& CHALMERS Maskinorienterad programmering

MCG68HCS12 - dversikt

MCG68HCS12,
Arbetsbok for MC12
CPU12 Reference Guide

Dagens f0:

 Programmerarens bild av HCS12 processorn

« Oversikt, "single-chip-computer” (version DG256)
 Adressering av primarminnet i HCS12

« HCS12 Assemblerinstruktioner
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Programmerarens bild av processorn

(Instruktionsuppsattning, interna register i processorn, och
hur primarminnet accessas)

"ISA” — Instruction Set Architecture

4 Vilka instruktioner kan utfdoras ?
— Instruktionsgrupper (ALU,load/store,hopp,...)
4 Hur lagras operanderna forutom i minnet ?
— Korttidslagring (i register)
¢ Hur nas operander i minnet?
— Adresseringssatt
4 Vilka typer/storlekar av operander kan hanteras ?
— Generella/speciella register, registerstorlek
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Programmerarens bild — datatyper/storlek

floating pointers
C)) point
(16) (32) (64) (IEEE)
Coldfire V1 X X X 32 bit
Coldfire V4 X X X X 32 bit
PowerPC X X X X 32 bit
PowerPC (64) X X X X 64 bit
8086 X X 16/20 bit
80386 X X X 32 bit
80486 X X X X 32 bit
X86-32 X X X X 32 bit
X86-64 X X X X 64 bit
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Programmerarens bild — adresserbart minne

ADRESSBUSS RANDOM ACCESS
16 bitar 216 = 65 536 byte = 64 kbyte

20 bitar 220 =1 048 576 byte = 1 024 kbyte = 1 Mbyte

24 bitar 224 = 16 777 216 byte = 16 384 kbyte = 16 MByte

32 bitar 232 = 4 294 967 296 byte = 4 194 304 kbyte = 4 096 Mbyte = 4 Gbyte
64 bitar 264 = 1 844674407 10'° byte = 16 Ebyte
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Freescale 68HCS12

HCS12 adressrum, 10 och minne
CPU12, klockor och réaknare
RWM, FLASH, EEPROM
Periferienheter

— Parallell Input/Output

— Seriell kommunikation

— AD omvandlare

— PWM (Pulse Width Modulation)

vV V. V V
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Historik

68HC12SX

68HC12 gy

6800

1974 1978 1982 1986 1990 1994 1998 2002 2006
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HCS12DG256, "core”

Spanningsregulatorer (flera olika

Maskinorienterad programmering

spanningar anvands internt) \mﬂ\—
"Background Debug Mode” for ‘; Voltage Regulator \
test/avlusning Vst
En kristall utgor bas for alla M Debug woae | cPU12
klockfrekvenser | systemet __XFC== T
VODPLL={I—@ =00 I : ;
VSSPLL - PL Geperation  N|_Penodic Interrupt |
Realtidsklocka och andra A fl  Modue e ancon 1
klockfunktioner RESET== '
PED—m= =] ¥R
FE1—= = =
PRl |w [T E In?ég[gtﬁgn
Programmerbara funktioner e Module
PES==|l | == MODE @ (SIM)
PEG - -] WMODG
PEVT - -] NOACCIECLES
TEST—I-l |
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256K Byte Flash EEPROM N

Primarminne

12K Byte RAM

Ak Byte EEPROM

VODR
fHEEEE:: Voltage Regulator ICke ﬂyktlgt mlnne
VDDA,2 -— : . .
Vs Upp till 256 Kbyte | "7minnesbankar”
BKGD - Single-wire Background CPU12 .. . ” ”
| 48 kB utan anvandning av "bankar
KFC
Clock and
222&: PLL Eé}{g,:ﬂn Periodic Intermupt 4 kB EEPROM
EXTAL—m= Maduls COP Watchdog . .
(TAL ] Clock Moni —
TaL~ Jock Monio Flyktigt minne
o 2| T 12 kB RAM (=RWM)
e ] e
id 11 1A i Modul
sl o R )
PEG == ->| MODE
PET | | NOACC/XCLES
TEsT—=l
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EXEMPEL, linjart adressrum

FFFF
~— FLASH

4000
3FFF -

RWM (C’RAM™)
1000 il
FFF : Synlig del av EEPROM
400
3':('; : MCHCS12 Interna register

MC68HCS12 — 6versikt/LB

256K Byte Flash EEFROM

12K Byte RAM

4K Byte EEPROM
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EXEMPEL, "bankat” adressrum o

FFFF

CO00

4K Byte EEPROM

FLASH

BFFF

3013132333435 |36(37|38|39|3A|3B|3C|3D| ”Bankat” FLASH
Dx256

8000
7FFF

4000
3FFF

1000
FFF
400
3FF

i
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FLASH

RWM (’RAM’)

Synlig del av EEPROM

MCHCS12 Interna register
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EXEMPEL, 1 laborationsdator MC12 .

FFFF

C000
BFFF

8000
7FFF

4000
3C80

1000
FFF
400
3FF

0

4K Byte EEPROM

FLASH
(monitor/debugger)

30(31(32|33|34|35 |36|37|38(39|3A|3B|3C|3D| ”Bankat” FLASH

I
I
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Dx256
Minne tillgangligt for

FLASH "anvandarprogram”
(monitor/debugger)

RWM (’RAM’)

Externt I0-granssnitt

MCHCS12 Interna register
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HCS12DG256, "core”

Instruction Set Summary

Addr. Machine

Source Fom Operatllon Mode Coding fhex) Access Detall X |v|c
AEA e B =& WH |18 o & - a2
Add Accumilators & and B
A (B + () = X 0% |1a ES o T-1-T=-T-T-1-
Transiges o LEAX BX
Y (B (0= X |13 =& 3 T=1=1=1-1-1-
Transiges o LEAY BY
ADCh Fprd e M+ C = MM [B3 11 ] -Ta]-TaTalaTa
ADCH 0 a3 501 WIIN Camy 10 A DR [33 a3 27
ADCH o 168 EXT E3 hh 11 ford
ADCH GIT_iVSD 0% |3 xb P2
ADCA oIy X1 |as b ££ o
ADCA o xi6 asp D42 (a8 xb es £F P
ADCA [0, 355] DX a3 xb fIeeep
ADCA ot aysg] Io%z] |As zb ss ££ e
ADCE fqrd B+ M+ C =B THERED 3 Tal-Talzlz]a
ADCE mia ddwilh Cary la B OR  |os a4 7
ADCE og 16 EXT F2 bh 11 ford
ADCE GE_aysp 0% | xb o
ADCE Gy X1 |Es zb £E o
ADCE ariasg X2 |E3 b ss £ e
ADCE |, 358 D (=5 xb e
ADCE [axis, 5ep] oz |Es xb es ££ e
AOA #prd A M= h MM |ee 1t T el aala]s
ADO o a A wilhouk Carry o & OR s ad s
ADOA o 168 EXT EB hh 11 R
ACOA oTa0_ysp 0% |ae b o7
ADOA G 58,1y X1 |8 zb £E o
ACO o x5 a5p D62 (a2 zb es ££ I
Stack and Memory Layout
[ A o7 0] 8-BIT ACCUMULATORS A AND B
> - OR
o BEFORE HicHER AnoResses} [15 ] 0| 16-BIT DOUBLE ACCUMULATOR D
INTERRUPT +——
RTN o
Ry [15 X 0| INDEX REGISTER X
Yio
Y [15 ¥ 0] INDEX REGISTER Y
X0
Xt
A [15 sp 0] sTack POINTER
B
5P AFTER
INTERRUPT =+ [ CCR ‘15 pC 0| PROGRAM COUNTER

Interrupt Vector Locations

$FFFE, SFFFF
$FFFC, $FFFD
SFFFA, SFFFB
$FFF8, SFFFQ
$FFF8, SFFFT
$FFF4, SFFF5
$FFF2, SFFF2
$FFCO-SFFF1

LOWER ADDRESSES *

Fower-On (FOR) or External Reset
Clock Monitor Reset

Computer Operating Properly (COP Watchdog Reset

Unimplemented Opcode Trap
Software Interrupt Instruction (SWI)
XIRQ

IRQ

Device-Specific Interrupt Sources

MC68HCS12 — 6versikt/LB

S XH I NZVC| CONDITICN CODE REGISTER

l— CARRY
COVERFLOW
ZERO

NEGATIVE
MASK (DISABLE) IRQ INTERRUPTS

L HALF-CARRY

(USED IN BCD ARITHMETIC)
MASK (DISABLE) XIRQ INTERRUPTS
RESET OR

E XIRQ SET X,
INSTRUCTICNS MAY CLEAR X
BUT CANNOT SET X

RESET DEFAULT IS 1

Centralenhet CPU12

VODR —ae]
VSSR—
VREGEN—m==
VDD1,2 -]

3 ]
V55,2 -

Voltage Regulator

BRGD -

Single-wire Background
Cebug Moduls

\.CF"LI'IE

AT -

VDDELL -.— Clock and
vespl L - FLL Reset Periodic Interrupt
W Generation g
EXTAL—» Module COP Watchdaog
HTAL - Clock Menitor
RESET == Breakpoints
PED—m =] X|RC
PE1—»=| —»=1 R
PEZ -l RV ISymem
Ll ntegration
FPE3 «=| TETRE
== |z = Madule
PEL =] 0 =1 e ECLEK {5”'.'1'3
FES -t ==| MODA '
PEG =» =] MODE
PET =] =+ NOACCIXCLES

TEST—I-I

L STOP DISABLE (IGNORE STOP OPCODES)

15



' CHALMERS

Maskinorienterad programmering

Registeruppsattning CPU12

15 8 7
A

D
15

X
15

Y
15

SP
15

PC

SIX|H|I|N

MC68HCS12 — 6versikt/LB

8-BIT ACCUMULATORS AAND B
OR
16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

SXHINZVC | CONDITION CODE REGISTER

STACK POINTER

PROGRAM COUNTER

CONDITION CODES REGISTER

L CARRY

COVERFLOW

ZERO

NEGATIVE

MASK (DISABLE) IRQ INTERRUPTS

HALF-CARRY
(USED IN BCD ARITHMETIC)

MASK (DISABLE) XIRQ INTERRUFTS
RESET OR XIRQ SET X,
INSTRUCTIONS MAY CLEAR X

BUT CANNOT SET X

STOR DISABLE (IGNORE STOF OPCODES)
RESET DEFAULT 151

16
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= " Addressing Mode Source Format Abbreviation Description
Adresseringssatt
Inhersnt (no externally supplied IMH Operands {if any) are in CPU registers
operands)
INST &oprbi i i - ;
immediate or M Operand is |r|.r. uded n ingtructicon stream
INST Zopri&i 8- or 16-kit size implied by context
) Dperand is the lowsr S-bits of an addreass
Direct INST aprtia DIF n the range $0000 — S00FF
| ndexerade Extended INST opriéa EXT Operand iz a 16-bit address
ad resse r| N gssatt kan Relative INS;IE'IS =EL An 8-hit or 16-hit relative offset from the current
INST reii6 pe ig supplied in the instruction
anvandas med reg ISter o {Slrl':l-t’:eéflfasdet‘ INST oprx5,xysp I 5-bit signed constant offzet from x, v, sp, or pe
. = ¥
X,Y och SP ibland ocksa —
. (pre-decrement) INST oprx3—xys ([ Auto pre-decrement x, y, orsplby 1~ 8
med PC (PC-relativt) ——
(pre-increment) INST oprx3 +xys IO Auto pre-increment x, y,orspby 1 ~3
d
i w:_réieéxrggﬂ ent) INST oprx3, xys— G Auto post-decrement x, v, orsp by 1~ 8
tp-:asltr-‘?'lif:r?enh INST opvxd,xys+ ([ Auto post-increment =, v, orsp by 1~8
Imdexed Indexed with 8-bit {& or B) ar 16-kit (0
(accumulator offset) INST abd,xysp D% accumulator offsst from x, v, sp, orpc
Indexed . S-Lit signed constant offzet from x, v, sp, or pc
1S-bit offset) INST oprx3,xysp IDX1 {lower 3-bits of offset in one extension byie)
Indexed ) - 16-bit constant offzst from x, ¥, ap, or po
(16-0it offset) INST opreiG,xysp b2 (16-bit offset in two extension bytes)
” . . ” . Pointer to operand iz found at...
Indirekt adresseri ng '”ﬂ?ﬁ'é’%i‘éﬁ“t INST [oprs16,xysp] [IDX2] 16-bit constant offsst from x, y, £p, of pc
) ! (16-bit offset in two extension bytes)
Indexed-Indirect . .
. i Pointer to operand iz found at...
(O EE%.US';,'[‘; ator INST [D,xy=c] [C.IDX] ®, Y, &p, or pe plus the valus in D

MC68HCS12 — dversikt/LB 17
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Inherent
. Addr. Machine .
Source Form Operation Mode Coding (hex) Access Detail
CBA (A) - (B) INH 18 17 oo
Compare 8-Bit Accumulators A A

|

Maskinkod for instruktionen

Cykel for cykel beskrivning

Flaggpaverkan

MC68HCS12 — 6versikt/LB
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Omedelbar (Immediate) 8-bit/16-bit

(LLDAA #onrsi (M) = A IMM |86 11 )
LDAA opr8a Load Accumulator A DIR 96 dd rfF
LDAA opriéa EXT B& hh 11 TOF
LDAA opmd_xysp DX A6 xb rfp
LDAA opmed, xysp ID¥1 |As xb ff TEO
LDAA apm 16 xysp DXz |A& xb ee ff frep
LDAA D, xyspl 0IDX] |Re x=b fIfrfe
LDAA loorx76.xvsol Nnoxzl |as xb ee ff FTOrFD

U LDD #0015 Il (M:M+1) = AB [N ¢ 31 kk cP
LDD ow&a Load Double Accumulator D (A:B) DIR DC dd EfE
LDD opr16a EXT FC hh 11 ROP
LDD oprxd_xysp DX EC xb RED
LDD oprxd.xysp IDX1 |EC xb ff REC
LDD oprx16.xysp IDX2 |EC xb ee ff fREP
LDD [D.xyspl [0IDX] |EC xDb fIfREP
LDD [oprx15, xysp] [IDX2] |EC xb e= ff FIDRED

opr8i, 8-bitars konstant om 8-bitars register

Oprl6i, 16-bitars konstant om 16-bitars register

MC68HCS12 — 6versikt/LB
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Direkt (Direct Page)
Absolut (Extented)

| DAL #onvdi M = A MM g6 11 P -|-1=-|-lA]A]O
LDAA opr8a Load Accumulator A DIR 96 dd rfF

LDAA opriéa EXT B& hh 11 TOF

CORR opmd_xysp DX A6 xb rfp

LDAA opmed, xysp ID¥1 |As xb ff TEO

LDAA apm 16 xysp DXz |A& xb ee ff frep

LDAA D, xyspl 0IDX] |Re x=b fIfrfe

LDAA loorx76.xvsol Nnoxzl |as xb ee ff FTOrFD

| DD #aorisi (M:M+17) = A:B [N cC 19 kk oP -|-|-|-]AlA
LDD ow&a Load Double Accumulator D (A:B) DIR DC dd EfE

LDD opriGa EXT FC hh 11 ROP

LDD oprxd_xysp DX EC xb RED

LDD oprxd.xysp IDX1 |EC xb ff REC

LDD oprx15.xysp IDX2 |EC xb ee ff fREP

LDD [D.xyspl [0IDX] |EC xDb fIfREP

LDD [oprx15, xysp] [IDX2] |EC xb e= ff fIPRED

oprl6a, kan adressera hela adressintervallet 0000-FFFF

opr8a, kan enbart adressera intervallet 0000-00FF, anger minst signifikant byte
av adressen

MC68HCS12 — 6versikt/LB
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PC-relativ ("BRANCH”-instruktioner)
0 8-bitars offset (-128..127)
0 9-bitars offset (-256..255)
0 16-bitars offset (-32768..32767)

BRA rala Branch Always (it 1=1) REL 20 T
IBEQ abdxys, rel9 (cntr) + 1= cnir REL 04 1b rr
It {cntr) = 0, then Branch (9-bit)
glse Continue to next instruction
Increment Counter and Branch if =0
fcntr= A, B, D, X, Y, or SP)
IBNE abdxys, reld (cntr) + 1= cntr REL 04 1b rr
it (cntr) not = 0, then Branch: (9-hit)
alse Continue to next instruction
Increment Counter and Branch it = 0
fcntr=A, B, D, X, Y, or SP)
LBCC reité Long Branch it Carry Clear (it C = 0) REL 18 24 qq rr

MC68HCS12 — 6versikt/LB
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' CHALMERS

Indexerade
adresseringssatt:

0 Register relativ, konstant

£ _ s

Maskinorienterad programmering

LDAA #oprdi
LDAA gpréa
LDAA oprisa

M) = A
Load Accumulator A

LDAA gpmed. xysp

LDAA gom0_xysp

LDAA opr16.xysp

LDAA D, xyspl

LDAA loprx16.xvsol

oprx0_xysp — Indexed addressing posthyte code:

oprx3—xys Predecrement XorYorSPby1.._ 8

oprx3+xys Preincrement XorY orSPbhy1 ... 8
3 x) [ SP by 1 g

oprx3 xys+ Postincrement XorYorSPhy1...8

oprys xysp  B-hit constant offset from X or Y or SP or PC

abd xysp  Accumulator A or B or D offset from X or Y or SP or PC

oprxd — Any positive integer 1. . . & for prefpost increment/decrement
aprxs — Any value in the range —16 . .. +156
aprxd — Any value in the range —256 . . . +255

aorx 16 — Any value in the range —32. 768 . _ . 65 535

Basregister kan vara nagot av: X,Y,SP,PC
EXEMPEL:

MC68HCS12 — 6versikt/LB

LDAA
STAA
LDAA
STAA

5,X
20,Y
sym,PC
off,SP

Observera, ingen syntaktisk skillnad.
Assemblator valjer effektivast kodning




{(#8) CHALMERS

Hur oversatta
nedanstaende

C-kod till assembler?

char namn []="Emil”;
char initial,
void plocka_initial (void)
{
initial = namn[0] ;

}

MC68HCS12 — 6versikt/LB

Maskinorienterad programmering

LOsningsforslag
ORG $1000

plocka initial
LDX  #Statiska_variabler
LDAA 0,X
STAA 5X

Statiska_variabler
namn FCB 'E’,’m’,)1’,I')\O’
inital RMB 1



! CHALM

ERS

Maskinorienterad programmering

Indexerade adresseringssatt:
0 Auto pre- increment/decrement
0 Auto post- increment/decrement

LDAA #oprdi
LDAA gpréa
LDAA oprisa

M) = A
Load Accumulator A

[ LDAA gomx0_xysp

LDAA agpmed. xysp
LDAA opr 16, xysp
LDAA D, xyspl

LDAA loprx16.xvsol

aprxd_xysp — Indexed addressing posthyte code:

oprK3 —xys
aprx 3 +xys
aprx 3, xys—
oprK3 xys+

Fredecrement XorY orSFPby1... 8
Freincrement X orY or 3P by 1., 8

Fostdecrement X orY or SP by 1...8
Fostincrement X orY or SP by 1 ... 8

oprxh xysp
abd xysp

b-bit constant offset from X or Y or SF or PC
Accumulator A or B or D offset from X or Y or 5P or PC

aprxd — Any positive integer 1 . . . 8 for prefpost increment/decremeant

oprx5 — Any value inthe range —16 . .. +15
oprx@ — Any value in the range -256 . . . +255
aorx T — Any value in the range —32. 768 . _ . 65,535

Basregister kan vara nagot av: X,Y,SP
EXEMPEL.:
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LDAA
STAA
STAB
LDAB

1,-X
4,Y-

8,+SP
7,SP+
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Hur dversatta denna
C-kod till assembler?

char namn [[="Emil”;
char i1=0;

void antal_tecken i _namn (void)

{ while (namn[i++] !="\0’)

MC68HCS12 — 6versikt/LB

Maskinorienterad programmering

Losningsforslag
ORG $1000
antal_tecken I namn

LDX  #Statiska variabler

CLRB

rakna LDAA 1, X+
BEQ Klart
INCB
BRA rakna

Klart STAB 0,X
Statiska_variabler

namn FCB 'E’,’m’,T",I')\O’
i FCB O



! CHALM

ERS

Maskinorienterad programmering

Indexerade adresseringssatt:
0 Register relativ, offset i ackumulator

LDAA #oprdi
LDAA gpréa
LDAA oprisa

M) = A
Load Accumulator A

[ LDAA gomx0_xysp

LDAA agpmed. xysp
LDAA opr 16, xysp
LDAA D, xyspl

LDAA loprx16.xvsol

aprxd_xysp — Indexed addressing posthyte code:

Oprx3—xys
oprx 3 +xys
oprx3 xys—
opr 3 xys+
oprx5 xysp

Predecrement XorYorSPhby1...8
Freincrement XorY¥ orSP by 1 .. 8
Fostdecrement X orY or SP by 1 ... 8
Fostincrement X orY or SP by 1 ... 8

5-bit constant offset from X or or SP or PC

abd xysp

Accumulator & or B or D offset from X or Y or 5P or PC

oprx3 — Any positive integer 1 . . . & for pre/post increment/decrement
oprx5 — Any value inthe range —16 . .. +15
oprx@ — Any value in the range -256 . . . +255

aorx T — Any value in the range —32. 768 . _ . 65,535

Basregister kan vara nagot av: X,Y,SP,PC
EXEMPEL:
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LDAA
STAA
STAB
LDAB

O O0Ow >
T 0 < X

O T
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} CHALMERS Maskinorienterad programmering

Indexerade adresseringssatt:

a nd I rekt oprxl_xysp — Indexed addressing postbyte code:
oprx3—xys Predecrement XorYorSPby1... 8
oprx3+xys Preincrement XorY orSPby1 ... 8
LDAA #opréi (M) = A oprx3 xys— Postdecrement XorY orSPhy1 ... 8
LDAA opréa Load Accumulator & oprcd s+ Postincrement X orY or 3P by 1 .. 8
LDAA gpriéa aprxs xysp  B-hit constant offset from X or Y or SP or PC
LDAA gomx0_xysp abd xysp  Accumulator A or B or D offset from X or Y or SP or PC
LDAA opm9.xysp 3 \ T — a f incre ide
LDAA app 765D oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
LDAA [D, xysp] aprxsd — Any value in the range —16 . . . +15
LOAA Tapnx6.xvsol oprxd — Any value in the range —256 . _ +255

oo iE — Any value in the range —32 768 . _ . 65 535

EXEMPEL:
LDAA  [D,X]
STAA  [sym,PCR]
STAB [2,SP]
LDAB [D,Y]
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} CHALMERS

Maskinorienterad programmering

Instruktionsgrupper

EXEMPEL.: Kopiera byte

LOAD-instruktioner LDAB  $3000
Mnemonic Funktion Operation STAB $3001

LDAA Load A (M)—A eller
LDAB Load B (M)—B LDAA $3000
LDD Load D (M:M+1),—A:B
LDS Load SP (M:M+1),—SP,,:SP, STAA  $3001
LDX Load index register X (M:M+1),—X,;: X,
LDY Load index register Y (M:M+1),-Y.Y, eller
LEAS Load effective address into SP Effective address—SP MOVB $3000,$3001
LEAX Load effective address into X Effective address—X
LEAY Load effective address into Y Effective address—Y

STORE-instruktioner

EXEMPEL: Kopiera word

Mnemonic Funktion Operation
STAA Store A (A)—>M LDD $3000
STAB Store B (B)>M STD $3002
STD Store D (A)—M, (B)>M+1 eller
STS Store SP SP,:SP, -M:M+1 LDX $3000
STX Store X X X, =»M:M+1 STX $3002
STY Store Y Y.Y, >M:M+1 aller
MOVE-instruktioner LDY $3000
Mnemonic Funktion Operation STY $3002
MOVB Move byte (8 bitar) (M,)—M, eller
MOVW Move word (8 bitar) (M:M+1) ,—>M:M+1,,

MC68HCS12 — 6versikt/LB

MOVW  $3000,%$3002
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Instruktioner for kopiering av registerinnehall

Maskinorienterad programmering

<—— Anvand denna

Ovriga finns av

"kompatibilitetsskal”

<—— Anvand denna

Ovriga finns av

"kompatibilitetsskal”

Mnemonic Funktion Operation
TAB Transfer Ato B (A)—B
anm: Ekv. Med TFR A,B
TAP Transfer Ato CCR (A)—»CCR
anm: Ekv. Med TFR A,CCR
TBA Transfer B to A (B)—A
TFR Transfer register to register (A,B,CCR,D,X,Y eller SP) —
(A,B,CCR,D,X,Y eller SP)
TPA Transfer CCR to A (CCR)—A
anm: Ekv. Med TFR CCR,A
TSX Transfer SP to X (SP)—X
anm: Ekv. Med TFR SP,X
TSY Transfer SPto Y (SP)—-Y
anm: Ekv. Med TFR SP,Y
TXS Transfer X to SP (X)—>SP
anm: Ekv. Med TFR X,SP
TYS Transfer Y to SP (Y)—>SP
anm: Ekv. Med TFR Y,SP
- e e . = . o
Instruktioner for vaxling av registerinnehall
Mnemonic Funktion Operation
EXG Exchange register to register (A,B,CCR,D,X,Y eller SP) «—
(A,B,CCR,D,X,Y eller SP)
XGDX Exchange D with X (D) « (X)
anm: Ekv. Med
EXG D,X - EXG X,D
XGDY Exchange D with Y (D) < (Y)
anm: Ekv. Med
EXG D,Y - EXG Y,D
Instruktion for teckenutvidgning
Mnemonic Funktion Operation
SEX Teckenutvidga 8 bitars operand (A,B,CCR) —

(D, X,Y eller SP)

MC68HCS12 — 6versikt/LB
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' CHALMERS

Ovillkorlig programflodeskontroll

Maskinorienterad programmering

Mnemonic Funktion Operation
BSR Anrop av subrutin. SP-2 = SP
PC-relativ operand RetAdrL:RetAdrH =
Msp):-M(spe1
Adress = PC
BRA “Hopp” till adress. Adress = PC
PC-relativ operand
CALL Anrop av subrutin SP-2 = SP
Absolut operand (20 bitar) RetAdrL:RetAdrH =
Anm: Anvandes vid Msp):M(sp+1)
programflodeséndring mellan Subrutinadress = PC
olika minnesbankar ($8000- SP-1 = SP
$BFFF) (PPAGE) = Mgp,
PAGE = PPAGE
Subrutinadress = PC
JMP “Hopp” till address. Subrutinadress = PC
Absolut operand
JSR Anrop av subrutin SP-2 = SP
Absolut operand RetAdrL:RetAdrH =
Msp):-M(spe+1)
Subrutinadress = PC
RTC Atervand fran subrutin. Msp) = (PPAGE)
Returadress fran STACK och SP+1 = SP
PPAGE Mspy:M(sps1y= PCH:PC_
SP+2 = SP
RTS Atervand fran subrutin. M sp):Msp+1y = PCH:PC,
Returadress fran STACK SP+2 = SP

MC68HCS12 — 6versikt/LB
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Instruktioner for addition

Maskinorienterad programmering

Mnemonic Funktion Operation Mnemonic Funktion Operation
ABA Addera B till A (A)+(B) — A INC Incrementera i minnet (M)+$01 — M
ABX Addera B till X X)+(B) —» X INCA Inkrementera A (A)+ $01—> A

anm: Ekv. med LEAX B,X INCB Inkrementera B (B)+ $01 — B
ABY Addera B till Y (Y)+(B) =Y INS Inkrementera SP (SP)+ $0001 — SP
anm: Ekv. med LEAY B,Y anm: Ekv. med LEAS 1,SP
ADCA Addition med carry till A (A)+(M)+C — A INX Inkrementera X (X)+ $0001 — X
ADCB Addition med carry till B (B)+(M)+C — B anm: Ekv. med LEAX 1,X
ADDA Addition till A (A)+(M) — A INY Inkrementera Y (Y)+ $0001 — Y
ADDB Addition till B (B)+(M) —» B anm: Ekv. med LEAY 1,Y
ADDD Addition till D (A:B) (D)+(M:M+1) —D
Instruktioner for subtraktion
Mnemonic Funktion Operation Mnemonic Funktion Operation
SBA Subtrahera B fran A (A)-(B) - A DEC Dekrementera i minnet (M)-$01 — M
SBCA Subtrahera med borrow frén A (A)-(M)-C — A DECA Dekrementera A (A)-$01—- A
SBCB Subtrahera med borrow frén B (B)-(M)-C — B DECB Dekrementera B (B)- $01 — B
SUBA Subtrahera fran A (A)-(M) — A DES Dekrementera SP (SP)- $0001 — SP
SUBB Subtrahera fran B (B)-(M) —» B anm: Ekv. med LEAS -1,SP
SUBD Subtrahera fran D (A:B) (D)-(M:M+1) —D DEX Dekrementera X (X)- $0001 — X
anm: Ekv. med LEAX -1,X
DEY Dekrementera Y (Y)- $0001 — Y

MC68HCS12 — 6versikt/LB

anm: Ekv. med LEAY -1,Y
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Instruktioner for logikoperationer

Maskinorienterad programmering

Mnemonic Funktion Operation ) s . . o
ANDA Bitvis “och” A med minnesinnehall (A)e(M)= A EXEMPEL: Nollstall bit 7-bit 4 pa
ANDB Bitvis “och” B med minnesinnehall (B)o(M)= B adress $3000
ANDCC Bitvis “och” CC med minnesinnehall (CCR)e(M)= CCR
EORA Bitvis “exklusivt eller” A med (A)e(M)= A
minnesinnehall LDAB  $3000

EORB Bitvis “exklusivt eller” B med (B)®(M)= B ANDB #%00001111
minnesinnehall

ORAA Bitvis “eller” A med minnesinnehall (A)+(M)= A STAB $3OOO

ORAB Bitvis “eller” B med minnesinnehall (B)+(M)= B

ORCC Bitvis “eller” CCR med minnesinnehall (CCR)+(M)= CCR

Unéara operationer

EXEMPEL: Ettstall bit 7 och bit 0

pa adress $3000
LDAB $3000
ORAB #%10000001
STAB $3000

Mnemonic Funktion Operation
CLC Nollstéll carryflaggan i CCR 0=>C
CLI Nollstall avbrottsmask i CCR 0=1
CLR Nollstall minnesinnehall $00 = M
CLRA Nollstall A $00 = A
CLRB Nollstall B $00 = B
CLV Nollstall overflowflaggan | CCR 0=V
COM Ettkomplementera minnesinnehall $FF-(M) = M

COMA Ettkomplementera A $FF-(A) = A
COMB Ettkomplementera B $FF-(B) = A
NEG Tvakomplementera minnesinnehall $00-(M) = M
NEGA Tvédkomplementera A $00-(A) = A
NEGB Tvékomplementera B $00-(B) = B

MC68HCS12 — 6versikt/LB

EXEMPEL: Invertera bit 2 och
bitl pa adress $3000

LDAB $3000
EORB #%00000110
STAB $3000
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' CHALMERS

Logiska skiftoperationer

Maskinorienterad programmering

Mnemonic Funktion Operation
LSL Logiskt vansterskift i
__minnet__ I I
LSLA Logiskt vansterskift A C by bo
LSLB Logiskt vansterskift B
LSLD Logiskt vansterskift D ) .
I T A A I Y
C b7 A bo bz B bo
LSR Logiskt hogerskift i minnet
>
LSRA Logiskt hogerskift A o= T T T T F]
LSRB Logiskt hogerskift B by b C
LSRD Logiskt hogerskift D > >
o= T T T T T T T TTTTTTT 1]
b A bo by B bo C

Exempel pa anvandning:
Multiplikation med 2, tal utan tecken.
Division med 2, tal utan tecken.

MC68HCS12 — 6versikt/LB
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Maskinorienterad programmering

Aritmetiska skiftoperationer

Mnemonic Funktion Operation
ASL Aritmetiskt vansterskift i
minnet
_(ekv. med LSL) [T T TTTTT }o
ASLA Aritmetiskt vansterskift A C b bo
(ekv. med LSLA)
ASLB Aritmetiskt vansterskift B
(ekv. med LSLB)
ASLD Aritmetiskt vansterskift D
(ekv. med LSLD)
T[T T T I T T T T TTT T o
C b7 A bo by B bo
ASR Aritmetiskt hogerskift i
minnet
ASRA Aritmetiskt hogerskift A >
ASRB Aritmetiskt hogerskift B l:‘b7| LT lbngl

Exempel pa anvandning, hogerskift:
Division med 2, tal med tecken.

MC68HCS12 — 6versikt/LB
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Instruktioner for rotation (carry-skift)

' CHALMERS

Maskinorienterad programmering

Mnemonic Funktion Operation
ROL Rotation vanster via carry i
minnet <
ROLA Rotation vanster via carry |‘J
A —{ = T T TTTTT]
ROLB Rotation vanster via carry b7 bo
B
ROR Rotation hoger via carry i
minnet >
RORA Rotation hoger via carry A [ 1T [ 1 [ 1 H
RORB Rotation hoger via carry B b, bo C

EXEMPEL.: Skifta ett 32-bitars tal
pa adress $3000, 1 steg at hoger

LSR $3000
ROR $3001
ROR $3002
ROR $3003

Exempel pa anvandning:
Skiftoperationer pa tal stérre &n 8 bitar.

MC68HCS12 — 6versikt/LB




&) CHALMERS

Maskinorienterad programmering

Instruktioner for jamforelser och test

Mnemonic

JAMFORELSE
Tva operander
BINAR operation

Funktion Operation
CBA Jamfor B med A (A)-(B)
CMPA Jamfor A med minne (A)-(M)
CMPB Jamfér B med minne (B)-(M)
CPD Jamfor D med minne (A:B)-(M:M+1)
CPS Jamfor SP med minne (SP)-(M:M+1)
CPX Jamfér X med minne (X)-(M:M+1)
CPY Jamfor Y med minne (Y)-(M:M+1)
Mnemonic Funktion Operation
TST Testa minnesinnehall (M)-00
TSTA Testa register A (A)-00
TSTB Testa register B (B)-00

MC68HCS12 — 6versikt/LB

TEST
En operand
UNAR operation
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Villkorlig programflddeskontroll

Maskinorienterad programmering

MC68HCS12 — 6versikt/LB

Mnemonic | Funktion | Villkor
— _____Enkla flaggtest - Anvéands typiskt tillsammans med
BCC “HOESP gmolgfégrry g;é jamforelse/test instruktioner.
BEQ “Hopp” om zero Z=1 EXEMPEL
BNE “Hopp” om ICKE zero Z=0 LDAB  $3000
BMI “Hopp” om negative N=1 CMPB $3001
BPL “Hopp” om ICKE negative N=0 BEQ L1
BVS “Hopp” om overflow V=1 L
BVC “Hopp” om ICKE overflow V=0
Test av tal utan tecken
BHI Villkor: R>M C+2=0
BHS Villkor: R>M C=0
BLO Villkor: R<M C=1
BLS Villkor: R<M C+Z2=1
Test av tal med tecken
BGT Villkor: R>M Z+(N®V)=0
BGE Villkor: R>M N®V=0
BLT Villkor: R<M NOV=1
BLE Villkor: R<M Z+(NeV)=1
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Instruktioner for raknande programslingor

Maskinorienterad programmering

Sammansatta instruktioner.

EXEMPEL
DBEQ B,L2
samma sak som
DECB
BEQ L2

Mnemonic Funktion Villkor

DBEQ Dekrementera innehall i register. (reqgister) — 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
DBNE Dekrementera innehall i register. (register) — 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(reqister: A,B,D,X,Y,SP) annars: nasta instruktion
I1BEQ Inkrementera innehall i register. (register) + 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
IBNE Inkrementera innehall i register. (register) + 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
TBEQ Testa innehall i register. “Hoppa” om(register)=0; “hoppa”;
om resultatet = 0. annars: nasta instruktion

(reqgister: A,B,D,X,Y,SP)
TBNE Testa innehall i register. “Hoppa” om(register)=0; “hoppa”;

om resultatet = 0.
(register: A,B,D,X,Y,SP)

annars: nasta instruktion

MC68HCS12 — 6versikt/LB
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Maskinorienterad programmering

Summering

Kursintroduktion

e Teori: Kurslitteratur & Forelasningar
« Simulatordvningar
« Fem laborationer | kursen

MC68HC12,

MC68HCS12 — 6versikt/LB

Arbetsbok for MC12
CPU12 Reference Guide

« Programmerarens bild

« Oversikt, "single-chip-computer” DG256
 Adressering av primarminnet i HCS12

« HC12 Assemblerinstruktioner
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