IL, SFC, and ST Programming Methods

This chapter continues from the previous chapter and discusses the other IEC 61131-3
programming languages, that is, instruction lists (ILs), sequential function charts (SFCs), and
structured text (ST).

6.1 Instruction Lists

A programming method that can be considered to be the entering of a ladder program
using text is the instruction list (IL). An instruction list gives programs as a series of
instructions, with each instruction on a new line. Each instruction consists of an operator
followed by one or more operands, that is, the subjects of the operator. Thus we

might have:

LD A

to indicate that the operand A is to be loaded, LD being the operator used to indicate loading.
In terms of ladder diagrams, an operator may be regarded as a ladder element, and LD is
equivalent to starting a rung with open contacts for input A. Another instruction might be:

OUT Q

to indicate that there is to be an output to Q.

Mnemonic codes are used for operators, each code corresponding to an operator/ladder
element. The codes used differ to some extent from manufacturer to manufacturer, though
a standard under IEC 61131-3 has been proposed and is being widely adopted. Table 6.1
shows some of the codes used by manufacturers and the proposed standard for instructions
used in this chapter (see later chapters for codes for other functions).

Instruction List is a low-level textual language that is simple to implement and used by a
number of PLC manufacturers, mainly for small and medium-sized PLCs. It is particularly
suitable for small, straightforward programs. Some manufactures do not support ILs but use
only higher-level language of structured text (ST).

W. Bolton: Programmable Logic Controllers, Sixth Edition. http://dx.doi.org/10.1016/B978-0-12-802929-9.00006-6
© 2015 Elsevier Ltd. All rights reserved. 151

152 Chapter 6

Table 6.1: Instruction Code Mnemonics

IEC
61131-3 Mitsubishi OMRON Siemens Operation Ladder Diagram
LD LD LD A Load operand into Start a rung with
result register. open contacts.
LDN LDI LD NOT AN Load negative Start a rung with
operand into result closed contacts.
register.
AND AND AND A Boolean AND. Series element with
open contacts.
ANDN ANI AND NOT AN Boolean AND with Series element with
negative operand. closed contacts.
OR OR OR 0] Boolean OR. Parallel element
with open
contacts.
ORN ORI OR NOT ON Boolean OR with Parallel element
negative operand. with closed
contacts.
ST ouT ouT = Store result register An output.
into operand.

As an illustration of the use of IEC 61131-3 operators, consider the following:

LD A (*Load A¥)
AND B (*AND B¥)
ST Q (*Store result in Q, i.e. output to Q¥)

In the first line of the program, LD is the operator, A the operand, and the words at the ends
of program lines and in parentheses shown and preceded and followed by * are comments
added to explain what the operation is and are not part of the program operation instructions
to the PLC. LD A is thus the instruction to load A into the memory register. It can then
later be called on for further operations. The next line of the program has the Boolean
operation AND performed with A and B. The last line has the result stored in Q, that is,
output to Q.

Labels can be used to identify various entry points to a program, useful, as we will find later,
for jumps in programs; these precede the instruction and are separated from it by a colon.
Thus we might have:

PUMP_OK: LD C (*Load C¥*)

with the instruction earlier in the program to jump to PUMP_OK if a particular condition is
realized.

IL, SFC, and ST Programming Methods 153

With the IEC 61131-3 operators, an N after the operator is used to negate its value. For
example, if we have:

LD A (*Load A*)
ANDN B (*AND NOT B*)

the ANDN operator inverts the value of ladder contacts and ANDs the result.

6.1.1 Ladder Programs and Instruction Lists

When looked at in terms of ladder diagrams, whenever a rung is started, it must use a “start
a rung” code. This might be LD, or perhaps A or L, to indicate that the rung is starting
with open contacts, or LDI, or perhaps LDN, LD NOT, AN, or LN, to indicate it is
starting with closed contacts. All rungs must end with an output or store result code. This
might be OUT or = or ST. The following shows how individual rungs on a ladder are
entered using the Mitsubishi mnemonics for the AND gate, shown in Figure 6.1a.

The rung starts with LD because it is starting with open contacts. For Figure 6.1a, since the
address of the input is X400, the instruction is LD X400. This is followed by another open
contacts input, and so the next program line involves the instruction AND with the address of
the element; thus the instruction is AND X401. The rung terminates with an output, so the
instruction OUT is used with the address of the output, that is, OUT Y430. The single
rung of a ladder would thus be entered as:

LD X400
AND X401
ouT Y430

For the same rung with Siemens notation (Figure 6.1b), we have:
A 101
A 10.2
= Q20

Consider another example: an OR gate. Figure 6.2a shows the gate with Mitsubishi

notation.

Input A Input B Output Input A Input B Output
X400 X401 Y430 10.1 10.2 Q2.0

@HHHH @HHHH

Figure 6.1: AND gate: (a) Mitsubishi, and (b) Siemens.

154 Chapter 6

Input A Output Input A Output
X400 Y430 10.1 Q2.0
Input B Input B
X401 10.2

@ (b)
Figure 6.2: OR gate: (a) Mitsubishi, and (b) Siemens.

The instruction for the rung in Figure 6.2a starts with an open contact and is LD X400. The
next item is the parallel OR set of contacts X401. Thus the next instruction is OR X401.
The last step is the output, hence OUT Y430. The instruction list would thus be:

LD X400
OR X401
ouT Y430

Figure 6.2b shows the Siemens version of the OR gate. The following is the Siemens
instruction list:

A 10.1
(@) 10.2
Q2.0

Figure 6.3a shows the ladder system for a NOR gate in Mitsubishi notation.

The rung in Figure 6.3a starts with normally closed contacts, so the instruction is LDI. When
added to Mitsubishi instruction, I is used to indicate the inverse of the instruction. The next
step is a series of normally closed contacts and so the instruction is ANI, again the I being
used to make an AND instruction the inverse. I is also the instruction for a NOT gate. The
instructions for the NOR gate rung of the ladder would thus be entered as:

LDI X400

ANI X401

OUT Y430
Input A |nput B Output Input A Input B Output
X400 x401 Y430 01 102 Q2.0

VO VO

Figure 6.3: NOR gate: (a) Mitsubishi, and (b) Siemens.

IL, SFC, and ST Programming Methods 155

Input A Output Input A Output
X400 Y430 10.1 Q2.0
Input B Input B
X401 10.2

@) ()
Figure 6.4: NAND gate: (a) Mitsubishi, and (b) Siemens.

Figure 6.3b shows the NOR gate with Siemens notation. Note that N added to an instruction
is used to make the inverse. The instruction list then becomes:

LN 10.1
AN 102
= Q2.0

Consider the rung shown in Figure 6.4a in Mitsubishi notation, a NAND gate.

Figure 6.4a starts with the normally closed contacts X400 and so starts with the instruction
LDI X400. The next instruction is for a parallel set of normally closed contacts; thus the
instruction is ORI X401. The last step is the output, hence OUT Y430. The instruction list
is thus:

LDI X400
ORI X401
ouT Y430

Figure 6.4b shows the NAND gate in Siemens notation. The instruction list is then:

AN 10.1
ON 10.2
= Q2.0

6.1.2 Branch Codes

The EXCLUSIVE OR (XOR) gate shown in Figure 6.5 has two parallel arms with an AND
situation in each arm.

Figure 6.5a shows Mitsubishi notation. With such a situation, Mitsubishi uses an ORB
instruction to indicate “OR together parallel branches.” The first instruction is for a
normally open pair of contacts X400. The next instruction is for a series set of normally
closed contacts X401, hence ANI X401. After reading the first two instructions, the third
instruction starts a new line. It is recognized as a new line because it starts with LDI, all

156 Chapter 6

Input A Input B Output Input A Input B Output
X400 X401 Y430 10.0 10.1 Q2.0
Input A Input B Input A Input B

X400 X401 100 101

- -

@) (b)
Figure 6.5: XOR gate: (a) Mitsubishi, and (b) Siemens.

new lines starting with LD or LDI. But the first line has not been ended by an output.

The PLC thus recognizes that a parallel line is involved for the second line and reads together
the listed elements until the ORB instruction is reached. The mnemonic ORB (OR branches/
blocks together) indicates to the PLC that it should OR the results of the first and second
instructions with that of the new branch with the third and fourth instructions. The list
concludes with the output OUT Y430. The instruction list would thus be entered as:

LD X400
ANI X401
LDI X400
AND X401
ORB

ouT Y430

Figure 6.5b shows the Siemens version of an XOR gate. Brackets are used to indicate that
certain instructions are to be carried out as a block. They are used in the same way as
brackets in any mathematical equation. For example, (2 + 3) / 4 means that the 2 and 3
must be added before dividing by 4. Thus with the Siemens instruction list we have in
step O the instruction A(. The brackets close in step 3. This means that the A in step

0 is applied only after the instructions in steps 1 and 2 have been applied.

Step Instruction
0 A(
1 A 10.0
2 AN 10.1
3)
4 (o]
5 AN 10.0
6 A 10.1
7)
8 = Q2.0

IL, SFC, and ST Programming Methods 157

The IEC 61131-3 standard for such programming is to use brackets in the way used in the
previous Siemens example, that is, in the same way brackets are used in normal arithmetic.
This enables instructions contained within brackets to be deferred until the bracket is
completed. Thus the IEC instruction list program:

LD X
ADD(B
MUL(C
ADD D

)
)

Gives X + (B x (C + D)).

Figure 6.6 shows a circuit that can be considered as two branched AND blocks. Figure 6.6a
shows the circuit in Mitsubishi notation. The instruction used here is ANB. The instruction
list is thus:

Step Instruction
0 LD X400
1 OR X402
2 LD X401
3 OR X403
4 ANB
5 ouT Y430

Figure 6.6b shows the same circuit in Siemens notation. Such a program is written as an
instruction list using brackets. The A instruction in step O applies to the result of steps 1
and 2. The A instruction in step 4 applies to the result of steps 5 and 6. The program
instruction list is thus:

Input A Input B Output Input A Input B Output
X400 X401 Y430 10.0 10.1 Q2.0
Input C Input D Input C Input D
X402 X403 10.2 10.3
Block Block

(@) (b)
Figure 6.6: Two branched AND gates: (a) Mitsubishi, and (b) Siemens.

158 Chapter 6

Step Instruction
0 A(
1 A 10.0
2 o 10.2
3)
4 A(
5 A 10.1
6 o 10.3
7))
8 = Q2.0

6.1.3 More Than One Rung

Figure 6.7a shows a ladder, in Mitsubishi notation, with two rungs. In writing the
instruction list we just write the instructions for each line in turn. The instruction LD or
LDI indicates to the PLC that a new rung is starting. The instruction list is thus:

LD X400
ouT Y430
LDI X400
ouT Y431

The system is one where when X400 is not activated, there is an output from Y431 but
not Y430. When X400 is activated, there is then an output from Y430 but not Y431.

Figure 6.7b shows the same program in Siemens notation. The = instruction indicates
the end of a line. The A or AN instruction does not necessarily indicate the beginning of
a rung since the same instruction is used for AND and AND NOT. The instruction list

is then:

A 10.0

= Q2.0

AN 10.0

= Q2.1
Input A Output A Input A Output A
X400 Y430 10.0 Q2.0
Input A Output B Input A Output B

X400 Y431 10.0 2.1
(a)L C} (b)L f}

Figure 6.7: Toggle circuit: (a) Mitsubishi, and (b) Siemens.

IL, SFC, and ST Programming Methods 159

6.1.4 Programming Examples

The following tasks are intended to illustrate the application of the programming techniques
given in this section and are the examples for which ladder diagrams and function block
diagrams were derived in Section 5.7. (See that section for an explanation of the ladder
diagrams; here we show the instruction lists relating to the programs.)

A signal lamp is required to be switched on if a pump is running and the pressure is
satisfactory or if the lamp test switch is closed. Figure 6.8 shows the ladder program and the
related instruction list.

For a valve that is to be operated to lift a load when a pump is running and either the lift
switch operated or a switch operated indicating that the load has not already been lifted and is
at the bottom of its lift channel, Figure 6.9 shows the ladder program and the related
instruction list.

For a system in which there has to be no output when any one of four sensors gives an output
and otherwise there is to be an output, Figure 6.10 shows the ladder program and the
instruction list.

Pump Pressure Lamp
X400 X401 Y430
LD X400
4{ H }74(} AND X401
LD X402
X402 ORB
OUT Y430
END
Test
END

Figure 6.8: Signal lamp task.

Lift Pump Valve
X400 X401 Y430

() LD X400

Notited OR iz
X402
OUT Y430
END

END

Figure 6.9: Valve operation program.

160 Chapter 6

Sensors

1 2 3 4 Output

X400 X401 X402 X403 Y430 LDl X400
ANI X401
ANl X402
ANI X403
OUT Y430

END END

Figure 6.10: Output switched off by any one of four sensors being activated.

6.2 Sequential Function Charts

If we wanted to describe a traffic lamp sequence of red-green, one way we could do this
would be to represent it as a sequence of functions or states such as red light state and green
light state and the inputs and outputs to each state. Figure 6.11 illustrates this. State 0 has an
input that is triggered after the green light has been on for 1 minute and an output of red
light on, i.e. the transfer condition from the red light is a time of 1 minute. State 1 has an
input that is triggered after the red light has been on for 1 minute and an output of green light
on, i.e. the transfer condition from the green light is a time of 1 minute. When the green light
has been on for 1 minute, there is a transfer back to State 0.

The term sequential function chart (SFC) is used for a pictorial representation of a system’s
operation to show the sequence of events involved in its operation and Figure 6.11 is an
illustration of the type of operation being described. SFC charts have the following elements:

1. The operation is described by a number of separate sequentially connected states or
steps that are represented by rectangular boxes, each representing a particular state of
the system being controlled and where there is some action performed. The initial start
step in a program is represented with double lines, differently from the other steps.
Figure 6.12 shows a start step and later steps.

States Outputs

Red light
only on

Transfer condition for next state is
red light on for 1 minute

Green light
only on

Return to State 0

Transfer condition to next state is
green light on for 1 minute

Figure 6.11: Sequence for traffic lights.

IL, SFC, and ST Programming Methods 161

Start Initial step in which the system
is held ready to start

| Transition condition needed to be met
for a move to the next step

State/step Output

Transition condition needed to be met
for a move to the next step

etc.

Stop Final step

Figure 6.12: A state/step and its transition.

2. Each connecting line between states has a horizontal bar representing the transition
condition that has to be realized before the system can move from one state to the next.
Two steps can never be directly connected; they must always be separated by a transition.
Two transitions can never directly follow from one to another; they must always be
separated by a step.

3. The program checks the transition conditions so that when realized the next state
following the transition is moved to.

4. The process thus continues from one state to the next until the complete machine cycle is
completed.

5. Outputs/actions at any state/step are represented by horizontally linked boxes and occur
when that state has been realized. Thus we might have items such as Wait 1 minute or
Open valve 1 or Close valve 1.

As an illustration, Figure 6.13 shows part of an SFC and its equivalent ladder diagram. The
program starts when IN 1 is realized and this gives step 1 output. When this output has
completed, the next transition occurs and step 2 occurs with the resulting output 2. When this
is completed, the transfer condition occurs that allows for the move to the End step.

As an illustration of the principles of SFC, consider the situation with, say, part of the
washing cycle of a domestic washing machine where the drum is to be filled with water, and
then when the drum is full, a heater has to be switched on and remain on until the
temperature reaches the required level. Then the drum is to be rotated for a specified time.
We have a sequence of states that can be represented in the manner shown in Figure 6.14.

The transition defines the conditions that must occur in order to go to the next step in the
program, and so they have to occur between each step in a program. Until the conditions are

162 Chapter 6

Start
IN 1 OuUT 1 Step 1
+— IN1 When IN 1 occurs, then
}7 step 1 is realized and
OUT 1 occurs
Stepl —— OUT1
1L IN2
OUT1 IN2 ouT2 | P2
is realized when
Step2 | ouT2 4| H H) the IN 2 occurs. Then OUT 2 occurs

TIN3
END END
L—
End When IN 3 occurs then OUT occurs

Figure 6.13: SFC and equivalent ladder diagram.

Start

- Start switch pressed

Step 1 Fill with
Drum water

- Level full switch

Step 2 Heat
Water water

- Right temperature switch

Step 3

Hotwater [| 1ot

‘\‘ Time switch
And so on for the rest of cycle

Figure 6.14: Washing machine.

realized the program continues to execute the current step. Thus we might have for a
transition:

If true go to the next step. If false continue the step above.

Other possibilities are conditions such as:
Temperature > 50
Pump = On
Valve_Open AND Compressor_On
Product = 10

IL, SFC, and ST Programming Methods 163

that have to be realized before progression can occur to the next step in the program. When
programming, transitions can be entered using a Boolean expression in structured text (see
Chapter 6.3) to check whether a condition is true 1 or false 0. Alternatively a subroutine can
be called up to check for the required condition and when realized give a true 1 response,
otherwise false 0. At the end of the subroutine an End of Transition (EOT) instruction can
then be used to set the state of the transition to the Boolean value realized by the subroutine.

Actions are added to steps to indicate the different functions that the step performs. Thus we
might have switching a motor on or perhaps opening a valve or calling up a subroutine.

The Sequential Function Chart language is a powerful graphical technique for describing the
sequential behavior of a program. Graphical languages have been used for a number of years,
Grafset being a European graphical language. The IEC 61131-1 standard resembles many of
the features of Grafset.

6.2.1 Branching and Convergence

Selective branching is illustrated in Figure 6.15 and allows for different states to be realized,
depending on the transfer condition that occurs. Transitions are needed below the horizontal
lines in order to indicate the conditions that have to be met to progress from the step above
the horizontal line to a step below it.

Parallel branching (Figure 6.16), represented by a pair of horizontal lines, allows for two or
more different states to be realized and proceed simultaneously. A transition is required
outside the pair of horizontal lines in order to indicate the condition that has to be met in
order for the group of steps that follow to be simultaneously realized.

Figures 6.17 and 6.18 show how convergence is represented by an SFC. In Figure 6.17

the sequence can go from state 2 to state 4 if IN 4 occurs or from state 3 to state 4

State 1
OUTO IN1 output

State 0 — OUT O ()
State 2

4 IN1 4 IN2 + IN3 OUTO IN2 output
State 1 State 2 State 3 : :
State 3

output
State 1 occurs if the transfer condition IN 1 OuTl IN3 P
occurs, but if IN 2 then state 2 or if IN 3 4{ H H }
then state 3

Figure 6.15: Selective branching: The state that follows State 0 will
depend on whether transition IN1, IN2, or IN3 occurs.

164 Chapter 6

State 1
| OuUTO IN1 output

State 0 OouTO l l | | /-
R N)

4 IN1 State 2

output

State 1 State 2 State 3 : :

State 3

output
When IN 1 occurs then state 1, state 2 and
state 3 are all simultaneously realized. 4< >—

Figure 6.16: Parallel branching states 1, 2, and 3 occur simultaneously
when transition IN 1 occurs.

State 2 Input State 4
State 2 State 3 output IN 4 output

IN4 —+ IN5 41 I { }

State 3 Input
output IN5

State 4 4|

Figure 6.17: Convergence: State 4 follows when either IN 4 or IN5 occurs.

State2 Input State 4
State 2 State 3 output ;‘N 4 output
State 3
IN4 T output
State 4 4| }7

Figure 6.18: Simultaneous convergence: When IN 4 occurs State 4 follows
from either State 2 or 3.

if IN 5 occurs. The transitions are needed above the horizontal line to indicate the conditions
that have to be realized for each of the steps above the line to progress to the step below
the line. In Figure 6.18 the sequence can go simultaneously from both state 2 and state

3 to state 4 if IN 4 occurs. The transition is below the pair of horizontal lines and
indicates the condition that has to be realized for progression to the step that follows.

IL, SFC, and ST Programming Methods 165

Input Output
Start INO OuUTO0
LINO 4’ 4< }
State 0 — OUT 0 Input Output
ouT o0 Ill\l |:I. OouT1
i — (r
Output
OUT 2
State 1 — OUT 1 State 2 — OUT 2 4< }
4 IN3 1 IN4 Input Output
OUT1 IN3 OUT 3
State 3 —— OUT 3 State 4 —— OUT 4 — \\
Input Output
OUT2 IN4 OuUT 4
—+ IN5 I [}
State 5 —— OUT 5 Input Output
OouT 3 IN5 OUTS5
4 outs L
End
OuT 4
[enD |
END

Figure 6.19: Part of an SFC and its equivalent ladder program.

As an illustration of the use of the preceding, Figure 6.19 shows part of a program
represented by both its SFC and ladder programs.

6.2.2 Actions

With steps, there is an action or actions that have to be performed. Such actions, such as the
outputs in the preceding example, are depicted as rectangular boxes attached to the state
(Figure 6.20). The behavior of the action can be given using a ladder diagram, a function block
diagram, an instruction list, or structured text. Thus, where a ladder diagram is used, the behavior
of the action is shown by the ladder diagram being enclosed within the action box. The action is
then activated when there is a power flow into the action box. Figure 6.21a illustrates this
concept.

Action boxes can be preceded by qualifiers to specify the conditions to exist for the action.
In the absence of a qualifier or the qualifier N, the action is not stored and is executed

166 Chapter 6

(@)

Step Action

+

Figure 6.20: Action added to a step.

Ino Out0

|_ .
Action 1
Step H |_< D_{ Step T#5s

-|—|n1 (b) ‘I‘Tl

Figure 6.21: (a) Action represented by a ladder diagram, (b) lllustration of a qualifier used with

an action, this being a time-limited action.

continually while the associate state is active and stops when it is deactivated. The qualifier
P is used for a pulse action that executes only once when a step is activated and is then
deactivated. The qualifier D is used for a time-delayed action that only starts after a specified
period and stops when the step is deactivated. The qualifier L is used for a time-limited
action that starts when the step is activated and terminates after a specified period

(Figure 6.21b). Table 6.2 lists the action qualifiers defined in the IEC 61131 standard.

Table 6.2: Action Qualifiers

Qualifier Description
None Non-stored, the default, same as N.
N Non-stored, executes while the associated step is active and then stops.
R Resets a stored action.
S Stored. Stays active until a Reset action turns off this action.
L Time limited action. Terminates after a given time. A time period must be specified.
D Time delayed action. Starts after a given time which must be specified.
P A pulse action that occurs once when the step is activated and once when it is deactivated.
P1 A pulse action that only occurs when a step is activated.
PO A pulse action that only occurs when a step is deactivated.
SD The action starts after a given time, even if the associated step is deactivated before that time
has elapsed.
DS The action starts a specific time after the step is activated and the step is still active and stops
when the step is deactivated.
SL The action starts when the step is activated and is time limited, executing for a given period.

IL, SFC, and ST Programming Methods 167

When a transition condition is realized and one step is left and the next started, it is necessary
to consider what state the action of that step needs to be left in. There may be a need to turn
off an activated device that the step had turned on. This can be done in programming the
action for that device to carry out such a task. If it is to be returned to its initial state then
program it to go to the initial step position.

6.2.3 Programming a PLC

Software is supplied by PLC manufacturers to enable programs to be entered for use by a
PLC. As an indication, the following outline is the procedure that would be used with Allen-
Bradley software to program a sequential function chart. With the SFC toolbar on the screen,
the button for the item wanted is clicked and then dragged to the required location on the
SFC chart. Thus the element for a step followed by a transition might be so dragged. To
connect two elements, for example two steps, together, a pin on one of the elements is
clicked and then the pin on the other element is clicked. A valid connection point is shown by
a green dot appearing. A simultaneous button on the toolbar can be clicked and dragged to
add a simultaneous branch to the program, likewise a selection branch. To program a
transition, the text area of the transition icon is double clicked and if a Boolean expression is
required it is just typed in. To call a subroutine, the transition icon is right clicked, Set JSR
selected and then the routine selected, then OK clicked. To add an action to a step, the step is
right clicked and Add Action selected. The button in the action element is clicked to a series
of tabs which are used to specify the qualifier for the action, e.g. L. for a time qualifier, the
action order and a tag. The text entry of the action element is right clicked and Set JSR
selected for subroutines to be added.

6.3 Structured Text

Structured text is a programming language that strongly resembles the programming
language Pascal. Programs are written as a series of statements separated by semicolons. The
statements use predefined statements and subroutines to change variables, these being
defined values, internally stored values, or inputs and outputs.

Assignment statements are used to indicate how the value of a variable is to be changed, for example
Light: = SwitchA;
is used to indicate that a light, the variable, is to have its “value” changed, that is, switched

on or off, when switch A changes its “value,” that is, is on or off. The general format of an
assignment statement is:

168 Chapter 6

where Y represents an expression that produces a new value for the variable X and := is the
assignment symbol. The variable retains the assigned value until another assignment changes
the value. Other examples are:

Light:— SwitchA OR SwitchB;

to indicate that the light is switched on by either switch A OR switch B. Using the AND
function, we might have:

Start:— Steam AND Pump;

to indicate that start occurs when steam AND the pump are on.

Table 6.3 shows some of the operators, such as the OR and AND in the preceding statements,
that are used in structured text programs and their relative precedence when an expression

is being evaluated. Parentheses (brackets) are used to group expressions within expressions
to ensure that the expression is executed in the required sequence. For example:

InputhA := 6;
InputB :=4;
InputC := 2;

OutputQ := InputA/3 + InputB/ (3 - InputC) ;

Table 6.3: Structured Text Operators

Operator Description Precedence
(...) Parenthesized (bracketed) expression Highest
Function(...) List of parameters of a function
*% Raising to a power
-, NOT Negation, Boolean NOT
* /, MOD Multiplication, division, modulus
operation
+, - Addition, subtraction
< >, <=, >= Less than, greater than, less than or
equal to, greater than or equal to
=, <> Equality, inequality
AND, & Boolean AND
XOR Boolean XOR
OR Boolean OR Lowest

IL, SFC, and ST Programming Methods 169

has (3 — InputC) evaluated before its value is used as a divisor, so the second part of the
OutputQ statement is 4/(3 — 2) = 4. Division has precedence over addition, so the first part of
the statement is evaluated before the addition, that is, 6/3. So we have for OutputQ the value
2+4=6.

Structured text is not case sensitive; thus lowercase or capital letters can be used as is felt
necessary to aid clarity. Likewise, spaces are not necessary but can be used to aid clarity;
likewise indenting lines. All the identities of directly represented variables start with the %
character and are followed by a one- or two-letter code to identify whether the memory
location is associated with inputs, outputs, or internal memory and whether it is bits, bytes,
or words, such as

$IX100 (*Input memory bit 100%*)
$ID200 (*Input memory word 200%*)
%QX100 (*Output memory bit 100%*)

The first letter is I for input memory location, Q for output memory location, or M for
internal memory. The second letter is X for bit, B for byte (8 bit), W for word (16 bits),
D for double word (32 bits), or L for long word (64 bits).

AT is used to fix the memory location for a variable. Thus we might have:

Inputl AT $IX100; (*Inputl is located at input memory bit 100%*)

6.3.1 Conditional Statements
The IF statement:

IF fluid_temp THEN

is used to indicate that if the fluid temp variable is ON, that is, 1, the actions following that
line in the program are to occur. The IF statement:

IF NOT fluid_temp THEN

is used to indicate that if the fluid temp variable is NOT 1, the actions following that line in
the program are to occur. The IF statement:

IF fluid_templ OR fluid_temp2 THEN

is used to indicate that if the fluid temp variable 1, the fluid temp variable 2 is ON, that is, 1,
the actions following that line in the program are to occur.

170 Chapter 6

IF ... THEN ... ELSE is used when selected statements are to be executed when certain
conditions occur. For example:

IF (Limit_switchl AND Workpiece_Present) THEN
Gatel := Open;
Gate2 := Close;
ELSE
Gatel := Close;
Gate2 := Open;
END_TF;

Note that the end of the IF statement has to be indicated. Another example, using PLC
addresses, is:

IF (I:000/00 =1) THEN
0:001/00 :=1;
ELSE
0:000/01 :=0;
END_TIF;
So, if there is an input to 1:000/00 to make it 1, output O:001/00 is 1; otherwise it’s O.

CASE is used to give the condition that selected statements are to be executed if a particular
integer value occurs else some other selected statements. For example, for temperature
control we might have:

CASE (Temperature) OF

0...40 : Furnace_switch := On;
40 ...100: Furnace_switch := Off;
ELSE
Furnace_switch := Off;
END_CASE;

Note, as with all conditional statements, the end of the CASE statement has to be
indicated. Another example might be, for the operation of a motor with fans being

IL, SFC, and ST Programming Methods 171

required to operate at different speeds based on the operation of particular switch
positions:

CASE speed_setting OF

1: speed :=5;

2: speed :=10;

3: speed :=15; fan 1l := ON;

4: speed := 20; fan 2 := ON;
ELSE

Speed :=0; speed fault := TRUE;

END_CASE

6.3.2 Iteration Statements

These are used where it is necessary to repeat one or more statements a number of times,
depending on the state of some variable. The FOR ... DO iteration statement allows a set of
statements to be repeated depending on the value of the iteration integer variable. For
example:

FOR Input := 10 to 0 BY —1
DO
Output := Input;
END_FOR;
has the output decreasing by 1 each time the input, dropping from 10 to 0, decreasing by 1.

WHILE ... DO allows one or more statements to be executed while a particular Boolean
expression remains true, such as:

OutputQ :=0;
WHILE InputA AND InputB
DO
OutputQ =: OutputQ + 1;

END_WHILE;

172 Chapter 6

REPEAT ... UNTIL allows one or more statements to be executed and repeated while a
particular Boolean expression remains true.

OutputQ :=0
REPEAT
OutputQ := OutputQ + 1;
UNTIL (Inputl = 0Off) OR (OutputQ > 5)

END_REPEAT;

6.3.3 Structured Text Programs

Programs have first to define the data types required to represent data, such as:
TYPE Motor: (Stopped, Running) ;

END_TYPE;

TYPE Valve: (Open, shut) ;

END_TYPE;

TYPE Pressure: REAL; (*The pressure is an analogue value*)

END_TYPE;

the variables, that is, signals from sensors and output signals to be used in a program,
such as:

VAR_IN (*Inputs*™)
PumpFault : BOOL; (*Pump operating fault is a Boolean variable*)

END_VAR;

VAR_OUT (*Outputs*)
Motor_speed : REAL;

END_VAR;

VAR_IN
Value: INT; (*The value is an integer*)

END_VAR;

IL, SFC, and ST Programming Methods 173

VAR
Inputl AT $IX100; (*Inputl is located at input memory bit 100%*)
END_VAR;

and any initial values to be given to variables, such as:

VAR
Temp : REAL =100; (*Initial value is an analogue number 100%*)
END_VAR;
before getting down to the instruction statements.

The following is an example of a function block that might appear in a larger program
and is concerned with testing voltages:

FUNCTION_BLOCK TEST_VOLTAGE
VAR_INPUT
VOLTS1, VOLTS2, VOLTS3
END_VAR
VAR_OUTPUT
OVERVOLTS : BOOL;
END_VAR
IF VOLTS1 > 12 THEN
OVERVOLTS :=TRUE; RETURN;
END_TIF;
IF VOLTS2 > 12 THEN
OVERVOLTS :=TRUE; RETURN;
END_TIF;
IF VOLTS3 > 12 THEN
OVERVOLTS :=TRUE;
END_TIF;

END_FUNCTION_BLOCK;

174 Chapter 6

Valve_1 := Sensor_1

‘ Sensor 1 Valve 1
I | / IF Sensor_1 THEN

I | \ Valve_1:=1;
END_IF

Figure 6.22: A ladder program rung and two alternative STC equivalents.

Sensor 1 Sensor 2 Valve 1 Valve_1 := (Sensor_1 AND NOT Sensor_2)
OR Sensor_3
| | IF Sensor_1 AND NOT Sensor_2 THEN
Sensor 3 Valve_1:=1;
I | ELSEIF Sensor_3 THEN
I | Valve_1:=1
END_IF
Sensor 1 Sensor 1 Valve 1
Ol & - _Valve 1 O
Sensor 2 |— Sensor 2

Sensor 3 Sensor 3

Figure 6.23: A ladder program rung, its function box equivalent, and two STC equivalents.

If the testing of volts 1, volts 2, or volts 3 indicates that any one of them is more than 12, the
output OVERVOLTS is set to true and the RETURN statement called to terminate the
execution of the function block. In the rest of the program, when OVERVOLTS is set to true,
the program will initiate some action.

6.3.4 Comparison with Ladder Programs

Figure 6.22 shows a ladder rung and its equivalent expressions in structured text; Figure 6.23
shows another ladder rung and equivalents in function box and STC.

Summary

A programming method that can be considered to be the entering of a ladder program using
text is the instruction list (IL). An IL gives programs as a series of instructions, each
instruction being on a new line. Each instruction consists of an operator followed by one or
more operands, that is, the subjects of the operator. Mnemonic codes are used, each code
corresponding to an operator/ladder element.

The sequential function chart (SFC) programming method is used for a pictorial
representation of a system’s operation to show the sequence of the events involved in its

IL, SFC, and ST Programming Methods 175

operation. The operation is described by a number of separate sequentially connected
states or steps that are represented by rectangular boxes, each representing a particular
state of the system being controlled. Each connecting line between states has a horizontal
bar representing the transition condition that has to be realized before the system can
move from one state to the next. When the transfer conditions to the next state are
realized, the next state or step in the program occurs. The process thus continues from
one state to the next until the entire machine cycle is completed. Outputs/actions at any
state are represented by horizontally linked boxes and occur when that state has been
realized.

With the structured text (ST) programming method, programs are written as a series of
statements separated by semicolons. The statements use predefined statements and
subroutines to change variables, these being defined values, internally stored values, or
inputs and outputs. Assignment statements are used to indicate how the value of a variable is
be changed, such as X := Y. Structured text is not case sensitive and spaces are not necessary
but can be used to aid clarity. IF ... THEN ... ELSE is used when selected statements are to
be executed when certain conditions occur. CASE is used to give the condition that selected
statements are to be executed if a particular integer value occurs else some other selected
statements. FOR ... DO ... allows a set of statements to be repeated depending on the value
of the iteration integer variable. WHILE ... DO .. allows one or more statements to be
executed while a particular Boolean expression remains true. REPEAT ... UNTIL ... allows
one or more statements to be executed and repeated while a particular Boolean expression
remains true.

Problems

Problems 1 through 24 have four answer options: A, B, C, or D. Choose the correct
answer from the answer options.

1. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X401
AND X402
ouT Y430

describes a ladder diagram rung for which there is an output when:
(1) Input X401 is activated but X402 is not.

(i1) Input X401 and input X402 are both activated.

A TG T

B. () T(i)F

C. OFG@T

D. (i) F (ii) F

176 Chapter 6

2. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X401
OR X402
ouT Y430

describes a ladder diagram rung for which there is an output when:
(1) Input X401 is activated but X402 is not.

(ii) Input X402 is activated but X401 is not.

A @O)TGE)T

B.) T(i)F

C. OFG@T

D. WF@G)F

3. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X401
ANI X402
ouT Y430

describes a ladder diagram rung for which there is an output when:
(1) Input X401 is activated but X402 is not.

(i1) Input X401 and input X402 are both activated.

A TG T

B. () T(i)F

C. F@T

D. () F (i) F

4. Decide whether each of these statements is true (T) or false (F). The instruction list:

LDI X401
ANI X402
ouT Y430

describes a ladder diagram rung for which there is an output when:
(1) Input X401 is activated but X402 is not.

(ii) Input X401 and input X402 are both activated.

A TG T

B. () T (i) F

C. F@T

D. () F (i) F

IL, SFC, and ST Programming Methods 177

5. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X401
OR Y430
ANI X402
ouT Y430

describes a ladder diagram rung for which there is:

(1) An output when input X401 is momentarily activated.
(i) No output when X402 is activated.

A .)T T

B. (i) T (i) F

C. F@T

D. () F (i) F

6. Decide whether each of these statements is true (T) or false (F). The instruction list:

A 10.1
A 102
= Q20

describes a ladder diagram rung for which there is an output when:
(i) Input 10.1 is activated but 10.2 is not.

(i1) Input 10.1 and input 10.2 are both activated.

A TG T

B.) T(Gi)F

C. OFG@T

D.) F@G)F

7. Decide whether each of these statements is true (T) or false (F). The instruction list:

A 10.1
(@) 10.2
= Q2.0

describes a ladder diagram rung for which there is an output when:
(i) Input 10.1 is activated but 10.2 is not.

(i1) Input 10.2 is activated but 10.1 is not.

OTAG)T

(1) T i) F

WFaG@T

(1) F (i) F

SOow»

178 Chapter 6

8. Decide whether each of these statements is true (T) or false (F). The instruction list:

A 10.1
AN 102
= Q2.0

describes a ladder diagram rung for which there is an output when:
(i) Input 10.1 is activated but 10.2 is not.

(i1) Input 10.1 and input 10.2 are both activated.

A, TG T

B.) T(i)F

C. OFG@T

D.)F@G)F

9. Decide whether each of these statements is true (T) or false (F). The instruction list:

AN 10.1
AN 10.2
= Q2.0

describes a ladder diagram rung for which there is an output when:
(1) Input 10.1 is activated but 10.2 is not.

(i1) Input 10.1 and input 10.2 are both activated.

A .)T T

B. (i) T (i) F

C. F@T

D. () F (i) F

10. Decide whether each of these statements is true (T) or false (F). The instruction list:

A 10.1
o Q2.0
AN 102
= Q2.0

describes a ladder diagram rung for which there is:

(1) An output when input 10.1 is momentarily activated.
(i) No output when 10.2 is activated.

A)TGG)T

B.) T(i)F

C. OFG@T

D. F@G)F

IL, SFC, and ST Programming Methods 179

11. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X401
ouT Y430
LDI X401
ouT Y431

describes a program for which:

(1) When X401 is activated, there is an output from Y430 but not Y431.

(i1)) When X401 is not activated, there is an output from Y431 but not Y430.
A.)TGA)T

B. () T (i) F

C. WF@T

D.) F@i)F

12. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X400
OR X401
OR X402
AND X403
ouT Y431

describes a program for which there will be an output from Y431 when:
(1) Just X400 or X401 or X402 is activated.

(i1) Just X400 and X403 are activated.

A TG T

B.) T @i)F

C. OFG@T

D.) F@G)F

13. Decide whether each of these statements is true (T) or false (F). The instruction list:

LD X400
AND X401
OR X402
ouT Y430

describes a program for which there will be an output from Y430 when:
(1) Just X400 or X402 is activated.

(i1) Just X400 and X401 are activated.

A OTG@T

B. () T @Gi)F

C. F@T

D. G) F(@i)F

180 Chapter 6

14. Decide whether each of these statements is true (T) or false (F). For the sequential
function chart shown in Figure 6.24:
(1) State 1 is realized when condition X1 is realized.
(i) Output 1 occurs when condition X2 is realized.
AL TG T
B.) TGi)F
C. OF@T
D. (i) F@Gi)F

15. Decide whether each of these statements is true (T) or false (F).
For the sequential function chart shown in Figure 6.25, if State 1 is active:
(1) State 2 is realized when condition X2 is realized.
(i1) State 3 occurs when condition X3 is realized.
AL TG T
B.) TGi)F
C. WF@T
D. () F@Gi)F

16. For the ladder program described in Figure 6.26a, which of the sequential function charts
in Figure 6.26b will represent it?
Problems 17, 18, and 19 concern the sequential function chart shown in Figure 6.27.

State 1 —— Output 1

T X2

Figure 6.24: Diagram for Problem 14.

I

State 1
=+ x2 -+ X3
State 2 State 3

I I

Figure 6.25: Diagram for Problem 15.

IL, SFC, and ST Programming Methods 181
Input X1 Output Y1
Input Input Output
X2 |X3| [YZ
41 x1 + X1
State 1 Y1 State 1 Y1
1 X2 X2
X3
State 2 Y2
State 2 Y2
4 X3
A B
—+ X1
— X2 X2
X3 x1 1 4 X3
State 1 Y1 State 2 Y2 State 1 vi State 2 V2
¢ |
D
(b)

Figure 6.26: Diagram for Problem 16.

-+ X1
Statel — Y1
-+ X2 —+ X3
State 2 — Y2 State3 —t Y3
-+ X4 —+ X5
State 4 — Y4
-+ X6
State5 — Y5

-|-x7

Figure 6.27: Diagram for Problems 17, 18, and 19.

182 Chapter 6

17.

18.

19.

20.

Decide whether each of these statements is true (T) or false (F). For the sequential
function chart shown in Figure 6.27, output Y2 will occur if output Y1 has been realized
and:

(1) Both X2 and X3 have been realized.

(i1) Just X2 has been realized.

AL TG T

B. () TGi)F

C. WF@T

D.) F@i)F

Decide whether each of these statements is true (T) or false (F). For the sequential
function chart shown in Figure 6.27, output Y4 will occur if output Y2 has occurred and:
(i) Output Y3 has occurred.

(i1)) X4 has been realized.

A .)T T

B. (i) T (i) F

C. OFG@T

D. G) F@iF

Decide whether each of these statements is true (T) or false (F). For the sequential
function chart shown in Figure 6.27, output Y5 will occur if:

(i) Output Y4 has occurred and condition X6 is realized.

(i) Output Y3 has occurred and condition X5 is realized.

A O)TG@T

B. (i) T (i) F

C. FG@T

D. G F@iF

For the sequential function chart in Figure 6.28, which of the ladder programs in
Figure 6.29 describes the same program?

+ xo

State 0 YO
X1 T
|
|
State 1 Y1l State 2 Y2
X2 T ‘I‘ X3

Figure 6.28: Diagram of Problem 20.

IL, SFC, and ST Programming Methods 183

X0 YO X0
X1 X2 Y1 YO

|
~
|

X2 X3 Y2 X2

HHCOr
HCr

|
N
-
|

e e
== H—0
AHI-O7 HH O
HHFO| HHEO-
— H etc. _Yl_m'i etc

X3

HHE= | HH -

Figure 6.29: Diagram for Problem 20.

21. Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

VAR
i: INT;
END_VAR;
i:-0;
REPEAT
i:-1+1;

UNTIL i:=5;
END_REPEAT;

(i) The variable i can only have the 0 or 1 values.
(i) Each time the program repeats, i has its value increased by 1.

184 Chapter 6

22.

23.

A O)TG)T
B. () T (i) F
C. OFG)T
D. () F (i) F

Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

IF Inputl THEN

Motor:=-1;
END_TF;
IF Input2 THEN

Motor:= 0;
END_TF;

(i) When input 1 occurs, the motor is switched on.
(i) When input 2 occurs, the motor is switched off.
A . TG T
B. () T (i) F
C. F@GT
D. () F@i)F

Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

IF (Limit_switch_1 AND Workpiece_Present) THEN
Gate_1 :- Open;
Gate_2 :- Closed;
ELSE
Gate_1 :- Closed;
Gate_2 :- Open;
END_TF;

(1) If only the workpiece is present, gate 1 is open and gate 2 is closed.
(i1) If only the limit switch is activated, gate 1 is closed and gate 2 is open.
A TG T

B.) T @i)F

C. FG@T

D.) F@G)F

IL, SFC, and ST Programming Methods 185

24.

25.

26.

27.

Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

VAR
Start_Up AT %$IX120;
END_VAR

(1) Start_Up can be found at input memory location bit 120.
(i1) Start_Up has the value 120 bits.

A OTG@T

B. () T @i F

C. F@T

D. (4) F @i F

Write a sequential function chart program for following the operation of a start switch,
after which a tank is filled by opening valve 1 until a level switch 1 is triggered, then the
tank is drained by opening drain valve 2 until level switch 2 is triggered, then the
sequence is repeated.

Write a structured text program for the following: a tank is filled by opening valve 1, as
long as level switch 1 is not triggered and the drain valve is closed.

Write a structured text program to set the temperature of an enclosure by switches to the
values 40, 50, 60, and 70, and switch on fan 1 when the temperature is 60 and fan 2 when
it is 70.

	IL, SFC, and ST Programming Methods
	Instruction Lists
	Ladder Programs and Instruction Lists
	Branch Codes
	More Than One Rung
	Programming Examples

	Sequential Function Charts
	Branching and Convergence
	Actions
	Programming a PLC

	Structured Text
	Conditional Statements
	Iteration Statements
	Structured Text Programs
	Comparison with Ladder Programs

	Summary
	Problems

