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MC68HCS12 - översikt

MC68HCS12, 
Arbetsbok för MC12 
CPU12 Reference Guide

Dagens fö:

• Programmerarens bild av HCS12 processorn
• Översikt, ”single-chip-computer” (version DG256)
• Adressering av primärminnet i HCS12
• HCS12 Assemblerinstruktioner
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Vilka instruktioner kan utföras ? 
– Instruktionsgrupper (ALU,load/store,hopp,…)

Hur lagras operanderna förutom i minnet ?
– Korttidslagring (i register)

Hur nås operander i minnet?
– Adresseringssätt

Vilka typer/storlekar av operander kan hanteras ?
– Generella/speciella register, registerstorlek

Programmerarens bild av processorn
(Instruktionsuppsättning, interna register i processorn, och   

hur primärminnet accessas)
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”ISA” – Instruction Set Architecture
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Programmerarens bild – datatyper/storlek
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char
(8)

short
int

(16)

long
int

(32)

long
int

(64)

floating
point
(IEEE)

pointers

68HCS12 X X 16/20 bit
Coldfire V1 X X X 32 bit
Coldfire V4 X X X X 32 bit
PowerPC X X X X 32 bit
PowerPC (64) X X X X 64 bit
8086 X X 16/20 bit
80386 X X X 32 bit
80486 X X X X 32 bit
X86-32 X X X X 32 bit
X86-64 X X X X 64 bit
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Programmerarens bild – adresserbart minne

ADRESSBUSS RANDOM ACCESS
16 bitar 216 = 65 536 byte = 64 kbyte
20 bitar 220 = 1 048 576 byte = 1 024 kbyte = 1 Mbyte
24 bitar 224 = 16 777 216 byte = 16 384 kbyte = 16 MByte
32 bitar 232 = 4 294 967 296 byte = 4 194 304 kbyte = 4 096 Mbyte = 4 Gbyte
64 bitar 264 = 1,844674407 1019 byte = 16 Ebyte
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Freescale 68HCS12

 HCS12 adressrum, IO och minne
 CPU12, klockor och räknare
 RWM, FLASH, EEPROM
 Periferienheter

– Parallell Input/Output
– Seriell kommunikation
– AD omvandlare
– PWM (Pulse Width Modulation)
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Historik
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1974

6800
6801

6809

68HC11

68HC12
68HCS12

68HC12SX

1978 1982 1986 1990 1994 1998 2002 2006
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HCS12DG256,
blockdiagram
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HCS12DG256, ”core”
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HCS12DG256, ”core”
Spänningsregulatorer (flera olika 

spänningar används internt)
”Background Debug Mode” för 

test/avlusning
En kristall utgör bas för alla 

klockfrekvenser i systemet

Realtidsklocka och andra 
klockfunktioner

Programmerbara funktioner
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Primärminne

Icke flyktigt minne
Upp till 256 Kbyte i ”minnesbankar”
48 kB utan användning av ”bankar”
4 kB EEPROM

Flyktigt minne
12 kB RAM (=RWM)
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FFFF

4000
3FFF

1000
FFF
400
3FF

0

FLASH

RWM (”RAM”)

Synlig del av EEPROM

MCHCS12 Interna register

EXEMPEL, linjärt adressrum
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FFFF

C000
BFFF

8000
7FFF

4000
3FFF

1000
FFF
400
3FF

0

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D

FLASH

FLASH

”Bankat” FLASH
Dx256

RWM (”RAM”)

Synlig del av EEPROM

MCHCS12 Interna register

EXEMPEL, ”bankat” adressrum
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FFFF

C000
BFFF

8000
7FFF

4000
3C80

1000
FFF
400
3FF

0

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D

FLASH 
(monitor/debugger)

”Bankat” FLASH
Dx256

RWM (”RAM”)

Externt IO-gränssnitt

MCHCS12 Interna register

EXEMPEL, i laborationsdator MC12

FLASH 
(monitor/debugger)

Minne tillgängligt för 
”användarprogram”
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Periferikretsar i HCS12DG256

AD – Analog till Digital omvandling

ECT- Räknarkretsar för noggrann 
tidmätning

SCI – Asynkron seriekommunikation

Parallell In-Utmatning

PWM – Pulsbreddsmodulering
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HCS12DG256, ”core” Centralenhet CPU12
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Registeruppsättning CPU12
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B 8-BIT ACCUMULATORS  A AND B 
OR
16-BIT DOUBLE ACCUMULATOR D

7 0

D

X INDEX REGISTER X

15 0

PC PROGRAM COUNTER

15 0

SP STACK POINTER

15 0

C

0

CONDITION CODES REGISTERVZNIHXS

7

A

815

Y INDEX REGISTER Y

15 0
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Adresseringssätt
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Indexerade 
adresseringssätt kan 
användas med register 
X,Y och SP ibland också 
med PC (PC-relativt)

”Indirekt adressering”
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Inherent

Maskinkod för instruktionen

Cykel för cykel beskrivning

Flaggpåverkan
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Omedelbar (Immediate) 8-bit/16-bit

opr8i, 8-bitars konstant om 8-bitars register

Opr16i, 16-bitars konstant om 16-bitars register
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Direkt (Direct Page)
Absolut (Extented)

opr8a, kan enbart adressera intervallet 0000-00FF, anger minst signifikant byte 
av adressen 

opr16a, kan adressera hela adressintervallet 0000-FFFF
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PC-relativ (”BRANCH”-instruktioner)
 8-bitars offset (-128..127)
 9-bitars offset (-256..255)
 16-bitars offset (-32768..32767)
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Indexerade 
adresseringssätt:

 Register relativ, konstant 
offset

Observera, ingen syntaktisk skillnad. 
Assemblator väljer effektivast kodning

Basregister kan vara något av: X,Y,SP,PC
EXEMPEL:

LDAA 5,X
STAA 20,Y
LDAA sym,PC
STAA off,SP
...
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Hur översätta 
nedanstående
C-kod  till assembler?

char namn []=”Emil”;
char initial;
void plocka_initial (void) 
{ 
initial = namn[0] ;

}

Lösningsförslag
ORG $1000

plocka_initial
LDX #Statiska_variabler
LDAA 0,X
STAA 5,X

Statiska_variabler
namn FCB ’E’,’m’,’i’,’l’,’\0’
initial RMB 1
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Indexerade adresseringssätt:
 Auto pre- increment/decrement
 Auto post- increment/decrement

Basregister kan vara något av: X,Y,SP
EXEMPEL:

LDAA 1,-X
STAA 4,Y-
STAB 8,+SP
LDAB 7,SP+
...
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Hur översätta denna
C-kod  till assembler?

char namn []=”Emil”;
char i=0;
void antal_tecken_i_namn (void) 
{  while (namn[i++] != ’\0’)

;
}

Lösningsförslag
ORG $1000

antal_tecken_i_namn
LDX #Statiska_variabler
CLRB

räkna LDAA 1,X+
BEQ        Klart
INCB
BRA  räkna

Klart STAB       0,X
Statiska_variabler
namn FCB ’E’,’m’,’i’,’l’,’\0’
i FCB 0
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Indexerade adresseringssätt:
 Register relativ, offset i ackumulator

Basregister kan vara något av: X,Y,SP,PC
EXEMPEL:

LDAA A,X
STAA B,Y
STAB D,SP
LDAB D,PC
...
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Indexerade adresseringssätt:
 Indirekt

EXEMPEL:
LDAA [D,X]
STAA [sym,PCR]
STAB [2,SP]
LDAB [D,Y]
...
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Mnemonic Funktion Operation
LDAA Load A (M)→A
LDAB Load B (M)→B
LDD Load D (M:M+1)1→A:B
LDS Load SP (M:M+1)1→SPH:SPL
LDX Load index register X (M:M+1)1→XH:XL
LDY Load index register Y (M:M+1)1→YH:YL
LEAS Load effective address into SP Effective address→SP
LEAX Load effective address into X Effective address→X
LEAY Load effective address into Y Effective address→Y

Instruktionsgrupper

28

LOAD-instruktioner

STORE-instruktioner
Mnemonic Funktion Operation
STAA Store A (A)→M
STAB Store B (B)→M
STD Store D (A)→M, (B)→M+1
STS Store SP SPH:SPL →M:M+1
STX Store X XH:XL →M:M+1
STY Store Y YH:YL →M:M+1

Mnemonic Funktion Operation
MOVB Move byte (8 bitar) (M1)→M2
MOVW Move word (8 bitar) (M:M+1) 1→M:M+12

MOVE-instruktioner

EXEMPEL: Kopiera byte

LDAB  $3000
STAB  $3001

eller
LDAA  $3000
STAA  $3001

eller
MOVB  $3000,$3001

EXEMPEL: Kopiera word

LDD  $3000
STD  $3002

eller
LDX  $3000
STX  $3002

eller
LDY  $3000
STY  $3002

eller
MOVW  $3000,$3002
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Instruktioner för kopiering av registerinnehåll
Mnemonic Funktion Operation

TAB Transfer A to B
anm: Ekv. Med TFR A,B

(A)→B

TAP Transfer A to CCR
anm: Ekv. Med TFR A,CCR

(A)→CCR

TBA Transfer B to A (B)→A
TFR Transfer register to register (A,B,CCR,D,X,Y eller SP) →

(A,B,CCR,D,X,Y eller SP)
TPA Transfer CCR to A

anm: Ekv. Med TFR CCR,A
(CCR)→A

TSX Transfer SP to X
anm: Ekv. Med TFR SP,X

(SP)→X

TSY Transfer SP to Y
anm: Ekv. Med TFR SP,Y

(SP)→Y

TXS Transfer X to SP
anm: Ekv. Med TFR X,SP

(X)→SP

TYS Transfer Y to SP
anm: Ekv. Med TFR Y,SP

(Y)→SP

Använd denna

Övriga finns av 
”kompatibilitetsskäl”

Mnemonic Funktion Operation
EXG Exchange register to register (A,B,CCR,D,X,Y eller SP) ↔

(A,B,CCR,D,X,Y eller SP)
XGDX Exchange D with X

anm: Ekv. Med 
EXG D,X - EXG X,D

(D) ↔ (X)

XGDY Exchange D with Y
anm: Ekv. Med 

EXG D,Y - EXG Y,D

(D) ↔ (Y)

Instruktioner för växling av registerinnehåll

Använd denna

Övriga finns  av 
”kompatibilitetsskäl”

Mnemonic Funktion Operation
SEX Teckenutvidga 8 bitars operand (A,B,CCR) →

(D,X,Y eller SP)

Instruktion för teckenutvidgning
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Mnemonic Funktion Operation
BSR Anrop av subrutin.

PC-relativ operand
SP-2 ⇒ SP

RetAdrL:RetAdrH ⇒
M(SP):M(SP+1)

Adress ⇒ PC
BRA “Hopp” till adress.

PC-relativ operand
Adress ⇒ PC

CALL Anrop av subrutin
Absolut operand (20 bitar)

Anm: Användes vid
programflödesändring mellan
olika minnesbankar ($8000-

$BFFF)

SP-2 ⇒ SP
RetAdrL:RetAdrH ⇒

M(SP):M(SP+1)
Subrutinadress ⇒ PC

SP-1 ⇒ SP
(PPAGE) ⇒ M(SP)
PAGE ⇒ PPAGE

Subrutinadress ⇒ PC
JMP “Hopp” till address.

Absolut operand
Subrutinadress ⇒ PC

JSR Anrop av subrutin
Absolut operand

SP-2 ⇒ SP
RetAdrL:RetAdrH ⇒

M(SP):M(SP+1)
Subrutinadress ⇒ PC

RTC Återvänd från subrutin.
Returadress från STACK och 

PPAGE

M(SP) ⇒ (PPAGE)
SP+1 ⇒ SP

M(SP):M(SP+1) ⇒ PCH:PCL
SP+2 ⇒ SP

RTS Återvänd från subrutin.
Returadress från STACK

M(SP):M(SP+1) ⇒ PCH:PCL
SP+2 ⇒ SP

30

Ovillkorlig programflödeskontroll
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Mnemonic Funktion Operation
ABA Addera B till A (A)+(B) → A
ABX Addera B till X 

anm: Ekv. med LEAX B,X
(X)+(B) → X

ABY Addera B till Y 
anm: Ekv. med LEAY B,Y

(Y)+(B) → Y

ADCA Addition med carry till A (A)+(M)+C → A
ADCB Addition med carry till B (B)+(M)+C → B
ADDA Addition till A (A)+(M) → A
ADDB Addition till B (B)+(M) → B
ADDD Addition till D (A:B) (D)+(M:M+1) →D

Instruktioner för addition

Instruktioner för subtraktion
Mnemonic Funktion Operation

SBA Subtrahera B från A (A)-(B) → A
SBCA Subtrahera med borrow från A (A)-(M)-C → A
SBCB Subtrahera med borrow från B (B)-(M)-C → B
SUBA Subtrahera från A (A)-(M) → A
SUBB Subtrahera från B (B)-(M) → B
SUBD Subtrahera från D (A:B) (D)-(M:M+1) →D

Mnemonic Funktion Operation
INC Incrementera i minnet (M)+$01 → M
INCA Inkrementera A (A)+ $01 → A
INCB Inkrementera B (B)+ $01 → B
INS Inkrementera SP 

anm: Ekv. med LEAS 1,SP
(SP)+ $0001 → SP

INX Inkrementera X 
anm: Ekv. med LEAX 1,X

(X)+ $0001 → X

INY Inkrementera Y
anm: Ekv. med LEAY 1,Y

(Y)+ $0001 → Y

Mnemonic Funktion Operation
DEC Dekrementera i minnet (M)-$01 → M
DECA Dekrementera A (A)- $01 → A
DECB Dekrementera B (B)- $01 → B
DES Dekrementera SP 

anm: Ekv. med LEAS -1,SP
(SP)- $0001 → SP

DEX Dekrementera X 
anm: Ekv. med LEAX -1,X

(X)- $0001 → X

DEY Dekrementera Y
anm: Ekv. med LEAY -1,Y

(Y)- $0001 → Y
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Instruktioner för logikoperationer
Mnemonic Funktion Operation
ANDA Bitvis “och” A med minnesinnehåll (A)•(M)⇒ A
ANDB Bitvis “och”  B med minnesinnehåll (B)•(M)⇒ B
ANDCC Bitvis “och”  CC med minnesinnehåll (CCR)•(M)⇒ CCR
EORA Bitvis “exklusivt eller” A med 

minnesinnehåll
(A)⊕(M)⇒ A

EORB Bitvis “exklusivt eller” B med 
minnesinnehåll

(B)⊕(M)⇒ B

ORAA Bitvis “eller” A med minnesinnehåll (A)+(M)⇒ A
ORAB Bitvis “eller” B med minnesinnehåll (B)+(M)⇒ B
ORCC Bitvis “eller” CCR med minnesinnehåll (CCR)+(M)⇒ CCR

Mnemonic Funktion Operation
CLC Nollställ carryflaggan i CCR 0 ⇒ C
CLI Nollställ avbrottsmask i CCR 0 ⇒ I
CLR Nollställ minnesinnehåll $00  ⇒ M
CLRA Nollställ A $00 ⇒ A
CLRB Nollställ B $00  ⇒ B
CLV Nollställ overflowflaggan I CCR 0 ⇒ V
COM Ettkomplementera minnesinnehåll $FF-(M) ⇒ M
COMA Ettkomplementera A $FF-(A)  ⇒ A
COMB Ettkomplementera B $FF-(B)  ⇒ A
NEG Tvåkomplementera minnesinnehåll $00-(M) ⇒ M
NEGA Tvåkomplementera A $00-(A) ⇒ A
NEGB Tvåkomplementera B $00-(B) ⇒ B

Unära operationer

EXEMPEL: Nollställ bit 7-bit 4 på 
adress $3000

LDAB  $3000
ANDB  #%00001111
STAB  $3000

EXEMPEL: Ettställ bit 7 och bit 0 
på adress $3000

LDAB  $3000
ORAB  #%10000001
STAB  $3000

EXEMPEL: Invertera bit 2  och 
bit1 på adress $3000

LDAB  $3000
EORB  #%00000110
STAB  $3000
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Mnemonic Funktion Operation
LSL Logiskt vänsterskift i

minnet
LSLA Logiskt vänsterskift A
LSLB Logiskt vänsterskift B
LSLD Logiskt vänsterskift D

LSR Logiskt högerskift i minnet
LSRA Logiskt högerskift A
LSRB Logiskt högerskift B

LSRD Logiskt högerskift D

 

b0 b7 C 
 0         

 

b0 b7 C 
 0         

 

b0 b7 C 
         

b0 b7 
0         

A B 

 

b0 b7 C 
         

b0 b7 
0         

A B 

Logiska skiftoperationer

Exempel på användning:
Multiplikation med 2, tal utan tecken.
Division med 2, tal utan tecken.
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Aritmetiska skiftoperationer
Mnemonic Funktion Operation

ASL Aritmetiskt vänsterskift i 
minnet

(ekv. med LSL)
ASLA Aritmetiskt vänsterskift A 

(ekv. med LSLA)
ASLB Aritmetiskt vänsterskift B

(ekv. med LSLB)
ASLD Aritmetiskt vänsterskift D

(ekv. med LSLD)

ASR Aritmetiskt högerskift i 
minnet

ASRA Aritmetiskt högerskift A
ASRB Aritmetiskt högerskift B

 

b0 b7 C 
 0         

 

b0 b7 C 
         

b0 b7 
0         

A B 

 

b0 b7 C 
         

Exempel på användning, högerskift:
Division med 2, tal med tecken.
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Instruktioner för rotation (carry-skift)
Mnemonic Funktion Operation

ROL Rotation vänster via carry i
minnet

ROLA Rotation vänster via carry 
A

ROLB Rotation vänster via carry 
B

ROR Rotation höger via carry i 
minnet

RORA Rotation höger via carry A
RORB Rotation höger via carry B

 

b0 b7 C 
         

 

b0 b7 C 
         

Exempel på användning:
Skiftoperationer på tal större än 8 bitar.

EXEMPEL: Skifta ett 32-bitars tal 
på adress $3000, 1 steg åt höger

LSR $3000
ROR $3001
ROR $3002
ROR $3003
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Instruktioner för jämförelser och test
Mnemonic Funktion Operation

CBA Jämför B med A (A)-(B)
CMPA Jämför A med minne (A)-(M)
CMPB Jämför B med minne (B)-(M)
CPD Jämför D med minne (A:B)-(M:M+1)
CPS Jämför SP med minne (SP)-(M:M+1)
CPX Jämför X med minne (X)-(M:M+1)
CPY Jämför Y med minne (Y)-(M:M+1)

Mnemonic Funktion Operation
TST Testa minnesinnehåll (M)-00
TSTA Testa register A (A)-00
TSTB Testa register B (B)-00

JÄMFÖRELSE
Två operander

BINÄR operation

TEST
En operand

UNÄR operation
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Mnemonic Funktion Villkor
Enkla flaggtest

BCS “Hopp” om carry C=1
BCC “Hopp” om ICKE carry C=0
BEQ “Hopp” om zero Z=1
BNE “Hopp” om ICKE zero Z=0
BMI “Hopp” om negative N=1
BPL “Hopp” om ICKE negative N=0
BVS “Hopp” om overflow V=1
BVC “Hopp” om ICKE overflow V=0

Test av tal utan tecken
BHI Villkor: R>M C + Z = 0
BHS Villkor: R≥M C=0
BLO Villkor: R<M C=1
BLS Villkor: R≤M C + Z = 1

Test av tal med tecken
BGT Villkor: R>M Z + ( N ⊕ V ) = 0
BGE Villkor: R≥M N ⊕ V = 0
BLT Villkor: R<M N ⊕ V = 1
BLE Villkor: R≤M Z + ( N ⊕ V ) = 1

Villkorlig programflödeskontroll

Används typiskt tillsammans med 
jämförelse/test instruktioner.
EXEMPEL

LDAB  $3000
CMPB $3001
BEQ L1
....
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Mnemonic Funktion Villkor
DBEQ Dekrementera innehåll i register. 

“Hoppa” om resultatet = 0.
(register: A,B,D,X,Y,SP) 

(register) – 1 ⇒ register
om(register)=0; “hoppa”;
annars: nästa instruktion

DBNE Dekrementera innehåll i register. 
“Hoppa” om resultatet ≠ 0.

(register: A,B,D,X,Y,SP)

(register) – 1 ⇒ register
om(register)≠0; “hoppa”;
annars: nästa instruktion

IBEQ Inkrementera innehåll i register. 
“Hoppa” om resultatet = 0.

(register: A,B,D,X,Y,SP)

(register) + 1 ⇒ register
om(register)=0; “hoppa”;
annars: nästa instruktion

IBNE Inkrementera innehåll i register. 
“Hoppa” om resultatet ≠ 0.

(register: A,B,D,X,Y,SP)

(register) + 1 ⇒ register
om(register)≠0; “hoppa”;
annars: nästa instruktion

TBEQ Testa innehåll i register. “Hoppa” 
om resultatet = 0.

(register: A,B,D,X,Y,SP)

om(register)=0; “hoppa”;
annars: nästa instruktion

TBNE Testa innehåll i register. “Hoppa” 
om resultatet ≠ 0.

(register: A,B,D,X,Y,SP)

om(register)≠0; “hoppa”;
annars: nästa instruktion

Instruktioner för räknande programslingor

Sammansatta instruktioner.
EXEMPEL

DBEQ   B,L2
samma sak som

DECB
BEQ    L2
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Summering

Kursintroduktion
• Teori: Kurslitteratur & Föreläsningar
• Simulatorövningar
• Fem laborationer i kursen 

MC68HC12, 
Arbetsbok för MC12
CPU12 Reference Guide

• Programmerarens bild
• Översikt, ”single-chip-computer” DG256
• Adressering av primärminnet i HCS12
• HC12 Assemblerinstruktioner
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