
W. Bolton: Programmable Logic Controllers, Sixth Edition. http://dx.doi.org/10.1016/B978-0-12-802929-9.00006-6

© 2015 Elsevier Ltd. All rights reserved. 151
CHAPTER 6
IL, SFC, and ST Programming Methods
This chapter continues from the previous chapter and discusses the other IEC 61131-3

programming languages, that is, instruction lists (ILs), sequential function charts (SFCs), and

structured text (ST).

6.1 Instruction Lists
A programming method that can be considered to be the entering of a ladder program

using text is the instruction list (IL). An instruction list gives programs as a series of

instructions, with each instruction on a new line. Each instruction consists of an operator

followed by one or more operands, that is, the subjects of the operator. Thus we

might have:

LD A

to indicate that the operand A is to be loaded, LD being the operator used to indicate loading.

In terms of ladder diagrams, an operator may be regarded as a ladder element, and LD is

equivalent to starting a rung with open contacts for input A. Another instruction might be:

OUT Q

to indicate that there is to be an output to Q.

Mnemonic codes are used for operators, each code corresponding to an operator/ladder

element. The codes used differ to some extent from manufacturer to manufacturer, though

a standard under IEC 61131-3 has been proposed and is being widely adopted. Table 6.1

shows some of the codes used by manufacturers and the proposed standard for instructions

used in this chapter (see later chapters for codes for other functions).

Instruction List is a low-level textual language that is simple to implement and used by a

number of PLC manufacturers, mainly for small and medium-sized PLCs. It is particularly

suitable for small, straightforward programs. Some manufactures do not support ILs but use

only higher-level language of structured text (ST).

Table 6.1: Instruction Code Mnemonics

IEC
61131-3 Mitsubishi OMRON Siemens Operation Ladder Diagram

LD LD LD A Load operand into
result register.

Start a rung with
open contacts.

LDN LDI LD NOT AN Load negative
operand into result

register.

Start a rung with
closed contacts.

AND AND AND A Boolean AND. Series element with
open contacts.

ANDN ANI AND NOT AN Boolean AND with
negative operand.

Series element with
closed contacts.

OR OR OR O Boolean OR. Parallel element
with open
contacts.

ORN ORI OR NOT ON Boolean OR with
negative operand.

Parallel element
with closed
contacts.

ST OUT OUT = Store result register
into operand.

An output.

ww

152 Chapter 6
As an illustration of the use of IEC 61131-3 operators, consider the following:
w.newnespress.com
LD
 A
 (*Load A*)
AND
 B
 (*AND B*)
ST
 Q
 (*Store result in Q, i.e. output to Q*)
In the first line of the program, LD is the operator, A the operand, and the words at the ends

of program lines and in parentheses shown and preceded and followed by * are comments

added to explain what the operation is and are not part of the program operation instructions

to the PLC. LD A is thus the instruction to load A into the memory register. It can then

later be called on for further operations. The next line of the program has the Boolean

operation AND performed with A and B. The last line has the result stored in Q, that is,

output to Q.

Labels can be used to identify various entry points to a program, useful, as we will find later,

for jumps in programs; these precede the instruction and are separated from it by a colon.

Thus we might have:
PUMP_OK:
 LD
 C
 (*Load C*)
with the instruction earlier in the program to jump to PUMP_OK if a particular condition is

realized.

IL, SFC, and ST Programming Methods 153
With the IEC 61131-3 operators, an N after the operator is used to negate its value. For

example, if we have:
Input A
X400

Input
X40

(a)

Figure 6.1: A
LD
 B
1

Output
Y430

ND gate:
A

(a) M
(*Load A*)
ANDN
 B
 (*AND NOT B*)
the ANDN operator inverts the value of ladder contacts and ANDs the result.

6.1.1 Ladder Programs and Instruction Lists

When looked at in terms of ladder diagrams, whenever a rung is started, it must use a “start

a rung” code. This might be LD, or perhaps A or L, to indicate that the rung is starting

with open contacts, or LDI, or perhaps LDN, LD NOT, AN, or LN, to indicate it is

starting with closed contacts. All rungs must end with an output or store result code. This

might be OUT or ¼ or ST. The following shows how individual rungs on a ladder are

entered using the Mitsubishi mnemonics for the AND gate, shown in Figure 6.1a.

The rung starts with LD because it is starting with open contacts. For Figure 6.1a, since the

address of the input is X400, the instruction is LD X400. This is followed by another open

contacts input, and so the next program line involves the instruction AND with the address of

the element; thus the instruction is AND X401. The rung terminates with an output, so the

instruction OUT is used with the address of the output, that is, OUT Y430. The single

rung of a ladder would thus be entered as:
LD
i

X400
AND
 X401
OUT
 Y430
For the same rung with Siemens notation (Figure 6.1b), we have:
A
 I0.1
A
 I0.2
¼
 Q2.0
Consider another example: an OR gate. Figure 6.2a shows the gate with Mitsubishi

notation.
(b)

Input A
I0.1

Input B
I0.2

Output
Q2.0

tsubishi, and (b) Siemens.

www.newnespress.com

Input A
X400

Output
Y430

Input B
X401

(a)

Input A
I0.1

Output
Q2.0

Input B
I0.2

(b)

Figure 6.2: OR gate: (a) Mitsubishi, and (b) Siemens.

ww

154 Chapter 6
The instruction for the rung in Figure 6.2a starts with an open contact and is LD X400. The

next item is the parallel OR set of contacts X401. Thus the next instruction is OR X401.

The last step is the output, hence OUT Y430. The instruction list would thus be:
Input A
X400

Input B
X401

Outp
Y43

(a)

Figure 6.3: NOR gat

w.newnespress.com
LD
ut
0

e: (a) Mi
X400
OR
 X401
OUT
 Y430
Figure 6.2b shows the Siemens version of the OR gate. The following is the Siemens

instruction list:
A
 I0.1
O
 I0.2
¼
 Q2.0
Figure 6.3a shows the ladder system for a NOR gate in Mitsubishi notation.

The rung in Figure 6.3a starts with normally closed contacts, so the instruction is LDI. When

added to Mitsubishi instruction, I is used to indicate the inverse of the instruction. The next

step is a series of normally closed contacts and so the instruction is ANI, again the I being

used to make an AND instruction the inverse. I is also the instruction for a NOT gate. The

instructions for the NOR gate rung of the ladder would thus be entered as:
LDI
 X400
ANI
 X401
OUT
 Y430
Input A
I0.1

Input B
I0.2

Output
Q2.0

(b)

tsubishi, and (b) Siemens.

Input A
X400

Output
Y430

Input B
X401

(a)

Input A
I0.1

Output
Q2.0

Input B
I0.2

(b)

Figure 6.4: NAND gate: (a) Mitsubishi, and (b) Siemens.

IL, SFC, and ST Programming Methods 155
Figure 6.3b shows the NOR gate with Siemens notation. Note that N added to an instruction

is used to make the inverse. The instruction list then becomes:
LN
 I0.1
AN
 I0.2
¼
 Q2.0
Consider the rung shown in Figure 6.4a in Mitsubishi notation, a NAND gate.

Figure 6.4a starts with the normally closed contacts X400 and so starts with the instruction

LDI X400. The next instruction is for a parallel set of normally closed contacts; thus the

instruction is ORI X401. The last step is the output, hence OUT Y430. The instruction list

is thus:
LDI
 X400
ORI
 X401
OUT
 Y430
Figure 6.4b shows the NAND gate in Siemens notation. The instruction list is then:
AN
 I0.1
ON
 I0.2
¼
 Q2.0
6.1.2 Branch Codes

The EXCLUSIVE OR (XOR) gate shown in Figure 6.5 has two parallel arms with an AND

situation in each arm.

Figure 6.5a shows Mitsubishi notation. With such a situation, Mitsubishi uses an ORB

instruction to indicate “OR together parallel branches.” The first instruction is for a

normally open pair of contacts X400. The next instruction is for a series set of normally

closed contacts X401, hence ANI X401. After reading the first two instructions, the third

instruction starts a new line. It is recognized as a new line because it starts with LDI, all
www.newnespress.com

Input A
X400

Input B
X401

Input A
X400

(a)

Input A
I0.0

Input B
I0.1

Output
Q2.0

Input A
I0.0

Input B
I0.1

(b)

Output
Y430

Input B
X401

Figure 6.5: XOR gate: (a) Mitsubishi, and (b) Siemens.

ww

156 Chapter 6
new lines starting with LD or LDI. But the first line has not been ended by an output.

The PLC thus recognizes that a parallel line is involved for the second line and reads together

the listed elements until the ORB instruction is reached. The mnemonic ORB (OR branches/

blocks together) indicates to the PLC that it should OR the results of the first and second

instructions with that of the new branch with the third and fourth instructions. The list

concludes with the output OUT Y430. The instruction list would thus be entered as:
w.newnespress.com
LD
 X400
ANI
 X401
LDI
 X400
AND
 X401
ORB
OUT
 Y430
Figure 6.5b shows the Siemens version of an XOR gate. Brackets are used to indicate that

certain instructions are to be carried out as a block. They are used in the same way as

brackets in any mathematical equation. For example, (2 þ 3) / 4 means that the 2 and 3

must be added before dividing by 4. Thus with the Siemens instruction list we have in

step 0 the instruction A(. The brackets close in step 3. This means that the A in step

0 is applied only after the instructions in steps 1 and 2 have been applied.
Step
 Instruction
0
 A(
1
 A
 I0.0
2
 AN
 I0.1
3
)
4
 O(
5
 AN
 I0.0
6
 A
 I0.1
7
)
8
 ¼
 Q2.0

IL, SFC, and ST Programming Methods 157
The IEC 61131-3 standard for such programming is to use brackets in the way used in the

previous Siemens example, that is, in the same way brackets are used in normal arithmetic.

This enables instructions contained within brackets to be deferred until the bracket is

completed. Thus the IEC instruction list program:
Block Block
(a)

Input A
X400

Input B
X401

Ou
Y4

Input C
X402

Input D
X403

Figure 6.6: Two branched AN
LD X
(b)

tput
30

In

In

D gates: (a
ADD(B
MUL(C
ADD D
)

)

Gives X þ (B � (C þ D)).

Figure 6.6 shows a circuit that can be considered as two branched AND blocks. Figure 6.6a

shows the circuit in Mitsubishi notation. The instruction used here is ANB. The instruction

list is thus:
Step
 Instruction
0
 LD
 X400
1
 OR
 X402
2
 LD
 X401
3
 OR
 X403
4
 ANB
5
 OUT
 Y430
Figure 6.6b shows the same circuit in Siemens notation. Such a program is written as an

instruction list using brackets. The A instruction in step 0 applies to the result of steps 1

and 2. The A instruction in step 4 applies to the result of steps 5 and 6. The program

instruction list is thus:
put A
I0.0

Input B
I0.1

Output
Q2.0

put C
I0.2

Input D
I0.3

) Mitsubishi, and (b) Siemens.

www.newnespress.com

(a)

Input A
X400

O

Input A
X400

O

Figure 6.7: Toggle c

www.newnespress.com

158 Chapter 6
Step
utput A
Y430

utput B
Y431

ircuit: (
Instruction
0
 A(
(b

a) Mit
1
 A
 I0.0
2
 O
 I0.2
3
)
4
 A(
5
 A
 I0.1
6
 O
 I0.3
7
)
8
 ¼
 Q2.0
6.1.3 More Than One Rung

Figure 6.7a shows a ladder, in Mitsubishi notation, with two rungs. In writing the

instruction list we just write the instructions for each line in turn. The instruction LD or

LDI indicates to the PLC that a new rung is starting. The instruction list is thus:
LD
 X400
OUT
 Y430
LDI
 X400
OUT
 Y431
The system is one where when X400 is not activated, there is an output from Y431 but

not Y430. When X400 is activated, there is then an output from Y430 but not Y431.

Figure 6.7b shows the same program in Siemens notation. The ¼ instruction indicates

the end of a line. The A or AN instruction does not necessarily indicate the beginning of

a rung since the same instruction is used for AND and AND NOT. The instruction list

is then:
A
 I0.0
¼
 Q2.0
AN
 I0.0
¼
 Q2.1
)

Input A
I0.0

Output A
Q2.0

Output B
Q2.1

Input A
I0.0

subishi, and (b) Siemens.

IL, SFC, and ST Programming Methods 159
6.1.4 Programming Examples

The following tasks are intended to illustrate the application of the programming techniques

given in this section and are the examples for which ladder diagrams and function block

diagrams were derived in Section 5.7. (See that section for an explanation of the ladder

diagrams; here we show the instruction lists relating to the programs.)

A signal lamp is required to be switched on if a pump is running and the pressure is

satisfactory or if the lamp test switch is closed. Figure 6.8 shows the ladder program and the

related instruction list.

For a valve that is to be operated to lift a load when a pump is running and either the lift

switch operated or a switch operated indicating that the load has not already been lifted and is

at the bottom of its lift channel, Figure 6.9 shows the ladder program and the related

instruction list.

For a system in which there has to be no output when any one of four sensors gives an output

and otherwise there is to be an output, Figure 6.10 shows the ladder program and the

instruction list.
Pump
X400

Lamp
Y430

X402

Test

END

LD
AND
LD
ORB
OUT
END

X400
X401
X402

Y430

Pressure
X401

Figure 6.8: Signal lamp task.

END

Lift

Not lifted

ValvePump
X400 X401 Y430

X402

LD
OR
AND
OUT
END

X400
X402
X401
Y430

Figure 6.9: Valve operation program.

www.newnespress.com

1
X400

2
X401

3
X402

4
X403

Output
Y430

Sensors

LDI
ANI
ANI
ANI
OUT

X400
X401
X402
X403
Y430

ENDEND

Figure 6.10: Output switched off by any one of four sensors being activated.

ww

160 Chapter 6
6.2 Sequential Function Charts
If we wanted to describe a traffic lamp sequence of red-green, one way we could do this

would be to represent it as a sequence of functions or states such as red light state and green

light state and the inputs and outputs to each state. Figure 6.11 illustrates this. State 0 has an

input that is triggered after the green light has been on for 1 minute and an output of red

light on, i.e. the transfer condition from the red light is a time of 1 minute. State 1 has an

input that is triggered after the red light has been on for 1 minute and an output of green light

on, i.e. the transfer condition from the green light is a time of 1 minute. When the green light

has been on for 1 minute, there is a transfer back to State 0.

The term sequential function chart (SFC) is used for a pictorial representation of a system’s

operation to show the sequence of events involved in its operation and Figure 6.11 is an

illustration of the type of operation being described. SFC charts have the following elements:

1. The operation is described by a number of separate sequentially connected states or
w.ne
steps that are represented by rectangular boxes, each representing a particular state of

the system being controlled and where there is some action performed. The initial start

step in a program is represented with double lines, differently from the other steps.

Figure 6.12 shows a start step and later steps.
0

1

Red light
only on

Green light
only on

States Outputs

red light on for 1 minute

green light on for 1 minute
Transfer condition to next state is

R
et

ur
n

to
 S

ta
te

 0

Transfer condition for next state is

Figure 6.11: Sequence for traffic lights.

wnespress.com

State/step

Transition condition needed to be met
for a move to the next step

Start Initial step in which the system
is held ready to start

Stop Final step

etc.

Transition condition needed to be met
for a move to the next step

Output

Figure 6.12: A state/step and its transition.

IL, SFC, and ST Programming Methods 161
2. Each connecting line between states has a horizontal bar representing the transition
condition that has to be realized before the system can move from one state to the next.

Two steps can never be directly connected; they must always be separated by a transition.

Two transitions can never directly follow from one to another; they must always be

separated by a step.
3. The program checks the transition conditions so that when realized the next state
following the transition is moved to.
4. The process thus continues from one state to the next until the complete machine cycle is
completed.
5. Outputs/actions at any state/step are represented by horizontally linked boxes and occur
when that state has been realized. Thus we might have items such as Wait 1 minute or

Open valve 1 or Close valve 1.
As an illustration, Figure 6.13 shows part of an SFC and its equivalent ladder diagram. The

program starts when IN 1 is realized and this gives step 1 output. When this output has

completed, the next transition occurs and step 2 occurs with the resulting output 2. When this

is completed, the transfer condition occurs that allows for the move to the End step.

As an illustration of the principles of SFC, consider the situation with, say, part of the

washing cycle of a domestic washing machine where the drum is to be filled with water, and

then when the drum is full, a heater has to be switched on and remain on until the

temperature reaches the required level. Then the drum is to be rotated for a specified time.

We have a sequence of states that can be represented in the manner shown in Figure 6.14.

The transition defines the conditions that must occur in order to go to the next step in the

program, and so they have to occur between each step in a program. Until the conditions are
www.newnespress.com

Fill with
water

Step 1
Drum

Start switch pressed

Level full switch

Step 2
Water

Heat
water

Right temperature switch

Start

Step 3
Hot water

Rotate

Time switch
And so on for the rest of cycle

Figure 6.14: Washing machine.

OUT 1Step 1

IN 1

IN 2

IN 1 OUT 1 Step 1
When IN 1 occurs, then
step 1 is realized and
OUT 1 occurs

Step 2 OUT 2

IN 3

Step 2
is realized when
the IN 2 occurs. Then OUT 2 occurs

END
When IN 3 occurs then OUT occurs

OUT 1 IN 2 OUT 2

Start

End
END

Figure 6.13: SFC and equivalent ladder diagram.

ww

162 Chapter 6
realized the program continues to execute the current step. Thus we might have for a

transition:
w.newnespress.com
If true go to the next step. If false continue the step above.
Other possibilities are conditions such as:
Temperature>50

Pump ¼ On

Valve_Open AND Compressor_On

Product ¼ 10

IL, SFC, and ST Programming Methods 163
that have to be realized before progression can occur to the next step in the program. When

programming, transitions can be entered using a Boolean expression in structured text (see

Chapter 6.3) to check whether a condition is true 1 or false 0. Alternatively a subroutine can

be called up to check for the required condition and when realized give a true 1 response,

otherwise false 0. At the end of the subroutine an End of Transition (EOT) instruction can

then be used to set the state of the transition to the Boolean value realized by the subroutine.

Actions are added to steps to indicate the different functions that the step performs. Thus we

might have switching a motor on or perhaps opening a valve or calling up a subroutine.

The Sequential Function Chart language is a powerful graphical technique for describing the

sequential behavior of a program. Graphical languages have been used for a number of years,

Grafset being a European graphical language. The IEC 61131-1 standard resembles many of

the features of Grafset.

6.2.1 Branching and Convergence

Selective branching is illustrated in Figure 6.15 and allows for different states to be realized,

depending on the transfer condition that occurs. Transitions are needed below the horizontal

lines in order to indicate the conditions that have to be met to progress from the step above

the horizontal line to a step below it.

Parallel branching (Figure 6.16), represented by a pair of horizontal lines, allows for two or

more different states to be realized and proceed simultaneously. A transition is required

outside the pair of horizontal lines in order to indicate the condition that has to be met in

order for the group of steps that follow to be simultaneously realized.

Figures 6.17 and 6.18 show how convergence is represented by an SFC. In Figure 6.17

the sequence can go from state 2 to state 4 if IN 4 occurs or from state 3 to state 4
State 0

State 1 State 2 State 3

IN 1 IN 2 IN 3

State 1 occurs if the transfer condition IN 1
occurs, but if IN 2 then state 2 or if IN 3
then state 3

OUT 0

OUT 0

OUT 0

OUT 1

IN 1

IN 2

IN 3

State 1
output

State 2
output

State 3
output

Figure 6.15: Selective branching: The state that follows State 0 will
depend on whether transition IN1, IN2, or IN3 occurs.

www.newnespress.com

State 0

State 1 State 2 State 3

IN 1

When IN 1 occurs then state 1, state 2 and
state 3 are all simultaneously realized.

OUT 0

OUT 0 IN 1

State 1
output

State 2
output

State 3
output

Figure 6.16: Parallel branching states 1, 2, and 3 occur simultaneously
when transition IN 1 occurs.

State 2

State 4

State 3

IN 5IN 4

State 4
output

State 2
output

State 3
output

Input
IN 4

Input
IN 5

Figure 6.17: Convergence: State 4 follows when either IN 4 or IN5 occurs.

State 2

State 4

State 3

IN 4

State 4
output

State 2
output

State 3
output

Input
IN 4

Figure 6.18: Simultaneous convergence: When IN 4 occurs State 4 follows
from either State 2 or 3.

ww

164 Chapter 6
if IN 5 occurs. The transitions are needed above the horizontal line to indicate the conditions

that have to be realized for each of the steps above the line to progress to the step below

the line. In Figure 6.18 the sequence can go simultaneously from both state 2 and state

3 to state 4 if IN 4 occurs. The transition is below the pair of horizontal lines and

indicates the condition that has to be realized for progression to the step that follows.
w.newnespress.com

State 0 OUT 0

State 1 OUT 1 State 2 OUT 2

State 4 OUT 4State 3 OUT 3

State 5 OUT 5

IN 1

4NIIN 3

IN 5

IN 0

OUT 0

OUT 1

OUT 2

OUT 3

OUT 4

Input
IN 0

Output
OUT 0

Output
OUT 1

Output
OUT 2

Output
OUT 3

Output
OUT 4

Input
IN 1

Input
IN 3

Input
IN5

Output
OUT 5

Input
IN 4

END

Start

End

OUT 5

Figure 6.19: Part of an SFC and its equivalent ladder program.

IL, SFC, and ST Programming Methods 165
As an illustration of the use of the preceding, Figure 6.19 shows part of a program

represented by both its SFC and ladder programs.

6.2.2 Actions

With steps, there is an action or actions that have to be performed. Such actions, such as the

outputs in the preceding example, are depicted as rectangular boxes attached to the state

(Figure 6.20). The behavior of the action can be given using a ladder diagram, a function block

diagram, an instruction list, or structured text. Thus, where a ladder diagram is used, the behavior

of the action is shown by the ladder diagram being enclosed within the action box. The action is

then activated when there is a power flow into the action box. Figure 6.21a illustrates this

concept.

Action boxes can be preceded by qualifiers to specify the conditions to exist for the action.

In the absence of a qualifier or the qualifier N, the action is not stored and is executed
www.newnespress.com

Step Action

Figure 6.20: Action added to a step.

In 0 Out 0

In 0

In 1
(a)

(b)

Step

T 1

Step
L

T#5s
Action 1

Figure 6.21: (a) Action represented by a ladder diagram, (b) Illustration of a qualifier used with
an action, this being a time-limited action.

ww

166 Chapter 6
continually while the associate state is active and stops when it is deactivated. The qualifier

P is used for a pulse action that executes only once when a step is activated and is then

deactivated. The qualifier D is used for a time-delayed action that only starts after a specified

period and stops when the step is deactivated. The qualifier L is used for a time-limited

action that starts when the step is activated and terminates after a specified period

(Figure 6.21b). Table 6.2 lists the action qualifiers defined in the IEC 61131 standard.
Table 6.2: Action Qualifiers

Qualifier Description

None Non-stored, the default, same as N.

N Non-stored, executes while the associated step is active and then stops.

R Resets a stored action.

S Stored. Stays active until a Reset action turns off this action.

L Time limited action. Terminates after a given time. A time period must be specified.

D Time delayed action. Starts after a given time which must be specified.

P A pulse action that occurs once when the step is activated and once when it is deactivated.

P1 A pulse action that only occurs when a step is activated.

P0 A pulse action that only occurs when a step is deactivated.

SD The action starts after a given time, even if the associated step is deactivated before that time
has elapsed.

DS The action starts a specific time after the step is activated and the step is still active and stops
when the step is deactivated.

SL The action starts when the step is activated and is time limited, executing for a given period.

w.newnespress.com

IL, SFC, and ST Programming Methods 167
When a transition condition is realized and one step is left and the next started, it is necessary

to consider what state the action of that step needs to be left in. There may be a need to turn

off an activated device that the step had turned on. This can be done in programming the

action for that device to carry out such a task. If it is to be returned to its initial state then

program it to go to the initial step position.
6.2.3 Programming a PLC

Software is supplied by PLC manufacturers to enable programs to be entered for use by a

PLC. As an indication, the following outline is the procedure that would be used with Allen-

Bradley software to program a sequential function chart. With the SFC toolbar on the screen,

the button for the item wanted is clicked and then dragged to the required location on the

SFC chart. Thus the element for a step followed by a transition might be so dragged. To

connect two elements, for example two steps, together, a pin on one of the elements is

clicked and then the pin on the other element is clicked. A valid connection point is shown by

a green dot appearing. A simultaneous button on the toolbar can be clicked and dragged to

add a simultaneous branch to the program, likewise a selection branch. To program a

transition, the text area of the transition icon is double clicked and if a Boolean expression is

required it is just typed in. To call a subroutine, the transition icon is right clicked, Set JSR

selected and then the routine selected, then OK clicked. To add an action to a step, the step is

right clicked and Add Action selected. The button in the action element is clicked to a series

of tabs which are used to specify the qualifier for the action, e.g. L for a time qualifier, the

action order and a tag. The text entry of the action element is right clicked and Set JSR

selected for subroutines to be added.

6.3 Structured Text
Structured text is a programming language that strongly resembles the programming

language Pascal. Programs are written as a series of statements separated by semicolons. The

statements use predefined statements and subroutines to change variables, these being

defined values, internally stored values, or inputs and outputs.

Assignment statements are used to indicate how the value of a variable is to be changed, for example

Light: ¼ SwitchA;

is used to indicate that a light, the variable, is to have its “value” changed, that is, switched

on or off, when switch A changes its “value,” that is, is on or off. The general format of an

assignment statement is:

X:¼ Y;
www.newnespress.com

ww

168 Chapter 6
where Y represents an expression that produces a new value for the variable X and :¼ is the

assignment symbol. The variable retains the assigned value until another assignment changes

the value. Other examples are:

Light:� SwitchA OR SwitchB;

to indicate that the light is switched on by either switch A OR switch B. Using the AND

function, we might have:

Start:� Steam AND Pump;

to indicate that start occurs when steam AND the pump are on.

Table 6.3 shows some of the operators, such as the OR and AND in the preceding statements,

that are used in structured text programs and their relative precedence when an expression

is being evaluated. Parentheses (brackets) are used to group expressions within expressions

to ensure that the expression is executed in the required sequence. For example:

InputA :¼ 6;

InputB :¼ 4;

InputC :¼ 2;

OutputQ :¼ InputA/3 þ InputB/(3 - InputC);
Table 6.3: Structured Text Operators

Operator Description Precedence

(. . .) Parenthesized (bracketed) expression Highest

Function(. . .) List of parameters of a function

** Raising to a power

-, NOT Negation, Boolean NOT

*, /, MOD Multiplication, division, modulus
operation

þ, - Addition, subtraction

<, >, <=, >= Less than, greater than, less than or
equal to, greater than or equal to

=, <> Equality, inequality

AND, & Boolean AND

XOR Boolean XOR

OR Boolean OR Lowest

w.newnespress.com

IL, SFC, and ST Programming Methods 169
has (3 – InputC) evaluated before its value is used as a divisor, so the second part of the

OutputQ statement is 4/(3 – 2) ¼ 4. Division has precedence over addition, so the first part of

the statement is evaluated before the addition, that is, 6/3. So we have for OutputQ the value

2 þ 4 ¼ 6.

Structured text is not case sensitive; thus lowercase or capital letters can be used as is felt

necessary to aid clarity. Likewise, spaces are not necessary but can be used to aid clarity;

likewise indenting lines. All the identities of directly represented variables start with the %

character and are followed by a one- or two-letter code to identify whether the memory

location is associated with inputs, outputs, or internal memory and whether it is bits, bytes,

or words, such as

%IX100 (*Input memory bit 100*)

%ID200 (*Input memory word 200*)

%QX100 (*Output memory bit 100*)

The first letter is I for input memory location, Q for output memory location, or M for

internal memory. The second letter is X for bit, B for byte (8 bit), W for word (16 bits),

D for double word (32 bits), or L for long word (64 bits).

AT is used to fix the memory location for a variable. Thus we might have:

Input1 AT %IX100; (*Input1 is located at input memory bit 100*)

6.3.1 Conditional Statements

The IF statement:

IF fluid_temp THEN

is used to indicate that if the fluid temp variable is ON, that is, 1, the actions following that

line in the program are to occur. The IF statement:

IF NOT fluid_temp THEN

is used to indicate that if the fluid temp variable is NOT 1, the actions following that line in

the program are to occur. The IF statement:

IF fluid_temp1 OR fluid_temp2 THEN

is used to indicate that if the fluid temp variable 1, the fluid temp variable 2 is ON, that is, 1,

the actions following that line in the program are to occur.
www.newnespress.com

ww

170 Chapter 6
IF . . . THEN . . . ELSE is used when selected statements are to be executed when certain

conditions occur. For example:

IF (Limit_switch1 AND Workpiece_Present) THEN

Gate1 :¼ Open;

Gate2 :¼ Close;

ELSE

Gate1 :¼ Close;

Gate2 :¼ Open;

END_IF;

Note that the end of the IF statement has to be indicated. Another example, using PLC

addresses, is:

IF (I:000/00 ¼ 1) THEN

O:001/00 :¼ 1;

ELSE

O:000/01 :¼ 0;

END_IF;

So, if there is an input to I:000/00 to make it 1, output O:001/00 is 1; otherwise it’s 0.

CASE is used to give the condition that selected statements are to be executed if a particular

integer value occurs else some other selected statements. For example, for temperature

control we might have:

CASE (Temperature) OF

0 . . . 40 : Furnace_switch :¼ On;

40 . . . 100: Furnace_switch :¼ Off;

ELSE

Furnace_switch :¼ Off;

END_CASE;

Note, as with all conditional statements, the end of the CASE statement has to be

indicated. Another example might be, for the operation of a motor with fans being
w.newnespress.com

IL, SFC, and ST Programming Methods 171
required to operate at different speeds based on the operation of particular switch

positions:

CASE speed_setting OF

1: speed :¼ 5;

2: speed :¼ 10;

3: speed :¼ 15; fan 1 :¼ ON;

4: speed :¼ 20; fan 2 :¼ ON;

ELSE

Speed :¼0; speed fault :¼ TRUE;

END_CASE
6.3.2 Iteration Statements

These are used where it is necessary to repeat one or more statements a number of times,

depending on the state of some variable. The FOR . . . DO iteration statement allows a set of

statements to be repeated depending on the value of the iteration integer variable. For

example:

FOR Input :¼ 10 to 0 BY �1

DO

Output :¼ Input;

END_FOR;

has the output decreasing by 1 each time the input, dropping from 10 to 0, decreasing by 1.

WHILE . . . DO allows one or more statements to be executed while a particular Boolean

expression remains true, such as:

OutputQ :¼ 0;

WHILE InputA AND InputB

DO

OutputQ ¼: OutputQ þ 1;

END_WHILE;
www.newnespress.com

ww

172 Chapter 6
REPEAT . . . UNTIL allows one or more statements to be executed and repeated while a

particular Boolean expression remains true.

OutputQ :¼ 0

REPEAT

OutputQ :¼ OutputQ þ 1;

UNTIL (Input1 ¼ Off) OR (OutputQ > 5)

END_REPEAT;

6.3.3 Structured Text Programs

Programs have first to define the data types required to represent data, such as:

TYPE Motor: (Stopped, Running);

END_TYPE;

TYPE Valve: (Open, shut);

END_TYPE;

TYPE Pressure: REAL; (*The pressure is an analogue value*)

END_TYPE;

the variables, that is, signals from sensors and output signals to be used in a program,

such as:

VAR_IN (*Inputs*)

PumpFault : BOOL; (*Pump operating fault is a Boolean variable*)

END_VAR;

VAR_OUT (*Outputs*)

Motor_speed : REAL;

END_VAR;

VAR_IN

Value: INT; (*The value is an integer*)

END_VAR;
w.newnespress.com

IL, SFC, and ST Programming Methods 173
VAR

Input1 AT %IX100; (*Input1 is located at input memory bit 100*)

END_VAR;

and any initial values to be given to variables, such as:

VAR

Temp : REAL ¼100; (*Initial value is an analogue number 100*)

END_VAR;

before getting down to the instruction statements.

The following is an example of a function block that might appear in a larger program

and is concerned with testing voltages:

FUNCTION_BLOCK TEST_VOLTAGE

VAR_INPUT

VOLTS1, VOLTS2, VOLTS3

END_VAR

VAR_OUTPUT

OVERVOLTS : BOOL;

END_VAR

IF VOLTS1 > 12 THEN

OVERVOLTS :¼TRUE; RETURN;

END_IF;

IF VOLTS2 > 12 THEN

OVERVOLTS :¼TRUE; RETURN;

END_IF;

IF VOLTS3 > 12 THEN

OVERVOLTS :¼TRUE;

END_IF;

END_FUNCTION_BLOCK;
www.newnespress.com

Valve 1Sensor 1

IF Sensor_1 THEN
 Valve_1 := 1;
END_IF

 Valve_1 := Sensor_1

Figure 6.22: A ladder program rung and two alternative STC equivalents.

Valve 1Sensor 2Sensor 1

IF Sensor_1 AND NOT Sensor_2 THEN
 Valve_1 := 1;
ELSEIF Sensor_3 THEN
 Valve_1 := 1
END_IF

Sensor 3

 Valve_1 := (Sensor_1 AND NOT Sensor_2)
 OR Sensor_3

Sensor 1

Sensor 2

Sensor 3

Valve 1&
� 1

Sensor 1

Sensor 2

Sensor 3

Valve 1

Figure 6.23: A ladder program rung, its function box equivalent, and two STC equivalents.

ww

174 Chapter 6
If the testing of volts 1, volts 2, or volts 3 indicates that any one of them is more than 12, the

output OVERVOLTS is set to true and the RETURN statement called to terminate the

execution of the function block. In the rest of the program, when OVERVOLTS is set to true,

the program will initiate some action.
6.3.4 Comparison with Ladder Programs

Figure 6.22 shows a ladder rung and its equivalent expressions in structured text; Figure 6.23

shows another ladder rung and equivalents in function box and STC.

Summary
A programming method that can be considered to be the entering of a ladder program using

text is the instruction list (IL). An IL gives programs as a series of instructions, each

instruction being on a new line. Each instruction consists of an operator followed by one or

more operands, that is, the subjects of the operator. Mnemonic codes are used, each code

corresponding to an operator/ladder element.

The sequential function chart (SFC) programming method is used for a pictorial

representation of a system’s operation to show the sequence of the events involved in its
w.newnespress.com

IL, SFC, and ST Programming Methods 175
operation. The operation is described by a number of separate sequentially connected

states or steps that are represented by rectangular boxes, each representing a particular

state of the system being controlled. Each connecting line between states has a horizontal

bar representing the transition condition that has to be realized before the system can

move from one state to the next. When the transfer conditions to the next state are

realized, the next state or step in the program occurs. The process thus continues from

one state to the next until the entire machine cycle is completed. Outputs/actions at any

state are represented by horizontally linked boxes and occur when that state has been

realized.

With the structured text (ST) programming method, programs are written as a series of

statements separated by semicolons. The statements use predefined statements and

subroutines to change variables, these being defined values, internally stored values, or

inputs and outputs. Assignment statements are used to indicate how the value of a variable is

be changed, such as X :¼ Y. Structured text is not case sensitive and spaces are not necessary

but can be used to aid clarity. IF . . . THEN . . . ELSE is used when selected statements are to

be executed when certain conditions occur. CASE is used to give the condition that selected

statements are to be executed if a particular integer value occurs else some other selected

statements. FOR . . . DO . . . allows a set of statements to be repeated depending on the value

of the iteration integer variable. WHILE . . . DO .. allows one or more statements to be

executed while a particular Boolean expression remains true. REPEAT . . . UNTIL . . . allows

one or more statements to be executed and repeated while a particular Boolean expression

remains true.
Problems
Problems 1 through 24 have four answer options: A, B, C, or D. Choose the correct

answer from the answer options.

1. Decide whether each of these statements is true (T) or false (F). The instruction list:
LD
 X401
AND
 X402
OUT
 Y430
describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X401 and input X402 are both activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
www.newnespress.com

ww

176 Chapter 6
2. Decide whether each of these statements is true (T) or false (F). The instruction list:
w.ne
wnespress.com
LD
 X401
OR
 X402
OUT
 Y430
describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X402 is activated but X401 is not.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
3. Decide whether each of these statements is true (T) or false (F). The instruction list:
LD
 X401
ANI
 X402
OUT
 Y430
describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X401 and input X402 are both activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
4. Decide whether each of these statements is true (T) or false (F). The instruction list:
LDI
 X401
ANI
 X402
OUT
 Y430
describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X401 and input X402 are both activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F

IL, SFC, and ST Programming Methods 177
5. Decide whether each of these statements is true (T) or false (F). The instruction list:
LD
 X401
OR
 Y430
ANI
 X402
OUT
 Y430
describes a ladder diagram rung for which there is:
(i) An output when input X401 is momentarily activated.
(ii) No output when X402 is activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
6. Decide whether each of these statements is true (T) or false (F). The instruction list:
A
 I0.1
A
 I0.2
¼
 Q2.0
describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.1 and input I0.2 are both activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
7. Decide whether each of these statements is true (T) or false (F). The instruction list:
A
 I0.1
O
 I0.2
¼
 Q2.0
describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.2 is activated but I0.1 is not.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
www.newnespress.com

ww

178 Chapter 6
8. Decide whether each of these statements is true (T) or false (F). The instruction list:
w.ne
wnespress.com
A
 I0.1
AN
 I0.2
¼
 Q2.0
describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.1 and input I0.2 are both activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
9. Decide whether each of these statements is true (T) or false (F). The instruction list:
AN
 I0.1
AN
 I0.2
¼
 Q2.0
describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.1 and input I0.2 are both activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
10. Decide whether each of these statements is true (T) or false (F). The instruction list:
A
 I0.1
O
 Q2.0
AN
 I0.2
¼
 Q2.0
describes a ladder diagram rung for which there is:
(i) An output when input I0.1 is momentarily activated.
(ii) No output when I0.2 is activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F

IL, SFC, and ST Programming Methods 179
11. Decide whether each of these statements is true (T) or false (F). The instruction list:
LD
 X401
OUT
 Y430
LDI
 X401
OUT
 Y431
describes a program for which:
(i) When X401 is activated, there is an output from Y430 but not Y431.
(ii) When X401 is not activated, there is an output from Y431 but not Y430.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
12. Decide whether each of these statements is true (T) or false (F). The instruction list:
LD
 X400
OR
 X401
OR
 X402
AND
 X403
OUT
 Y431
describes a program for which there will be an output from Y431 when:
(i) Just X400 or X401 or X402 is activated.
(ii) Just X400 and X403 are activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
13. Decide whether each of these statements is true (T) or false (F). The instruction list:
LD
 X400
AND
 X401
OR
 X402
OUT
 Y430
describes a program for which there will be an output from Y430 when:
(i) Just X400 or X402 is activated.
(ii) Just X400 and X401 are activated.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
www.newnespress.com

ww

180 Chapter 6
14. Decide whether each of these statements is true (T) or false (F). For the sequential
w.ne
function chart shown in Figure 6.24:

(i) State 1 is realized when condition X1 is realized.
wn
(ii) Output 1 occurs when condition X2 is realized.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
15. Decide whether each of these statements is true (T) or false (F).
For the sequential function chart shown in Figure 6.25, if State 1 is active:
(i) State 2 is realized when condition X2 is realized.
(ii) State 3 occurs when condition X3 is realized.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
16. For the ladder program described in Figure 6.26a, which of the sequential function charts
in Figure 6.26b will represent it?
Problems 17, 18, and 19 concern the sequential function chart shown in Figure 6.27.
State 1 Output 1

X2

X1

Figure 6.24: Diagram for Problem 14.

State 1

State 2 State 3

X2 X3

Figure 6.25: Diagram for Problem 15.

espress.com

X1

X2

X3

Y1

Y2

State 1

State 2

A

X1

X2

X3

Y1

Y2

State 1

State 2

B
X1

X2
X3

Y1 Y2State 1 State 2

C

X1
X2
X3

Y1 Y2State 1 State 2

D
(b)

(a)

Input X1 Output Y1

Input
X2

Input
X3

Output
Y2

Figure 6.26: Diagram for Problem 16.

X1

X2 X3

X4 X5

X6

X7

State 1

State 2 State 3

State 4

State 5

Y1

Y2 Y3

Y4

Y5

Figure 6.27: Diagram for Problems 17, 18, and 19.

www.newnespress.com

IL, SFC, and ST Programming Methods 181

ww

182 Chapter 6
17. Decide whether each of these statements is true (T) or false (F). For the sequential
w.ne
function chart shown in Figure 6.27, output Y2 will occur if output Y1 has been realized

and:

(i) Both X2 and X3 have been realized.
wn
(ii) Just X2 has been realized.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
18. Decide whether each of these statements is true (T) or false (F). For the sequential
function chart shown in Figure 6.27, output Y4 will occur if output Y2 has occurred and:

(i) Output Y3 has occurred.
(ii) X4 has been realized.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
19. Decide whether each of these statements is true (T) or false (F). For the sequential
function chart shown in Figure 6.27, output Y5 will occur if:

(i) Output Y4 has occurred and condition X6 is realized.
(ii) Output Y3 has occurred and condition X5 is realized.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
20. For the sequential function chart in Figure 6.28, which of the ladder programs in
Figure 6.29 describes the same program?
State 0

State 1 State 2

X0

X1

X2 X3

Y0

Y1 Y2

Figure 6.28: Diagram of Problem 20.

espress.com

X0 Y0

X1 Y1

X2 Y2X3

A

X0 Y0

X1 Y1

B

Y0

X2 Y2X3

X0 Y0

X1 Y1

C

Y0

Y2

X2Y1

X3Y2

etc.

etc.

X0 Y0

X1 Y1

D

Y0

X1 Y2Y0

X2Y1

X2

X3Y2

etc.

etc.

Y1 X1

Figure 6.29: Diagram for Problem 20.

IL, SFC, and ST Programming Methods 183
21. Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

VAR

i: INT;

END_VAR;

i :- 0;

REPEAT

i :- i þ 1;

UNTIL i:¼ 5;

END_REPEAT;
(i) The variable i can only have the 0 or 1 values.
(ii) Each time the program repeats, i has its value increased by 1.
www.newnespress.com

www.ne

184 Chapter 6
A. (i) T (ii) T
wn
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
22. Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

IF Input1 THEN

Motor:¼- 1;

END_IF;

IF Input2 THEN

Motor:¼ 0;

END_IF;
(i) When input 1 occurs, the motor is switched on.
(ii) When input 2 occurs, the motor is switched off.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
23. Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

IF (Limit_switch_1 AND Workpiece_Present) THEN

Gate_1 :- Open;

Gate_2 :- Closed;

ELSE

Gate_1 :- Closed;

Gate_2 :- Open;

END_IF;
(i) If only the workpiece is present, gate 1 is open and gate 2 is closed.
(ii) If only the limit switch is activated, gate 1 is closed and gate 2 is open.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
espress.com

IL, SFC, and ST Programming Methods 185
24. Decide whether each of these statements is true (T) or false (F). For the following
structured text program element:

VAR

Start_Up AT %IX120;

END_VAR
(i) Start_Up can be found at input memory location bit 120.
(ii) Start_Up has the value 120 bits.
A. (i) T (ii) T
B. (i) T (ii) F
C. (i) F (ii) T
D. (i) F (ii) F
25. Write a sequential function chart program for following the operation of a start switch,
after which a tank is filled by opening valve 1 until a level switch 1 is triggered, then the

tank is drained by opening drain valve 2 until level switch 2 is triggered, then the

sequence is repeated.
26. Write a structured text program for the following: a tank is filled by opening valve 1, as
long as level switch 1 is not triggered and the drain valve is closed.
27. Write a structured text program to set the temperature of an enclosure by switches to the
values 40, 50, 60, and 70, and switch on fan 1 when the temperature is 60 and fan 2 when

it is 70.
www.newnespress.com

	IL, SFC, and ST Programming Methods
	Instruction Lists
	Ladder Programs and Instruction Lists
	Branch Codes
	More Than One Rung
	Programming Examples

	Sequential Function Charts
	Branching and Convergence
	Actions
	Programming a PLC

	Structured Text
	Conditional Statements
	Iteration Statements
	Structured Text Programs
	Comparison with Ladder Programs

	Summary
	Problems

