

Maskinnära
programmering

- exempelsamling

Institutionen för Data och Informationsteknik
Chalmers tekniska högskola

Göteborg VT-2014	
	

Maskinnära programmering - exempelsamling 2

Maskinnära programmering - exempelsamling

©2000-2014
 Roger Johansson, Jan Skansholm, Lars-Eric Arebrink och Rolf Snedsböl
Denna publikation får kopieras fritt i sin helhet för undervisningsändamål.

Innehåll
1. Grundläggande assemblerprogrammering
2. Grundläggande programmering i ’C’
3. Undantagshantering
4. Systemprogrammering och periferikretsar

Exempel är anpassade för ETERM6 för MC12 respektive XCC12 för MC12.

Versioner:
18 januari 2011
17 februari 2011, lagt till ytterligare uppgifter i avsnitt 2, lagt till avsnitt 4
2012, lagt till ytterligare uppgifter i avsnitt 2
6 mars 2013, rättat smärre fel och typografi.
10 december 2013, lagt till nya uppgifter, nytt typsnitt

Maskinnära programmering - exempelsamling 3

1 Grundläggande assemblerprogrammering
1.1 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress $400 på ett

MC12-system.

a) Skriv en subrutin "BLINK" som får samtliga dioder att blinka genom att
kontinuerligt tända och släcka dom. Kontrollera funktionen genom att stega
igenom subrutinen instruktionsvis.

b) Utforma, som en ny subrutin "BLINKDELAY", en fördröjning så att dioderna
blinkar även då programmet exekveras normalt.

c) Beskriv lösningen från b) i form av en flödesplan.

1.2 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress $400 på ett
MC12-system.

a) Skriv en subrutin "RLJUSH" som får dioderna att bete sig som ett "rinnande
ljus" där dioderna tänds upp en och en från vänster till höger. Kontrollera
funktionen genom att stega igenom subrutinen instruktionsvis.

b) Använd subrutinen "BLINKDELAY", så att man tydligt kan se det rinnande
ljuset även då programmet exekveras normalt.

c) Beskriv lösningen från b) i form av en flödesplan.

1.3 Två ramper med ljusdioder, enligt figuren till höger, är anslutna till adress
$400 och $401 på ett MC12-system.
Du ska konstruera en subrutin "RLJUSH16" som får dioderna att bete sig
som ett kontinuerligt "rinnande ljus" där dioderna tänds upp en och en från
vänster till höger. Efter det att bit 0 hos diodrampen på adress $400 släckts
ska bit 7 hos diodrampen på adress $401 tändas. Då dioden för bit 0 på
adress $401 släckts, ska det rinnande ljuset börja om från bit 7 på adress
$400, osv.
Använd en given subrutin "BLINKDELAY", så att man tydligt kan se det rinnande ljuset även då programmet
exekveras normalt.

a) Beskriv subrutinen "RLJUSH16" i form av en flödesplan.

b) Implementera, dvs. skriv subrutinen i assemblerspråk.

1.4 Två strömbrytare och en ljusdiodramp, enligt figuren till
höger, är anslutna till adresser $600 och $601, respektive
adress $400 på ett MC12-system.
Konstruera en subrutin "DipSwitchOr" som bildar logisk
ELLER av värdena som läses från strömbrytarna.
Subrutinen ska utformas så att avläsningen och indikering
görs en gång. Kontinuerlig funktion fås genom att
subrutinen, oupphörligt anropas från ett huvudprogram
"main".

a) Beskriv subrutinen " DipSwitchOr " i form av en flödesplan.
b) Implementera huvudprogrammet "main" och subrutinen "DipSwitchOr" i assemblerspråk.

Maskinnära programmering - exempelsamling 4

1.5 En 8-bitars strömbrytare, ”DIP_SWITCH” är ansluten till adress $600
och en displayenhet ”HEXDISPLAY” som visar en byte i form av två
hexadecimala siffror är ansluten till adress $400 i ett MC12
mikrodatorsystem.

Konstruera en subrutin DipHex som läser av strömbrytaren och
indikerar den minst signifikanta påslagna biten genom att skriva dess
position, räknat från höger, till displayenheten. Om exempelvis bitarna
2 och 4 utgör ettställda strömbrytare ska positionen för bit 2, (dvs. 3)
skrivas till displayenheten.
Om ingen strömbrytare är ettställd ska siffran 0 skrivas till displayen.
Speciellt gäller att endast symboler ska användas för absoluta adresser.

1.6 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till
adresser $600 och $601, respektive adress $400 och $401 i ett MC12-system.
Konstruera en subrutin "AddUnsigned8bitTo16" som adderar de två värdena som
läses från strömbrytarna (tolka som tal utan tecken) och därefter presenterar
resultatet som ett 16 bitars tal på displayindikatorerna.
Subrutinen ska utformas så att avläsningen och indikering görs en gång.
Kontinuerlig funktion fås genom att subrutinen, oupphörligt anropas från ett
huvudprogram "main".

a) Beskriv subrutinen " AddUnsigned8bitTo16" i form av en flödesplan.
b) Implementera huvudprogrammet "main" och subrutinen

"AddUnsigned8bitTo16" i assemblerspråk.

1.7 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till
adresser $600 och $601, respektive adress $400 och $401 i ett MC12-system.
Konstruera en subrutin "AddSigned8bitTo16" som adderar de två värdena som
läses från strömbrytarna (tolka som tal med tecken) och därefter presenterar
resultatet som ett 16 bitars tal på displayindikatorerna.
Subrutinen ska utformas så att avläsningen och indikering görs en gång.
Kontinuerlig funktion fås genom att subrutinen, oupphörligt anropas från ett
huvudprogram "main".

a) Beskriv subrutinen " AddSigned8bitTo16" i form av en flödesplan.
b) Implementera huvudprogrammet "main" och subrutinen "

AddSigned8bitTo16" i assemblerspråk.

Maskinnära programmering - exempelsamling 5

1.8 Två 8-bitars strömbrytare, ”DIP_SWITCH” är anslutna till adresserna
$600,$601 och två displayenheter ”HEXDISPLAY” som var och en visar en
byte i form av två hexadecimala siffror är anslutna till adresserna $400 och $401
i ett MC12 mikrodatorsystem.
Skriv en subrutin som läser de båda strömbrytarnas inställda värden,
multiplicerar dessa båda tal och skriver det 16 bitars resultatet till
displayenheterna.
Displayenheten på adress $400 ska ange den mest signifikanta byten av
resultatet.
Speciellt gäller att endast symboler ska användas för absoluta adresser.

1.9 En 8-bitars strömbrytare "DIP-SWITCH
INPUT" och en sju-sifferindikator "7-
SEGMENT DISPLAY" är anslutna till
adresserna $0600 respektive $0400 i ett
MC12 mikrodatorsystem.

Använd symbolen ML4_INPUT för
inporten ($0600) och symbolen
ML4_OUTPUT för utporten ($0400).

Skriv en subrutin "DisplayNBCD" som
kontinuerligt läser inporten (strömbrytarna) och skriver värden (NBCD-siffror) till utporten (7-
sifferindikatorn).

När bit 7 på inporten är ettställd skall sifferindikatorn släckas helt. När bit 7 på inporten är nollställd skall
sifferindikatorn tändas enligt följande beskrivning:

Bit 3-0 på inporten anger vad som skall visas på sifferindikatorn. Om indata är i intervallet [0,9] skall
motsvarande decimala siffra visas på sifferindikatorn. Om indata är i intervallet [A,F] skall ett 'E' (Error) visas
på sifferindikatorn. Segmentkoden för 'E' är $5D.
Bitarna 6-4 på inporten kan anta vilka värden som helst.
Du har tillgång till en tabell i minnet med segmentkoder (mönster för sifferindikatorn) enligt

SegCodes FCB $77,$22,$5B,$6B, etc.

Tabellen innehåller segmentkoder för siffrorna [0,9].
På adressen ”SegCodes” i minnet finns segmentkoden för 0,
på adressen ”SegCodes+1” i minnet finns segmentkoden för 1,
på adressen ”SegCodes+2” i minnet finns segmentkoden för 2,
etc

Maskinnära programmering - exempelsamling 6

1.10 En 8-bitars strömbrytare "DIP-SWITCH INPUT" och tre
sju-sifferindikatorer "7-SEGMENT DISPLAY" är
anslutna till adresserna $0600 respektive $0400,$401 och
$402 i ett MC12 mikrodatorsystem.

Skriv en subrutin "SumPQ" som
 hela tiden läser två NBCD-siffror P och Q från

strömbrytarna
 visar NBCD siffrorna P och Q på två olika

sifferindikatorer
 utför en additionen R=P+Q
 skriver summan R till den tredje sifferindikatorn.
Från inporten (8 bitar) läses två 4-bitars binära tal P och Q samtidigt. P hittas på [b7,b4] och Q hittas på [b3,b0].
Summan skall placeras i [b3,b0] för att omvandlas till segmentkod och skrivas till sifferindikatoren. Om summan
P+Q är större än nio skall “E” (ERROR) skrivas ut. Du får förutsätta att P≤9 och Q≤9.

Du har tillgång till en tabell med segmentkoder och följande definitioner:

Inport EQU $600 ; Adress för inport
UtportP EQU $400 ; Adress för utport 1
UtportQ EQU $401 ; Adress för utport 2
UtportR EQU $402 ; Adress för utport 3
Error EQU %01011101 ; Segmentkod för E (Error)
SegCode FCB %1110111,%0100010, etc ; Tabell med segmentkoder för [0,9]

1.11 Två 7-sifferindikatorer, ”7-SEGMENT DISPLAY” är anslutna till
adresserna $400,$401 och en 8 bitars strömbrytare ”DIP-SWITCH
INPUT” är ansluten till adress $600 i ett MC12 mikrodatorsystem.
Du skall skriva subrutinerna ”Read” och ”Display” till följande
program som om och om igen läser inporten (ett NBCD-tal [0,9910])
och skriver detta till de båda sifferindikatorererna.

 ORG $1000

main: JSR Read ; Läs NBCD-tal till register
A
 JSR Display ; Skriv register A på 2 sifferindikatorer
 JMP main
Följande definition är dessutom given.

SegCodes FCB $77,$22,$5B,$6B, etc. ; (segmentkoder för siffrorna [0,9]).

Subrutinen Display visar det NBCD-tal som finns lagrat i register A. Innehåller register A exempelvis 0101
1001 skall 5 visas på UtPort1 och 9 visas på UtPort2. (Segmentkoder är alltså givna med start på adress
”SegCodes”). Skriv subrutinen Display!

Subrutinen Read läser InPort. Tyvärr har inporten ett konstruktionsfel så bitarna är omkastade enligt följande
figur. (Bit b7 är ju normalt till vänster och b0 till höger)

Detta medför att när vi ställer in NBCD-talet 53 (0101 0011) på strömbrytarna så läses
1100 1010 från inporten (ty det spegelvänds).

Subrutinen måste därför
1. läsa inporten
2. spegelvända det inlästa
3. lämna utdata i i register A..

Skriv subrutinen Read!

b0 b2 b1 b3 b4 b6b5 b7

Maskinnära programmering - exempelsamling 7

2 Grundläggande programmering i ’C’
2.1 Ange talområdena för variablerna i följande deklarationer, (XCC12):

a) unsigned char uc;

b) signed char sc;

c) unsigned short us;

d) signed short ss;

e) unsigned int ui;

f) signed int si;

Ledning: Konsultera filen ”limits.h”

2.2 Ange talområdena för variablerna i följande deklarationer, (XCC12):
a) unsigned long int ul;

b) signed long int sl;

Ledning: Konsultera filen ”limits.h”

2.3 En ‘C’-variabel måste tillhöra en av lagringsklasserna auto, static och global.

Redogör för “synligheten” hos variabler deklarerade med respektive lagringsklass.

2.4 Ange de, av följande deklarationer, som är korrekta i ett ‘C’-program:
 int a;
 auto int aia;
 static int sia;
 global int gia;
 extern int eia;
 intern int iia;

void f(void)
{
 int b;
 auto int aib;
 static int sib;
 global int gib;
 extern int eib;
 intern int iib;
}

2.5 För att referera absoluta adresser, exempelvis portar, krävs att en konstant (den absoluta portadressen) förses
med lämpliga explicita typkonverteringar. Visa korrekta typkonverteringar (ANSI-C) i följande fall där
portadressen är 0x400:
a) 8-bitars port där portens innehåll betraktas som tal utan tecken.
b) 8-bitars port där portens innehåll betraktas som tal med tecken.
c) 16-bitars port där portens innehåll betraktas som tal utan tecken.
d) 16-bitars port där portens innehåll betraktas som tal med tecken.

2.6 För att referera absoluta adresser, exempelvis portar, krävs att en konstant (den absoluta portadressen) förses
med lämpliga explicita typkonverteringar. Visa korrekta typkonverteringarna, , i följande fall där portadressen
är 0x400. Använd C99 utvidgningen stdint.h för maximal portabilitet
a) 8-bitars port där portens innehåll betraktas som tal utan tecken.
b) 8-bitars port där portens innehåll betraktas som tal med tecken.
c) 16-bitars port där portens innehåll betraktas som tal utan tecken.
d) 16-bitars port där portens innehåll betraktas som tal med tecken.

2.7 Visa typdeklarationer för en funktion som tillåter att funktionen i form av en subrutin på en fast adress i minnet,
kan anropas direkt från ett C-program.
a) funktionen reentry har inga parametrar och inget returvärde, på adress 0xC00F.
b) funktionen outcha har en parameter av typen unsigned char, men inget returvärde, på adress 0xC006.
c) funktionen tstcha har inga parametrar men returvärde av typen unsigned char, på adress 0xC003.

Maskinnära programmering - exempelsamling 8

2.8 De rationella talen är exakta tal som anges på formen t/n där t och n (täljaren och nämnaren) är heltal.
a) Använd typedef och struct för att deklarera en typ rat_tal som beskriver ett rationellt tal.
b) Skriv sedan två funktioner add och mul. De skall båda få två parametrar av typen rat_tal.
Som resultat skall de ge ett nytt rationellt tal som är summan respektive produkten av de två parametrarna.

2.9 Skriv en egen version av standardfunktionen strlen.
a) Använd pekare.
b) Använd indexering.
c) Använd XCC12, kompilera de båda versionerna till assemblerkod och jämför resultaten.

2.10 Skriv en egen version av standardfunktionen strcpy.
a) Använd pekare.
b) Använd indexering.
c) Använd XCC12, kompilera de båda versionerna till assemblerkod och jämför resultaten.

2.11 Konstruera en funktion nollstalle som beräknar ett nollställe till matematiska funktioner. Funktionen
nollstalle har deklarationen:
double nollstalle(double (*f)(double),double a, double b, double eps);

Den första parametern, f, är en pekare till den matematiska funktion man vill söka ett nollställeför. De två
parametrarna a och b anger inom vilket intervall nollstället skall sökas.
Man söker alltså ett värde x i intervallet (a, b) sådant att f(x) = 0. Du får anta att den funktion som f pekar på är
monoton och att den har exakt ett nollställe inom det givna intervallet. Parametern eps anger vilket som är det
största fel som får finnas i resultatet.
I funktionen kan du ”ringa in”nollstället genom att flytta ändpunkterna a och b allt närmare varandra. Börja med
att undersöka om f(a) < 0 < f(b) eller f(b) < 0 < f(a). Om det är på det andra sättet så låt variablerna a och b byta
värden med varandra. Upprepa sedan följande tills |a-b| ≤ 0. Räkna ut mittpunkten m mellan a och b och
beräkna värdet av f(m). Om f(m) < 0 så sätt a till m sätt annars b till m.

2.12 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress 0x400 i ett
MC12 mikrodatorsystem.

a) Skriv en funktion
 void blink(void)
som får samtliga dioder att blinka genom att kontinuerligt tända och släcka dom.
Kontrollera funktionen genom att stega igenom den satsvis.

b) Utforma, som en ny funktion
 void blinkdelay(void)
en fördröjning så att dioderna blinkar även då programmet exekveras normalt.

2.13 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress 0x400 i ett
MC12 mikrodatorsystem.

Skriv en funktion
 void rljush(void)
som får dioderna att bete sig som ett "rinnande ljus" där dioderna tänds upp en och
en från vänster till höger. Kontrollera funktionen genom att stega igenom den
satsvis. Använd funktionen void blinkdelay(void), så att man tydligt
kan se det rinnande ljuset även då programmet exekveras normalt.

Maskinnära programmering - exempelsamling 9

2.14 Två ramper med ljusdioder, enligt figuren till höger, är anslutna till adress

0x400 och 0x401 i ett MC12 mikrodatorsystem.
Du ska konstruera en funktion
 void rljush16(void)
som får dioderna att bete sig som ett kontinuerligt "rinnande ljus" där
dioderna tänds upp en och en från vänster till höger. Efter det att bit 0 hos
diodrampen på adress 0x400 släckts ska bit 7 hos diodrampen på adress
0x401 tändas. Då dioden för bit 0 på adress 0x401 släckts, ska det
rinnande ljuset börja om från bit 7 på adress 0x400, osv. Använd funktionen void blinkdelay(void),
så att man tydligt kan se det rinnande ljuset även då programmet exekveras normalt.

2.15 Två strömbrytare och en ljusdiodramp, enligt figuren till
höger, är anslutna till adresser 0x600 och 0x601,
respektive adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion
 void DipSwitchOr(void)
som bildar logisk ELLER av värdena som läses från
strömbrytarna.

2.16 En 8-bitars strömbrytare är ansluten till adress 0x600 och en
displayenhet som visar en byte i form av två hexadecimala siffror är
ansluten till adress 0x400 i ett MC12 mikrodatorsystem.

Konstruera en funktion
 void ff1(void)
som läser av strömbrytaren och indikerar den minst signifikanta
påslagna biten genom att skriva dess position, räknat från höger, till
displayenheten. Om exempelvis bitarna 2 och 4 utgör ettställda
strömbrytare ska positionen för bit 2, (dvs. 3) skrivas till displayenheten.
Om ingen strömbrytare är ettställd ska siffran 0 skrivas till displayen.

2.17 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till
adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12
mikrodatorsystem.

Konstruera en funktion
 void AddUnsigned8bitTo16(void)
som adderar de två värdena som läses från strömbrytarna (tolka som tal utan
tecken) och därefter presenterar resultatet som ett 16 bitars tal på
displayindikatorerna.

Maskinnära programmering - exempelsamling 10

2.18 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till

adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12
mikrodatorsystem.

Konstruera en funktion
 void AddSigned8bitTo16(void)
som adderar de två värdena som läses från strömbrytarna (tolka som tal med tecken)
och därefter presenterar resultatet som ett 16 bitars tal på displayindikatorerna.

2.19 Två 8-bitars strömbrytare, är anslutna till adresserna 0x600,0x601 och två
displayenheter som var och en visar en byte i form av två hexadecimala siffror är
anslutna till adresserna 0x400 och 0x401 i ett MC12 mikrodatorsystem.
Konstruera en funktion
 void DipHex(void)
som läser de båda strömbrytarnas inställda värden, multiplicerar dessa båda tal och
skriver det 16 bitars resultatet till displayenheterna.
Displayenheten på adress 0x400 ska ange den mest signifikanta byten av resultatet.

2.20 Två 8-bitars strömbrytare, är anslutna till adresserna 0x600,0x601 och två
displayenheter som var och en visar en byte i form av två hexadecimala siffror är
anslutna till adresserna 0x400 och 0x401 i ett MC12 mikrodatorsystem.
Konstruera en funktion
 void DivModHex(void)
som läser de båda strömbrytarnas inställda värden.
Om värdet på adress 0x601 är noll ska 0xFF visas på båda displayenheter. Om
värdet på adress 0x601 är skilt från noll ska resultatet av heltalsdivisionen mellan
värden på adress 0x600 och 0x601 visas på displayindikator med adress 0x400 och
resultatet av restdivisionen av samma tal visas på indikator med adress 0x401.

2.21 I denna uppgift ska du bland annat demonstrera hur absolutadressering utförs i C. Visa speciellt hur
preprocessordirektiv och typdeklarationer används för att skapa begriplig programkod.

Två strömbrytare och en ljusdiodramp, enligt figuren
till höger, är anslutna till adresser 0x600 och 0x601,
respektive adress 0x400 i ett MC12
mikrodatorsystem.

Konstruera en funktion
 void DipSwitchEor(void)
som kontinuerligt bildar logiskt EXKLUSIVT
ELLER av värdena som läses från strömbrytarna och
därefter skriver detta värde till ljusdiodrampen.

Maskinnära programmering - exempelsamling 12

2.24 Följande gränssnitt ansluts till ett MC12 mikrodatorsystem. (Jämför med ML5/ML23 i kurslitteraturen).

Konstruera en funktion
unsigned char keyb(void)
Denna skall som resultat ge numret på den tangent som trycktes ner. Numreringen framgår av figuren ovan.
 Funktionen skall först vänta tills ingen tangent är nedtryckt. Därefter skall den aktivera en rad i taget och

avläsa kolumnernas utsignaler ända tills någon tangent tryckts ner.
 Porten med anslutningar till tangentbordets rader finns på adressen 0x0C00, porten med kolumnernas

anslutningar finns på adress 0x0C01.
 Då en nedtryck tangent konstaterats ska funktionen vänta 200 ms och därefter göra en ny avläsning. Om

fortfarande samma tangent är nedtryckt skall funktionen returnera tangentens nummer.
 Du får förutsätta att det finns en färdig C-funktion:

 void hold(time_type ms)
Denna funktion ger en fördröjning. Den har en parameter som anger hur lång fördröjningen skall vara.
Parameterns typ är deklarerad enligt:
 typedef unsigned long int time_type;
Enheten är millisekunder.

Där inte annat sägs ska du fortsättningsvis förutsätta att följande konventioner gäller vid
översättning av kod från ’C’ till assemblerspråk.

Kompilatorkonvention XCC12:
 Parametrar överförs till en funktion via stacken.
 Då parametrarna placeras på stacken bearbetas parameterlistan från höger till vänster.
 Utrymme för lokala variabler allokeras på stacken. Variablerna behandlas i den ordning de påträffas i koden.
 Prolog kallas den kod som reserverar utrymme för lokala variabler.
 Epilog kallas den kod som återställer (återlämnar) utrymme för lokala variabler.
 Den del av stacken som används för parametrar och lokala variabler kallas aktiveringspost.

Beroende på datatyp används för returparameter HC12’s register enligt följande tabell:

Storlek Benämning C-typ Register

8 bitar byte char B

16 bitar word short int
och
pekartyp

D

32 bitar long long int Y/D

Låt tangenterna representera
följande:

(A-F är hexadecimala siffror)

Maskinnära programmering - exempelsamling 13

2.25 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet):

char a,b,c;
char min(char a, char b);

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12.

b) Visa hur följande sats översätts till assemblerkod för HCS12:
 c = min(a , b);

2.26 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet):
char *a,*b,*c;
char *min(char *a, char *b);

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12.

b) Visa hur följande sats översätts till assemblerkod för HCS12:
 c = min(a , b);

2.27 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet):
int a,b,c;
int min(int a, int b);

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12.

b) Visa hur följande sats översätts till assemblerkod för HCS12:
 c = min(a , b);

2.28 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet):

char *cp;
char *identify(char **cp);

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12.

b) Visa hur följande sats översätts till assemblerkod för HCS12:
 cp = identify(&cp);

2.29 Inledningen (parameterlistan och lokala variabler) för en funktion ser ut på följande sätt:
void function(int a)
{
 int b;
.....

a) Visa hur utrymme för lokala variabler reserveras i funktionen (prolog).
b) Visa funktionens aktiveringspost, ange speciellt offseter för parametrar och lokala variabler.

2.30 Inledningen (parameterlistan och lokala variabler) för en funktion ser ut på följande sätt:
void function(char *b, char a)
{
 char *c, *d;
.....

a) Visa hur utrymme för lokala variabler reserveras i funktionen (prolog).
b) Visa funktionens aktiveringspost, ange speciellt offseter för parametrar och lokala variabler.

2.31 Inledningen (parameterlistan och lokala variabler) för en funktion ser ut på följande sätt:
void function(long c, char b, int a)
{
 char d;
 long e;

.....

a) Visa hur utrymme för lokala variabler reserveras i funktionen (prolog).
b) Visa funktionens aktiveringspost, ange speciellt offseter för parametrar och lokala variabler.

Maskinnära programmering - exempelsamling 14

2.32 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i

assemblerspråk för HC12.

void f1(unsigned char c)
{
 *(unsigned char *) 0x600 = c ;
 delay();
 c = c >> 1;
 *(unsigned char *) 0x600 = c ;
}

2.33 Följande funktion finns given i “C”. Implementera motsvarande funktion i assemblerspråk för HC12.

#define DATA *(char *) 0x700
#define STATUS *(char *) 0x701
void printerprint(char *s)
{
 while(*s)
 {
 while(STATUS & 1)
 {}
 DATA = *s;
 s++;
 }
}

2.34 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i

assemblerspråk för HC12.

void shortdelay(void)
{

 volatile unsigned char c;
 for(c = 0; c < 0x200 ; c++);

}
2.35 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i

assemblerspråk för HC12.

void shortdelay(void)
{

 unsigned char c;
 for(c = 0; c < 0x200 ; c++);

}

2.36 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i
assemblerspråk för HC12.

void printchar(char c)
{
 while(*((volatile unsigned char *) 0x600))
 ;
 *((unsigned char *) 0x400) = c;
}

2.37 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i

assemblerspråk för HC12.

void printmul(void)
{

 unsigned short int s;
 s = (unsigned short) (*((unsigned char *) 0x600));
 s = s * (unsigned short) (*((unsigned char *) 0x601));
 *((unsigned short int *) 0x400) = s;

}

Maskinnära programmering - exempelsamling 15

2.38 Vissa instruktionssekvenser kan inte åstadkommas med hjälp av giltiga standard-C satser. Exempel på detta är

att påverka enskilda bitar i processorns statusregister (CCR).

a) Implementera en assembler subrutin som kan anropas från ett C-program.
 unsigned char getCCR(void);

 returvärdet är innehållet i CCR.

b) Implementera en assembler subrutin som kan anropas från ett C-program.
 void setCCR(unsigned char value);

 parameter value anger nya värden för bitarna i CCR.

2.39 Avbrottsrutiner kan inte implementeras i standard-C men många kompilatorer tillhandahåller möjligheten att
lägga in assemblerkod "inline" i C-kod. Följande kod visar sig exempelvis fungera under XCC12:

static void shortdelay(void)
{

 unsigned char c;
 for(c = 0; c < 0x200 ; c++);

}
void take_interrupt(void)
{
 shortdelay();
 _asm(" RTI");
}

Uppmuntrad av resultatet provar vi nu i stället följande, som INTE fungerar som avsett:
void take_interrupt(void)
{

 unsigned char c;
 for(c = 0; c < 0x200 ; c++);

 _asm(" RTI");
}
Förklara skillnaden mellan de olika lösningarna.

Maskinnära programmering - exempelsamling 16

3 Undantagshantering
3.1 Besvara kortfattat följande frågor rörande CPU12.

a) Redogör för vad som händer vid RESET och varför detta sker.

b) Förklara kortfattat vad som händer vid ett IRQ avbrott om I-flaggan i CC är nollställd.

c) Vid IRQ-avbrott sätts I-flaggan automatiskt till 1. Varför sker detta?

d) Visa med en instruktionssekvens hur man i en IRQ-avbrottsrutin kan förhindra att processorn utför nya
avbrott efter återhopp till det avbrutna programmet.

e) Översätt assemblerinstruktionerna CLI och SEI till maskinspråk och visa hur maskinkoden placeras
iminnet.

f) Assemblerinstruktionerna CLI och SEI kan skrivas på ett alternativt sätt. Visa detta sätt.

g) Vilken är skillnaden mellan IRQ- och XIRQ-avbrott? Hur påverkar skillnaden användningen av dem?

h) Vid XIRQ-avbrott sätts både X- och I-flaggan automatiskt till 1. Varför sker detta?

i) XIRQ-avbrottet är ”icke maskbart”. Vad innebär detta för möjligheterna att påverka maskbiten X i
CCregistret?

j) Redogör för vad som händer då en logiknolla läggs på ingången XIRQ’ och varför detta sker. Hur påverkas
stacken?

k) Vilket villkor måste vara uppfyllt för att ett XIRQ-avbrott skall utföras?

l) Vad händer med flaggor och stack när instruktionen SWI utförs.

m) Förklara hur instruktionen SWI fungerar. Ge ett exempel på hur den kan användas.

3.2 Två "tryckknappsenheter" enligt figuren skall anslutas till

en dator med processorn CPU12. Då en knapp aktiveras
genereras en positiv puls på motsvarande utgång. Varje
tryckning på ÖKAknappen skall öka en 8-bitars variabel på
minnesadressen KNAPP med ett medan varje tryckning på
NOLLA-knappen skall nollställa samma variabel. Om innehållet på adressen KNAPP är 255 och ÖKA-knappen
trycks ned skall innehållet inte ökas.
De två tryckknapparna skall anslutas så att IRQ-avbrott genereras då någon av dem aktiveras. Inga andra
avbrottskällor finns i systemet.

a) Visa hur tryckknappsenheterna kan anslutas till datorn. En oanvänd inport finns på adressen $800. Rita
nödvändig logik! D-vippor, NAND- och NOT-grindar får användas.

b) Skriv en avbrottsrutin som fungerar enligt beskrivningen ovan. Assemblerspråk för processorn CPU12 skall
användas.

3.3 Tre "tryckknappsenheter" enligt figuren nedan skall anslutas till en dator med processorn CPU12. Då en

knapp aktiveras genereras en positiv puls på motsvarande utgång. Varje tryckning på ÖKA- eller MINSKA-
knappen skall öka resp. minska en 8-bitars variabel på minnesadressen KNAPP med ett medan varje tryckning
på MITT-knappen skall ge samma variabel värdet 128. Innehållet på adressen KNAPP skall dock inte tillåtas att
”varva”, dvs att ökas från 255 eller minskas från 0.

De tre tryckknapparna skall anslutas så att IRQ-avbrott genereras då någon av dem aktiveras. Inga andra
avbrottskällor finns i systemet.

a) Visa hur tryckknappsenheterna kan anslutas till datorn. En oanvänd inport finns på adressen $800. Rita
nödvändig logik! D-vippor, NAND- och NOT-grindar får användas.

b) Skriv en avbrottsrutin som fungerar enligt beskrivningen ovan. Assemblerspråk för processornCPU12 skall
användas.

Maskinnära programmering - exempelsamling 17

3.4 En pulsgenerator är ansluten via en avbrottsvippa till IRQ-ingången på ett MC12-system. Pulsgeneratorn har
en frekvens på 100 Hz. För att nollställa avbrottsvippan krävs en skrivning på adressen $0DC2. Pulsgeneratorn
är den enda anslutna avbrottskällan till IRQ-ingången på processorn.

a) Skriv en avbrottsrutin (IRQCNT) som läser en 8-bitars inport (IRQIN, adress $0600) och adderar det inlästa
värdet till en 32-bitars variabel (IRQVAR). Både IRQIN och IRQVAR är variabler på
tvåkomplementsform.

b) Skriv en initieringsrutin IRQINIT som initierar avbrottssystemet och som gör att IRQCNT anropas vid
avbrott och att IRQVAR nollställs från början.

3.5 Ett konstmuseum övervakas med ett HCS12-baserat mikrodatorsystem. I systemet finns ett antal sensorer

utplacerade exempelvis på tavlor samt i dörrar och fönster. Vissa dörrar har också datorstyrda lås. Under
öppettiderna ingår såväl kassan som två utplacerade vakter i övervakningen. I kassan och hos vakterna finns
larmknappar som är anslutna till HCS12's avbrottssystem enligt figuren nedan.

a) Vid uppstart med RESET-begäran skall systemet initieras omedelbart. Därför leder reset-vektorn till
adressen INIT, som är startadressen för initieringsavsnittet. Såväl resetvektor som avbrottsvektor är redan
lagrade i ROM.

Tänk noga igenom vad som behöver göras i INIT. Du har bl a god hjälp av figuren.
Skriv programavsnittet INIT i HCS12-assemblerspråk, som initierar systemet så att det kan hantera dels
övervakningen, dels avbrott på IRQ-ingången. INIT avslutas med hopp till rutinen CONTROL.

b) Skriv en avbrottsrutin, IRQALARM, som skall avgöra om en avbrottsbegäran kommer från kassan, från
vaktställe eller från båda.

Om avbrottsbegäran enbart kommer från kassan, skall subrutinen ENTRANCE anropas. Om avbrottsbegäran
enbart kommer från en vakt, skall subrutinen GUARD anropas. Om avbrottsbegäran kommer från både kassan
och en vakt, skall subrutinen CHAOS anropas. Dessa subrutiner finns redan och vidtar de åtgärder som skall
göras i respektive fall, exempelvis i form av dörrlåsning och vidarebefordran av larm.
Tänk noga igenom vilka åtgärder som behöver göras i samband med att en avbrotts-begäran betjänas. Din
avbrottsrutin skall hantera det som har med avbrottet att göra.

Q

Q’

1D

C1

1

R CS read $0802 1

Till bit 0,
inport $0800

Till bit 1,
inport $0800

IRQ
HCS12

Larmknapp
i kassan

Q

Q’

1D

C1

1

R

Larmknapp
vakt 1

Q

Q’

1D

C1

1

R

CS read $0801

Larmknapp
vakt 2

1

Q

Q’

1D

C1

1

RCS write $0DC2 IRQ

HCS12100 Hz

Maskinnära programmering - exempelsamling 18

3.6 Figuren visar hur en skrivare är kopplad till en HCS12-baserad mikrodator.

När skrivaren är beredd att ta emot ett ASCII-tecken från datorn signalerar den det genom att låta signalen
Ready gå från noll till ett. Ett tecken kan då skrivas ut på skrivaren genom att datorn matar ut motsvarande
ASCII-tecken på utporten. Skrivaren känner av att det kommer en negativ puls på ledningen DAV' och
nollställer omedelbart signalen Ready samt börjar skriva ut tecknet.

a) Ange på vilken hexdecimal adress, som ASCII-tecknen matas ut till skrivaren.

b) Skriv en subrutin, INISTR, som initierar avbrottsstyrd utmatning av en textsträng till skrivaren. Den skall se
till att IRQ-avbrott accepteras och att hopp sker till avbrottsrutinen på adressen PRIRQ.
Vid anrop av INISTR skall en pekare (16 bitar) till det första tecknet i textsträngen finnas i X-registret.
INISTR skall placera pekaren på adressen STRPNT (och STRPNT+1) i minnet samt nollställa
avbrottsvippan.
Eftersom man endast kan nollställa avbrottsvippan genom att mata ut ett dataord till skrivaren är det
lämpligt att mata ut dataordet $00 som inte ger någon utskrift. IRQ-vektorn på adressen $3FF2 är placerad i
ett läs- och skrivbart minne (RWM).

c) Skrivaren är enda avbrottskälla i systemet. Skriv en avbrottsrutin, PRIRQ, som läser ett ASCII-tecken från
strängen i minnet och matar ut det till skrivaren.

Adressen, från vilken ASCII-tecknet skall hämtas, är lagrad i minnet i en s k pekare STRPNT (16 bitar). PRIRQ
skall också se till att nästa tecken i strängen kommer att matas ut vid nästa avbrott. Textsträngen som skall
matas ut avslutas med dataordet $00. När avbrottsrutinen läser dataordet $00 är strängen färdigutmatad och nya
avbrott skall då förhindras genom att avbrottssystemet stängs av.

Data

Skrivare

Dator

I
n
p
o
r

t
 p
o
r
t

Dataport

CS Write Data
DAV ()

Ready ()

1D

C1

R

Q

Q'

1
HCS
12

IRQ

Adress X

()

Adr X

A15
A14
A13
A12
A11

A0
R/W
VMA

&

U

Maskinnära programmering - exempelsamling 19

3.7 Ett MC12-system är bestyckat med en pulsgenerator som genererar avbrott varje millisekund och en

klockmodul som kan visa tid.

Du skall konstruera ett system som räknar ner till ”12-slaget” på nyårsafton. För detta krävs en rutin (IRQINIT)
som initierar systemet och en avbrottsrutin (IRQ), som anropas varje millisekund, och som minskar en klock-
variabel. Klockvariabeln skrivs till en display av huvudprogrammet. Du behöver inte befatta dig med
utskriftsrutinen.
När programmet startas skall displayen visa (börja på) 23:59:59. Vi skall räkna ner det sista dygnet, alltså tills
displayen visar 00:00:00.
Avbrott kvitteras genom en skrivning på den symboliska adressen IRQRES (se även figur ovan).
Avbrottsrutinen ska uppdatera den symboliska klockvariabeln CLOCK, deklarerad enligt följande:

CLOCK RMB 3 ; Variabel innehållande klockan tt:mm:ss

där tt är timmar (00-23), mm är minuter (00-59) och ss sekunder (00-59). Alla siffror lagras som NBCD-tal.
När klockan räknat ner till noll skall den stanna och huvudprogrammet fortsätta som vanligt.
Initieringsrutinen (IRQINIT): ska initiera nödvändiga variabler, dvs. ställa initial tid och i övrigt förbereda
systemet för att ta emot och behandla avbrott. Det finns inga andra avbrottskällor i systemet.
Du får själv skapa ytterligare hjälpvariabler för klockavbrotten efter behov. Systemets avbrottsvektor IRQ finns
is RWM på adress $3FF2.

a) Skriv initieringsrutinen IRQINIT

b) Skriv avbrottsrutinen IRQ

3.8 Kalle student konstruerar yttre enheter till ett MC12-system. Konstruktionen visar sig innehålla vissa brister.
Detta diskuteras i deluppgifter b,c och d nedan). Läs därför igenom hela uppgiften innan du börjar lösa den.
Systemet skall användas för att betjäna fyra yttre enheter numrerade 0 t o m 3. Oberoende av varandra kan
enheterna begära avbrott . Begäran om avbrott görs genom att en till enheten hörande statusflagga ettställs.
Enheternas statusflaggor, som också numreras 0 t o m 3, har i ordningsföljd samlats i bitarna 0 - 3 av ett
statusregister på adress $700. Se figur. Oberoende av vilken statusflagga som ettställs så skickas en
avbrottssignal (IRQ) till processorn. Vid en skrivning på adress $700 nollställs statusflaggorna.

Enheternas servicerutiner finns tillgängliga och har lagrats som subrutiner med namnen DSR0 – DSR3.

a) Skriv en avbrottshanterare som undersöker vilken enhet som begärt avbrott och anropar tillhörande
avbrottsrutin.

b) Det visar sig att Kalles konstruktion inte upptäcker alla avbrott i vissa sammanhang. När inträffar detta?

c) Vad kan göras i mjukvara för att minska risken för detta?

d) Vad kan göras i hårdvara för att eliminera problemet?

7-4:

b0=1: Enhet 0 har begärt
b1=1: Enhet 1 har begärt

b2=1: Enhet 2 har begärt
b3=1: Enhet 3 har begärt

Q

Q’

1D

C1

1

R CS write IRQRES

HCS11000 Hz

IRQ

Maskinnära programmering - exempelsamling 20

3.9 Antag att en dator används för enkel tidtagning vid en idrottstävling. Till datorn finns kopplat två sensorer

samt en klockkrets. (Dessutom finns en display, men den behöver inte programmeras i denna uppgift.) Den
första sensorn känner när startskottet går och den andra när den tävlande passerar mållinjen. De två sensorerna
är kopplade till samma 16-bitars styrregister. Detta ligger på adressen 1234 (hex) och adressen till dess
avbrottsvektor är FF80. Styrregistret aktiveras och inaktiveras genom att bit nr 0 i det sätts till 1 resp. 0. Om
registret är inaktiverat påverkas det inte av inkommande signaler, men om det är aktiverat gäller följande: När
en signal kommer från någon av de två sensorerna sätts bit nr 7 i registret till 1. Om man har satt bit nr 6 i
registret till 1 genereras då även en avbrottssignal till processorn. Styrregistret skall återställas efter ett avbrott
genom att man sätter bit 7 till 0.

Klockkretsen är kopplad till ett annat 16-bitars styrregister, vilket ligger på adressen 1230 (hex). Adressen till
dess avbrottsvektor är FF70. Detta styrregister har samma konfiguration och fungerar på samma sätt som
styrregistret för sensorerna. Den enda skillnaden är de inkommande signalerna kommer från klockkretsen
istället för sensorerna. Klockkretsen genererar 500 signaler per sekund.

Uppgiften är att skriva ett C-program som gör en tidsmätning. När programmet startar skall det visa tiden 0 på
en display och vänta tills startskottet går. När detta sker skall klockan aktiveras och tiden skall visas fortlöpande
på displayen. Displayen skall visa tiden uttryckt i hundradels sekunder och den visade tiden skall uppdateras
hundra gånger per sekund. När den tävlande passerar mållinjen skall klockan stoppas och sluttiden visas
konstant på displayen. Programmet behöver bara klara en tidsmätning. (Vill man göra en ny får man starta om
programmet genom att trycka på reset-knappen.)

Du får förutsätta att det finns en färdigskriven C-funktion med namnet display. Denna har en parameter av
typen long int och när den anropas visar den parameterns värde på en display.

Du får också förutsätta att följande två färdigskrivna assemblerrutiner finns:

 segment text
 define _clocktrap
 define _sensortrap
_clocktrap: JSR _clockinter
 RTI
_ sensortrap: JSR _sensorinter
 RTI

Det finns också en färdigskriven assemblerrutin som anropar funktionen main när processorn startar.
Skriv resten av programmet (i C).

Maskinnära programmering - exempelsamling 21

4 Programmering av periferikretsar
4.1 Parallellporten Port P, i ett HCS12-system kan programmeras så att varje bit kan utgöra antingen en insignal,

eller en utsignal. Porten har två olika register, som specificeras enligt följande:

Parallel port P (PORTP)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$700
R 1=OUT

0=IN
1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

DDR Data Direction Register W

$701
R 0 0 0 0 0 0 0 0

DATA Data Register W 1 1 1 1 1 1 1 1

I figuren anges registrens innehåll efter “RESET”.

 DDR: 1 anger att positionen är en utsignal, 0 anger att positionen är en insignal. Bitarna kan programmeras oberoende
av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan åstadkommas. Registret är både skrivbart
och läsbart i sin helhet.

 DATA: Består i själva verket av två olika register (R,W):

o R: innehåller insignaler för de bitar som programmerats som insignaler. Endast 0 får skrivas, till en bit som
är programmerad som insignal.

o W: används då biten är programmerad som en utsignal. Då en bit som är programmerad som utsignal
läses kommer detta alltid att resultera i värdet 1, oavsett vilket värde som tidigare skrivits till databiten.

a) Visa en lämplig deklaration av porten med användning av en struct. Visa också en funktion, void

portPinit(void) som initierar port P så att bitarna b7-b5 används som en 3-bitars inport och bitarna b4-
b0 används som en 5-bitars utport.

b) Visa en funktion, void outPortP(unsigned char c) som matar ut bitarna b4-b0, av c, till port P.

c) Visa en funktion, unsigned char inPortP(void) som returnerar bitarna b7-b5 hos port P som en
unsigned char, dvs. värden i intervallet 0 t.o.m. 7.

Maskinnära programmering - exempelsamling 22

4.2 Parallellporten Port P, i ett HCS12-system kan programmeras så att varje bit kan utgöra antingen en insignal,
eller en utsignal. Portarna som används för insignaler kan dessutom konfigureras så att ett avbrott genereras då
en yttre enhet ändrat värdet hos insignalen.

Porten har tre olika register, som specificeras enligt följande:

Parallel port P (PORTP)
Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$700
R 1=OUT

0=IN
1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

DDR Data Direction Register W

$701
R IF IF IF IF IF IF IF IF

ICIE Input Change Interrupt W IEA IEA IEA IEA IEA IEA IEA IEA

$702
R 0 0 0 0 0 0 0 0

DATA Data Register W 1 1 1 1 1 1 1 1

 DDR: 1 anger att positionen är en utsignal, 0 anger att positionen är en insignal. Bitarna kan programmeras
oberoende av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan åstadkommas. Registret är både
skrivbart och läsbart i sin helhet.

 ICIE: Består av olika delar (R=IF/W=IEA).

o IEA (Interrupt Enable/Acknowledge). Biten är 0 efter RESET. Då 1 (Interrupt Enable) skrivs till biten aktiveras
avbrottsgenerering vid ändring av motsvarande bit i DATA-registret om denna programmerats som insignal.
Om motsvarande bit i DDR i stället programmerats som utsignal, genereras inga avbrott. IEA-biten har då
ingen funktion. Då 1 skrivs till en bit som tidigare satts till 1, fungerar detta i stället som en Interrupt
Acknowledge-funktion, dvs. IF (Interrupt Flag) nollställs. För att helt återställa avbrottsmekanismen för denna
bit i DATA-registret skrivs 0 till IEA.

o IF (Interrupt Flag) Biten är 0 efter RESET. Då motsvarande bit i DDR är programmerad som en insignal och
motsvarande IEA är 1, sätts IF till 1 och ett avbrott (IRQ) generereras, avbrottsvektor FFF2.

 DATA: Består i själva verket av två olika register (R,W):

o R: innehåller insignaler för de bitar som programmerats som insignaler. Endast 0 får skrivas, till en bit som
är programmerad som insignal.

o W: används då biten är programmerad som en utsignal. Då en bit som är programmerad som utsignal
läses kommer detta alltid att resultera i värdet 1, oavsett vilket värde som tidigare skrivits till databiten.

a) Visa en lämplig deklaration av porten med användning av en struct. Visa också en funktion, void

portPinit(void) som initierar port P, på adress 0x700 i minnet, så att bitarna b7-b4 används som en 4-
bitars inport och bitarna b3-b0 används som en 4-bitars utport. Då någon av inportens bitar ändras ska
avbrott genereras.

b) Visa en funktion, void outPortP(unsigned char c) som matar ut bitarna b3-b0, av c, till port P.

c) Visa hur du implementerar en avbrottsfunktion, void irqPortP(void) som kvitterar ett avbrott
från någon av portens ingångar.

d) Visa nödvändiga programdelar i assemblerspråk, dvs. hur avbrottsrutinen definieras, avbrottsvektorn
initieras (antag att FFF2 är läs- och skrivbart minne) och hur processorn förbereds för att acceptera
avbrotten i ett huvudprogram. Använd endast standard-C konstruktioner och/eller assemblerspråk för
HCS12.

Maskinnära programmering - exempelsamling 23

4.3 Följande figur beskriver de register som används för att styra PLL-kretsen hos HCS12:

Clock Reset Generator (CRG)

Address 7 6 5 4 3 2 1 0 Mnemonic Namn

$34
R 0 0

SYN5 SYN4 SYN3 SYN2 SYN1 SYN0 SYNR Synthesizer Register W

$35
R 0 0 0 0

REFDV3 REFDV2 REFDV1 REFDV0 REFDV Reference Divide
Register W

$37
R

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM

CRGFLG Flags Register W

$39
R
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI CLKSEL Clock Select Register W

Vårt system har en 10 MHz oscillator. PLL-kretsen ska programmeras för att generera busfrekvensen 25 MHz.

a) Visa en subrutin PLLINIT i assemblerspråk, alla adresser och bitar ska definieras med sina symbolnamn
enligt figuren.

Följande figur ger en översikt av hela CRG-modulen.

Adress Mnemonic Namn
$34 SYNR Synthesizer Register
$35 REFDV Reference Divide Register
$36 CTFLG *)Test Flags Register
$37 CRGFLG Flags Register
$38 CRGINT Interrupt Enable Register
$39 CLKSEL Clock Select Register
$3A PLLCTL PLL Control Register
$3B RTICTL RTI Control Register
$3C COPCTL COP Control Register
$3D FORBYP *)Force and Bypass Test Register
$3E CTCTL *)Test Control Register
$3F ARMCOP COP Arm/Timer Reset

b) Visa en typdeklaration i för hela CRG-modulen, i form av en ’C’-struct, enligt följande:

typedef struct sCRG{
 ...
 ...
}CRG, *PCRG ;

c) Använd typdeklarationen i b) och visa en C-funktion void InitPLL(void). Definiera och använd

lämpliga symboliska namn för alla konstanter.

d) Komplettera typdeklarationen från b) för de register som används av PLL-kretsen så att bitar och grupper av

bitar deklareras som bitfält.

e) Använd typdeklarationen i d) och visa en C-funktion void InitPLL2(void). Definiera och använd
lämpliga symboliska namn för alla konstanter.

Maskinnära programmering - exempelsamling 24

4.4 Följande figur beskriver register som används för den enkla realtidsklockan hos HCS12 (se även figuren med
översikt av CRG-modulen i uppgift 4.1):

Clock Reset Generator (CRG)
Offset 7 6 5 4 3 2 1 0 Mnemonic Namn

$37
R

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM

CRGFLG Flags Register W

$38
R

RTIE
0 0

LOCKIE
0 0

SCMIE
0

CRGINT Interrupt Enable
Register W

$3B
R 0

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0 RTICTL RTI Control Register W

RTR
[3:0]

RTR[6:4]

 000
(OFF)

001 010 011 100 101 110 111

0000 OFF 210 211 212 213 214 215 216
0001 OFF 2x210 2x211 2x212 2x213 2x214 2x215 2x216
0010 OFF 3x210 3x211 3x212 3x213 3x214 3x215 3x216
0011 OFF 4x210 4x211 4x212 4x213 4x214 4x215 4x216
0100 OFF 5x210 5x211 5x212 5x213 5x214 5x215 5x216
0101 OFF 6x210 6x211 6x212 6x213 6x214 6x215 6x216
0110 OFF 7x210 7x211 7x212 7x213 7x214 7x215 7x216
0111 OFF 8x210 8x211 8x212 8x213 8x214 8x215 8x216
1000 OFF 9x210 9x211 9x212 9x213 9x214 9x215 9x216
1001 OFF 10x210 10x211 10x212 10x213 10x214 10x215 10x216
1010 OFF 11x210 11x211 11x212 11x213 11x214 11x215 11x216
1011 OFF 12x210 12x211 12x212 12x213 12x214 12x215 12x216
1100 OFF 13x210 13x211 13x212 13x213 13x214 13x215 13x216
1101 OFF 14x210 14x211 14x212 14x213 14x214 14x215 14x216
1110 OFF 15x210 15x211 15x212 15x213 15x214 15x215 15x216
1111 OFF 16x210 16x211 16x212 16x213 16x214 16x215 16x216

Vårt system har en 10 MHz oscillator. Realtidsklockan ska programmeras för att generera periodiska avbrott
med c:a 10ms intervall. Ledning: 3×215 pulser/period ger tillräcklig noggrannhet. Programpaketet ska bestå av
delar implementerade såväl i assemblerspråk som i ’C’.

En ”servicerutin” void AtRTIrq(void) , i ’C’, ska anropas från en avbrottsrutin RTIRQ.

Initieringsrutiner för klockfunktionen ska finnas både i assemblerspråk och ’C’.

a) Implementera en subrutin RTINIT i assemblerspråk, alla adresser och bitar ska definieras med sina
symbolnamn enligt figuren. Använd ledningen ovan för tidbasen.

b) Vad blir den verkliga periodtiden?
c) Implementera avbrottsrutinen RTIRQ som ska:

1. Kvittera avbrottet,
2. utföra AtRTIrq.

d) Implementera en C-funktion void RTInit(void). Definiera och använd lämpliga symboliska namn för
alla konstanter. Använd typdeklaration från uppgift 4.1.

C-funktionen AtRTIrq ska implementera en realtidsklocka, som underhåller en global variabel RealTime
deklarerad enligt följande:

REAL_TIME_TYPE RealTime;
där:

typedef struct tRealTime {
 int t_irq;
 int t_sec;
 int t_min;
 int t_hour;
} REAL_TIME_TYPE;

Du behöver inte ta hänsyn till begynnelsevärden.

e) Implementera funktionen AtRTIrq.

Maskinnära programmering - exempelsamling 25

4.5 Följande figur beskriver register som används för seriekommunikationskretsen (SCI) hos HCS12:

Serial Communication Interface (SCI)
Adress 7 6 5 4 3 2 1 0 Mnemonic Namn

$C8
R 0 0 0

SBR12 SBR11 SBR10 SBR9 SBR8 SCIBDH Baud Rate Register
High W

$C9
R

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 SCIBDL Baud Rate Register
Low W

$CA
R

LOOPS SCISWAI RSRC M WAKE ILT PE PT SCICR1 Control Register 1 W

$CB
R

TIE TCIE RIE ILIE TE RE RWU SBK SCICR2 Control Register 2 W

$CC
R TDRE TC RDRF IDLE OR NF FE PF

SCISR1 Status Register 1 W

$CD
R 0 0 0 0 0

BRK13 TXDIR
RAF

SCISR2 Status Register 2 W

$CE
R R8

T8
0 0 0 0 0 0

SCIDRH Data Register High W

$CF
R R7 R6 R5 R4 R3 R2 R1 R0

SCIDRL Data Register Low W T7 T6 T5 T4 T3 T2 T1 T0

Enkla drivrutiner för denna seriekrets ska konstrueras, rutinerna specificeras av följande:

void serial_init(void); /* initiera gränssnittet */
void serial_out(char c); /* skicka ett tecken via gränssnittet */
char serial_in(void); /* ta mot ett tecken från gränssnittet */

serial_in ska använda ”busy wait”, dvs. alltid returnera ett tecken.

PLL-klockan har initierats för 25 MHz frekvens. Välj överföringshastigheten 57600 baud. Sambandet mellan
baudrate och det värde BR (1-8191) som ska skrivas till SCIBDH/SCIBDL är:

baudrate

PLLCLK
BR




16

a) Bestäm värdet BR.
b) Implementera en subrutin SERIAL_INIT i assemblerspråk, alla adresser och bitar ska definieras med sina

symbolnamn enligt figuren ovan.
c) Skapa en lämplig typdeklaration (C-struct) för seriekretsen, använd symboliska namn enligt figuren ovan.
d) Implementera void serial_init(void) i ’C’. Definiera och använd lämpliga symboliska namn för

alla konstanter. Använd typdeklarationen från c).
e) Implementera en subrutin SERIAL_IN i assemblerspråk, alla adresser och bitar ska definieras med sina

symbolnamn enligt figuren ovan. Returvärdet ska skickas i register B.
f) Implementera char serial_in(void) i ’C’. Definiera och använd lämpliga symboliska namn för

alla konstanter. Använd typdeklarationen från c).
g) Implementera en subrutin SERIAL_OUT i assemblerspråk, alla adresser och bitar ska definieras med sina

symbolnamn enligt figuren ovan. Tecken som ska skrivas ut förutsätts finnas i register B vid anrop.
h) Implementera void serial_out(char c) i ’C’. Definiera och använd lämpliga symboliska namn

för alla konstanter. Använd typdeklarationen från c).

Maskinnära programmering - exempelsamling 26

Maskinnära	
programmering	

‐	Lösningsförslag	till	exempelsamling	

Institutionen	för	Data	och	Informationsteknik	
Chalmers	tekniska	högskola	

Göteborg	VT‐2014	
	

Exempelsamling i maskinnära programmering - lösningsförslag 2

1 Grundläggande assemblerprogrammering
1.1

;
; BlinkandeLjus1.s12
;

 ORG $1000
main: JSR BlinkB
 BRA main

; uppgift a)
BlinkA: LDAA #$FF
 STAA $400
 LDAA #0
 STAA $400
 BRA BlinkA

; uppgift b)
BlinkB: LDAA #$FF
 STAA $400
 JSR BLINKDELAY
 LDAA #0
 STAA $400
 JSR BLINKDELAY
 BRA BlinkB

BLINKDELAY:
 LDX #$200
BLINKDELAY1:
 LEAX -1,X
 CPX #0
 BNE BLINKDELAY1
 RTS

1.2 a), b)
RLJUSH:
 LDAA #$80
RLJUSH1:
 STAA $400
 JSR BLINKDELAY
 RORA
 BCS RLJUSH
 BRA RLJUSH1

c)

c)

Exempelsamling i maskinnära programmering - lösningsförslag 3

1.3
b)
RLJUSH16:
 LDD #$8000
RLJUSH16_1:
 STD $400
 JSR BLINKDELAY
 RORA
 RORB
 BCS RLJUSH16
 BRA RLJUSH16_1

1.4

b)
main:
 JSR DipSwitchOr
 BRA main

DipSwitchOr:
 LDAB $600
 ORAB $601
 STAB $400
 RTS

1.5
; Symboliska adresser
DipSwitch EQU $600
HexDisp EQU $400

; Subrutin DipHex
DipHex: LDAA DipSwitch
 CLRB

DipHex10: TSTA
 BEQ DipHex20

 INCB
 LSRA
 BCC DipHex10

DipHex20: STAB $400
 RTS

1.6
b)
; Huvudprogram
main: JSR AddUnsigned8bitTo16
 BRA main

; Subrutin
AddUnsigned8bitTo16:
 LDAB $600
 CLRA
 PSHD
 LDAB $601
 ADDD 2,SP+
 STD $400
 RTS

a)

a)

a)

Exempelsamling i maskinnära programmering - lösningsförslag 4

1.7
b)

; Huvudprogram
main: JSR AddSigned8bitTo16
 BRA main

; Subrutin
AddSigned8bitTo16:
 LDAB $600
 SEX B,D
 PSHD
 LDAB $601
 SEX B,D
 ADDD 2,SP+
 STD $400
 RTS

1.8
DipSwitch: EQU $600
HexDisp: EQU $400

DipHex2: LDD DipSwitch
 MUL
 STD HexDisp
 RTS

1.9
ML4_INPUT: EQU $0600
ML4_OUTPUT: EQU $0400
ERROR_CODE: EQU $5D

DisplayNBCD: LDX #SegCodes ; Pekare
DisplayNBCD1: LDAA ML4_INPUT ; Läs strömbrytare
 BPL DisplayNBCD2 ; Om Bit 7=0
 ; Och ja, LDAA påverkar faktiskt både
 ; N och Z flaggan
 CLR ML4_OUTPUT ; Släck
 BRA DisplayNBCD1

DisplayNBCD2: ANDA #$0F ; Maska fram b3-b0
 CMPA #9 ; [0,9]?
 BHI DisplayNBCD3
 LDAB A,X ; Hämta segmentkod för [0,9]
 STAB ML4_OUTPUT ; Visa siffra
 BRA DisplayNBCD1

DisplayNBCD3: LDAB #ERROR_CODE ; Kod för E
 STAB ML4_OUTPUT ; Visa siffra
 BRA DisplayNBCD1

SegCodes FCB $77,$22,$5B,$6B,$2E,$6D,$7D,$23

 FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18

a)

Exempelsamling i maskinnära programmering - lösningsförslag 5

1.10
Inport EQU $600
UtportP EQU $400
UtportQ EQU $401
UtportR EQU $402
ERROR_CODE: EQU $5D ; Segmentkod för E (Error)

SumPQ: LDX #SegCodes ; Pekare till tabell
 LDAB Inport ; Läs inporten
 TFR B,A ; Kopiera
 LSRA ; Skifta fram P
 LSRA
 LSRA
 LSRA
 MOVB A,X,UtportP ; Skriv P
 ANDB #$0F ; Maska fram Q
 MOVB B,X,UtportQ ; Skriv Q
 ABA ; Summan R
 CMPA #10 ; Giltigt värde
 BLO SumPQ_1 ; ..hoppa om JA
 LDAB #ERROR_CODE ; Skriv Error
 STAB UtportR
 BRA SumPQ
SumPQ_1: LDAB A,X ; Översätt R till Segmentkod
 STAB UtportR ;.. och skriv ut
 BRA SumPQ

SegCodes FCB $77,$22,$5B,$6B,$2E,$6D,$7D,$23

 FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18

1.11
; Subrutin Display visar ett NBCD-tal i A på två sifferindikatorer
; Indata: Register A, Ett NBCD-tal [0,99]
Display: LDX #SegCodes ; Pekare
 TFR A,B ; Spara kopia
; Register A används för EN-talen och...
; Register B används för TIO-talen
 LSRB ; Skifta fram TIO-talen
 LSRB
 LSRB
 LSRB
 LDAB B,X ; ..och visa TIO-talen
 STAB UtPort1
 ANDA #$0F ; Ta fram EN-talen
 LDAA A,X ; ..och visa EN-talen
 STAA UtPort2
 RTS

; Subrutin Read laser inporten, spegelvänder data och lämnar detta i Register A
Read LDAB InPort
 LDX #8 ; Skifta 8 bitar
Read_1:
 LSRB ; Skifta ut...
 ROLA ; ... och in
 DEX Sista?
 BNE Read_1 ; Nej
 RTS

SegCodes FCB $77,$22,$5B,$6B,$2E,$6D,$7D,$23

 FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18

Exempelsamling i maskinnära programmering - lösningsförslag 6

2 Grundläggande programmering i ’C’
2.1

a) 0..255
b) –126..127
c) 0..65535
d) –32768..32767
e) –32768..32767

2.2
a) 0.. 4294967295
b) –2147483648.. 2147483647

2.3
auto : synlig endast i den funktion den deklarerats.
static : synlig endast i den källtextfil den deklarerats.
global : synlig från alla programdelar.

2.4

int a;
static int sia;
extern int eia;

void f(void)
{
 int b;
 auto int aib;
 static int sib;
 extern int eib;
}

2.5
a) ((unsigned char *) 0x400)
b) ((signed char *) 0x400)
c) ((unsigned short *) 0x400)
d) ((signed short *) 0x400)

2.6
#include <stdint.h>

a) ((uint8_t *) 0x400)
b) ((int8_t *) 0x400)
c) ((uint16_t *) 0x400)
d) ((int16_t *) 0x400)

2.7
a)
typedef void (* function1)(void);
#define reentry ((function1) (0xC00F))
b)
typedef void (* function2)(char);
#define outcha ((function2) (0xC006))
c)
typedef char (* function3)(void);
#define tstcha ((function3) (0xC003))

Exempelsamling i maskinnära programmering - lösningsförslag 7

2.8 a)

typedef struct {
 int t, n;
} rat_tal;
b)
rat_tal add(rat_tal r1, rat_tal r2)
{
 rat_tal res;
 res.t = r1.t*r2.n + r2.t*r1.n;
 res.n = r1.n*r2.n;
 return res;
}
rat_tal mul(rat_tal r1, rat_tal r2)
{
 rat_tal res;
 res.t = r1.t*r2.t;
 res.n = r1.n*r2.n;
 return res;
}

2.9 a)
int strlen (const char *s)
{
 const char *p=s;
 while (*p++)
 ;
 return p-1-s;
}
b)
int strlen (const char *s)
{
 int i=0;
 while (s[i])
 i++;
 return i;
}
c)
// pekare
; int strlen (const char *s)
_strlen:
; {
 LEAS -2,SP
; const char *p=s;
 LDD 4,SP
 STD 0,SP
; while (*p++)
_1:
 LDX 0,SP
 TST 1,X+
 STX 0,SP
 BNE _1
; ;
; return p-1-s;
 LDD 0,SP
 SUBD 4,SP
 LDX #-1
 LEAX D,X
 TFR X,D
; }
 LEAS 2,SP
 RTS

// indexering
; int strlen (const char *s)
_strlen:
; {
 LEAS -2,SP
; int i=0;
 CLRA
 CLRB
 STD 0,SP
; while (s[i])
_1:
 LDD 0,SP
 ADDD 4,SP
 TFR D,X
 TST 0,X
 BEQ _2
; i++;
 LDX 0,SP
 INX
 STX 0,SP
 BRA _1
_2:
; return i;
 LDD 0,SP
; }
 LEAS 2,SP
 RTS

Exempelsamling i maskinnära programmering - lösningsförslag 8

2.10 a)

void strcpy (char *s1, const char *s2)
{
 while (*s1++ = *s2++)
 ;
}
b)
void strcpy (char *s1, const char *s2)
{
 int i = 0;
 while (s1[i] = s2[i])
 i++;
}
c)
// pekare
; void strcpy (char *s1, const char *s2)
_strcpy:
; {
; while (*s1++ = *s2++)
_1:
 LDX 2,SP
 LDY 4,SP
 LDAB 1,Y+
 STAB 1,X+
 STX 2,SP
 STY 4,SP
 TSTB
 BNE _1
; ;
; }
 RTS

// indexering
; void strcpy (char *s1, const char *s2)
_strcpy:
; {
 LEAS -3,SP
; int i = 0;
 CLRA
 CLRB
 STD 1,SP
; while (s1[i] = s2[i])
_1:
 LDD 1,SP
 ADDD 7,SP
 TFR D,X
 LDAB 0,X
 STAB 0,SP
 LDD 1,SP
 ADDD 5,SP
 TFR D,X
 LDAB 0,SP
 STAB 0,X
 TSTB
 BEQ _2
; i++;
 LDX 1,SP
 INX
 STX 1,SP
 BRA _1
_2:
; }
 LEAS 3,SP
 RTS

Exempelsamling i maskinnära programmering - lösningsförslag 9

2.11

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double nollstalle(double (*f)(double), double a, double b, double eps)
{
 if (f(a) > 0 && f(b) < 0)
 { // byt a och b
 double temp = a;
 a=b; b=temp;
 }
 if (!(f(a) < 0 && f(b) > 0))
 {
 printf("Nollställe saknas\n");
 exit(99);
 }
 // nu gäller f(a) < 0 < f(b)
 while (fabs(a-b) > eps)
 {
 double xm=(a+b)/2, fm=f(xm);
 if (fm < 0)
 a=xm;
 else if (fm > 0)
 b=xm;
 else
 return xm; // Vi råkade finna nollstället
 }
 return (a+b)/2;
 }

2.12
typedef unsigned char *port8ptr;
#define ML4OUT_ADR 0x400
#define ML4IN_ADR 0x600

#define ML4OUT *((port8ptr) ML4OUT_ADR)
#define ML4IN *((port8ptr) ML4IN_ADR)

void blinkdelay(void)
{
 int i;
 for(i = 0; i < 0x300 ; i++);
}

void blink(void)
{
 ML4OUT = 0xFF;
 blinkdelay();
 ML4OUT = 0;
 blinkdelay();
}

void main(void)
{
 while(1)
 {
 blink ();
 }
}

Exempelsamling i maskinnära programmering - lösningsförslag 10

2.13

typedef unsigned char *port8ptr;
#define ML4OUT_ADR 0x400
#define ML4IN_ADR 0x600

#define ML4OUT *((port8ptr) ML4OUT_ADR)
#define ML4IN *((port8ptr) ML4IN_ADR)

void blinkdelay(void)
{
 int i;
 for(i = 0; i < 0x200 ; i++);
}

void rljush(void)
{
 unsigned char c = 0;
 while(1)
 {
 if(c == 0)
 c = 0x80;
 ML4OUT = c;
 blinkdelay();
 c = c >> 1 ;
 }
}

void main(void)
{
 rljush ();
}

2.14

typedef unsigned int *port16ptr;
#define ML4OUT_ADR 0x400

#define ML4OUT16 *((port16ptr) ML4OUT_ADR)

void blinkdelay(void)
{
 int i;
 for(i = 0; i < 0x200 ; i++);
}

void rljush16(void)
{
 unsigned int c = 0;
 while(1)
 {
 if(c == 0)
 c = 0x8000;
 ML4OUT16 = c;
 blinkdelay();
 c = c >> 1 ;
 }
}

void main(void)
{
 rljush16 ();
}

Exempelsamling i maskinnära programmering - lösningsförslag 11

2.15
typedef unsigned char *port8ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT *((port8ptr) ML4OUT_ADR)
#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void DipSwitchOr(void)
{
 unsigned char c;
 while(1)
 {
 c = ML4IN1 | ML4IN2;
 ML4OUT = c;
 }
}

void main(void)
{
 DipSwitchOr ();
}

2.16
typedef unsigned char *port8ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR 0x600

#define ML4OUT *((port8ptr) ML4OUT_ADR)
#define ML4IN *((port8ptr) ML4IN_ADR)

void ff1(void)
{
 unsigned char pattern, bitpos;
 while(1)
 {
 pattern = ML4IN;

 if(! pattern)
 bitpos = 0;
 else{
 for(bitpos = 1; bitpos < 8; bitpos++)
 {
 if(pattern & 1)
 break;
 pattern >>= 1;
 }
 }
 ML4OUT = bitpos;
 }
}

void main(void)
{
 ff1 ();
}

Exempelsamling i maskinnära programmering - lösningsförslag 12

2.17
typedef unsigned char *port8ptr;
typedef unsigned short *port16ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT16 *((port16ptr) ML4OUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void AddUnsigned8bitTo16(void)
{
 unsigned short int s;
 while(1)
 {
 s = (unsigned short) ML4IN1;
 s = s + (unsigned short) ML4IN2;
 ML4OUT16 = s;
 }
}

void main(void)
{
 AddUnsigned8bitTo16 ();
}

2.18
typedef char *port8ptr;
typedef short *port16ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT16 *((port16ptr) ML4OUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void AddSigned8bitTo16(void)
{
 short s;
 while(1)
 {
 s = (short) ML4IN1;
 s = s + (short) ML4IN2;
 ML4OUT16 = s;
 }
}

void main()
{
 AddSigned8bitTo16 ();
}

Exempelsamling i maskinnära programmering - lösningsförslag 13

2.19

typedef unsigned char *port8ptr;
typedef unsigned int *port16ptr;

#define ML4OUT_ADR 0x400
#define ML4IN_ADR1 0x600
#define ML4IN_ADR2 0x601

#define ML4OUT16 *((port16ptr) ML4OUT_ADR)

#define ML4IN1 *((port8ptr) ML4IN_ADR1)
#define ML4IN2 *((port8ptr) ML4IN_ADR2)

void DipHex(void)
{
unsigned short int s;
 while(1)
 {
 s = (unsigned short) ML4IN1;
 s = s * (unsigned short) ML4IN2;
 ML4OUT16 = s;
 }
}

2.20

 typedef unsigned char *port8ptr;

 #define ML4OUT_ADR1 0x400
 #define ML4OUT_ADR2 0x401
 #define ML4IN_ADR1 0x600
 #define ML4IN_ADR2 0x601

 #define ML4OUT1 *((port8ptr) ML4OUT_ADR1)
 #define ML4OUT2 *((port8ptr) ML4OUT_ADR2)

 #define ML4IN1 *((port8ptr) ML4IN_ADR1)
 #define ML4IN2 *((port8ptr) ML4IN_ADR2)

 void DivModHex(void)
 {
 unsigned char q,r,pa;
 pa = ML4IN2;
 if(pa != 0)
 {
 q = ML4IN1/pa;
 r = ML4IN1%pa;
 }else{
 q = 0xFF;
 r = 0xFF;
 }
 ML4OUT1 = q;
 ML4OUT2 = r;
 }

2.21

typedef unsigned char *port8ptr;

#define ML4OUT *((port8ptr) 0x400)
#define ML4IN *((port8ptr) 0x600)
#define ERROR_CODE 0x5D

unsigned char SegCodes[]={ 0x77,0x22,0x5B,0x6B,0x2E,0x6D,0x7D,0x23,
 0x7F,0x6F,0x3F,0x7C,0x55,0x7A,0x5D,0x18 };

void DisplayNBCD(void)
{
 char c;
 while(1)
 {

Exempelsamling i maskinnära programmering - lösningsförslag 14

 c = ML4IN;
 if(c & 0x80)
 {
 ML4OUT = 0;
 }else{
 if((c & 0xF) < 10)
 ML4OUT = SegCodes[c & 0xF];
 else
 ML4OUT = ERROR_CODE;
 }
 }
}

void main()
{
 DisplayNBCD();
}

2.22
typedef unsigned char *port8ptr;

#define OUT *((port8ptr) 0x400)
#define IN1 *((port8ptr) 0x600)
#define IN2 *((port8ptr) 0x601)

void DipSwitchEor(void)
{
 while(1)
 {
 OUT = IN1 ^ IN2;
 }
}

2.23
typedef unsigned char * port8ptr;
#define DISPLAY *((port8ptr) 0x400)
#define DIPSWITCH1 *((port8ptr) 0x600)
#define DIPSWITCH2 *((port8ptr) 0x601)

void CondRunDiode(void)
{
unsigned char value;
value = 0x80; /* initialvärde */
while(1)
{
 if(DIPSWITCH1 > DIPSWITCH2)
 { /* ljus rinner åt vänster */
 DISPLAY = value;
 value = value << 1;
 if(value == 0) /* över kanten? ... */
 value = 1; /* böja om från höger */
 }else if (DIPSWITCH1 < DIPSWITCH2)
 { /* ljus rinner åt höger */
 DISPLAY = value;
 value = value >> 1;
 if(value == 0) /* över kanten? ... */
 value = 0x80; /* böja om från vänster */

 }else /* ljus står still */
 DISPLAY = value;
}
}

Exempelsamling i maskinnära programmering - lösningsförslag 15

2.24

//
// I filen ports.h:
typedef unsigned char *portptr;

// Keyboard (ML5)
#define ML5KEYB_CTRL_ADR 0xC00
#define ML5KEYB_STAT_ADR 0xC01
#define ML5KEYB_CTRL *((portptr) ML5KEYB_CTRL_ADR)
#define ML5KEYB_STAT *((portptr) ML5KEYB_STAT_ADR)

//
// Filen clock.h

typedef unsigned long int time_type; // enhet: ms
void hold(time_type); // argument = antal ms

//
// Filen keyboardML5.c

#include "keyboardML5.h"
#include "ports.h"
#include "clock.h"

int keyb(void)
{
 int radnr, kolnr;
 unsigned int radbit, kolbits;
 unsigned int kolmask = 0xf; // markerar vilka kolumner som används
 // tabell för avkodning av kolumnbitar, -1 markerar fel
 int decode[16] = { -1, -1, -1, -1, -1, -1, -1, 3,
 -1, -1, -1, 2, -1, 1, 0, -1};

 // vänta tills alla tangenter är uppe
 ML5KEYB_CTRL = 0xf; // aktivera alla rader
 while ((ML5KEYB_STAT & kolmask) != kolmask) // är någon tangent nedtryct?
 ;

 // upprepa tills någon tangent trycks ner
 while (1) {
 // löp igenom alla rader och låt 'radbit' markera insignalerna 0-3
 for (radnr=0, radbit=0x1; radnr<4 ; radnr++, radbit<<=1) {
 ML5KEYB_CTRL = radbit; // aktivera raden
 kolbits = ML5KEYB_STAT & kolmask; // avläs kolumnerna
 if (kolbits != kolmask) { // är någon tangent på raden nedtryckt?
 hold(200); // ja, vänta 200 ms
 // avläs kolumnerna igen
 if ((ML5KEYB_STAT & kolmask) == kolbits) { // fortfarande intryckt?
 kolnr = decode[kolbits]; // ger kolumnnumret för nollan
 return 4*(3-kolnr) + radnr;
 }
 }
 }
 }
}

2.25

 a)
_a RMB 1
_b RMB 1
_c RMB 1
b)

LDAB _b
PSHB
LDAB _a
PSHB
JSR _min

 LEAS 2,SP
STAB _c

Exempelsamling i maskinnära programmering - lösningsförslag 16

2.26
 a)

_a RMB 2
_b RMB 2
_c RMB 2
b)

LDD _b
PSHD
LDD _a
PSHD
JSR _min

 LEAS 4,SP
STD _c

2.27 a)

_a RMB 2
_b RMB 2
_c RMB 2
b)

LDD _b
PSHD
LDD _a
PSHD
JSR _min

 LEAS 4,SP
STD _c

2.28 a)

_cp RMB 2
b)
 LDX #_cp
 PSHX
 JSR _identify
 LEAS 2,SP
 STD _cp

2.29 a) LEAS -2,SP
b)

Parameter/
variabel

adressering

a 4,SP
b 0,SP

2.30
 a) LEAS -4,SP

b)
Parameter/

variabel
adressering

a 8,SP
b 6,SP
c 2,SP
d 0,SP

2.31
 a) LEAS -5,SP

b)
Parameter/

variabel
adressering

a 12,SP
b 11,SP
c 7,SP
d 4,SP
e 0,SP

Exempelsamling i maskinnära programmering - lösningsförslag 17

2.32

; void f1(unsigned char c)
_f1:
; {
; *(unsigned char *) 0x600 = c ;
 LDAB 2,SP
 STAB $600
; delay();
 JSR _delay
; c = c >> 1;
 LDAB 2,SP
 LSRB
 STAB 2,SP
; *(unsigned char *) 0x600 = c ;
 STAB $600
; }
 RTS

2.33
void printerprint(char *s)
_printerprint:
; {
; while(*s)
 LDX 2,SP
printerprint1:
 TST ,X
 BEQ printerprint2
; {
; while(!(STATUS & 1))
; {}
printerprint3:
 LDAB $0701
 ANDB #$01
 BEQ printerprint3

; DATA = *s;
 LDAB 1,X+ (även ’s++’ nedan)
 STAB $0700
; s++;
 BRA printerprint1
printerprint2:
; }
; }
 RTS

2.34
; void shortdelay(void)
_shortdelay:
; {
; volatile unsigned char c;
 LEAS -1,SP
; for(c = 0; c < 0x200 ; c++);
 CLR 0,SP
_1:
 LDAB 0,SP
 CMPB #$200
 BGE _2
 INC 0,SP
 BRA _1
_2:
; }
 LEAS 1,SP
 RTS

Exempelsamling i maskinnära programmering - lösningsförslag 18

2.35
; void shortdelay(void)
_shortdelay:
; {
; unsigned char c;
; for(c = 0; c < 0x200 ; c++);
 CLRB
_1:
 CMPB #$200
 BGE _2
 INCB
 BRA _1
_2:
; }
 RTS

2.36
; void printchar(char c)
_printchar:
; {
; while(*((volatile unsigned char *) 0x600))
_1:
 TST $600
 BNE _1
; ;
; *((unsigned char *) 0x400) = c;
 LDAB 2,SP
 STAB $400
; }
 RTS

2.37
; void printmul(void)
_printmul:
; {
; unsigned short int s;
 LEAS -2,SP
; s = (unsigned short) (*((unsigned char *) 0x600));
 LDAB $600
 CLRA
 STD 0,SP
; s = s * (unsigned short) (*((unsigned char *) 0x601));
 LDAB $601
 TFR D,Y
 LDD 0,SP
 EMUL
 STD 0,SP
; *((unsigned short int *) 0x400) = s;
 STD $400
; }
 LEAS 2,SP
 RTS

2.38 a)
_getCCR:
 TFR CCR,B
 RTS
b)
_setCCR:
 LDAB 2,SP
 TFR B,CCR
 RTS

2.39
I den första lösningen är stacken balanserad då RTI utförs, det är dock inte fallet i den andra lösningen eftersom
en lokal variabel deklarerats och epilogen (som balanserar stacken i funktionen) alltid placeras sist dvs. EFTER
den infogade RTI-instruktionen.

Exempelsamling i maskinnära programmering - lösningsförslag 19

3 Undantagshantering
3.1 a)

* AVBROTTSRUTIN-IRQCNT
* Beskrivning: Läs 8-bitars tal (tvåkomplement) från port ($0600).
* Typkonvertera och addera till 32-bitars tal (IRQVAR)
* Kvittera avbrott (skrivning till adress $0DC2)
* Anrop: via IRQ

IRQIN EQU $0600
IRQCLR EQU $0DC2

IRQCNT: DES ; plats för tecken-byte
 LDAB IRQIN ; läs 8 bitar
 SEX B,D ; teckenutvidga till 16 bitar i D
 STAA 0,SP ; spara tecken-byte
 ADDD IRQVAR+2 ; addera bit0-15
 STD IRQVAR+2 ; uppdatera bit 0-15
 LDD IRQVAR ; bit 16-31
 ADCB 0,SP ; addera bit 16-23
 ADCA 0,SP ; addera bit 24-31
 STD IRQVAR
 CLR IRQCLR ; nollställ avbrottsvippan
 INS ; återställ stacken
 RTI

IRQVAR RMB 4

b)

* SUBRUTIN-IRQINIT
* Beskrivning: Rutinen nollställer D-vippan, lägger in adressen
* till avbrottsrutinen på adressen $3FF2 och
* förbereder systemet för avbrott genom att I-flaggan
* nollställs.
* Anrop: JSR IRQINIT

IRQINIT: MOVW #0,IRQVAR ; Init Var
 MOVW #0,IRQVAR+2
 CLR IRQCLR ; nollställ avbrottsvippan
 MOVW #IRQCNT,$3FF2 ; avbrottsvektor
 CLI
 RTS

3.2
Övervakningsprogrammet startas med ett RESET som leder till följande programavsnitt:
INIT: LDS BOS ; Efter RESET skall stacken initieras och
 LDAB $0801 ; avbrottsvipporna nollställas
 LDAB $0802 ; (dummyläs $0801 och $0802)
 CLI ; Därefter skall IRQ-ingången demaskeras och
 JMP CONTROL ; övervakningen startas
Övervakningen sker huvudsakligen m h a avbrottsrutinen IRQALARM, som anropar väsentliga subrutiner
IRQALARM: LDAB $0800 ; avgör vad som begärt avbrott
 BITB #%00000001 ; kassan?
 BEQ L1
 BITB #%00000010 ; både kassan och vakt?
 BEQ L2 ; bara kassan
 LDAB $0801 ; tillåt registrering av nya avbrottsbegäran
 LDAB $0802
 BSR CHAOS ; reglera för avbrott från både kassan och vakt
 BRA L3
L2: LDAB $0802 ; tillåt registrering av ny avbrottsbegäran från kassan
 BSR ENTRANCE ; reglera för avbrott från enbart kassan
 BRA L3
L1: LDAB $0801 ; tillåt registrering av ny avbrottsbegäran från vakt
 BSR GUARD ; reglera för avbrott från enbart vakt
L3: RTI

Exempelsamling i maskinnära programmering - lösningsförslag 20

3.3 a) Ur ingångssignalerna till NAND-grinden kan man dra slutsatsen att
 CS’ = [VMA(R/W)’A15’A14’A13A12A11’A10’A9’A8’A7’A6’A5’A4’A3’A2’A1’A0’]’
vilket innebär att adressen är (0011 0000 0000 0000)2 = $3000

**
* Subroutine INISTR
*
* Utför initieringar för avbrottsstyrd utmatning av tecken från
* parallell inport till skrivare
*
* INPUT: Pekare till första tecken i sträng i X
* OUTPUT: Inga
*
* Registerpåverkan: Inga
*

INISTR: PSHS X
 STX STRPNT ; initierar strängpekare i minnet
 LDX #PRIRQ ; initierar avbrottsvektorn för IRQ
 STX $3FF2
 CLR $3000 ; matar ut ASCII-tecknet 00h (NUL)
 ; nollställer avbrottsvippan
 PULS X
 CLI ; nollställer I-flaggan för att tillåta IRQ
 RTS

* Interruptroutine PRIRQ
*
* Kopierar tecken från teckensträng till parallellutport.
* Kopieringen avslutas när tecknet “NUL” = 00H upptäcks.
*
* INPUT: Pekare till första tecken i sträng på adress STRPNT
* OUTPUT: Inga
*
* Registerpåverkan: Inga

PRIRQ: LDX STRPNT
 LDAB 1,X+
 STX STRPNT ; uppdaterar strängpekare
 TSTB ; sätter flaggor utifrån A
 BNE GO_ON
 PULS A ; strängslut: stänger av avbrott; hämtar CC från stacken
 ORAA #%00010000 ; nollställer I-flaggan
 PSHS A ; lägger tillbaka på CC’s läge i stacken
 BRA RET
GO_ON: STAB $3000 ; matar ut ASCII-tecken
RET: RTI

3.7
TEMP rmb 2 Avbrottsräknare (1000 IRQ = 1s)

IRQINIT: MOVW #$2359,CLOCK ; Init klockan tt:mm:ss
 MOVB #$59,CLOCK+2
 MOVW #1000, TEMP ; Avbrottsräknare
 CLR IRQRES ; nollställ avbrottsvippan
 MOVW #IRQ, $3ff2 ; avbrottsvektor
 CLI
 RTS

IRQ: CLR IRQRES ; nollställ avbrottsvippan
 LDX TEMP ; 1000 avbrott?
 LEAX -1,X
 STX TEMP
 BNE IExit ; nej
 MOVW #1000, TEMP ; Avbrottsräknare
 * Minska sekunder
 LDAA CLOCK+2
 SUBA #1
 DAA

Exempelsamling i maskinnära programmering - lösningsförslag 21

 STAA CLOCK+2 ; Hel minut?
 BPL IExit ; nej
 * Minska minuter
 MOVB #$59,CLOCK+2 ; 59 nya sekunder
 LDAA CLOCK+1
 ADDA #-1
 DAA
 STAA CLOCK+1 ; Hel timme?
 BPL IExit ; nej
 * Minska timmar
 MOVB #$59,CLOCK+1 ; 59 nya minuter
 LDAA CLOCK
 ADDA #-1
 DAA
 STAA CLOCK ; 24 timmar?
 BPL IExit ; nej

* Stanna klockan på något sätt!
* Använd någon global variabel och kolla om klockan är noll eller
* se till att förhindra framtida avbrott
 LDAA 0,sp ; Ettställ I-flaggan
 ORAA #$10
 STAA 0,sp
 MOVW #0,CLOCK ; Nolla klockan
 CLR CLOCK+2
IExit: RTI

3.8 a)
IrqRut: LDAA IrqStat ; Läs statusflaggorna
 LSRA
 BCC EjB0
 JSR DSR0 ; Serva enhet 0
 BRA IrqExit

EjB0: LSRA
 BCC EjB1
 JSR DSR1 ; Serva enhet 1
 BRA IrqExit

EjB1: LSRA
 BCC EjB2
 JSR DSR2 ; Serva enhet 2
 BRA IrqExit

EjB2: JSR DSR3 ; Serva enhet 3

IrqExit: CLR IrqVippa
 RTI

b) Vi tappar avbrott om avbrott inträffar mellan instruktionerna ldaa IrqStat och clr IrqVippa.

c) Risken minskas om instruktionen clr IrqVippa placeras direkt efter ldaa IrqStat.

d) Välja hårdvara där vi har möjlighet att bestämma vilken av de fyra avbrottskällorna vi skall kvittera.
Exempelvis 4 avbrottsvippor med separata RESET-möjligheter

3.9
// I filen ports.h
typedef void (*vec) (void);
typedef vec *vecptr;
typedef unsigned int port;
typedef port *portptr;
#define set(r, mask) (r) = (r) | mask;
#define clear(r, mask) (r) = (r) & ~(mask);

// Klockregistret
#define CLOCKREG_ADR 0x1230
#define CLOCKREG *((portptr) CLOCKREG_ADR)

#define CLOCK_VEC_ADR 0xFF70 // Adress till avbrottsvektor
#define CLOCK_VEC *((vecptr) CLOCK_VEC_ADR)

// Sensorerregistret
#define SENSORREG_ADR 0x1234
#define SENSORREG *((portptr) SENSORREG_ADR)

Exempelsamling i maskinnära programmering - lösningsförslag 22

#define SENSOR_VEC_ADR 0xFF80 // Adress till avbrottsvektor
#define SENSOR_VEC *((vecptr) SENSOR_VEC_ADR)

#define enable_bit 0x01
#define intr_bit 0x40
#define done_bit 0x80

// I filen tidtagare.c
#include "ports.h"

void display(long);
void sensortrap(void);
void clocktrap(void);

#define TIME_INTERVAL 2

static long int tick = 0;
static int started = 0;
static int stopped = 0;

void init_clock(void) {
 CLOCK_VEC = clocktrap;
 set(CLOCKREG, intr_bit);
}

void clockinter(void) {
 clear(CLOCKREG, done_bit);
 tick++;
}

void init_sensor(void) {
 SENSOR_VEC = sensortrap;
 port shadow = 0;
 set(shadow, enable_bit);
 set(shadow, intr_bit);
 SENSORREG = shadow;
}

void sensorinter(void) {
 clear(SENSORREG, done_bit);
 if (!started) {
 set(CLOCKREG, enable_bit);
 started = 1;
 }
 else {
 clear(CLOCKREG, enable_bit);
 stopped = 1;
 }
}

int main() {
 long int next;
 init_clock();
 init_sensor();
 display(0);
 while (!started)
 ;
 while(!stopped) {
 display(tick * TIME_INTERVAL / 10);
 /* vänta 0.01 sek */
 next = tick + 10 / TIME_INTERVAL;
 while(tick < next)
 ;
 }
 display(tick * TIME_INTERVAL / 10);
}

Exempelsamling i maskinnära programmering - lösningsförslag 23

4 Programmering av periferikretsar
4.1 a)

typedef struct sPortP{
 volatile unsigned char ddr;
 volatile unsigned char data;
}PORTP, *PPORTP;
#define PORTP_BASE 0x700
#define portP ((PORTP *)(PORTP_BASE))

void portPinit(void)
{
 portP->ddr = ~0xE0;
}
b)
unsigned char inPortP(void)
{
return ((portP->data & 0xE0)>> 5) ;
}
c)
void outPortP(unsigned char c)
{
 portP->data = c & 0x1F ;
}

4.2 a)

typedef struct sPortP{
 volatile unsigned char ddr;
 volatile unsigned char icie;
 volatile unsigned char data;
}PORTP;
#define PORTP_BASE 0x700
#define portP ((PORTP *)(PORTP_BASE))

void portPinit(void)
{
 portP->ddr = 0x0F; /* b7-b4 inport, b3-b0 utport */
 portP->icie = 0xF0; /* b7-b4 inportar, avbrott aktiveras */
}
b)
void outPortP(unsigned char c)
{
 portP->data = c & 0x0F ; /* b7-b4 ska vara 0 */
}
c)
void irqPortP(void)
{
 switch(portP->data & 0cF0) /* bestäm avbrottskälla */

{ /* kvittera avbrott */
 case 0x80: portP-> icie = 0x80; break;
 case 0x40: portP-> icie = 0x40; break;
 case 0x20: portP-> icie = 0x20; break;
 case 0x10: portP-> icie = 0x10; break;
}

}
d)
Assembler:
; initieringar i huvudprogram...
 IMPORT _irqPortP

 MOVW #PortPirq,$FFF2
 CLI

; avbrottsrutin
PortPirq:
 JSR _irqPortP
 RTI

Exempelsamling i maskinnära programmering - lösningsförslag 24

4.3 a)
; Adressdefinitioner för register
REFDV EQU $35
SYNR EQU $34
CRGFLG EQU $37
CLKSEL EQU $39
; Bitdefinitioner
PLLSEL EQU $80
LOCK EQU 8

; Registervärden 10MHz oscillator, 25 MHz busfrekvens
SYNRVal: EQU 5
REFDVVal: EQU 4

: Generisk kod för programmerad arbetstakt...
PLLINIT: MOVB #REFDVVal,REFDV
 MOVB #SYNRVal,SYNR
PLLINIT_1:
 BRCLR CRGFLG,#LOCK, PLLINIT_1 ; vänta tills PLL låst...
 BSET CLKSEL,#PLLSEL ; växla systemklocka till PLL.
 RTS
b)
typedef struct sCRG{
 volatile unsigned char SYNR;
 volatile unsigned char REFDV;
 volatile unsigned char CTFLG;
 volatile unsigned char CRGFLG;
 volatile unsigned char CRGINT;
 volatile unsigned char CLKSEL;
 volatile unsigned char PLLCTL;
 volatile unsigned char RTICTL;
 volatile unsigned char COPCTL;
 volatile unsigned char FORBYP;
 volatile unsigned char CTCTL;
 volatile unsigned char ARMCOP;
}CRG, *PCRG ;
c)
#define CRG_BASE 0x34 /* Basadress för CRG-modulen */
#define SYNRVal 5
#define REFDVVal 4

#define PLLSEL 0x80 /* Bitdefinitioner */
#define LOCK 8

void InitPLL(void)
{
 (((PCRG) (CRG_BASE))->refdv) = REFDVVal;
 (((PCRG) (CRG_BASE))->synr) = SYNRVal;
 /* vänta tills PLL låst... */
 while(((((volatile PCRG) (CRG_BASE))->crgflg) & LOCK)== 0);
 /* växla systemklocka till PLL */
 (((PCRG) (CRG_BASE))->clksel) |= PLLSEL;
}

Exempelsamling i maskinnära programmering - lösningsförslag 25

d)
typedef struct sCRG2{
union{
 volatile unsigned char reg;
 volatile unsigned char synbits:6;
}synr;
union{
 volatile unsigned char reg;
 volatile unsigned char refbits:4;
}refdv;
volatile unsigned char ctflg;
union{
 volatile unsigned char reg;
 struct{
 volatile unsigned char SCM:1;
 volatile unsigned char SCMIF:1;
 volatile unsigned char SCMIE:1;
 volatile unsigned char LOCK:1;
 volatile unsigned char LOCKIF:1;
 volatile unsigned char LVRF:1;
 volatile unsigned char PORF:1;
 volatile unsigned char RTIF:1;

 }bit;
}crgflg;
volatile unsigned char crgint;
union{
 volatile unsigned char reg;
 struct{
 volatile unsigned char COPWAI:1;
 volatile unsigned char RTIWAI:1;
 volatile unsigned char CWAI:1;
 volatile unsigned char PLLWAI:1;
 volatile unsigned char ROAWAI:1;
 volatile unsigned char SYSWAI:1;
 volatile unsigned char PSTP:1;
 volatile unsigned char PLLSEL:1;
 }bit;
}clksel;

volatile unsigned char pllctl;
volatile unsigned char rtictl;
volatile unsigned char copctl;
volatile unsigned char forbyp;
volatile unsigned char ctctl;
volatile unsigned char armcop;
}CRG2, *PCRG2 ;

e)
void InitPLL2(void)
{
 (((PCRG2) (CRG_BASE))->refdv.refbits) = REFDVVal;
 (((PCRG2) (CRG_BASE))->synr.synbits) = SYNRVal;
 /* vänta tills PLL låst... */
 while(! (((volatile PCRG2) (CRG_BASE))->crgflg.bit.LOCK))
 ;
 /* växla systemklocka till PLL */
 ((PCRG2) (CRG_BASE))->clksel.bit.PLLSEL = 1;
}

Exempelsamling i maskinnära programmering - lösningsförslag 26

4.4 a)
; Adressdefinitioner
CRGFLG EQU $37
CRGINT EQU $38
RTICTL EQU $3B
RTIE EQU $80
RTIF EQU $80
TIMBASE EQU $62 ; ur tabell

RTINIT: MOVB #TIMBASE,RTICTL ; För MC12/10MHz
 MOVB #RTIE,CRGINT ; Aktivera avbrott från CRG-modul
 MOVW #RTIRQ, $3FF0 ; Avbrottsvektor
 RTS
b)
9,83 ms.
c)
RTIRQ: BSET CRGFLG,# RTIF ; Kvittera avbrott
 JSR _AtRTIrq
 RTI

4.5 a)
25000000/(16×57600) = (27)10 = (1B)16
b)
SCI EQU $C8
SCIBD EQU $C8
SCICR1 EQU $CA
SCICR2 EQU $CB
SCISR1 EQU $CC
SCISR2 EQU $CD
SCIDRH EQU $CE
SCIDRL EQU $CF

TE EQU 8 ; “Transmit enable” bit
RE EQU 4 ; “Receive enable” bit
BAUDRATE EQU 27 ; enligt a)

SERIAL_INIT:
 MOVW #BAUDRATE,SCIBD ; Initiera baudrate
 MOVB #(TE|RE),SCICR2 ; Aktivera sändare mottagare
 RTS
c)
typedef struct sSCI{
 volatile unsigned short scibd;
 volatile unsigned char scicr1;
 volatile unsigned char scicr2;
 volatile unsigned char scisr1;
 volatile unsigned char scisr2;
 volatile unsigned char scidrh;
 volatile unsigned char scidrl;
}SCI, *PSCI;
d)
#define SCI_BASE 0xC8
#define TE 8 // “Transmit enable” bit
#define RE 4 // “Receive enable” bit
#define BAUDRATE 27 // enligt a)

void serial_init(void)
{
 (((PSCI)(SCI_BASE))->scicr2) = TE|RE;
 (((PSCI)(SCI_BASE))->scibd) = BAUDRATE;
}
e)
RDRF EQU $40 ; “Receive register fullt” bit

SERIAL_IN:
 BRCLR SCISR1,#RDRF,SERIAL_IN
 LDAB SCIBD
 RTS

Exempelsamling i maskinnära programmering - lösningsförslag 27

f)
#define RDRF 0x40 // “Receive register fullt” bit

char serial_in(void)
{

while(((((PSCI) (SCI_BASE))->scisr1) & RDRF)== 0);
 return (((PSCI) (SCI_BASE))->scidrl);
}

g)
TDRE EQU $80 ; “Transmit register tomt” bit

SERIAL_OUT:
 BRCLR SCISR1,#TDRE,SERIAL_OUT
 STAB SCIBD
 RTS
h)
#define TDRE 0x80 // “Transmit register tomt” bit

void serial_out(char c)
{

while(((((PSCI) (SCI_BASE))->scisr1) & TDRE)== 0);
(((PSCI) (SCI_BASE))->scidrl) = c;

}

