& CHALMERS Maskinorienterad programmering

MCG68HCS12 - dversikt

MCG68HCS12,
Arbetsbok for MC12
CPU12 Reference Guide

Dagens f0:

 Programmerarens bild av HCS12 processorn

« Oversikt, "single-chip-computer” (version DG256)
 Adressering av primarminnet i HCS12

« HCS12 Assemblerinstruktioner

MC68HCS12 — 6versikt/LB



’ CHALMERS Maskinorienterad programmering

Programmerarens bild av processorn

(Instruktionsuppsattning, interna register i processorn, och
hur primarminnet accessas)

"ISA” — Instruction Set Architecture

4 Vilka instruktioner kan utfdoras ?
— Instruktionsgrupper (ALU,load/store,hopp,...)
4 Hur lagras operanderna forutom i minnet ?
— Korttidslagring (i register)
¢ Hur nas operander i minnet?
— Adresseringssatt
4 Vilka typer/storlekar av operander kan hanteras ?
— Generella/speciella register, registerstorlek

MC68HCS12 — 6versikt/LB



CHALMERS Maskinorienterad programmering

Programmerarens bild — datatyper/storlek

floating pointers
C)) point
(16) (32) (64) (IEEE)
Coldfire V1 X X X 32 bit
Coldfire V4 X X X X 32 bit
PowerPC X X X X 32 bit
PowerPC (64) X X X X 64 bit
8086 X X 16/20 bit
80386 X X X 32 bit
80486 X X X X 32 bit
X86-32 X X X X 32 bit
X86-64 X X X X 64 bit

MCG68HCS12 — oversikt/LB



CHALMERS Maskinorienterad programmering

Programmerarens bild — adresserbart minne

ADRESSBUSS RANDOM ACCESS
16 bitar 216 = 65 536 byte = 64 kbyte

20 bitar 220 =1 048 576 byte = 1 024 kbyte = 1 Mbyte

24 bitar 224 = 16 777 216 byte = 16 384 kbyte = 16 MByte

32 bitar 232 = 4 294 967 296 byte = 4 194 304 kbyte = 4 096 Mbyte = 4 Gbyte
64 bitar 264 = 1 844674407 10'° byte = 16 Ebyte

MC68HCS12 — 6versikt/LB



{‘;3 CHALMERS Maskinorienterad programmering

Freescale 68HCS12

HCS12 adressrum, 10 och minne
CPU12, klockor och réaknare
RWM, FLASH, EEPROM
Periferienheter

— Parallell Input/Output

— Seriell kommunikation

— AD omvandlare

— PWM (Pulse Width Modulation)

vV V. V V

MC68HCS12 — oversikt/LB



i#¢) CHALMERS Maskinorienterad programmering

Historik

68HC12SX

68HC12 gy

6800

1974 1978 1982 1986 1990 1994 1998 2002 2006

MC68HCS12 — 6versikt/LB



CHALMERS Maskinorienterad programmering

= - e | ———] WHH | =— w8
| 25CH Eyte Flash EEFROM | ATDD gy, |e—————] AT gy e
WO | — ] [ E ST PrE TS
| A5 B Sl | NEES | ———] WEEE |-m—yinia,
) Akal i AhD ] |m—Pacas
| £ Eyl= EEFRTM | A i Al ] - O
- AR - Shi -— bt = 3 e
WL — - AFC1 | — s ahE ] T | a—maninn
OC Iag ram W —— AR o | e— e [Prhvy F [
W ELEH—i- Wolags Regolaxr ARE - AR f——] —— ALY
oD 2 --— ArE il | ERE H— il P e
WSS D . ART -— ERT |—-— AL
_ " L |-
i I e CPLZ PEASE FLE T |
NP — PLED |-
WO L —— Cloek ared ::'-.: :
WESL -] FLL Raml " mtkach: b il iiny
N T [T T Wk bk _—
T —-— [ e —
HAEEET = B pwbpc it 1oos e
Po0—s- e ez [—=
:,:;__ : :PN Entanced Caplurs [y s
PES | i | s Imegration Tirmer 1O
h = Rodu= R e
FEd = | o E | ECLE =TT ey -
FES e o | B E, : T |
Fes s aad LT Y
PE? jee | MRS ETETREE TR | ]
=200 o
S ne
13:P§93% $§J330403 | = _ o el o - os x
FUtipi=yes AgcressiDacs Bus o T [l Ll el i
==10 .
e = P
EENEREENEREENERE: oA 3 =
DDRA DDRE 1% =
BEOLC M e— =
FTaA PTa LHEEDF TEE —w - - FELT —5
FEEr] f=t—] & —— ——
TEFERTEE FTETTETE [omo' PRl [Em 2
EEEE-E’EE EﬁEﬁE-E- wm"_ —-.::--I'I:Il'l E
XS . . TECEN - E-F St ol L =
EErxEsEEE EEEZEEREE R ek e £
oo . 324233339 23333333 =R e 2
[ = - ] - 1
e e g -EEE:EEQ'E- TrTerT] = =
asee EEEESEES EEEEESEE;| ow= TED E
FWRID |~
IMutpend SR TR S E K e 5
MaTmMELE XSRS 8 - T il i =
e il N s gl Il " ooy i Lo
niz=mal Logic 2.5% 0 Driver S5 AT ]
wooi2 a— VoDE —- (LN -': KA |-
wEE1LE — WESE —1 i | S |
- [LPE TH : PO | &
) AJD Coneet=r S0 A PO pnas [ el wews (e
PLL 2.5W Wokage Segualor Seference T e e o s
VOO e WOOE —- IAME brm] o |-ue-
e wass —— P T fot ot BT |
- - [FTETE] FAND |-
" [TISEa Pt N |
.ut?lqu-u;ﬂt.:bﬂ.mE\l’&lﬂ ==11 5":3"-“ -f'"""li
j.- WITELT [ N [ |
- r.
smiz  MEE [w e e
o T |

MC68HCS12 — dversikt/LB



CHALMERS Maskinorienterad programmering

HCS12DG256, ™ "’ == T 2= EE
, core i i s
T PR ERD pm] |m—Paras
| &8 Bl EEFRON | bt — R ANl [ [|w—Pard
s —— AHZ =] -—
IO St - ﬂ—:“mz AhD MM T "—m:?l
256K Byte Flash EEPROM v . hpos [ % |a—peron | ane [od] @ ez
WREE - Wolinpe Regulamor TE] i ERE ] —-—Pan3
Lo el o T a—PRL0E EhE H— a—Parny
WERL D Bk -— ERT | -—Papns
12K E'I-I'ITE RAM g | e | CPLHZ FRASE o] = ::5: ﬂﬁ:;:
g 1 pis (o[ [ [ ancmer
SR e BEG rEsmes ] v I vt v
4K Byte EEPROM era gl i [ ob b ] B O T i
L ek K e
5 L 10T pmm pmsm. T
VDDR —] ekl | & IR - e ) M v
VSSR—= EEl e e || PR EEE
VREGEN—= Voltage Regulator A i : r| Bk = el oo I o
¥, -y VS e JLCS | e - FTd
e ol | e e i -
V351,32 -— T 5yl -
Single-wire Background Mutiplsses AdCressDaca Eus = o ml_hg E E .’JE §
BRED=*1"" "Debug Module CPU12 EEIEREEREREENERE; o e i
i BOLC Ml f— Eﬁ.
T - ETA PTE WH2E0 Txb el o e e T
- FECEM [w— = -— -
/ooPLL=] - Clockand TITE OO [ £ SR
VSSPLL - PLL Generation Periodic Intemupt EEEE?E‘EE SEEEERES [ow DEALS] 5 (=[5 [E[< i E-
EXTAL—= Madule COP Watchdog EEcE EEfE EEEZBEER I o B B el
KTAL -] Clock Manitor Siviifa? dREwsazd i ofellleme 3
A — R T T T il £
_— - Whutplesed 2 2 2 2 5 7 3T ZE9ITITS. T 3 c
RESET == Sreakpoints et LLLELLEIEELEEE L TR :
PED—p~ »=| FIRO Mulpemd S AREEE pvere] o = Y e ]
PE1—m= L »| TR NeTHRliaE333A33 R it e o =] e A
PEZ ] RV SFS’[E".” -..EH Lf:_l = 'n,,ﬂ,:ﬂi G e B = P
PE | i | Y |l ToTRE Ingﬂegéatllun vamz s e o] :& i
= aduie - . ] :“f L m\nE - [+ :::"!
PEL=wlpn g | ECLEK {5”‘:’” PLL 2.5 :'?:Dmﬁﬁn:’;:rlﬁeﬂmn:z |xs ot e :::. ut . -
PEE_‘.... . MDD'E" : '-ll_'I.II'ILL — [ R — I bra s e -
PER == e MDDE WESILL _-|_; [T — ISAT | L] BRI [ —_—
- e v - proce i e v i R I i
PET | MNOACCIACLES Valags Regulmor VAT | A - e FR2
-:'.-';EMH % = K [ e i
TEST[ - e T
512 S, [mb] ] KWHE e —
e Il e P

MC68HCS12 — 6versikt/LB



CHALMERS

HCS12DG256, "core”

Spanningsregulatorer (flera olika

Maskinorienterad programmering

spanningar anvands internt) \mﬂ\—
"Background Debug Mode” for ‘; Voltage Regulator \
test/avlusning Vst
En kristall utgor bas for alla M Debug woae | cPU12
klockfrekvenser | systemet __XFC== T
VODPLL={I—@ =00 I : ;
VSSPLL - PL Geperation  N|_Penodic Interrupt |
Realtidsklocka och andra A fl  Modue e ancon 1
klockfunktioner RESET== '
PED—m= =] ¥R
FE1—= = =
PRl |w [T E In?ég[gtﬁgn
Programmerbara funktioner e Module
PES==|l | == MODE @ (SIM)
PEG - -] WMODG
PEVT - -] NOACCIECLES
TEST—I-l |

MC68HCS12 — 6versikt/LB




) CHALMERS

Maskinorienterad programmering

256K Byte Flash EEPROM N

Primarminne

12K Byte RAM

Ak Byte EEPROM

VODR
fHEEEE:: Voltage Regulator ICke ﬂyktlgt mlnne
VDDA,2 -— : . .
Vs Upp till 256 Kbyte | "7minnesbankar”
BKGD - Single-wire Background CPU12 .. . ” ”
| 48 kB utan anvandning av "bankar
KFC
Clock and
222&: PLL Eé}{g,:ﬂn Periodic Intermupt 4 kB EEPROM
EXTAL—m= Maduls COP Watchdog . .
(TAL ] Clock Moni —
TaL~ Jock Monio Flyktigt minne
o 2| T 12 kB RAM (=RWM)
e ] e
id 11 1A i Modul
sl o R )
PEG == ->| MODE
PET | | NOACC/XCLES
TEsT—=l

MC68HCS12 — 6versikt/LB



{3 CHALMERS Maskinorienterad programmering

EXEMPEL, linjart adressrum

FFFF
~— FLASH

4000
3FFF -

RWM (C’RAM™)
1000 il
FFF : Synlig del av EEPROM
400
3':('; : MCHCS12 Interna register

MC68HCS12 — 6versikt/LB

256K Byte Flash EEFROM

12K Byte RAM

4K Byte EEPROM




' CHALMERS

Maskinorienterad programmering

EXEMPEL, "bankat” adressrum o

FFFF

CO00

4K Byte EEPROM

FLASH

BFFF

3013132333435 |36(37|38|39|3A|3B|3C|3D| ”Bankat” FLASH
Dx256

8000
7FFF

4000
3FFF

1000
FFF
400
3FF

i

MC68HCS12 — 6versikt/LB

FLASH

RWM (’RAM’)

Synlig del av EEPROM

MCHCS12 Interna register

12



Maskinorienterad programmering

EXEMPEL, 1 laborationsdator MC12 .

FFFF

C000
BFFF

8000
7FFF

4000
3C80

1000
FFF
400
3FF

0

4K Byte EEPROM

FLASH
(monitor/debugger)

30(31(32|33|34|35 |36|37|38(39|3A|3B|3C|3D| ”Bankat” FLASH

I
I

MC68HCS12 — dversikt/LB

Dx256
Minne tillgangligt for

FLASH "anvandarprogram”
(monitor/debugger)

RWM (’RAM’)

Externt I0-granssnitt

MCHCS12 Interna register

13



Maskinorienterad programmering

255K Syie Flasn SEFROM |

Periferikretsar | HCS12D G256 —

AD — Analog till Digital omvandling / =
ECT- Raknarkretsar for noggrann Fellnll==—= o
tidmatning Fzﬁé%‘: el B
. - AR | e
SCI — Asynkron seriekommunikation T T, (= el

Muftipieeesd AckiressiData Bus e

=]

1180188 FIBILE] . s bar

]
i

i
o E
. pors EOLC  mxp [a—] %
Parallell In-Utmatning . i I s :
TIELEITY [owma ] £ [ H
gRiidded EREREER] ool £ SR ;
cEpescBE EEEZRER Fl :
i feeeo...33433939 333232339 ol 2
PWM - PUISbreddsmOdUIGrlng T e T L S T 3 '§
‘. 234838 23832343 | ° o ;
e ' [0 :ﬂ_ E
- it e 2 H
o oo o S P K? |-ee
l‘mﬂLf:_L!.:. =t T:
wEE12 1 WEEL 1_ r:'M':ﬂ o
A AT Converter Sy A i e ol E
- ‘Vokage Reguiator Reference KPS || =
WODPLL  a— VODA — | Fns |-
vESIML ﬁ; [Ty EFT ||
"oilage Regulator 5 & 1D ] e
WOOK — H'“‘-:f*,'_
wEER —1 ::::"'E
FNNE |-
FONE |-
HOWHT |

MC68HCS12 — 6versikt/LB



CHALMERS

Maskinorienterad programmering

HCS12DG256, "core”

Instruction Set Summary

Addr. Machine

Source Fom Operatllon Mode Coding fhex) Access Detall X |v|c
AEA e B =& WH |18 o & - a2
Add Accumilators & and B
A (B + () = X 0% |1a ES o T-1-T=-T-T-1-
Transiges o LEAX BX
Y (B (0= X |13 =& 3 T=1=1=1-1-1-
Transiges o LEAY BY
ADCh Fprd e M+ C = MM [B3 11 ] -Ta]-TaTalaTa
ADCH 0 a3 501 WIIN Camy 10 A DR [33 a3 27
ADCH o 168 EXT E3 hh 11 ford
ADCH GIT_iVSD 0% |3 xb P2
ADCA oIy X1 |as b ££ o
ADCA o xi6 asp D42 (a8 xb es £F P
ADCA [0, 355] DX a3 xb fIeeep
ADCA ot aysg] Io%z] |As zb ss ££ e
ADCE fqrd B+ M+ C =B THERED 3 Tal-Talzlz]a
ADCE mia ddwilh Cary la B OR  |os a4 7
ADCE og 16 EXT F2 bh 11 ford
ADCE GE_aysp 0% | xb o
ADCE Gy X1 |Es zb £E o
ADCE ariasg X2 |E3 b ss £ e
ADCE |, 358 D (=5 xb e
ADCE [axis, 5ep] oz |Es xb es ££ e
AOA #prd A M= h MM |ee 1t T el aala]s
ADO o a A wilhouk Carry o & OR s ad s
ADOA o 168 EXT EB hh 11 R
ACOA oTa0_ysp 0% |ae b o7
ADOA G 58,1y X1 |8 zb £E o
ACO o x5 a5p D62 (a2 zb es ££ I
Stack and Memory Layout
[ A o7 0] 8-BIT ACCUMULATORS A AND B
> - OR
o BEFORE HicHER AnoResses} [15 ] 0| 16-BIT DOUBLE ACCUMULATOR D
INTERRUPT +——
RTN o
Ry [15 X 0| INDEX REGISTER X
Yio
Y [15 ¥ 0] INDEX REGISTER Y
X0
Xt
A [15 sp 0] sTack POINTER
B
5P AFTER
INTERRUPT =+ [ CCR ‘15 pC 0| PROGRAM COUNTER

Interrupt Vector Locations

$FFFE, SFFFF
$FFFC, $FFFD
SFFFA, SFFFB
$FFF8, SFFFQ
$FFF8, SFFFT
$FFF4, SFFF5
$FFF2, SFFF2
$FFCO-SFFF1

LOWER ADDRESSES *

Fower-On (FOR) or External Reset
Clock Monitor Reset

Computer Operating Properly (COP Watchdog Reset

Unimplemented Opcode Trap
Software Interrupt Instruction (SWI)
XIRQ

IRQ

Device-Specific Interrupt Sources

MC68HCS12 — 6versikt/LB

S XH I NZVC| CONDITICN CODE REGISTER

l— CARRY
COVERFLOW
ZERO

NEGATIVE
MASK (DISABLE) IRQ INTERRUPTS

L HALF-CARRY

(USED IN BCD ARITHMETIC)
MASK (DISABLE) XIRQ INTERRUPTS
RESET OR

E XIRQ SET X,
INSTRUCTICNS MAY CLEAR X
BUT CANNOT SET X

RESET DEFAULT IS 1

Centralenhet CPU12

VODR —ae]
VSSR—
VREGEN—m==
VDD1,2 -]

3 ]
V55,2 -

Voltage Regulator

BRGD -

Single-wire Background
Cebug Moduls

\.CF"LI'IE

AT -

VDDELL -.— Clock and
vespl L - FLL Reset Periodic Interrupt
W Generation g
EXTAL—» Module COP Watchdaog
HTAL - Clock Menitor
RESET == Breakpoints
PED—m =] X|RC
PE1—»=| —»=1 R
PEZ -l RV ISymem
Ll ntegration
FPE3 «=| TETRE
== |z = Madule
PEL =] 0 =1 e ECLEK {5”'.'1'3
FES -t ==| MODA '
PEG =» =] MODE
PET =] =+ NOACCIXCLES

TEST—I-I

L STOP DISABLE (IGNORE STOP OPCODES)

15



' CHALMERS

Maskinorienterad programmering

Registeruppsattning CPU12

15 8 7
A

D
15

X
15

Y
15

SP
15

PC

SIX|H|I|N

MC68HCS12 — 6versikt/LB

8-BIT ACCUMULATORS AAND B
OR
16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

SXHINZVC | CONDITION CODE REGISTER

STACK POINTER

PROGRAM COUNTER

CONDITION CODES REGISTER

L CARRY

COVERFLOW

ZERO

NEGATIVE

MASK (DISABLE) IRQ INTERRUPTS

HALF-CARRY
(USED IN BCD ARITHMETIC)

MASK (DISABLE) XIRQ INTERRUFTS
RESET OR XIRQ SET X,
INSTRUCTIONS MAY CLEAR X

BUT CANNOT SET X

STOR DISABLE (IGNORE STOF OPCODES)
RESET DEFAULT 151

16



} CHALMERS Maskinorienterad programmering

= " Addressing Mode Source Format Abbreviation Description
Adresseringssatt
Inhersnt (no externally supplied IMH Operands {if any) are in CPU registers
operands)
INST &oprbi i i - ;
immediate or M Operand is |r|.r. uded n ingtructicon stream
INST Zopri&i 8- or 16-kit size implied by context
) Dperand is the lowsr S-bits of an addreass
Direct INST aprtia DIF n the range $0000 — S00FF
| ndexerade Extended INST opriéa EXT Operand iz a 16-bit address
ad resse r| N gssatt kan Relative INS;IE'IS =EL An 8-hit or 16-hit relative offset from the current
INST reii6 pe ig supplied in the instruction
anvandas med reg ISter o {Slrl':l-t’:eéflfasdet‘ INST oprx5,xysp I 5-bit signed constant offzet from x, v, sp, or pe
. = ¥
X,Y och SP ibland ocksa —
. (pre-decrement) INST oprx3—xys ([ Auto pre-decrement x, y, orsplby 1~ 8
med PC (PC-relativt) ——
(pre-increment) INST oprx3 +xys IO Auto pre-increment x, y,orspby 1 ~3
d
i w:_réieéxrggﬂ ent) INST oprx3, xys— G Auto post-decrement x, v, orsp by 1~ 8
tp-:asltr-‘?'lif:r?enh INST opvxd,xys+ ([ Auto post-increment =, v, orsp by 1~8
Imdexed Indexed with 8-bit {& or B) ar 16-kit (0
(accumulator offset) INST abd,xysp D% accumulator offsst from x, v, sp, orpc
Indexed . S-Lit signed constant offzet from x, v, sp, or pc
1S-bit offset) INST oprx3,xysp IDX1 {lower 3-bits of offset in one extension byie)
Indexed ) - 16-bit constant offzst from x, ¥, ap, or po
(16-0it offset) INST opreiG,xysp b2 (16-bit offset in two extension bytes)
” . . ” . Pointer to operand iz found at...
Indirekt adresseri ng '”ﬂ?ﬁ'é’%i‘éﬁ“t INST [oprs16,xysp] [IDX2] 16-bit constant offsst from x, y, £p, of pc
) ! (16-bit offset in two extension bytes)
Indexed-Indirect . .
. i Pointer to operand iz found at...
(O EE%.US';,'[‘; ator INST [D,xy=c] [C.IDX] ®, Y, &p, or pe plus the valus in D

MC68HCS12 — dversikt/LB 17



s CHALMERS Maskinorienterad programmering

Inherent
. Addr. Machine .
Source Form Operation Mode Coding (hex) Access Detail
CBA (A) - (B) INH 18 17 oo
Compare 8-Bit Accumulators A A

|

Maskinkod for instruktionen

Cykel for cykel beskrivning

Flaggpaverkan

MC68HCS12 — 6versikt/LB




} CHALMERS Maskinorienterad programmering

Omedelbar (Immediate) 8-bit/16-bit

(LLDAA #onrsi (M) = A IMM |86 11 )
LDAA opr8a Load Accumulator A DIR 96 dd rfF
LDAA opriéa EXT B& hh 11 TOF
LDAA opmd_xysp DX A6 xb rfp
LDAA opmed, xysp ID¥1 |As xb ff TEO
LDAA apm 16 xysp DXz |A& xb ee ff frep
LDAA D, xyspl 0IDX] |Re x=b fIfrfe
LDAA loorx76.xvsol Nnoxzl |as xb ee ff FTOrFD

U LDD #0015 Il (M:M+1) = AB [N ¢ 31 kk cP
LDD ow&a Load Double Accumulator D (A:B) DIR DC dd EfE
LDD opr16a EXT FC hh 11 ROP
LDD oprxd_xysp DX EC xb RED
LDD oprxd.xysp IDX1 |EC xb ff REC
LDD oprx16.xysp IDX2 |EC xb ee ff fREP
LDD [D.xyspl [0IDX] |EC xDb fIfREP
LDD [oprx15, xysp] [IDX2] |EC xb e= ff FIDRED

opr8i, 8-bitars konstant om 8-bitars register

Oprl6i, 16-bitars konstant om 16-bitars register

MC68HCS12 — 6versikt/LB




' CHALMERS Maskinorienterad programmering

Direkt (Direct Page)
Absolut (Extented)

| DAL #onvdi M = A MM g6 11 P -|-1=-|-lA]A]O
LDAA opr8a Load Accumulator A DIR 96 dd rfF

LDAA opriéa EXT B& hh 11 TOF

CORR opmd_xysp DX A6 xb rfp

LDAA opmed, xysp ID¥1 |As xb ff TEO

LDAA apm 16 xysp DXz |A& xb ee ff frep

LDAA D, xyspl 0IDX] |Re x=b fIfrfe

LDAA loorx76.xvsol Nnoxzl |as xb ee ff FTOrFD

| DD #aorisi (M:M+17) = A:B [N cC 19 kk oP -|-|-|-]AlA
LDD ow&a Load Double Accumulator D (A:B) DIR DC dd EfE

LDD opriGa EXT FC hh 11 ROP

LDD oprxd_xysp DX EC xb RED

LDD oprxd.xysp IDX1 |EC xb ff REC

LDD oprx15.xysp IDX2 |EC xb ee ff fREP

LDD [D.xyspl [0IDX] |EC xDb fIfREP

LDD [oprx15, xysp] [IDX2] |EC xb e= ff fIPRED

oprl6a, kan adressera hela adressintervallet 0000-FFFF

opr8a, kan enbart adressera intervallet 0000-00FF, anger minst signifikant byte
av adressen

MC68HCS12 — 6versikt/LB




' CHALMERS

Maskinorienterad programmering

PC-relativ ("BRANCH”-instruktioner)
0 8-bitars offset (-128..127)
0 9-bitars offset (-256..255)
0 16-bitars offset (-32768..32767)

BRA rala Branch Always (it 1=1) REL 20 T
IBEQ abdxys, rel9 (cntr) + 1= cnir REL 04 1b rr
It {cntr) = 0, then Branch (9-bit)
glse Continue to next instruction
Increment Counter and Branch if =0
fcntr= A, B, D, X, Y, or SP)
IBNE abdxys, reld (cntr) + 1= cntr REL 04 1b rr
it (cntr) not = 0, then Branch: (9-hit)
alse Continue to next instruction
Increment Counter and Branch it = 0
fcntr=A, B, D, X, Y, or SP)
LBCC reité Long Branch it Carry Clear (it C = 0) REL 18 24 qq rr

MC68HCS12 — 6versikt/LB

21



' CHALMERS

Indexerade
adresseringssatt:

0 Register relativ, konstant

£ _ s

Maskinorienterad programmering

LDAA #oprdi
LDAA gpréa
LDAA oprisa

M) = A
Load Accumulator A

LDAA gpmed. xysp

LDAA gom0_xysp

LDAA opr16.xysp

LDAA D, xyspl

LDAA loprx16.xvsol

oprx0_xysp — Indexed addressing posthyte code:

oprx3—xys Predecrement XorYorSPby1.._ 8

oprx3+xys Preincrement XorY orSPbhy1 ... 8
3 x) [ SP by 1 g

oprx3 xys+ Postincrement XorYorSPhy1...8

oprys xysp  B-hit constant offset from X or Y or SP or PC

abd xysp  Accumulator A or B or D offset from X or Y or SP or PC

oprxd — Any positive integer 1. . . & for prefpost increment/decrement
aprxs — Any value in the range —16 . .. +156
aprxd — Any value in the range —256 . . . +255

aorx 16 — Any value in the range —32. 768 . _ . 65 535

Basregister kan vara nagot av: X,Y,SP,PC
EXEMPEL:

MC68HCS12 — 6versikt/LB

LDAA
STAA
LDAA
STAA

5,X
20,Y
sym,PC
off,SP

Observera, ingen syntaktisk skillnad.
Assemblator valjer effektivast kodning




{(#8) CHALMERS

Hur oversatta
nedanstaende

C-kod till assembler?

char namn []="Emil”;
char initial,
void plocka_initial (void)
{
initial = namn[0] ;

}

MC68HCS12 — 6versikt/LB

Maskinorienterad programmering

LOsningsforslag
ORG $1000

plocka initial
LDX  #Statiska_variabler
LDAA 0,X
STAA 5X

Statiska_variabler
namn FCB 'E’,’m’,)1’,I')\O’
inital RMB 1



! CHALM

ERS

Maskinorienterad programmering

Indexerade adresseringssatt:
0 Auto pre- increment/decrement
0 Auto post- increment/decrement

LDAA #oprdi
LDAA gpréa
LDAA oprisa

M) = A
Load Accumulator A

[ LDAA gomx0_xysp

LDAA agpmed. xysp
LDAA opr 16, xysp
LDAA D, xyspl

LDAA loprx16.xvsol

aprxd_xysp — Indexed addressing posthyte code:

oprK3 —xys
aprx 3 +xys
aprx 3, xys—
oprK3 xys+

Fredecrement XorY orSFPby1... 8
Freincrement X orY or 3P by 1., 8

Fostdecrement X orY or SP by 1...8
Fostincrement X orY or SP by 1 ... 8

oprxh xysp
abd xysp

b-bit constant offset from X or Y or SF or PC
Accumulator A or B or D offset from X or Y or 5P or PC

aprxd — Any positive integer 1 . . . 8 for prefpost increment/decremeant

oprx5 — Any value inthe range —16 . .. +15
oprx@ — Any value in the range -256 . . . +255
aorx T — Any value in the range —32. 768 . _ . 65,535

Basregister kan vara nagot av: X,Y,SP
EXEMPEL.:

MC68HCS12 — 6versikt/LB

LDAA
STAA
STAB
LDAB

1,-X
4,Y-

8,+SP
7,SP+

24



{(#8) CHALMERS

Hur dversatta denna
C-kod till assembler?

char namn [[="Emil”;
char i1=0;

void antal_tecken i _namn (void)

{ while (namn[i++] !="\0’)

MC68HCS12 — 6versikt/LB

Maskinorienterad programmering

Losningsforslag
ORG $1000
antal_tecken I namn

LDX  #Statiska variabler

CLRB

rakna LDAA 1, X+
BEQ Klart
INCB
BRA rakna

Klart STAB 0,X
Statiska_variabler

namn FCB 'E’,’m’,T",I')\O’
i FCB O



! CHALM

ERS

Maskinorienterad programmering

Indexerade adresseringssatt:
0 Register relativ, offset i ackumulator

LDAA #oprdi
LDAA gpréa
LDAA oprisa

M) = A
Load Accumulator A

[ LDAA gomx0_xysp

LDAA agpmed. xysp
LDAA opr 16, xysp
LDAA D, xyspl

LDAA loprx16.xvsol

aprxd_xysp — Indexed addressing posthyte code:

Oprx3—xys
oprx 3 +xys
oprx3 xys—
opr 3 xys+
oprx5 xysp

Predecrement XorYorSPhby1...8
Freincrement XorY¥ orSP by 1 .. 8
Fostdecrement X orY or SP by 1 ... 8
Fostincrement X orY or SP by 1 ... 8

5-bit constant offset from X or or SP or PC

abd xysp

Accumulator & or B or D offset from X or Y or 5P or PC

oprx3 — Any positive integer 1 . . . & for pre/post increment/decrement
oprx5 — Any value inthe range —16 . .. +15
oprx@ — Any value in the range -256 . . . +255

aorx T — Any value in the range —32. 768 . _ . 65,535

Basregister kan vara nagot av: X,Y,SP,PC
EXEMPEL:

MC68HCS12 — 6versikt/LB

LDAA
STAA
STAB
LDAB

O O0Ow >
T 0 < X

O T

26



} CHALMERS Maskinorienterad programmering

Indexerade adresseringssatt:

a nd I rekt oprxl_xysp — Indexed addressing postbyte code:
oprx3—xys Predecrement XorYorSPby1... 8
oprx3+xys Preincrement XorY orSPby1 ... 8
LDAA #opréi (M) = A oprx3 xys— Postdecrement XorY orSPhy1 ... 8
LDAA opréa Load Accumulator & oprcd s+ Postincrement X orY or 3P by 1 .. 8
LDAA gpriéa aprxs xysp  B-hit constant offset from X or Y or SP or PC
LDAA gomx0_xysp abd xysp  Accumulator A or B or D offset from X or Y or SP or PC
LDAA opm9.xysp 3 \ T — a f incre ide
LDAA app 765D oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
LDAA [D, xysp] aprxsd — Any value in the range —16 . . . +15
LOAA Tapnx6.xvsol oprxd — Any value in the range —256 . _ +255

oo iE — Any value in the range —32 768 . _ . 65 535

EXEMPEL:
LDAA  [D,X]
STAA  [sym,PCR]
STAB [2,SP]
LDAB [D,Y]

MC68HCS12 — 6versikt/LB



} CHALMERS

Maskinorienterad programmering

Instruktionsgrupper

EXEMPEL.: Kopiera byte

LOAD-instruktioner LDAB  $3000
Mnemonic Funktion Operation STAB $3001

LDAA Load A (M)—A eller
LDAB Load B (M)—B LDAA $3000
LDD Load D (M:M+1),—A:B
LDS Load SP (M:M+1),—SP,,:SP, STAA  $3001
LDX Load index register X (M:M+1),—X,;: X,
LDY Load index register Y (M:M+1),-Y.Y, eller
LEAS Load effective address into SP Effective address—SP MOVB $3000,$3001
LEAX Load effective address into X Effective address—X
LEAY Load effective address into Y Effective address—Y

STORE-instruktioner

EXEMPEL: Kopiera word

Mnemonic Funktion Operation
STAA Store A (A)—>M LDD $3000
STAB Store B (B)>M STD $3002
STD Store D (A)—M, (B)>M+1 eller
STS Store SP SP,:SP, -M:M+1 LDX $3000
STX Store X X X, =»M:M+1 STX $3002
STY Store Y Y.Y, >M:M+1 aller
MOVE-instruktioner LDY $3000
Mnemonic Funktion Operation STY $3002
MOVB Move byte (8 bitar) (M,)—M, eller
MOVW Move word (8 bitar) (M:M+1) ,—>M:M+1,,

MC68HCS12 — 6versikt/LB

MOVW  $3000,%$3002

28



Instruktioner for kopiering av registerinnehall

Maskinorienterad programmering

<—— Anvand denna

Ovriga finns av

"kompatibilitetsskal”

<—— Anvand denna

Ovriga finns av

"kompatibilitetsskal”

Mnemonic Funktion Operation
TAB Transfer Ato B (A)—B
anm: Ekv. Med TFR A,B
TAP Transfer Ato CCR (A)—»CCR
anm: Ekv. Med TFR A,CCR
TBA Transfer B to A (B)—A
TFR Transfer register to register (A,B,CCR,D,X,Y eller SP) —
(A,B,CCR,D,X,Y eller SP)
TPA Transfer CCR to A (CCR)—A
anm: Ekv. Med TFR CCR,A
TSX Transfer SP to X (SP)—X
anm: Ekv. Med TFR SP,X
TSY Transfer SPto Y (SP)—-Y
anm: Ekv. Med TFR SP,Y
TXS Transfer X to SP (X)—>SP
anm: Ekv. Med TFR X,SP
TYS Transfer Y to SP (Y)—>SP
anm: Ekv. Med TFR Y,SP
- e e . = . o
Instruktioner for vaxling av registerinnehall
Mnemonic Funktion Operation
EXG Exchange register to register (A,B,CCR,D,X,Y eller SP) «—
(A,B,CCR,D,X,Y eller SP)
XGDX Exchange D with X (D) « (X)
anm: Ekv. Med
EXG D,X - EXG X,D
XGDY Exchange D with Y (D) < (Y)
anm: Ekv. Med
EXG D,Y - EXG Y,D
Instruktion for teckenutvidgning
Mnemonic Funktion Operation
SEX Teckenutvidga 8 bitars operand (A,B,CCR) —

(D, X,Y eller SP)

MC68HCS12 — 6versikt/LB

29



' CHALMERS

Ovillkorlig programflodeskontroll

Maskinorienterad programmering

Mnemonic Funktion Operation
BSR Anrop av subrutin. SP-2 = SP
PC-relativ operand RetAdrL:RetAdrH =
Msp):-M(spe1
Adress = PC
BRA “Hopp” till adress. Adress = PC
PC-relativ operand
CALL Anrop av subrutin SP-2 = SP
Absolut operand (20 bitar) RetAdrL:RetAdrH =
Anm: Anvandes vid Msp):M(sp+1)
programflodeséndring mellan Subrutinadress = PC
olika minnesbankar ($8000- SP-1 = SP
$BFFF) (PPAGE) = Mgp,
PAGE = PPAGE
Subrutinadress = PC
JMP “Hopp” till address. Subrutinadress = PC
Absolut operand
JSR Anrop av subrutin SP-2 = SP
Absolut operand RetAdrL:RetAdrH =
Msp):-M(spe+1)
Subrutinadress = PC
RTC Atervand fran subrutin. Msp) = (PPAGE)
Returadress fran STACK och SP+1 = SP
PPAGE Mspy:M(sps1y= PCH:PC_
SP+2 = SP
RTS Atervand fran subrutin. M sp):Msp+1y = PCH:PC,
Returadress fran STACK SP+2 = SP

MC68HCS12 — 6versikt/LB

30



Instruktioner for addition

Maskinorienterad programmering

Mnemonic Funktion Operation Mnemonic Funktion Operation
ABA Addera B till A (A)+(B) — A INC Incrementera i minnet (M)+$01 — M
ABX Addera B till X X)+(B) —» X INCA Inkrementera A (A)+ $01—> A

anm: Ekv. med LEAX B,X INCB Inkrementera B (B)+ $01 — B
ABY Addera B till Y (Y)+(B) =Y INS Inkrementera SP (SP)+ $0001 — SP
anm: Ekv. med LEAY B,Y anm: Ekv. med LEAS 1,SP
ADCA Addition med carry till A (A)+(M)+C — A INX Inkrementera X (X)+ $0001 — X
ADCB Addition med carry till B (B)+(M)+C — B anm: Ekv. med LEAX 1,X
ADDA Addition till A (A)+(M) — A INY Inkrementera Y (Y)+ $0001 — Y
ADDB Addition till B (B)+(M) —» B anm: Ekv. med LEAY 1,Y
ADDD Addition till D (A:B) (D)+(M:M+1) —D
Instruktioner for subtraktion
Mnemonic Funktion Operation Mnemonic Funktion Operation
SBA Subtrahera B fran A (A)-(B) - A DEC Dekrementera i minnet (M)-$01 — M
SBCA Subtrahera med borrow frén A (A)-(M)-C — A DECA Dekrementera A (A)-$01—- A
SBCB Subtrahera med borrow frén B (B)-(M)-C — B DECB Dekrementera B (B)- $01 — B
SUBA Subtrahera fran A (A)-(M) — A DES Dekrementera SP (SP)- $0001 — SP
SUBB Subtrahera fran B (B)-(M) —» B anm: Ekv. med LEAS -1,SP
SUBD Subtrahera fran D (A:B) (D)-(M:M+1) —D DEX Dekrementera X (X)- $0001 — X
anm: Ekv. med LEAX -1,X
DEY Dekrementera Y (Y)- $0001 — Y

MC68HCS12 — 6versikt/LB

anm: Ekv. med LEAY -1,Y

31



Instruktioner for logikoperationer

Maskinorienterad programmering

Mnemonic Funktion Operation ) s . . o
ANDA Bitvis “och” A med minnesinnehall (A)e(M)= A EXEMPEL: Nollstall bit 7-bit 4 pa
ANDB Bitvis “och” B med minnesinnehall (B)o(M)= B adress $3000
ANDCC Bitvis “och” CC med minnesinnehall (CCR)e(M)= CCR
EORA Bitvis “exklusivt eller” A med (A)e(M)= A
minnesinnehall LDAB  $3000

EORB Bitvis “exklusivt eller” B med (B)®(M)= B ANDB #%00001111
minnesinnehall

ORAA Bitvis “eller” A med minnesinnehall (A)+(M)= A STAB $3OOO

ORAB Bitvis “eller” B med minnesinnehall (B)+(M)= B

ORCC Bitvis “eller” CCR med minnesinnehall (CCR)+(M)= CCR

Unéara operationer

EXEMPEL: Ettstall bit 7 och bit 0

pa adress $3000
LDAB $3000
ORAB #%10000001
STAB $3000

Mnemonic Funktion Operation
CLC Nollstéll carryflaggan i CCR 0=>C
CLI Nollstall avbrottsmask i CCR 0=1
CLR Nollstall minnesinnehall $00 = M
CLRA Nollstall A $00 = A
CLRB Nollstall B $00 = B
CLV Nollstall overflowflaggan | CCR 0=V
COM Ettkomplementera minnesinnehall $FF-(M) = M

COMA Ettkomplementera A $FF-(A) = A
COMB Ettkomplementera B $FF-(B) = A
NEG Tvakomplementera minnesinnehall $00-(M) = M
NEGA Tvédkomplementera A $00-(A) = A
NEGB Tvékomplementera B $00-(B) = B

MC68HCS12 — 6versikt/LB

EXEMPEL: Invertera bit 2 och
bitl pa adress $3000

LDAB $3000
EORB #%00000110
STAB $3000

32



' CHALMERS

Logiska skiftoperationer

Maskinorienterad programmering

Mnemonic Funktion Operation
LSL Logiskt vansterskift i
__minnet__ I I
LSLA Logiskt vansterskift A C by bo
LSLB Logiskt vansterskift B
LSLD Logiskt vansterskift D ) .
I T A A I Y
C b7 A bo bz B bo
LSR Logiskt hogerskift i minnet
>
LSRA Logiskt hogerskift A o= T T T T F]
LSRB Logiskt hogerskift B by b C
LSRD Logiskt hogerskift D > >
o= T T T T T T T TTTTTTT 1]
b A bo by B bo C

Exempel pa anvandning:
Multiplikation med 2, tal utan tecken.
Division med 2, tal utan tecken.

MC68HCS12 — 6versikt/LB

33



Maskinorienterad programmering

Aritmetiska skiftoperationer

Mnemonic Funktion Operation
ASL Aritmetiskt vansterskift i
minnet
_(ekv. med LSL) [T T TTTTT }o
ASLA Aritmetiskt vansterskift A C b bo
(ekv. med LSLA)
ASLB Aritmetiskt vansterskift B
(ekv. med LSLB)
ASLD Aritmetiskt vansterskift D
(ekv. med LSLD)
T[T T T I T T T T TTT T o
C b7 A bo by B bo
ASR Aritmetiskt hogerskift i
minnet
ASRA Aritmetiskt hogerskift A >
ASRB Aritmetiskt hogerskift B l:‘b7| LT lbngl

Exempel pa anvandning, hogerskift:
Division med 2, tal med tecken.

MC68HCS12 — 6versikt/LB

34



Instruktioner for rotation (carry-skift)

' CHALMERS

Maskinorienterad programmering

Mnemonic Funktion Operation
ROL Rotation vanster via carry i
minnet <
ROLA Rotation vanster via carry |‘J
A —{ = T T TTTTT]
ROLB Rotation vanster via carry b7 bo
B
ROR Rotation hoger via carry i
minnet >
RORA Rotation hoger via carry A [ 1T [ 1 [ 1 H
RORB Rotation hoger via carry B b, bo C

EXEMPEL.: Skifta ett 32-bitars tal
pa adress $3000, 1 steg at hoger

LSR $3000
ROR $3001
ROR $3002
ROR $3003

Exempel pa anvandning:
Skiftoperationer pa tal stérre &n 8 bitar.

MC68HCS12 — 6versikt/LB




&) CHALMERS

Maskinorienterad programmering

Instruktioner for jamforelser och test

Mnemonic

JAMFORELSE
Tva operander
BINAR operation

Funktion Operation
CBA Jamfor B med A (A)-(B)
CMPA Jamfor A med minne (A)-(M)
CMPB Jamfér B med minne (B)-(M)
CPD Jamfor D med minne (A:B)-(M:M+1)
CPS Jamfor SP med minne (SP)-(M:M+1)
CPX Jamfér X med minne (X)-(M:M+1)
CPY Jamfor Y med minne (Y)-(M:M+1)
Mnemonic Funktion Operation
TST Testa minnesinnehall (M)-00
TSTA Testa register A (A)-00
TSTB Testa register B (B)-00

MC68HCS12 — 6versikt/LB

TEST
En operand
UNAR operation

36



' CHALMERS

Villkorlig programflddeskontroll

Maskinorienterad programmering

MC68HCS12 — 6versikt/LB

Mnemonic | Funktion | Villkor
— _____Enkla flaggtest - Anvéands typiskt tillsammans med
BCC “HOESP gmolgfégrry g;é jamforelse/test instruktioner.
BEQ “Hopp” om zero Z=1 EXEMPEL
BNE “Hopp” om ICKE zero Z=0 LDAB  $3000
BMI “Hopp” om negative N=1 CMPB $3001
BPL “Hopp” om ICKE negative N=0 BEQ L1
BVS “Hopp” om overflow V=1 L
BVC “Hopp” om ICKE overflow V=0
Test av tal utan tecken
BHI Villkor: R>M C+2=0
BHS Villkor: R>M C=0
BLO Villkor: R<M C=1
BLS Villkor: R<M C+Z2=1
Test av tal med tecken
BGT Villkor: R>M Z+(N®V)=0
BGE Villkor: R>M N®V=0
BLT Villkor: R<M NOV=1
BLE Villkor: R<M Z+(NeV)=1

37



' CHALMERS

Instruktioner for raknande programslingor

Maskinorienterad programmering

Sammansatta instruktioner.

EXEMPEL
DBEQ B,L2
samma sak som
DECB
BEQ L2

Mnemonic Funktion Villkor

DBEQ Dekrementera innehall i register. (reqgister) — 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
DBNE Dekrementera innehall i register. (register) — 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(reqister: A,B,D,X,Y,SP) annars: nasta instruktion
I1BEQ Inkrementera innehall i register. (register) + 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
IBNE Inkrementera innehall i register. (register) + 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
TBEQ Testa innehall i register. “Hoppa” om(register)=0; “hoppa”;
om resultatet = 0. annars: nasta instruktion

(reqgister: A,B,D,X,Y,SP)
TBNE Testa innehall i register. “Hoppa” om(register)=0; “hoppa”;

om resultatet = 0.
(register: A,B,D,X,Y,SP)

annars: nasta instruktion

MC68HCS12 — 6versikt/LB

38



%) CHALMERS

Maskinorienterad programmering

Summering

Kursintroduktion

e Teori: Kurslitteratur & Forelasningar
« Simulatordvningar
« Fem laborationer | kursen

MC68HC12,

MC68HCS12 — 6versikt/LB

Arbetsbok for MC12
CPU12 Reference Guide

« Programmerarens bild

« Oversikt, "single-chip-computer” DG256
 Adressering av primarminnet i HCS12

« HC12 Assemblerinstruktioner

39



	Slide Number 1
	Programmerarens bild av processorn�     (Instruktionsuppsättning, interna register i processorn, och   �        hur primärminnet accessas)
	Programmerarens bild – datatyper/storlek
	Programmerarens bild – adresserbart minne
	Freescale 68HCS12
	Historik
	HCS12DG256,�blockdiagram
	HCS12DG256, ”core”
	HCS12DG256, ”core”
	Primärminne
	EXEMPEL, linjärt adressrum
	EXEMPEL, ”bankat” adressrum
	EXEMPEL, i laborationsdator MC12
	Periferikretsar i HCS12DG256
	HCS12DG256, ”core”
	Registeruppsättning CPU12
	Adresseringssätt
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Instruktionsgrupper
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39

