control theory since
about 1985. The foundations of these spaces and their naming in 1923 in
honour of the Cambridge mathematician G.H. Hardy (1877—1947) is due to
the Hungarian analyst F. Riesz (1880-1956), who was one of the founders of
functional analysis. Hardy spaces are important in harmonic analysis, power
series, operator theory and random processes as well as in control theory.

The space H

H, is a member of the family of Hardy spaces (4, p > 0). It is the Banach
space of all complex-valued functions of a complex variable that are analytic
and bounded in the right half plane where

Res >0
Such functions have the norm

_sup
Vlle = g2 o IFG)

and by Fatou’s theorem, which says that these functions can be defined by
their boundary values,

ess suj .
lle = =PI Go)]
See Duren (2000) for the underpinning theory of H,, spaces.

A note on notation

There appears to be a rough consensus that Lebesgue spaces are denoted L
spaces (p being superscript), whereas Hardy spaces are denoted H,, (p being
subscript). I have followed this convention.
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15B Model reduction to avoid overcomplexity in synthesised
controllers

When developing a model from logged process data, there is always a pro-
blem of deciding which aspects of the draft model are significant and rele-
vant, which aspects could be relevant on another occasion for a different
application on the same plant and which aspects can be classified as noise on
this occasion.

Many of the more sophisticated methods of control design will synthe-
sise a controller of an order as great or greater than the model with which
they are provided and some other types of controller include an internal
process model within the algorithm that will be used eventually online;
therefore, process models for controller design should have the lowest order
that still correctly mirrors all significant process behaviour for the particular
application that is envisaged.

There are many possible approaches to model reduction, not all of them
well documented but often based on modelling common sense. For instance,
if the model being developed is required specifically to discover the causes of
a particular behaviour in a batch process, the approach will normally be to fit
a model to each of n separate batches and use obvious statistical consistency
checks to exonerate some possible causes and to order the magnitudes of the
remainder.

One of the most favoured systematic methods for model reduction of
state space models is based on ordering the Hankel singular values of the
model’s transfer matrix G(s). Just as the usual singular values of a matrix 4
can define the rank of a matrix 4, so in a roughly parallel way, the Hankel
singular values of a transfer matrix G(s) can help to define the significance of
states in the process represented by G(s). (See interlude 11C for more
explanation.) What the above statement means in practice is that the mag-
nitude of the Hankel singular value of state m in Figure 15.24 is a good
indicator of the relative significance of state m in input—ouput terms; mean-
ing that states with small Hankel singular values can probably (but see
below) safely be discarded from the model.

Figure 15.24 shows the normalised singular values of a 20th-order model
G, as obtained by fitting to logged process data. Inspection shows that,
depending on the application, possible reduced models of order 12, 7, 5 and 3
might be investigated. The way forward is first to plot a Bode diagram of the
20th-order model and from that plot and a knowledge of the dynamic aims of
the proposed application decide on the frequency region where reduced-order
model and 20th-order model must match fairly closely. Fortunately, in many
processes, it happens that most of the states with low Hankel singular values
have their influence at frequencies that are outside the range of significance.
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Figure 15.24 The normalised singular values of a 20th-order model G, as
obtained by fitting to logged process data

See Obinata and Anderson (2000) for further details.







Chapter 16
A miscellany of control techniques

(Including neural networks, fuzzy logic and genetic algorithms; control switching,
gain scheduling, adaptive and learning techniques; intelligent systems, agent-based
and co-operative systems.)

16.1 Introduction

This chapter describes a selection of what are sometimes referred to as artificial
intelligence (AI) techniques (in fact these methods are, in general, empirically/
numerically based rather than being analytically/theoretically based like the bulk of
conventional control theory).

Neural networks are sets of interconnected artificial neurons that, very sim-
plistically, imitate some of the logical functioning of the brain. After training, they
can represent any algebraic non-linearity. They have to be trained by being pre-
sented with sufficient examples of the input—output behaviour that is desired, so to
a large extent they can only represent existing data-generating phenomena by
empirical equivalents.

Fuzzy logic emulates the reliable but approximate reasoning of humans, who,
it is said, distinguish only six or seven different levels of any variable during
decision making. Fuzzy logic algorithms can represent this style of reasoning
by easily understood curves that are ideal for implementing those many control
systems that are based on ‘having a feel’ or on ‘rules of thumb’ rather than on
equations.

Genetic algorithms and genetic programming are powerful evolutionary search
methods that can search for structures as well as numerical parameters. These
qualities allow the methods to synthesise solutions to a wide variety of problems.
The approaches rely heavily on imitating the methods of animal/human reproduc-
tion followed by natural selection. Because the methods can search amongst many
alternative structures, they can also be regarded as design or synthesis methods.

Learning systems aim to emulate the human learning-by-experience mechan-
ism so that a system can potentially learn to perform a task with increasing effi-
ciency over time using an iterative algorithm.

Intelligent machines and machine intelligence offer future prospects for
creating systems with ever-increasing autonomy and reasoning ability. Agent-based
systems and co-operative systems are two developing areas of research that aim to
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allow possibly large numbers of collaborating entities to achieve significant results
as the sums of their efforts.

16.2 Artificial neural networks (ANN)

16.2.1 Motivation

From a control point of view, a neural network can be regarded principally as a
non-linear input—output black box that can emulate a process, a controller, a state
estimator or a classifier (Figures 16.1 and 16.2). Neural nets contain coefficients
called ‘weights’ (Figure 16.3). They need to be taught by being presented with
numerical examples (that represent the desired behaviour) while the weights are
modified by a training algorithm until the neural net performs as closely to the
examples as possible.

actual
. ——— output
mechanism
trained ——— ANN output
ANN P

Figure 16.1  Basic abilities of neural nets: after being trained with a sufficient number
of accurate examples, they can emulate any non-dynamic, non-linear
mechanism

00O
objects to be classified

oAOANAOO classifier A A
\ ]

Figure 16.2  Basic abilities of neural nets: after being trained with a sufficient
number of accurate examples, they can act as classifiers

— y
u {w} —>
E—

A neural network has a memory {w} of ‘weights’ that
are learned during training.

A neural network can be a process model, an inverse model,
a controller, an estimator, a classifier or a filter.

Figure 16.3  Basic abilities of neural nets: the choice of weights w determines the
function that is emulated
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16.2.2 A basic building block: the neuron

A neural network is made by interconnecting a number of neurons (referred
to equivalently as perceptrons, nodes or processing elements). Figure 16.4 shows
a single neuron. It receives n inputs x;, each x input being multiplied by a
weight w;. The neuron sums the weighted inputs, adds in a bias term b and then
processes the sum through a function f'to produce a scalar output y, given by the
equation

y:f(Zlex,-w,-er) (16.1)

The function f'is the choice of the user but the characteristics of the sigmoid
function

1
S l4e™

fx) (16.2)

make it the most widely applied for general emulation purposes.
Training of the neuron implies fixing numerical values for the weights w and
the bias b so that the neuron behaves in a desired way.

X2

. Weights summation
n
function f

inputs
Figure 16.4  Architecture of a typical neuron

16.2.3  Simple properties of a neuron demonstrated in the
two-dimensional real plane

For this illustration, we set n = 2 and f = 1. Now, if we set y = 0, the equation of
a straight line results as

Xy = —&xl —i (163)
W W

shown in Figures 16.5 and 16.6 for two different values of .
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Figure 16.5 Realisation of x; AND x,
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Figure 16.6  Realisation of x; OR x,
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Figure 16.7 The question mark (?) indicates an important generic shortcoming of
the neuron as a classifier: It is unable to generate any single line that will separate
the points and realise the XOR function

It is clear from the figures that the single neuron divides the plane into two
regions and can work like an AND or an OR gate, according to the value given to
the bias term b. It is also clear, Figure 16.7, that no single line can separate the
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points (—1, —1), (1, 1) from the points (1, —1), (=1, 1) as is required by the
exclusive OR (XOR) function.

One solution for mechanising the XOR function might be to use two neurons to
generate two separating lines, and then to feed the output of the two neurons into a
third combining neuron to form a region. This leads to the idea that more than one
layer of neurons will be needed to allow wider classes of functions to be emulated.

We shall return to the topic of multilayer networks shortly but first we consider
the case of a single neuron with # inputs.

16.2.3.1 Properties of a single neuron with n inputs

A neuron with z inputs describes a hyperplane that separates R, into two disjoint
regions, say A and B. The plane with normal v € R, has the equation

(x,v) =b
and this plane is offset by the distance b from the parallel plane
(x,v) =0

that passes through the origin.
A neuron with weights w € R,, and bias » € R, assigns any x € R,, to region 4
or B using the rule:

(x,w)y >b=0x€4
(x,w) <b=0x€B

If the convex hulls of the sets 4 and B are disjoint then some hyperplane
generated by the neuron can give perfect separation of the points into their correct
categories.

If the convex hulls of the sets 4 and B intersect, then no hyperplane can
separate the points perfectly and the best one can do is to choose the plane that
misclassifies the least number of points.

16.2.4 Multilayer networks

Three layers of interconnected neurons are said to be sufficient to emulate any
desired non-dynamic function. The most widely used neural network is perhaps the
so-called multilayer perceptron (MLP) (Figure 16.8). An MLP usually has a three-
layer architecture with input, hidden and output layers. The number of neurons in
each layer and the types of functions embedded in each neuron are chosen by the
designer of the network to match the application.

16.2.5 Neural network training

Neural network training is the activity of fixing the weights w and the bias terms b
throughout the network until the behaviour obtained achieves some given perfor-
mance objective. The most used training algorithm is back-propagation.
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input layer  hidden layer output layer

normal data flow

Figure 16.8 A multilayer neural network containing six neurons

This works, in principle, as follows. Training examples in the form of input—
output data sets (x, y) are presented to the neural network whose output estimates y
are recorded. After presentations of & such data sets, we shall be in possession of
the information (x;, y;, $7/,j =1, ..., k) and can form the error sum

J=Y 0/ -3) (16.4)

whose minimisation will be the training aim.
Where the neural network has only one layer, back-propagation consists only
of adjusting each weight according to the algorithm

oJ
Aw; = — 16.
Wi =5 (16.5)

where the partial derivative will only exist if the function f'in each neuron is itself
differentiable, such as is the case when fis the sigmoidal function.

In multilayered networks, the same principle applies with (16.5) now having
the characteristic that adjustments to weights in early layers can be found only once
the later layer corrections have been calculated; hence, the name back-propagation.

In practice, the training of a large neural net on industrial data needs to follow
a procedure such as the following. The available input data set Q is divided into
three subsets, say 4, B, C. The network is trained to fit the training set 4, with
periodic checks to determine the goodness of fit of the partially trained network
against verification data set B. The idea of this procedure is that training can be
continued too long (‘overtraining’) such that the network ‘learns’ the data set 4,
noise and all, in great detail and no longer captures the underlying function so well
as in the earlier stages of learning. By using the set B, the point where overtraining
is imminent can be detected, the training stops and the performance against unseen
data C can be checked (Figure 16.9).
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error E
N against training set A

e against validation set B

o
number of training iterations
Figure 16.9 Illustrating the phenomenon of overtraining

(The problem of overtraining, or overfitting, is not confined to neural net
applications and occurs whenever high-order models are fitted to noisy or batch-to-
batch varying data from a process of lower order. However, because neural nets
tend to be of high algebraic order (a large number of weights to be trained), the
overtraining problem is more severe than in classical modelling using, for instance,
differential equations.)

16.2.6  Neural network architectures to represent dynamic
processes

All the neural networks we have discussed so far have been non-dynamic. That is,
input information is immediately processed and appears without storage or delay at
the output. In contrast, a dynamic process has internal storage and a transient
response.

To see this, look at what happens to a dynamic system that receives a step input
(Figure 16.10). Although the system receives a constant input of unit magnitude,

output

input

time

Figure 16.10 A neural net with some sort of dynamic feature is clearly needed to
learn this sort of input—output behaviour (in a normal non-dynamic
net, the same input will always produce the same output)
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the corresponding output, as shown in the figure, depends on the time. This feature
makes neural network training more difficult than simply choosing weights to
represent a time-invariant relationship.

16.2.6.1 Three ways to make neural networks dynamic
(1) Make the network recursive (Figure 16.11). From the figure,

(1 + Pz Yy(z) = Pu(z)
J’(Z)_ -1y _ Pz

(2) Provide the system with delayed inputs alongside normal inputs yielding
(Figure 16.12)

yiz)  PE+1)

u(z) z

u@ ¥(2)
_ o |

The configuration has the first-order dynamic equation
y(@2)u(z) =Pz/(P+2)

which has a first-order dynamic.

Figure 16.11  Neural element P, made dynamic by feedback (recursive network)

u(z)
y(2)
P —
7u(z)

This configuration has the first-order dynamic equation
y(@)/u(z) = P(z+1)/z

Figure 16.12  Neural element made dynamic by delayed inputs alongside normal
inputs
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u@) . H y(@)

integrator

This configuration has the first-order dynamic equation
y (@) =7Pu()
y (2)lu(z) = P/z

Figure 16.13  Neural element made dynamic by connection of a separate
integrator

The simple derivations for networks (2) and (3) are similar to that shown for
(1) above and are omitted.

Most important industrial processes are non-linear and dynamic. If the dynamics
are modelled by a conventional network and the non-linear part by a neural net,
excellent results can often be obtained. However, in such a configuration, network
training can be difficult since differentiation of the industrial data, with loss of
information, may be required if back-propagation approaches are to be used.

The ease of application of neural nets and the speed with which tolerable
results are delivered has caused many users to neglect to study the problem prop-
erly and to neglect a careful pre-treatment of the data. The two omissions combined
can lead to quick and cheap empirical solutions that will be expensive in the longer
term. A very successful solution to this problem of excessive empiricism is to

rate of utilisation net rate of change
ANN of nitrogen N ¥
1
rate of addition of
represents one nitrogen (known)
aspect of organism _
- estimation of nitrogen
\/\/\ concentration (one element of the

state vector
~/ )

ANN > () {:|
| '\T/

estimation of the jth element in the
state vector

A

Figure 16.14 How neural nets can be embedded within known dynamics to
produce a transparent and mathematically sound state estimator
(the example is from a large fermentation process)
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embed small scale neural nets within a conventional model of the known dynamics
of a process to obtain a state variable structure as shown in Figure 16.14.

Such a structure is both mathematically sound as well as transparent (rather
than black box).

16.2.7 Using neural net-based self-organising maps for data
reduction and clustering

Self-organising maps (SOMs), particularly using the Kohonen approach, find
application in clustering high-dimensional data by unsupervised mapping onto a
space of reduced dimension. Typically, several hundred input ‘patterns’ will be
input to the SOM that will self-learn a small number of feature patterns at the centre
of the classifying clusters.

A SOM, used in this way, can be regarded loosely as a neural net-based non-
linear equivalent of a principal components analyser (PCA).

16.2.8 Upcoming rivals to neural networks? Support vector
machines and adaptive logic networks

Support vector machines (SVMs) (Scholkopf et al., 1998, 1999; Cristianini and
Shawe-Taylor, 2000) work by mapping data into high-dimensional feature space
and in that space, linear functions are fitted to the features.

Adaptive logic networks (ALNs) use a growing self-organising tree of piece-
meal linear functions or hyperplanes.

The proponents of these two approaches claim that they are faster and more
transparent than neural networks, that they have global minima and that they also
allow the inclusion of domain knowledge during the modelling process. Under
some conditions, ALNs can be reversed so that the output becomes the input. This
ability to invert a learned function can have great utility in allowing analysis to be
turned into synthesis.

ALNSs are trained in a similar way to neural nets but they can also be trained by
reinforcement learning in which only rough fuzzy feedback such as ‘good’ or
‘poor’ is provided by the supervisor.

16.2.9 Neural nets: summary

e Very simple idea of interconnected neurons that can emulate any function for
which numerical examples are available.

e Some theoretical support from Weierstrass’ theorem — any continuous function
may be approximated arbitrarily closely by a polynomial.

e An ANN is a ready-made modular polynomial with an effective back-propa-
gation method of parameter fitting.

e Not so good as a well custom-constructed non-linear dynamic model but the
effort required is very much less.
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16.3 Fuzzy set theory and fuzzy logic

16.3.1 Introduction and motivation

To the extent that mathematics is exact it does not apply to the real world; to the
extent that it applies to the real world it is not exact

Precision is not truth

Precision and relevance can become almost totally mutually exclusive
characteristics

These quotations (from Einstein, Matisse and Zadeh) confirm our experiences that
everyday situations are in general too imprecise to be dealt with satisfactorily by
mathematical tools.

These three quotations appear to argue in favour of imprecise but reliable
human reasoning and action taking. Our everyday observation is that small children
rapidly learn to catch a ball, make a swing go really high, ride a cycle or roller
skate, all based on ‘acquiring a feel’. The attraction of controllers that might
acquire a feel, instead of requiring to be based around a complex quantitative
dynamic model, is obvious; controllers based on fuzzy logic go some way towards
encoding the human ability to ‘acquire a feel’.

Normal set theory and normal logic are characterised by formalised precision.
For instance, once set 4 has been defined then every element in the universe of
discourse belongs either to 4 or to the complement of 4 (Figure 16.15). Similarly,
every statement in logic produces a statement of either ‘true’ or ‘false’ with no
possibility of ‘maybe’.

In contrast, fuzzy set theory is characterised by imprecision, and since human rea-
soning is based on approximations, here lies the attraction of fuzzy sets. We can, for
instance, define the set of all ‘fierce dogs’ or the ‘set of all bad restaurants’ it being
understood that there will be different degrees of ‘fierceness’ and ‘badness’, respectively.

The idea of a stepped grey scale (Figure 16.16) comes to mind to quantify
membership of a fuzzy set. Considering again the set of all fierce dogs, normal set

not fierce the fuzzy set of all fierce dogs

A

the crisp set of all fierce dogs

somewhat fierce extremely fierce
fierce

equivalent grey scale l:“:” | |

Figure 16.15  Crisp and fuzzy sets
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normal logic

| true | false |

fuzzy logic

[ [ T .

Figure 16.16  Normal and fuzzy logic

theory would have a crisp 0-1 classification into fierce and non-fierce. Fuzzy set theory
would have some well-defined transition from most fierce to not fierce, leading to the
concept of a broad fuzzy set boundary, and the idea of degrees of set membership.

It is clear that a fuzzy set can contain more useful knowledge for everyday
decision making than can an equivalent crisp set. The attraction of fuzzy logic/
fuzzy set theory is that it allows common sense encoding of different levels of
intensity and it also allows for the outputting of different levels of activity, leading
straightaway to the idea of a fuzzy logic controller.

In particular, fuzzy logic often allows the simple mechanisation of the control
actions of a human operator. Mamdami (1976) was the first to publish reports of
fuzzy control of a model steam engine while the first successful applications of
fuzzy control in industry was to a cement kiln where operators look at many sub-
jective quantities and then adjust a few process variables. Fuzzy logic proved ideal
for codifying the operators’ rather ill-defined but reliable control actions at the
Danish plant of L.A. Schmidth (Holmblad and Ostergaard, 1982).

16.3.1.1 A simple illustration of how a crude rule of thumb
can be encoded to produce an easily implementable
control algorithm

Imagine a situation where a furnace has the rule of thumb for control as follows:

o Ifthe indicated temperature is LOW (90°C or less), then set the fuel valve (FV)
to 100.

o If the indicated temperature is OK (near to 100°C), then set the FV to 10 (this
setting having been found to just offset the losses occurring at 100°C).

e If the indicated temperature is HIGH (110°C or higher), then set the FV to 2.
(Let us agree that it is not allowable to shut off the fuel completely and that this
is the minimum allowable setting.)

Our chosen fuzzy control algorithm simply interpolates linearly in the above rule of
thumb (Figure 16.17) to give the rule

0 <90° = FV =100

90° < 0 < 100° = FV:100—90¥
100° < 6 < 110° = FVle—SW

0>110°= FV=2
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observed furnace temperature, °C

Figure 16.17  Actions required.: solid line — rule of thumb; dotted line — fuzzy
logic interpolating curve

In use, the algorithm would be run every 7 seconds, with 7 being chosen to suit
the dynamics. The value of FV would be held constant between calculations.

16.3.1.2 Fuzzy control can deal with very complex and ill-defined
problems that defy mathematical analysis
In a collaborative project between University of Westminster and a UK cement
manufacturer, there were around 40 measured or observed variables as inputs to a
fuzzy control algorithm, but only some 3 or 4 variables to be controlled. Fuzzy
logic techniques allow such problems to be visualised and driven graphically so
that the many interacting and even contradictory laws can be weighted (based on
operators’ advice) and then combined to form a number of required action shapes.
The actions to be implemented at each time step are then found, typically, by
finding the centres of areas of those required action shapes.

16.3.2 Some characteristics of fuzzy logic

Imprecise rules of thumb may easily be encoded.

Simple structures that parallel human reasoning result.

The overall operation of a fuzzy logic control can be visualised graphically.

Using fuzzy logic it is easy and practicable to engineer custom solutions to

practical problems using solutions that can successfully encode and then

interpolate in operator wisdom and operator feel.

e Fuzzy logic allows mathematics to change its character to emulate the reliable
but approximate decision-making methods that humans have evolved so suc-
cessfully over the centuries.

e Disadvantages of control based on fuzzy logic.

e Many concepts/tools of conventional control are not easily available (such as
frequency response, stability margin).

e Because of the above, fuzzy control solutions have to be checked out empiri-

cally over a range of scenarios, rather than being guaranteed mathematically.
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16.3.3 References: early pioneering work

Holmblad L.P., Ostergaard J.J. ‘Control of a cement kiln by fuzzy logic’ in Gupta
M.M., Sanchez E. (eds.). Fuzzy Information and Decision Processes (North
Holland, Amsterdam, 1982), pp. 389-99. (This paper surveys the application of
fuzzy logic by F.L. Smidth & Co. (FLS) for control of rotary cement kilns. The
presentation is given in retrospect, starting in 1974 when FLS heard about fuzzy
logic for the first time. The most important milestones are presented, with special
emphasis on the role of fuzzy logic.)

Mamdami E.H. ‘Applications of fuzzy algorithms for control of simple
dynamic plant’. Proceedings of the IEEE. 1976;121:1585—-88

Zadeh L.A. ‘A rationale for fuzzy control’. Journal of Dynamic Systems,
Measurement and Control. 1972;94(Series G):3—4

16.4 Genetic algorithms
16.4.1 Basic ideas

Populations of living organisms have powerful abilities to evolve and to adapt,
guided by actual experiences (survival of the most fit for purpose). Genetic algo-
rithms (GAs) imitate natural evolution and natural selection to find solutions to a
wide variety of search problems. Natural evolution has a number of features that
can possibly be transferred to artificial GAs. These are as follows:

(1) A blueprint for a new organism, being a chromosome encoding future char-
acterisation as a string of symbols.

(2) In many organisms, a sexual generation mechanism in which two chromo-
somes from the two parents line up and make a linear exchange of genes from
a randomly selected point onward. This mechanism is called crossover.

(3) A (possibly infrequent but important) mutation mechanism that ensures that
entirely new regions of the search space are occasionally accessed.

(4) A survival of the ‘most fit for purpose’ strategy. In nature, this strategy is
administered by the ability of an organism to survive and even thrive in a
competitive environment, at least to a point where it has parented its own
offspring.

16.4.2  Artificial GAs

(1) Every potential solution to a search problem to be solved by a GA approach
must somehow be encoded as a string of (say) binary symbols in such a way
that all allowable strings are possible solutions (Figure 16.18).

(2) Crossover and mutation strategies (Figure 16.19) exist, imitating the natural
mechanisms described above.

(3) A fitness function is used to linearly order any set of possible candidate
solutions.
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Figure 16.18  Genetic algorithms (GAs) are general purpose optimisation
algorithms

The problem to be solved can be considered amongst the class of hill-climbing
problems where visualisation is in the form of a landscape in which we seek the
highest point, equivalent to the point of highest elevation, as measured by the
fitness function.

In hill-climbing, smooth landscapes with single (i.e. unimodal) maxima are
relatively easy to solve, whereas noisy landscapes with multiple maxima confuse
and delay the algorithm.

All search methods progress more slowly when the problem is non-linear, non-
smooth, noisy and with multiple maxima. However, the GA, properly set up, has
shown itself to be one of the most effective general search methods for such dif-
ficult problems.

To understand the particular effectiveness of the GA approach, consider a
mountainous landscape that represents the search problem with the task being to
find the point of highest elevation. The population of candidate solutions is initially
randomly and more or less uniformly distributed across the search space.

However, as successive generations evolve, the ‘net’ of candidate solutions
becomes ever more closely meshed near to possible solutions and correspondingly

example of crosslover from (randomly selected) gene six
lofe[2[s]4]s[6[7]e[o]  [o]s]2[s[4]s][o[n]I]J]

' e
'

[alelc|ofefr [e[u[t][s]  [a[e[co[e[F[e[7]8]e]

original chromosome

(2] 2 Ja] o [ s]e] 7|8 |9

chromosome with mutation

Figure 16.19  Illustration of the crossover and mutation mechanisms
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| a | b | c |

How a chromosome can be set up to encode

(a) qualitative structural information (type of architecture)

(b) quantitative structural information (numbers of nodes/layers, etc.)
(c) numerical values of parameters, for instance, for a neural network
model of a process

Figure 16.20  Because of an ability to search among widely differing disparate
structures, a GA can be considered to be a design and synthesis
tool

sparse far away. Thus, the search is parallel with statistically increasing probability
of search near to likely solutions and although fragmented summits (spiky noise)
necessarily delay any method of solution, the GA’s lack of direct reliance on
seeking directions (which are badly affected by local noise) puts it at an advantage.

Thus, GAs are able to concentrate most of their attention on the most pro-
mising parts of the problem space.

16.4.3 GAs as design tools

In considering how a set of solution strings develops towards the required solution,
it becomes evident that the spatial location of information within the chromosome
may be important. Consider using a GA to choose the architecture and train the
weights of a neural network to model a dynamic batch process for which input—
output data are available. In such a case, one segment of the chromosome could
represent structure or type of architecture, another segment, numbers of layers and
types of embedded functions, while the final layer could represent the numerical
parameters that need to be estimated (Figure 16.20).

It is clear that GAs with their ability to choose between alternative structures
and, as it has been shown by Koza et al. (1999), their ability to synthesise novel
structures and novel solutions, make them very powerful tools.

16.4.4 GA summary

e GAs are general purpose optimisation algorithms working, in overview, as
shown in Figure 16.21.

e They are based loosely on certain concepts of biological evolution (genes,
chromosomes, mutations, generations, [un]natural selection and survival of the
most fit for purpose).

16.4.4.1 The main steps in classical GA

o Encode the problem so that the solution sought is in the form of a binary string
0110110010... called a chromosome.

o Generate a totally random set of (say 100) chromosomes of the right length to
be a solution.

o Evaluate the fitness (a single positive number) of each chromosome.
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Figure 16.21  How the GA is linked to the problem through the fitness function

Probabilistically, select the most-fit chromosomes to be parents for the next
generation and produce a new generation from these parents by the crossover
mechanism.

Continue the cycle of generations until a satisfactory solution has been
obtained as measured by the fitness value.

16.4.4.2 GA advantages

The entire space is searched in parallel, avoiding the solution terminating in
local minima.

GAs are less prone to noise problems than methods that need to evaluate
derivatives.

No knowledge of the problem is needed except for calculation of fitness
values.

16.4.4.3 GA disadvantages

GA is just a general idea and many difficult application-dependent tasks have
to be undertaken (particularly encoding and definition of fitness function, etc.).
For all but demonstration problems, the computer power/time required to
produce a realistic solution may be considerable.

Much of the GA practitioner’s art and skill lies in getting an algorithm to
converge when faced with a large problem. Such strategies as incremental
evolution (in which coarse approximations are successively produced and then
refined) are subjects of current research (Kalganova, 2000).

GAs have a poor reputation for handling constraints.

16.4.5 References

Banzhaf W., Nordin P., Keller R.E., Francone F.D. (eds.). Genetic Programming:
An Introduction (The Morgan Kaufmann Series in Artificial Intelligence) (San
Francisco, Morgan Kaufmann; Heidelburg, Dpunht Verlag, 1999)
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Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware; Palo
Alto, California (Piscataway, New Jersey, IEEE Computer Society, 2000)

Koza J.R., Keane M.A., Yu J., Mydlowec W., Bennett F.H. IIl. ‘Automatic
synthesis of both the topology and parameters for a robust controller for a non-
minimal phase plant and a three-lag plant by means of genetic programming’. Pro-
ceedings of IEEE Conference on Decision and Control; Chicago, IL, 1999, pp. 5292-300

Reeves C.R. Genetic Algorithms: A Guide to GA Theory (Dordrecht, Kluwer,
2002)

16.4.6 Rivals to GAs? Autonomous agents and swarms

People are moved in a large city by a mixture of methods ranging from centrally
planned underground trains running at scheduled times on fixed routes to a shifting
mass of taxis operating largely autonomously. Agents and swarms have some
similarity to these taxis: having been set going, they may together solve a very
complex problem by a mixture of rivalry and co-operation.

Some specimen references are as follows:

Bonabeau E., Theraulaz G., Dorigo M. Swarm Intelligence: From Natural to
Artificial Systems (New York, Santa Fe Institute of Studies on the Sciences of
Complexity, Oxford University Press, 1999)

Ferber J. Multi-Agent Systems: An Introduction to Distributed Artificial Intel-
ligence. Harlow, Addison-Wesley, 1999

16.5 Controller switching, gain scheduling and adaptivity

16.5.1 Discussion

Many real-world processes that need to be controlled, change their characteristics
widely when their operational environment changes. For instance, a military fighter
aircraft will surely be unable to be represented by the same constant mathematical
model at take-off and at supersonic speeds and it is therefore unlikely that robust control
design techniques can produce one constant control system that guarantees sufficient
performance with stability over such a wide range of operating circumstances.

A robust controller is designed to control all processes having transfer func-
tions G, in the range G + AG, where AG represents either modelling uncertainty or
process variability.

Where AG is large, the performance with any fixed robust controller may be
inadequate for the application and one or other of the controller adapting or
learning techniques described below may need to be used.

16.5.2 Controller switching

The simplest approach to the control of a process whose characteristics change over
too large a range for any single constant controller to be effective would possibly be
to store a number of pre-configured controllers with appropriate pre-configured
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parameters, including gains. Not so simple is the task of deciding the mechanism
that would reliably initiate the switch-over of controllers/strategies. Further, the
dynamic disturbances possibly caused by the switch-overs and the spectre of
continuous chattering from one controller to another exists, since there is, so far, no
accepted theoretical framework that can guarantee how a multi-model/multi-
controller system will perform overall.

16.5.3 Gain scheduling

Gain scheduling is the name used for a range of techniques in which the gain and
other parameters in a usually closed loop controller are modified during operation
according to a set of fixed stored rules. This means that a gain-scheduled controller
is pre-programmed to change its parameters according to (say) airspeed or altitude
for an aircraft.

Where a process model is known but is non-linear, such as the model
x = f(a,x,u), where a is a vector of process parameters, then one approach would
be to linearise the model at a-n key points in the operational range of the process
and to design, store and interpolate continuously between those controllers
according to the actual operating point. More sophisticated scheduling approaches
can be envisaged but they will often be infeasible in practice because of model
uncertainties.

16.5.4 Adaptivity and self-tuning controllers

Clearly, adaptive controllers, at least in theory, offer a much more theoretically
sound approach to meeting the challenges of maintaining high performance with
sufficient stability margins over widely different sets of conditions. In laboratory
conditions where an occasional mishap is not a disaster, adaptive systems can
perform well. The problem for real-world applications is allowing an adaptive
controller sufficient range of action and autonomy to be effective. For many safety-
critical applications, there is always a fear that a rogue signal might push the
adaptive controller into a danger area. Self-tuning controllers that are capable of
reliable self-commissioning when connected to any unknown industrial process and
which then obligingly and again reliably change their set-up parameters to track the
unmonitored time variation of the unknown process are to be found on the wish
lists of all process managers, but the operative word is reliable and most reported
successes will, on investigation, be found to be simulations.

16.6 Learning systems (systems that learn) with
or without supervision

16.6.1 Basic ideas

A machine that can learn by trial and error and that can refine its behaviour over
time has very obvious attractions. Further, one could reasonably expect that the
ever-increasing availability of increased computer power, speed and memory could
enable such technologies to be developed and put into application.
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Learning in its general sense involves

(1) alearner;

(2) something to be learned,

(3) examples or selections from what is to be learned displayed to the learner;
(4) trial solutions or hypothesis provided by the learner;

(5) (possibly) a teacher or a cost function to give feedback to the learner.

16.6.2 Learning versus adaptivity

Adaptivity implies that in response to a change in (say) environment, a system will
modify its behaviour always in the same way no matter how many times the
operation is performed. However, a learning system, in contrast, faced with a task
similar to one encountered previously, can be expected to respond with increasing
efficiency — at least until some asymptotic limit to learning has been reached.

16.6.3  Structural characteristics of an abstract learning system

(a) An initially empty knowledge space that will be populated by knowledge functions
that have been accumulated from earlier recorded experiences. The knowledge
space with its current set of knowledge functions will be called the knowledge base.

(b) A knowledge interpreter and interpolator whose aim is to build the best pos-
sible knowledge base with the minimum of experimentation. It is the task of
this device to choose control strategies that when implemented will produce
data rich in information to help fill the knowledge base appropriately.

(c) An objective function that defines the purpose of the whole exercise.

Figure 16.22 indicates the concept. In practice, the learning involved in finding a
good control system for a new ‘unknown’ process, such as that occurring in the
manufacture of a new pharmaceutical product, requires a large number of inter-
acting decisions to be made as shown in Figure 16.23.

Although the procedures used will in broad principle follow the outline shown
in Figure 16.22, many of the decisions to be made rely on the inherited wisdom of
experts and the sequence of events is still heavily supervised by human experts as
shown diagrammatically in Figure 16.24 with the emphasis being initially on
finding a process model and then changing to a concentration on performance
optimisation (Figure 16.25).

knowledge objective
interpreter function
process »| knowledge
space

Figure 16.22  Learning control concepts — the structure of an abstract system
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Figure 16.23  The control strategy for a bioprocess must fix initial conditions for
physicochemical variables a—e and for bioprocess variable f and
stipulate trajectories A—F to be followed during the batch by these
variables. The objective is to maximise yield of product y taking
into account batch time T
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A: model development loop, B: performance optimisation loop

Figure 16.24  Rapid control development for a new batch process

optimisation

time

modelling :

Figure 16.25  Rapid control development for a new batch process: expected
progression. Initially most time is spent gathering data and
attempting to find a model that describes the process. As model
development proceeds, so does control algorithm development



364  Control theory: a guided tour

It is perhaps worth pointing out that as the above procedure progresses, the
physical size of the experimental reactors must also progress from laboratory scale
through ever larger reactors towards near-production-scale reactors where realistic
control regimes can eventually be finalised. Scaling-up studies can require care (see
interlude 6H for one example).

16.7 Intelligent systems

16.7.1 The properties that an intelligent system ought to possess

The qualities and properties that an intelligent system ought to possess (based on
presentations at recent IFAC (International Federation of Automatic Control)
meetings) are as follows. An intelligent control system, in its most ambitious form,
should possess autonomy in terms of

self-learning

self-reconfigurability

reasoning under uncertainty

planning

decision making

failure detection

setting control goals (not only attaining them)

It is clear that some current systems do indeed possess several of the quoted properties.

However, it has to be admitted that the state of development of intelligent
control systems as measured against the list is still quite modest — perhaps not
surprisingly, given the ambition built into the list.

More ambitious still is the definition ‘systems that can deliberate about the past
and generate plans and strategies for the future’. Measured against this definition,
achievements so far appear pedestrian indeed. However, such a scenario-generating
architecture to meet that requirement has been proposed (by Albus (1997)) along
the lines of Figure 16.26.

behaviour generator
alternative scenario generator
scenario evaluation
scenario choice
executor

world sensor
modelling processing

value judgement

Figure 16.26  NIST-RCS (National Institute of Standards and Technology — Real-
Time Control System).: an architecture for intelligent system design
(Albus, 1997)
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If and when a computer architecture such as the one shown becomes generally
available, we shall have an ideal platform to help us to rapid, reliable and trans-
parent implementation of a wide range of intelligent control systems.

16.8 Where next for Al techniques?

Where next for the Al-inspired technologies that arrive regularly on the research
and development scene?

It can be safely said that few of the new ideas that are announced will fulfil
their early promise but some will make it through to application and will probably
alter our lives.

At the time of writing, scans of papers being presented at current control
meetings include quite significant numbers in the following linked areas: agent-
based systems, autonomous agents, swarm intelligence, co-operative control,
multi-vehicle systems, networked control systems, swarm intelligence,
unmanned aerial or submersible vehicles. (Because these topics are in general a
long way from the control mainstream, few, if any, references have been quoted in
this book for those areas.)

It is clear that Nature is being imitated and that groups of unmanned co-
operating vehicles, making clumsy attempts to behave like flocks of birds, will
shortly, if not already, be able to do the nasty jobs, such as fighting wars, that
civilisation still has not learned how to avoid.

Some of the applications for the technologies listed above are a long way
indeed from the servomechanisms where control began. For example, there are
published papers with subtitles such as ‘Trust and Reputation Models for Agent-
based Virtual Organisations’.

16A The idea of a probing controller

Akesson and Hagander (2000) have proposed a so-called probing controller
that uses a generic idea for tracking just below invisible varying and
unknown constraints that occur in a batch process. The idea is to make
probing pulses in the glucose feed rate and to monitor the responses that
change as the constraint is approached. By this method, it is possible to detect
and avoid a characteristic saturation linked to undesirable by-product
formation. Figure 16.27 shows how in Escherichia coli fermentations,
the optimal carbon feed rate will run along invisible constraints. The probing
controller finds these boundaries by pulsing the feed rate as shown in
Figure 16.28 and observing the nature of the response.
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oxygen transfer limitation

ideal feed rate clip
constraints

Figure 16.27 Carbon feed rate constraints in E. coli—based expression
systems

time

pulse added to normal feed rate

segment of normal nutrient feed trajectory

at constraint measured response

_ ) (dissolved oxygen)
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constraint too distant

control control operational
immobilised

Figure 16.28 How the nearness to the constraint can be inferred from the
measured responses to the injected pulses

The idea could be adapted to other processes where variable invisible con-
straints have to be approached as closely as possible.

Akesson M., Hagander P. ‘A simplified probing controller for glucose
feeding in Escherichia coli cultivations’. Proceedings of the IEEE Con-
ference on Decision and Control. 2000;5:4520-25




Chapter 17

Review: the development of the control
systems discipline and the mathematical
roots of control systems theory

17.1 A rapid review of how control technology developed

During the period of early industrial development, control was not identified as
anything significant since the main preoccupations were with wider basic issues.
For instance, the main problems in the early coal industry were with explosions,
roof falls, carbon monoxide poisoning and dust-borne diseases. Once these pro-
blems had been largely solved, control systems technology came into play, for
instance, in the design of remotely operated coal cutters. Present-day coal mine
managers are now preoccupied with logistics, reliability, information and main-
tenance. The evolutionary pattern — mechanisation/automation and control/orga-
nisation and logistics — can be discerned in almost every industry (Figure 17.1).

Thus, automatic control was scarcely needed until mechanisation had produced
the devices and processes that needed to be controlled, and, in fact, it was the
requirements of telephony that drove Nyquist (1932), Black (1934), Bode (1945)
and co-workers to develop their frequency response and feedback techniques that
were to have such wide applicability much later.

However, an early prophet of things to come wrote, ‘In this age characterised
by huge resources of mechanical and electrical power, these agencies have in
many fields almost completely replaced human muscular power. In a similar way
the functions of human operators are being taken over by mechanisms that

importance of

- importance of
classical control P

AT

importance of
mechanisation

pragmatic mix
needed

time

Figure 17.1 The typical evolution: mechanisation/automation/organisation
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automatically control the performance of machines and processes’. So wrote H.L.
Hazen in a far-sighted paper in 1934. Many of the concepts that Hazen and his
contemporaries realised to be possible were slow to materialise because of the
absence of reliable devices for computation and information transmission. It
required the technical stimulus of World War II, and a long period of develop-
ment before Hazen’s ideas began to be applied in depth to the more advanced end
of the industrial and business spectrum in the 1960s and 1970s. The slow growth
was due to the high cost, unreliability and difficulties of application of early
computers.

Since all usable systems have to be stable, stability theory is involved impli-
citly or explicitly in every control application and arguably this is the strongest
thread that needs to extend to fully underpin the newer areas where IT, computing
and control theory overlap to unify the wider control topic. Early designers of
mechanical devices had to ensure stable operation through ingenious mechanical
means rather then using control design approaches, which had not yet been
invented. For instance, James Watt designed his governor for steam engines in
1788 (Figure 17.2). It uses a form of feedback via a velocity-dependent linkage. In
practice, the Watt governors often gave poor speed control and allowed oscillatory
behaviour. Maxwell (1868) derived the differential equations describing the gov-
erned system, linearised the equations about an equilibrium point and showed that
the system would be stable if the roots of the characteristic equation all had nega-
tive real parts. He then converted his conclusions into recommendations to add
viscous friction to damp the governors. These early examples already illustrate the
still continuing trend whereby intelligence is transferred from a designer’s head
into a mechanism, a controller or a data base to give increased machine autonomy
(Figure 17.3).

During World War II and after, new designs of aircraft, guns and missiles
needed new types of control systems that stretched existing knowledge resulting in
new research and new powerful techniques.

collar

steam supply steam valve steam to engine

Figure 17.2 James Watt’s centrifugal governor of 1788 (when the collar lifts, the
valve reduces the supply of steam to the engine-feedback control)
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Figure 17.3 Phases of development

In the period 1945-1965, these so-called classical techniques, with heavy
emphasis on graphical visualisation in the frequency domain and with mathema-
tical underpinning by the theory of functions of a complex variable, were applied
with spectacular success to industrial problems, particularly those in the oil, gas,
metals and chemical industries. Most of the algorithms passed without difficulty
into the computer age as discrete time versions where they still keep most of the
wheels of industry turning or stationary, as required.

In the period 1960—-1990, matrix-based multivariable theory, with its theore-
tical foundation being linear algebra and operator theory, developed in earnest and
there resulted the beautiful coherent core of linear control theory. It is that coher-
ence that guarantees the availability of transformations between different repre-
sentations and domains so that, for instance, the structure, transient and frequency
responses and stability characteristics of any given system can be looked at and
manipulated in whichever domain is most convenient.

However, the mathematical attractiveness of control theory did not guarantee
its universal commercial success.

The drivers for the development of control theory had come from the pre-
dominantly academic developers themselves with little pull from the industrial
managers whose applications stood to benefit. Not surprisingly, the result was a lot
of theory looking for applications and a certain amount of resulting disillusionment
all round.

Quite a few problems were caused by naive assumptions, such as the
following:

e Accurate unchanging mathematical models of complex industrial processes
could be produced at a non-exorbitant cost and that ‘clean’ mathematics could
encode the messy realities of the world of work.

e The often ill-defined economic aims of a complex plant could reasonably be
expressed as a single scalar-valued cost function, thus allowing meaningful
optimisation studies to take place.
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The failure in the real world of many of the highly rigorous mathematical
optimisation techniques resulted in two parallel developments:

(1) The development of robust control methods, still mathematically deep, but
now attempting to quantify and take into account some of the uncertainties
and modelling errors that had caused the failures above.

(2) A move towards anthropomorphism with a realisation that imitating nature
might have a lot to offer. This theme (imitating nature) combined with the
ready availability of computing power and data-collection techniques has
resulted in the appearance of a disparate set of so-called artificial intelligence
(Al) techniques, some of which have been reviewed in Chapter 16.

17.2 The development of the control systems discipline:
a structure

Figure 17.4(a) appears already in the introductory chapter and is reproduced here
for continuity.

Figure 17.4(b) is a somewhat enhanced version and shows some additional
continuity and linking of minds, in particular the following:

The enhanced figure shows that Maxwell’s work on stability was triggered
first, not by steam engines, but by the subject of the Adams Prize competition, set
each year (at that time) by St John’s College, Cambridge. In 1856, the topic was to
conjecture on the nature of Saturn’s rings. He solved the problem brilliantly by
showing that, of the three possible ‘natures’ (solid, liquid, particulate), the first two
would be unstable and must be dismissed as possibilities. In 1877, the Adams Prize
committee, with Maxwell now a committee member, set the topic, ‘The Stability of
Motion’. The winner was E.J. Routh.

Figure 17.4(b) shows additional developers of the communication-related fre-
quency response area and we suggest that it was actually the lesser-known Black
who recognised the great importance of feedback, while Bode, in his 1945 paper,
laid out the rigorous quantitative relationships that constrain what can and what
cannot be achieved in designs in the frequency domain. Interestingly, those ‘laws’
of Bode were, for a time, rather buried, while multivariable systems were studied
intensively in the time domain. Now that realistic robust control design, particu-
larly using loop shaping, is in welcome use; Bode’s laws supply the frequency
domain boundaries limiting robust high-performance system design.

Lyapunov’s 1892 doctoral thesis (University of Moscow), ‘The general
problem of the stability of motion’, only became generally available in English
when Dr Tom Fuller translated the original on the anniversary date in 1992.
The importance of the Lyapunov inequality viewpoint has continued to increase
year by year since then. Now, with the great strides taken by linear matrix
inequality (LMI) techniques, A.M. Lyapunov’s work is being seen as the initial
source of a whole new branch of realistically applicable yet rigorous optimi-
sation algorithms.
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Figure 17.4  (a) Some of the significant ideas that helped to provide a structure for
the control systems discipline; (b) An enhanced version of figure (a),
showing further important ‘linking of minds and ideas’

17.3 The mathematical roots of control theory

Control theory deals with objects called systems that are abstract, idealised general-
isations of reality; this characteristic explains both the power and the intellectual appeal
of the subject. Control theory rests on a very substantial mathematical foundation that
gives rigour to mathematical representations of dynamical systems and underpins all
the approaches to systems analysis and multivariable controller design (Table 17.1).

Three main threads of transferable development have been particularly
important in supporting the development of control theory.
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(i) The understanding of dynamical systems that was stimulated by inquiry into
the operation and stability of the planetary system.
(i) Developments such as function theory, complex variable theory, calculus of
variations and optimisation.
(iii) Rigorous definitions of linear spaces such as Banach and Hilbert spaces,
allowing theoretically sound representation and manipulation of multivariable
systems.

Table 17.1

Some historical mathematical developments that helped to establish
the enabling infrastructure for the present-day control systems

discipline

Copernicus 1478-1543 Set the sun at the centre of the planets

Cardan 1501-1576 His ‘Ars magna’ uses ‘imaginaries’ as well as negative
numbers

Kepler 1571-1630 Laws of planetary motion

Newton 1642-1727 Established celestial mechanics on a mathematical basis

Johann 1654-1705 His work on the brachistochrone problem (1696) has been

Bernoulli put forward as the beginning of the calculus of variations

Daniel 1700-1782 His analysis of a vibrating string by superimposed

Bernoulli overtones was the precursor of Fourier theories before
Fourier was born

Euler 1707-1783 His 886 published works made an enormous contribution
across a wide range of analytic mathematics

Lagrange 1736-1813 Analytic mechanics

Laplace 1749-1827 Celestial mechanics and stability

Fourier 1768-1830 ‘The analytical theory of heat’. Representation of arbitrary
periodic functions using superimposed basis functions.

Cauchy 1789-1857 Founded the subject, functions of a complex variable

Poincaré 1854-1912 May be said to have founded the subject of topology

Hilbert 1862-1943

Lebesgue 1875-1942 Hilbert through rigorous axiomatics and Lebesgue by his
introduction of the concept of measure laid strong foun-
dations for the families of linear spaces that underlie all
state variable representations

Maxwell 1831-1879 1857 Adams Prize for his essay on the nature of Saturn’s
rings. Stability of spinning tops; paper ‘On governors’

Lyapunov 1857-1918 1892 “‘General problem of the stability of motion’

Birkhoff 1884-1944 Dynamical systems and ergodic theory

Wiener 1894-1964 Founded the modern discipline of cybernetics

Pontryagin 1908-1988 1961 Mathematical Theory of Optimal Processes (The
maximum principle)

Shannon 19162001 Shannon-Hartley theorem (often referred to as Shannon’s
law) establishing fundamental quantitative bounds for
the capacity of communication channels

Kalman 1960- Linear filtering and prediction. Major advances in state-

space representations and properties of systems

Developments of specifically control-oriented techniques are not included here.



Chapter 18
Resources, references and further reading

18.1 General remarks on the control literature and on the
following references and recommended further reading

Almost all the concepts and topics that together make up our subject of control
systems began life as tentative ideas. Those ideas that survived the highly compe-
titive evolutionary process by having sufficient theoretical or practical promise
gradually matured and merged into the control systems mainstream.

The literature describing these ideas, topics and sub-topics follows much the
same life cycle.

(1) First, a sequence of conference or journal papers appears, establishing the
scientific basis for an idea and perhaps giving preliminary results from trial
simulations.

(2) Next, pioneering monographs and text books will appear, often authored by
the idea’s originators and close contemporaries.

(3) The final stage is when the idea becomes a recognised topic, now fully
developed, taking its place in the several 800-plus page all-embracing college
text books. Those useful books cover basic topics very thoroughly but
necessarily give a rather broad-brush coverage to the many individual topics
that are not quite in the mainstream.

In providing references and further reading recommendations for this new
edition I have provided a large number of references from category 2 above, since
those papers and books have the freshness and spontaneity of the creative years in
which they were written. Additionally, many of those references allow the inter-
ested reader to view my sources.

Where appropriate, I have provided references to historic literature that I
believe provides a strong long-term intellectual foundation for our subject. Addi-
tionally, I have provided supporting links to easily accessible comprehensive col-
lege texts for the convenience of readers who are not particularly interested in the
historical roots of the subject.

Similar remarks apply to the literature describing the mathematical topics that
underpin the Control Systems subject. Therefore, in addition to referencing the most
recent mathematic texts, I have also referenced many wonderful old texts that have
often been my own sources: many of these are timeless and well worth consulting.
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18.2 Finding books, papers, theses

Google Books, Google Scholar and Amazon will usually produce an abundance of
leads, although free online access to contents is becoming increasingly restricted.

The control systems community is well served by regular conferences, notably
the International Federation of Automatic Control (IFAC) Triennial Congresses
whose archived papers are free to view online, the annual American Control
Conferences and the biennial European Control Conferences. Many of the papers
presented at such meetings are too specialist to be of much interest to anyone not
working in the same field, but the overall programmes give a good indication of
research trends.

UK theses can be found using the EThOS (Electronic Thesis Online Service).

18.2.1 Library books

The control literature is concentrated, as far as the Dewey system is concerned, into
the 629.8 category with particular entries being

629.8312 Control theory
629.836 Nonlinear and adaptive control
629.895 Computer control

Other entries of interest are

511.8 Mathematical models

515.352 Ordinary differential equations
515.353 Partial differential equations
515.625 Difference equations

515.64 Calculus of variations

515.7 Functional analysis

18.3 Control-oriented software

Matlab/Mathworks product literature available on the Web is often remarkably
informative and concise, even for someone who only wants to learn quickly about
(say) algorithms for model reduction without necessarily wanting to carry out any
computation.

Scilab and Xcos (both freeware) can be partial substitutes for Matlab and
Simulink when those are not available. Scilab in particular has a huge range of
capabilities but its documentation cannot match that of Matlab.

Software for symbolic solution is available from Mathematica and Maple and
for some situations from Matlab.

Simulation software that is specifically designed to include hardware in the
loop for prototyping is available from Vissim.

(The above are only examples and there are many other possibilities.)
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18.4 Mainstream control literature

A very readable book at introductory level with many imaginative features and a
host of not so simple exercises is Astrom and Murray (2008).

Mainstream control is now a mature topic and this is reflected in the literature
for undergraduate courses that is dominated by a few impressively large text books.
Typically, these books (see below) are now (2012) in at least their fifth editions and
each covers a wide range of topics including, usually, introductory material on
modelling, optimisation and state estimation, often with Matlab exercises.

D’Azzo J.J., Houpis C.H., Sheldon S.N. Linear Control System Analysis and
Design with Matlab. 5th edn (Basel, NY, Marcel Dekker, 2003) (832 pages; began
life in 1960 with 580 pages)

DorfR.C., Bishop R.H. Modern Control Systems: International Version.12th edn
(London, Pearson Education, 2010) (1104 pages; began life in 1967 with 400 pages)

Franklin G.F., Powell J.D., Emami-Naeini A. Feedback Control of Dynamic
Systems: Plus MATLAB & Simulink Student Version. 6th edn (London, Pearson
Education, 2011) (about 850 pages; began life in the 1980s with around 600 pages)

Ogata K. Modern Control Engineering: Plus MATLAB & Simulink Student
Version. 5th edn (London, Pearson Education, 2011) (912 pages; began life in 1967
with 600 pages)

Kuo B.C., Golnaraghi F. Automatic Control Systems. 9th edn (Hoboken, NJ,
Wiley, 2009) (800 pages; began life in 1962 with about 450 pages)

18.5 Older mainstream control books

Many older books have a great deal to offer, having been written during the heady
days (one might say, ‘Golden Years’) when the subject areas they describe were
being created. Among the books that I have enjoyed working from are the following:

Chestnut and Mayer (1959), Horowitz (1963), Newton et al. (1957), Truxal
(1955), Thaler and Brown (1953), Tou (1964), Zadeh and Desoer (1963) and from a
little later Brockett (1970) and Wonham (1985).

Zadeh and Desoer is an indispensable book for anyone interested in a rigorous
approach to control theory. Brockett is a superb book giving a simple yet advanced
geometric view of systems behaviour. Wonham also gives a welcome geometric
viewpoint.

More older books have been listed in the references for the reasons that they
are still entirely relevant and that their coverage, approach and level of detail
cannot readily be found in current books.

18.6 Methodologies for economic justification of investment
in automation

Please refer to Section 9.6 for recommendations.
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18.7 State estimation

Two seminal papers, Kalman (1960) and Kalman and Bucy (1963), laid firm
foundations for everything that has followed since. Grewal (2008) is something of a
standard text on Kalman filtering, and Chui (2009) is more introductory. See also
Simon (2006).

18.8 Sliding mode control

In sliding mode control, a system is designed so as to follow one or other switching
surfaces, potentially yielding consistent operation despite varying application
conditions. Utkin (1977) was a pioneering author in this area, and Zak (2003) has
some very interesting explanatory illustrations (some are quoted in Section 9.2.2 of
this book).

See also Bartolini (2008), Milhoub (2009), Misawa (2012), Perruquetti and
Barbot (2002), Edwards and Spurgeon (1998).

18.9 Optimisation

The literature on optimisation is very extensive. The bibliography lists two books
that are concerned with inequalities, since a study of these is a pre-requisite for
understanding certain approaches to optimisation. The references are Beckenbach
and Bellman (1961) and Hardy et al. (1967).

Athans and Falb (2006) and Anderson and Moore (2007) are the main
recommendations for this topic.

There are useful early books on specific topics in optimisation; for instance,
Hestenes (1966) on the calculus of variations, Pontryagin et al. (1964) on the
maximum principle and Bellman (1957) on dynamic programming.

Classic texts are Bryson (2002), Markus and Lee (1967) and Sage and White
(1977). Grimble and Johnson (1988) is a very comprehensive two-volume set.
I have not discovered more recent straightforward books devoted to optimisation.

Finally, I mention Pallu de la Barriere (1967), which is still in print. This book,
by making mathematical demands on the reader, may act as a motivator for those
who need a concrete reason for studying further mathematics.

18.10 Robust control

There is a very extensive literature. A first stop to help understanding of
some of the concepts could be Kwakernaak (1993) and Morari and Zafiriou (1989),
while two papers by Zames (1976, 1981) show the origins of the theoretical
developments.

Other useful references are Chen (2000A), Chen (2000B), Dullerud and
Paganini (2000) and Zhou et al. (1996).
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Duren (2000) covers the mathematical foundations, whereas Turner and Bates
(2007) describe mathematical methods. Grimble (2001) is good on real industrial
applications. Vinnicombe (2000) describes application of the v gap metric of which
he was the originator.

Chen (2011) describes a practical application; Hsu et al. (2006) is concerned
with structured identification; Li (2004) is concerned with stochastic optimisation,
Rao and Sen (2000) describes a linear matrix inequality (LMI) approach. Matlab
documentation (2011) describes a case history in which a u approach is used to
design a suspension system.

Also relevant is the technique of quantitative feedback theory (QFT) pio-
neered by Horowitz (1993). QFT is a frequency response technique that uses
feedback to compensate the effects of unmeasurable process uncertainties or non-
linearities. See also Yaniv (1999).

Closely associated with robust control are the topics of Sensitivity Analysis,
Saltelli et al. (2000), and Algorithm Fragility, Istepanian and Whidborne (2001).

18.11 Neural networks and support vector methods

A large general introduction to neural networks is Sivanandam (2006), but the
intensive publication period was some years earlier, with examples listed below.

On neural networks, some theoretical background can be found in Kecman
(2001), Vidyasagar (2002). The application of neural networks in dynamic mod-
elling, estimation and control is treated in Hovakimyan et al. (2000).

Considerable claims have been made for alternatives to neural networks in the
form of support vector methods, kernel methods and adaptive logic networks. See
sample references Kecman (2001), Lee and Verri (2002), Cristianini and Shawe-
Taylor (2000), Shaw-Taylor (2004). However, the spotlight appears now to have
gone from such approaches which have largely retired into a niche among learning
methods.

18.12 Fuzzy logic and fuzzy control

See Kovacic (2005), Feng (2010) and Chen and Pham (2001) for an introduction.
Zadeh is generally regarded as the inventor of the theory of fuzzy logic; see
Zadeh (1969, 1972) and Bellman and Zadeh (1970).
Mamdami (1976) created the first laboratory application and Holmblad and
Ostergaard (1982) pioneered the large-scale industrial application of fuzzy control.

18.13 Genetic algorithm, genetic programming and other
parallel evolutionary search methods

Introductory references are Banzhaf (1999) and Reeves (2002). Koza ef al. (1999)
show how a genetic programming approach backed up by massive computer power
can synthesise complex solutions for control applications. Kalganova (2000)
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describes some of the computational specialism that is involved in solving realis-
tically sized genetic algorithm problems. Hodgson et al. (2004) provides compar-
isons of some of the alternative (structured and unstructured) genetic programming
approaches to the modelling of bioprocesses.

Examples of alternative approaches using multi-agents and swarm intelli-
gence are to be found in Ferber (1999) and Bonabeau (1999), respectively.

18.14 Intelligent and learning systems

Sources of foundation theory for learning systems are Tsypkin (1971, 1973).
Recent learning applications papers are Huang et al. (2002).

Albus is a prominent author of forward-looking papers on intelligent machines
and their architectures; see Albus and Meystel (2001) and Albus (2008).

18.15 Adaptive and model-based control

Some of the most well-known model-based approaches are described in the
following seminal references:

Dynamic Matrix Control (DMC), Cutler (1981)

Model Algorithmic Control (MAC), Richalet et al. (1977)

Internal Model Control (IMC), Garcia and Morari (1982a, 1982b)

Generalised Predictive Control (GPC), Mohtadi (1987), Tsang and Clarke
(1988)

Generic Model Control (GMC), Lee (1988)

Model Inferential Control (MIC), Parrish and Brosilow (1984)

Fast Model Predictive Control (FMPC), Coales and Noton (1956)

Other references on predictive and model-based control are Camacho and
Bordons (1999), Datta (1998), Forbes ef al. (1983), Maciejowski (2001), Matausek
et al. (2002), Mo and Billingsley (1990) and Soeterboek (1992).

18.16 Stochastic aspects of control

All real systems operate in a probabilistic environment (wind, waves, financial,
political vagaries etc.), whereas a large number of systems are designed, because it
is easier, to satisfy simple deterministic criteria. The extent to which systems
designed against deterministic criteria will/might satisfy probabilistic criteria needs
to be considered. The usual control engineering answer is to use robust control
methods but a stochastic systems viewpoint is also worth considering. See refer-
ence Li (2004).

General classic references are Aoki (1967), Papoulis (2002) and Soderstrom
(2002).
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18.17 Some other control topics

For modelling and identification see Davidson (1988), Godfrey (1993), Sandefor
(2002), Seborg et al. (2003) and Soderstrom and Stoica (1989). Control of linear
time-varying systems is covered by Kostas and loannou (1993) and of large-scale
systems by Koussoulas and Groumpos (1999), Lunze (1991) and Pierre and Perkins
(1993).

The control of overhead cranes travelling on horizontal tracks is important in
sea-container and similar logistics. When such a crane needs to move from one
position to another, the application of a simple step will often cause the suspended
load to swing excessively. One approach is to apply a pre-shaped input function,
designed to achieve a desired response. Such approaches are designated input
shaping techniques, Park et al. (2000, 2001), Sahinkaya (2001). Of course, input
shaping finds application to a range of areas outside crane control.

18.18 General mathematics references

The books quoted here are meant to supply long-term mathematics foundation
material to indirectly support control theory at various levels.

One of the most useful general texts is Riley et al. (2006); it covers very
satisfactorily most of the mathematics required in undergraduate engineering
degree courses.

Rosenbrock and Storey (1970) gives a straightforward account of mathematics
for control.

Hardy (1963), Binmore (1981), the old but still useful five-volume Goursat
(1964) and the French series Cartan (1971), Choquet (1969), Dieudonne (1969),
Godement (1969) are all recommended.

Further texts to explore are Birkhoff and Maclane (1965), Jacobson (1963),
Kelley (1955), Kelley and Namioka (1963), Mostow et al. (1963), Protter and
Murray (1975) and Halmos (1950).

Many of the books quoted above are mathematics classics.

Both Klein (1924, 1948) and Armitage and Griffiths (1969) discuss elementary
mathematics from an advanced, often geometric, viewpoint.

Lin and Segel (1988) covers a wide range of interesting generic problems
across the whole range of natural sciences.

18.19 Ordinary differential equations

The formulation, properties and solution of ordinary differential equations occupy a
key role in system modelling and simulation. The structural and geometric prop-
erties of ordinary differential equations underlie stability theory, state space theory,
controllability and optimisation and lend central support to a wide range of research
topics in control theory.
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Several hundred books with the title Ordinary Differential Equations are
published each year, so there is a vast choice. Most of those in my shelves seem to
be yellow Springer publications.

Mainstream texts are Braun (1993), Coddington and Levinson (1955) and
Driver (1977).

Cesari (1963), Krasovskii (1963), and Willems (1970) are concerned with
stability aspects.

Cartwright and Littlewood (1947) is concerned with non-linear equations.

Van der Pol (1927) is of historical interest in the theory of oscillators.

Hirsch and Smale (1974) is a superb book that is concerned with fundamental
properties.

Amold (1989) gives a quite different treatment than can be found elsewhere. His
book might justifiably have been called ‘Differential equations made difficult’! However,
it is a very worthwhile book dealing with elementary ideas from an advanced viewpoint.

Structural aspects are covered in different ways in Andronov (1966),
Bendixson (1901), Birkhoff (1927), Lefschetz (1977), Poston and Stewart (1976)
and Nemitski and Stepanov (1960).

Two papers by Abd-Ali (1975a, b) use an interesting decomposition of systems
using a Helmholz approach that can be regarded as an attempt to extend model
analysis to nonlinear systems.

As far as difference equations are concerned, Van der Pol and Bremner (1955) is
an admirable text. It is notable that this book is still frequently cited in the literature.

18.20 Differential topology/differential
geometry/differential algebra

Heinz Hopf is generally considered to be the leading historic figure in the area.
Hopf (1956) is a reprint of his classic lectures of some 40 years earlier. Milnor
(1997), Spivak (1965) and Guillemin and Pollack (1974) are recommended. Even a
glance at any of these will make any mathematically inclined person appreciate the
beauty of the topic. Differential topology is a beautiful and intuitively appealing
subject that is concerned with smooth mappings from non-linear manifolds onto
tangent spaces. The subject would appear to be designed for the local approxima-
tion of smooth non-linear systems but the take up in that direction was rather slow
for some years, although differential geometric approaches were used by, for
instance, Sussman (1972) and Brockett (1978) to generalise linear systems attri-
butes, such as controllability, to non-linear systems. In particular, some of the
geometric results of Wonham (1985) for linear systems have been made applicable
to non-linear problems by Isidori (1995) and Fliess and Glad (1993).

More recently, differential algebra has been applied to non-linear control
problems, for instance, by Fliess (1985). A good self-contained reference to dif-
ferential algebra and its application to non-linear control problems is Conte et al.
(1999). See also Fliess and Hazewinkel (1986).

Other books that may be found useful are Berger and Gostiaux (1988), Curtis
(1985) and Lang (1985).
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18.21 Theory of equations

Several delightful old books on the theory of equations are Chrystal (1964),
Barnard and Child (1960), Burnside and Panton (1892), Hall and Knight (1964) and
Todhunter (1904). The material in these references is scarcely to be found in later
texts. Another book that contains much useful material not easy to discover else-
where is Archbold (1970).

18.22 Operator theory and functional analysis applied
to linear control

Linear multivariable control models are specially labelled examples of mapping/
space configurations. Thus, the natural setting for linear control theory is in one sort
of linear space or another — it is only the use of limited horizons that sometimes
masks this fact. Among the many attractive features that are produced by a
function—analytic viewpoint is the very strong and obvious structure that is neces-
sarily imposed on any control problem that is posed within that framework. For
instance, the hierarchy of spaces (topological, linear, metric, Banach, Hilbert)
constitutes a range of settings, with decreasing generality, for control problems. For
instance, the last of these, a Hilbert space setting, is the natural environment for
a distributed parameter optimisation problem with quadratic cost function, whereas
the first, a topological setting, is so general as to be a qualitative setting for a wide
class of problems.
References quoted here are in three categories:

(i) Those that illustrate how functional analysis is applicable to control

Here we quote Hermes and La Salle (1969), Leigh (2007), Luenberger
(1969), Porter (1966), Barrett (1963) and Rubio (1971). Of these, the book by
Porter affords possibly the easiest entry into the topic. There is a very large
literature in the form of papers (not quoted below) with principal authors
being Balakrishnan, Butkovskii, Lions, Wang, P.K.C.

(i) Those that deal with application of functional analysis more generally

Here we quote Curtain (1977) and specially point out Moore (1985). This
book, concerned as it is with numerical results, necessarily bridges the gap
between an idea and the realisation of that idea because of its algorithmic
viewpoint. Another ‘bridging’ reference is Green (1969), which is concerned
with integral equations.

(i) Those that are concerned with the subject of functional analysis per se

Books on operator theory, linear spaces and spectral theory can be con-
sidered, for our purposes, to fall into this category. Thus, there is a large
literature available from which I have selected personal favourites.

These include Akhiezer and Glazman (1961), Balakrishnan (1976), Berberian
(1974), Day (1962), Dunford and Schwartz (1958) and Chatelin (1983).

The standard works on linear operators are Hille and Phillips (1957),
a monumental work, and Riesz and Nagy (1971).
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18.23 Books of historical interest

Early references, Poincaré (1892) on celestial motion and on stability, Maxwell
(1868), Hurwitz (1895), Routh (1930), are very interesting. Maxwell set questions
to students on the stability of spinning tops at a date before they had any stability
criteria to help them and, while still a student, successfully proved that Saturn’s
rings were made up of disparate fragments by a rather general stability argument.
Dr Tom Fuller has extracted and edited a number of Maxwells works related
to control and stability. They form a most valuable linked set of articles and
include the topics cited above (Fuller, 1986). (The work of Hurwitz is discussed in
Chapter 8 of this book.)

Bode (1945) and Nyquist (1932) are source references on frequency response
methods.

Bellman and Kalaba (1964) contains 13 historic control papers. Basar (2000)
contains 25 annotated seminal papers ending with a paper by Zames from 1981.

Other interesting references are Evans (1950, 1954) on the invention of the
root locus, Jury (1958) on early work in sampled data and Kochenburger (1950) on
relay control systems. Among other general references of historic interest are
Hazen (1934a, b) and Oldenbourg and Sartorius (1948).

18.23.1 History of the Riccati equation

A set of references is given in interlude 13D.

18.24 Miscellany

Guest (1961) is a pre-computer-era book containing highly practicable techniques
for fitting curves to time series to achieve interpolation, extrapolation and
smoothing.

Guillemin (1935, 1957) are concerned with filter synthesis. These techniques
have relevance to the design of systems having particular frequency domain char-
acteristics. (These references are chosen from a wide literature on the topic to be
indicative of what is available).

Kalman et al. (1977) is an example of a whole genre of references concerned
with general systems ideas.

Shannon and Weaver (1972) is a slim book that gives an authoritative sum-
mary of information theory. The idea that the information represented by a chan-
ging situation can be quantified at different levels of approximation by Shannon’s
ideas is very appealing. Control would then be seen as information capture (mea-
surement), information flow (through a channel of sufficient capacity) and infor-
mation processing in a controller. However, there are few examples of the ideas
having been brought conclusively to bear on a significant control problem.

The books by Arnold Sommerfeld (1950, 1952) are included because of their
superb scholarly style.
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In a public lecture in the mid-1980s, I showed four graphs: all having the same
time axis; all having the same single curve; a rising exponential! The four vertical
axes were labelled World population, Communication speed and capacity, Speed of
travel, Explosive power. The forecast: inevitable instability caused by ever-
increasing gains around global feedback loops involving large-scale actions rapidly
reported and escalated by high-speed information links. That was the diagnosis; the
solution was the hard part! Since then, we have witnessed a sequence of major
financial and political crises whose main features were: (a)They were sudden (b)
They had not been forecast and even afterwards they were not convincingly
explained (c) In many cases, post analysis identified some very minor event that
inexplicably and very rapidly seemed to trigger a major and damaging disturbance.
Of course, as control engineers , we are well aware that all those rising exponential
curves mentioned above indicate inherent instability and an unstable system will
respond massively to a minute trigger. I often wonder why the usually very pro-
ductive and inter-disciplinary inclined control fraternity does not seem to have
published anything very visible in the way of analyses of these obviously feedback-
loop driven global disturbances. However, Chapter 17 of Aulin (1989) titled
‘... Social revolutions and their after effects...’ has some interesting diagrams
showing how modern civilisations have progressed over time, with the most suc-
cessful managing to steer a path between the twin evils of repression and anarchy.

Aulin (1989), Brams (1983), Bunge (1959), Dyson and Havil (2009),
Glansdorff and Prigogine (1971) Linderholm (1972), Segre (1984), Prigogine et al.
(1980), Rosen (1985), Toraldo (1981), Truesdell (1984), Wigner (1960) are some
examples of books that are recommended for stimulating general interest reading.

18.25 Useful tables

A few selected sets of tables that can still compete against Google look-up are as
follows: Dwight (1961), contains very comprehensive integral tables; McCollum
and Brown (1965), contains extensive tables of Laplace transform pairs. Prudnikov
et al. (1992) is a very large two-volume reference of Laplace transforms and
inverses. Jolley (1961) is a comprehensive table of series together with information
on their summation. Burrington and May (1958) is a useful set of statistical tables.

18.26 Alphabetical list of references and suggestions
for further reading

Abd-Ali A., Evans F.J. ‘Structural aspects of stability in nonlinear systems’.
International Journal Control. 1975b;22(4):493-516

Abd-Ali A., Fradellos G., Evans F.J. ‘Structural aspects of stability in nonlinear
systems’. International Journal Control. 1975a;22(4):481-91 [The two papers
describe the work of Frank Evans on Helmholtz decompositions of non-linear systems
into two parts: governing stability behaviour and periodic behaviour, respectively.]
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and Control; Sydney, 2000, vol. 5, pp. 4520-5

Akhiezer N.I., Glazman 1.M. Theory of Linear Operations in Hilbert Space
(New York, Frederick Ungar Publishing Company, 1961)
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2004)
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Albus J.S., Meystel A.M. Engineering of Mind: An Introduction to the Science
of Intelligent Systems (New York, Wiley, 2001)
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Cliffs, Prentice Hall, 1989)
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and 2 (Cambridge, Cambridge University Press, 1969) [offers some interesting
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Arnold V.I. Mathematical Methods of Classical Mechanics (New York,
Springer-Verlag, 1978)

Arnold V.. Ordinary Differential Equations (Cambridge, MA, MIT Press,
1989)

Astrom K., Albertos P., Blanke M., Isidori A., Schaufelberger W., Sanz R.
(eds.). Control of Complex Systems (London, Springer, 2001)
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Appendix A
Case histories

Introduction

Few real-world applications involve only the application of a standard repertoire of
control techniques and one must avoid being one of the ‘six characters in search of
an author’ community, walking around armed with a non-adjustable spanner
seeking suitable problems. In this appendix, I have described a few typical real case
histories of simple yet important problems that needed to be solved by custom-
devised approaches as parts of overall control tasks.

The short case histories hopefully have a valuable generic message that
real control problems often come embedded in and inseparable from a complex
and often challenging environment. The non-standard, case-specific difficulties
encountered will frequently overshadow the control aspects and may require
considerable effort and some non-trivial original thinking before they are
solved. The simple examples below are all typical experiences of an industrial
control systems development engineer. However, the same generic message,
that application-dependent considerations dominate many real control design
projects, still applies to complex research projects that need to work in the real
world. That is why so many large control projects involve multidisciplinary
research teams to bring in the necessary application expertise in, for example,
microbiology or aeronautics.

A1l Control of product thickness in a strip rolling mill:
from a control point of view this is predominantly a
dead time problem

What follows is a description of an industrial application where one of the dom-
inating characteristics of the process to be controlled is significant measurement
dead-time, due to the unavoidable siting of a key sensor well downstream of the
actuator responsible for correction. This is a pure dead time problem, with the delay
being caused by the time for a product to travel from the process to the sensor, often
referred to as a transport lag problem.

Figure Al.1 shows the overall layout of the plant.

In a typical hot strip rolling mill, steel slabs are heated to about 1200°C in a
pusher furnace where they progress along supported on water-cooled rails until
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Figure A1.1 The overall layout of a hot strip mill
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Figure A1.2 A typical control system’s view at the end of a strip mill; h = x can be
considered to be the unmeasurable state. However, changes in h can
be estimated with negligible delay from continuous measurements of
separating force F, leaving the measurement y in a calibrating role
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Figure A1.3 The unloaded roll gap hy. It is the gap between the rolls when no
material is being rolled

Figure A1.4 The input strip of thickness H is reduced to thickness h = ho + F/M

being discharged sideways to be rolled lengthways through several sets of rolls
designed to achieve the required reduction in thickness. By the time the reduced
slab reaches the finishing mill (see Figure A1.2), it is long enough to be in all of the
multiple stands of the finishing mill simultaneously, after which it will be turned
into a coil by the final machine in the sequence. There are a number of different
control problems (temperature, tension, width, speed) to be solved in the config-
uration. However, here we are considering the achievement of the required con-
sistency and correctness of the final thickness ‘4’ of the finished strip. This can be
controlled by actuators causing vertical movement of the upper rolls to alter the roll
gap (hy in Figure A1.3). An accurate and relatively fast acting thickness measure-
ment y is available from a nucleonic thickness meter, but the hostile location means
that this sophisticated device must be mounted some metres downstream from the
rolls that are the thickness control actuators. In other words, the measurement is
delayed significantly and this application has to be classified as predominantly a
dead time control problem.

The gap between the loaded rolls is now greater (Figure A1.4) than A, because
the large vertical force generated by the squeezing of the hot metal stretches the
mill housing by a significant additional amount F/M according to Hooke’s law. The
outgoing thickness 4 is the same as the roll gap from which it emerged, since there
is no elastic recovery to take into account.

The process engineering—based estimation model that was applied in this case
was completely successful and in outline was as follows. Roll-separating force F
can be measured accurately by load cell and the stiffness of the mill housing M can
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easily be measured simply by forcing the empty rolls progressively together to
produce a graph of generated force F against housing stretch. The rest follows by
Hooke’s law for an elastic medium, i.e. stretch = force/stiffness = F/M.

The unloaded roll gap /4, is not easily measured, but it can be inferred by
making use of the absolute (but delayed) measurement of /4 from the downstream
nucleonic gauge. This leads to a valuable incremental estimator dh = dF/M that can
be used to drive a fast-acting roll gap control loop to keep thickness 4 constant at
some desired value A,. It is the task of the necessarily slow-acting loop that con-
tains the accurate downstream thickness meter to make sure that £, is the thickness
required by the customer. The principle just described was the intellectual property
of British Iron and Steel Research Association (BISRA). It was known as the
BISRA gauge meter equation (see R. Sims. ‘Gaugemeter for strip mills’. Engi-
neering. 1953;175:33) and was patented and used worldwide for both hot and cold
mills, being a major source of income for the BISRA group of laboratories.

We continue this case study to examine the causes of deviations from desired
behaviour. We shall find, as in every other real-life application, that none of those
causes fit into the neat ‘disturbance’ categories that are nearly always assumed in
control texts.

Causes of thickness deviations

Cause 1

The slabs that will be rolled into long thin strips are heated in pusher furnaces in
which they are supported on longitudinal water-cooled skids. When the slabs
emerge, they are uniformly heated except that they bear, typically five, sharply
defined cold regions caused by loss of heat to the supporting skids. Colder metal
being more resistant to deformation, these cold regions will subsequently cause
unwanted localised corresponding strip thickness deviations unless they are cor-
rected by very fast acting control actions.

Cause 2

For logistic reasons, heated slabs emerge from a reheating furnace at 90° to the
direction in which they will be rolled. That is, they emerge from the reheat furnace
sideways on and are then rolled lengthwise through a sequence of perhaps ten sets
of rolls. This means that because of natural cooling the head of each progressing
slab is always rolled at a higher temperature than the tail. Cooler metal being more
resistant to reduction than hotter metal, the result is that, without some form of
corrective control effect, there will be a steady thickness increase along the length
of the finished strip.

Cause 3

Probably, the next most important cause of thickness deviation is roll eccentricity,
i.e. departure from circularity in any of the several rolls involved in determining
the final thickness of the strip. Roll eccentricity requires careful treatment, since
the usual estimation equation dh = df/M, described beneath Figure Al.4 and used
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in control systems, assumes perfectly circular rolls so that all deviations df in
measured roll force are interpreted as variations in strip thickness.

A number of schemes have been suggested to compensate for roll eccentricity.
See Choi et al. (1994) and Cao and Du (2006) for examples.

A little reading between the lines in this case history will suggest that the
control engineer is largely required because of imperfections in the design,
engineering or instrumentation of the process. For instance, considering cause 1,
why do the skids that support the slabs being heated have to be parallel or
indeed water-cooled? (If, e.g. they could be in a zig-zag configuration, then as
the slabs progressed horizontally through the furnace, the cooling shadow effect
would be distributed along the slab lengths, rather than in five discrete places).

Taking a view of the instrumentation, why cannot accurate strip thickness
measurement sensors be developed that are robust enough to be located much
nearer to the roll gap?

Considering cause 2, the thickness rundown due to excessive tail-end cooling
could largely be removed if the plant was reconfigured so that it was no longer an
inline sequence, but that half way along, slabs were moved sideways and then
rolled backwards so that heads became tails in a shorter wider building.

This situation (that most control loops are required because of non-ideal
designs, non-ideally consistent raw materials etc.) is entirely typical of industrial
processes and leads to a useful view of considering trade-offs between alternative
ways of achieving the best overall design of a new plant with control being just one
of several different ingredients.

Of course, the process is designed to produce a product and the overall
building and operating costs are best minimised by a judicious mix of components.
Control expertise needs to be involved from the start in the design process; if not,
expensive modifications might need to be made later, for such simple needs as
sensor access, that could have been built in, ‘free of charge’, had it been suggested
early enough.

It is hoped that this particular case history has demonstrated a valuable general
principal that in-depth process and engineering knowledge as well as knowledge of
control-theoretic techniques is absolutely essential to success in real-world
applications.

A2 The cut-up problem

This is a control problem squarely within the work of an industrial control engineer.
It is mathematically trivial, financially very important and needed the invention of
an ingenious original diagram as a framework for its numerical solution.

One of the simplest control tasks in the steel industry is to design a system to
cut up, with minimum waste, a long piece of hot metal of length L into shorter
lengths as required by the customer, using a so-called flying shear as the cutting
agent. The shear is essentially a pair of rotatable rollers that operate in synchronism
to cut the fast-moving hot metal into whatever lengths are specified (Figure A2.1).
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Figure A2.1 A flying shear

This case history relates how the problem to be solved was not only to design
the flying shear control loop, which though needing rigorous specification was
routine, but also to advise management the best mean length L that would allow
optimal cut-up with minimum waste. Imagine for a moment that the customer will
accept any length of material in the range [35,36] length units and that the total
length L to be cut is in the range Le [350,360] length units. Then it is obvious that
the total length L can be cut into ten equal lengths that meet the customer’s
requirement leaving zero waste. However, suppose now that L falls into the interval
[361,384], then no choice of product lengths for the customer exists that provides,
even theoretically, zero waste.

Two things become clear:

(a) Asthe total length L to be cut up increases, simple arithmetic shows that the width
of the solution windows (where ideal cut-up can be achieved) increases until the
window Le [1225,1260] is reached. This solution window is followed and merges
into the next solution window Le [1260,1296], meaning that once L attains or
exceeds a length L = 1225, there will always be an ideal cut-up solution.

(b) In this application, assume we have constraint L < 350 imposed on the total
length and observe from Figure A2.2 that, assuming a Gaussian distribution of
expected total length L, how viciously asymmetrical the cut-up problem really
is. We shall need to advise management to place the target value for L, towards
the upper end of the solution interval [315,324], that I have chosen for this
illustration.

Any particular total length L with any particular variance can be superimposed
and the inevitable losses will be shown graphically and can be calculated numerically.

Two assumed Gaussian distributions for sigma values 3 and 6 (length variation)
are drawn on a rebased horizontal axis for convenience. Zero represents a length of
288 units and the solution window [27,36] in the diagram is [315,324] units in reality
and the specimen mean length of 32, chosen only for illustration purposes, is in
reality 320 units. Superimposed on the diagram are two isosceles right-angled tri-
angles that show the scrappage that will occur for any chosen total length.

To complete the problem we compute the expected loss areas as the Gaussian
curve intersect the ends of the solution window.

The Gaussian equation is

f(x) — e—(x—;t)z/Zéz
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Figure A2.2  This ingenious visualisation framework was devised by my United
Steels Company colleague, Mr Ron Pipe. It shows the solution
window where perfect no-wastage cut-up is theoretically possible as
the gap between two isosceles triangles that represent regions of
inevitable waste

where u is the chosen length L, and x is a particular length from the Gaussian
population. Rebasing the x-axis so that new x = 0 is now at old x =288 as in Figure
A2.2, we obtain the expression to be minimised with respect to u as

x=27 x=62
J= J f (d) dx + J (x — 36)f (x) dx
x=0 x=36

The results are shown in the following table in terms of expected length of
wastage per cut-up operation:

L 0=3 0==6

27 12.30432 39.30432
28 9.215753  37.21575
29 6.373898 35.3739
30 4.059218 34.05922
31 2.394997 33.395
32 1.358045 33.35805
33 0.838728 33.83873
34 0.708414 34.70841
35 0.862584 35.86258
36 1.232128 37.23213
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Figure A2.3 Expected scrappage as a function of mean length to be cut up

Figure A2.3 plots the same results and it is clear that the choice of optimum
length L is 0 dependent, with recommended choices to management for L being
L =34 for =3 and L =32 for 0=6.

A3 Control of the pressure inside small fuel-fired furnaces

The problem to be described here is typical of that occurring in small (a few hun-
dred employees) companies.

It is important to remember that these are small unsophisticated pieces of
equipment usually operated by companies unable to commit to some of the avail-
able advanced furnace design features that could be used to ‘design out” most of the
problems that are about to be described.

Cold billets are presented to a pusher device at the right door of the furnace and
the material progresses right to left, being taken from the left door as called for by a
small rolling mill at temperatures of, typically, 1100°C. The doors are frequently
opened for operational reasons and that causes a significant control problem.

There is a very strong buoyancy effect because of the elevated temperatures
inside the furnace, and without some form of pressure control, unwanted air will be
sucked through the doors every time they are opened and will cool the slabs inside.

In a typical installation, as shown in Figure A3.1, a combined pneumatic/
hydraulic device measures the furnace pressure through a pipe in the furnace roof,
compares it with a desired value and then moves a hydraulic piston to move a heavy
damper that sets the size of the opening for exit of the hot gases to a chimney.

The desired pressure for the furnace must always be positive to minimise
ingress of cold air through the doors and other orifices. However, choice of too high
a desired value causes its own problems, just as does the choice of too low a value.
In fact, as will be explained, there is a delicate balancing act to be performed.



Case histories 415

pneumatic / hydraulic

actuator
furnace pressure g © exhaust
measurement gases
H to stack

heated material

is removed for  cld material
working is charged
sAimim g
|
forced bl\lmef damper to control
furnace process
draft fan frequently opened

access doors

Figure A3.1 A small fuel-fired furnace such as that used to reheat steel slabs for
specialist rolling for eventual products such as twist drills

The balancing act occurs because of the peculiar nature of the relation
between damper position and resulting furnace pressure (Figure A3.2). There it
can be seen that there is a more or less linear operating range where a particular
chosen small positive pressure should be able to be achieved and held. What the
figure also shows is that, outside that limited ‘linear range’, there are two ‘points
of no return’ beyond which runaway behaviour exists in both directions as indi-
cated by the sequences of one-way arrows. Perhaps surprising but true, the beha-
viour at the left of the diagram indicates that opening the dampers beyond a certain
point causes a large influx of cold air that, once heated and expanded, increases;
the furnace pressure and the dampers move to fully open and stay there.

At the opposite end of the range, beyond the right hand ‘point of no return’, the
situation is analogous. Gases begin to escape through furnace orifices with loss of
furnace pressure, rapidly resulting in dampers closing completely and all the pro-
ducts of combustion disastrously entering the workplace.

Additionally, this application suffers from very rapid disturbances (causing
large pressure changes over times of a few seconds) that have to be counteracted
by slow-moving actuators that may take about 5 s before they start to move.
When a typical graph (Figure A3.3) of furnace pressure is examined and the
rapidity of wind gusts at the top of the chimney is appreciated and compared with
the lumbering response of heavy dampers typically driven by hydraulic cylin-
ders, the overall difficulty of this control problem can be understood.

Furnace pressure control is well known to be difficult, particularly where rapid
wind gusts from a chimney can change the internal pressure in a matter of milli-
seconds. The correcting actuator will often be a heavy cumbersome damper driven
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no return v
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Figure A3.2 Diagrammatic relation between damper position and resulting
furnace pressure (note the two ‘points of no return’)

windy day” typical/furnace
pressure measurement (millibars)

0 f f f f f

time (minutes)

Figure A3.3 A typical furnace pressure graph on a windy day

by a hydraulic cylinder — such a configuration may well take several seconds before
even starting to move.

To make life even more difficult, some older furnaces were built with the
hearth sloping, so as to assist by gravity, the progress of work pieces along the
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furnace. This means that the often poorly fitting access doors are at different
heights with the result that cold air may be drawn in at lower levels
and simultaneously expelled from doors at higher levels, with the whole unwanted
airflow being driven by buoyancy, which at 1000°C is a very significant force.

Suppliers of modern reheating furnaces have ‘designed out’ most if not all the
problems described above, but inherently difficult control problems similar to the
one just described will still be encountered in industry by a consultant control
engineer.

A4 Batch control: a brief case history of one process: Oxygen
Steelmaking

Most of the world’s steel is made by the Basic Oxygen Steelmaking (BOS) process.
Figure A4.1 shows an outline of the process.

In essence, 300 tonnes of molten iron at about 1200°C and containing about
4% of carbon and many other mostly unwanted elements is poured into a tiltable
vessel/reactor. Pure high-pressure oxygen from a water-cooled lance is injected,
and after about 20 minutes, steel at up to about 1700°C and containing a desired
percentage of carbon (typically less than 0.5%) is produced. The vessel is tilted to
allow the hot steel to be poured out and the process repeats. The temperature-gain
comes from exothermic oxidation of carbon and other elements, including iron
(Figure A4.2). Carbon is reduced to levels required in steelmaking, and undesirable
impurities, particularly sulphur and phosphorus, are reduced to acceptable steel-
making levels through interactions with the basic (i.e. alkaline) brick lining of the
reactor. Figure A4.3 illustrates the asymmetry of the de facto cost function for the
Basic Oxygen process in the carbon temperature plane.

water-cooled

oxygen lance oxygen flow

molten iron
containing many impurities
and about 4% carbon

- @geﬁ fl%‘
lance —

Figure A4.1 The Basic Oxygen Process in outline



418  Control theory: a guided tour

this is the refining trajectory

shown in the temperatlire-
carbon plane. Time is &
parameter along the trajectory

the cross shows the target carbon content and
temperature at which the process should be stopped.
It is surrotmded by a tolerance rectangle showing
the range of figishing values that will be accepted

carbon content C

too high a finishing carbon content involves a high
step-penalty. The reactor must be returned to the vertical
and reblown with oxyger to remove carbon

\ too high

L - / temperature
too low a finishing temperature
involves a high step-penalty. .\ \
The rea_ctor must be returngd to too low carbon
the vertical and reblown with oxygen
to raise the temperature exothermically

temperature T

Figure A4.2 The behaviour of the Basic Oxygen Process in the carbon vs.

0

Figure A4.3 An approximation to the de facto cost function at the end of the batch

temperature plane. The batch starts with a high carbon content and a

low temperature and moves along the trajectory shown as a line in

the figure with carbon content reducing and temperature increasing.

The aim is to stop the process when carbon and temperature are
within the tolerance rectangle shown in the figure. However, the
penalties for being outside the rectangle are asymmetrical as is
indicated in Figure A4.3

cost of correction A
Final temperature too low. Stepfunction in cost since

process has to be restarted and more oxygen blown in

Final temperature too high.
ok . -
/ Cost is due to waiting for
temperature to fall

/

final temperature

cost of correction B

Final carbon content too
low. Cost is of adding
carbon to the reactor

/

Final carbon content too high. Step function
in cost since process has to be restarted and
more oxygen blown in

final carbon content

steelmaking process (The total cost of correction if the target

rectangle is missed is a combination of the two costs of correction.)
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A5 A note on the introduction of novel measurement sensors
into control systems

It has been pointed out earlier in this book that the process/system variables that
matter most can rarely be measured, online, undelayed, robustly and reliably.
However, from time to time, physicists and others come forward to offer a new
sensor system that promises to measure an important but previously online-
unmeasurable quantity (say a) whose excessive variability is causing significant
economic losses. Almost by definition, such sensor systems cannot have been fully
tested under closed loop conditions; therefore, should they be put to use as elements
of'a new closed loop system, designed to reduce the variance of a, then under a law
that others must have noticed but this author is calling ‘the conservation of varia-
bility inside a closed loop’, inevitably, some other process variable (say ), inside
the control loop will begin to vary significantly for the first time. Such variation,
transferred around the control loop, has in the past, significantly degraded the
empirical correlations on which proposed new inferential sensors often relied for
cases (a) where 8 was a product property and cases (b) where § was a process
variable.






Notation

The notation conforms to ‘standard usage’ — there are no novel notations. However,
the following list, in which symbols are defined with respect to the first chapter in
which they appear, may be found useful.

Chapter Symbol Meaning
3 G Operator representing a system to be controlled
D Operator representing a controller
H Operator representing the behaviour of a composite system
v The desired value for y
y The measured value of system output
e The error between v and y
4 L{} The operation of Laplace transforming
£ The operation of inverse Laplace transforming
s The complex variable associated with the Laplace transform
&} Fourier transformation
* Convolution
R,, The correlation function between u and y
C (zeta) Damping factor
® Frequency
w, Undamped natural frequency
Wy Damped frequency
, Resonant frequency
R(P) Real part of P
I(P) Imaginary part of P
o (sigma)  The real part of a complex number — often used to label the real
axis while jw is used to label the imaginary axis
5 » dy/dt
¥ d*yldf
6 ING n-dimensional real space
x(k) The value of x after k sampling intervals has elapsed
7 ox A small perturbation in x
Ou/dv The partial derivative of u with respect to v
xpn(f) A nominal trajectory that x is, a priori, expected to follow
8 (,) Inner product
[Ix|| The norm of the vector x
Vv The gradient of the scalar v

(Continues)
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(Continued)
Chapter Symbol Meaning
10 * The signal y after being sampled
z{ } The operation of Z transformation
z The complex variable associated with the Z transform
Wy Sampling frequency
Gy The transfer function of a zero-order hold device
G'(s) Go(5)G(s)
11 (gy) The matrix whose typical element is g;;
o The transition matrix (defined by (11.18))
4 The matrix defined by (11.18)
dom L The domain of L
ker L The kernel of L
dim X The dimension of the space X
13 [,] A closed interval
A Lagrange multiplier (do not confuse with usual usage as
eigenvalue)
R The reachable set
oR The boundary of the reachable set
Q The admissible set of controls
A The attainable set
sign (x) =—-1ifx<0,=0ifx =0, =1ifx>0
sup supremum
14 X An estimate of x
X The prediction error x—x
x(lj — 1) A prediction of the variable x(j) made at time (j — 1)
K@) The Kalman gain at time j
& Expected value
15 H,,p >0  The family of Hardy spaces
- The Hardy space of all stable linear time-invariant continuous time
system models
AG A perturbation to a plant transfer function G
S The system sensitivity coefficient
T The system complementary sensitivity coefficient
o(A) The ith singular value of some matrix 4
0(4) o(4) The largest and smallest singular value of 4, respectively
R(A) The range space of 4
N(A) The null space of 4
A* The adjoint of 4
0,(G1, G;)  The distance between two transfer functions as measured by the v
gap metric
b, p The distance between a transfer function G and a controller D as
measured by the b metric
I? [a, b] Lebesgue spaces defined on the interval [a, b]
P The space of all polynomials
C, The space of all n times differentiable functions
C The space of all continuous functions
C The set of all convergent sequences
Co The set of all sequences convergent to zero

A sequence space




Afterword

Visualisation of the evolution of control design
approaches: an overview in a single diagram

frequency domain ! theoretical time domain pragmatic N

1 < »

open loop Bode i PID control /I/ on-off control |

[ root locus and similar | 1 | self-tuning PID | optWhing |
1
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1 | pre-programmed control |
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i | linear quadratic H, methods | | gain sefieduling |
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H,,methods | LPV gain scheduling |

loop shaping !

LMI approaches

Figure 1 Visualisation of the evolution of control design approaches

Despite its superficial complexity, the overall aim of control design is quite simple:
to produce a reliable universal enforcer of behaviour that can impose any given
desired behaviour on any process or system whatsoever.

It seems appropriate, in an Afterword, to show how control design methods fit
together and have evolved over the years: Figure 1 is the author’s attempt. The figure
shows how, in a broad sense, design methods have moved from pragmatically-driven
towards research-driven while tending to move towards the frequency-domain.

In this diagram, the earliest approaches are at the top; evolution follows the
arrows and, in the time domain, has, over time, moved from heavily empirical to
more theoretical.

Interestingly, the first broad-based scientific understanding of feedback loops
was in the frequency domain (Nyquist, 1932). Now many of the robust control
design approaches have returned to the frequency domain, where the constraints on
what can be achieved are still determined by exactly the same invariant laws that
Bode stated in 1945! See Bode (1945).
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total internal stability and design
disturbance rejection
requirements, 317-318, 318/
loop shaping concept, 317318,
318/
mixed sensitivity approach, 318
Nyquist diagram, 316f



robust stability, 315-316, 315/, 316/
total internal stability and design
for disturbance rejection,
314-318
v gap metric: see v gap metric
approach
see also Hardy spaces
‘hand computation’, 40
Hardy, G.H., 339
Hardy spaces, 310-312, 339
effect of choice of p on nature
of norm (elementary
illustration), 310, 311f
H :see H_
non-elementary aside, 311-312, 312f
suffix p, 310
Hazen, H.L., 368
heating process, in feedback control,
22-23, 23f, 24f
Hilbert spaces, 372, 381
hill-climbing methods, 67-68, 67f
Hooke’s law, 409, 410
Hopf, Heinz, 380
hot strip rolling mill (case study),
407411, 408/~409f
thickness deviations, causes of,
410411
transport lag problem, 407
human temperature regulation system,
2,34
Hurwitz, A., 115-116
hydro frequency control, power
amplification obtained in,
123, 123f
hysteresis, in non-linear systems, 95

IFAC: see International Federation
of Automatic Control
(IFAC)

imaginary axis, frequency response
of system with poles and/or
zeros and, 5859, 59f

industrial application, automatic
control schemes for,
177-182
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methodologies and illustrations,
177-182, 178f~182f
inner loop
operational, jacketed reactor
performance, 253-254,
254f
innovation sequence, 306
input shaping, 170-172, 171f
principle of, 170, 171f
instability theorem, 333
integrals
convergence, Laplace transform
and, 30-31
convolution, 4041, 40f
integral term
in removing any constant error,
value of, 156
three term controller, 157, 157f
integrator, 48, 48f
intelligent and learning systems,
literature resources, 378
intelligent machines, 343
intelligent systems, properties,
364-365, 364f
interdeterminism, in mathematical
modelling, 78
interior point methods, 309
internal energy storage, system
with, 6
International Date Line, thought
experiments and, 82
International Federation of
Automatic Control (IFAC),
199, 374
inverse function theorem, 107-108,
108f
inverse Laplace transformation, 29,
30, 124, 125, 160, 209
inverse Nyquist view, in 4 matrix
of system representation,
254-256, 2551, 256f
inverse transfer function, open loop
response of, 254-255
inverse Z transforms, non-uniqueness
of, 197
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investment, in automation: see
industrial application,
automatic control schemes
for
investment strategy tool
for n linked processes, 180, 180f
for six processes with three choices
at each stage, 180, 181f
irreversibility, in mathematical
modelling, 78
iterative search in parameter space,
visualisation of, 67, 67f

jacketed reactor
cascade control and, 250-251, 2501,
251f
inner loop into model, 253
performance, 253-254, 254f
state space equations by
inspection from block
diagram, 251-253
Jacobian matrix, 107
Jordan canonical form, 234-236
jump resonance, in non-linear
systems, 95

Kalman, R.E., 247
Kalman filter
application of, prerequisites for, 304,
3041
complex processes and, 305
continuous time processes and,
305
disturbing signals and, 305
idea, 306
innovation sequence, 306
Matlab demonstration of,
305-307, 3071
non-Gaussian disturbance signals
and, 305
non-linear processes and, 305
predictive control and, 307-308,
308f
principle of, illustration of, 301f
processes varying with time, 305

state estimation, 300-302, 301/
time-varying processes and, 305
Kalman gain, 302
matrix, 302
Kalman’s conjecture, in envelope
methods, 96, 96/
kernel
literature resources, 377
loss of dimension into, 246

Laplace transform, 20, 29—45
block manipulation and, 32-33, 33/
closed loop system to desirable
locations, 38-39, 38f, 39/
complex plane, pole and zero
locations in, 34-35, 341,
351, 36f
in control theory, 31-32, 31f
convergence of integral and, 30-31
for convolution, 4041, 401
damped natural frequency,
43-44, 44f
definition of, 29-31
for differential equation, 31, 33
operation, 29/
07/0" phenomenon and, 31
poles and zeros in: see poles; zeros
pole-zero diagrams: see pole-zero
diagrams
root locus technique: see root locus
technique
software packages and, 30
techniques, 29
time solutions calculation using
transition matrix, 208, 209
transfer function
concept of, 32, 32f
by cross-correlation, 41-42
from differential equation, 33
from frequency response
curve, 39
poles and zeros of, 33-34
from transient response curve,
39, 40
transform pairs and, tables of, 30



learning systems
with/without supervision, 361-364
abstract, structural
characteristics of, 362364,
362f, 363f
adaptivity vs., 362
basic ideas, 361-362
Lebesgue, Henri, 337
Lebesgue spaces L?/a, b], 337-338
linear control systems, 25-26
operator theory and functional
analysis applied to, 381
linear control theory, 102
linear finite-dimensional system, 204
linear infinite-dimensional system,
204
linearisation
comments, 105-106, 105/
about constant value, 105, 105/
about current solution, 105, 105/
definition of, 104—106
example, 104—105
of model, multivariable control
theory, 205-206
motivation for, 103
about nominal solution, 105, 105/
about nominal trajectory, 106, 106/
linear matrix equality (LME), 332
Linear Matrix Inequalities (LMIs)
method, 309
applications, 333
in control systems analysis and
design, 330-334
defined, 332
discrete time linear system and, 333
feasibility stage, 332-333
linear system and, 333
overview, 330-332
robust pole placement using, 334,
335f
linear parameter varying (LPV)
gain scheduling
approach to, outline, 175
traditional ad hoc and, 173-175,
174f
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linear quadratic Gaussian (LQG)
approaches, 310
linear quadratic optimisation,
286-297
LQR problems with finite time
horizon, 292-297, 292¢,
293/-295f
LQR problems with infinite time
horizon, 286-291
open loop stable process,
287-289, 288f
open loop unstable process,
Riccati equation for,
289-291, 2901, 291f
Linear Quadratic Regulator (LQR)
problems
with finite time horizon, 292-297,
292¢,293f-295f
with infinite time horizon, 286291
open loop stable process,
287-289, 288f
open loop unstable process,
Riccati equation for,
289-291, 2901, 291f
linear systems
characteristics, 2, 2f
frequency response of, 4748, 48f
LMIs method and, 333
stability tests, 116, 116¢
linear time invariant (LTI) controller,
335
LME: see linear matrix equality
(LME)
LMI region, 334, 335/
LMIs: see Linear Matrix Inequalities
(LMIs) method
local stability, 118, 118/
log-linear axes, for Bode diagrams,
49
loop shaping concept, 317-318,
318/
LPV: see linear parameter varying
(LPV)
LQG: see linear quadratic Gaussian
(LQG) approaches
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LQR: see Linear Quadratic Regulator
(LQR)
LTI controller: see linear time invariant
(LTI) controller
Lyapunov, A.M., 333, 370
Lyapunov’s first method, 95
Lyapunov’s second (direct) method,
95
geometric interpretation of, 120-121
properties, 119
for stability determination,
119-121, 119/~120f

machine intelligence, 343
Magellan, Ferdinand, 82
magnitude curve, 56, 57f
manually controlled process, 6, 6/
Maple, 374
mapping representation, of X, 203-204,
204f
Mathematica, 374
mathematical modelling, 63-91
anticipatory systems, 72—74
approaches to, 63—64, 63f
causality, 7677
chaotic behaviour, 7476, 75f
complex physical systems, 77-78
construction, from theoretical
considerations, 66
on data obtained by experimentation,
64—66
determinism and predictability, 78
development, methods for, 64
difficulties, 68, 69f
water wheels and, 79-82, 801,
81t
dimensional analysis, 85-86
distributed systems in, 87—-89
doubt and certainty, 71-72
experimentation on plants, 83—85,
831, 84f, 85f
literature resources, 379
oscillating and osculating
approximation of curves,
90-91, 91f

parameter estimation, 69
methods/approaches/techniques
for, 6668, 67f
parameters, fixing of, 69
point representation, spatial region
and, 89-90, 90f
regression analysis, 69-70, 701
residuals, analysis of, 70-71, 71f
reversibility and irreversibility, 78
social and political phenomena,
79
thought experiments, effectiveness
of: see thought experiments
time-ordering, 77
Mathworks, 374
Matlab, 335, 374
commands for RGA, 268
demonstration, of Kalman filter,
305-307, 3071
M-synthesis programme, 336337
D-K iteration, 337
matrix exponential, time solutions
calculation using transition
matrix, 207
Maxwell, J. C., 77-78
‘method of coefficients,” 81
Mobile Reference, 30
modal analysis, 256264, 257f, 258f,
259f, 2601, 261f
for third order system with two
complex eigenvalues,
261-264
modal control, by state feedback,
239-245
modal matrix, 208
model-generated data, recorded
system vs., 67
Model Predictive Control (MPC),

308, 3081

modes, 256-264, 257f, 258, 259f,
260f, 2611

MPC: see Model Predictive Control
(MPC)

multi-agents, 378
multilayer networks, 347, 348f



multiplicative uncertainty model,
322f
multivariable linear systems and state
space approach
alternative system descriptions,
202-203, 2021, 202¢
canonical representations,
224-236, 224f, 225f
advantages, 224-226
controllability canonical form
(phase-variable form),
228-231, 228f
Jordan canonical form,
234-236
observability canonical form,
231-232,232f
reachability canonical form,
226-228, 226f
reconstructibility canonical form,
232,233f
state equations for multi-input,
multi-output processes,
233-234
continuous time systems: see
continuous time systems
control system design, 236237
state-variable feedback, 237-239
discrete time state equation
with forcing, 221
transition matrix, 220
unforced, 219-220
discrete time system: see discrete
time system
equivalent systems, 216
linear transformations,
conservation of dimension
under, 245-247, 246f
mapping representation of X,
203-204, 2041
modal control by state feedback,
239-245
realisation, 216-217
existence, 217
uniqueness, 217
representations, 199
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stability, 217-218
tests, 222
state, concept of, 201
state vector, 199-201, 2001
transfer-matrix
and vector—matrix description, 215
transition matrix: see transition
matrix
multivariable processes, control of
RGA in: see relative gain array
(RGA)
singular value decomposition,
268-269
-synthesis method, 309
H_and, 336-337, 336f
mutation mechanism, 356, 357f

natural frequency, of system,
109-110
neural networks, 343
architectures, for dynamic
processes, 349-352, 3491,
3501, 351f
literature resources, 377
training, 347-349
see also artificial neural networks
(ANN)
neurons, in ANN
architecture of, 345, 345f
properties, demonstration of,
345-347, 346f
with n inputs, 347
neutral point (NP), of aircraft, 133,
1341
Nichols chart, 60—61
Nikon Speedlight, 74
nominal trajectory, linearisation about,
106, 106/
non-Gaussian disturbance signals,
Kalman filter and, 305
non-linear controllers, 22
non-linear processes, Kalman filter
and, 305
non-linear systems, 93—110
approaches to analysis of, 95-96
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chaotic behaviour (example),
109-110, 1101
classification of systems in, 94f
control loops, analysis of, 97-98,
97f
describing function method: see
describing function method
forced pendulum (example),
109-110, 1101
jump resonance, stick-slip motion,
backlash and hysteresis
in, 95
linear approximation, derivative as,
107, 1071
inverse function theorem,
107-108, 1081
linearisation: see linearisation
Lyapunov’s first method, 95
Lyapunov’s second/direct method,
95
overview, 93-95
process, 101, 102-103, 103/
relay and switched systems in, 95
second-order linear systems in state
plane, 99-100, 99¢, 100/
sector bound methods, 96, 96f
signal problems
large, 101, 102
small, 102-103, 103f
stability tests, 117, 117f
stable oscillators in, 95
in state plane
second-order linear systems,
99-100, 99f, 1001
second-order systems in,
100-101, 1021
transversality, concept of, 108, 109f
non-minimum phase systems, 39,
135-139, 136/, 141-142,
142f, 144
physical phenomena, 136
pole—zero diagram, 135, 136/
non-periodic behaviour, 76
norm, scalar-valued cost function, 276
NP: see neutral point (NP)

Nyquist, Harold, 47
Nyquist diagram, 60—61
Nyquist stability criterion
unstable process, 130-133, 1311, 132f

observability, 247-248
continuous time systems, 218
discrete time system, 222-224
observability canonical form, 231-232,
232f
observability Gramian, 248
open loop control problems, 236
open loop response, of inverse transfer
function, 254-255
operator theory, literature resources,
381
optimal control problem, 236
calculus of variations and,
275-276
optimisation, 271-297
linear quadratic optimisation,
286-297
see also linear quadratic
optimisation
literature resources, 376
maximum value
mathematical function and, 271,
272f
mathematical function on
restricted interval and, 272,
272f
scalar-valued cost function,
273-275, 274f, 275f,
276271, 276/-277f
scalar-valued function of
n variables, 272-273, 273f
scalar-valued function on closed
region of parameter space,
273, 274f
overview, 271
time-optimal control, 278-286,
27912801
see also time-optimal control
ordinary differential equations,
379-380



oscillating approximation, of curves,
9091, 91f

osculating approximation, of curves,
90-91,91f

overfitting, 348-349, 3491

overtraining, 348-349, 3491

oxygen steelmaking: see Basic
Oxygen Steelmaking (BOS)
process

pairing, of actuators, 268
parameters, in mathematical
modelling
estimation, 69
methods/approaches/techniques
for, 66—68, 671
fixing, 69
PCA: see principal components
analyser (PCA)
Peano—Baker series, 213
perturbation
stable system and, 111-112, 112f
unstable system and, 111-112, 112f
phenomenological laws, 77
PLCs: see programmable logic
controllers (PLCs)
poles
cancellation, 37
of closed loop system to desirable
locations, 38-39, 38f, 39/
frequency response of system with,
58-59, 591
locations, 176
locations, in complex plane, 34-35,
341, 36f
meaning of, 34-35, 351
open loop, zeros and
root locus of system, 45, 45/
placement, 35, 37-38, 37f
pole-zero diagrams: see pole-zero
diagrams
of state space systems, 265-266
system
presumed initial position of, 37/
required position of, 37f

Index 439

of transfer function, 33-34
pole-zero diagrams, 37f
associated system step responses
and, 36f
frequency response and, imaginary
axis, 58-59, 591
resonant frequencies from, 4243,
43f
of second-order system, 45, 45f
Pontryagin maximum principle, 283
position control, by state space
methods, 249
power amplification, in hydro
frequency control, 123,
1231
predictability, in mathematical
modelling, 78
pre-programmed control, feedback
control and, 28
pressure control, inside small
fuel-fired furnaces,
414417, 415f, 416f
principal components analyser (PCA),
352
probabilistic determinism, in
mathematical modelling,
78
probing controller, 169—-170,
169/~170f, 365-366
programmable logic controllers
(PLCs), 185
proportional term, three term
controller, 157, 157f
pupillary servomechanism, 73
quadratic behaviour, 194—196, 195/,
196f

reachability
continuous time systems, 218
discrete time system, 222-224
reachability canonical form,
226-228, 2261
real plane, two-dimensional
simple properties of neuron in,
345-347, 346f
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real systems, 65
real-world systems, non-linearity in,
94, 94f
reconstructibility
continuous time systems, 218
discrete time system, 222-224
recorded system data, model-generated
vs., 67
regression analysis, in mathematical
modelling, 69-70, 70f
regulator problem, defined, 236
relative gain, 266
relative gain array (RGA), 266269
forecaster of steady state interaction,
266-267
illustrative example, 267-268
Matlab commands for, 268
relay controller, 149—154
advantages, 151
disadvantages, 151
rudimentary on—off control,
149-151, 149f
sliding mode control, 151-155, 152f,
153/, 1541
variable structure control, 151-155
relay control systems, 150, 150f, 151
relay systems, in non-linear systems, 95
‘requirement capture,” 16, 17f
residuals, analysis of, 70-71, 71f
resonant frequencies, from pole-zero
diagrams, 4243, 43f
reverse engineering, 16, 171
reversibility, in mathematical
modelling, 78
Reynolds number, 86
RGA: see relative gain array (RGA)
Riccati, Count Jacopo, 285
Riccati equation, 285-286
open loop unstable process,
289-291, 2901, 291f
Riesz, F., 339
robust control design
adaptivity and, 337
AG envelope, specification of, 322
H :see H_

Hardy spaces, 310-312
literature resources, 376377
LMI method: see Linear
Matrix Inequalities (LMIs)
method
overview, 309-310
spaces, hierarchy of, 337-339
‘Robust/Fragility trade-off,” 319
robustness against changes
control loop, 124-125, 125f
robust stability, of closed loop system,
313-314, 3141
root locus technique, 38-39, 39/
with open loop poles and zeros, 45,
451
Rosen, R., 72-73
Routh, E.J., 116, 370
Routh—Hurwitz criterion, 116
rudimentary on—off control,
149-151, 149f
rule of thumb, for control
fuzzy control algorithm and,
354-355,355f
Runge—Kutta approach, 106

Saturn’s rings, stability studies, 112,
113f
scalar multiplier, 93
scalar-valued coefficients, 89
Scilab, 253, 335, 374
second-order systems
frequency response of, 57-58, 58f
linear, in state plane, 99-100, 99/,
100f
non-linear, in state plane, 100-101,
102f
sector bound methods, 96, 96f
self-organising maps (SOM)
neural net-based, for data
reduction and clustering, 352
self-tuning controllers
adaptivity and, 361
into closed loop, 165
coefficients, three-term controller,
165



sensitivity functions, limitations on
performance, 141, 143
sensor systems, 419
separation principle, 299-300
sequence spaces /7, 338
series summation method
time solutions calculation using
transition matrix, 207, 210,
2102211t
servomechanism, pupillary, 73
Shannon’s theorem, 141, 372¢
Y, mapping representation of
multivariable linear systems and
state space approach,
203-204, 2041
signal non-linearity
large, 101, 102
small, 102-103, 103/
Simulink, 374
single-input, single-output (SISO)
systems, 250
control loops
RGA: see relative gain array
(RGA)
singular value decomposition,
268-269
state space model for, 255
singular value decomposition (SVD),
268-269
singular values
eigenvalues and, 325
H_norms from dynamic process
models, 322-324
sliding mode control, 151-155, 152f,
153/, 1541, 376
literature resources, 376
sliding motion, 152, 153f
software
control-oriented, 374
engineering context, 14, 16-17,
161, 17f
SOM: see self-organising maps (SOM)
spaces
Hardy spaces: see Hardy spaces
hierarchy of, 337-339, 338f
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inclusion relations between,
338-339
Lebesgue spaces L7 /a, b],
337-338
norm of linear mapping 7, 339
sequence spaces /7, 338
see also H_
spatial region representation, as
summation of elemental
regions, 88
speed of response, 176
control designer and, 176
stability, 111-113, 111/~112f, 198
of closed loop system, 49, 49f
determination, Lyapunov’s second
(direct) method, 119121,
119/~1201
frequency response and, 48—49, 49f
local and global, 118, 118f
margins, 116
frequency response and, 50
quantification, 113-116, 114¢
Saturn’s rings, 112, 1131
tests
continuous time systems,
217218
discrete time system, 222
linear system, 116, 116¢
non-linear systems, 117, 117f
theory, history, 112—-113, 113f
stable oscillators, in non-linear
systems, 95
stable system, 111, 111f
perturbation and, 111-112, 112f
state
concept of, 201
parameter estimator and, 237
state equation(s)
discrete time: see discrete time
state equation
£ transform equivalent of, 221-222
for multi-input, multi-output
processes, 233-234
state estimation, 299-308
application, 300, 300/
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Kalman filter, 300-302, 301/
see also Kalman filter
literature resources, 376
optimal gain matrix and, 303-304,
304f
overview, 299
separation principle, 299-300
state estimator, 237
state feedback, modal control by,
239-245
state observer, 237
state plane
linear second-order systems in,
99-100, 99f, 1001
non-linear second-order systems in,
100-101, 1021
state portrait, 99
state space, 201, 249-269
inverse Nyquist approach,
254-256, 2551, 256f
modal analysis of, 249
modes and modal analysis,
256-264, 2571, 258f, 259f,
260f, 2611
multivariable linear systems and:
see multivariable linear
systems and state space
approach
overview, 249-250
poles and zeros and, 265-266
position control by, 249
RGA: see relative gain array (RGA)
singular value decomposition,
268-269
SISO and, 250, 255
transfer function and, 264266
view of cascade control, 249,
250-254, 2501
state-variable feedback, control system
design and, 237-239
state-variable feedback strategy, 237
state vector, 199-201, 2001/
step response of system
coefficients, three-term controller,
158-164, 1591, 161f~163f

order of process and, 163164, 164f
system zeros on, 136-139, 137/,
1391
stick-slip motion, 102—-103
in non-linear systems, 95
Stodola, A.B., 115
strong determinism, in mathematical
modelling, 78
support vector machines (SVM), 352
support vector methods, literature
resources, 377
SVD: see singular value decomposition
(SVD)
SVM: see support vector machines
(SVM)
swarm intelligence, 378
switched systems
disadvantages of, 150
in non-linear systems, 95
switching line, 151, 153f
switching surface, 151
synthesis, limits on, 126
system bandwidth, 176
control designer and, 176
system natural frequency, 176
systems
boundary, 1
defined, 1, 3, 4
dynamic, 2, 6
feedback, 2, 3f
general ideas, 1-2
human temperature regulation, 2,
31, 4
linear, 2, 2f
realisation, 216-217
existence, 217
uniqueness, 217
structure of, 1, 1f
zeros, on step response of system,
136-139, 1371, 139f

Takahashi’s algorithm, 191-192, 192f
telephony, 165-166, 166/
feedback amplifiers and, 165-166,
166f



theory of equations, 381
third order system, two complex
eigenvalues and
modal analysis for, 261-264
thought experiments
about water wheels, 82
effectiveness of, 82
International Date Line,
conjecturing about, 82
three-term controller, 154—166
coefficients, 158—165, 158f,
1611621, 163f
controller gain and, 164-165
self-tuning algorithm, 165
step response, 158—164, 15971,
161/~163f
concept of, 155-156
derivative term, 157, 157f
to control degree of damping,
value of, 156—157, 156f,
157
idea of, 155-156
integral term, 157, 157f
in removing any constant error,
value of, 156
proportional term, 157, 157f
time domains
frequency and, 325
integral constraints, limitation on
performance and, 143—144,
144f
time-invariant systems
continuous time, controllability
and observability tests for
by diagonalisation method, 219
by matrices Qc, Qo, 218
time solutions calculation using
transition matrixs, 207-211
time-optimal control, 278-286,
2792801
construction of, 284-285
geometric view, 280283,
281/-283f
time-ordering, in mathematical
modelling, 77
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time-varying processes
Kalman filter and, 305
time solutions calculation using
transition matrix, 211-213
topology
concept of, 2
differential, 380
Torricelli, theorem of, 80
tracking problem, defined, 236
trajectories
crossing of, 110
defined, 99
transfer function
concept of, 32, 32f
by cross-correlation, 41-42
from differential equation, 33
from frequency response curve, 39
poles and zeros of, 33-34
state space and, 264-266
poles and zeros and, 265-266
of system, frequency response
testing and, 5657, 57f
from transient response curve,
39, 40
transfer-matrix, vector—matrix
description and, 215
transient response, of three-tank
system, 258-259, 258f
transient response curve, transfer
function from, 39, 40
transition matrix
defined, 212
of discrete time equation, 220
properties of, 212, 215
time solutions calculation using
diagonalisation approach,
208-211
fundamental matrix, 212
Laplace transform approach, 208,
209
matrix exponential, 207
periodically time-varying case,
214
series summation method, 207,
210,210t-211¢



444  Control theory: a guided tour

time-invariant case, 207-211
time-varying case, 211-213
transport lag problem, 407
trans-US telephone cable, 166/
transversality, concept of, 108,
1091
tuning procedure, on-line,
164-165

unforced discrete time state equation,
219-220
existence and uniqueness of
solution, 219-220
unit step response of system, 53—54,
53f
universal constants, 66
universality of control theory, 3
unstable pole
cancellation of, by matching zero
the controller, 127-128,
1281
shifting, by feedback, 128-129,
1281
unstable system, 111, 111f
control, 126135
cancellation of unstable pole
by matching zero, 127128,
1281
shifting unstable pole by
feedback, 128-129, 128f
design, 133—135, 134f
Nyquist stability criterion,
130-133, 131f, 132f
perturbation and, 111-112,
112f

van der Pol equation, 95
variables, control design, 149
variable structure control, 154
vector—matrix

transfer-matrix description and, 215
velocity profile, 278, 279f
vertical standing in humans

control of, 129-130, 130/

V function contour, 119-120, 119/,

1201
v gap metric approach, 309,
326-330
dv and b, ,, 327-328, 327f,
329-330

insights, 328, 329/

overview, 326

use of, 326-327
Vissim, 374

water wheels
mathematical modelling
difficulties and, 79-82,
807, 81¢
thought experiment about, 82
Watt, James, 368
weak determinism, in mathematical
modelling, 78
Weierstrass’ theorem, 272, 352
Wigner, Eugene, 77

Xcos, 374
XOR function, 347

Zeros
frequency response of system with,
58-59, 591
locations, in complex plane, 3435,
34f
open loop poles and, root locus of
system, 45, 45f
pole—zero diagrams: see pole-zero
diagrams
of state space systems, 265-266
on system response, 36/
of transfer function, 33-34
Ziegler—Nichols
equations, coefficients of
three-term controller and,
158-159, 164
methods, 54
Z transforms, non-uniqueness of
inverse, 197, 197f
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