
Maskinorienterad programmering

MC68HCS12 – översikt/LB 1

MC68HCS12 - översikt

MC68HCS12,
Arbetsbok för MC12
CPU12 Reference Guide

Dagens fö:

• Programmerarens bild av HCS12 processorn
• Översikt, ”single-chip-computer” (version DG256)
• Adressering av primärminnet i HCS12
• HCS12 Assemblerinstruktioner

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Vilka instruktioner kan utföras ?
– Instruktionsgrupper (ALU,load/store,hopp,…)

Hur lagras operanderna förutom i minnet ?
– Korttidslagring (i register)

Hur nås operander i minnet?
– Adresseringssätt

Vilka typer/storlekar av operander kan hanteras ?
– Generella/speciella register, registerstorlek

Programmerarens bild av processorn
(Instruktionsuppsättning, interna register i processorn, och

hur primärminnet accessas)

2

”ISA” – Instruction Set Architecture

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Programmerarens bild – datatyper/storlek

3

char
(8)

short
int

(16)

long
int

(32)

long
int

(64)

floating
point
(IEEE)

pointers

68HCS12 X X 16/20 bit
Coldfire V1 X X X 32 bit
Coldfire V4 X X X X 32 bit
PowerPC X X X X 32 bit
PowerPC (64) X X X X 64 bit
8086 X X 16/20 bit
80386 X X X 32 bit
80486 X X X X 32 bit
X86-32 X X X X 32 bit
X86-64 X X X X 64 bit

Maskinorienterad programmering

MC68HCS12 – översikt/LB 4

Programmerarens bild – adresserbart minne

ADRESSBUSS RANDOM ACCESS
16 bitar 216 = 65 536 byte = 64 kbyte
20 bitar 220 = 1 048 576 byte = 1 024 kbyte = 1 Mbyte
24 bitar 224 = 16 777 216 byte = 16 384 kbyte = 16 MByte
32 bitar 232 = 4 294 967 296 byte = 4 194 304 kbyte = 4 096 Mbyte = 4 Gbyte
64 bitar 264 = 1,844674407 1019 byte = 16 Ebyte

Maskinorienterad programmering

MC68HCS12 – översikt/LB 5

Freescale 68HCS12

 HCS12 adressrum, IO och minne
 CPU12, klockor och räknare
 RWM, FLASH, EEPROM
 Periferienheter

– Parallell Input/Output
– Seriell kommunikation
– AD omvandlare
– PWM (Pulse Width Modulation)

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Historik

6

1974

6800
6801

6809

68HC11

68HC12
68HCS12

68HC12SX

1978 1982 1986 1990 1994 1998 2002 2006

Maskinorienterad programmering

MC68HCS12 – översikt/LB 7

HCS12DG256,
blockdiagram

Maskinorienterad programmering

MC68HCS12 – översikt/LB 8

HCS12DG256, ”core”

Maskinorienterad programmering

MC68HCS12 – översikt/LB 9

HCS12DG256, ”core”
Spänningsregulatorer (flera olika

spänningar används internt)
”Background Debug Mode” för

test/avlusning
En kristall utgör bas för alla

klockfrekvenser i systemet

Realtidsklocka och andra
klockfunktioner

Programmerbara funktioner

Maskinorienterad programmering

MC68HCS12 – översikt/LB 10

Primärminne

Icke flyktigt minne
Upp till 256 Kbyte i ”minnesbankar”
48 kB utan användning av ”bankar”
4 kB EEPROM

Flyktigt minne
12 kB RAM (=RWM)

Maskinorienterad programmering

MC68HCS12 – översikt/LB 11

FFFF

4000
3FFF

1000
FFF
400
3FF

0

FLASH

RWM (”RAM”)

Synlig del av EEPROM

MCHCS12 Interna register

EXEMPEL, linjärt adressrum

Maskinorienterad programmering

MC68HCS12 – översikt/LB 12

FFFF

C000
BFFF

8000
7FFF

4000
3FFF

1000
FFF
400
3FF

0

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D

FLASH

FLASH

”Bankat” FLASH
Dx256

RWM (”RAM”)

Synlig del av EEPROM

MCHCS12 Interna register

EXEMPEL, ”bankat” adressrum

Maskinorienterad programmering

MC68HCS12 – översikt/LB 13

FFFF

C000
BFFF

8000
7FFF

4000
3C80

1000
FFF
400
3FF

0

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D

FLASH
(monitor/debugger)

”Bankat” FLASH
Dx256

RWM (”RAM”)

Externt IO-gränssnitt

MCHCS12 Interna register

EXEMPEL, i laborationsdator MC12

FLASH
(monitor/debugger)

Minne tillgängligt för
”användarprogram”

Maskinorienterad programmering

MC68HCS12 – översikt/LB 14

Periferikretsar i HCS12DG256

AD – Analog till Digital omvandling

ECT- Räknarkretsar för noggrann
tidmätning

SCI – Asynkron seriekommunikation

Parallell In-Utmatning

PWM – Pulsbreddsmodulering

Maskinorienterad programmering

MC68HCS12 – översikt/LB 15

HCS12DG256, ”core” Centralenhet CPU12

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Registeruppsättning CPU12

16

B 8-BIT ACCUMULATORS A AND B
OR
16-BIT DOUBLE ACCUMULATOR D

7 0

D

X INDEX REGISTER X

15 0

PC PROGRAM COUNTER

15 0

SP STACK POINTER

15 0

C

0

CONDITION CODES REGISTERVZNIHXS

7

A

815

Y INDEX REGISTER Y

15 0

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Adresseringssätt

17

Indexerade
adresseringssätt kan
användas med register
X,Y och SP ibland också
med PC (PC-relativt)

”Indirekt adressering”

Maskinorienterad programmering

MC68HCS12 – översikt/LB 18

Inherent

Maskinkod för instruktionen

Cykel för cykel beskrivning

Flaggpåverkan

Maskinorienterad programmering

MC68HCS12 – översikt/LB 19

Omedelbar (Immediate) 8-bit/16-bit

opr8i, 8-bitars konstant om 8-bitars register

Opr16i, 16-bitars konstant om 16-bitars register

Maskinorienterad programmering

MC68HCS12 – översikt/LB 20

Direkt (Direct Page)
Absolut (Extented)

opr8a, kan enbart adressera intervallet 0000-00FF, anger minst signifikant byte
av adressen

opr16a, kan adressera hela adressintervallet 0000-FFFF

Maskinorienterad programmering

MC68HCS12 – översikt/LB 21

PC-relativ (”BRANCH”-instruktioner)
 8-bitars offset (-128..127)
 9-bitars offset (-256..255)
 16-bitars offset (-32768..32767)

Maskinorienterad programmering

MC68HCS12 – översikt/LB 22

Indexerade
adresseringssätt:

 Register relativ, konstant
offset

Observera, ingen syntaktisk skillnad.
Assemblator väljer effektivast kodning

Basregister kan vara något av: X,Y,SP,PC
EXEMPEL:

LDAA 5,X
STAA 20,Y
LDAA sym,PC
STAA off,SP
...

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Hur översätta
nedanstående
C-kod till assembler?

char namn []=”Emil”;
char initial;
void plocka_initial (void)
{
initial = namn[0] ;

}

Lösningsförslag
ORG $1000

plocka_initial
LDX #Statiska_variabler
LDAA 0,X
STAA 5,X

Statiska_variabler
namn FCB ’E’,’m’,’i’,’l’,’\0’
initial RMB 1

Maskinorienterad programmering

MC68HCS12 – översikt/LB 24

Indexerade adresseringssätt:
 Auto pre- increment/decrement
 Auto post- increment/decrement

Basregister kan vara något av: X,Y,SP
EXEMPEL:

LDAA 1,-X
STAA 4,Y-
STAB 8,+SP
LDAB 7,SP+
...

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Hur översätta denna
C-kod till assembler?

char namn []=”Emil”;
char i=0;
void antal_tecken_i_namn (void)
{ while (namn[i++] != ’\0’)

;
}

Lösningsförslag
ORG $1000

antal_tecken_i_namn
LDX #Statiska_variabler
CLRB

räkna LDAA 1,X+
BEQ Klart
INCB
BRA räkna

Klart STAB 0,X
Statiska_variabler
namn FCB ’E’,’m’,’i’,’l’,’\0’
i FCB 0

Maskinorienterad programmering

MC68HCS12 – översikt/LB 26

Indexerade adresseringssätt:
 Register relativ, offset i ackumulator

Basregister kan vara något av: X,Y,SP,PC
EXEMPEL:

LDAA A,X
STAA B,Y
STAB D,SP
LDAB D,PC
...

Maskinorienterad programmering

MC68HCS12 – översikt/LB 27

Indexerade adresseringssätt:
 Indirekt

EXEMPEL:
LDAA [D,X]
STAA [sym,PCR]
STAB [2,SP]
LDAB [D,Y]
...

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Mnemonic Funktion Operation
LDAA Load A (M)→A
LDAB Load B (M)→B
LDD Load D (M:M+1)1→A:B
LDS Load SP (M:M+1)1→SPH:SPL
LDX Load index register X (M:M+1)1→XH:XL
LDY Load index register Y (M:M+1)1→YH:YL
LEAS Load effective address into SP Effective address→SP
LEAX Load effective address into X Effective address→X
LEAY Load effective address into Y Effective address→Y

Instruktionsgrupper

28

LOAD-instruktioner

STORE-instruktioner
Mnemonic Funktion Operation
STAA Store A (A)→M
STAB Store B (B)→M
STD Store D (A)→M, (B)→M+1
STS Store SP SPH:SPL →M:M+1
STX Store X XH:XL →M:M+1
STY Store Y YH:YL →M:M+1

Mnemonic Funktion Operation
MOVB Move byte (8 bitar) (M1)→M2
MOVW Move word (8 bitar) (M:M+1) 1→M:M+12

MOVE-instruktioner

EXEMPEL: Kopiera byte

LDAB $3000
STAB $3001

eller
LDAA $3000
STAA $3001

eller
MOVB $3000,$3001

EXEMPEL: Kopiera word

LDD $3000
STD $3002

eller
LDX $3000
STX $3002

eller
LDY $3000
STY $3002

eller
MOVW $3000,$3002

Maskinorienterad programmering

MC68HCS12 – översikt/LB 29

Instruktioner för kopiering av registerinnehåll
Mnemonic Funktion Operation

TAB Transfer A to B
anm: Ekv. Med TFR A,B

(A)→B

TAP Transfer A to CCR
anm: Ekv. Med TFR A,CCR

(A)→CCR

TBA Transfer B to A (B)→A
TFR Transfer register to register (A,B,CCR,D,X,Y eller SP) →

(A,B,CCR,D,X,Y eller SP)
TPA Transfer CCR to A

anm: Ekv. Med TFR CCR,A
(CCR)→A

TSX Transfer SP to X
anm: Ekv. Med TFR SP,X

(SP)→X

TSY Transfer SP to Y
anm: Ekv. Med TFR SP,Y

(SP)→Y

TXS Transfer X to SP
anm: Ekv. Med TFR X,SP

(X)→SP

TYS Transfer Y to SP
anm: Ekv. Med TFR Y,SP

(Y)→SP

Använd denna

Övriga finns av
”kompatibilitetsskäl”

Mnemonic Funktion Operation
EXG Exchange register to register (A,B,CCR,D,X,Y eller SP) ↔

(A,B,CCR,D,X,Y eller SP)
XGDX Exchange D with X

anm: Ekv. Med
EXG D,X - EXG X,D

(D) ↔ (X)

XGDY Exchange D with Y
anm: Ekv. Med

EXG D,Y - EXG Y,D

(D) ↔ (Y)

Instruktioner för växling av registerinnehåll

Använd denna

Övriga finns av
”kompatibilitetsskäl”

Mnemonic Funktion Operation
SEX Teckenutvidga 8 bitars operand (A,B,CCR) →

(D,X,Y eller SP)

Instruktion för teckenutvidgning

Maskinorienterad programmering

MC68HCS12 – översikt/LB

Mnemonic Funktion Operation
BSR Anrop av subrutin.

PC-relativ operand
SP-2 ⇒ SP

RetAdrL:RetAdrH ⇒
M(SP):M(SP+1)

Adress ⇒ PC
BRA “Hopp” till adress.

PC-relativ operand
Adress ⇒ PC

CALL Anrop av subrutin
Absolut operand (20 bitar)

Anm: Användes vid
programflödesändring mellan
olika minnesbankar ($8000-

$BFFF)

SP-2 ⇒ SP
RetAdrL:RetAdrH ⇒

M(SP):M(SP+1)
Subrutinadress ⇒ PC

SP-1 ⇒ SP
(PPAGE) ⇒ M(SP)
PAGE ⇒ PPAGE

Subrutinadress ⇒ PC
JMP “Hopp” till address.

Absolut operand
Subrutinadress ⇒ PC

JSR Anrop av subrutin
Absolut operand

SP-2 ⇒ SP
RetAdrL:RetAdrH ⇒

M(SP):M(SP+1)
Subrutinadress ⇒ PC

RTC Återvänd från subrutin.
Returadress från STACK och

PPAGE

M(SP) ⇒ (PPAGE)
SP+1 ⇒ SP

M(SP):M(SP+1) ⇒ PCH:PCL
SP+2 ⇒ SP

RTS Återvänd från subrutin.
Returadress från STACK

M(SP):M(SP+1) ⇒ PCH:PCL
SP+2 ⇒ SP

30

Ovillkorlig programflödeskontroll

Maskinorienterad programmering

MC68HCS12 – översikt/LB 31

Mnemonic Funktion Operation
ABA Addera B till A (A)+(B) → A
ABX Addera B till X

anm: Ekv. med LEAX B,X
(X)+(B) → X

ABY Addera B till Y
anm: Ekv. med LEAY B,Y

(Y)+(B) → Y

ADCA Addition med carry till A (A)+(M)+C → A
ADCB Addition med carry till B (B)+(M)+C → B
ADDA Addition till A (A)+(M) → A
ADDB Addition till B (B)+(M) → B
ADDD Addition till D (A:B) (D)+(M:M+1) →D

Instruktioner för addition

Instruktioner för subtraktion
Mnemonic Funktion Operation

SBA Subtrahera B från A (A)-(B) → A
SBCA Subtrahera med borrow från A (A)-(M)-C → A
SBCB Subtrahera med borrow från B (B)-(M)-C → B
SUBA Subtrahera från A (A)-(M) → A
SUBB Subtrahera från B (B)-(M) → B
SUBD Subtrahera från D (A:B) (D)-(M:M+1) →D

Mnemonic Funktion Operation
INC Incrementera i minnet (M)+$01 → M
INCA Inkrementera A (A)+ $01 → A
INCB Inkrementera B (B)+ $01 → B
INS Inkrementera SP

anm: Ekv. med LEAS 1,SP
(SP)+ $0001 → SP

INX Inkrementera X
anm: Ekv. med LEAX 1,X

(X)+ $0001 → X

INY Inkrementera Y
anm: Ekv. med LEAY 1,Y

(Y)+ $0001 → Y

Mnemonic Funktion Operation
DEC Dekrementera i minnet (M)-$01 → M
DECA Dekrementera A (A)- $01 → A
DECB Dekrementera B (B)- $01 → B
DES Dekrementera SP

anm: Ekv. med LEAS -1,SP
(SP)- $0001 → SP

DEX Dekrementera X
anm: Ekv. med LEAX -1,X

(X)- $0001 → X

DEY Dekrementera Y
anm: Ekv. med LEAY -1,Y

(Y)- $0001 → Y

Maskinorienterad programmering

MC68HCS12 – översikt/LB 32

Instruktioner för logikoperationer
Mnemonic Funktion Operation
ANDA Bitvis “och” A med minnesinnehåll (A)•(M)⇒ A
ANDB Bitvis “och” B med minnesinnehåll (B)•(M)⇒ B
ANDCC Bitvis “och” CC med minnesinnehåll (CCR)•(M)⇒ CCR
EORA Bitvis “exklusivt eller” A med

minnesinnehåll
(A)⊕(M)⇒ A

EORB Bitvis “exklusivt eller” B med
minnesinnehåll

(B)⊕(M)⇒ B

ORAA Bitvis “eller” A med minnesinnehåll (A)+(M)⇒ A
ORAB Bitvis “eller” B med minnesinnehåll (B)+(M)⇒ B
ORCC Bitvis “eller” CCR med minnesinnehåll (CCR)+(M)⇒ CCR

Mnemonic Funktion Operation
CLC Nollställ carryflaggan i CCR 0 ⇒ C
CLI Nollställ avbrottsmask i CCR 0 ⇒ I
CLR Nollställ minnesinnehåll $00 ⇒ M
CLRA Nollställ A $00 ⇒ A
CLRB Nollställ B $00 ⇒ B
CLV Nollställ overflowflaggan I CCR 0 ⇒ V
COM Ettkomplementera minnesinnehåll $FF-(M) ⇒ M
COMA Ettkomplementera A $FF-(A) ⇒ A
COMB Ettkomplementera B $FF-(B) ⇒ A
NEG Tvåkomplementera minnesinnehåll $00-(M) ⇒ M
NEGA Tvåkomplementera A $00-(A) ⇒ A
NEGB Tvåkomplementera B $00-(B) ⇒ B

Unära operationer

EXEMPEL: Nollställ bit 7-bit 4 på
adress $3000

LDAB $3000
ANDB #%00001111
STAB $3000

EXEMPEL: Ettställ bit 7 och bit 0
på adress $3000

LDAB $3000
ORAB #%10000001
STAB $3000

EXEMPEL: Invertera bit 2 och
bit1 på adress $3000

LDAB $3000
EORB #%00000110
STAB $3000

Maskinorienterad programmering

MC68HCS12 – översikt/LB 33

Mnemonic Funktion Operation
LSL Logiskt vänsterskift i

minnet
LSLA Logiskt vänsterskift A
LSLB Logiskt vänsterskift B
LSLD Logiskt vänsterskift D

LSR Logiskt högerskift i minnet
LSRA Logiskt högerskift A
LSRB Logiskt högerskift B

LSRD Logiskt högerskift D

b0 b7 C
 0

b0 b7 C
 0

b0 b7 C

b0 b7
0

A B

b0 b7 C

b0 b7
0

A B

Logiska skiftoperationer

Exempel på användning:
Multiplikation med 2, tal utan tecken.
Division med 2, tal utan tecken.

Maskinorienterad programmering

MC68HCS12 – översikt/LB 34

Aritmetiska skiftoperationer
Mnemonic Funktion Operation

ASL Aritmetiskt vänsterskift i
minnet

(ekv. med LSL)
ASLA Aritmetiskt vänsterskift A

(ekv. med LSLA)
ASLB Aritmetiskt vänsterskift B

(ekv. med LSLB)
ASLD Aritmetiskt vänsterskift D

(ekv. med LSLD)

ASR Aritmetiskt högerskift i
minnet

ASRA Aritmetiskt högerskift A
ASRB Aritmetiskt högerskift B

b0 b7 C
 0

b0 b7 C

b0 b7
0

A B

b0 b7 C

Exempel på användning, högerskift:
Division med 2, tal med tecken.

Maskinorienterad programmering

MC68HCS12 – översikt/LB 35

Instruktioner för rotation (carry-skift)
Mnemonic Funktion Operation

ROL Rotation vänster via carry i
minnet

ROLA Rotation vänster via carry
A

ROLB Rotation vänster via carry
B

ROR Rotation höger via carry i
minnet

RORA Rotation höger via carry A
RORB Rotation höger via carry B

b0 b7 C

b0 b7 C

Exempel på användning:
Skiftoperationer på tal större än 8 bitar.

EXEMPEL: Skifta ett 32-bitars tal
på adress $3000, 1 steg åt höger

LSR $3000
ROR $3001
ROR $3002
ROR $3003

Maskinorienterad programmering

MC68HCS12 – översikt/LB 36

Instruktioner för jämförelser och test
Mnemonic Funktion Operation

CBA Jämför B med A (A)-(B)
CMPA Jämför A med minne (A)-(M)
CMPB Jämför B med minne (B)-(M)
CPD Jämför D med minne (A:B)-(M:M+1)
CPS Jämför SP med minne (SP)-(M:M+1)
CPX Jämför X med minne (X)-(M:M+1)
CPY Jämför Y med minne (Y)-(M:M+1)

Mnemonic Funktion Operation
TST Testa minnesinnehåll (M)-00
TSTA Testa register A (A)-00
TSTB Testa register B (B)-00

JÄMFÖRELSE
Två operander

BINÄR operation

TEST
En operand

UNÄR operation

Maskinorienterad programmering

MC68HCS12 – översikt/LB 37

Mnemonic Funktion Villkor
Enkla flaggtest

BCS “Hopp” om carry C=1
BCC “Hopp” om ICKE carry C=0
BEQ “Hopp” om zero Z=1
BNE “Hopp” om ICKE zero Z=0
BMI “Hopp” om negative N=1
BPL “Hopp” om ICKE negative N=0
BVS “Hopp” om overflow V=1
BVC “Hopp” om ICKE overflow V=0

Test av tal utan tecken
BHI Villkor: R>M C + Z = 0
BHS Villkor: R≥M C=0
BLO Villkor: R<M C=1
BLS Villkor: R≤M C + Z = 1

Test av tal med tecken
BGT Villkor: R>M Z + (N ⊕ V) = 0
BGE Villkor: R≥M N ⊕ V = 0
BLT Villkor: R<M N ⊕ V = 1
BLE Villkor: R≤M Z + (N ⊕ V) = 1

Villkorlig programflödeskontroll

Används typiskt tillsammans med
jämförelse/test instruktioner.
EXEMPEL

LDAB $3000
CMPB $3001
BEQ L1
....

Maskinorienterad programmering

MC68HCS12 – översikt/LB 38

Mnemonic Funktion Villkor
DBEQ Dekrementera innehåll i register.

“Hoppa” om resultatet = 0.
(register: A,B,D,X,Y,SP)

(register) – 1 ⇒ register
om(register)=0; “hoppa”;
annars: nästa instruktion

DBNE Dekrementera innehåll i register.
“Hoppa” om resultatet ≠ 0.

(register: A,B,D,X,Y,SP)

(register) – 1 ⇒ register
om(register)≠0; “hoppa”;
annars: nästa instruktion

IBEQ Inkrementera innehåll i register.
“Hoppa” om resultatet = 0.

(register: A,B,D,X,Y,SP)

(register) + 1 ⇒ register
om(register)=0; “hoppa”;
annars: nästa instruktion

IBNE Inkrementera innehåll i register.
“Hoppa” om resultatet ≠ 0.

(register: A,B,D,X,Y,SP)

(register) + 1 ⇒ register
om(register)≠0; “hoppa”;
annars: nästa instruktion

TBEQ Testa innehåll i register. “Hoppa”
om resultatet = 0.

(register: A,B,D,X,Y,SP)

om(register)=0; “hoppa”;
annars: nästa instruktion

TBNE Testa innehåll i register. “Hoppa”
om resultatet ≠ 0.

(register: A,B,D,X,Y,SP)

om(register)≠0; “hoppa”;
annars: nästa instruktion

Instruktioner för räknande programslingor

Sammansatta instruktioner.
EXEMPEL

DBEQ B,L2
samma sak som

DECB
BEQ L2

Maskinorienterad programmering

MC68HCS12 – översikt/LB 39

Summering

Kursintroduktion
• Teori: Kurslitteratur & Föreläsningar
• Simulatorövningar
• Fem laborationer i kursen

MC68HC12,
Arbetsbok för MC12
CPU12 Reference Guide

• Programmerarens bild
• Översikt, ”single-chip-computer” DG256
• Adressering av primärminnet i HCS12
• HC12 Assemblerinstruktioner

	Slide Number 1
	Programmerarens bild av processorn� (Instruktionsuppsättning, interna register i processorn, och � hur primärminnet accessas)
	Programmerarens bild – datatyper/storlek
	Programmerarens bild – adresserbart minne
	Freescale 68HCS12
	Historik
	HCS12DG256,�blockdiagram
	HCS12DG256, ”core”
	HCS12DG256, ”core”
	Primärminne
	EXEMPEL, linjärt adressrum
	EXEMPEL, ”bankat” adressrum
	EXEMPEL, i laborationsdator MC12
	Periferikretsar i HCS12DG256
	HCS12DG256, ”core”
	Registeruppsättning CPU12
	Adresseringssätt
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Instruktionsgrupper
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

