Maskinnara
programmering

- exempelsamling

Institutionen for Data och Informationsteknik
Chalmers tekniska hdgskola
Goteborg VT-2014

Maskinnara programmering - exempelsamling 2

Maskinnara programmering - exempelsamling

©2000-2014
Roger Johansson, Jan Skansholm, Lars-Eric Arebrink och Rolf Snedsbél
Denna publikation far kopieras fritt i sin helhet for undervisningsandamal.

Innehall

1. Grundldggande assemblerprogrammering
2. Grundldggande programmering i ’C’

3. Undantagshantering

4. Systemprogrammering och periferikretsar

Exempel ar anpassade for ETERMG6 for MC12 respektive XCC12 for MC12.

Versioner:

18 januari 2011

17 februari 2011, lagt till ytterligare uppgifter i avsnitt 2, lagt till avsnitt 4
2012, lagt till ytterligare uppgifter i avsnitt 2

6 mars 2013, rittat smarre fel och typografi.

10 december 2013, lagt till nya uppgifter, nytt typsnitt

Maskinnara programmering - exempelsamling 3

1.1

1.2

1.3

1.4

Grundlaggande assemblerprogrammering

En ramp med ljusdioder, enligt figuren till hdger, &r ansluten till adress $400 pa ett
MC12-system.

a) Skriv en subrutin "BLINK" som far samtliga dioder att blinka genom att
kontinuerligt tinda och sldcka dom. Kontrollera funktionen genom att stega
igenom subrutinen instruktionsvis.

b) Utforma, som en ny subrutin "BLINKDELAY", en fordrojning sé att dioderna
blinkar dven da programmet exekveras normalt.

c) Beskriv 16sningen fran b) i form av en flodesplan.

En ramp med ljusdioder, enligt figuren till hdger, ar ansluten till adress $400 pa ett
MC12-system.

a) Skriv en subrutin "RLJUSH" som far dioderna att bete sig som ett "rinnande
ljus" dér dioderna téinds upp en och en fran vénster till hoger. Kontrollera
funktionen genom att stega igenom subrutinen instruktionsvis.

b) Anvénd subrutinen "BLINKDELAY", s att man tydligt kan se det rinnande
ljuset dven da programmet exekveras normalt.

c) Beskriv 16sningen fran b) i form av en flodesplan.

Tva ramper med ljusdioder, enligt figuren till hdger, dr anslutna till adress
$400 och $401 pa ett MC12-system.

Du ska konstruera en subrutin "RLJUSH16" som fér dioderna att bete sig
som ett kontinuerligt "rinnande ljus" dér dioderna tédnds upp en och en frén
vénster till hoger. Efter det att bit 0 hos diodrampen pa adress $400 slackts
ska bit 7 hos diodrampen pé adress $401 tdndas. Da dioden for bit 0 pa
adress $401 slickts, ska det rinnande ljuset borja om frén bit 7 pa adress
$400, osv.

Anvind en given subrutin "BLINKDELAY", sa att man tydligt kan se det rinnande ljuset &ven da programmet
exekveras normalt.

a) Beskriv subrutinen "RLJUSH16" i form av en flédesplan.
b) Implementera, dvs. skriv subrutinen i assemblersprak.

Tvé strombrytare och en ljusdiodramp, enligt figuren till
hoger, dr anslutna till adresser $600 och $601, respektive
adress $400 pa ett MC12-system.

Konstruera en subrutin "DipSwitchOr" som bildar logisk
ELLER av virdena som ldses fran strombrytarna.
Subrutinen ska utformas sa att avldsningen och indikering
gors en gang. Kontinuerlig funktion fis genom att
subrutinen, oupphorligt anropas frén ett huvudprogram
"main".

Bt 763543210 Bt 76543210

DIP=SWITCH INPUT DIP-SWIICH INFUT

a) Beskriv subrutinen " DipSwitchOr " i form av en flodesplan.
b) Implementera huvudprogrammet "main" och subrutinen "DipSwitchOr" i assemblersprak.

Maskinnara programmering - exempelsamling 4

1.5

1.6

1.7

En 8-bitars strombrytare, "DIP_ SWITCH” &r ansluten till adress $600

och en displayenhet "THEXDISPLAY” som visar en byte i form av tva =101 x|

hexadecimala siffror dr ansluten till adress $400 i ett MC12 HEXDISPLAY
mikrodatorsystem.

Konstruera en subrutin DipHex som ldser av strombrytaren och 3
indikerar den minst signifikanta paslagna biten genom att skriva dess

position, rdknat frén hoger, till displayenheten. Om exempelvis bitarna MSN LSN
2 och 4 utgor ettstillda strombrytare ska positionen for bit 2, (dvs. 3)

skrivas till displayenheten.

Om ingen strombrytare &r ettstélld ska siffran O skrivas till displayen.
Speciellt géller att endast symboler ska anvéndas for absoluta adresser.

m so00 SSTEY

w

Bt 76543210

DIP=SWITCH INPUT

Tvé strombrytare och tva displayenheter, enligt figuren till hoger, dr anslutna till
adresser $600 och $601, respektive adress $400 och $401 i ett MC12-system.
Konstruera en subrutin "AddUnsigned8bitTo16" som adderar de tvé virdena som
lases fran strombrytarna (tolka som tal utan tecken) och darefter presenterar
resultatet som ett 16 bitars tal pa displayindikatorerna.

Subrutinen ska utformas sa att avldsningen och indikering gors en gang.
Kontinuerlig funktion fas genom att subrutinen, oupphorligt anropas frén ett
huvudprogram "main".

a) Beskriv subrutinen " AddUnsigned8bitTol16" i form av en flddesplan.
b) Implementera huvudprogrammet "main" och subrutinen
"AddUnsigned8bitTo16" i assemblersprak.

Tva strombrytare och tva displayenheter, enligt figuren till hoger, dr anslutna till

MSN

LSN MSN LSN

adresser $600 och $601, respektive adress $400 och $401 i ett MC12-system.
Konstruera en subrutin "AddSigned8bitTo16" som adderar de tvé vdrdena som
lases fran strombrytarna (tolka som tal med tecken) och dérefter presenterar
resultatet som ett 16 bitars tal pa displayindikatorerna.

Subrutinen ska utformas sa att avldsningen och indikering gors en gang.
Kontinuerlig funktion fas genom att subrutinen, oupphorligt anropas frén ett
huvudprogram "main".

a) Beskriv subrutinen " AddSigned8bitTol6" i form av en flodesplan.

By 76543210

B 76543210

DIP=SWITCH INFUT DIP=SWIICH INPUT

b) Implementera huvudprogrammet "main" och subrutinen " HEXDISPLAY. HEXDISPLAY

AddSigned8bitTo16" i assemblersprak. m

MSN

LSN MSN LSN

Maskinndra programmering - exempelsamling 5

1.8

1.9

Tva 8-bitars strémbrytare, "DIP_SWITCH” 4r anslutna till adresserna

$600.$601 och tva displayenheter "THEXDISPLAY™ som var och en visar en
byte i form av tva hexadecimala siffror &r anslutna till adresserna $400 och $401
i ett MC12 mikrodatorsystem.

Skriv en subrutin som lidser de bada strombrytarnas instéllda virden,
multiplicerar dessa bada tal och skriver det 16 bitars resultatet till
displayenheterna.

Displayenheten pa adress $400 ska ange den mest signifikanta byten av
resultatet.

Speciellt géller att endast symboler ska anvéndas for absoluta adresser.

Bt 76543210

DIP=SHITCH INPUT

MSH LSH

En 8-bitars strombrytare "DIP-SWITCH
INPUT" och en sju-sifferindikator "7-
SEGMENT DISPLAY" dr anslutna till
adresserna $0600 respektive $0400 1 ett
MC12 mikrodatorsystem.

Bt 76543210

Anvénd symbolen ML4 INPUT for
inporten ($0600) och symbolen
ML4 OUTPUT for utporten ($0400).

DIP=-SWITCH INPUT

Skriv en subrutin "DisplayNBCD" som
kontinuerligt ldser inporten (strémbrytarna) och skriver virden (NBCD-siffror) till utporten (7-
sifferindikatorn).

B 76543210

DIP=SWITCH INPUT

MSN LSH

Nar bit 7 pa inporten ar ettstilld skall sifferindikatorn slackas helt. Nar bit 7 pa inporten ar nollstdlld skall

sifferindikatorn tindas enligt foljande beskrivning:

Bit 3-0 pa inporten anger vad som skall visas pa sifferindikatorn. Om indata ar i intervallet [0,9] skall
motsvarande decimala siffra visas pa sifferindikatorn. Om indata 4r i intervallet [A,F] skall ett 'E' (Error) visas

pa sifferindikatorn. Segmentkoden for 'E' ar $5D.
Bitarna 6-4 pa inporten kan anta vilka varden som helst.
Du har tillgang till en tabell i minnet med segmentkoder (ménster for sifferindikatorn) enligt

SegCodes FCB $77,%22,55B,56B, etc.

Tabellen innehéller segmentkoder for siffrorna [0,9].

Pa adressen ”SegCodes” 1 minnet finns segmentkoden for 0,
pa adressen "SegCodes+1” i minnet finns segmentkoden for 1,
pa adressen "SegCodes+2” 1 minnet finns segmentkoden for 2,
ete

Maskinnara programmering - exempelsamling 6

1.10 En 8-bitars strombrytare "DIP-SWITCH INPUT" och tre

sju-sifferindikatorer "7-SEGMENT DISPLAY" ér
anslutna till adresserna $0600 respektive $0400,$401 och
$402 i ett MC12 mikrodatorsystem.

Skriv en subrutin "SumPQ" som

e hela tiden ldser tvd NBCD-siffror P och Q fran
strombrytarna

e visar NBCD siffrorna P och Q pa tva olika O smICH PuT
sifferindikatorer

e utfor en additionen R=P+Q

e skriver summan R till den tredje sifferindikatorn.

Fran inporten (8 bitar) ldses tva 4-bitars binidra tal P och Q samtidigt. P hittas pa [b;,bs] och Q hittas pa [bs,by].

Summan skall placeras i [bs,by] for att omvandlas till segmentkod och skrivas till sifferindikatoren. Om summan

P+Q ér storre én nio skall “E” (ERROR) skrivas ut. Du far forutsétta att P<9 och Q<.

Du har tillgang till en tabell med segmentkoder och foljande definitioner:

Inport EQU $600 ; Adress for inport
UtportP EQU $400 ; Adress for utport 1
UtportQ EQU $401 ; Adress for utport 2
UtportR EQU $402 ; Adress for utport 3
Error EQU %01011101 ; Segmentkod for E (Error)
SegCode FCB %1110111,%0100010, etc ; Tabell med segmentkoder for [0,9]
Tva 7-sifferindikatorer, ”7-SEGMENT DISPLAY” ar anslutna till ol T [< 0r =]
adresserna $400,$401 och en 8 bitars strombrytare "DIP-SWITCH = %
INPUT” é&r ansluten till adress $600 i ett MC12 mikrodatorsystem. Ll
Du skall skriva subrutinerna ”Read” och ”Display” till foljande - 3 _ﬂ"‘i‘l_
program som om och om igen liser inporten (ett NBCD-tal [0,99,¢]) Ry
och skriver detta till de bada sifferindikatorererna.
b2 _,m

ORG $1000 DIP=SWITCH INPUT
main: JSR Read ; Las NBCD-tal till register
A

JSR Display ; Skriv register A pa 2 sifferindikatorer

JMP main
Foljande definition dr dessutom given.
SegCodes FCB $77,%$22,$5B,%$6B, etc. ; (segmentkoder for siffrorna [0,9])-

Subrutinen Display visar det NBCD-tal som finns lagrat i register A. Innehaller register A exempelvis 0101
1001 skall 5 visas pa UtPort1 och 9 visas pa UtPort2. (Segmentkoder dr alltsd givna med start pa adress
”SegCodes”). Skriv subrutinen Display!

Subrutinen Read laser InPort. Tyvirr har inporten ett konstruktionsfel sé bitarna dr omkastade enligt f6ljande
figur. (Bit b; ér ju normalt till vénster och by till hoger)

bo b1 [b2 | b3 |bs |bs | b | b7

Detta medfor att nér vi stiller in NBCD-talet 53 (0101 0011) pa strombrytarna sé ldses
1100 1010 fran inporten (ty det spegelvénds).

Subrutinen maste darfor

1. lésa inporten

2. spegelvinda det inldsta

3. ldmna utdata i i register A..

Skriv subrutinen Read!

Maskinnara programmering - exempelsamling

2.1

2.2

23

24

2.5

2.6

2.7

Grundlaggande programmering i ’C’

Ange talomradena for variablerna i féljande deklarationer, (XCC12):

a) unsigned char uc;
b) signed char sc;
c) unsigned short us;
d) signed short ss;
e) unsigned int ui;

f) signed int si;
Ledning: Konsultera filen ”lIimits.h”

Ange talomradena for variablerna i f6ljande deklarationer, (XCC12):
a) unsigned long int ul;

b) signed long int sl;

Ledning: Konsultera filen ”limits._h”

En ‘C’-variabel méste tillhora en av lagringsklasserna auto, static och global.
Redogor for “synligheten” hos variabler deklarerade med respektive lagringsklass.

Ange de, av foljande deklarationer, som ar korrekta i ett ‘C’-program:

int a;

auto int aia;

static int sia;

global int gia;

extern int eia;

intern iInt iia;

void F(void)

int b;
auto int aib;
static iInt sib;
global int gib;
extern int eib;
intern iInt iib;
¥
For att referera absoluta adresser, exempelvis portar, krivs att en konstant (den absoluta portadressen) forses
med ldmpliga explicita typkonverteringar. Visa korrekta typkonverteringar (ANSI-C) i f6ljande fall dér
portadressen dr 0x400:
a) 8-bitars port dér portens innehéll betraktas som tal utan tecken.
b) 8-bitars port dir portens innehall betraktas som tal med tecken.
c¢) 16-bitars port dir portens innehall betraktas som tal utan tecken.
d) 16-bitars port dir portens innehall betraktas som tal med tecken.

For att referera absoluta adresser, exempelvis portar, krivs att en konstant (den absoluta portadressen) forses
med ldmpliga explicita typkonverteringar. Visa korrekta typkonverteringarna, , i foljande fall dar portadressen
ar 0x400. Anvand C99 utvidgningen stdint.h for maximal portabilitet
a) 8-bitars port dar portens innehéll betraktas som tal utan tecken.

b) 8-bitars port dir portens innehall betraktas som tal med tecken.

c¢) 16-bitars port dir portens innehall betraktas som tal utan tecken.

d) 16-bitars port dir portens innehall betraktas som tal med tecken.

Visa typdeklarationer for en funktion som tillater att funktionen i form av en subrutin pa en fast adress i minnet,

kan anropas direkt fran ett C-program.

a) funktionen reentry har inga parametrar och inget returvirde, pa adress 0xCOOF.

b) funktionen outcha har en parameter av typen unsigned char, men inget returvérde, pa adress 0xC006.
¢) funktionen tstcha har inga parametrar men returvidrde av typen unsigned char, pa adress 0xC003.

Maskinnara programmering - exempelsamling

8

2.8

2.9

2.10

2.11

2.12

2.13

De rationella talen &r exakta tal som anges pé formen t/n dér t och n (téljaren och ndmnaren) ar heltal.

a) Anvind typedef och struct for att deklarera en typ rat_tal som beskriver ett rationellt tal.

b) Skriv sedan tva funktioner add och mul. De skall bada fa tva parametrar av typen rat_tal.

Som resultat skall de ge ett nytt rationellt tal som &r summan respektive produkten av de tva parametrarna.

Skriv en egen version av standardfunktionen strlen.

a) Anvind pekare.

b) Anvind indexering.

¢) Anvind XCC12, kompilera de bada versionerna till assemblerkod och jamfor resultaten.

Skriv en egen version av standardfunktionen strcpy.

a) Anvind pekare.

b) Anvénd indexering.

¢) Anvind XCC12, kompilera de bada versionerna till assemblerkod och jamfor resultaten.

Konstruera en funktion nol Istal le som berdknar ett nollstélle till matematiska funktioner. Funktionen

nolIstal le har deklarationen:
double nollstalle(double (*f)(double),double a, double b, double eps);

Den forsta parametern, f, dr en pekare till den matematiska funktion man vill s6ka ett nollstillefor. De tva
parametrarna a och b anger inom vilket intervall nollstillet skall sokas.

Man soker alltsé ett virde X i intervallet (a, b) sddant att f(x) = 0. Du fér anta att den funktion som ¥ pekar pé ar

monoton och att den har exakt ett nollstélle inom det givna intervallet. Parametern eps anger vilket som &r det

storsta fel som far finnas 1 resultatet.

I funktionen kan du “ringa in”nollstéllet genom att flytta &ndpunkterna a och b allt nirmare varandra. Bérja med
att undersoka om f(a) < 0 < f(b) eller f(b) < 0 <f(a). Om det &r pa det andra sittet sa 14t variablerna a och b byta

véirden med varandra. Upprepa sedan foljande tills |a-b| < 0. Rédkna ut mittpunkten m mellan a och b och
berdkna vérdet av f(m). Om f(m) < 0 sa sétt a till m sétt annars b till m.

En ramp med ljusdioder, enligt figuren till hdger, &r ansluten till adress 0x400 i ett
MC12 mikrodatorsystem. EARLCL OB
a) Skriv en funktion
void blink(void)
som far samtliga dioder att blinka genom att kontinuerligt tinda och slédcka dom.
Kontrollera funktionen genom att stega igenom den satsvis.
b) Utforma, som en ny funktion
void blinkdelay(void)

en fordrojning sé att dioderna blinkar d4ven di programmet exekveras normalt.

L
®
v
T
L
T
x
T
1
=

En ramp med ljusdioder, enligt figuren till hdger, &r ansluten till adress 0x400 i ett
MC12 mikrodatorsystem.
Skriv en funktion

void rljush(void)
som far dioderna att bete sig som ett "rinnande ljus" dir dioderna tédnds upp en och
en fran vanster till hdger. Kontrollera funktionen genom att stega igenom den
satsvis. Anvind funktionen void blinkdelay(void), si att man tydligt
kan se det rinnande ljuset dven di programmet exekveras normalt.

Maskinnara programmering - exempelsamling 9

2.14

2.15

2.16

2.17

Tva ramper med ljusdioder, enligt figuren till hoger, dr anslutna till adress
0x400 och 0x401 i ett MC12 mikrodatorsystem.
Du ska konstruera en funktion

void rljushl6(void)
som far dioderna att bete sig som ett kontinuerligt "rinnande ljus" dér
dioderna ténds upp en och en fran vénster till hoger. Efter det att bit 0 hos
diodrampen pa adress 0x400 sldckts ska bit 7 hos diodrampen pé adress
0x401 tandas. Da dioden for bit 0 pa adress 0x401 slackts, ska det
rinnande ljuset borja om fran bit 7 pa adress 0x400, osv. Anvind funktionen void blinkdelay(void),
sd att man tydligt kan se det rinnande ljuset &ven di programmet exekveras normalt.

Tvé strombrytare och en ljusdiodramp, enligt figuren till
hoger, ér anslutna till adresser 0x600 och 0x601,
respektive adress 0x400 i ett MC12 mikrodatorsystem.

void DipSwitchOr(void)
som bildar logisk ELLER av virdena som lases fran ot

Konstruera en funktion
E I.Hﬁ I II‘I“M
» Bt 76543210 (%] lr.ﬁcs')\;;.
strombrytarna.

DIP-SWITCH INPUT DIP-SHWITCH INPUT

En 8-bitars strombrytare dr ansluten till adress 0x600 och en
displayenhet som visar en byte i form av tva hexadecimala siffror ar
ansluten till adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion

void Tf1(void) 3
som lédser av strombrytaren och indikerar den minst signifikanta
paslagna biten genom att skriva dess position, rdknat fran hoger, till MSN LSN
displayenheten. Om exempelvis bitarna 2 och 4 utgdr ettstéllda
strombrytare ska positionen for bit 2, (dvs. 3) skrivas till displayenheten. Bt 76543219
Om ingen strombrytare &r ettstélld ska siffran O skrivas till displayen.

DIP = SWITCH INPUT

Tva strombrytare och tva displayenheter, enligt figuren till hdger, dr anslutna till
adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12
mikrodatorsystem.

Konstruera en funktion

void AddUnsigned8bitTol6(void) - nnn -....-m
som adderar de tvd viardena som ldses fran strombrytarna (tolka som tal utan ! !

tecken) och dérefter presenterar resultatet som ett 16 bitars tal pa
dlsplaylndlkatorema DIP - SWITCH INPUT DIP -SWIICH INFUT

Bt 76543210 Bt 76543210

B fm] 1] |8 5401

Maskinnara programmering - exempelsamling 10

2.18 Tva strombrytare och tvé displayenheter, enligt figuren till hdger, dr anslutna till
adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12
mikrodatorsystem.

Konstruera en funktion
void AddSigned8bitTol6(void)

som adderar de tva viardena som ldses fran strombrytarna (tolka som tal med tecken)
och dérefter presenterar resultatet som ett 16 bitars tal pa displayindikatorerna.

HEXDISPLAY HEXDISPLAY

A

MSN LSN MSN LSN

2.19 Tvé 8-bitars strombrytare, dr anslutna till adresserna 0x600,0x601 och tva
displayenheter som var och en visar en byte i form av tva hexadecimala siffror ar
anslutna till adresserna 0x400 och 0x401 i ett MC12 mikrodatorsystem.
Konstruera en funktion

void DipHex(void)
som ldser de bada strombrytarnas instéllda virden, multiplicerar dessa bada tal och
skriver det 16 bitars resultatet till displayenheterna.
Displayenheten pé adress 0x400 ska ange den mest signifikanta byten av resultatet.

2.20 Tva 8-bitars strombrytare, dr anslutna till adresserna 0x600,0x601 och tva
displayenheter som var och en visar en byte i form av tvd hexadecimala siffror &r
anslutna till adresserna 0x400 och 0x401 i ett MC12 mikrodatorsystem.

Konstruera en funktion
void DivModHex(void)

som léser de bada strombrytarnas instéllda vérden.

Om virdet pa adress 0x601 ar noll ska OXFF visas pa bada displayenheter. Om
vardet pa adress 0x601 dr skilt fran noll ska resultatet av heltalsdivisionen mellan
virden pé adress 0x600 och 0x601 visas pa displayindikator med adress 0x400 och
resultatet av restdivisionen av samma tal visas pa indikator med adress 0x401.

2.21 1 denna uppgift ska du bland annat demonstrera hur absolutadressering utfors i C. Visa speciellt hur
preprocessordirektiv och typdeklarationer anvinds for att skapa begriplig programkod.

Tva strombrytare och en ljusdiodramp, enligt figuren
till hoger, ar anslutna till adresser 0x600 och 0x601,

) -e
respektive adress 0x400 i ett MC12 q |?)| %
mikrodatorsystem. \1 -
Konstruera en funktion e

Bt 76543210

void DipSwitchEor(void)
som kontinuerligt bildar logiskt EXKLUSIVT
ELLER av virdena som ldses fran strombrytarna och

dérefter skriver detta virde till ljusdiodrampen. SESHERRE) (| AR RS

Maskinndra programmering - exempelsamling 11

2.2

223

En strombrytare och en sju-sifferindikator (se figur) ar
anslutna till adresser 0x400 respektive 0x600 i ett MC12
mikrodatorsystem.

Konstruera en funktion

void DisplayNBCD(woid)
som hela tiden laser fran strémbrytarna och skriver varden
till sju-sifferindikatorn). bp=swreH neuT

Nar bit 7 pa inporten &r ettstilld skall sifferindikatorn sldckas helt. Nér bit 7 pa inporten &r nollstdlld skall
sifferindikatorn tindas enligt foljande beskrivning:

e Bit 3-0 pa inporten anger vad som skall visas pa sifferindikatorn.
= Om indata &r i intervallet [0,9] skall motsvarande decimala siffra visas pa sifferindikatorn.
= Om indata ar i intervallet [A F] skall ett "E’ (Error) visas pa sifferindikatorn.

e Bitarna 6-4 pa inporten kan anta vilka véirden som helst.

Du har tillgang till en tabell i minnet med segmentkoder for de hexadecimala siffrorna [0..F] (mo6nster for
sifferindikatorn) enligt

unsigned char SegCodes[]={ 0x77,0x22,0x5B, 0x6B,0x2E, O0x6D, 0x7D, 0x23,
0x7F, Ox6F, 0x3F, 0x7C, 0x55, 0x7A, 0x5D, 0x18 };

Segmentkoden fér bokstaven "E’ ges av:
fdefine ERROR_CODE 0x5D

I denna uppgift ska du bland annat demonstrera hur absolutadressering utfors i C. Visa speciellt hur
preprocessordirektiv och typdeklarationer anvénds for att skapa begriplig programkod.

Tva strombrytare och en ljusdiodramp, enligt figuren till
hoger, 4r anslutna till adresser 0x600 och 0x601, respektive
adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion
void CondRunDiode (wvoid)

e som oupphorligt jAmfor strombrytarnas virden
e dessutom skriver ut ett rinnande [jus pa diodrampen.

DIP-SHITCH INPUT DIP=SWITCH INFUT

Det rinnande ljuset bestar i att en diod 1 taget tdnds upp.

e Om virdet hos strombrytaren pa adress 0x600 &r storst ska ljuset rinna fréan hoger till vénster
e Om virdet hos strombrytaren pa adress 0x601 &r storst ska ljuset rinna fran vanster till hoger
e Om virdena ar lika ska det rinnande ljuset stannas.

Fréan borjan ska dioden lingst till viinster vara tdnd.
Du behover hir inte ta hinsyn till att fordrojningar kriavs for det rinnande ljuset.

Maskinnara programmering - exempelsamling 12

2.24 Foljande grinssnitt ansluts till ett MC12 mikrodatorsystem. (Jimfor med ML5/ML23 i kurslitteraturen).

+5V

§ é é é é Lét tangenterna representera
,,,,, foljande:
| b l I'c ' (A-F ér hexadecimala siffror)
I | e N
.. ololole
1M1
N ol6lala
© JOOE
by
N HOEE
b7} \ &

Konstruera en funktion
unsigned char keyb(void)

Denna skall som resultat ge numret pa den tangent som trycktes ner. Numreringen framgéar av figuren ovan.

e Funktionen skall forst vénta tills ingen tangent ar nedtryckt. Dérefter skall den aktivera en rad i taget och
avldsa kolumnernas utsignaler &nda tills ndgon tangent tryckts ner.

e Porten med anslutningar till tangentbordets rader finns pa adressen 0x0C00, porten med kolumnernas
anslutningar finns pa adress 0x0CO1.

e DA en nedtryck tangent konstaterats ska funktionen vénta 200 ms och dérefter géra en ny avldsning. Om
fortfarande samma tangent ar nedtryckt skall funktionen returnera tangentens nummer.

e Du far forutsitta att det finns en fardig C-funktion:
void hold(time_type ms)
Denna funktion ger en fordrojning. Den har en parameter som anger hur 1dng férdrojningen skall vara.

Parameterns typ &r deklarerad enligt:
typedef unsigned long int time_type;

Enheten ar millisekunder.

Dar inte annat sags ska du fortsattningsvis forutsatta att foljande konventioner galler vid
oversattning av kod fran 'C’ till assemblersprak.

Kompilatorkonvention XCC12:

Parametrar ¢verfors till en funktion via stacken.

Da parametrarna placeras pa stacken bearbetas parameterlistan fran hoger till vanster.

Utrymme fér lokala variabler allokeras pa stacken. Variablerna behandlas i den ordning de patraffas i koden.
Prolog kallas den kod som reserverar utrymme for lokala variabler.

Epilog kallas den kod som aterstéller (aterlamnar) utrymme fér lokala variabler.

Den del av stacken som anvands fér parametrar och lokala variabler kallas aktiveringspost.

Beroende pa datatyp anvands for returparameter HC12's register enligt foljande tabell:

Storlek Bendmning C-typ Register
8 bitar byte char B
16 bitar word short int D
och
pekartyp
32 bitar long long int Y/D

Maskinnara programmering - exempelsamling

13

2.25

2.26

2.27

2.28

2.29

2.30

2.31

Foéljande C-deklarationer har gjorts pa “toppniva” (global synlighet):
char a,b,c;
char min(char a, char b);
a) Visa hur variabeldeklarationerna oversitts till assemblerdirektiv for HCS12.

b) Visa hur foljande sats dversitts till assemblerkod for HCS12:
c=minCa, b);

Foljande C-deklarationer har gjorts pa “toppniva” (global synlighet):
char *a,*b,*c;
char *min(char *a, char *b);

a) Visa hur variabeldeklarationerna oversitts till assemblerdirektiv for HCS12.

b) Visa hur foljande sats oversitts till assemblerkod for HCS12:
c =minCa, b);

Foljande C-deklarationer har gjorts pa “’toppniva” (global synlighet):
int a,b,c;
int min(int a, int b);

a) Visa hur variabeldeklarationerna dversitts till assemblerdirektiv for HCS12.

b) Visa hur foljande sats overstts till assemblerkod for HCS12:
c=minCa, b);

Foljande C-deklarationer har gjorts pa ”toppniva” (global synlighet):

char *cp;
char *identify(char **cp);

a) Visa hur variabeldeklarationerna oversitts till assemblerdirektiv for HCS12.

b) Visa hur foljande sats oversitts till assemblerkod for HCS12:
cp = identify(&cp);

Inledningen (parameterlistan och lokala variabler) for en funktion ser ut pa foljande sitt:
void function(int a)

a) Visa hur utrymme for lokala variabler reserveras i funktionen (prolog).
b) Visa funktionens aktiveringspost, ange speciellt offseter for parametrar och lokala variabler.

Inledningen (parameterlistan och lokala variabler) for en funktion ser ut pd foljande sétt:
void function(char *b, char a)

a) Visa hur utrymme for lokala variabler reserveras i funktionen (prolog).
b) Visa funktionens aktiveringspost, ange speciellt offseter for parametrar och lokala variabler.

Inledningen (parameterlistan och lokala variabler) for en funktion ser ut pa foljande sitt:
void function(long c, char b, int a)

{

char d;
long e;

a) Visa hur utrymme for lokala variabler reserveras i funktionen (prolog).
b) Visa funktionens aktiveringspost, ange speciellt offseter for parametrar och lokala variabler.

Maskinnara programmering - exempelsamling 14

2.32

2.33

2.34

2.35

2.36

2.37

Foljande specifikation av en subrutin ar given i form av ett C-program. Implementera motsvarande funktion i
assemblersprak for HC12.

void f1(unsigned char c)

{
*(unsigned char *) 0x600 = c
delay(Q);
c=c>1;
*(unsigned char *) 0x600 = c ;
}

Foéljande funktion finns given i “C”. Implementera motsvarande funktion i assemblersprak for HC12.

#define DATA *(char *) 0x700
#define STATUS*(char *) 0x701
void printerprint(char *s)

while(*s)

{
while(STATUS & 1)

{
DATA = *s;
S++;

}
}

Foljande specifikation av en subrutin r given i form av ett C-program. Implementera motsvarande funktion i
assemblersprak for HC12.

void shortdelay(void)
{

volatile unsigned char c;

for(¢ = 0; ¢ < Ox200 ; c++);
}
Foljande specifikation av en subrutin &r given i form av ett C-program. Implementera motsvarande funktion i
assemblersprak for HC12.

void shortdelay(void)
{

unsigned char c;
for(c = 0; c < 0x200 ; c++);
}

Foljande specifikation av en subrutin &r given i form av ett C-program. Implementera motsvarande funktion i
assemblersprak for HC12.

void printchar(char c)
while(*((volatile unsigned char *) 0x600))

*((unsigned char *) 0x400) = c;
3

Foljande specifikation av en subrutin ar given i form av ett C-program. Implementera motsvarande funktion i
assemblersprak for HC12.

void printmul(void)
{
unsigned short int s;
s = (unsigned short) (*((unsigned char *) 0x600));
s = s * (unsigned short) (*((unsigned char *) 0x601));
*((unsigned short int *) 0x400) = s;

Maskinnara programmering - exempelsamling 15

2.38

2.39

Vissa instruktionssekvenser kan inte dstadkommas med hjélp av giltiga standard-C satser. Exempel pé detta ar
att paverka enskilda bitar i processorns statusregister (CCR).

a) Implementera en assembler subrutin som kan anropas fran ett C-program.
unsigned char getCCR(void);

e returvirdet ar innehallet i CCR.

b) Implementera en assembler subrutin som kan anropas fran ett C-program.
void setCCR(unsigned char value);

e parameter value anger nya vérden for bitarna i CCR.

Avbrottsrutiner kan inte implementeras i standard-C men manga kompilatorer tillhandahéller mojligheten att
lagga in assemblerkod "inline" i C-kod. Foljande kod visar sig exempelvis fungera under XCC12:

static void shortdelay(void)
{

unsigned char c;
for(c = 0; ¢ < Ox200 ; c++);

void take_interrupt(void)

{
shortdelay();

_asm("" RTI');
}
Uppmuntrad av resultatet provar vi nu i stéllet féljande, som INTE fungerar som avsett:
void take_interrupt(void)

{
unsigned char c;
for(¢ = 0; ¢ < Ox200 ; c++);
_asm("" RTI');

}

Forklara skillnaden mellan de olika l16sningarna.

Maskinnara programmering - exempelsamling 16

3.1

3.2

3.3

Undantagshantering

Besvara kortfattat foljande fragor rorande CPU12.
a) Redogor for vad som hiander vid RESET och varfor detta sker.
b) Forklara kortfattat vad som hénder vid ett IRQ avbrott om I-flaggan i CC ér nollstalld.
c) Vid IRQ-avbrott sitts I-flaggan automatiskt till 1. Varfor sker detta?

d) Visa med en instruktionssekvens hur man i en IRQ-avbrottsrutin kan forhindra att processorn utfor nya
avbrott efter aterhopp till det avbrutna programmet.

e) Oversitt assemblerinstruktionerna CLI och SEI till maskinsprak och visa hur maskinkoden placeras
iminnet.

f) Assemblerinstruktionerna CLI och SEI kan skrivas pa ett alternativt sétt. Visa detta sétt.
g) Vilken ar skillnaden mellan IRQ- och XIRQ-avbrott? Hur paverkar skillnaden anvdndningen av dem?
h) Vid XIRQ-avbrott sétts bdde X- och I-flaggan automatiskt till 1. Varfor sker detta?

i) XIRQ-avbrottet dr ”icke maskbart”. Vad innebér detta for mdjligheterna att paverka maskbiten X i
CCregistret?

j) Redogor for vad som hénder dé en logiknolla l4ggs pa ingangen XIRQ’ och varfor detta sker. Hur paverkas
stacken?

k) Vilket villkor maste vara uppfyllt for att ett XIRQ-avbrott skall utforas?
1) Vad hénder med flaggor och stack nér instruktionen SWI utfors.
m) Forklara hur instruktionen SWI fungerar. Ge ett exempel péa hur den kan anvindas.

Tva "tryckknappsenheter" enligt figuren skall anslutas till

en dator med processorn CPU12. D4 en knapp aktiveras JL JL
genereras en positiv puls pa motsvarande utgang. Varje
tryckning pA OK Aknappen skall 6ka en 8-bitars variabel pé _ _

minnesadressen KNAPP med ett medan varje tryckning pa

NOLLA-knappen skall nollstilla samma variabel. Om innehéllet pa adressen KNAPP &r 255 och OKA-knappen
trycks ned skall innehéllet inte okas.

De tvé tryckknapparna skall anslutas sa att IRQ-avbrott genereras d nadgon av dem aktiveras. Inga andra
avbrottskillor finns i systemet.

a) Visa hur tryckknappsenheterna kan anslutas till datorn. En oanvénd inport finns pé adressen $800. Rita
nodviandig logik! D-vippor, NAND- och NOT-grindar far anvéndas.

b) Skriv en avbrottsrutin som fungerar enligt beskrivningen ovan. Assemblersprék for processorn CPU12 skall
anvéndas.

Tre "tryckknappsenheter" enligt figuren nedan skall anslutas till en dator med processorn CPU12. D4 en
knapp aktiveras genereras en positiv puls p motsvarande utging. Varje tryckning pd OKA- eller MINSKA-
knappen skall 6ka resp. minska en 8-bitars variabel pd minnesadressen KNAPP med ett medan varje tryckning
pa MITT-knappen skall ge samma variabel vérdet 128. Innehallet pa adressen KNAPP skall dock inte tillatas att
”varva”, dvs att 0kas fran 255 eller minskas fran 0.

3 o S8 S SED n

De tre tryckknapparna skall anslutas sé att IRQ-avbrott genereras da nagon av dem aktiveras. Inga andra
avbrottskallor finns i systemet.

a) Visa hur tryckknappsenheterna kan anslutas till datorn. En oanvénd inport finns pa adressen $800. Rita
nodvindig logik! D-vippor, NAND- och NOT-grindar far anvindas.

b) Skriv en avbrottsrutin som fungerar enligt beskrivningen ovan. Assemblersprak for processornCPU12 skall
anvéndas.

Maskinnara programmering - exempelsamling 17

34

3.5

En pulsgenerator &r ansluten via en avbrottsvippa till IRQ-ingangen pé ett MC12-system. Pulsgeneratorn har
en frekvens pa 100 Hz. For att nollstélla avbrottsvippan krdvs en skrivning pé adressen $0DC2. Pulsgeneratorn
ar den enda anslutna avbrottskéllan till IRQ-ingangen pa processorn.

Q
1—{iD
100Hz | LML
z Sl HCS12
CS write $0DC2 “OR o RQ

a) Skriv en avbrottsrutin (IRQCNT) som ldser en 8-bitars inport (IRQIN, adress $0600) och adderar det inlédsta
vardet till en 32-bitars variabel (IRQVAR). Bade IRQIN och IRQVAR ir variabler pa
tvdkomplementsform.

b) Skriv en initieringsrutin IRQINIT som initierar avbrottssystemet och som gor att IRQCNT anropas vid
avbrott och att IRQVAR nollstills fran borjan.

Ett konstmuseum 6vervakas med ett HCS12-baserat mikrodatorsystem. I systemet finns ett antal sensorer
utplacerade exempelvis pa tavlor samt i dorrar och fonster. Vissa dorrar har ocksa datorstyrda las. Under
Oppettiderna ingar savil kassan som tva utplacerade vakter i 6vervakningen. I kassan och hos vakterna finns
larmknappar som é&r anslutna till HCS12's avbrottssystem enligt figuren nedan.

a) Vid uppstart med RESET-begiran skall systemet initieras omedelbart. Darfor leder reset-vektorn till
adressen INIT, som ér startadressen for initieringsavsnittet. S&vél resetvektor som avbrottsvektor dr redan
lagrade i ROM.

Téank noga igenom vad som behover goras i INIT. Du har bl a god hjilp av figuren.
Skriv programavsnittet INIT i HCS12-assemblersprak, som initierar systemet sa att det kan hantera dels
overvakningen, dels avbrott pa IRQ-ingangen. INIT avslutas med hopp till rutinen CONTROL.

b) Skriv en avbrottsrutin, IRQALARM, som skall avgdéra om en avbrottsbegéran kommer frén kassan, fran
vaktstiélle eller fran bada.

Om avbrottsbegiran enbart kommer fran kassan, skall subrutinen ENTRANCE anropas. Om avbrottsbegéran
enbart kommer frén en vakt, skall subrutinen GUARD anropas. Om avbrottsbegéiran kommer frén bade kassan
och en vakt, skall subrutinen CHAOS anropas. Dessa subrutiner finns redan och vidtar de atgérder som skall
goras i respektive fall, exempelvis i form av dorrlasning och vidarebefordran av larm.

Ténk noga igenom vilka atgirder som behdver goras i samband med att en avbrotts-begéran betjdnas. Din
avbrottsrutin skall hantera det som har med avbrottet att gora.

Q Till bit 0,
I— 1D " inport $0800
Larmknapp Iy
i kassan > Cl N
— : — IR
CS read $0802 —Q/ R o2 21 bR 1 s
Q
1—{1D >1 - Till bit 1,
Larmknapp L inport $0800
vakt 1 >l
_o R :)_Q
1 1D 1 Q
Larmknapp IL
vakt 2 >c1
—O R :)_Q

TCS read $0801

Maskinnara programmering - exempelsamling

18

Figuren visar hur en skrivare ar kopplad till en HCS12-baserad mikrodator.

Dator
Data LtJ
N p | Dataport
0 | Adress X
Q r
11— — t
Skrivare 9 HCS
Ready () r
D1 12
R D Q qIRQ
— p—A15
_ CS Write Data D—A14
DAV (r Adr X ://ﬁg
(1 & p—a11
|
|
|
P—AQ
pD—R/W
—VMA

Nar skrivaren dr beredd att ta emot ett ASCII-tecken frdn datorn signalerar den det genom att 1ata signalen
Ready ga fran noll till ett. Ett tecken kan da skrivas ut pa skrivaren genom att datorn matar ut motsvarande
ASClIl-tecken pa utporten. Skrivaren kénner av att det kommer en negativ puls pa ledningen DAV’ och
nollstiller omedelbart signalen Ready samt borjar skriva ut tecknet.

a) Ange pa vilken hexdecimal adress, som ASCII-tecknen matas ut till skrivaren.

b) Skriv en subrutin, INISTR, som initierar avbrottsstyrd utmatning av en textstréng till skrivaren. Den skall se

till att IRQ-avbrott accepteras och att hopp sker till avbrottsrutinen pa adressen PRIRQ.

Vid anrop av INISTR skall en pekare (16 bitar) till det forsta tecknet i textstrangen finnas i X-registret.
INISTR skall placera pekaren pa adressen STRPNT (och STRPNT+1) i minnet samt nollstélla
avbrottsvippan.

Eftersom man endast kan nollstilla avbrottsvippan genom att mata ut ett dataord till skrivaren &r det

lampligt att mata ut dataordet $00 som inte ger nadgon utskrift. IRQ-vektorn pa adressen $3FF2 &r placerad i

ett 14s- och skrivbart minne (RWM).

c) Skrivaren r enda avbrottskilla i systemet. Skriv en avbrottsrutin, PRIRQ, som laser ett ASCII-tecken fran
strangen i minnet och matar ut det till skrivaren.

Adressen, fran vilken ASCII-tecknet skall hdmtas, ar lagrad i minnet i en s k pekare STRPNT (16 bitar). PRIRQ

skall ocksa se till att nésta tecken i strdngen kommer att matas ut vid nista avbrott. Textstringen som skall

matas ut avslutas med dataordet $00. Nér avbrottsrutinen ldser dataordet $00 &r strangen fardigutmatad och nya

avbrott skall da forhindras genom att avbrottssystemet stings av.

Maskinnara programmering - exempelsamling 19

3.7

3.8

Ett MC12-system é&r bestyckat med en pulsgenerator som genererar avbrott varje millisekund och en
klockmodul som kan visa tid.

(0]
1—1D —
1000 Hz | JTULITL S e HCS1
C§ write IRORES —Q R Y fRo

Du skall konstruera ett system som réknar ner till ”12-slaget” pa nyarsafton. For detta krévs en rutin (IRQINIT)
som initierar systemet och en avbrottsrutin (IRQ), som anropas varje millisekund, och som minskar en klock-
variabel. Klockvariabeln skrivs till en display av huvudprogrammet. Du behover inte befatta dig med
utskriftsrutinen.

Niér programmet startas skall displayen visa (borja pa) 23:59:59. Vi skall rdkna ner det sista dygnet, alltsa tills
displayen visar 00:00:00.

Avbrott kvitteras genom en skrivning pa den symboliska adressen IRQRES (se dven figur ovan).
Avbrottsrutinen ska uppdatera den symboliska klockvariabeln CLOCK, deklarerad enligt f6ljande:

CLOCK RMB 3 ; Variabel innehallande klockan tt:mm:ss

dér tt ar timmar (00-23), mm &r minuter (00-59) och Ss sekunder (00-59). Alla siffror lagras som NBCD-tal.
Niér klockan rdknat ner till noll skall den stanna och huvudprogrammet fortsitta som vanligt.

Initieringsrutinen (IRQINIT): ska initiera nodvandiga variabler, dvs. stilla initial tid och i vrigt forbereda
systemet for att ta emot och behandla avbrott. Det finns inga andra avbrottskallor i systemet.

Du fér sjdlv skapa ytterligare hjélpvariabler for klockavbrotten efter behov. Systemets avbrottsvektor IRQ finns
is RWM pa adress $3FF2.

a) Skriv initieringsrutinen IRQINIT
b) Skriv avbrottsrutinen IRQ

Kalle student konstruerar yttre enheter till ett MC12-system. Konstruktionen visar sig innehalla vissa brister.
Detta diskuteras i deluppgifter b,c och d nedan). Las darfor igenom hela uppgiften innan du borjar 16sa den.
Systemet skall anvédndas for att betjidna fyra yttre enheter numrerade 0 t o m 3. Oberoende av varandra kan
enheterna begira avbrott . Begéran om avbrott gors genom att en till enheten horande statusflagga ettstélls.
Enheternas statusflaggor, som ocksé numreras 0 t o m 3, har i ordningsfoljd samlats i bitarna 0 - 3 av ett
statusregister pa adress $700. Se figur. Oberoende av vilken statusflagga som ettstills sa skickas en
avbrottssignal (IRQ) till processorn. Vid en skrivning pa adress $700 nollstélls statusflaggorna.

7-4:

|—> be=1: Enhet 0 har begért
L » b;=1: Enhet 1 har begért
—> b,=1: Enhet 2 har begért
S bs=1: Enhet 3 har begért

Enheternas servicerutiner finns tillgéngliga och har lagrats som subrutiner med namnen DSRO — DSR3.

a) Skriv en avbrottshanterare som undersoker vilken enhet som begért avbrott och anropar tillhorande
avbrottsrutin.

b) Det visar sig att Kalles konstruktion inte uppticker alla avbrott i vissa sammanhang. Nar intrdffar detta?
¢) Vad kan goras i mjukvara for att minska risken for detta?
d) Vad kan goras i hardvara for att eliminera problemet?

Maskinnara programmering - exempelsamling 20

3.9

Antag att en dator anvinds for enkel tidtagning vid en idrottstivling. Till datorn finns kopplat tva sensorer
samt en klockkrets. (Dessutom finns en display, men den behover inte programmeras i denna uppgift.) Den
forsta sensorn kdnner nér startskottet gar och den andra nér den tdvlande passerar mallinjen. De tva sensorerna
ar kopplade till samma 16-bitars styrregister. Detta ligger pé adressen 1234 (hex) och adressen till dess
avbrottsvektor dr FF80. Styrregistret aktiveras och inaktiveras genom att bit nr 0 i det sétts till 1 resp. 0. Om
registret ar inaktiverat paverkas det inte av inkommande signaler, men om det ar aktiverat géller foljande: Nar
en signal kommer fran ndgon av de tva sensorerna sétts bit nr 7 i registret till 1. Om man har satt bit nr 6 i
registret till 1 genereras da &dven en avbrottssignal till processorn. Styrregistret skall aterstillas efter ett avbrott
genom att man sitter bit 7 till 0.

Klockkretsen ér kopplad till ett annat 16-bitars styrregister, vilket ligger pé adressen 1230 (hex). Adressen till
dess avbrottsvektor dr FF70. Detta styrregister har samma konfiguration och fungerar pa samma sitt som
styrregistret for sensorerna. Den enda skillnaden dr de inkommande signalerna kommer fran klockkretsen
istéllet for sensorerna. Klockkretsen genererar 500 signaler per sekund.

Uppgiften &r att skriva ett C-program som gor en tidsmétning. Nér programmet startar skall det visa tiden 0 pa
en display och vinta tills startskottet gar. Nér detta sker skall klockan aktiveras och tiden skall visas fortlopande
pa displayen. Displayen skall visa tiden uttryckt i hundradels sekunder och den visade tiden skall uppdateras
hundra génger per sekund. Nér den tévlande passerar mallinjen skall klockan stoppas och sluttiden visas
konstant pa displayen. Programmet behover bara klara en tidsmétning. (Vill man goéra en ny far man starta om
programmet genom att trycka pa reset-knappen.)

Du fér forutsitta att det finns en férdigskriven C-funktion med namnet display. Denna har en parameter av
typen long int och nér den anropas visar den parameterns vérde pa en display.

Du far ocksa forutsitta att foljande tva fardigskrivna assemblerrutiner finns:

segment text

define _clocktrap
define _sensortrap
_clocktrap: JSR _clockinter
RTI
_ sensortrap: JSR _sensorinter
RTI

Det finns ocksa en fardigskriven assemblerrutin som anropar funktionen mai n nér processorn startar.
Skriv resten av programmet (i C).

Maskinnara programmering - exempelsamling 21

4.1

Programmering av periferikretsar

Parallellporten Port P, i ett HCS12-system kan programmeras sé att varje bit kan utgéra antingen en insignal,
eller en utsignal. Porten har tva olika register, som specificeras enligt foljande:

Parallel port P (PORTP)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn
| R|1=0UT |1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT . .
$700 5 'o=IN | 0=IN | 0=IN | 0=IN | 0=IN | 0=IN | 0=IN | 0=1n | DPPR | DataDirection Register
R| O 0 0 0 0 0 0 0 .
$701 W 1 1 1 1 1 1 1 1 DATA Data Register

| figuren anges registrens innehall efter “RESET".

DDR: 1 anger att positionen &r en utsignal, 0 anger att positionen dr en insignal. Bitarna kan programmeras oberoende
av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan astadkommas. Registret ar bade skrivbart
och lasbart i sin helhet.

DATA: Bestdr i sjalva verket av tva olika register (R,W):

o] R: innehaller insignaler for de bitar som programmerats som insignaler. Endast 0 far skrivas, till en hit som
ar programmerad som insignal.

o] W: anvénds da biten ar programmerad som en utsignal. D& en hit som ar programmerad som utsignal
lases kommer detta alltid att resultera i vérdet 1, oavsett vilket varde som tidigare skrivits till databiten.

Visa en ldmplig deklaration av porten med anvéindning av en Struct. Visa ocksé en funktion, void
portPinit(void) som initierar port P sa att bitarna b;-bs anvénds som en 3-bitars inport och bitarna by-
by anvédnds som en 5-bitars utport.

Visa en funktion, void outPortP(unsigned char c)som matar ut bitarna bs-by av C, till port P.

Visa en funktion, unsigned char 1nPortP(void) som returnerar bitarna bs-bs hos port P som en
unsigned char, dvs. virden i intervallet 0 t.o.m. 7.

Maskinnara programmering - exempelsamling 22

4.2

Parallellporten Port P, i ett HCS12-system kan programmeras sé att varje bit kan utgéra antingen en insignal,
eller en utsignal. Portarna som anvénds for insignaler kan dessutom konfigureras sé att ett avbrott genereras da
en yttre enhet dndrat véirdet hos insignalen.

Porten har tre olika register, som specificeras enligt féljande:

Parallel port P (PORTP)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn
$700 % 1O:=OIUNT 10:=OIUI\]I' 10:=OIUI\]I' 10:=OIUNT 10:=OIU’\"I' 1O:=OIUNT 10:=OIUNT 10:=OIU’\"I' DDR Data Direction Register
$701 \T/ |IEFA IIEFA IIEFA |IEFA |IEFA |IEFA |IEFA |IEFA ICIE Input Change Interrupt
$702 \TI 2 (lJ (lJ 2 2 (1) 2 2 DATA Data Register

o DDR: 1 anger att positionen &r en utsignal, 0 anger att positionen &r en insignal. Bitarna kan programmeras
oberoende av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan astadkommas. Registret ar bade
skrivbart och lasbart i sin helhet.

. ICIE: Bestar av olika delar (R=IF/W=IEA).

o IEA (Interrupt Enable/Acknowledge). Biten ar 0 efter RESET. Da 1 (Interrupt Enable) skrivs till biten aktiveras
avbrottsgenerering vid andring av motsvarande bit i DATA-registret om denna programmerats som insignal.
Om motsvarande bit i DDR i stéllet programmerats som utsignal, genereras inga avbrott. IEA-biten har da
ingen funktion. Da 1 skrivs till en bit som tidigare satts till 1, fungerar detta i stéllet som en Interrupt
Acknowledge-funktion, dvs. IF (Interrupt Flag) nollstalls. For att helt aterstélla avbrottsmekanismen fér denna
hit i DATA-registret skrivs 0 till IEA.

o IF (Interrupt Flag) Biten ar 0 efter RESET. Da motsvarande hit i DDR &r programmerad som en insignal och
motsvarande IEA &r 1, satts IF till 1 och ett avbrott (IRQ) generereras, avbrottsvektor FFF2.

e DATA: Bestar i sjalva verket av tva olika register (R,W):

o] R: innehaller insignaler for de bitar som programmerats som insignaler. Endast 0 far skrivas, till en bit som
ar programmerad som insignal.

o] W: anvénds da biten ar programmerad som en utsignal. Da en bit som ar programmerad som utsignal
lases kommer detta alltid att resultera i vérdet 1, oavsett vilket varde som tidigare skrivits till databiten.

a) Visa en lamplig deklaration av porten med anviandning av en Struct. Visa ocksa en funktion, void
portPinit(void) som initierar port P, pa adress 0x700 i minnet, sa att bitarna b;-bs anvinds som en 4-
bitars inport och bitarna bs-by anvinds som en 4-bitars utport. D& nédgon av inportens bitar dndras ska
avbrott genereras.

b) Visa en funktion, void outPortP(unsigned char c)som matar ut bitarna bs-by av C, till port P.
¢) Visa hur du implementerar en avbrottsfunktion, void 1rqPortP(void) som kvitterar ett avbrott
frdn nagon av portens ingangar.

d) Visanddviandiga programdelar i assemblersprak, dvs. hur avbrottsrutinen definieras, avbrottsvektorn
initieras (antag att FFF2 ar lds- och skrivbart minne) och hur processorn forbereds for att acceptera
avbrotten i ett huvudprogram. Anvénd endast standard-C konstruktioner och/eller assemblersprak for
HCSI12.

Maskinnara programmering - exempelsamling 23

Foéljande figur beskriver de register som anvénds for att styra PLL-kretsen hos HCS12:

Clock Reset Generator (CRG)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn
$34 \;Rv 0 0 SYN5 | SYN4 | SYN3 | SYN2 | SYN1 | SYNO SYNR Synthesizer Register
R 0 0 0 0 ivi
$35 REFDV3|REFDV2|REFDV1|REFDVO| REFDV Reference Divide
W Register
$37 % RTIF | PORF | LVRF |LOCKIF| LOCK | SCMIE | SCMIF SCM CRGFLG Flags Register
R
$39 WPLLSEL PSTP |[SYSWAI|ROAWAIT|PLLWAI| CWAI1 [RTIWAI|COPWAI CLKSEL Clock Select Register

Vért system har en 10 MHz oscillator. PLL-kretsen ska programmeras for att generera busfrekvensen 25 MHz.

a) Visa en subrutin PLLINIT i assemblersprak, alla adresser och bitar ska definieras med sina symbolnamn
enligt figuren.

Foljande figur ger en dversikt av hela CRG-modulen.

Adress Mnemonic Namn
$34 SYNR Synthesizer Register
$35 REFDV Reference Divide Register
$36 CTFLG *)Test Flags Register
$37 CRGFLG Flags Register
$38 CRGINT Interrupt Enable Register
$39 CLKSEL Clock Select Register
$3A PLLCTL PLL Control Register
$3B RTICTL RTI Control Register
$3C COPCTL COP Control Register
$3D FORBYP *)Force and Bypass Test Register
$3E CTCTL *)Test Control Register
$3F ARMCOP COP Arm/Timer Reset

b) Visa en typdeklaration i for hela CRG-modulen, i form av en ’C’-struct, enligt féljande:
typedef struct sCRG{

}CRG, *PCRG ;

¢) Anvind typdeklarationen i b) och visa en C-funktion void InitPLL(void). Definiera och anvind
lampliga symboliska namn for alla konstanter.

d) Komplettera typdeklarationen fran b) for de register som anviands av PLL-kretsen sa att bitar och grupper av
bitar deklareras som bitfilt.

e) Anvind typdeklarationen i d) och visa en C-funktion void InitPLL2(void). Definiera och anvind
lampliga symboliska namn for alla konstanter.

Maskinnara programmering - exempelsamling 24

Foéljande figur beskriver register som anvinds for den enkla realtidsklockan hos HCS12 (se dven figuren med
oversikt av CRG-modulen i uppgift 4.1):

Clock Reset Generator (CRG)

Offset 7 6 5 4 3 2 1 0 Mnemonic Namn
$37 % RTIF PORF LVRF |LOCKIF| LOCK | SCMIE | SCMIF SCM CRGFLG Flags Register
$38 | RTIE |2 O | ockiel—2 O !scwie 2 CRGINT Interrupt Enable

W Register
$3B \IE 0 RTR6 | RTR5 RTR4 RTR3 RTR2 RTR1 RTRO RTICTL RTI Control Register
RTR RTR[6:4]

[3:0]

000 001 010 011 100 101 110 111

(OFF)
0000 OFF 210 211 212 213 214 215 216
0001 OFF 2x210 2x211 2x212 2x213 2x214 2x215 2x216
0010 OFF 3x210 3x211 3x212 3x213 3x214 3x215 3x216
0011 OFF 4210 4x1 4x212 4x213 4x14 4x215 4216
0100 OFF 5x210 5x211 5x212 5x213 5x214 5x215 5x216
0101 OFF 6x210 6x211 6x212 6x213 6x214 6x215 6x216
0110 OFF 7X210 721 X212 7X213 721 X215 7x216
0111 OFF 8x210 8x211 8x212 8x213 8x214 8x215 8x216
1000 OFF 9x210 9x211 9x212 9x213 9x214 9x215 9x216
1001 OFF 10x210 10x21 10x212 10x213 10x214 10x215 10x216
1010 OFF 11x210 11x21 11x212 11x213 11x214 11x215 11x216
1011 OFF 12x210 12x211 12x212 12x213 12x214 12x215 12x216
1100 OFF 13x210 13x21 13x212 13x213 13x214 13x215 13x216
1101 OFF 14x210 14x211 14x212 14x213 14x214 14x215 14x216
1110 OFF 15x210 15x211 15x212 15x213 15x214 15x215 15x216
1111 OFF 16x210 16x21 16x212 16x213 16x214 16x215 16x216

Vart system har en 10 MHz oscillator. Realtidsklockan ska programmeras for att generera periodiska avbrott
med c:a 10ms intervall. Ledning: 3x2" pulser/period ger tillricklig noggrannhet. Programpaketet ska best av
delar implementerade savél i assemblersprak som i ’C’.

En ”servicerutin” void AtRTIrq(void) ,i’C’, ska anropas fran en avbrottsrutin RT IRQ.
Initieringsrutiner for klockfunktionen ska finnas bade i assemblersprak och *C’.

a) Implementera en subrutin RTINIT i assemblersprak, alla adresser och bitar ska definieras med sina
symbolnamn enligt figuren. Anvind ledningen ovan for tidbasen.
b) Vad blir den verkliga periodtiden?
¢) Implementera avbrottsrutinen RTIRQ som ska:
1. Kvittera avbrottet,
2. utféra AtRTIrg.
d) Implementera en C-funktion void RTInit(void). Definiera och anvind lampliga symboliska namn for
alla konstanter. Anvind typdeklaration fran uppgift 4.1.

C-funktionen AtRT I rq ska implementera en realtidsklocka, som underhéller en global variabel Real Time
deklarerad enligt foljande:
REAL_TIME_TYPE RealTime;
dér:
typedef struct tRealTime {
int t_ irq;
int t _sec;
int t _min;
int t_hour;
} REAL_TIME_TYPE;
Du behover inte ta hdnsyn till begynnelsevérden.

e) Implementera funktionen AtRTIrq.

Maskinnara programmering - exempelsamling 25

4.5 Foljande figur beskriver register som anvénds for serieckommunikationskretsen (SCI) hos HCS12:

Serial Communication Interface (SCI)

Adress 7 6 5 4 3 2 1 0 Mnemonic Namn

$C8H SBR12 | SBR11|SBR10| SBRO | SBR8 | ScimpH |Baud R:‘;r‘fegisw
$C9% SBR7 | SBR6 | SBRS | SBR4 | SBR3 | SBR2 | SBR1L | SBRO | SCIBDL Ba”dRaLt:WRegiSter
$CA% LOOPS |SCISWAI| RSRC M| WAKE | ILT | PE PT | SCICRL | Control Register 1
$CB % TIE | TCIE | RIE | ILIE | TE | RE | RWU SBK | SCICR2 | Control Register 2
$CC |- e RORE_|__IDLE |_OR_|_NF FE PE__| SCISRL | Status Register 1
$CD \;'\‘/ SCISR2 | Status Register 2
$CE 5\!’ SCIDRH | Data Register High
$CF $ _T_; _T_g 'Rrg _If_j _Ff_g _IT_; _T_i _T_g SCIDRL | Data Register Low

Enkla drivrutiner for denna seriekrets ska konstrueras, rutinerna specificeras av foljande:

void serial_init(void); /* initiera granssnittet */
void serial_out(char c); /* skicka ett tecken via granssnittet */
char serial_in(void); /* ta mot ett tecken fran granssnittet */

serial_in skaanvinda ’busy wait”, dvs. alltid returnera ett tecken.

PLL-klockan har initierats for 25 MHz frekvens. Vilj overforingshastigheten 57600 baud. Sambandet mellan
baudrate och det virde BR (1-8191) som ska skrivas till SCIBDH/SCIBDL ir:

a)
b)

c)
d)

g)

h)

_ PLLCLK
16 x baudrate

Bestdm virdet BR.

Implementera en subrutin SERTAL__ INIT i assemblersprak, alla adresser och bitar ska definieras med sina
symbolnamn enligt figuren ovan.

Skapa en lamplig typdeklaration (C-struct) for seriekretsen, anvind symboliska namn enligt figuren ovan.
Implementera void serial_init(void) i’C’. Definiera och anvéind ldmpliga symboliska namn for
alla konstanter. Anvind typdeklarationen fran c).

Implementera en subrutin SERIFAL__IN i assemblersprak, alla adresser och bitar ska definieras med sina
symbolnamn enligt figuren ovan. Returvérdet ska skickas i register B.

Implementera char serial_in(void) i’C’. Definiera och anvénd ldmpliga symboliska namn for
alla konstanter. Anvénd typdeklarationen frén c).

Implementera en subrutin SERITAL_OUT i assemblersprék, alla adresser och bitar ska definieras med sina
symbolnamn enligt figuren ovan. Tecken som ska skrivas ut forutsétts finnas i register B vid anrop.
Implementera void serial_out(char c) i’C’. Definiera och anvind lampliga symboliska namn
for alla konstanter. Anvénd typdeklarationen fran c).

Maskinnara programmering - exempelsamling 26

Maskinndra
programmering

- Losningsforslag till exempelsamling

Institutionen for Data och Informationsteknik
Chalmers tekniska hogskola
Goteborg VT-2014

Exempelsamling i maskinndra programmering - l6sningsforslag 2

11

1.2

Grundlaggande assemblerprogrammering

ORG
main: JSR
BRA

; uppgift a)

BlinkA: LDAA
STAA
LDAA
STAA
BRA

; uppgift b)

BlinkB: LDAA
STAA
JSR
LDAA
STAA
JSR
BRA

BLINKDELAY:
LDX

BLINKDELAY1:
LEAX
CPX
BNE
RTS

a), b)

RLJUSH:
LDAA

RLJUSH1:
STAA
JSR
RORA
BCS
BRA

BlinkandelLjusl.s12

$1000
BlinkB
main

HSFF
$400
#0
$400
BIinkA

#SFF

$400

BL INKDELAY
#0

$400

BL INKDELAY
BlinkB

#$200
-1,X

#0
BLINKDELAY1

#$80

$400
BL INKDELAY

RLJUSH
RLJUSH1

(BLINK)

BLINKDELAY

X « $200

RLJUSH

I BLINKDELAY I
A< (A)>>1

Exempelsamling i maskinnara programmering - l6sningsférslag 3

1.3
b)
RLJUSH16:
LDD #$8000
RLJUSH16_1:
STD $400
JSR BLINKDELAY
RORA
RORB
BCS RLJUSH16
BRA RLJUSH16 1
14
b)_) a)
main:
JSR DipSwitchOr
BRA main
DipSwitchOr:
LDAB $600
ORAB $601
STAB $400
RTS
15
; Symboliska adresser
DipSwitch EQU $600
HexDisp EQU $400
; Subrutin DipHex
DipHex: LDAA DipSwitch
CLRB
DipHex10: TSTA
BEQ DipHex20
INCB
LSRA
BCC DipHex10
DipHex20: STAB $400
RTS
1.6
b)
; Huvudprogram
main: JSR AddUnsigned8bitTol6
BRA main
; Subrutin
AddUnsigned8bitTol6:
LDAB $600
CLRA
PSHD
LDAB $601
ADDD 2,SP+
STD $400
RTS

RLJUSH16

D « $8000 \
I

$400 « (D) \

\ BLINKDELAY \ \

v

| D« (D>

|
JA NEJ

DipSwitchOr

B « $600
B « (B) | ($601)
$400<(B)

RETUR

a)

AddUnsigned8bitTo16

B « $600
A« 0
SP« (SP)-2
M(SP)«(D)

'

B « $601
D« M(SP)+(D)
SP< (SP)+2
$400<(D)

RETUR

Exempelsamling i maskinnara programmering - l6sningsforslag 4

1.7

1.8

1.9

b)
; Huvudprogram
main: JSR AddSigned8bitTol6
BRA main
; Subrutin
AddSigned8bitTol6:
LDAB $600
SEX B,D
PSHD
LDAB $601
SEX B,D
ADDD 2,SP+
STD $400
RTS
DipSwitch: EQU $600
HexDisp: EQU $400
DipHex2: LDD DipSwitch
MUL
STD HexDisp
RTS
ML4_INPUT: EQU $0600
ML4_OUTPUT: EQU $0400
ERROR_CODE: EQU $5D
DisplayNBCD: LDX #SegCodes
DisplayNBCD1: LDAA ML4_INPUT
BPL DisplayNBCD2
CLR ML4_OUTPUT
BRA DisplayNBCD1
DisplayNBCD2: ANDA #$0F
CMPA #9
BHI DisplayNBCD3
LDAB A, X
STAB ML4_OUTPUT
BRA DisplayNBCD1
DisplayNBCD3: LDAB #ERROR_CODE
STAB ML4_OUTPUT
BRA DisplayNBCD1
SegCodes

a)

AddSigned8bitTo16

B « $600

SP« (SP)-2
M(SP)«(D)

B « $601

Ao

D M(SP)+(D)
SP« (SP)+2
$400« (D)

RETUR

Pekare

L&s strombrytare

Om Bit 7=0

Och ja, LDAA paverkar faktiskt bade
N och Z flaggan

Slack

Maska fram b3-b0
[0,9]?

; Hamta segmentkod for [0,9]

Visa siffra

; Kod for E

; Visa siffra

FCB $77,%$22,%$5B,%$6B,$2E,$6D,$7D,$23
FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18

Exempelsamling i maskinnara programmering - l6sningsférslag 5

1.10

1.11

Inport

UtportP
UtportQ
UtportR

ERROR_CODE:

SumPQ:

SumPQ_1:

SegCodes

Display:

; Register A anvands
; Register B anvands

EQU
EQU
EQU
EQU
EQU

LDX
LDAB
TFR
LSRA
LSRA
LSRA
LSRA
MOVB
ANDB
MOVB
ABA
CMPA
BLO
LDAB
STAB
BRA
LDAB
STAB
BRA

$600
$400
$401
$402
$5D

#SegCodes
Inport
B,A

A, X,UtportP
#$0F
B,X,UtportQ

#10

SumPQ_1
#ERROR_CODE
UtportR
SumPQ

ALX

UtportR
SumPQ

; Segmentkod for E (Error)

Pekare till tabell
Las inporten
Kopiera

Skifta fram P

Skriv P

Maska fram Q
Skriv Q
Summan R
Giltigt varde
- -hoppa om JA
Skriv Error

; Oversatt R till Segmentkod
;.. och skriv ut

FCB $77,%$22,$5B,%$6B,$2E,$6D,$7D,$23
FCB $7F,$6F,$3F,$7C,$55,%$7A,$5D,$18

LDX
TFR

LSRB
LSRB
LSRB
LSRB
LDAB
STAB
ANDA
LDAA
STAA
RTS

#SegCodes
A,B

Subrutin Display visar ett NBCD-tal i A pa tva sifferindikatorer
Indata: Register A, Ett NBCD-tal [0,99]

; Pekare
; Spara kopia

for EN-talen och...
for TIO0-talen

B,X
UtPortl
#$SOF
A,X
UtPort2

; Skifta fram TI1O0-talen

; ..och visa TlIO-talen

Ta fram EN-talen
..och visa EN-talen

; Subrutin Read laser inporten, spegelvander data och lamnar detta i Register A

Read

Read_1:

SegCodes

LDAB
LDX

LSRB
ROLA
DEX
BNE
RTS

FCB
FCB

InPort
#8

Read 1

; Skifta 8 bitar

; Skifta ut...
> ... och iIn
Sista?

; Nej

$77,%$22,%$5B,%$6B,$2E,$6D,$7D, $23
$7F ,$6F,$3F,$7C,$55,$7A,$5D,$18

Exempelsamling i maskinnara programmering - l6sningsférslag 6

2.1

2.2

2.3

24

25

2.6

2.7

Grundlaggande programmering i ’C’

a) 0..255

b) -126..127

c) 0..65535

d) -32768..32767
e) —32768..32767

a) 0..4294967295
b) —2147483648.. 2147483647

auto : synlig endast i den funktion den deklarerats.
static :synlig endast i den kalltextfil den deklarerats.
global : synlig fran alla programdelar.

int a;
static int sia;
extern int eia;

void f(void)

{
int b;
auto int aib;
static int sib;
extern int eib;

a) ((unsigned char *) 0x400)
b) ((signed char *) 0x400)

C) ((unsigned short *) 0x400)
d) ((signed short *) 0x400)

#include <stdint.h>
a) ((uint8_t *) 0x400)
b) (C int8_t *) 0x400)
C) ((uintl6_t *) 0x400)
d) (C intl6_t *) 0x400)

a)

typedef void (* functionl)(void);
#define reentry ((functionl) (OxCOOF))
b)

typedef void (* function2)(char);
#define outcha ((function2) (0xC006))
c)

typedef char (* function3)(void);
#define tstcha ((function3) (0xC003))

Exempelsamling i maskinnara programmering - l6sningsférslag 7

2.8

2.9

a)
typedef struct {
int t, n;
} rat_tal;
b)
rat_tal add(rat_tal rl1, rat_tal r2)
{

rat_tal res;

res.t = rl.t*r2.n + r2.t*rl.n;
res.n = rl.n*r2.n;

return res;

3
rat_tal mul(rat_tal r1, rat_tal r2)

{

rat_tal res;
res.t = rl.t*r2.t;
res.n = rl.n*r2.n;
return res;

}

a)
int strlen (const char *s)

const char *p=s;
while (*p++)

rethrn p-1-s;
3
b)

int strlen (const char *s)

{
int i=0;
while (s[i])
i++;
return ij;

}
c)

// pekare
; int strlen (const char *s)
_strlen:

0 {
LEAS -2,SP
; const char *p=s;
LDD 4,SP
STD O0,SP
; while (*p++)
1:
LDX O0,SP
TST 1,X+
STX 0,SP
BNE 1
N return p-1-s;
LDD O0,SP
SUBD 4,SP
LDX #-1
LEAX D,X
TFR X,D
;%
LEAS 2,SP
RTS

// indexering
; Int strlen (const char *s)
_strlen:

{

LEAS -2,SP

: int i=0;
CLRA
CLRB
STD 0,SP

; while (s[i])

LDD 0,S
ADDD 4,SP
TFR D,X
TST 0,X
BEQ 2

++
LDX 0,SP
INX

STX O0,SP
BRA 1

; return i;
LDD O0,SP

}
LEAS 2,SP
RTS

Exempelsamling i maskinnara programmering - l6sningsférslag 8

2.10 a)
void strcpy (char *sl1, const char *s2)

while (*sl++ = *s2++)

3
b)
void strcpy (char *sl1, const char *s2)
int i = 0;
while (sl1[i] = s2[i])
1++;
¥
)
// pekare // indexering
void strcpy (char *sl, const char *s2) ; void strcpy (char *sl, const char *s2)
_strcpy: _strcpy:
; ;o {
; while (*sl++ = *s2++) LEAS -3,SP
_1: ; int i1 = 0;
LDX 2,SP CLRA
LDY 4,SP CLRB
LDAB 1,Y+ ST 1,SP
STAB 1,X+ ; while (sl1[i] = s2[i])
STX 2,SP _1:
STY 4,SP LD 1,SP
TSTB ADDD 7,SP
BNE 1 TFR D,X
; ; LDAB 0,X
;3 STAB 0,SP
RTS LbbD 1,SP
ADDD 5,SP
TFR D,X
LDAB 0,SP
STAB 0,X
TSTB
BEQ _2
; 1++3
LDX 1,SP
INX
STX 1,SP
BRA 1
_2:
;)
LEAS 3,SP
RTS

Exempelsamling i maskinnara programmering - l6sningsférslag 9

2.11
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double nollstalle(double (*f)(double), double a, double b, double eps)
{
if (F(@) > 0 && F(b) < 0)
{ // byt a och b
double temp = a;
a=b; b=temp;

3
if (1(f(a) < 0 & F(b) > 0))
{

printf("Nollstalle saknas\n');
exit(99);

}
// nu galler f(a) < 0 < f(b)
while (fabs(a-b) > eps)
{
double xm=(at+b)/2, fm=F(xm);
if (fm < 0)
a=xm;
else it (fm > 0)
b=xm;
else
return xm; // Vi rékade finna nollstallet

}
return (a+b)/2;

2.12
typedef unsigned char *port8ptr;
#define ML40UT_ADR 0x400
#define ML4IN_ADR 0x600

#define ML40UT *((port8ptr) MLAOUT_ADR)
#define ML4IN *((port8ptr) ML4IN_ADR)

void blinkdelay(void)
L

int i;

for(1 = 0; 1 < O0x300 ; i++);
}

void blink(void)

{
ML4OUT = OXxFF;
blinkdelay();
ML4OUT = O0;
blinkdelay();

}

void main(void)
while(1)

blink O;

Exempelsamling i maskinndra programmering - l6sningsférslag 10

2.13
typedef unsigned char *port8ptr;
#define ML4OUT_ADR 0x400
#define ML4IN_ADR 0x600

#define ML4OUT *((port8ptr) ML40UT_ADR)
#define ML4IN *((port8ptr) ML4IN_ADR)

void blinkdelay(void)
{

int 1i1;

for(i = 0; i < 0x200 ; i++);
}

void rljush(void)
{
unsigned char c = 0;
while(1)
{
ifCc==0)
c = 0x80;
ML40UT = c;
blinkdelay();
c=c>1;
}
3

void main(void)
{

rlijush QO;
}

2.14
typedef unsigned int *portléptr;

#define ML40UT_ADR 0x400
#define ML40UT16 *((portl6ptr) ML4AOUT_ADR)

void blinkdelay(void)
L

int i;

for(1 = 0; 1 < 0x200 ; i++);
¥

void rljushl6(void)
{
unsigned int c = 0;
while(1)
{
ifCc==0)

c = 0x8000;
ML40UT16 = c;
blinkdelay();
c=c>1;

ks
}

void main(void)

rljushl6 Q;
}

Exempelsamling i maskinndra programmering - l6sningsférslag 11

2.15
typedef unsigned char *port8ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT *((port8ptr) ML4OUT_ADR)
#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void DipSwitchOr(void)
{

unsigned char c;
while(1)

Cc = ML4IN1 | ML4IN2;
ML40UT = c;

+
}

void main(void)

{
}

DipSwitchOr ();

2.16
typedef unsigned char *port8ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR 0x600

#define ML4OUT *((port8ptr) ML4OUT_ADR)
#define ML4IN *((port8ptr) ML4IN_ADR)

void Ff1(void)
{

unsigned char pattern, bitpos;
while(1)

{
pattern = ML4IN;

if(! pattern)
bitpos = 0;
else{
for(bitpos = 1; bitpos < 8; bitpos++)

if(pattern & 1)

break;
pattern >>= 1;

}
}
ML4OUT = bitpos;

void main(void)

1 O;
}

Exempelsamling i maskinndra programmering - l6sningsférslag 12

2.17
typedef unsigned char *port8ptr;
typedef unsigned short *portl6ptr;

#define ML40UT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT16 *((portl6ptr) ML4OUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void AddUnsigned8bitTol6(void)
{

unsigned short int s;

while(1)

{

S (unsigned short) ML4IN1;
s = s + (unsigned short) ML4IN2;
ML40UT16 = s;
}
}

void main(void)

AddUnsigned8bitTol6 ();
¥

2.18
typedef char “*port8ptr;
typedef short *portl6ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML40UT16 *((portl6ptr) ML4AOUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void AddSigned8bitTol6(void)
{
short s;
while(1)
{
s (short) ML4IN1;
s = s + (short) ML4IN2;
ML40UT16 = s;

}
}

void main()

AddSigned8bitTol6 ();
3

Exempelsamling i maskinndra programmering - l6sningsférslag 13

2.19

typedef unsigned char *port8ptr;
typedef unsigned int *portl6ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML40UT16 *((portl6ptr) ML4AOUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void DipHex(void)
{
unsigned short int s;
while(C 1)
{
s = (unsigned short) ML4IN1;
s = s * (unsigned short) ML4IN2;
ML40UT16 = s;
}
}

2.20
typedef unsigned char *port8ptr;

#define ML40UT_ADR1 0x400
#define ML4OUT_ADR2 0x401
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML40UT1 *((port8ptr) ML4OUT_ADR1)
#define ML4OUT2 *((port8ptr) ML40UT_ADR2)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void DivModHex(void)
{
unsigned char q,r,pa;
pa = ML4IN2;
ifCpa !'=0)

ML41IN1/pa;
ML4IN1%pa;

q

r
Yelse{
q = OxFF;
r = OxFF;

}
ML40UT1
ML40UT2

as
r;

221
typedef unsigned char *port8ptr;

#define ML4OUT *((port8ptr) 0x400)
#define ML4IN *((port8ptr) 0x600)
#define ERROR_CODE Ox5D

unsigned char SegCodes[]={0x77,0x22,0x5B,0x6B,0x2E,0x6D,0x7D,0x23,
Ox7F ,0x6F,0x3F,0x7C,0x55,0x7A,0x5D,0x18 };

void DisplayNBCD(void)
{

char c;

while(1)

{

Exempelsamling i maskinnara programmering - l6sningsférslag 14

Cc = ML4IN;

if(c & 0x80)
ML40UT = O;

Yelse{

ifC (c & OxF) <10)
ML4OUT = SegCodes[c & OxF];
else
ML40UT

ERROR_CODE;
}

+
}

void main(Q)

{
DisplayNBCD(Q);

2.22
typedef unsigned char *port8ptr;

#define OUT *((port8ptr) 0x400)
#define IN1 *((port8ptr) 0x600)
#define IN2 *((port8ptr) 0x601)

void DipSwitchEor(void)
while(1)

OUT = IN1 ™ IN2;
}
}
2.23
typedef unsigned char * port8ptr;
#define DISPLAY *((port8ptr) 0x400)
#define DIPSWITCH1 *((port8ptr) 0x600)
#define DIPSWITCH2 *((port8ptr) 0x601)

void CondRunDiode(void)

{

unsigned char value;

value = 0x80; /* initialvarde */
while(C 1)

{
if(DIPSWITCH1 > DIPSWITCH2)
{ /* ljus rinner at vanster */
DISPLAY = value;
value = value << 1;
if(value == 0) /* 6ver kanten? ... */
value = 1; /* boja om fran hoger */
Yelse if (DIPSWITCHL < DIPSWITCH2)
{ /* ljus rinner &t hoger */
DISPLAY = value;
value = value >> 1;
if(value == 0) /* 6ver kanten? ... */
value = 0x80; /* boja om fran vanster */

Yelse /* ljus star still */
DISPLAY = value;

Exempelsamling i maskinndra programmering - l6sningsférslag 15

2.24
////7/77777777777777777777/77777777777777777777/77777777777777
/7 1 filen ports.h:
typedef unsigned char *portptr;

// Keyboard (ML5)

#define MLSKEYB_CTRL_ADR 0XxC00
#define ML5SKEYB_STAT_ADR 0XxCO1

#define MLSKEYB_CTRL *((portptr) MLSKEYB_CTRL_ADR)
#define MLSKEYB_STAT *((portptr) MLSKEYB_STAT_ADR)

L1177 777777777777777/77777777/77777/7/77777/77/777/7/7/7/77/77/77777
// Filen clock.h

typedef unsigned long int time_type; // enhet: ms
void hold(time_type); // argument = antal ms

LI1117777777777777777777777777777/7777/7////777//7//7/7/7////7777
// Filen keyboardML5.c

#include "keyboardML5_h"
#include "'ports.h"
#include "clock._h"

int keyb(void)
{

int radnr, kolnr;
unsigned int radbit, kolbits;
unsigned int kolmask = Oxf; // markerar vilka kolumner som anvands
// tabell for avkodning av kolumnbitar, -1 markerar fel
int decode[16] = {-1, -1, -1, -1, -1, -1, -1, 3,
-1, -1, -1, 2, -1, 1, O, -1};

// vanta tills alla tangenter &ar uppe
ML5KEYB_CTRL = OxT; // aktivera alla rader
while ((ML5KEYB_STAT & kolmask) I= kolmask) // ar nagon tangent nedtryct?

// upprepa tills nagon tangent trycks ner

while Q) {
// 16p igenom alla rader och 1at "radbit" markera insignalerna 0-3
for (radnr=0, radbit=0x1; radnr<4 ; radnr++, radbit<<=1) {

ML5KEYB_CTRL = radbit; // aktivera raden

kolbits = ML5KEYB_STAT & kolmask; // avlas kolumnerna

if (kolbits != kolmask) { // ar nagon tangent pa raden nedtryckt?
hold(200); // ja, vanta 200 ms

// avlas kolumnerna igen

it ((ML5KEYB_STAT & kolmask) == kolbits) {// fortfarande intryckt?
kolnr = decode[kolbits]; // ger kolumnnumret fo6r nollan
return 4*(3-kolnr) + radnr;

}

2.25

N

RMB
RMB
RMB

OoTo
N e

=
~

LDAB b
PSHB

LDAB a
PSHB

JSR _min
LEAS 2,SP
STAB c

Exempelsamling i maskinndra programmering - l6sningsférslag 16

2.26

2.27

2.28

2.29

2.30

2.31

a)
_a RMB 2
_b RMB 2
_C RMB 2
b)
LDD b
PSHD
LDD _a
PSHD
JSR _min
LEAS 4,S
STD _cC
a)
_a RMB 2
_b RMB 2
_C RMB 2
b)
LDD _b
PSHD
LDD _a
PSHD
JSR _min
LEAS 4,S
STD _cC
a)
_cp RMB 2
b)
LDX # Cp
PSHX
JSR _identify
LEAS 2,SP
STD _cp
a) LEAS -2,SP
b
Parameter/ adressering
variabe
a 4,SP
b 0,SP
a) LEAS -4,SP
b
Parameter/ adressering
variabe
a 8,SP
b 6,SP
c 2,SP
d 0,SP
a) LEAS -5,SP
b
Parameter/ adressering
variabe
a 12,SP
b 11,SP
c 7,SP
d 4,SP
e 0,SP

Exempelsamling i maskinndra programmering - l6sningsférslag 17

2.32
; void f1(unsigned char c)
i
; {
; *(unsigned char *) 0x600 = c ;
LDAB 2,SP
STAB $600
; delayQ);
JSR _delay
; C=cC > 1;
LDAB 2,SP
LSRB
STAB 2,SP
; *(unsigned char *) 0x600 = c ;
STAB $600
> 3
RTS
2.33
void printerprint(char *s)
_printerprint:
; {
; while(*s)
LDX 2,SP
printerprintl:
TST » X
BEQ printerprint2
; {
; while(I(STATUS & 1))
printerprint3:
LDAB $0701
ANDB #3$01
BEQ printerprint3
; DATA = *s;
LDAB 1,X+ (4ven ’s++” nedan)
STAB $0700
> S++;
BRA printerprintl
printerprint2:
; }
> 3
RTS
2.34
; void shortdelay(void)
_shortdelay:
; {
; volatile unsigned char c;
LEAS -1,SP
; for(c = 0; ¢ < 0x200 ; c++);
CLR 0,SP
_1:
LDAB O0,SP
CMPB #3$200
BGE 2
INC 0,SP
BRA 1
_2:
> 3
LEAS 1,SP

RTS

Exempelsamling i maskinndra programmering - l6sningsférslag 18

2.35
; void shortdelay(void)
_shortdelay:
; {
; unsigned char c;
; For(c = 0; ¢ < 0x200 ; c++);
CLRB
_1:
CMPB #$200
BGE 2
INCB
BRA 1
_2:
> 3
RTS
2.36
; void printchar(char c)
_printchar:
; {
; while(*((volatile unsigned char *) 0x600))
1:
TST $600
BNE 1
; *((unsigned char *) 0x400) = c;
LDAB 2,SP
STAB $400
> 3
RTS
2.37
; void printmul(void)
_printmul:
; {
; unsigned short int s;
LEAS -2,SP
; S = (unsigned short) (*((unsigned char *) 0x600));
LDAB $600
CLRA
STD 0,SP
; S =s * (unsigned short) (*((unsigned char *) 0x601));
LDAB $601
TFR D,Y
LDD 0,SP
EMUL
STD 0,SP
; *((unsigned short int *) 0x400) = s;
STD $400
LEAS 2,SP
RTS
2.38 a)
_getCCR:
TFR CCR,B
RTS
b)
_setCCR:
LDAB 2,SP
TFR B,CCR
RTS
2.39

I den forsta I6sningen ar stacken balanserad da RTI1 utfors, det ar dock inte fallet i den andra Iésningen eftersom
en lokal variabel deklarerats och epilogen (som balanserar stacken i funktionen) alltid placeras sist dvs. EFTER
den infogade RTI-instruktionen.

Exempelsamling i maskinndra programmering - l6sningsférslag 19

Undantagshantering
gz)\-***
* AVBROTTSRUTIN-IRQCNT
* Beskrivning: Las 8-bitars tal (tvakomplement) fran port ($0600).
* Typkonvertera och addera till 32-bitars tal (IRQVAR)
* Kvittera avbrott (skrivning till adress $0DC2)
* Anrop: via IRQ
IRQIN EQU $0600
IRQCLR EQU $0DC2
IRQCNT: DES ; plats for tecken-byte
LDAB IRQIN ; las 8 bitar
SEX B,D ; teckenutvidga till 16 bitar i D
STAA 0,SP ; spara tecken-byte
ADDD IRQVAR+2 ; addera bit0-15
STD IRQVAR+2 ; uppdatera bit 0-15
LDD IRQVAR ; bit 16-31
ADCB 0,SP ; addera bit 16-23
ADCA 0,SP ; addera bit 24-31
STD IRQVAR
CLR IRQCLR ; nollstall avbrottsvippan
INS ; aterstall stacken
RTI
IRQVAR RMB 4
b)
* SUBRUTIN-IRQINIT
* Beskrivning: Rutinen nollstaller D-vippan, lagger in adressen
* till avbrottsrutinen pa adressen $3FF2 och
* forbereder systemet for avbrott genom att I-flaggan
* nollstalls.
* Anrop: JSR IRQINIT
IRQINIT: MOWW #0, IRQVAR ; Init Var
MOVW #0, IRQVAR+2
CLR IRQCLR ; nollstall avbrottsvippan
MOVW #IRQCNT,$3FF2 ; avbrottsvektor
CLI
RTS

Overvakningsprogrammet startas med ett RESET som leder till féljande programavsnitt:

INIT: LDS BOS ; Efter RESET skall stacken initieras och
LDAB $0801 ; avbrottsvipporna nollstallas
LDAB $0802 ; (dummylas $0801 och $0802)
CcL1 ; Darefter skall IRQ-ingangen demaskeras och
IMP CONTROL ; Overvakningen startas
Overvakningen sker huvudsakligen m h a avbrottsrutinen IRQALARM, som anropar vésentliga subrutiner
IRQALARM: LDAB $0800 ; avgobr vad som begdrt avbrott
BITB #%00000001 ; kassan?
BEQ L1
BITB #%00000010 ; bade kassan och vakt?
BEQ L2 ; bara kassan
LDAB $0801 ; tilldt registrering av nya avbrottsbegaran
LDAB $0802
BSR CHAOS ; reglera for avbrott fran bade kassan och vakt
BRA L3
L2: LDAB $0802 ; tilldt registrering av ny avbrottsbegaran fran kassan
BSR ENTRANCE ; reglera for avbrott fran enbart kassan
BRA L3
L1: LDAB $0801 tillat registrering av ny avbrottsbegaran fran vakt

BSR GUARD
L3: RTI

reglera for avbrott fran enbart vakt

Exempelsamling i maskinndra programmering - l6sningsférslag 20

3.3

a) Ur ingangssignalerna till NAND-grinden kan man dra slutsatsen att
vilket innebér att adressen dr (0011 0000 0000 0000), = $3000

AEEAEXAEEAAXAEAXAEAAXAAAXAAXAEA AKX AXAXAAXAAAXAXAXAAXAAAXAXAXAAXAAAXAAXAXAAAAXAXAALAAAAA XX AX*X

* Subroutine INISTR

*

* Utfor initieringar for avbrottsstyrd utmatning av tecken fran

* parallell inport till skrivare

*

* INPUT: Pekare till forsta tecken i strdng i X

* QUTPUT: Inga

*

* Registerpaverkan: Inga

*

INISTR: PSHS X
STX STRPNT ; initierar strangpekare i minnet
LDX #PRIRQ ; Initierar avbrottsvektorn for IRQ
STX $3FF2
CLR $3000 ; matar ut ASCII-tecknet 00h (NUL)

; nollstaller avbrottsvippan

PULS X
CLI ; nollstaller 1-flaggan for att tillata IRQ
RTS

* Interruptroutine PRIRQ

*

* Kopierar tecken fran teckenstrang till parallellutport.

* Kopieringen avslutas nar tecknet “NUL” = OOH upptacks.

*

* INPUT: Pekare till forsta tecken i strang pa adress STRPNT

* OUTPUT: Inga

*

*

Registerpaverkan: Inga

PRIRQ: LDX STRPNT
LDAB 1,X+
STX STRPNT ; uppdaterar strangpekare
TSTB ; satter flaggor utifran A
BNE GO_ON
PULS A ; strangslut: stanger av avbrott; hamtar CC fran stacken
ORAA #%00010000 ; nollstaller I-flaggan
PSHS A ; lagger tillbaka pad CC’s lage i stacken
BRA RET
GO_ON: STAB $3000 ; matar ut ASCIlI-tecken
RET: RTI
3.7
TEMP rmb 2 Avbrottsraknare (1000 IRQ = 1s)
IRQINIT: MOVW #$2359,CLOCK ; Init klockan tt:mm:ss

MOVB #$59,CLOCK+2

MOVW #1000, TEMP ; Avbrottsraknare
CLR IRQRES ; nollstall avbrottsvippan
MOVW #1RQ, $3ff2 ; avbrottsvektor
CcLI
RTS
IRQ: CLR IRQRES ; nollstall avbrottsvippan
LDX TEMP ; 1000 avbrott?
LEAX -1,X
STX TEMP
BNE IEXIt ; nej
MOVW #1000, TEMP ; Avbrottsraknare

* Minska sekunder
LDAA CLOCK+2
SUBA #1
DAA

Exempelsamling i maskinndra programmering - l6sningsférslag 21

STAA CLOCK+2 ; Hel minut?
BPL IExit ; nej
* Minska minuter
MOVB #$59,CLOCK+2 ; 59 nya sekunder
LDAA CLOCK+1

ADDA #-1

DAA

STAA CLOCK+1 ; Hel timme?
BPL IEXIt ; nej

* Minska timmar
MOVB #$59,CLOCK+1 ; 59 nya minuter
LDAA CLOCK

ADDA #-1

DAA

STAA CLOCK ; 24 timmar?
BPL IEXIt ; nej

* Stanna klockan pa nagot satt!
* Anvand nagon global variabel och kolla om klockan ar noll eller
* se till att forhindra framtida avbrott

LDAA 0,sp ; Ettstall 1-flaggan
ORAA #3$10
STAA 0,sp
MOVW #0,CLOCK ; Nolla klockan
CLR CLOCK+2
IEXit: RTI
a)
IrgRut: LDAA IrgStat ; Las statusflaggorna
LSRA
BCC EjBO
JSR DSRO ; Serva enhet 0O
BRA IrgExit
EjBO: LSRA
BCC EjB1
JSR DSR1 ; Serva enhet 1
BRA IrgExit
EjB1: LSRA
BCC EjB2
JSR DSR2 ; Serva enhet 2
BRA Irgexit
EjB2: JSR DSR3 ; Serva enhet 3
IrgExit: CLR IrgVippa
RTI

b) Vi tappar avbrott om avbrott intraffar mellan instruktionerna Idaa IrgStat och clr IrqVippa.
¢) Risken minskas om instruktionen clr IrqVippa placeras direkt efter Idaa IrgStat.

d) Valja hardvara dar vi har mojlighet att bestamma vilken av de fyra avbrottskallorna vi skall kvittera.
Exempelvis 4 avbrottsvippor med separata RESET-mdjligheter

// 1 filen ports.h

typedef void (*vec) (void);
typedef vec *vecptr;
typedef unsigned int port;
typedef port *portptr;
#define set(r, mask) (r)
#define clear(r, mask) (r)

(r) | mask;
(r) & ~(mask);

// Klockregistret

#define CLOCKREG_ADR 0x1230

#define CLOCKREG *((portptr) CLOCKREG_ADR)

#define CLOCK_VEC_ADR OxFF70 // Adress till avbrottsvektor
#define CLOCK_VEC *((vecptr) CLOCK_VEC_ADR)

// Sensorerregistret
#define SENSORREG_ADR 0x1234
#define SENSORREG *((portptr) SENSORREG_ADR)

Exempelsamling i maskinndra programmering - l6sningsférslag 22

#define SENSOR_VEC_ADR OxFF80 // Adress till avbrottsvektor
#define SENSOR_VEC *((vecptr) SENSOR_VEC_ADR)

#define enable_bit 0x01

#define intr_bit 0x40

#define done_bit 0x80

// 1 filen tidtagare.c
#include "ports.h"

void display(long);
void sensortrap(void);
void clocktrap(void);

#define TIME_INTERVAL 2

static long int tick = 0;
static iInt started

static int stopped

[Nl

void init_clock(void) {
CLOCK_VEC = clocktrap;
set(CLOCKREG, intr_bit);
3

void clockinter(void) {
clear (CLOCKREG, done_bit);
tick++;

}

void init_sensor(void) {
SENSOR_VEC = sensortrap;
port shadow = O;
set(shadow, enable_bit);
set(shadow, intr_bit);
SENSORREG = shadow;

}

void sensorinter(void) {

clear (SENSORREG, done_bit);

if (Istarted) {
set(CLOCKREG, enable_bit);
started = 1;

3

else {
clear (CLOCKREG, enable_bit);
stopped = 1;

}

int mainQ) {
long iInt next;
init_clock(Q);
init_sensor();
display(0);
while (Istarted)

while(Istopped) {
display(tick * TIME_INTERVAL / 10);
/* vanta 0.01 sek */
next = tick + 10 /7 TIME_INTERVAL;
while(tick < next)

}
display(tick * TIME_INTERVAL / 10);

Exempelsamling i maskinndra programmering - l6sningsférslag 23

4 Programmering av periferikretsar

4.1 a)
typedef struct sPortP{
volatile unsigned char ddr;
volatile unsigned char data;
}PORTP, *PPORTP;
#define PORTP_BASE 0x700
#deFfine portP ((PORTP *)(PORTP_BASE))

void portPinit(void)

portP->ddr = ~OxEOQ;
}
b)
unsigned char inPortP(void)

{
return ((portP->data & OxEO)>> 5) ;

c)
void outPortP(unsigned char c)

{
}

portP->data = ¢ & Ox1F ;

4.2 a)
typedef struct sPortP{
volatile unsigned char ddr;
volatile unsigned char icie;
volatile unsigned char data;
}PORTP;
#define PORTP_BASE 0x700
#define portP ((PORTP *)(PORTP_BASE))

void portPinit(void)

{
portP->ddr = OxOF; /* b7-b4 inport, b3-b0 utport */
portP->icie = OxFO; /* b7-b4 inportar, avbrott aktiveras */
¥
b)

void outPortP(unsigned char c)

portP->data = ¢ & OxXOF ; /* b7-b4 ska vara 0 */
b

c)

void irqgPortP(void)

switch(portP->data & OcFO) /* bestam avbrottskalla */
{ /* kvittera avbrott */
case 0x80: portP-> icie

0x80; break;
case 0x40: portP-> icie 0

x40; break;

case 0x20: portP-> icie = 0x20; break;
case 0x10: portP-> icie = 0x10; break;
ks
}
d)
Assembler:

initieringar i1 huvudprogram...
IMPORT _irgPortP

MOVW #PortPirq,$FFF2

cLi
; avbrottsrutin
PortPirq:

JSR _irgPortP

RTI

Exempelsamling i maskinnara programmering - l6sningsforslag 24

4.3

a)

; Adressdefinitioner for register
REFDV EQU $35

SYNR EQU $34

CRGFLG EQU $37

CLKSEL EQU $39

; Bitdefinitioner

PLLSEL EQU $80

LOCK EQU 8

; Registervarden 10MHz oscillator, 25 MHz busfrekvens
SYNRVal: EQU 5

REFDVVal: EQU 4

Generisk kod for programmerad arbetstakt. ..
PLLINIT: MOVB #REFDVVal ,REFDV
MOVB #SYNRVal,SYNR

PLLINIT_1:

RTS

b)

typedef struct sCRG{

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

BRCLR CRGFLG,#LOCK, PLLINIT_1
BSET CLKSEL,#PLLSEL

char
char
char
char
char
char
char
char
char
char
char
char

vanta tills PLL I&st...
vaxla systemklocka till PLL.

SYNR;
REFDV;
CTFLG;
CRGFLG;
CRGINT;
CLKSEL;
PLLCTL;
RTICTL;
COPCTL;
FORBYP;
CTCTL;
ARMCOP;

3}CRG, *PCRG ;
c)

#define
#define
#define

CRG_BASE 0x34
SYNRVal 5
REFDWVal 4

/* Basadress for CRG-modulen */

#define
#define

PLLSEL 0x80
LOCK 8

/* Bitdefinitioner */

void InitPLL(void)
{
((¢ (PCRG) (CRG_BASE))->refdv) = REFDVval;
(((PCRG) (CRG_BASE))->synr) = SYNRVal;
/* vanta tills PLL last... */
while(((((volatile PCRG) (CRG_BASE))->crgflg) & LOCK)== 0);
/* vaxla systemklocka till PLL */
(((PCRG) (CRG_BASE))->clksel) |= PLLSEL;

Exempelsamling i maskinndra programmering - l6sningsférslag 25

d)

typedef struct sCRG2{

union{

volatile
volatile

}synr;
union{

volatile
volatile

}refdv;

unsigned char reg;
unsigned char synbits:6;

unsigned char reg;
unsigned char refbits:4;

volatile unsigned char ctflg;

union{

volatile unsigned char reg;
struct{

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

}oit;
Ycrgflg;

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

SCM:1;
SCMIF:1;
SCMIE:1;
LOCK:1;
LOCKIF:1;
LVRF:1;
PORF:1;
RTIF:1;

volatile unsigned char crgint;

union{

volatile unsigned char reg;
struct{

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

}oit;
}clksel;

volatile
volatile
volatile
volatile
volatile
volatile

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

}CRG2, *PCRG2 ;

e)

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

COPWAI :-1;
RTIWAL:-1;
CWAI:1;

PLLWAI:-1;
ROAWAIL -1;
SYSWAI :1;
PSTP:1;

PLLSEL:1;

char pllictl;
char rtictl;
char copctl;
char forbyp;
char ctctl;
char armcop;

void InitPLL2(void)

{

(((PCRG2) (CRG_BASE))->refdv.refbits) = REFDVVal;
(((PCRG2) (CRG_BASE))->synr.synbits) = SYNRVal;
/* vanta tills PLL 1ast... */

while(!

(((volatile PCRG2) (CRG_BASE))->crgflg.-bit.LOCK))

/* baxla systemklocka till PLL */
((PCRG2) (CRG_BASE))->clksel .bit.PLLSEL = 1;

Exempelsamling i maskinndra programmering - l6sningsférslag 26

4.4

45

; ur tabell

; For MC12/10MHz

Aktivera avbrott fran CRG-modul
Avbrottsvektor

Kvittera avbrott

“Transmit enable” bit
“Receive enable” bit
enligt a)

Initiera baudrate
Aktivera sandare mottagare

// “Transmit enable” bit
// “Receive enable” bit

a)
; Adressdefinitioner
CRGFLG EQU $37
CRGINT EQU $38
RTICTL EQU $3B
RTIE EQU $80
RTIF EQU $80
TIMBASE EQU $62
RTINIT: MOVB #TIMBASE ,RTICTL
MOVB #RTIE,CRGINT ;
MOVW #RTIRQ, $3FFO ;
RTS
b)
9,83 ms.
9)
RTIRQ: BSET CRGFLG,# RTIF ;
JSR _AtRTIrqg
RTI
a)
25000000/(16%57600) = (27)10 = (1B)16
b)
SCI EQU $C8
SCIBD EQU $C8
SCICR1 EQU $CA
SCICR2 EQU $CB
SCISR1 EQU $CC
SCISR2 EQU $CD
SCIDRH EQU $CE
SCIDRL EQU $CF
TE EQU 8 ;
RE EQU 4 ;
BAUDRATE EQU 27 ;
SERIAL_INIT:
MOVW #BAUDRATE, SCIBD ;
MOVB #(TE]RE),SCICR2 ;
RTS
9
typedef struct sSCI{
volatile unsigned shortscibd;
volatile unsigned char scicrl;
volatile unsigned char scicr2;
volatile unsigned char scisrl;
volatile unsigned char scisr2;
volatile unsigned char scidrh;
volatile unsigned char scidrl;
3SCIl, *PSCI;
d)
#define SCI1_BASE 0xC8
#define TE 8
#define RE 4
#define BAUDRATE 27

// enligt a)

void serial_init(void)

((C PSCI)(SCI_BASE))->scicr2)
(((PSCI)(SCI_BASE))->scibd)

}

e)
RDRF

EQU

SERIAL_IN:
BRCLR SCISR1,#RDRF,SERIAL_IN

LDAB
RTS

$40

SCIBD

TE|RE;
BAUDRATE;

“Receive register fullt” bit

Exempelsamling i maskinndra programmering - l6sningsférslag 27

#define RDRF 0x40 // “Receive register fullt” bit

char serial_in(void)

while((C ((PSCI1) (SCl1_BASE))->scisrl) & RDRF)== 0);
return (((PSCI) (SCl1_BASE))->scidrl);

}
9) . . .
TDRE EQU $80 ; “Transmit register tomt” bit
SERIAL_OUT:

BRCLR SCISR1,#TDRE,SERIAL_OUT

STAB SCIBD

RTS
h)
#define TDRE 0x80 // “Transmit register tomt” bit

void serial_out(char c)

while(((((PSCI) (SCI_BASE))->scisrl) & TDRE)== 0);
(C ((PSCI) (SCI_BASE))->scidrl) = c;
}

