
6/3 2013- Aritmetik 

1 

 

1 Aritmetik 
 

32 bitars multiplikation/division med 16-bitars processor. 

IEEE-754, flyttalsrepresentation 

 

 



Maskinorienterad programmering, 6/3 2013 

2 

1.1 Multiplikation 
Multiplikation av binära tal kan utföras på samma sätt som vid decimala tal. Allmänt skriver vi P=X×Y 
där: 

 P är produkten av multiplikationen 
 X är multiplikand 
 Y är multiplikator 

Det finns åtskilliga algoritmer för binär multiplikation. I huvudsak skiljs dom åt genom sin snabbhet. Vi 
kommer inte här att ge en fullständig framställning utan nöjer oss med att visa att varje multiplikation kan 
åstadkommas med de elementära operationerna skift och addition. 

Reglerna för multiplikation i binära talsystemet är mycket enkla: 

0 × 0 = 0  
0 × 1 = 0  
1 × 0 = 0 
1 × 1 = 1 

Vi tillämpar dessa regler och samma metod då vi ställer upp, och multiplicerar, som med decimala tal, på 
samma sätt som vi lärde i grundskolan. (I bland kallas detta “papper och penna-metoden”). 

 

Exempel	1.1	 Multiplikation		(P=X×Y),	X=5,	Y=6,	“papper	och	penna‐metoden”,	X>0,	Y>0.	

  Decimalt      Binärt 
 
  X    5        0101  multiplikand 
 ×Y  × 6       *0110  multiplikator 
 =P = 30        0000 
         0101 
        0101 
     + 0000    
    =  0011110 = 24+23+22+21=30 

	

 

Om vi speciellt betraktar uppställningen av binärmultiplikation i exemplet inser vi att samma resultat kan 
fås enbart genom att använda operationerna addition och högerskift. Detta är en direkt konsekvens av att 
vi arbetar i det binära talsystemet. I ”papper-och-penna” metoden ser vi att vi antingen adderar noll, eller 
adderar multiplikanden, iterativt. För varje siffra vi avverkar flyttar vi oss en decimalpunkt till vänster, 
vilket också kan beskrivas som ett högerskift av multiplikanden. Vi provar därför nu en metod som endast 
använder de enkla operationerna addition och högerskift. Metoden bildar produkten genom en iterativ 
procedur som successivt genererar partialprodukter (PP).  Då hela ordlängden är bearbetad har vi alltså 
den sista partialprodukten vilken också är den slutliga produkten. Algoritmen är: 

 

Multiplikation P(produkt) = X(multiplikand)  Y (multiplikator) 
Partialprodukt 0, PP(0) = 0 
med början på multiplikatorns LSB (y0) 

för varje bit  i hos multiplikatorn 
   Om yi=1 addera multiplikand till nästa partialprodukt 
   annars addera 0 till nästa partialprodukt 
  skifta resultatet ett steg till höger 
 tills alla bitar inspekterats 
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Vi illustrerar algoritmen med följande exempel. 

Exempel	1.2	 Multiplikation	(P=X×Y)	tal	utan	tecken,	X=6,	Y=5,	med	addition/skift,	X>0,	Y>0.	

X=6=  =0110 (multiplikand) 
Y=5=y3y2y1y0 =0101 (multiplikator) 
 
PP(0)  0000  y0=1ADD X 
     + 0110 
  0110  skifta 
PP(1)  0011 0 y1=0ADD 0 
     + 0000 
  0011 0 skifta 
PP(2)  0001 10 y2=1ADD X 
     + 0110 
  0111 10 skifta 
PP(3)  0011 110 y3=0ADD 0 
     + 0000 
  0011 110 skifta 
 
P=PP(4)= 00011110 = 24+23+22+21 = 30 

	

 

Den beskrivna algoritmen fungerar definitivt för positiva tal. Det finns också all anledning att tro att 
algoritmen fungerar även om X är ett negativt tal (på tvåkomplementform) under förutsättning att 
högerskiftet görs med bibehållet tecken (aritmetiskt skift). Utan bevis, illustrerar vi det med följande 
exempel. 

Exempel	1.3	 Multiplikation	(P=X×Y)	tal	med	tecken,	X=‐6,	Y=5,med	addition/aritmetiskt	skift,	X<0,	Y>0.	

X=-6=  =1010 (multiplikand) 
Y=5=y3y2y1y0 =0101 (multiplikator) 
 
PP(0)  0000  y0=1ADD X 
     + 1010 
  1010  skifta aritmetiskt 
PP(1)  11010  y1=0ADD 0 
     + 0000 
  11010  skifta aritmetiskt 
PP(2)  111010 y2=1ADD X 
     + 1010 
      1100010 skifta aritmetiskt 
PP(3)  1100010 y3=0ADD 0 
     + 0000 
  1100010 skifta aritmetiskt 
 
P=PP(4)= 11100010 = -(00011110)2 = -(30)10 

	

 

Vid additionen av PP(2) till X ser vi att vi får spill från den mest signifikanta positionen. Med de givna 
förutsättningarna (X<0) sker detta endast då vi har en partialprodukt som är mindre än 0. Spillet kan alltså 
ses som en kopia av teckenbiten. Eftersom vi skiftar aritmetiskt återställs denna på korrekt sätt. 

För att slutligen generalisera och tillåta såväl Y<0 som X<0 måste vi göra en modifikation av algoritmen. 
Bakgrunden är enkel, vid tvåkomplementrepresentation utgör den mest signifikanta biten ingen egentlig 
värdesiffra utan är enbart teckenrepresentation. Då vi bildar den sista partialprodukten, dvs. slutprodukten, 
markerar talet Y’s teckenbit att -X ska adderas (i stället för X).  
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Vi illustrerar med ytterligare ett exempel, metoden kallas också Robertson’s metod: 

Exempel	1.4	 Multiplikation	(P=X×Y)	tal	med	tecken,	X=‐6,	Y=‐5,	med	addition/aritmetiskt	skift,	X<0,	Y<0.	

X=-6=  =1010 (multiplikand) -X = 0110 
Y=-5=y3y2y1y0 =1011 (multiplikator) 

Observera hur vi här använder en extra teckenbit, (5-bitars tal i operationen) 

PP(0)  00000  y0=1ADD X 
     + 11010 
  11010  skifta aritmetiskt 
PP(1)  111010 y1=1ADD X 
     + 11010 
       101110 skifta aritmetiskt 
PP(2)  1101110 y2=0ADD 0 
     + 00000 
       1101110 skifta aritmetiskt 
PP(3)  11101110 y3=1ADD -X 
     + 00110 
       00011110 skifta aritmetiskt 
 
P=PP(4)= 00011110 = 30 

	

 

Produkten av två godtyckliga tvåkomplementstal med i och j bitar kan maximalt vara (i+j-1). Detta inses 
av att i bitar ska skiftas j gånger (totalt i+j bitar), men samtidigt krävs endast en teckenbit för produkten 
(dvs i+j-1). Vanligtvis gäller att ordlängden hos multiplikator och multiplikand är densamma, i=j=n, då 
krävs maximalt 2n-1 bitar för att representera produkten av två n-bitars tal. 

Vi har nu sett algoritmer som hanterar multiplikation av såväl tal på binär form som tal på 
tvåkomplementsform. Vi har sett hur multiplikationen kan utföras med hjälp av de enkla operationerna 
addition och skift. Vi har också sett att multiplikation av binära tal kräver sin algoritm (med logiskt skift), 
medan multiplikation av tvåkomplementstal kräver en (mycket liten) modifikation av algoritmen, 
användning av aritmetiskt skift. En dator kan självfallet inte avgöra om bitsträngarna ska tolkas som tal 
med, eller utan tecken. Processorer som tillhandahåller instruktioner för multiplikation har därför alltid 
minst två varianter av denna: en för multiplikation av tal utan tecken (unsigned multiplication) och en 
annan instruktion för multiplikation av tal med tecken (signed multiplication).   

1.1.1 32-bitars multiplikation som biblioteksfunktion 
För processorer som inte tillhandahåller maskininstruktioner för multiplikation kan dessa implementeras 
som ”biblioteksfunktion”. Följande implementering bygger direkt på ”papper-och-penna”-metoden. Den 
fungerar för både tal med tecken och tal utan tecken. Observera att bara de 32 minst signifikanta bitarna av 
resultatet behålls och att eventuellt ”spill” inte detekteras.   

long mul32 ( long a, long b)  
{ /* Multiplikation med "skift/add" */  
 long result, mask; 
 int i; 
 mask = 1; 
 result = 0; 
 for( i = 0; i<32; i++ ) 
 { 
  if ( mask & a ) 
   result = result + b ; 
  b = b << 1; 
  mask = mask << 1; 
 } 
 return result; 
} 
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För processorer som har instruktioner för multiplikation (8 och/eller 16 bitar) kan man oftast åstadkomma 
bättre implementeringar genom att använda dessa. 

Exempel	1.5	 Visa	hur	32‐bitars	multiplikation	av	tal	utan	tecken	kan	utföras	med	hjälp	av	16‐bitars	
		 	 multiplikation,	addition	och	skiftoperationer.	

Antag	a,	b	32‐bitars	tal,	skriv:	

	 a	=	ah×216	+	al,	där	ah	är	de	16	mest	signifikanta	bitarna	och	al	de	16	minst	signifikanta	bitarna.	

	 b	=	bh×216	+	bl,	p.s.s	

Det	gäller	då	att:	

	 a	×	b	=	(	ah×216	+	al	)	×	(	bh×216	+	bl	)	=	

	 	 232	(	ah	×	bh	)	+	216		(	ah	×	bl	+	al	×	bh	)	+	(	al	×	bl	)		

Detta	är	samma	sak	som:	

	 	 (	ah	×	bh	)	<	<	32	+	(	ah	×	bl	+	al	×	bh	)	<	<	16	+	(	al	×	bl	)	

dvs.	 eftersom	 ah,	 bh,	 al	 och	 bl	 är	 16	 bitars	 tal	 kan	 32	 bitars	 multiplikation	 genomföras	 med	 16‐bitars	
multiplikation,	addition	och	skiftoperationer.	

Första	 termen	 försvinner	eftersom	produkten	(ah	×	bh	 )	 ska	skiftas	32	steg	 till	vänster	och	detta	 inte	ryms	
inom	resultatets	32	bitar,	vi	kan	därför	skriva:	

	 a	×	b	=	(	ah	×	bl	+	al	×	bh	)	<	<	16	+	(	al	×	bl	)	

	

 

Resultatet från Exempel 1.5 kan enkelt implementeras enligt följande: 

 
unsigned long mulu32 ( unsigned long a, unsigned long b)  
{  
 unsigned long result; 
 unsigned short ah,al,bh,bl; 
 
 ah =  (unsigned short )( a >> 16 ); 
 al =  (unsigned short ) a ; 
 bh =  (unsigned short )( b >> 16 ); 
 bl =  (unsigned short ) b ; 
 result = (((unsigned long)( ah*bl + al*bh ))<< 16 ) + ( al*bl ); 
 return result; 
} 
 
Vi kan slutligen implementera multiplikation av 32-bitars tal med tecken genom att använda ovanstående 
funktion tillsammans med teckenöverläggning, enligt följande: 
 
long muls32 (long a, long b) 
{ 
 long r; 
    
 r = mulu32 ( ((a < 0) ? -a : a),((b < 0) ? -b : b) ); 
 
 if ( (a < 0) ^ (b < 0)) 
  return -r; 
 else 
  return r; 
}          
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1.2 Division 
Precis som för multiplikation, kan binär division utföras enligt “papper och penna-metod”. I detta avsnitt 
ska vi illustrera hur detta går till. Metoden kan endast användas på positiva heltal. Vi behandlar inte 
metoder för division av tvåkomplementtal i det generella fallet även om sådana metoder finns. 

En division kan skrivas som: 
X

Y
Q

R

Y
   

Där: 
 X är dividend 
 Y är divisor 
 Q är kvot, resultatet av heltalsdivisionen X/Y. 
 R är resten, resultatet av modulusdivisionen X mod Y. 

Av sambandet framgår att resten kan uttryckas: R = X - QY 

Av Exempel 1.6 nedan ser vi hur partialresterna bildas genom att succesivt subtrahera (största möjliga) 
kvotsiffra multiplicerad med Y som fortfarande ger en positiv partialrest. Kvotsiffran fås genom prövning. 

Exempel	1.6:	Decimal	division,	återställning	av	resten,	3967/15	

 X = 3967 
 Y = 15 
    R  = X  - Q×Y 
     0264,4  
 15 3967,0  3697=3697-0×15      Utgångsläge 
    -0   
     3967,0  3967=3967-(0×103)×15        steg 1 
    -30  
      967,0   967=3697-(0×103+2*102)×15       steg 2 
    - 90  
       67,0    67=3697-(0×103+2×102+6×101)×15      steg 3 
    -  60,0  
        7,0     7=3697-(0×103+2×102+6×101+4×100)×15     steg 4 
    -   6,0  
        1,0     1=3697-(0×103+2×102+6×101+4×100+4×10-1)×15  steg 5 
 
 DVS. 3967/15 = 264,4 + 10/15 × 10-1 

	

Låt oss nu studera ett exempel på binär division med användning av samma metod. Som vi ska se blir 
detta faktiskt enklare eftersom endast två kvotsiffror (0 och 1) kan förekomma. Prövningen av Q*Y för 
positiv partialrest kräver alltså inte någon egentlig multiplikation. 

Exempel	1.7:	Binär	division	X/Y,	med	återställning,	X=13,	Y=5	

X = 1101 
Y = 0101 
        R  = X  - Q×Y 
      0010  
 01011101     1101=1101- 0×0101         Utgångsläge 
  -0000  
      1101     1101=1101-(0×23)×0101       steg 1 
   -0000  
      1101     1101=1101-(0×23+0×22)×0101       steg 2 
    -0101  
      0011       11=1101-(0×23+0×22+1×21)×0101      steg 3 
     -0000  
      0011       11=1101-(0×23+0×22+1×21+0×20)*0101   steg 4 

 DVS. 1101/0101 = 0010 + 0011/0101 (2 + 3/5) 
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Den visade metoden kan formuleras i en algoritm där vi endast använder operationerna vänsterskift och 
addition. Efter subtraktion av Y från aktuell partialrest sätts kvotsiffran till 1 om skillnaden blir positiv, om 
skillnaden blir negativ sätts kvotsiffran till 0 och partialresten återställs genom addition av Y, därefter 
fortsätter man med nästa steg. Om partialresten blir 0 har divisionen “gått jämnt ut” och operationen är 
klar. Ofta är detta inte fallet och man kan då fortsätta om man är villig att acceptera decimalsiffror i svaret 
(jämför med föregående exempel). 

 
Algoritm:	 Division	med	återställning	
	 	 R	=	X	‐	Q*Y	
	 	 Q=q0q1q2...qn‐1	
	 	 n=antal	kvotbitar	att	beräkna	
	 	 R0	=	X	
	 	 R1	=	R0‐q0*Y	 	 	 q0=1	om	R1				0,	q0	=	0	annars	
	 	 för	i	=	2..n	
	 	 	 Ri=2*Ri	‐1	‐qi*Y	 	 qi=1	om	Ri				0,	qi	=	0	annars	

Anmärkning: Antalet kvotbitar vi önskar bestämmer antalet partialrester som ska beräknas och därmed 
också det antal vänsterskift som måste utföras. Eftersom partialrest n inte ska skiftas får vi n-1 
vänsterskift.  

Exempel	1.8:		 Utför	binär	division	av		13/5	med	återställningsmetod.		

Svaret ska anges med 4 kvotbitar och 4 restbitar. Varje steg i algoritmen ska redovisas. 
 
Lösning: 
 X=13 = 1101 
 Y=5  =  0101 
 -Y=-5=  1011 
 n=4 (3 skift ska utföras) 
 
Utgångsuppställningen: 
 R0 = X  0001101  3 bitar ska skiftas 
 +(-Y)  1011 
steg 1: 
 R0-Y  1100101 <0q0=0Återställ 
 +(Y)  0101 
 R1  0001101 
 2* R1  0011010 
steg 2: 
 +(-Y)  1011 
 2*R1-Y 1110010 <0q1=0Återställ 
 +(Y)  0101 
 R2  0011010 
 2* R2  0110100 
steg 3: 
 +(-Y)  1011 
 2*R2-Y 0001100 0q2=1 
 R3  0001100 
 2* R3  0011000 
steg 4: 
 +(-Y)  1011 
 2*R3-Y 1110000 <0q3=0Återställ 
 +(Y)  0101 
 R4  0011000 
n=4 och algoritmen terminerar här 
 
 Q=   q0q1q2q3  =%0010=2 
 R=  =%0011=3 
 DVS: 13/5 = 2 + 3/5 
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1.1.2 32-bitars division som biblioteksfunktion 
För processorer som saknar instruktioner för 32-bitars division visas här en implementering av ”divu32”, 
dvs. heltalsdivision av två 32-bitars tal utan tecken. Observera hur vi ”återanvänder” lagringsplatsen för 
parametern a, genom att succesivt skifta in eventuella kvotbitar till a.  

unsigned long divu32 (unsigned long a, unsigned long b) 
{ 
 unsigned long rest = 0L; 
 unsigned char count = 31; 
 unsigned char c; 
 
 do{ 
  if( a & 0x80000000 ) 
   c = 1; 
  else 
   c = 0; 
  a = a << 1; 
  rest = rest << 1; 
  if(c) 
   rest = rest | 1L; 
 
  if(rest >= b){ 
   rest = rest - b; 
   a = a | 1L; 
  } 
 } while(count--); 
 return a; 
} 
 

Genom att införa teckenöverläggning kan vi också hantera division av 32-bitars tal med tecken: 
 
long divs32 (long a, long b) 
{ 
 long r; 
        
 r = divu32((a < 0 ? -a : a),(b < 0 ? -b : b)); 
 
 if ( (a < 0) ^ (b < 0)) 
  return -r; 
 else 
  return r; 
}          

 

Avslutningsvis visar vi en enkel implementering av modulusdivision, där vi helt enkelt använder 
definitionen av operationen: 

 
unsigned long  modu32 (unsigned long a ,unsigned long b) 
{ 
 unsigned long c = a/b; /* heltalsdivision */ 
 return ( a - b * c ); 
} 
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1.3  Flyttal 
Vi har tidigare uteslutande behandlat kodning av heltal. I många sammanhang är detta inte tillräckligt 
exempelvis då vi vill uttrycka mycket små tal så som avstånd mellan atomer eller vi vill uttrycka mycket 
stora tal så som avstånd mellan galaxer i universum.  

En bitsträng kan förses med en ”tänkt” binärpunkt och tolkningen av talvärdet göras därefter. Vi kallar 
detta allmänt för fixtal och menar då en fast binärpunkt någonstans i bitsträngen. 

 

Exempel	1.9	 Fixtal	

Bitsträngen	11011100	kan	förses	med	en	”tänkt”	binärpunkt	enligt	1101.1100,	tolkningen	av	talet	blir	då:	

	 23+22+20+2‐1+2‐2	=	8+4+1+0,5+0,25	=	13,75	

	

 

Fixtalsaritmetik kan vara användbart i många sammanhang men det löser dock knappast det 
grundläggande problemet dvs. att, med samma representation, kunna ange såväl mycket små som mycket 
stora tal. För att komma till rätta med detta kan vi införa en flytande binärpunkt, dvs. information om var, i 
talet, binärpunkten är placerad finns inkodat i talet. 

 

Exempel	1.10	 Mantissa	och	exponent	

Talet	132	kan	skrivas	om	som	en	produkt	av	två	tal	enligt:	

	 132×100	=	13,2×101	=	1,32×102	=	0,32×103			osv..	

vi	säger	att	vi	delat	upp	talet	i	mantissa	och	exponent.	Under	förutsättning	att	exponentens	och	mantissans	bas	
är	den	samma	så	gäller	att	exponenten	anger	decimalkommats	placering	i	talet.	

	

	

1.1.3 Normaliserad form 

Om det gäller att mantissan är i intervallet  1 ൑ M < β , där M är mantissan och β är talbasen, sägs den 
vara normaliserad. Av detta följer alltså att den normaliserade mantissans talvärde alltid är mindre än 
talbasen och samtidigt, 1 som minst.  

Som Exempel 1.10 antyder finns det ett oändligt antal former att ange ett tal på formen mantissa/exponent, 
det finns dock bara en normaliserad form. 

 

Exempel	1.11	 Uttryck	talet	132	på	normaliserad	form	

Den	normaliserade	formen	av	talet	132	är	

	 1,32×102	

ty	endast	denna	form	uppfyller:	

	 1		1,32	<	10	

	

 

Ovanstående resonemang kan naturligtvis tillämpas oberoende av talsystem. 
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Exempel	1.12	

Uttryck	talen	
a)	 (1101.011)2		
b)	 (1E.0A)16		

på	normaliserad	form.	

Lösning:	

Skriv	talen	som	mantissa	och	exponent:	
a)	 (1101.011)2	=	(1101.011)2	×	20		
b)	 (1E.0A)16	=(1E.0A)16	×160	

”Flytta”	binärpunkten	så	att	mantissan	uppfyller	villkoret	för	normaliserad	form.	För	varje	steg	vi	flyttar	
binärpunkten	till	vänster	adderar	vi	1	till	exponenten.	
a)	 (1101.011)2	=	(1.101011)2	×23		
b)	 (1E.0A)16	=(1.E0A)16	×161	

	

 

Exempel	1.13:		 Omvandling	av	normaliserad	form	med	olika	radix		

Skriv	talet	(2,52)10	104	på	normaliserad	form	(M)2		×		2E		

Lösning:	

Omvandla	först	hela	talet	till	binär	form	på	känt	sätt:	

	 2,52	104	=	25200	=	(1100	0100	1110	000)2	×	20	

normalisera	talet:	

	 =	(1.100	0100	1110	000)2	×	214	

	

	

1.1.4 Representation av flyttal 

Ett flyttal uttrycks allmänt som:   

 (-1)S  M ×2E   
där: 
 S (sign) är teckenbiten för flyttalet 
  S=0 anger ett positivt flyttal ty (-1)0 =1 
  S=1 anger ett negativt flyttal ty (-1)1 = -1 
 M utgör talets mantissa  
 E utgör talets exponent. 

Exponenten väljs från någon representation med inbyggt tecken.  
 
Det är värt att notera att för ett normaliserat flyttal på binär form gäller att: 
	 (M)2	=	1.xxxxx	
dvs. mantissans första siffra är alltid är 1.  Detta innebär att vi, då vi lagrar flyttal, kan utelämna denna 
siffra och på så vis åstadkomma ett kompaktare format. Detta utnyttjas speciellt i standardiserade 
flyttalsformat. 
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1.4 IEEE754 - flyttalsstandard 
IEEE-flyttalsstandard specificerar 

 flyttalsformat 
 noggrannhet i resultat från aritmetiska operationer 
 omvandling mellan heltal och flyttal 
 omvandling till/från andra flyttalsformat 
 avrundning 
 undantagshantering vid operationer på flyttal, exempelvis division med 0 och resultat som ej 

kan representeras av flyttalsformatet. 

Standarden definierar fyra olika flyttalsformat: 
 Single format, totalt 32 bitar 
 Double format, totalt 64 bitar 
 Single extended format, antalet bitar är implementationsberoende 
 Double extended format, totalt 80 bitar 

Ett IEEE-flyttalsformat delas upp i tre fält enligt följande: 

 

där: 
 F (fractional part) kallas också signifikand, är den normaliserade mantissan × 2, dvs. den första 

(implicita) ettan i mantissan utelämnas i representationen och mantissan skiftas ett steg till vänster. På 
så sätt uppnår vi ytterligare noggrannhet eftersom vi får ytterligare en siffra i det lagrade talet. 

 E' (karakteristika) är exponenten uttryckt på excess(n) format, n beror på vilket av de fyra formaten 
som avses. 

 S (sign) är teckenbit för F. 

Följande tabell anger hur de olika formaten disponeras enligt standarden: 

Format S E F 

Single 1 bit 8 bitar excess(127) 23 bitar 

Double 1 bit 11 bitar excess(1023) 52 bitar 

Extended 1 bit 15 bitar excess(2047) 64 bitar 

 

Exempel	1.14	 Omvandling	av	heltal	till	flyttal	

Skriv	talet	(2,52)10	104	som	ett	IEEE754‐single	format	flyttal	

Lösning:	

Vi	har	tidigare	kommit	fram	till	resultatet:	

	 (2,52)10	104	=		 =	(1.100	0100	1110	000)2	×	214	

Mantissan	ska	ha	totalt	24	bitar,	vi	”fyller	på”	med	nollor	på	slutet...	
	 M	=	(1.100 0100 1110 0000 0000 0000)2	

Signifikanden	F		dvs.	den	del	av	mantissan	som	ska	lagras	får	stryker	den	mest	signifikanta	ettan,	vi	har	då:	

	 F	=	(100 0100 1110 0000 0000 0000)2		
Exponenten	i	IEEE‐formen	uttrycks	av	karakteristikan	E’,	excess(127)	kod,		dvs.	E'	=	E+127,	där	E	betecknar	
exponenten	i	talet	vi	utgår	från	(214)	dvs.	E=14	varför		
	 E'	=	14	+	127	=	141	=	(1000	1101)2	

eftersom	talet	är	positivt	får	vi	S	=	0.	Vi	sammanställer	nu	resultatet	i	32‐bitars	form	(SFP)	och	får	slutligen:	

	 (2,52)10	104	=(0100	0110	1100	0100	1110	0000	0000	0000)SFP	

	

S E' F

MSB LSB 
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För praktiska ändamål är det lämpligt att formulera algoritmer för omvandlingar mellan vanliga datatyper. 

 

Algoritm: Omvandling av 32 bitars tal x, utan tecken, till flyttal sfp 

Anm: Algoritmen termineras med sfp   

1. sfp(S)=0;  x'  x; 
2: Bestäm signifikand 
 Bitar x32 .. x24, får inte plats i mantissan, dividera därför successivt  x' med 2 och justera samtidigt 

exponenten: 
 while( x' > (224-1) ) 
 begin 
  sfp(E')  sfp(E') + 1; 
  x'   ( x'  >> 1 ); 
 end 
4: Normalisera mantissa 
 För en normaliserad mantissa ska bit 23 vara 1, om inte så är fallet vänsterskiftar vi x’ tills detta är 

sant. Observera att algoritmen här förutsätter att x’ är skild från 0. 
 while( x' < 223 ) 
 begin 
  x'   ( x'  << 1 ); 
 end 
 Mantissan är nu normaliserad, eftersom den inledande ettan (bit x23’) inte lagras (dess position 

upptas av exponenten)  nollställer vi den  
 x23’  0 
 sfp(M)  x’ 
5: Sätt samman flyttalet: 
 sfp   ( sfp(S) << 31 )  |  ( sfp(E’) << 23 )  |  sfp(M) 
 

Algoritm: Omvandling av flyttal sfp till 32 bitars tal x, med tecken  

 

Anm: Algoritmen termineras då x   
1. Extrahera tecken  

sign = sfp(0); 
2. Extrahera exponenten ( Karakteristika med subtraherad förskjutning ) 

exp = sfp(E’) - 127 - 23; 
 Om denna exponent är större än 8 är talet för stort för att kunna representeras 

if ( exp > 8 ) x  LONG_MAX;  
 Om denna exponent är mindre än -25 är talet för litet för att kunna representeras 

if ( exp < -24 ) x  LONG_MIN;  
3. Extrahera mantissa ( signifikand med inledande etta )   
 mant =  sfp(M) | b23 
4. Skifta mantissan tills exponenten blir 0 
 if ( exp > 0 ) 
  x   (mant  << exp ); 
 if ( exp < 0 ) 
  x   (mant  >> exp ); 
5. Returnera heltal med rätt tecken 
 if( sign ) 
  x   -(mant);  
 else  
  x   mant; 
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1.1.5 Speciella kodningar av IEEE flyttalsformat 

Flyttalet noll 

Det finns inget sätt att ange talet noll på normaliserad form. Standarden säger i stället att såväl exponent 
som mantissa här ska vara noll. Observera att detta ger frihet att koda såväl plus som minus noll beroende 
på hur flyttalets teckenbit sätts. Flyttalet noll kan följaktligen kodas på något av följande sätt: 

 

 

Avrundningsmetoder 

Operationen kan utföras med större precision än formatet tillåter. Som konsekvens av detta kan vi i bland 
tvingas avrunda resultatet. Standarden tillåter fyra olika avrundningsmetoder: 

 Round to nearest, resultatet avrundas till det representerbara värdet som ligger närmst det 
verkliga värdet. Om det verkliga värdet ligger mitt emellan två representerbara värden 
avrundas resultatet till ett jämnt tal. 

 Round to zero, resultatet trunkeras till rätt precision, dvs. avrundningsbitarna ignoreras. 
 Round towards minus infinity, resultatet avrundas nedåt till närmsta representerbara värde. 
 Round towards plus infinity, resultatet avrundas uppåt till närmsta representerbara värde. 

 

Denormaliserade tal 

Denormaliserade tal uppträder som resultat av operationer där exponenten vid normalisering av resultatet 
inte kan minskas längre, dvs. man uppnått den (till beloppet) största negativa exponent som kan 
representeras. Detta innebär att mantissan inte kan normaliseras. I stället för att avrunda ett sådant resultat 
tillåter här standarden ett icke-normaliserat resultat. Det denormaliserade talet indikeras genom att 
exponenten sätts till noll men mantissan är skild från noll. Ett denormaliserat tal kodas följaktligen: 

 

 

Oändligheter 

Då resultatet av en flyttalsoperation överskrider det representerbara talområdet, dvs. exponenten anger ett 
tal som inte kan normaliseras indikeras detta som infinity. Infinity kan, precis som talet noll, ha tecken och 
det indikeras genom att samtliga exponentens bitar sätts till ett och mantissan sätts till noll. 

 

 

Icke-tolkningsbara resultat 

IEEE-standarden inbegriper också en klass av resultat kallade "NaN", (Not A Number). Detta utgör 
resultatet av en operation som inte har någon matematisk tolkning, exempelvis "oändlighet dividerat med 
oändlighet" eller "division med noll". Samtliga exponentens bitar sätts här till ett och mantissan är skild 
från noll. För en operation där minst en av operanderna är NaN produceras alltid resultatet NaN. 

 

 

 

S 11.......11 000...............000 

MSB LSB 

S 00.......00 F

MSB LSB 

0 00.......00 000...............000 

MSB LSB 

1 00.......00 000...............000 

MSB LSB 
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1.1.6 Typomvandling som biblioteksrutin 

I programspråket ’C’ förekommer flyttalstyper med olika precision, på samma sätt som man skiljer på 
short respektive long int bland heltalstyperna. 

Exempel	1.15	 Olika	flyttalstyper	i	’C’	

Då	alla	 tre	 IEEE‐formaten	 finns	 tillgängliga	motsvaras	dessa	vanligtvis	 (dock	 inte	alltid)	av	datatyper	enligt	
följande:	

	 float	 	 Single	precision	(32	bitar)	

	 double	 Double	precision	(64	bitar)	

	 long double	 Extended	precision	(80	bitar)	

Det	 kan	 dock	 skilja	 mellan	 olika	 kompilatorer.	 För	 exempelvis	 XCC12	 gäller	 att	 alla	 flyttalstyper	
implementeras	som	IEEE	single	precision.	

	

 

Vissa omvandlingar till och från IEEE flyttalsformat är vanliga och förtjänar speciell uppmärksamhet. Vi 
behandlar därför nu hur omvandlingar kan ske med hjälp av programrutiner, kodade i programspråket C. 

 

Exempel	1.16	 Typomvandling	

Betrakta	följande	C‐konstruktion:	

unsigned long ui; 
float f; 
 
f = (float) ui; /* Heltal till flyttal */ 

Detta	är	 ett	 exempel	på	en	 typomvandling,	 dvs.	heltalet	 i	 variabeln	ui,	 som	är	ett	32‐bitars	 tal	utan	 tecken	
måste	typkonverteras	till	motsvarande	representation	för	flyttalet	i	variabeln	f,	IEEE	single	precision.	 	Vi	vet	
sedan	 tidigare	 att	 bitmönstren,	 för	 ett	 och	 samma	 talvärde,	 skiljer	 sig	 åt	 beroende	 på	 tolkningen,	 dvs.	
datatypen.	Här	måste	alltså	någon	typ	av	omvandling	av	bitsträngen	för	ui	göras.	

	

 

Somliga processorer en speciell enhet för hantering av flyttal (floating-point coprocessor).  Sådana enheter 
har maskininstruktioner för såväl typomvandlingar som aritmetiska flyttalsoperationer. 

 

Exempel	1.17	 Maskininstruktion	för	typomvandling	

Power‐PC	 arkitekturen	 definierar	 maskininstruktioner	 för	 typomvandlingar	 mellan	 heltal	 och	 flyttal,	
exempelvis:	

 FCTIW fr0,fr1 ; ”floating convert to integer word ” 

 FCFID fr0,fr1 ; ”floating convert from integer doubleword ” 

Instruktionerna	utför	alltså	typomvandlingar	som	en	maskininstruktion.	

	

 

Mindre, billigare processorer saknar vanligtvis speciell enhet för hantering av flyttal. Vi måste då 
tillhandahålla funktioner för omvandlingarna. Låt oss betrakta typerna (unsigned) long och float, vi 
identifierar då följande typomvandlingar: 
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float   → unsigned long int  (ftoul, “float to unsigned long”) 
float   → signed long int  (ftosl, “float to signed long”)  
unsigned long int → float    (ultof, “unsigned long to float”) 
signed long int  → float    (sltof, “signed long to float”) 
 
Reglerna för typkonverteringar i ’C’ gör att konverteringarna från float till unsigned respektive 
signed long i själva verket är samma sak. Ett flyttal som är mindre än noll kan inte representeras korrekt 
med en unsigned typ, så i stället konverteras det till en signed typ.  Slutsatsen blir att vi klarar oss med 
en konverteringsrutin från float, vi kallar den ftol (”float to long”) 

För konverteringar till float gäller att det räcker med en omvandlingsrutin för tal utan tecken, unsigned 
long to float. Vi kan då implementera omvandlingen av tal med tecken, signed long to float, med hjälp av  
teckenöverläggning. Av resonemanget framgår att vi i själva verket behöver implementera två 
konverteringsrutiner: 

float   → signed long int  (ftol,  “float to long”)  
unsigned long int → float    (ultof, “unsigned long to float”) 
 

Vi har tidigare gett algoritmer för dessa omvandlingar och fortsätter här med dess implementering i ’C’. 

Vi börjar med typkonverteringen unsigned long to float. För att ha friheten att tolka ett bitmönster på olika 
sätt använder vi ”union”-konstruktionen i C. Följande deklaration: 

union float_long 
{ 
    float  f; 
    long  l; 
}; 

ger oss en typ, float_long, som upptar 32 bitar i minnet. En variabel deklarerad med denna typ kan nu 
användas för att representera en och samma bitsträng som två olika typer, samtidigt. Detta använder vi i 
följande konverteringsrutin ultof. Observera specialfallet om talet noll ska omvandlas.  

float ultof ( unsigned long a ) /* unsigned long to float */ 
{ 
 union float_long fl; 
 int exp = 23 + 127; 
 if ( a==0 ) {/* Specialfall, måste testas först */  
  return 0.0; 
 } 
   /* Normalisera */ 
 while (a & 0xFF000000) { 
  a = a >> 1; 
  exp = exp + 1; 
 } 
 while ( a < 0x00800000 ){ 
  a  = a << 1; 
  exp = exp - 1; 
 } 
 a = a & ~0x00800000 ; /* nollställ implicit inledande etta */ 
 /* tilldelning till union medlem typ ”long” */ 
 fl.l = (unsigned long) exp<<23 | a; 
 return (fl.f); /* returnera som flyttal, teckenbit är 0 */ 
} 

Signed long to float  implementerar vi nu enkelt på följande sätt: 

float sltof ( signed long a ) /* signed long to float */ 
{ 
 if ( a < 0)  
  return  -( ultof ( -a ) ); 
 else  
  return ultof ( a ); 
} 

 



Maskinorienterad programmering, 6/3 2013 

16 

Slutligen visar vi en omvandlingsrutin för float to signed long: 
 
long ftol (float a1) 
{ 
 union  float_long fl; 
 int   exp; 
 char  sign; 
 long   l; 
  
 fl.f = a1; 
  
 if (!fl.l) 
  return (0); 
 sign = 0; 
 if( fl.l & 0x80000000 ) 
 { 
  sign++; 
 } 
  
 exp = (((unsigned long)( fl.l ) >> 23) &  
   (unsigned int) 0x00FF) - 127 - 23; 
 
 l = ((( fl.l ) & (unsigned long)0x007FFFFF) | 0x00800000 ); 
  
 if (exp > 8) 
  return LONG_MAX; /* största möjliga ‘long int’ */ 
 if (exp < -25) 
  return LONG_MIN; /* minsta möjliga ‘long int’ */ 
   
 /* exponenten ska vara noll... */ 
 if( exp > 0 ) 
 { /* skifta mantissan till vänster */ 
  l = l << exp; 
 } 
  
 if (exp < 0 ) 
 { /* skifta mantissan till höger */ 
  l = l >> -exp; 
 } 
  
 if( sign ) 
  return -l; 
 return l; 
 
} 
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1.1.7 Aritmetiska operationer på flyttal 

Aritmetiska operationer på flyttal blir avsevärt mer komplicerade än operationer på heltal. Operationerna 
måste utföras i flera steg.  

Flyttalsaddition/subtraktion 

Vid addition eller subtraktion av flyttal utförs ett flertal operationer där mantissa och exponent måste 
behandlas var för sig, dessutom tillkommer teckenöverläggning eftersom mantissan ju är given på tecken-
beloppsform. Vid operation på mantissorna måste vi först se till att båda talen har samma exponent. 
Addition/subtraktion av IEEE-flyttal utförs i följande steg: 
1. Bestäm talens mantissor ur F (dvs. lägg till en etta framför den mest signifikanta biten i respektive F). 
2. Bestäm talens exponenter på tvåkomplementsform. 
3. Beräkna exponentskillnaden 
4. Skifta mantissan för talet med minst exponent höger det antal gånger som exponentskillnaden anger 

(minns att exponenten anger binärpunkten i flyttalet). 
5. Utför addition (subtraktion) av mantissorna efter tecken-överläggning. 
6. Normalisera resultatet genom att skifta resultatmantissan samtidigt som resultatexponenten korrigeras. 
 

Exempel	1.18	 Addition	av	flyttal	

Visa	additionen	av	2,52	104	+	2,52	103	av	flyttal	givna	enligt	IEEE‐single	format	form:	

Lösning:	

Omvandla	talen	till	binärformat:	
 A=(2,52)10 104=(01000110110001001110000000000000)SFP 
 B=(2,52)10 103=(01000101000111011000000000000000)SFP 

1.	och	2.	Dela	upp	talen	i	tecken,	exponent	och	mantissa:	

 A = (-1)SA × MA × EA och B = (-1)SB × MB × EB 

 SA = 0 
 MA = (1.F)A =  (1.10001001110000000000000) 
 EA = E’A - 127	=	(00001110)  (dvs	141‐127	=	14)	
 
 SB = 0 
 MB = (1.F)B =  (1.0011101100000000000000) 
 EB = E’B - 127	=	(00001011)  (dvs	138‐127	=	11)	

3.	Exponentskillnaden	(14‐11	)	är	3.	

4.	Skifta	talet	med	minst	exponent	(MB)	tre	steg	höger		
 MB ’ = 0.0010011101100000000000000 

observera	att	vi	tillåter	större	upplösning	hos	mantissan	under	utförande	av	operationen.	

5.	Utför	additionen,	båda	talen	positiva:	
  1.10001001110000000000000 MA 
 +0.0010011101100000000000000 MB´ 
 =1.1011000100100000000000000 

6.	Normalisera	resultatet,	i	detta	fall	är	resultatet	redan	i	normaliserad	form:	
 SR = 0 
 MR = 1.1011000100100000000000000 
 ER = 14   

Vilket nu ger oss representationen: 

 FR = (1011000100100000000000000) 
 ER' =  127+14 = (10001101)2 

Vi kan slutligen sätta samman resultatet: 

 R = (01000110110110001001000000000000)SFP 
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Addition och subtraktion som biblioteksrutiner 

Vi ska nu visa hur addition/subtraktion kan implementeras av programrutiner som enbart konstruerats av 
operationer på heltal. Vi visar först implementeringen av addition, därefter hur vi med hjälp av 
teckenöverläggning enkelt kan implementera även operationen ”subtraktion”.  I denna implementering 
utför vi addition av mantissorna med största tillgängliga precision. Vi har 32 bitar tillgängliga, en bit 
representerar tecken och ytterligare en bit krävs för att detektera spill från additionen, dvs. 30 bitar. Detta 
ger oss bättre noggrannhet men ger också extra normaliseringar, dvs. något mer komplex kod. 

 
float addf (float f1, float f2) 
{ 
 long mant1, mant2; 
 union float_long fl1, fl2; 
 int exp1, exp2; 
 long sign = 0; 
  
 fl1.f = f1; 
 fl2.f = f2; 
  
 /* Kontroll att ingen av parametrarna är 0 */ 
 if (!fl1.l) 
  return (fl2.f); 
 if (!fl2.l) 
  return (fl1.f); 
  
 /* Extraktion av exponenter */ 
 exp1 = (((unsigned long)(fl1.l) >> 23) & (unsigned int) 0x00FF);  
 exp2 = (((unsigned long)(fl2.l) >> 23) & (unsigned int) 0x00FF);  
  

/* Kontroll att addition är meningsfylld */ 
 if (exp1 > exp2 + 25) 
  return (fl1.f); 
 if (exp2 > exp1 + 25) 
  return (fl2.f); 
  

/* Extraktion av mantissa,  
vi använder 24+6 dvs 30 bitar och avrundar efter addition */ 

 mant1 = (((fl1.l) & (unsigned long) 0x007FFFFF ) | 0x800000 )<<6; 
 mant2 = (((fl2.l) & (unsigned long) 0x007FFFFF ) | 0x800000 )<<6; 
 
 /* Teckenöverläggning */ 
 if ( fl1.l & 0x80000000 ) 
  mant1 = -mant1; 
 if ( fl2.l & 0x80000000 ) 
  mant2 = -mant2; 
  
 if (exp1 > exp2) /* Skifta mantissa med lägst exponent */ 
 { 
  mant2 = (mant2 >> (exp1 - exp2) ); 
 } 
 else 
 { 
  mant1 = (mant1 >> (exp2 - exp1) ); 
  exp1 = exp2; /* Vi använder ’exp1’ nedan */ 
 } 
 mant1 += mant2; /* Addera mantissor */ 
  
 /* Vi har nu icke-normaliserat resultat i ’exp1/mant1’ */  
 if ( mant1 == 0 ) 
  return (0.0); 
 

if (mant1 < 0) 
 { /* Justera mantissa, resultatets teckenbit sätts till 1 */ 
       mant1 = -mant1; 
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       sign = 0x80000000; 
 } 
  
 /* Normalisera upp till 30 bitars mantissa om det behövs */ 
 while (!(mant1 & (unsigned long) 0xE0000000)) 
 { 
  mant1 <<= 1; 
  exp1--; 
 } 
  
 /* Normalisera ned till 30 bitars mantissa om det behövs */ 
 if (mant1 & (unsigned long) 0x40000000) 
 { 
  mant1 >>= 1 ; 
  exp1++; 
 } 
  
 /* Avrundning, lsb av mantissa ”round to nearest even” */ 
 mant1 += (mant1 & (unsigned long)0x40) ?  

(unsigned long) 0x20 : (unsigned long) 0x1F; 
  
 /* Normalisera ned till 30 bitars mantissa om det behövs */ 
 if (mant1 & (unsigned long) 0x40000000) 
 { 
  mant1 >>= 1; 
  exp1++; 
 } 
  
 /* ”Kasta” nu de 6 extra bitarna vi använt vid addition av mantissor */ 
 mant1 = mant1 >> 6; 
  
 /* nollställ implicit inledande etta */ 
 mant1 = mant1 & ~0x00800000; 
  
 /* packa ihop flyttalet ... */ 
 fl1.l = (unsigned long) exp1<<23 | mant1 | sign ; 
 return (fl1.f); 
} 

Implementeringen av ”subf” blir nu enkel: 

 
float subf (float f1, float f2) 
{ 
 union float_long fl1, fl2; 
 fl1.f = f1; 
 fl2.f = f2; 
 /* toggla teckenbiten hos operand 2 och utför addition */ 
 fl2.l ^= 0x80000000; 
 return ( addf( fl1.f , fl2.f ) );  
} 

Flyttalsmultiplikation och Division 

En flyttalsmultiplikation/division utförs betydligt enklare än addition och subtraktion. Vid 
flyttalsmultiplikation multipliceras mantissorna medan exponenterna adderas, vid flyttalsdivision 
divideras mantissorna medan dividendens exponent subtraheras från divisorns exponent, detta kan kortare 
skrivas som: 

A*B = 2(E
A

+E
B

) * FA * FB   respektive 

A/B = 2(E
A

-E
B

) * FA/FB 
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Multiplikation och division som biblioteksrutiner 

 
float mulf (float f1, float f2) 
{ 
 union float_long fl1, fl2; 
 unsigned long result; 
 int exp; 
 unsigned long sign; 
 
 if (!fl1.l || !fl2.l) 
  return ( 0.0 ); 
  
 fl1.f = f1; 
 fl2.f = f2; 
  
 /* Bestäm tecken hos resultatet */ 
 sign = (0x80000000 & fl1.l) ^ (0x80000000 & fl2.l); 
 /* Addition av exponenter, endast ‘en förskjutning’ i resultatet */ 
 exp = (((unsigned long)(fl1.l >> 23)) & (unsigned int) 0x00FF) – 126; 
 exp = exp + (((unsigned long)( fl2.l >> 23)) & (unsigned int) 0x00FF); 
 /* Extrahera mantissor, maska in implicit bit */ 
 fl1.l = (((fl1.l) & (unsigned long)0x007FFFFF) | 0x800000); 
 fl2.l = (((fl2.l) & (unsigned long)0x007FFFFF) | 0x800000); 
  
 /* Multiplicera mantissor */ 
 result = fl1.l * fl2.l; 
  
 /* skifta 32 bitars resultat till 24 bitar och avrunda */ 
 if (result & (unsigned long)0x80000000) 
 { 
  result += 0x80; 
  result >>= 8; 
 } 
 else 
 { 
  result += 0x40; 
  result >>= 7; 
  exp--; 
 } 
  
 result &= ~0x800000; /* nollställ implicit inledande etta */ 
  
 /* packa ihop flyttalet ... */ 
 fl1.l = (unsigned long) exp<<23 | result | sign ; 
 return (fl1.f); 
} 
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float divf (float f1, float f2) 
{ 
 union float_long fl1, fl2; 
 long result; 
 unsigned long mask; 
 long mant1, mant2; 
 int exp ; 
 unsigned long sign; 
  
 fl1.f = f1; 
 fl2.f = f2; 
 
 if (!fl2.l) { /* division med 0 ? */ 
  return (0xFFFFFFFF ); /* returnera ‘NaN’ */ 
 } 
 if (!fl1.l)  /* dividend 0 ? */ 
  return (0.0); 
 
 /* Bestäm tecken hos resultatet */ 
 sign = (0x80000000 & fl1.l) ^ (0x80000000 & fl2.l); 
 
 /* Subtraktion av exponenter, endast ‘en förskjutning’ i resultatet */ 
 exp = (((unsigned long)(fl1.l >> 23)) & (unsigned int) 0x00FF); 
 exp = exp - (((unsigned long)( fl2.l >> 23)) & (unsigned int) 0x00FF); 
 exp = exp + 126; 
  
 /* Extrahera mantissor, maska in implicit bit */ 
 fl1.l = (((fl1.l) & (unsigned long)0x007FFFFF) | 0x800000); 
 fl2.l = (((fl2.l) & (unsigned long)0x007FFFFF) | 0x800000); 
  
 /* dividend > divisor ger 25 signifikanta resultatsiffror */ 
 if (mant1 < mant2) 
 { 
  mant1 = mant1 << 1; 
  exp--; 
 } 
  
 /* Division av mantissor med upprepad subtraktion */ 
 mask = 0x1000000; 
 result = 0; 
 while (mask) 
 { 
  if (mant1 >= mant2) 
  { 
   result = result | mask; 
   mant1  = mant1 - mant2; 
  } 
  mant1 = mant1 << 1; 
  mask  = mask >> 1; 
 } 
  
 /* avrunda uppåt */ 
 result = result + 1; 
  
 /* normalisera (högerskift, ty divisor > dividend */ 
 exp++; 
 result = result >> 1; /* Nu 24 sign. bitar i mantissa */ 
  
 result &= ~0x800000; /* nollställ implicit inledande etta */ 
  
 /* packa ihop flyttalet ... */ 
 fl1.l = (unsigned long) exp<<23 | result | sign ; 
 return (fl1.f); 
} 
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Flyttalstest och jämförelser 

En test av ett IEEE-flyttal kan ge följande resultat: 
 normaliserat 
 denormaliserat 
 plus noll 
 minus noll 
 negativt 
 plus oändligheten 
 minus oändligheten 
 plus Not A Number 
 minus Not A Number 

Detta kan jämföras med de testresultat vi kan få då ett vanligt heltal testas (Zero eller Negative). En ALU 
för flyttalsaritmetik har därför ytterligare en uppsättning flaggbitar som är avsedda att återspegla de 
speciella resultat som fås vid en flyttalstest. 

En flyttalsjämförelse ska, enligt standarden, kunna testa vilkoren: 
 Equal To 
 Greater Than 
 Less Than 
 Unordered 

Tack vare kodningen blir dessa jämförelseoperationer enkla att implementera.  
 Equal To, indikerar att operanderna är identiska 
 Greater Than/Less Than, indikerar att operand A är större/mindre än operand B, detta 

inbegriper en teckenöverläggning och om talen har samma tecken kan resterande del av 
operanderna jämföras på samma sätt som vid heltalsjämförelse. Detta är en av fördelarna med 
att koda exponenten på excess-form i stället för tvåkomplementsform. 

 Unordered innebär att minst ett av talen är "Not A Number". 

Sammanfattning IEEE-flyttalsstandard 

Låt oss som avslutning bestämma talområden och upplösning hos de olika IEEE-formaten 

Single format, (32 bitar) har 23 bitars signifikand, 8 bitars exponent och 1 teckenbit. Det till beloppet 
minsta normaliserade tal, skilt från noll, som då kan representeras är: E'=1 och F = 0 vilket ger  

E = -126 
M = 1.00.....0 

dvs: 1.0  2-126  1,2  10-38 

Det minsta denormaliserade tal som kan representeras får vi då E'=0  och endast den minst signifikanta 
biten i F är 1enligt: 

E = -126 och 
M= 00000000000000000000001 

dvs: 2-126  2 -23  1,4  10-45 

Det största normaliserade tal som kan representeras får vi då E'=254 och F = 11111111111111111111111:  
E = 127 
M = 1. 11111111111111111111111 

vilket ger: 1.11111111111111111111111  2127  2  2127  3,4  1038 

Upplösningen ges av värdet hos den minst signifikanta biten i F ty detta värde anger den minsta skillnad 
mellan två flyttal vi kan representera. Vikten hos denna bit ger oss alltså upplösningen enligt: 

 2-23  1,19 10-7 = 0,000000119  

Mot bakgrund av att all aritmetik utförs med högre precision kan man utgå från att den första åtskiljande 
siffran alltid avrundas till ett korrekt värde. Vi ser då att vi kan utgå från att vi har minst 7 decimala 
siffror's noggrannhet. 
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