6/3 2013- Aritmetik

1 Aritmetik

32 bitars multiplikation/division med 16-bitars processor.

IEEE-754, flyttalsrepresentation

Maskinorienterad programmering, 6/3 2013

1.1 Multiplikation

Multiplikation av bindra tal kan utféras pa samma sétt som vid decimala tal. Allméant skriver vi P=XxY
dar:

= P &r produkten av multiplikationen

= X &r multiplikand

= Y ar multiplikator

Det finns atskilliga algoritmer for binar multiplikation. | huvudsak skiljs dom at genom sin snabbhet. Vi
kommer inte hér att ge en fullstdndig framstéllning utan ndjer oss med att visa att varje multiplikation kan
astadkommas med de elementéra operationerna skift och addition.

Reglerna for multiplikation i binéra talsystemet &r mycket enkla:

= P O O

X X X X

= o~ O
Il

= o o o

Vi tillampar dessa regler och samma metod da vi staller upp, och multiplicerar, som med decimala tal, pa
samma sétt som vi larde i grundskolan. (I bland kallas detta “papper och penna-metoden”).

Exempel 1.1 Multiplikation (P=XxY), X=5, Y=6, “papper och penna-metoden”, X>0, Y>0.

Decimalt Binart

0101 multiplikand
XY X *0110 multiplikator
=P = 30 0000

0101

0101
+ 0000
= 0011110 = 2%+2°+2°+2'=30

Om vi speciellt betraktar uppstéliningen av bindrmultiplikation i exemplet inser vi att samma resultat kan
fas enbart genom att anvanda operationerna addition och hogerskift. Detta &r en direkt konsekvens av att
vi arbetar i det bindra talsystemet. | ”papper-och-penna” metoden ser vi att vi antingen adderar noll, eller
adderar multiplikanden, iterativt. For varje siffra vi avverkar flyttar vi oss en decimalpunkt till vénster,
vilket ocksa kan beskrivas som ett hogerskift av multiplikanden. Vi provar darfor nu en metod som endast
anvander de enkla operationerna addition och hdgerskift. Metoden bildar produkten genom en iterativ
procedur som successivt genererar partialprodukter (PP). Da hela ordlangden &r bearbetad har vi alltsa
den sista partialprodukten vilken ocksa &r den slutliga produkten. Algoritmen &r:

Multiplikation P(produkt) = X(multiplikand) x Y (multiplikator)
Partialprodukt 0, PP(0) =0
med borjan pa multiplikatorns LSB (o)
for varje bit i hos multiplikatorn
Om y;=1 addera multiplikand till nasta partialprodukt
annars addera O till nasta partialprodukt
skifta resultatet ett steqg till hdger
tills alla bitar inspekterats

6/3 2013- Aritmetik

Vi illustrerar algoritmen med féljande exempel.

Multiplikation (P=XxY) tal utan tecken, X=6, Y=5, med addition/skift, X>0, Y>O0.

X=6= =0110 (multiplikand)
Y=5=y3y,y1¥o =0101 (multiplikator)

PP (0) 0000 yo=1=>ADD X
+ 0110
0110 skifta
PP (1) 0011 0 y1=0=>ADD 0
+ 0000
0011 O skifta
PP (2) 0001 10 y,=1=ADD X
+ 0110
0111 10 skifta
PP (3) 0011 110 y3=0=>ADD 0
+ 0000
0011 110 skifta
P=PP (4) = 00011110 = 24423422421 = 30

Den beskrivna algoritmen fungerar definitivt for positiva tal. Det finns ocksa all anledning att tro att
algoritmen fungerar dven om X ar ett negativt tal (pd tvakomplementform) under forutséttning att
hogerskiftet gors med bibehallet tecken (aritmetiskt skift). Utan bevis, illustrerar vi det med féljande
exempel.

Multiplikation (P=XxY) tal med tecken, X=-6, Y=5,med addition/aritmetiskt skift, X<0, Y>O0.

X=-6= =1010 (multiplikand)
Y=5=y3y,y1¥o =0101 (multiplikator)

PP (0) 0000 Yo=1=>ADD X
+ 1010
1010 skifta aritmetiskt
PP (1) 11010 y1=0=ADD 0
+ 0000
11010 skifta aritmetiskt
PP (2) 111010 y,=1=ADD X
+ 1010
1100010 skifta aritmetiskt
PP (3) 1100010 yv3=0=ADD 0
+ 0000
1100010 skifta aritmetiskt
P=PP (4) = 11100010 = -(00011110), = =(30) 19

Vid additionen av PP(2) till X ser vi att vi far spill fran den mest signifikanta positionen. Med de givna
forutsattningarna (X<0) sker detta endast da vi har en partialprodukt som ar mindre &n 0. Spillet kan alltsa
ses som en kopia av teckenbiten. Eftersom vi skiftar aritmetiskt aterstalls denna pa korrekt sétt.

For att slutligen generalisera och tillata saval Y<0 som X<0 maste vi gora en modifikation av algoritmen.
Bakgrunden ar enkel, vid tvakomplementrepresentation utgér den mest signifikanta biten ingen egentlig
vardesiffra utan ar enbart teckenrepresentation. Da vi bildar den sista partialprodukten, dvs. slutprodukten,
markerar talet Y’s teckenbit att -X ska adderas (i stéllet for X).

Maskinorienterad programmering, 6/3 2013

Vi illustrerar med ytterligare ett exempel, metoden kallas ocksa Robertson’s metod:

Exempel 1.4 Multiplikation (P=XxY) tal med tecken, X=-6, Y=-5, med addition/aritmetiskt skift, X<0, Y<0.

X=-6= =1010 (multiplikand) -X = 0110
Y=-5=y3y,y1Vo=1011 (multiplikator)

Observera hur vi har anvidnder en extra teckenbit, (5-bitars tal i1 operationen)

PP (0) 00000 vo=1=>ADD X
+ 11010
11010 skifta aritmetiskt
PP (1) 111010 y1=1=ADD X
+ 11010
101110 skifta aritmetiskt
PP (2) 1101110 y,=0=ADD 0
+ 00000
1101110 skifta aritmetiskt
PP (3) 11101110 y3=1=>ADD -X
+ 00110
00011110 skifta aritmetiskt
P=PP (4)= 00011110 = 30

Produkten av tva godtyckliga tvakomplementstal med i och j bitar kan maximalt vara (i+j-1). Detta inses
av att i bitar ska skiftas j ganger (totalt i+j bitar), men samtidigt kravs endast en teckenbit for produkten
(dvs i+j-1). Vanligtvis galler att ordlangden hos multiplikator och multiplikand ar densamma, i=j=n, da
kravs maximalt 2n-1 bitar for att representera produkten av tva n-bitars tal.

Vi har nu sett algoritmer som hanterar multiplikation av saval tal pa binar form som tal pa
tvadkomplementsform. Vi har sett hur multiplikationen kan utféras med hjalp av de enkla operationerna
addition och skift. Vi har ocksa sett att multiplikation av binara tal kraver sin algoritm (med logiskt skift),
medan multiplikation av tvakomplementstal kraver en (mycket liten) modifikation av algoritmen,
anvandning av aritmetiskt skift. En dator kan sjalvfallet inte avgdra om bitstrdngarna ska tolkas som tal
med, eller utan tecken. Processorer som tillhandahaller instruktioner for multiplikation har darfor alltid
minst tva varianter av denna: en for multiplikation av tal utan tecken (unsigned multiplication) och en
annan instruktion for multiplikation av tal med tecken (signed multiplication).

1.1.1 32-bitars multiplikation som biblioteksfunktion

For processorer som inte tillhandahaller maskininstruktioner for multiplikation kan dessa implementeras
som biblioteksfunktion”. Foljande implementering bygger direkt pa "papper-och-penna”-metoden. Den
fungerar for bade tal med tecken och tal utan tecken. Observera att bara de 32 minst signifikanta bitarna av
resultatet behalls och att eventuellt ”spill” inte detekteras.

long mul32 (long a, long b)

{ /* Multiplikation med "skift/add" */
long result, mask;
int i;
mask = 1;
result = 0;
for(i 0; 1<32; 1i++)
{

if (mask & a)
result = result + b ;
b =Db << 1;
mask = mask << 1;
}
return result;

6/3 2013- Aritmetik

For processorer som har instruktioner for multiplikation (8 och/eller 16 bitar) kan man oftast dstadkomma
béattre implementeringar genom att anvanda dessa.

Exempel 1.5 Visa hur 32-bitars multiplikation av tal utan tecken kan utféras med hjdlp av 16-bitars
multiplikation, addition och skiftoperationer.

Antag a, b 32-bitars tal, skriv:
a = ahx216 + gl, dar ah ar de 16 mest signifikanta bitarna och al de 16 minst signifikanta bitarna.
b = bhx216 + p], p.s.s
Det géller da att:
axb=(ahx216+al) x (bhx216 + bl) =
232 (ah x bh) + 216 (ah x bl+al x bh) + (al x bl)
Detta dr samma sak som:
(ahxbh)<<32+ (ahxbl+alxbh)<<16+ (alxbl)

dvs. eftersom ah, bh, al och bl dr 16 bitars tal kan 32 bitars multiplikation genomféras med 16-bitars
multiplikation, addition och skiftoperationer.

Forsta termen forsvinner eftersom produkten (ah x bh) ska skiftas 32 steg till vanster och detta inte ryms
inom resultatets 32 bitar, vi kan darfor skriva:

axb=(ahxbl+alxbh)<<16+ (alxbl)

Resultatet fran Exempel 1.5 kan enkelt implementeras enligt foljande:

unsigned long mulu32 (unsigned long a, unsigned long b)
{

unsigned long result;

unsigned short ah,al,bh,bl;

ah = (unsigned short) (a >> 16);

al = (unsigned short) a ;

bh = (unsigned short) (b >> 16);

bl = (unsigned short) b ;

result = (((unsigned long) (ah*bl + al*bh))<< 16) + (al*bl);
return result;

}

Vi kan slutligen implementera multiplikation av 32-bitars tal med tecken genom att anvanda ovanstaende
funktion tillsammans med teckenéverldggning, enligt féljande:

long muls32 (long a, long b)

{
long r;

r = mulu32 (((a < 0) ? -a:a),((b<0)?-b:b));

if ((a<0) ~ (b<0))
return -r;

else
return r;

Maskinorienterad programmering, 6/3 2013

1.2 Division

Precis som for multiplikation, kan binar division utféras enligt “papper och penna-metod”. | detta avsnitt
ska vi illustrera hur detta gar till. Metoden kan endast anvandas pa positiva heltal. Vi behandlar inte
metoder for division av tvakomplementtal i det generella fallet &ven om sadana metoder finns.

X R
En division kan skrivas som: 7 = Q+V

Dér:
= X ar dividend
= Y ar divisor
= Q ar kvot, resultatet av heltalsdivisionen X/Y.
= R arresten, resultatet av modulusdivisionen X mod Y.

Av sambandet framgar att resten kan uttryckas: R = X - QY

Av Exempel 1.6 nedan ser vi hur partialresterna bildas genom att succesivt subtrahera (stérsta méjliga)
kvotsiffra multiplicerad med Y som fortfarande ger en positiv partialrest. Kvotsiffran fas genom prévning.

Exempel 1.6: Decimal division, dterstdllning av resten, 3967/15

X = 3967
Y = 15
R =X - QOxY
0264, 4
15 [3967,0 3697=3697-0x15 Utgangslige
-0
3967,0 3967=3967-(0x10°%) x15 steg 1
-30
967,0 967=3697-(0x10%+2%10%) x15 steg 2
- 90
67,0 67=3697- (0x10%+2x10%+6x10%) x15 steg 3
- 60,0
7,0 7=3697-(0x10°+2x10%+6x10'+4x10°%) x15 steg 4
- 6,0
1,0 1=3697- (0x10°+2x10%+6x10'+4%x10°+4%x107*) x15 steg 5

DVS. 3967/15 = 264,4 + 10/15 x 107!

Lat oss nu studera ett exempel pa binar division med anvandning av samma metod. Som vi ska se blir
detta faktiskt enklare eftersom endast tva kvotsiffror (0 och 1) kan férekomma. Provningen av Q*Y for
positiv partialrest kraver alltsa inte ndgon egentlig multiplikation.

Exempel 1.7: Bindr division X/Y, med dterstillning, X=13, Y=5

X = 1101
Y = 0101
R =X - 0OxY
0010
0101]1101 1101=1101- 0x0101 Utgangslage
-0000
1101 1101=1101-(0x2%) x0101 steg 1
-0000
1101 1101=1101- (0x23+0x2%)x0101 steg 2
-0101
0011 11=1101- (0x23+0x22+1x2) x0101 steg 3
-0000
0011 11=1101- (0x2°+0x2%+1x2*+0x2%) *0101 steg 4

DVS. 1101/0101 = 0010 + 0011/0101 (2 + 3/5)

6

6/3 2013- Aritmetik

Den visade metoden kan formuleras i en algoritm dar vi endast anvander operationerna vansterskift och
addition. Efter subtraktion av Y fran aktuell partialrest satts kvotsiffran till 1 om skillnaden blir positiv, om
skillnaden blir negativ satts kvotsiffran till 0 och partialresten aterstalls genom addition av Y, darefter
fortsatter man med nasta steg. Om partialresten blir 0 har divisionen “gatt jamnt ut” och operationen &r
klar. Ofta &r detta inte fallet och man kan da fortsatta om man ar villig att acceptera decimalsiffror i svaret
(jamfor med foregaende exempel).

Algoritm: Division med dterstdllning
R=X-Q*Y
Q=q0q192.-.qn-1
n=antal kvotbitar att berdkna
Ro = X
Ri =Ro-qo*Y go=1omR; > 0, qo= 0 annars
fori=2.n
Ri=2*R;1 -qi*Y gi=1 omR; > 0, gi= 0 annars

Anmarkning: Antalet kvotbitar vi dnskar bestimmer antalet partialrester som ska berdknas och darmed
ocksd det antal vansterskift som maste utforas. Eftersom partialrest n inte ska skiftas far vi n-1
vansterskift.

Exempel 1.8: Utfor bindr division av 13/5 med dterstdllningsmetod.

Svaret ska anges med 4 kvotbitar och 4 restbitar. Varje steg i algoritmen ska redovisas.

Lésning:
X=13=1101
Y=5 = 0101
-Y=-5= 1011
n=4 (3 skift ska utforas)

Utgangsuppstéllningen:

Ro = X 0001101 « 3 bitar ska skiftas
+(-Y) 1011
steg 1:
Ro-Y 1100101 <0=>(o=0=>Aterstill
+(Y) 0101
R, 0001101
2* Ry 0011010
steg 2:
+(-Y) 1011
2*R;-Y 1110010 <0=q;=0=Aterstill
+(Y) 0101
R, 0011010
2* R, 0110100
steg 3:
+(-Y) 1011
2*R,-Y 0001100 >0=0,=1
R3 0001100
2* Rz 0011000
steg 4:
+(-Y) 1011
2*R3-Y 1110000 <0=>(3=0=>Aterstill
+(Y) 0101
Ry 0011000

n=4 och algoritmen terminerar hér

Q= (0010203 =0%0010=2
R= =050011=3
DVS: 13/5=2+3/5

Maskinorienterad programmering, 6/3 2013

1.1.2 32-bitars division som biblioteksfunktion

For processorer som saknar instruktioner for 32-bitars division visas har en implementering av "divu32”,
dvs. heltalsdivision av tva 32-bitars tal utan tecken. Observera hur vi "ateranvander” lagringsplatsen for
parametern a, genom att succesivt skifta in eventuella kvotbitar till a.

unsigned long divu32 (unsigned long a, unsigned long b)
{

unsigned long rest = 0L;

unsigned char count = 31;

unsigned char c;

do{
if(a & 0x80000000)
c = 1;
else
c = 0;

a =a << 1;
rest = rest << 1;
if(c)

rest = rest | 1L;

iT(rest >= b){
rest = rest - Db;
a=a | 1L;
}
} while (count--);
return a;

Genom att infora teckenoverlaggning kan vi ocksa hantera division av 32-bitars tal med tecken:

long divs32 (long a, long b)

{
long r;

r = divu32((a < 0 ? -a : a),(b< 0?2 -b : Db));

if ((a<0) ~ (b<0))
return -r;

else
return r;

Avslutningsvis visar vi en enkel implementering av modulusdivision, dar vi helt enkelt anvénder
definitionen av operationen:

unsigned long modu32 (unsigned long a ,unsigned long b)
{
unsigned long c = a/b; /* heltalsdivision */
return (a - b * c);

6/3 2013- Aritmetik

1.3 Flyttal

Vi har tidigare uteslutande behandlat kodning av heltal. I manga sammanhang ar detta inte tillrackligt
exempelvis da vi vill uttrycka mycket sma tal sa som avstand mellan atomer eller vi vill uttrycka mycket
stora tal sa som avstand mellan galaxer i universum.

En bitstrang kan forses med en "tankt” binadrpunkt och tolkningen av talvardet géras darefter. Vi kallar
detta allmant for fixtal och menar da en fast binarpunkt nagonstans i bitstrangen.

Exempel 1.9 Fixtal

Bitstrangen 11011100 kan forses med en "tdnkt” bindrpunkt enligt 1101.1100, tolkningen av talet blir da:
2342242042-1+2-2 = 8+4+1+0,5+0,25 = 13,75

Fixtalsaritmetik kan vara anvandbart i manga sammanhang men det loser dock knappast det
grundlaggande problemet dvs. att, med samma representation, kunna ange saval mycket sma som mycket
stora tal. FOr att komma till ratta med detta kan vi infora en flytande bindrpunkt, dvs. information om var, i
talet, bindrpunkten &r placerad finns inkodat i talet.

Exempel 1.10 Mantissa och exponent
Talet 132 kan skrivas om som en produkt av tva tal enligt:
132x100=13,2x101=1,32x102=0,32x103 osv..

vi sdger att vi delat upp talet i mantissa och exponent. Under forutsattning att exponentens och mantissans bas
ar den samma sa galler att exponenten anger decimalkommats placering i talet.

1.1.3 Normaliserad form

Om det galler att mantissan &r i intervallet 1 < M < £, dar M &r mantissan och £ &r talbasen, sdgs den
vara normaliserad. Av detta foljer alltsd att den normaliserade mantissans talvérde alltid & mindre &n
talbasen och samtidigt, 1 som minst.

Som Exempel 1.10 antyder finns det ett oandligt antal former att ange ett tal pa formen mantissa/exponent,
det finns dock bara en normaliserad form.

Exempel 1.11 Uttryck talet 132 pd normaliserad form
Den normaliserade formen av talet 132 ar

1,32x102
ty endast denna form uppfyller:

1<1,32<10

Ovanstaende resonemang kan naturligtvis tillampas oberoende av talsystem.

Maskinorienterad programmering, 6/3 2013

Exempel 1.12

Uttryck talen
a) (1101.011);
b) (1E.0A)16

pa normaliserad form.

Lésning:
Skriv talen som mantissa och exponent:

a) (1101.011); = (1101.011); x 20
b) (1E.0A)16 =(1E.0A)16 x169

"Flytta” bindrpunkten sa att mantissan uppfyller villkoret for normaliserad form. For varje steg vi flyttar
bindrpunkten till vinster adderar vi 1 till exponenten.

a) (1101.011); = (1.101011); x23

b) (1E.0A)16 =(1.EOA)16 x161

Exempel 1.13: Omvandling av normaliserad form med olika radix

Skriv talet (2,52)10 104 pa normaliserad form (M), x 2E
Lésning:
Omvandla forst hela talet till bindr form pa kant satt:
2,52104=25200= (1100 0100 1110 000), x 2°
normalisera talet:
=(1.100 0100 1110 000), x 214

1.1.4 Representation av flyttal
Ett flyttal uttrycks allmént som:

(-1)° M x2°F
dar:
S (sign) &r teckenbiten for flyttalet
S=0 anger ett positivt flyttal ty (-1)° =1
S=1 anger ett negativt flyttal ty (-1)* = -1
M utgor talets mantissa
E utgor talets exponent.

Exponenten valjs fran nagon representation med inbyggt tecken.

Det ar vart att notera att for ett normaliserat flyttal pa binar form galler att:

(M)2 = 1.xxxXx
dvs. mantissans forsta siffra ar alltid ar 1. Detta innebar att vi, da vi lagrar flyttal, kan utelamna denna
siffra och pa sa vis astadkomma ett kompaktare format. Detta utnyttjas speciellt i standardiserade
flyttalsformat.

10

6/3 2013- Aritmetik

1.4 IEEE754 - flyttalsstandard

IEEE-flyttalsstandard specificerar

= flyttalsformat

= noggrannhet i resultat fran aritmetiska operationer

= omvandling mellan heltal och flyttal

= omvandling till/fran andra flyttalsformat

= avrundning

= undantagshantering vid operationer pa flyttal, exempelvis division med 0 och resultat som ej
kan representeras av flyttalsformatet.

Standarden definierar fyra olika flyttalsformat:
= Single format, totalt 32 bitar
= Double format, totalt 64 bitar
= Single extended format, antalet bitar & implementationsberoende
= Double extended format, totalt 80 bitar

Ett IEEE-flyttalsformat delas upp i tre félt enligt féljande:
MSB LSB

S E' F

dar:

e F (fractional part) kallas ocksa signifikand, & den normaliserade mantissan x 2, dvs. den forsta
(implicita) ettan i mantissan utelamnas i representationen och mantissan skiftas ett steg till vanster. Pa
sa satt uppnar vi ytterligare noggrannhet eftersom vi far ytterligare en siffra i det lagrade talet.

e E' (karakteristika) ar exponenten uttryckt pa excess(n) format, n beror pa vilket av de fyra formaten
SOm avses.

e S (sign) &r teckenbit for F.

Foljande tabell anger hur de olika formaten disponeras enligt standarden:

Format S E F

Single 1 bit 8 bitar excess(127) 23 bitar
Double 1 bit 11 bitar excess(1023) 52 bitar
Extended 1 bit 15 bitar excess(2047) 64 bitar

Exempel 1.14 Omvandling av heltal till flyttal

Skriv talet (2,52)19 104 som ett IEEE754-single format flyttal

Lésning:

Vi har tidigare kommit fram till resultatet:
(2,52)10104= =(1.1000100 1110 000), x 214

Mantissan ska ha totalt 24 bitar, vi "fyller pa” med nollor pa slutet...
M =(1.100 0100 1110 0000 0000 0000),

Signifikanden F dvs. den del av mantissan som ska lagras far stryker den mest signifikanta ettan, vi har da:
F=(100 0100 1110 0000 0000 0000)>

Exponenten i IEEE-formen uttrycks av karakteristikan E’, excess(127) kod, dvs. E' = E+127, dar E betecknar
exponenten i talet vi utgar frén (214) dvs. E=14 varfor

E'=14+127 =141 =(1000 1101);
eftersom talet ar positivt far vi S = 0. Vi sammanstéller nu resultatet i 32-bitars form (SFP) och far slutligen:
(2,52)10 104 =(0100 0110 1100 0100 1110 0000 0000 0000)srp

11

Maskinorienterad programmering, 6/3 2013

For praktiska andamal &r det lampligt att formulera algoritmer fér omvandlingar mellan vanliga datatyper.

Algoritm: Omvandling av 32 bitars tal x, utan tecken, till flyttal sfp
Anm: Algoritmen termineras med sfp «

1. sfp(S)=0; X'« X;
2: Bestam signifikand
= Bitar X3 .. X4, far inte plats i mantissan, dividera darfor successivt x' med 2 och justera samtidigt
exponenten:
while (X' > (2%-1))
begin
sTp(E") « sfp(E") + 1;
X' « (X' >>1);
end
4: Normalisera mantissa
» FOr en normaliserad mantissa ska bit 23 vara 1, om inte sa ar fallet vansterskiftar vi x” tills detta &r
sant. Observera att algoritmen har forutsétter att x” &r skild fran 0.
while(X' < 2%)
begin
X' «— (X' <<1);
end
= Mantissan &r nu normaliserad, eftersom den inledande ettan (bit X,3’) inte lagras (dess position
upptas av exponenten) nollstéller vi den
Xy3' « 0
sfp (M) « x’
5: Sétt samman flyttalet:
sfp « (sfp(S) << 31) | (sfp(E’) << 23) | sfp)

Algoritm: Omvandling av flyttal sfp till 32 bitars tal x, med tecken

Anm: Algoritmen termineras da x <«
1. Extrahera tecken
sign = sfp(0);
2. Extrahera exponenten (Karakteristika med subtraherad férskjutning)
exp = sfp(E”) - 127 - 23;
= Om denna exponent &r storre &n 8 &r talet for stort for att kunna representeras
if (exp > 8) X « LONG MAX;
= Om denna exponent &r mindre &n -25 dr talet for litet for att kunna representeras
if (exp < -24) X <« LONG MIN;
3. Extrahera mantissa (signifikand med inledande etta)
mant = sfpM) | b,
4. Skifta mantissan tills exponenten blir 0
if (exp > 0)
X <« (mant << exp);
if (exp < 0)
X <« (mant >> exp);
5. Returnera heltal med rétt tecken
if(sign)
X <« -(mant);
else
X <« mant;

12

6/3 2013- Aritmetik

1.1.5 Speciella kodningar av IEEE flyttalsformat

Flyttalet noll

Det finns inget sétt att ange talet noll pd normaliserad form. Standarden sager i stéllet att savél exponent
som mantissa har ska vara noll. Observera att detta ger frihet att koda savél plus som minus noll beroende
pa hur flyttalets teckenbit satts. Flyttalet noll kan foljaktligen kodas pa nagot av foljande stt:

MSB LSB MSB LSB

Avrundningsmetoder

Operationen kan utforas med storre precision an formatet tillater. Som konsekvens av detta kan vi i bland
tvingas avrunda resultatet. Standarden tillater fyra olika avrundningsmetoder:
= Round to nearest, resultatet avrundas till det representerbara vérdet som ligger narmst det
verkliga vardet. Om det verkliga vardet ligger mitt emellan tvd representerbara vérden
avrundas resultatet till ett jamnt tal.
= Round to zero, resultatet trunkeras till rétt precision, dvs. avrundningsbitarna ignoreras.
* Round towards minus infinity, resultatet avrundas nedat till narmsta representerbara varde.
= Round towards plus infinity, resultatet avrundas uppat till narmsta representerbara varde.

Denormaliserade tal

Denormaliserade tal upptrader som resultat av operationer dar exponenten vid normalisering av resultatet
inte kan minskas langre, dvs. man uppnatt den (till beloppet) storsta negativa exponent som kan
representeras. Detta innebar att mantissan inte kan normaliseras. | stallet for att avrunda ett sadant resultat
tillater héar standarden ett icke-normaliserat resultat. Det denormaliserade talet indikeras genom att
exponenten satts till noll men mantissan &r skild fran noll. Ett denormaliserat tal kodas foljaktligen:

MSB LSB

Oandligheter

Da resultatet av en flyttalsoperation Gverskrider det representerbara talomradet, dvs. exponenten anger ett
tal som inte kan normaliseras indikeras detta som infinity. Infinity kan, precis som talet noll, ha tecken och
det indikeras genom att samtliga exponentens bitar satts till ett och mantissan sétts till noll.

MSB LSB

Icke-tolkningsbara resultat

IEEE-standarden inbegriper ocksa en klass av resultat kallade "NaN", (Not A Number). Detta utgor
resultatet av en operation som inte har nagon matematisk tolkning, exempelvis "oandlighet dividerat med
oandlighet" eller "division med noll". Samtliga exponentens bitar satts har till ett och mantissan &r skild
fran noll. For en operation dar minst en av operanderna ar NaN produceras alltid resultatet NaN.

13

Maskinorienterad programmering, 6/3 2013

1.1.6 Typomvandling som biblioteksrutin

| programspraket *C’ forekommer flyttalstyper med olika precision, pa samma satt som man skiljer pa
short respektive long int bland heltalstyperna.

Exempel 1.15 Olika flyttalstyper i 'C’
D3 alla tre IEEE-formaten finns tillgdngliga motsvaras dessa vanligtvis (dock inte alltid) av datatyper enligt
foljande:

float Single precision (32 bitar)

double Double precision (64 bitar)

long double Extended precision (80 bitar)

Det kan dock skilja mellan olika kompilatorer. For exempelvis XCC12 giller att alla flyttalstyper
implementeras som IEEE single precision.

Vissa omvandlingar till och fran IEEE flyttalsformat ar vanliga och fortjanar speciell uppmarksamhet. Vi
behandlar darfér nu hur omvandlingar kan ske med hjalp av programrutiner, kodade i programspraket C.

Exempel 1.16 Typomvandling

Betrakta foljande C-konstruktion:

unsigned long ui;
float f£;

f = (Float) ui; /* Heltal till flyttal */

Detta ar ett exempel pa en typomvandling, dvs. heltalet i variabeln ui, som ar ett 32-bitars tal utan tecken
maste typkonverteras till motsvarande representation for flyttalet i variabeln £, IEEE single precision. Vi vet
sedan tidigare att bitmonstren, for ett och samma talvarde, skiljer sig &t beroende pa tolkningen, dvs.
datatypen. Har maste alltsa nagon typ av omvandling av bitstrangen for ui goras.

Somliga processorer en speciell enhet for hantering av flyttal (floating-point coprocessor). Sadana enheter
har maskininstruktioner for saval typomvandlingar som aritmetiska flyttalsoperationer.

Exempel 1.17 Maskininstruktion for typomvandling

Power-PC arkitekturen definierar maskininstruktioner foér typomvandlingar mellan heltal och flyttal,
exempelvis:

FCTIW frO0, frl ; "floating convert to integer word ”

FCFID fr0, frl ; "floating convert from integer doubleword ”

Instruktionerna utfor alltsa typomvandlingar som en maskininstruktion.

Mindre, billigare processorer saknar vanligtvis speciell enhet for hantering av flyttal. Vi maste da
tillhandahalla funktioner for omvandlingarna. Lat oss betrakta typerna (unsigned) long och float, Vi
identifierar da foljande typomvandlingar:

14

6/3 2013- Aritmetik

1

float unsigned long int (ftoul, “floatto unsigned long”)
float - signed long int (ftosl, “float to signed long”)
unsigned long int - float (ultof, “unsigned long to float”)
signed long int - float (sltof, “signed long to float”)

Reglerna for typkonverteringar i *C’ gor att konverteringarna fran float till unsigned respektive
signed long i sjalva verket & samma sak. Ett flyttal som &r mindre &n noll kan inte representeras korrekt
med en unsigned typ, sa i stallet konverteras det till en signed typ. Slutsatsen blir att vi klarar oss med
en konverteringsrutin fran Float, vi kallar den fto1 (’float to long™)

For konverteringar till Float géller att det racker med en omvandlingsrutin for tal utan tecken, unsigned
long to float. Vi kan da implementera omvandlingen av tal med tecken, signed long to float, med hjélp av
teckenoverlaggning. Av resonemanget framgar att vi i sjalva verket behover implementera tva
konverteringsrutiner:

float - signed long int (ftol, “floatto long”)
unsigned long int - float (ultof, “unsigned long to float”)

Vi har tidigare gett algoritmer for dessa omvandlingar och fortsétter har med dess implementering i ’C’.

Vi borjar med typkonverteringen unsigned long to float. For att ha friheten att tolka ett bitmdnster pa olika
sdtt anvander vi “union”-konstruktionen i C. Féljande deklaration:
union float long
{
float f;
long 1;
}i
ger oss en typ, float long, som upptar 32 bitar i minnet. En variabel deklarerad med denna typ kan nu
anvandas for att representera en och samma bitstrang som tva olika typer, samtidigt. Detta anvéander vi i
foljande konverteringsrutin ultof. Observera specialfallet om talet noll ska omvandlas.

float ultof (unsigned long a) /* unsigned long to float */
{
union float long f1l;
int exp = 23 + 127;
if (a==0) {/* Specialfall, maste testas forst */
return 0.0;
}
/* Normalisera */
whille (a & 0xFF000000) {
a=a>>1;
exp = exp + 1;
}
whille (a < 0x00800000) {
a = a << 1;
exp = exp - 1;
}
a =a & ~0x00800000 ; /* nollstadll implicit inledande etta */
/* tilldelning till union medlem typ ”long” */
f1.1 = (unsigned long) exp<<23 | a;
return (fl1.f); /* returnera som flyttal, teckenbit &r 0 */
}

Signed long to float implementerar vi nu enkelt pa foljande sétt:

float sltof (signed long a) /* signed long to float */
{
if (a<0)
return - (ultof (-a)):
else
return ultof (a);

15

Maskinorienterad programmering, 6/3 2013

Slutligen visar vi en omvandlingsrutin for float to signed long:

long ftol (float al)
{

union float long f1l;
int exp;
char sign;
long 1;
fl1.f = al;
if (1£1.1)
return (0);
sign = 0;

if(£1.1 & 0x80000000)
{

sign++;
}
exp = (((unsigned long) (f1.1) >> 23) &
(unsigned int) O0x00FF) - 127 - 23;
1 = (((f1.1) & (unsigned long)0x007FFFFF) | 0x00800000

if (exp > 8)

return LONG MAX; /* storsta méjliga ‘long int’ */
if (exp < -25)

return LONG MIN; /* minsta méjliga ‘long int’ */

/* exponenten ska vara noll... */
if(exp >0)
{ /* skifta mantissan till vanster */

1 =1 << exp;
}

if (exp < 0)

{ /* skifta mantissan till hoéger */
1 =1 > -exp;

}

if(sign)
return -1;
return 1;

)7

16

6/3 2013- Aritmetik

1.1.7 Aritmetiska operationer pa flyttal

Aritmetiska operationer pa flyttal blir avsevart mer komplicerade an operationer pa heltal. Operationerna
maste utforas i flera steg.

Flyttalsaddition/subtraktion

Vid addition eller subtraktion av flyttal utfors ett flertal operationer dar mantissa och exponent maste
behandlas var for sig, dessutom tillkommer teckendverlaggning eftersom mantissan ju ér given pa tecken-
beloppsform. Vid operation pa mantissorna maste vi forst se till att bada talen har samma exponent.
Addition/subtraktion av IEEE-flyttal utfors i foljande steg:

1. Bestam talens mantissor ur F (dvs. lagg till en etta framfor den mest signifikanta biten i respektive F).
2. Bestam talens exponenter pa tvakomplementsform.

3. Berédkna exponentskillnaden

4. Skifta mantissan for talet med minst exponent hoger det antal ganger som exponentskillnaden anger
(minns att exponenten anger binarpunkten i flyttalet).

Utfor addition (subtraktion) av mantissorna efter tecken-6verlaggning.

Normalisera resultatet genom att skifta resultatmantissan samtidigt som resultatexponenten korrigeras.

Exempel 1.18 Addition av flyttal

Visa additionen av 2,52 10% + 2,52 103 av flyttal givna enligt IEEE-single format form:

Lésning:

oo

Omvandla talen till bindarformat:
A=(2,52) 1 104=(O1O00110110001001110000000000000)SFP
B=(2,52) o 103=(O1O00101000111011000000000000000)SFP

1. och 2. Dela upp talen i tecken, exponent och mantissa:
A = (-1)% X My X E, och B = (-1)% X My X Eg

SA =0
Ma = (1.F),=(1.10001001110000000000000)
E, = E', - 127=(00001110) (dvs 141-127 = 14)

SB O
My = (1.F)s= (1.0011101100000000000000)
E, = E'5 — 127=(00001011) (dvs138-127 = 11)

3. Exponentskillnaden (14-11) ar 3.

4. Skifta talet med minst exponent (M) tre steg hoger
Mz ' =0.0010011101100000000000000

observera att vi tillater stérre upplosning hos mantissan under utforande av operationen.

5. Utfor additionen, bada talen positiva:
1.10001001110000000000000 Ma
+0.0010011101100000000000000 Mg~
=1.1011000100100000000000000

6. Normalisera resultatet, i detta fall ar resultatet redan i normaliserad form:
SR =0
Mg 1.1011000100100000000000000
E, = 14

Vilket nu ger oss representationen:

Fr = (1011000100100000000000000)
Ex' = 127+14 = (10001101),

Vi kan slutligen sétta samman resultatet:
R = (01000110110110001001000000000000) spp

17

Maskinorienterad programmering, 6/3 2013

Addition och subtraktion som biblioteksrutiner

Vi ska nu visa hur addition/subtraktion kan implementeras av programrutiner som enbart konstruerats av
operationer pa heltal. Vi visar forst implementeringen av addition, darefter hur vi med hjalp av
teckendverlaggning enkelt kan implementera dven operationen “subtraktion”.
utfor vi addition av mantissorna med storsta tillgangliga precision. Vi har 32 bitar tillgangliga, en bit
representerar tecken och ytterligare en bit kravs for att detektera spill fran additionen, dvs. 30 bitar. Detta

ger oss battre noggrannhet men ger ocksa extra normaliseringar, dvs. nagot mer komplex kod.

float addf (float f1, float £f2)

{

long mantl, mant2;

union float long fl1l, f12;
int expl, exp2;

long sign = 0;

fl1l.f f1;
fl12.f = £2;

/* Kontroll att ingen av parametrarna ar 0 */

if (!'f11.1)
return (f12.f);
if (!'f12.1)

return (f£11.£f);

/* Extraktion av exponenter */
expl = (((unsigned long) (f11.1) >> 23)
exp2 = (((unsigned long) (£f12.1) >> 23)

& (unsigned int) Ox00FF);
& (unsigned int) OxOOFF);
/* Kontroll att addition &r meningsfylld */
if (expl > exp2 + 25)

return (f11.f);
if (exp2 > expl + 25)

return (£f12.f);

/* Extraktion av mantissa,

vi anvander 24+6 dvs 30 bitar och avrundar efter addition */
mantl = (((f11.1) & (unsigned long) OxOO07FFFFF) | 0x800000)<<6;
mant?2 (((£f12.1) & (unsigned long) O0xO007FFFFF) | 0x800000)<<6;

/* Teckendverlaggning */
if (£11.1 & 0x80000000)

mantl = -mantl;
if (£12.1 & 0x80000000)
mant2 = -mant2;

if (expl > exp2) /* Skifta mantissa med ladgst exponent */

mant2 = (mant2 >> (expl - exp2));
}
else
{
mantl = (mantl >> (exp2 - expl));
expl = exp2; /* Vi anvidnder ’expl’ nedan */
}
mantl += mant2; /* Addera mantissor */

/* Vi har nu icke-normaliserat resultat i ’‘expl/mantl’ */
if (mantl ==)
return (0.0);

if (mantl < 0)
{ /* Justera mantissa, resultatets teckenbit satts till 1 */
mantl = -mantl;

18

I denna implementering

6/3 2013- Aritmetik

sign = 0x80000000;
}

/* Normalisera upp till 30 bitars mantissa om det behdvs */
while (! (mantl & (unsigned long) 0xE0000000))
{

mantl <<= 1;
expl--;

}

/* Normalisera ned till 30 bitars mantissa om det behdvs */
if (mantl & (unsigned long) 0x40000000)
{

mantl >>= 1 ;
expl++;
}

/* Avrundning, lsb av mantissa ”“round to nearest even” */
mantl += (mantl & (unsigned long) 0x40) °?
(unsigned long) 0x20 : (unsigned long) O0x1F;

/* Normalisera ned till 30 bitars mantissa om det behdvs */
if (mantl & (unsigned long) 0x40000000)
{

mantl >>= 1;
expl++;
}

/* "Kasta” nu de 6 extra bitarna vi anvant vid addition av mantissor */
mantl = mantl >> 6;

/* nollstdll implicit inledande etta */
mantl = mantl & ~0x00800000;

/* packa ihop flyttalet ... */
f11.1 = (unsigned long) expl<<23 | mantl | sign ;
return (f11.f);

}

Implementeringen av ”subf” blir nu enkel:

float subf (float f1l, float £f2)

{
union float long fl11, £12;

fl11.f = £1;

fl2.f = £2;

/* toggla teckenbiten hos operand 2 och utfér addition */
f12.1 "= 0x80000000;

return (addf(f11.f , fl12.f));

}
Flyttalsmultiplikation och Division

En flyttalsmultiplikation/division utfors betydligt enklare &n addition och subtraktion. Vid
flyttalsmultiplikation multipliceras mantissorna medan exponenterna adderas, vid flyttalsdivision
divideras mantissorna medan dividendens exponent subtraheras fran divisorns exponent, detta kan kortare
skrivas som:

A*B = 2,8 * FA * Fg respektive

AB = 26,5 * FalFg

19

Maskinorienterad programmering, 6/3 2013

Multiplikation och division som biblioteksrutiner

float mulf (float f1, float £f2)

{

union float long f1l1, f12;
unsigned long result;

int exp;

unsigned long sign;

if (!f11.1 || !'fl2.1)
return (0.0);

fl11.f = £1;
flz.f £2;

/* Bestam tecken hos resultatet */

sign = (0x80000000 & f11.1) ~ (0x80000000 & f12.1);

/* Addition av exponenter, endast ‘en forskjutning’ i resultatet */
exp = (((unsigned long) (f11.1 >> 23)) & (unsigned int) O0xO00FF) - 126;
exp = exp + (((unsigned long) (£12.1 >> 23)) & (unsigned int) Ox00FF);
/* Extrahera mantissor, maska in implicit bit */

f11.1 = (((f1l1.1) & (unsigned long)O0xO07FFFFF) | 0x800000);

fl12.1 (((£f12.1) & (unsigned long)O0x007FFFFF) | 0x800000) ;

/* Multiplicera mantissor */
result = f11.1 * f12.1;

/* skifta 32 bitars resultat till 24 bitar och avrunda */
if (result & (unsigned long)0x80000000)

{
result += 0x80;
result >>= 8;

else

result += 0x40;
result >>= 7;
exp--;

}
result &= ~0x800000; /* nollstdll implicit inledande etta */
/* packa ihop flyttalet ... */

f11.1 = (unsigned long) exp<<23 | result | sign ;
return (f11.f);

20

6/3 2013- Aritmetik

float divf (float f1l, float £f2)

{

union float long fl1l, £12;
long result;

unsigned long mask;

long mantl, mant2;

int exp ;

unsigned long sign;

fl11.f = f1;
f12.f = £2;

if ('f12.1) { /* division med 0 ? */

return (OxFFFFFFFF); /* returnera ‘NaN’ */
}
if ('£11.1) /* dividend 0 ? */

return (0.0);

/* Bestam tecken hos resultatet */
sign = (0x80000000 & f11.1) ~ (0x80000000 & fl1l2.1);

/* Subtraktion av exponenter, endast ‘en fdrskjutning’ i resultatet */
exp = (((unsigned long) (f11.1 >> 23)) & (unsigned int) OxO0O0FF) ;

exp = exp - (((unsigned long) (£12.1 >> 23)) & (unsigned int) Ox0O0FF);
exp = exp + 126;

/* Extrahera mantissor, maska in implicit bit */
f11.1 = (((fl11.1) & (unsigned long)O0xO07FFFFF) | 0x800000);
£f12.1 = (((f12.1) & (unsigned long)Ox007FFFFF) | 0x800000) ;

/* dividend > divisor ger 25 signifikanta resultatsiffror */
if (mantl < mant2)
{

mantl = mantl << 1;

exp--;

}

/* Division av mantissor med upprepad subtraktion */
mask = 0x1000000;
result = 0;
while (mask)
{
if (mantl >= mant2)
{
result = result | mask;
mantl mantl - mant2;

mantl = mantl << 1;
mask mask >> 1;

}

/* avrunda uppat */
result = result + 1;

/* normalisera (hogerskift, ty divisor > dividend */
exp++;
result = result >> 1; /* Nu 24 sign. bitar i mantissa */

result &= ~0x800000; /* nollstdll implicit inledande etta */
/* packa ihop flyttalet ... */

f11.1 = (unsigned long) exp<<23 | result | sign ;
return (f11.f);

21

Maskinorienterad programmering, 6/3 2013

Flyttalstest och jamforelser

En test av ett IEEE-flyttal kan ge f6ljande resultat:
= normaliserat
= denormaliserat

= plus noll
= minus noll
= negativt

= plus odndligheten

= minus odndligheten
= plus Not A Number

= minus Not A Number

Detta kan jamforas med de testresultat vi kan fa da ett vanligt heltal testas (Zero eller Negative). En ALU
for flyttalsaritmetik har darfor ytterligare en uppsattning flaggbitar som &r avsedda att aterspegla de
speciella resultat som fas vid en flyttalstest.

En flyttalsjamforelse ska, enligt standarden, kunna testa vilkoren:

= Equal To
= Greater Than
= Less Than

= Unordered

Tack vare kodningen blir dessa jamforelseoperationer enkla att implementera.
= Equal To, indikerar att operanderna ar identiska
= Greater Than/Less Than, indikerar att operand A é&r stdrre/mindre an operand B, detta
inbegriper en teckendverldggning och om talen har samma tecken kan resterande del av
operanderna jamforas pa samma satt som vid heltalsjamforelse. Detta ar en av fordelarna med
att koda exponenten pa excess-form i stéllet for tvakomplementsform.
= Unordered innebér att minst ett av talen &r "Not A Number".

Sammanfattning IEEE-flyttalsstandard
Lat oss som avslutning bestimma talomraden och upplésning hos de olika IEEE-formaten

Single format, (32 bitar) har 23 bitars signifikand, 8 bitars exponent och 1 teckenbit. Det till beloppet
minsta normaliserade tal, skilt fran noll, som da kan representeras ar: E'=1 och F = 0 vilket ger
E = -126

dvs: 1.0 x 27?0 ~ 1,2 x 107%®

Det minsta denormaliserade tal som kan representeras far vi da E'=0 och endast den minst signifikanta
biten i F &r lenligt:

E = -126 och

M= 00000000000000000000001

dvs: 277%¢ x 2 "% = 1,4 x 107"

Det storsta normaliserade tal som kan representeras far vi da E'=254 och F=11111111111111111111111:
E = 127
M= 1. 11111111111111111111111

vilketger: 1.11111111111111111111111 x 2**" = 2 x 2**" = 3,4 x 10°®

Uppldsningen ges av vérdet hos den minst signifikanta biten i F ty detta varde anger den minsta skillnad
mellan tva flyttal vi kan representera. Vikten hos denna bit ger oss alltsa upplosningen enligt:

22 ~11910770,000000119

Mot bakgrund av att all aritmetik utfors med hogre precision kan man utga fran att den forsta atskiljande
siffran alltid avrundas till ett korrekt vérde. Vi ser da att vi kan utga fran att vi har minst 7 decimala
siffror's noggrannhet.

22

6/3 2013- Aritmetik

23

