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1  Grundläggande assemblerprogrammering 
1.1 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress $400 på ett 

MC12-system.  

a) Skriv en subrutin "BLINK" som får samtliga dioder att blinka genom att 
kontinuerligt tända och släcka dom. Kontrollera funktionen genom att stega 
igenom subrutinen instruktionsvis. 

b) Utforma, som en ny subrutin "BLINKDELAY",  en fördröjning så att dioderna 
blinkar även då programmet exekveras normalt. 

c) Beskriv lösningen från b) i form av en flödesplan. 

 

1.2 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress $400 på ett 
MC12-system.  

a) Skriv en subrutin "RLJUSH" som får dioderna att bete sig som ett "rinnande 
ljus" där dioderna tänds upp en och en från vänster till höger. Kontrollera 
funktionen genom att stega igenom subrutinen instruktionsvis. 

b) Använd subrutinen "BLINKDELAY",  så att man tydligt kan se det rinnande 
ljuset  även då programmet exekveras normalt. 

c) Beskriv lösningen från b) i form av en flödesplan. 

 

 

1.3 Två ramper med ljusdioder, enligt figuren till höger, är anslutna till adress 
$400 och $401 på ett MC12-system.  
Du ska konstruera en subrutin "RLJUSH16" som får dioderna att bete sig 
som ett kontinuerligt "rinnande ljus" där dioderna tänds upp en och en från 
vänster till höger. Efter det att bit 0 hos diodrampen på adress $400 släckts 
ska bit 7 hos diodrampen på adress $401 tändas.  Då dioden för bit 0 på 
adress $401 släckts, ska det rinnande ljuset börja om från bit 7 på adress 
$400, osv. 
Använd en given subrutin "BLINKDELAY",  så att man tydligt kan se det rinnande ljuset  även då programmet 
exekveras normalt. 

a) Beskriv subrutinen "RLJUSH16" i form av en flödesplan. 

b) Implementera, dvs. skriv subrutinen i assemblerspråk. 

 
 

1.4 Två strömbrytare och en ljusdiodramp, enligt figuren till 
höger, är anslutna till adresser $600 och $601, respektive 
adress $400 på ett MC12-system.  
Konstruera en subrutin "DipSwitchOr" som bildar logisk 
ELLER av värdena som läses från strömbrytarna. 
Subrutinen ska utformas så att avläsningen och indikering 
görs en gång. Kontinuerlig funktion fås genom att 
subrutinen, oupphörligt anropas från ett huvudprogram 
"main". 
 
 
a) Beskriv subrutinen " DipSwitchOr " i form av en flödesplan. 
b) Implementera huvudprogrammet "main" och subrutinen "DipSwitchOr" i assemblerspråk.  
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1.5 En 8-bitars strömbrytare, ”DIP_SWITCH” är ansluten till adress $600 
och en displayenhet ”HEXDISPLAY” som visar en byte i form av två 
hexadecimala siffror är ansluten till adress $400 i ett MC12 
mikrodatorsystem.  
 
Konstruera en subrutin DipHex som läser av strömbrytaren och 
indikerar den minst signifikanta påslagna biten genom att skriva dess 
position, räknat från höger, till displayenheten. Om exempelvis bitarna 
2 och 4 utgör ettställda strömbrytare ska positionen för bit 2, (dvs. 3) 
skrivas till displayenheten. 
Om ingen strömbrytare är ettställd ska siffran 0 skrivas till displayen. 
Speciellt gäller att endast symboler ska användas för absoluta adresser. 
 
 
 
 
 
 

1.6 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till 
adresser $600 och $601, respektive adress $400 och $401 i ett MC12-system.  
Konstruera en subrutin "AddUnsigned8bitTo16" som adderar de två värdena som 
läses från strömbrytarna (tolka som tal utan tecken) och därefter presenterar 
resultatet som ett 16 bitars tal på displayindikatorerna. 
Subrutinen ska utformas så att avläsningen och indikering görs en gång. 
Kontinuerlig funktion fås genom att subrutinen, oupphörligt anropas från ett 
huvudprogram "main". 
 
 
a) Beskriv subrutinen " AddUnsigned8bitTo16" i form av en flödesplan. 
b) Implementera huvudprogrammet "main" och subrutinen 

"AddUnsigned8bitTo16" i assemblerspråk.  

 

 

 

 

 

1.7 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till 
adresser $600 och $601, respektive adress $400 och $401 i ett MC12-system.  
Konstruera en subrutin "AddSigned8bitTo16" som adderar de två värdena som 
läses från strömbrytarna (tolka som tal med tecken) och därefter presenterar 
resultatet som ett 16 bitars tal på displayindikatorerna. 
Subrutinen ska utformas så att avläsningen och indikering görs en gång. 
Kontinuerlig funktion fås genom att subrutinen, oupphörligt anropas från ett 
huvudprogram "main". 
 
 
a) Beskriv subrutinen " AddSigned8bitTo16" i form av en flödesplan. 
b) Implementera huvudprogrammet "main" och subrutinen " 

AddSigned8bitTo16" i assemblerspråk.  
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1.8 Två 8-bitars strömbrytare, ”DIP_SWITCH” är anslutna till adresserna 
$600,$601 och två displayenheter ”HEXDISPLAY” som var och en visar en 
byte i form av två hexadecimala siffror är anslutna till adresserna $400 och $401 
i ett MC12 mikrodatorsystem. 
Skriv en subrutin som läser de båda strömbrytarnas inställda värden, 
multiplicerar dessa båda tal och skriver det 16 bitars resultatet till 
displayenheterna. 
Displayenheten på adress $400 ska ange den mest signifikanta byten av 
resultatet. 
Speciellt gäller att endast symboler ska användas för absoluta adresser. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.9 En 8-bitars strömbrytare "DIP-SWITCH 
INPUT" och en sju-sifferindikator "7-
SEGMENT DISPLAY" är anslutna till 
adresserna $0600 respektive $0400 i ett 
MC12 mikrodatorsystem. 
 
Använd symbolen  ML4_INPUT  för 
inporten ($0600) och symbolen 
ML4_OUTPUT  för utporten ($0400). 
 

Skriv en subrutin  "DisplayNBCD" som 
kontinuerligt läser inporten (strömbrytarna) och skriver värden (NBCD-siffror)  till utporten (7-
sifferindikatorn). 
 
När bit 7 på inporten är ettställd skall sifferindikatorn släckas helt. När bit 7 på inporten är nollställd skall 
sifferindikatorn tändas enligt följande beskrivning: 
 
Bit 3-0 på inporten anger vad som skall visas på sifferindikatorn. Om indata är i intervallet [0,9] skall 
motsvarande decimala siffra visas på sifferindikatorn. Om indata är i intervallet [A,F] skall ett 'E' (Error) visas 
på sifferindikatorn. Segmentkoden för 'E' är $5D. 
Bitarna 6-4 på inporten kan anta vilka värden som helst. 
Du har tillgång till en tabell i minnet med segmentkoder (mönster för sifferindikatorn) enligt 

SegCodes FCB $77,$22,$5B,$6B, etc. 

Tabellen innehåller segmentkoder för siffrorna [0,9].  
På adressen ”SegCodes” i minnet finns segmentkoden för 0,  
på adressen ”SegCodes+1” i minnet finns segmentkoden för 1,  
på adressen ”SegCodes+2” i minnet finns segmentkoden för 2, 
etc  

 
  



Maskinnära programmering - exempelsamling    6 

 

1.10  En 8-bitars strömbrytare "DIP-SWITCH INPUT" och tre 
sju-sifferindikatorer "7-SEGMENT DISPLAY" är 
anslutna till adresserna $0600 respektive $0400,$401 och 
$402 i ett MC12 mikrodatorsystem. 

Skriv en subrutin  "SumPQ" som 
 hela tiden läser två NBCD-siffror P och Q från 

strömbrytarna  
 visar NBCD siffrorna P och Q på två olika 

sifferindikatorer 
 utför en additionen R=P+Q   
 skriver summan R till den tredje sifferindikatorn.  
Från inporten (8 bitar) läses två 4-bitars binära tal P och Q samtidigt. P hittas på [b7,b4] och Q hittas på [b3,b0]. 
Summan skall placeras i [b3,b0] för att omvandlas till segmentkod och skrivas till sifferindikatoren. Om summan 
P+Q är större än nio skall “E” (ERROR) skrivas ut. Du får förutsätta att P≤9 och Q≤9. 

Du har tillgång till en tabell med segmentkoder och följande definitioner: 

Inport  EQU $600          ; Adress för inport 
UtportP  EQU $400          ; Adress för utport 1 
UtportQ  EQU $401          ; Adress för utport 2 
UtportR  EQU $402          ; Adress för utport 3 
Error   EQU %01011101        ; Segmentkod för E (Error) 
SegCode  FCB  %1110111,%0100010, etc   ; Tabell med segmentkoder för [0,9]  
 
 

1.11 Två 7-sifferindikatorer, ”7-SEGMENT DISPLAY” är anslutna till 
adresserna $400,$401 och en 8 bitars strömbrytare ”DIP-SWITCH 
INPUT” är ansluten till adress $600 i ett MC12 mikrodatorsystem. 
Du skall skriva subrutinerna ”Read” och ”Display” till följande 
program som om och om igen läser inporten (ett NBCD-tal [0,9910]) 
och skriver detta till de båda sifferindikatorererna. 
 
   ORG  $1000 

main:  JSR  Read    ; Läs NBCD-tal till register 
A 
    JSR  Display   ; Skriv register A på 2 sifferindikatorer 
    JMP  main 
Följande definition är dessutom given.  

SegCodes  FCB  $77,$22,$5B,$6B, etc. ; (segmentkoder för siffrorna [0,9]).  

Subrutinen Display visar det NBCD-tal som finns lagrat i register A. Innehåller register A exempelvis 0101 
1001 skall 5 visas på UtPort1 och 9 visas på UtPort2. (Segmentkoder är alltså givna med start på adress 
”SegCodes”). Skriv subrutinen Display! 

 

Subrutinen Read läser InPort. Tyvärr har inporten ett konstruktionsfel så bitarna är omkastade enligt följande 
figur. (Bit b7 är ju normalt till vänster och b0 till höger) 

 

 

Detta medför att när vi ställer in NBCD-talet 53 (0101 0011) på strömbrytarna så läses 
1100 1010 från inporten (ty det spegelvänds).  

Subrutinen måste därför  
1. läsa inporten 
2. spegelvända det inlästa  
3. lämna utdata i i register A.. 

Skriv subrutinen Read! 

b0 b2 b1 b3 b4 b6b5 b7
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2  Grundläggande programmering i ’C’ 
2.1 Ange talområdena för variablerna i följande deklarationer, (XCC12): 

a)  unsigned char uc; 

b)   signed char sc; 

c)   unsigned short us;  

d)   signed short ss; 

e)   unsigned int ui; 

f)   signed int si; 

Ledning: Konsultera filen ”limits.h” 
 

2.2 Ange talområdena för variablerna i följande deklarationer, (XCC12): 
a)  unsigned long int ul; 

b)   signed long int sl; 

Ledning: Konsultera filen ”limits.h” 

 
2.3 En ‘C’-variabel måste tillhöra en av lagringsklasserna auto, static och global.  

Redogör för “synligheten” hos variabler deklarerade med respektive lagringsklass.   
 

2.4 Ange de, av följande deklarationer, som är korrekta i ett ‘C’-program: 
 int  a; 
 auto  int aia; 
 static int sia; 
 global  int gia; 
 extern int eia; 
 intern int iia; 
 

void f( void) 
{ 
 int  b; 
 auto  int aib; 
 static int sib; 
 global int gib; 
 extern int eib; 
 intern int iib; 
} 

2.5 För att referera absoluta adresser, exempelvis portar, krävs att en konstant (den absoluta portadressen) förses 
med lämpliga explicita typkonverteringar. Visa korrekta typkonverteringar (ANSI-C) i följande fall där 
portadressen är 0x400: 
a)  8-bitars port där portens innehåll betraktas som tal utan tecken. 
b)  8-bitars port där portens innehåll betraktas som tal med tecken. 
c)  16-bitars port där portens innehåll betraktas som tal utan tecken. 
d)  16-bitars port där portens innehåll betraktas som tal med tecken. 
 

2.6 För att referera absoluta adresser, exempelvis portar, krävs att en konstant (den absoluta portadressen) förses 
med lämpliga explicita typkonverteringar. Visa korrekta typkonverteringarna, ,  i följande fall där portadressen 
är 0x400. Använd C99 utvidgningen stdint.h för maximal portabilitet 
a)  8-bitars port där portens innehåll betraktas som tal utan tecken. 
b)  8-bitars port där portens innehåll betraktas som tal med tecken. 
c)  16-bitars port där portens innehåll betraktas som tal utan tecken. 
d)  16-bitars port där portens innehåll betraktas som tal med tecken. 
 
 

2.7 Visa typdeklarationer för en funktion som tillåter att funktionen i form av en subrutin på en fast adress i minnet, 
kan anropas direkt från ett C-program.  
a) funktionen reentry har inga parametrar och inget returvärde, på adress 0xC00F. 
b) funktionen outcha har en parameter av typen unsigned char, men inget returvärde, på adress 0xC006. 
c) funktionen tstcha har inga parametrar men returvärde av typen unsigned char, på adress 0xC003. 
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2.8 De rationella talen är exakta tal som anges på formen t/n där t och n (täljaren och nämnaren) är heltal.  
a)  Använd typedef och struct för att deklarera en typ rat_tal som beskriver ett rationellt tal.  
b)  Skriv sedan två funktioner add och mul. De skall båda få två parametrar av typen rat_tal.  
Som resultat skall de ge ett nytt rationellt tal som är summan respektive produkten av de två parametrarna. 
 

2.9 Skriv en egen version av standardfunktionen strlen.  
a) Använd pekare. 
b) Använd indexering. 
c) Använd XCC12, kompilera de båda versionerna till assemblerkod och jämför resultaten. 
 
 

2.10 Skriv en egen version av standardfunktionen strcpy.  
a) Använd pekare. 
b) Använd indexering. 
c) Använd XCC12, kompilera de båda versionerna till assemblerkod och jämför resultaten. 
 
 

2.11 Konstruera en funktion nollstalle som beräknar ett nollställe till matematiska funktioner. Funktionen 
nollstalle har deklarationen: 
double nollstalle(double (*f)(double),double a, double b, double eps); 

Den första parametern, f, är en pekare till den matematiska funktion man vill söka ett nollställeför. De två 
parametrarna a och b anger inom vilket intervall nollstället skall sökas.  
Man söker alltså ett värde x i intervallet (a, b) sådant att f(x) = 0. Du får anta att den funktion som f pekar på är 
monoton och att den har exakt ett nollställe inom det givna intervallet. Parametern eps anger vilket som är det 
största fel som får finnas i resultatet.  
I funktionen kan du ”ringa in”nollstället genom att flytta ändpunkterna a och b allt närmare varandra. Börja med 
att undersöka om f(a) < 0 < f(b) eller f(b) < 0 < f(a). Om det är på det andra sättet så låt variablerna a och b byta 
värden med varandra. Upprepa sedan följande tills |a-b| ≤ 0. Räkna ut mittpunkten m mellan a och b och 
beräkna värdet av f(m). Om f(m) < 0 så sätt a till m sätt annars b till m. 
 
 

2.12 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress 0x400 i ett 
MC12 mikrodatorsystem.  

a) Skriv en funktion  
  void blink( void ) 
som får samtliga dioder att blinka genom att kontinuerligt tända och släcka dom. 
Kontrollera funktionen genom att stega igenom den satsvis. 

b) Utforma, som en ny funktion  
  void blinkdelay( void ) 
en fördröjning så att dioderna blinkar även då programmet exekveras normalt. 

 
 
 

2.13 En ramp med ljusdioder, enligt figuren till höger, är ansluten till adress 0x400 i ett 
MC12 mikrodatorsystem.  

Skriv en funktion  
  void rljush( void )   
som får dioderna att bete sig som ett "rinnande ljus" där dioderna tänds upp en och 
en från vänster till höger. Kontrollera funktionen genom att stega igenom den 
satsvis. Använd funktionen void blinkdelay( void ),  så att man tydligt 
kan se det rinnande ljuset  även då programmet exekveras normalt. 
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2.14 Två ramper med ljusdioder, enligt figuren till höger, är anslutna till adress 

0x400 och 0x401 i ett MC12 mikrodatorsystem.  
Du ska konstruera en funktion  
  void rljush16( void )  
som får dioderna att bete sig som ett kontinuerligt "rinnande ljus" där 
dioderna tänds upp en och en från vänster till höger. Efter det att bit 0 hos 
diodrampen på adress 0x400 släckts ska bit 7 hos diodrampen på adress 
0x401 tändas.  Då dioden för bit 0 på adress 0x401 släckts, ska det 
rinnande ljuset börja om från bit 7 på adress 0x400, osv. Använd funktionen void blinkdelay( void ),  
så att man tydligt kan se det rinnande ljuset  även då programmet exekveras normalt. 
 
 

2.15 Två strömbrytare och en ljusdiodramp, enligt figuren till 
höger, är anslutna till adresser 0x600 och 0x601, 
respektive adress 0x400 i ett MC12 mikrodatorsystem.  
 
Konstruera en funktion  
  void DipSwitchOr( void )  
som bildar logisk ELLER av värdena som läses från 
strömbrytarna. 
 
 
 
 
 

2.16 En 8-bitars strömbrytare är ansluten till adress 0x600 och en 
displayenhet som visar en byte i form av två hexadecimala siffror är 
ansluten till adress 0x400 i ett MC12 mikrodatorsystem.  
 
Konstruera en funktion  
  void ff1( void )  
som läser av strömbrytaren och indikerar den minst signifikanta 
påslagna biten genom att skriva dess position, räknat från höger, till 
displayenheten. Om exempelvis bitarna 2 och 4 utgör ettställda 
strömbrytare ska positionen för bit 2, (dvs. 3) skrivas till displayenheten. 
Om ingen strömbrytare är ettställd ska siffran 0 skrivas till displayen. 
 
 
 

 

 

2.17 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till 
adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12 
mikrodatorsystem.  

Konstruera en funktion  
  void AddUnsigned8bitTo16( void )  
som adderar de två värdena som läses från strömbrytarna (tolka som tal utan 
tecken) och därefter presenterar resultatet som ett 16 bitars tal på 
displayindikatorerna.  
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2.18 Två strömbrytare och två displayenheter, enligt figuren till höger, är anslutna till 

adresser 0x600 och 0x601, respektive adress 0x400 och 0x401 i ett MC12 
mikrodatorsystem.  

Konstruera en funktion  
  void AddSigned8bitTo16( void )  
som adderar de två värdena som läses från strömbrytarna (tolka som tal med tecken) 
och därefter presenterar resultatet som ett 16 bitars tal på displayindikatorerna. 
 
 
 
 
 
 

2.19 Två 8-bitars strömbrytare, är anslutna till adresserna 0x600,0x601 och två 
displayenheter som var och en visar en byte i form av två hexadecimala siffror är 
anslutna till adresserna 0x400 och 0x401 i ett MC12 mikrodatorsystem. 
Konstruera en funktion  
  void DipHex( void )  
som läser de båda strömbrytarnas inställda värden, multiplicerar dessa båda tal och 
skriver det 16 bitars resultatet till displayenheterna. 
Displayenheten på adress 0x400 ska ange den mest signifikanta byten av resultatet. 
 
 
 
 
 
 

2.20 Två 8-bitars strömbrytare, är anslutna till adresserna 0x600,0x601 och två 
displayenheter som var och en visar en byte i form av två hexadecimala siffror är 
anslutna till adresserna 0x400 och 0x401 i ett MC12 mikrodatorsystem. 
Konstruera en funktion  
  void DivModHex( void )  
som läser de båda strömbrytarnas inställda värden. 
Om värdet på adress 0x601 är noll ska 0xFF visas på båda displayenheter. Om 
värdet på adress 0x601 är skilt från noll ska resultatet av heltalsdivisionen mellan 
värden på adress 0x600 och 0x601 visas på displayindikator med adress 0x400 och 
resultatet av restdivisionen av samma tal visas på indikator med adress 0x401.  
 
  
 
 

2.21 I denna uppgift ska du bland annat demonstrera hur absolutadressering utförs i C. Visa speciellt hur 
preprocessordirektiv och typdeklarationer används för att skapa begriplig programkod. 
 
Två strömbrytare och en ljusdiodramp, enligt figuren 
till höger, är anslutna till adresser 0x600 och 0x601, 
respektive adress 0x400 i ett MC12 
mikrodatorsystem.  
 
Konstruera en funktion  
  void DipSwitchEor( void )  
som kontinuerligt bildar logiskt EXKLUSIVT 
ELLER av värdena som läses från strömbrytarna och 
därefter skriver detta värde till ljusdiodrampen. 
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2.24 Följande gränssnitt ansluts till ett MC12 mikrodatorsystem. (Jämför med ML5/ML23 i kurslitteraturen). 

 
 
Konstruera en funktion   
unsigned char keyb( void ) 
Denna skall som resultat ge numret på den tangent som trycktes ner. Numreringen framgår av figuren ovan.  
 Funktionen skall först vänta tills ingen tangent är nedtryckt. Därefter skall den aktivera en rad i taget och 

avläsa kolumnernas utsignaler ända tills någon tangent tryckts ner.  
 Porten med anslutningar till tangentbordets rader finns på adressen 0x0C00, porten med kolumnernas 

anslutningar finns på adress 0x0C01. 
 Då en nedtryck tangent konstaterats ska funktionen vänta 200 ms och därefter göra en ny avläsning. Om 

fortfarande samma tangent är nedtryckt skall funktionen returnera tangentens nummer.  
 Du får förutsätta att det finns en färdig C-funktion: 

  void hold( time_type ms ) 
Denna funktion ger en fördröjning. Den har en parameter som anger hur lång fördröjningen skall vara. 
Parameterns typ är deklarerad enligt: 
  typedef unsigned long int time_type; 
Enheten är millisekunder.  

 
 
Där inte annat sägs ska du fortsättningsvis förutsätta att följande konventioner gäller vid 
översättning av kod från ’C’ till assemblerspråk. 
 
Kompilatorkonvention XCC12: 
 Parametrar överförs till en funktion via stacken. 
 Då parametrarna placeras på stacken bearbetas parameterlistan från höger till vänster. 
 Utrymme för lokala variabler allokeras på stacken. Variablerna behandlas i den ordning de påträffas i koden. 
 Prolog kallas den kod som reserverar utrymme för lokala variabler. 
 Epilog kallas den kod som återställer (återlämnar) utrymme för lokala variabler. 
 Den del av stacken som används för parametrar och lokala variabler kallas aktiveringspost.  

Beroende på datatyp används för returparameter HC12’s register enligt följande tabell: 
 

Storlek  Benämning  C-typ  Register 

8 bitar  byte  char  B  

16 bitar  word  short int  
och 
pekartyp 

D  

32 bitar  long  long int  Y/D  

 
 

Låt tangenterna representera 
följande: 

(A-F är hexadecimala siffror) 
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2.25 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet): 

char  a,b,c; 
char  min( char a, char b ); 

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12. 

b) Visa hur följande sats översätts till assemblerkod för HCS12: 
  c = min( a , b ); 
 

2.26 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet): 
char  *a,*b,*c; 
char  *min( char *a, char *b ); 

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12. 

b) Visa hur följande sats översätts till assemblerkod för HCS12: 
  c = min( a , b ); 
 

2.27 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet): 
int  a,b,c; 
int  min( int a, int b ); 

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12. 

b) Visa hur följande sats översätts till assemblerkod för HCS12: 
  c = min( a , b ); 
 

2.28 Följande C-deklarationer har gjorts på ”toppnivå” (global synlighet): 

char  *cp; 
char   *identify( char **cp);  

a) Visa hur variabeldeklarationerna översätts till assemblerdirektiv för HCS12. 

b) Visa hur följande sats översätts till assemblerkod för HCS12: 
 cp = identify( &cp ); 
 

2.29 Inledningen (parameterlistan och lokala variabler) för en funktion ser ut på följande sätt: 
void function( int a ) 
{ 
 int b; 
.....  

a) Visa hur utrymme för lokala variabler reserveras i funktionen (prolog). 
b) Visa funktionens aktiveringspost, ange speciellt offseter för parametrar och lokala variabler. 
 

2.30 Inledningen (parameterlistan och lokala variabler) för en funktion ser ut på följande sätt: 
void function( char *b, char a ) 
{ 
 char *c, *d; 
.....  

a) Visa hur utrymme för lokala variabler reserveras i funktionen (prolog). 
b) Visa funktionens aktiveringspost, ange speciellt offseter för parametrar och lokala variabler. 
 

2.31 Inledningen (parameterlistan och lokala variabler) för en funktion ser ut på följande sätt: 
void function( long c, char b, int a ) 
{ 
 char d; 
 long e; 
 
.....  

a) Visa hur utrymme för lokala variabler reserveras i funktionen (prolog). 
b) Visa funktionens aktiveringspost, ange speciellt offseter för parametrar och lokala variabler. 
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2.32 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i 

assemblerspråk för HC12. 
 

void f1( unsigned char c ) 
{ 
  *( unsigned char *) 0x600 = c ; 
  delay(); 
  c = c >> 1; 
  *( unsigned char *) 0x600 = c ; 
} 

 
2.33 Följande funktion finns given i “C”.  Implementera motsvarande funktion i assemblerspråk för HC12.  

#define DATA   *( char *) 0x700 
#define STATUS *( char *) 0x701 
void printerprint( char *s ) 
{ 
 while( *s ) 
 { 
  while( STATUS & 1 ) 
  {} 
  DATA = *s; 
  s++; 
 } 
} 

 
2.34 Följande specifikation av en subrutin är given i form av ett C-program.  Implementera motsvarande funktion i 

assemblerspråk för HC12. 

void shortdelay( void ) 
{ 

 volatile unsigned char c; 
 for( c = 0; c < 0x200 ; c++ ); 

} 
2.35 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i 

assemblerspråk för HC12. 

void shortdelay( void ) 
{ 

 unsigned char c; 
 for( c = 0; c < 0x200 ; c++ ); 

} 
 

2.36 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i 
assemblerspråk för HC12. 

void printchar( char c ) 
{ 
 while( *((volatile unsigned char *) 0x600) ) 
  ; 
 *((unsigned char *) 0x400) = c; 
} 

 
2.37 Följande specifikation av en subrutin är given i form av ett C-program. Implementera motsvarande funktion i 

assemblerspråk för HC12. 

void printmul( void ) 
{ 

 unsigned short int s; 
 s = ( unsigned short ) (*((unsigned char *) 0x600) ); 
 s = s * ( unsigned short ) (*((unsigned char *) 0x601) ); 
 *((unsigned short int *) 0x400) = s; 

} 
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2.38 Vissa instruktionssekvenser kan inte åstadkommas med hjälp av giltiga standard-C satser. Exempel på detta är 

att påverka enskilda bitar i processorns statusregister (CCR).  

a)  Implementera en assembler subrutin som kan anropas från ett C-program.  
  unsigned char getCCR( void ); 

 returvärdet är innehållet i CCR. 

b)  Implementera en assembler subrutin som kan anropas från ett C-program.  
  void setCCR( unsigned char value ); 

 parameter value anger nya värden för bitarna i CCR. 
 

2.39 Avbrottsrutiner kan inte implementeras i standard-C men många kompilatorer tillhandahåller möjligheten att 
lägga in assemblerkod "inline" i C-kod. Följande kod visar sig exempelvis fungera under XCC12:  

static void shortdelay( void ) 
{ 

 unsigned char c; 
 for( c = 0; c < 0x200 ; c++ ); 

} 
void take_interrupt(void) 
{ 
  shortdelay(); 
  _asm(" RTI"); 
} 

Uppmuntrad av resultatet provar vi nu i stället följande, som INTE fungerar som avsett: 
void take_interrupt(void) 
{ 

 unsigned char c; 
 for( c = 0; c < 0x200 ; c++ ); 

  _asm(" RTI"); 
} 
Förklara skillnaden mellan de olika lösningarna. 
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3  Undantagshantering 
3.1  Besvara kortfattat följande frågor rörande CPU12. 

a)  Redogör för vad som händer vid RESET och varför detta sker. 

b)  Förklara kortfattat vad som händer vid ett IRQ avbrott om I-flaggan i CC är nollställd. 

c)  Vid IRQ-avbrott sätts I-flaggan automatiskt till 1. Varför sker detta? 

d) Visa med en instruktionssekvens hur man i en IRQ-avbrottsrutin kan förhindra att processorn utför nya 
avbrott efter återhopp till det avbrutna programmet. 

e) Översätt assemblerinstruktionerna CLI och SEI till maskinspråk och visa hur maskinkoden placeras 
iminnet. 

f) Assemblerinstruktionerna CLI och SEI kan skrivas på ett alternativt sätt. Visa detta sätt. 

g) Vilken är skillnaden mellan IRQ- och XIRQ-avbrott? Hur påverkar skillnaden användningen av dem? 

h) Vid XIRQ-avbrott sätts både X- och I-flaggan automatiskt till 1. Varför sker detta? 

i) XIRQ-avbrottet är ”icke maskbart”. Vad innebär detta för möjligheterna att påverka maskbiten X i 
CCregistret? 

j) Redogör för vad som händer då en logiknolla läggs på ingången XIRQ’ och varför detta sker. Hur påverkas 
stacken? 

k) Vilket villkor måste vara uppfyllt för att ett XIRQ-avbrott skall utföras? 

l) Vad händer med flaggor och stack när instruktionen SWI utförs. 

m) Förklara hur instruktionen SWI fungerar. Ge ett exempel på hur den kan användas. 

 
3.2  Två "tryckknappsenheter" enligt figuren skall anslutas till 

en dator med processorn CPU12. Då en knapp aktiveras 
genereras en positiv puls på motsvarande utgång. Varje 
tryckning på ÖKAknappen skall öka en 8-bitars variabel på 
minnesadressen KNAPP med ett medan varje tryckning på 
NOLLA-knappen skall nollställa samma variabel. Om innehållet på adressen KNAPP är 255 och ÖKA-knappen 
trycks ned skall innehållet inte ökas. 
De två tryckknapparna skall anslutas så att IRQ-avbrott genereras då någon av dem aktiveras. Inga andra 
avbrottskällor finns i systemet. 

a)  Visa hur tryckknappsenheterna kan anslutas till datorn. En oanvänd inport finns på adressen $800. Rita 
nödvändig logik! D-vippor, NAND- och NOT-grindar får användas.  

b) Skriv en avbrottsrutin som fungerar enligt beskrivningen ovan. Assemblerspråk för processorn CPU12 skall 
användas. 

 
3.3  Tre "tryckknappsenheter" enligt figuren nedan skall anslutas till en dator med processorn CPU12. Då en 

knapp aktiveras genereras en positiv puls på motsvarande utgång. Varje tryckning på ÖKA- eller MINSKA-
knappen skall öka resp. minska en 8-bitars variabel på minnesadressen KNAPP med ett medan varje tryckning 
på MITT-knappen skall ge samma variabel värdet 128. Innehållet på adressen KNAPP skall dock inte tillåtas att 
”varva”, dvs att ökas från 255 eller minskas från 0. 

 

De tre tryckknapparna skall anslutas så att IRQ-avbrott genereras då någon av dem aktiveras. Inga andra 
avbrottskällor finns i systemet.  

a) Visa hur tryckknappsenheterna kan anslutas till datorn. En oanvänd inport finns på adressen $800. Rita 
nödvändig logik! D-vippor, NAND- och NOT-grindar får användas.  

b) Skriv en avbrottsrutin som fungerar enligt beskrivningen ovan. Assemblerspråk för processornCPU12 skall 
användas.  
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3.4  En pulsgenerator är ansluten via en avbrottsvippa till IRQ-ingången på ett MC12-system. Pulsgeneratorn har 
en frekvens på 100 Hz. För att nollställa avbrottsvippan krävs en skrivning på adressen $0DC2. Pulsgeneratorn 
är den enda anslutna avbrottskällan till IRQ-ingången på processorn. 
 
 
 
 
 
 
 

a) Skriv en avbrottsrutin (IRQCNT) som läser en 8-bitars inport (IRQIN, adress $0600) och adderar det inlästa 
värdet till en 32-bitars variabel (IRQVAR). Både IRQIN och IRQVAR är variabler på 
tvåkomplementsform. 

b) Skriv en initieringsrutin  IRQINIT  som initierar avbrottssystemet och som gör att IRQCNT anropas vid 
avbrott och att IRQVAR nollställs från början. 

 
3.5  Ett konstmuseum övervakas med ett HCS12-baserat mikrodatorsystem. I systemet finns ett antal sensorer 

utplacerade exempelvis på tavlor samt i dörrar och fönster.  Vissa dörrar har också datorstyrda lås. Under 
öppettiderna ingår såväl kassan som två utplacerade vakter i övervakningen. I kassan och hos vakterna finns 
larmknappar som är anslutna till HCS12's avbrottssystem enligt figuren nedan. 

a)  Vid uppstart med RESET-begäran skall systemet initieras omedelbart. Därför leder reset-vektorn till 
adressen INIT, som är startadressen för initieringsavsnittet. Såväl resetvektor som avbrottsvektor är redan 
lagrade i ROM. 

Tänk noga igenom vad som behöver göras i INIT. Du har bl a god hjälp av figuren. 
Skriv programavsnittet INIT i HCS12-assemblerspråk, som initierar systemet så att det kan hantera dels 
övervakningen, dels avbrott på IRQ-ingången. INIT avslutas med hopp till rutinen CONTROL. 

b) Skriv en avbrottsrutin, IRQALARM, som skall avgöra om en avbrottsbegäran kommer från kassan, från 
vaktställe eller från båda. 

Om avbrottsbegäran enbart kommer från kassan, skall subrutinen ENTRANCE anropas. Om avbrottsbegäran 
enbart kommer från en vakt, skall subrutinen GUARD anropas. Om avbrottsbegäran kommer från både kassan 
och en vakt, skall subrutinen CHAOS anropas. Dessa subrutiner finns redan och vidtar de åtgärder som skall 
göras i respektive fall, exempelvis i form av dörrlåsning och vidarebefordran av larm. 
Tänk noga igenom vilka åtgärder som behöver göras i samband med att en avbrotts-begäran betjänas. Din 
avbrottsrutin skall hantera det som har med avbrottet att göra. 
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3.6  Figuren visar hur en skrivare är kopplad till en HCS12-baserad mikrodator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
När skrivaren är beredd att ta emot ett ASCII-tecken från datorn signalerar den det genom att låta signalen 
Ready gå från noll till ett. Ett tecken kan då skrivas ut på skrivaren genom att datorn matar ut motsvarande 
ASCII-tecken på utporten. Skrivaren känner av att det kommer en negativ puls på ledningen DAV' och 
nollställer omedelbart signalen Ready samt börjar skriva ut tecknet. 

a) Ange på vilken hexdecimal adress, som ASCII-tecknen matas ut till skrivaren. 

b) Skriv en subrutin, INISTR, som initierar avbrottsstyrd utmatning av en textsträng till skrivaren. Den skall se 
till att IRQ-avbrott accepteras och att hopp sker till avbrottsrutinen på adressen PRIRQ. 
Vid anrop av INISTR skall en pekare (16 bitar) till det första tecknet i textsträngen finnas i X-registret. 
INISTR skall placera pekaren på adressen STRPNT (och STRPNT+1) i minnet samt nollställa 
avbrottsvippan. 
Eftersom man endast kan nollställa avbrottsvippan genom att mata ut ett dataord till skrivaren är det 
lämpligt att mata ut dataordet $00 som inte ger någon utskrift. IRQ-vektorn på adressen $3FF2 är placerad i 
ett läs- och skrivbart minne (RWM).  

c) Skrivaren är enda avbrottskälla i systemet. Skriv en avbrottsrutin, PRIRQ, som läser ett ASCII-tecken från 
strängen i minnet och matar ut det till skrivaren.  

Adressen, från vilken ASCII-tecknet skall hämtas, är lagrad i minnet i en s k pekare STRPNT (16 bitar). PRIRQ 
skall också se till att nästa tecken i strängen kommer att matas ut vid nästa avbrott. Textsträngen som skall 
matas ut avslutas med dataordet $00. När avbrottsrutinen läser dataordet $00 är strängen färdigutmatad och nya 
avbrott skall då förhindras genom att avbrottssystemet stängs av. 
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3.7  Ett MC12-system är bestyckat med en pulsgenerator som genererar avbrott varje millisekund och en 

klockmodul som kan visa tid.  
 
 
 
 
 
 
 
Du skall konstruera ett system som räknar ner till ”12-slaget” på nyårsafton. För detta krävs en rutin (IRQINIT) 
som initierar systemet och en avbrottsrutin (IRQ), som anropas varje millisekund, och som minskar en klock-
variabel. Klockvariabeln skrivs till en display av huvudprogrammet. Du behöver inte befatta dig med 
utskriftsrutinen. 
När programmet startas skall displayen visa (börja på) 23:59:59. Vi skall räkna ner det sista dygnet, alltså tills 
displayen visar 00:00:00.  
Avbrott kvitteras genom en skrivning på den symboliska adressen IRQRES (se även figur ovan).  
Avbrottsrutinen ska uppdatera den symboliska klockvariabeln CLOCK, deklarerad enligt följande: 

CLOCK  RMB  3  ; Variabel innehållande klockan tt:mm:ss 

där tt är timmar (00-23), mm är minuter (00-59) och ss sekunder (00-59). Alla siffror lagras som NBCD-tal. 
När klockan räknat ner till noll skall den stanna och huvudprogrammet fortsätta som vanligt. 
Initieringsrutinen (IRQINIT): ska initiera nödvändiga variabler, dvs. ställa initial tid och i övrigt förbereda 
systemet för att ta emot och behandla avbrott. Det finns inga andra avbrottskällor i systemet.  
Du får själv skapa ytterligare hjälpvariabler för klockavbrotten efter behov. Systemets avbrottsvektor IRQ finns 
is RWM på adress $3FF2. 

a) Skriv initieringsrutinen IRQINIT 

b) Skriv avbrottsrutinen IRQ 

 
 
 

3.8  Kalle student konstruerar yttre enheter till ett MC12-system. Konstruktionen visar sig innehålla vissa brister. 
Detta diskuteras i deluppgifter b,c och d nedan). Läs därför igenom hela uppgiften innan du börjar lösa den. 
Systemet skall användas för att betjäna fyra yttre enheter numrerade 0 t o m 3. Oberoende av varandra kan 
enheterna begära avbrott . Begäran om avbrott görs genom att en till enheten hörande statusflagga ettställs. 
Enheternas statusflaggor, som också numreras 0 t o m 3, har i ordningsföljd samlats i bitarna 0 - 3 av ett 
statusregister på adress $700. Se figur. Oberoende av vilken statusflagga som ettställs så skickas en 
avbrottssignal (IRQ) till processorn. Vid en skrivning på adress $700 nollställs statusflaggorna. 

 
Enheternas servicerutiner finns tillgängliga och har lagrats som subrutiner med namnen DSR0 – DSR3.  

a) Skriv en avbrottshanterare som undersöker vilken enhet som begärt avbrott och anropar tillhörande 
avbrottsrutin. 

b) Det visar sig att Kalles konstruktion inte upptäcker alla avbrott i vissa sammanhang. När inträffar detta? 

c) Vad kan göras i mjukvara för att minska risken för detta? 

d) Vad kan göras i hårdvara för att eliminera problemet? 

 

 

 

 

 

7-4: 

b0=1: Enhet 0 har begärt 
b1=1: Enhet 1 har begärt 

b2=1: Enhet 2 har begärt 
b3=1: Enhet 3 har begärt 
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3.9  Antag att en dator används för enkel tidtagning vid en idrottstävling. Till datorn finns kopplat två sensorer 

samt en klockkrets. (Dessutom finns en display, men den behöver inte programmeras i denna uppgift.) Den 
första sensorn känner när startskottet går och den andra när den tävlande passerar mållinjen. De två sensorerna 
är kopplade till samma 16-bitars styrregister. Detta ligger på adressen 1234 (hex) och adressen till dess 
avbrottsvektor är FF80. Styrregistret aktiveras och inaktiveras genom att bit nr 0 i det sätts till 1 resp. 0. Om 
registret är inaktiverat påverkas det inte av inkommande signaler, men om det är aktiverat gäller följande: När 
en signal kommer från någon av de två sensorerna sätts bit nr 7 i registret till 1. Om man har satt bit nr 6 i 
registret till 1 genereras då även en avbrottssignal till processorn. Styrregistret skall återställas efter ett avbrott 
genom att man sätter bit 7 till 0. 

Klockkretsen är kopplad till ett annat 16-bitars styrregister, vilket ligger på adressen 1230 (hex). Adressen till 
dess avbrottsvektor är FF70. Detta styrregister har samma konfiguration och fungerar på samma sätt som 
styrregistret för sensorerna. Den enda skillnaden är de inkommande signalerna kommer från klockkretsen 
istället för sensorerna. Klockkretsen genererar 500 signaler per sekund. 

Uppgiften är att skriva ett C-program som gör en tidsmätning. När programmet startar skall det visa tiden 0 på 
en display och vänta tills startskottet går. När detta sker skall klockan aktiveras och tiden skall visas fortlöpande 
på displayen. Displayen skall visa tiden uttryckt i hundradels sekunder och den visade tiden skall uppdateras 
hundra gånger per sekund. När den tävlande passerar mållinjen skall klockan stoppas och sluttiden visas 
konstant på displayen. Programmet behöver bara klara en tidsmätning. (Vill man göra en ny får man starta om 
programmet genom att trycka på reset-knappen.) 

Du får förutsätta att det finns en färdigskriven C-funktion med namnet display. Denna har en parameter av 
typen long int och när den anropas visar den parameterns värde på en display. 

Du får också förutsätta att följande två färdigskrivna assemblerrutiner finns: 

 
                segment  text 
                define   _clocktrap 
                define   _sensortrap 
_clocktrap:     JSR      _clockinter 
                RTI 
_ sensortrap:   JSR      _sensorinter 
                RTI 

 
Det finns också en färdigskriven assemblerrutin som anropar funktionen main när processorn startar.  
Skriv resten av programmet (i C).  
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4  Programmering av periferikretsar 
4.1 Parallellporten Port P, i ett HCS12-system kan programmeras så att varje bit kan utgöra antingen en insignal, 

eller en utsignal. Porten har två olika register, som specificeras enligt följande: 

Parallel port P  (PORTP) 
Address 7 6 5 4 3 2 1 0 Mnemonic Namn 

$700 
R 1=OUT 

0=IN 
1=OUT 
0=IN 

1=OUT 
0=IN 

1=OUT 
0=IN 

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

DDR Data Direction Register W 

$701 
R 0 0 0 0 0 0 0 0 

DATA Data Register W 1 1 1 1 1 1 1 1 

 

I figuren anges registrens innehåll efter “RESET”. 

 DDR: 1 anger att positionen är en utsignal, 0 anger att positionen är en insignal. Bitarna kan programmeras oberoende 
av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan åstadkommas. Registret är både skrivbart 
och läsbart i sin helhet. 

 DATA: Består i själva verket av två olika register (R,W):  

o    R: innehåller insignaler för de bitar som programmerats som insignaler. Endast 0 får skrivas, till en bit som 
är programmerad som insignal. 

o    W: används då biten är programmerad som en utsignal. Då en bit som är programmerad som utsignal 
läses kommer detta alltid att resultera i värdet 1, oavsett vilket värde som tidigare skrivits till databiten. 

 
a) Visa en lämplig deklaration av porten med användning av en struct.  Visa också en funktion, void 

portPinit(void) som initierar port P så att bitarna b7-b5 används som en 3-bitars inport och bitarna b4-
b0 används som en 5-bitars utport. 

b) Visa en funktion, void outPortP(unsigned char c ) som matar ut bitarna b4-b0, av c, till port P. 

c) Visa en funktion, unsigned char inPortP( void ) som returnerar bitarna b7-b5 hos port P som en 
unsigned char, dvs. värden i intervallet 0 t.o.m. 7. 
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4.2 Parallellporten Port P, i ett HCS12-system kan programmeras så att varje bit kan utgöra antingen en insignal, 
eller en utsignal.  Portarna som används för insignaler kan dessutom konfigureras så att ett avbrott genereras då 
en yttre enhet ändrat värdet hos insignalen. 

Porten har tre olika register, som specificeras enligt följande: 

Parallel port P  (PORTP) 
Address 7 6 5 4 3 2 1 0 Mnemonic Namn 

$700 
R 1=OUT 

0=IN 
1=OUT 
0=IN 

1=OUT 
0=IN 

1=OUT 
0=IN 

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

DDR Data Direction Register W 

$701 
R IF IF IF IF IF IF IF IF 

ICIE Input Change Interrupt  W IEA IEA IEA IEA IEA IEA IEA IEA 

$702 
R 0 0 0 0 0 0 0 0 

DATA Data Register W 1 1 1 1 1 1 1 1 

 

  DDR: 1 anger att positionen är en utsignal, 0 anger att positionen är en insignal. Bitarna kan programmeras 
oberoende av varandra, dvs. godtycklig kombination av insignaler och utsignaler kan åstadkommas. Registret är både 
skrivbart och läsbart i sin helhet.  

   ICIE: Består av olika delar (R=IF/W=IEA).  

o   IEA (Interrupt Enable/Acknowledge). Biten är 0 efter RESET. Då 1 (Interrupt Enable) skrivs till biten aktiveras 
avbrottsgenerering vid ändring av motsvarande bit i DATA-registret om denna programmerats som insignal. 
Om motsvarande bit i DDR i stället programmerats som utsignal, genereras inga avbrott. IEA-biten har då 
ingen funktion. Då 1 skrivs till en bit som tidigare satts till 1, fungerar detta i stället som en Interrupt 
Acknowledge-funktion, dvs. IF (Interrupt Flag) nollställs. För att helt återställa avbrottsmekanismen för denna 
bit i DATA-registret skrivs 0 till IEA. 

o   IF (Interrupt Flag) Biten är 0 efter RESET. Då motsvarande bit i DDR är programmerad som en insignal och 
motsvarande IEA är 1, sätts IF till 1 och ett avbrott (IRQ) generereras, avbrottsvektor FFF2. 

 DATA: Består i själva verket av två olika register (R,W):  

o    R: innehåller insignaler för de bitar som programmerats som insignaler. Endast 0 får skrivas, till en bit som 
är programmerad som insignal. 

o    W: används då biten är programmerad som en utsignal. Då en bit som är programmerad som utsignal 
läses kommer detta alltid att resultera i värdet 1, oavsett vilket värde som tidigare skrivits till databiten. 

 
a) Visa en lämplig deklaration av porten med användning av en struct.  Visa också en funktion, void 

portPinit(void) som initierar port P, på adress 0x700 i minnet, så att bitarna b7-b4 används som en 4-
bitars inport och bitarna b3-b0 används som en 4-bitars utport. Då någon av inportens bitar ändras ska 
avbrott genereras. 

b) Visa en funktion, void outPortP(unsigned char c ) som matar ut bitarna b3-b0, av c, till port P. 

c) Visa hur du implementerar en avbrottsfunktion, void irqPortP( void ) som kvitterar ett avbrott 
från någon av portens ingångar.  

d) Visa nödvändiga programdelar i assemblerspråk, dvs. hur avbrottsrutinen definieras, avbrottsvektorn 
initieras (antag att FFF2 är läs- och skrivbart minne) och hur processorn förbereds för att acceptera 
avbrotten i ett huvudprogram. Använd endast standard-C konstruktioner och/eller assemblerspråk för 
HCS12. 
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4.3 Följande figur beskriver de register som används för att styra PLL-kretsen hos HCS12: 

Clock Reset Generator  (CRG) 

Address 7 6 5 4 3 2 1 0 Mnemonic Namn 

$34 
R 0 0 

SYN5 SYN4 SYN3 SYN2 SYN1 SYN0 SYNR Synthesizer Register W   

$35 
R 0 0 0 0 

REFDV3 REFDV2 REFDV1 REFDV0 REFDV Reference Divide 
Register W     

$37 
R 

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM 

CRGFLG Flags Register W  

$39 
R 
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI CLKSEL Clock Select Register W 

 
Vårt system har en 10 MHz oscillator. PLL-kretsen ska programmeras för att generera busfrekvensen 25 MHz. 

a) Visa en subrutin PLLINIT  i assemblerspråk, alla adresser och bitar ska definieras med sina symbolnamn 
enligt figuren. 

 
Följande figur ger en översikt av hela CRG-modulen. 
 

Adress Mnemonic Namn 
$34 SYNR Synthesizer Register 
$35 REFDV Reference Divide Register 
$36 CTFLG *)Test Flags Register 
$37 CRGFLG Flags Register 
$38 CRGINT Interrupt Enable Register 
$39 CLKSEL Clock Select Register 
$3A PLLCTL PLL Control Register 
$3B RTICTL RTI Control Register 
$3C COPCTL COP Control Register 
$3D FORBYP *)Force and Bypass Test Register 
$3E CTCTL *)Test Control Register 
$3F ARMCOP COP Arm/Timer Reset 

 
b) Visa en typdeklaration i för hela CRG-modulen,  i form av en ’C’-struct, enligt följande: 

typedef struct sCRG{ 
  ... 
  ... 
}CRG, *PCRG ; 

 
c) Använd typdeklarationen i b) och visa en C-funktion  void  InitPLL(void).  Definiera och använd 

lämpliga symboliska namn för alla konstanter.  
 
d) Komplettera typdeklarationen från b) för de register som används av PLL-kretsen så att bitar och grupper av 

bitar deklareras som bitfält. 
 

e) Använd typdeklarationen i d) och visa en C-funktion  void  InitPLL2(void).  Definiera och använd 
lämpliga symboliska namn för alla konstanter. 
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4.4 Följande figur beskriver register som används för den enkla realtidsklockan hos HCS12 (se även figuren med 
översikt av CRG-modulen i uppgift 4.1): 

Clock Reset Generator  (CRG) 
Offset 7 6 5 4 3 2 1 0 Mnemonic Namn 

$37 
R 

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM 

CRGFLG Flags Register W  

$38 
R 

RTIE 
0 0 

LOCKIE 
0 0 

SCMIE
0 

CRGINT Interrupt Enable 
Register W      

$3B 
R 0 

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0 RTICTL RTI Control Register W  

 
RTR 
[3:0] 

RTR[6:4] 

 000 
(OFF) 

001 010 011 100 101 110 111 

0000 OFF 210 211 212 213 214 215 216 
0001 OFF 2x210 2x211 2x212 2x213 2x214 2x215 2x216 
0010 OFF 3x210 3x211 3x212 3x213 3x214 3x215 3x216 
0011 OFF 4x210 4x211 4x212 4x213 4x214 4x215 4x216 
0100 OFF 5x210 5x211 5x212 5x213 5x214 5x215 5x216 
0101 OFF 6x210 6x211 6x212 6x213 6x214 6x215 6x216 
0110 OFF 7x210 7x211 7x212 7x213 7x214 7x215 7x216 
0111 OFF 8x210 8x211 8x212 8x213 8x214 8x215 8x216 
1000 OFF 9x210 9x211 9x212 9x213 9x214 9x215 9x216 
1001 OFF 10x210 10x211 10x212 10x213 10x214 10x215 10x216 
1010 OFF 11x210 11x211 11x212 11x213 11x214 11x215 11x216 
1011 OFF 12x210 12x211 12x212 12x213 12x214 12x215 12x216 
1100 OFF 13x210 13x211 13x212 13x213 13x214 13x215 13x216 
1101 OFF 14x210 14x211 14x212 14x213 14x214 14x215 14x216 
1110 OFF 15x210 15x211 15x212 15x213 15x214 15x215 15x216 
1111 OFF 16x210 16x211 16x212 16x213 16x214 16x215 16x216 

Vårt system har en 10 MHz oscillator. Realtidsklockan ska programmeras för att generera periodiska avbrott 
med c:a 10ms intervall. Ledning: 3×215 pulser/period ger tillräcklig noggrannhet. Programpaketet ska bestå av 
delar implementerade såväl i assemblerspråk som i ’C’. 

En ”servicerutin”  void AtRTIrq(void) , i ’C’, ska anropas från en avbrottsrutin RTIRQ. 

Initieringsrutiner för klockfunktionen ska finnas både i assemblerspråk och ’C’. 

a) Implementera en subrutin RTINIT i assemblerspråk, alla adresser och bitar ska definieras med sina 
symbolnamn enligt figuren. Använd ledningen ovan för tidbasen. 

b) Vad blir den verkliga periodtiden? 
c) Implementera avbrottsrutinen RTIRQ som ska:  

1. Kvittera avbrottet,  
2. utföra AtRTIrq. 

d) Implementera en C-funktion void RTInit(void).  Definiera och använd lämpliga symboliska namn för 
alla konstanter. Använd typdeklaration från uppgift 4.1. 

 
C-funktionen AtRTIrq ska implementera en realtidsklocka, som underhåller en global variabel RealTime 
deklarerad enligt följande: 

REAL_TIME_TYPE RealTime; 
där: 

typedef struct tRealTime { 
 int t_irq; 
 int t_sec; 
 int t_min; 
 int t_hour; 
} REAL_TIME_TYPE; 

Du behöver inte ta hänsyn till begynnelsevärden. 

e) Implementera funktionen AtRTIrq. 
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4.5 Följande figur beskriver register som används för seriekommunikationskretsen (SCI) hos HCS12: 

Serial Communication Interface (SCI) 
Adress 7 6 5 4 3 2 1 0 Mnemonic Namn 

$C8 
R 0 0 0 

SBR12 SBR11 SBR10 SBR9 SBR8 SCIBDH Baud Rate Register 
High W    

$C9 
R 

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 SCIBDL Baud Rate Register 
Low W 

$CA 
R 

LOOPS SCISWAI RSRC M WAKE ILT PE PT SCICR1 Control Register 1 W 

$CB 
R 

TIE TCIE RIE ILIE TE RE RWU SBK SCICR2 Control Register 2 W 

$CC 
R TDRE TC RDRF IDLE OR NF FE PF 

SCISR1 Status Register 1 W         

$CD 
R 0 0 0 0 0 

BRK13 TXDIR 
RAF 

SCISR2 Status Register 2 W       

$CE 
R R8 

T8 
0 0 0 0 0 0 

SCIDRH Data Register High W        

$CF 
R R7 R6 R5 R4 R3 R2 R1 R0 

SCIDRL Data Register Low W T7 T6 T5 T4 T3 T2 T1 T0 

 
Enkla drivrutiner för denna seriekrets ska konstrueras, rutinerna specificeras av följande: 

void serial_init( void );   /* initiera gränssnittet */ 
void serial_out( char c );  /* skicka ett tecken via gränssnittet */ 
char serial_in( void );     /* ta mot ett tecken från gränssnittet */ 

serial_in  ska använda ”busy wait”, dvs. alltid returnera ett tecken. 
 
PLL-klockan har initierats för 25 MHz frekvens. Välj överföringshastigheten 57600 baud. Sambandet mellan 
baudrate och det värde BR (1-8191) som ska skrivas till SCIBDH/SCIBDL är: 

baudrate

PLLCLK
BR




16  
 
a) Bestäm värdet BR. 
b) Implementera en subrutin SERIAL_INIT i assemblerspråk, alla adresser och bitar ska definieras med sina 

symbolnamn enligt figuren ovan. 
c) Skapa en lämplig typdeklaration (C-struct) för seriekretsen, använd symboliska namn enligt figuren ovan. 
d) Implementera  void serial_init( void ) i ’C’. Definiera och använd lämpliga symboliska namn för 

alla konstanter. Använd typdeklarationen från c). 
e) Implementera en subrutin  SERIAL_IN  i assemblerspråk, alla adresser och bitar ska definieras med sina 

symbolnamn enligt figuren ovan. Returvärdet ska skickas i register B. 
f) Implementera  char serial_in( void ) i ’C’. Definiera och använd lämpliga symboliska namn för 

alla konstanter.  Använd typdeklarationen från c). 
g) Implementera en subrutin  SERIAL_OUT  i assemblerspråk, alla adresser och bitar ska definieras med sina 

symbolnamn enligt figuren ovan. Tecken som ska skrivas ut förutsätts finnas i register B vid anrop. 
h) Implementera   void serial_out( char c ) i ’C’.  Definiera och använd lämpliga symboliska namn 

för alla konstanter.  Använd typdeklarationen från c). 
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1  Grundläggande assemblerprogrammering 
1.1  

; 
; BlinkandeLjus1.s12 
; 
 
   ORG  $1000 
main:  JSR  BlinkB 
   BRA  main 
 

; uppgift a)  
BlinkA: LDAA  #$FF 
   STAA  $400 
   LDAA  #0 
   STAA  $400 
   BRA  BlinkA 
 

; uppgift b) 
BlinkB: LDAA  #$FF 
   STAA  $400 
   JSR  BLINKDELAY 
   LDAA  #0 
   STAA  $400 
   JSR  BLINKDELAY 
   BRA  BlinkB 
 
 
BLINKDELAY: 
   LDX  #$200 
BLINKDELAY1: 
   LEAX  -1,X 
   CPX  #0 
   BNE  BLINKDELAY1 
   RTS 

 

 

1.2 a), b)              
RLJUSH:   
   LDAA  #$80 
RLJUSH1:  
   STAA  $400 
   JSR  BLINKDELAY 
   RORA 
   BCS  RLJUSH 
   BRA  RLJUSH1 

 

 

 
 
 

 
 

 
  

 
 

c)  
 

 
c) 
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1.3    
b) 
RLJUSH16: 
    LDD  #$8000 
RLJUSH16_1: 
    STD  $400 
    JSR  BLINKDELAY 
    RORA 
    RORB 
    BCS  RLJUSH16 
    BRA  RLJUSH16_1 
 
 

 
 
 
 
 
1.4  

b) 
main:  
    JSR  DipSwitchOr 
    BRA  main 
 
DipSwitchOr: 
    LDAB  $600 
    ORAB  $601 
    STAB  $400 
    RTS 
 

1.5  
; Symboliska adresser 
DipSwitch EQU  $600 
HexDisp  EQU  $400 
 
; Subrutin DipHex 
DipHex:  LDAA  DipSwitch 
    CLRB 
  
DipHex10: TSTA 
    BEQ  DipHex20 
  
    INCB 
    LSRA 
    BCC  DipHex10 
  
DipHex20: STAB  $400 
    RTS 
 

1.6  
b) 
; Huvudprogram 
main:   JSR  AddUnsigned8bitTo16 
    BRA  main 
 
; Subrutin 
AddUnsigned8bitTo16: 
    LDAB  $600 
    CLRA 
    PSHD 
    LDAB  $601 
    ADDD  2,SP+ 
    STD  $400 
    RTS 
 
 
 
 

a) 

a) 

 

a) 
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1.7  
b) 
 
; Huvudprogram 
main:  JSR  AddSigned8bitTo16 
   BRA  main 
 
; Subrutin 
AddSigned8bitTo16: 
   LDAB  $600 
   SEX  B,D 
   PSHD 
   LDAB  $601 
   SEX  B,D 
   ADDD  2,SP+ 
   STD  $400 
   RTS 
 
 
 
 
 
 
 
 
 
 
 
 

1.8  
DipSwitch:  EQU  $600 
HexDisp:  EQU  $400 
 
DipHex2:  LDD  DipSwitch 
     MUL 
     STD  HexDisp 
     RTS 
 

1.9  
ML4_INPUT:   EQU   $0600 
ML4_OUTPUT:  EQU   $0400 
ERROR_CODE:  EQU  $5D 
 
DisplayNBCD:  LDX  #SegCodes   ; Pekare 
DisplayNBCD1:  LDAA  ML4_INPUT   ; Läs strömbrytare 
      BPL  DisplayNBCD2  ; Om Bit 7=0 
               ; Och ja, LDAA påverkar faktiskt både  
               ; N och Z flaggan 
      CLR  ML4_OUTPUT   ; Släck 
      BRA  DisplayNBCD1 
 
DisplayNBCD2:  ANDA  #$0F     ; Maska fram b3-b0 
      CMPA  #9      ; [0,9]? 
      BHI  DisplayNBCD3 
      LDAB  A,X     ; Hämta segmentkod för [0,9] 
      STAB  ML4_OUTPUT   ; Visa siffra 
      BRA  DisplayNBCD1 
 
DisplayNBCD3:  LDAB  #ERROR_CODE  ; Kod för E 
      STAB  ML4_OUTPUT   ; Visa siffra 
      BRA  DisplayNBCD1 
 
SegCodes    FCB  $77,$22,$5B,$6B,$2E,$6D,$7D,$23  

        FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18  
 
 
 
 

a) 



Exempelsamling i maskinnära programmering - lösningsförslag  5 

 

1.10  
Inport   EQU  $600      
UtportP   EQU  $400      
UtportQ   EQU  $401 
UtportR   EQU  $402 
ERROR_CODE: EQU  $5D    ; Segmentkod för E (Error) 
 
SumPQ:   LDX  #SegCodes  ; Pekare till tabell 
     LDAB  Inport   ; Läs inporten 
     TFR  B,A    ; Kopiera 
     LSRA       ; Skifta fram P 
     LSRA 
     LSRA 
     LSRA 
     MOVB  A,X,UtportP ; Skriv P 
     ANDB  #$0F    ; Maska fram Q 
     MOVB  B,X,UtportQ ; Skriv Q 
     ABA       ; Summan R 
     CMPA  #10    ; Giltigt värde 
     BLO  SumPQ_1   ; ..hoppa om JA 
     LDAB  #ERROR_CODE ; Skriv Error 
     STAB  UtportR 
     BRA  SumPQ 
SumPQ_1:  LDAB  A,X    ; Översätt R till Segmentkod 
     STAB  UtportR   ;.. och skriv ut 
     BRA  SumPQ 
 
SegCodes   FCB  $77,$22,$5B,$6B,$2E,$6D,$7D,$23  

       FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18  
 
 

1.11  
; Subrutin Display visar ett NBCD-tal i A på två sifferindikatorer 
; Indata: Register A, Ett NBCD-tal [0,99] 
Display:  LDX  #SegCodes  ; Pekare 
     TFR  A,B    ; Spara kopia 
; Register A används för EN-talen och... 
; Register B används för TIO-talen 
     LSRB       ; Skifta fram TIO-talen 
     LSRB 
     LSRB 
     LSRB 
     LDAB  B,X    ; ..och visa TIO-talen 
     STAB  UtPort1 
     ANDA  #$0F    ; Ta fram EN-talen 
     LDAA  A,X    ; ..och visa EN-talen 
     STAA  UtPort2 
     RTS 
 
; Subrutin Read laser inporten, spegelvänder data och lämnar detta i Register A 
Read    LDAB  InPort 
      LDX  #8     ; Skifta 8 bitar   
Read_1: 
     LSRB       ; Skifta ut... 
     ROLA        ; ... och in  
     DEX       Sista? 
     BNE  Read_1   ; Nej 
     RTS 
 
SegCodes   FCB  $77,$22,$5B,$6B,$2E,$6D,$7D,$23  

       FCB $7F,$6F,$3F,$7C,$55,$7A,$5D,$18  
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2  Grundläggande programmering i ’C’ 
2.1  

a) 0..255 
b) –126..127 
c) 0..65535 
d) –32768..32767 
e) –32768..32767 
 

2.2  
a) 0.. 4294967295 
b) –2147483648.. 2147483647 
 
 

2.3   
auto  : synlig endast i den funktion den deklarerats. 
static : synlig endast i den källtextfil den deklarerats. 
global : synlig från alla programdelar.  

 
2.4  

int    a; 
static int sia; 
extern int eia; 
 
void f( void) 
{ 
 int  b; 
 auto  int aib; 
 static int sib; 
 extern int eib; 
} 
 

2.5  
a) (( unsigned char *) 0x400) 
b) (( signed char *) 0x400) 
c) (( unsigned short *) 0x400) 
d) (( signed short *) 0x400) 
 

2.6  
#include <stdint.h> 

a) (( uint8_t *) 0x400) 
b) (( int8_t *) 0x400) 
c) (( uint16_t *) 0x400) 
d) (( int16_t *) 0x400) 
 

2.7  
a)  
typedef  void (* function1 )(void); 
#define  reentry ((function1) (0xC00F)) 
b) 
typedef  void (* function2 )(char); 
#define  outcha  ((function2) (0xC006)) 
c) 
typedef char (* function3 )(void); 
#define tstcha  ((function3) (0xC003)) 
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2.8 a) 

typedef struct { 
 int t, n; 
} rat_tal; 
b) 
rat_tal add(rat_tal r1, rat_tal r2)  
{ 
 rat_tal res; 
 res.t = r1.t*r2.n + r2.t*r1.n; 
 res.n = r1.n*r2.n; 
 return res; 
} 
rat_tal mul(rat_tal r1, rat_tal r2)  
{ 
 rat_tal res; 
 res.t = r1.t*r2.t; 
 res.n = r1.n*r2.n; 
 return res; 
} 
 

2.9 a) 
int strlen (const char *s) 
{ 
 const char *p=s; 
 while (*p++) 
  ; 
 return p-1-s; 
} 
b) 
int strlen (const char *s) 
{ 
 int i=0; 
 while ( s[i] ) 
  i++; 
 return i; 
} 
c)  
// pekare 
;  int strlen (const char *s)  
_strlen: 
; { 
 LEAS -2,SP 
;   const char *p=s; 
 LDD 4,SP 
 STD 0,SP 
;   while (*p++) 
_1: 
 LDX 0,SP 
 TST 1,X+ 
 STX 0,SP 
 BNE _1 
;    ; 
;    return p-1-s; 
 LDD 0,SP 
 SUBD 4,SP 
 LDX #-1 
 LEAX D,X 
 TFR X,D 
; } 
 LEAS 2,SP 
 RTS 

 

// indexering 
; int strlen (const char *s)  
_strlen: 
; { 
 LEAS -2,SP 
;  int i=0; 
 CLRA 
 CLRB 
 STD 0,SP 
;  while ( s[i] ) 
_1: 
 LDD 0,SP 
 ADDD 4,SP 
 TFR D,X 
 TST 0,X 
 BEQ _2 
;   i++; 
 LDX 0,SP 
 INX 
 STX 0,SP 
 BRA _1 
_2: 
;  return i; 
 LDD 0,SP 
; } 
 LEAS 2,SP 
 RTS 
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2.10 a) 

void strcpy (char *s1, const char *s2)  
{ 
 while (*s1++ = *s2++) 
  ; 
} 
b) 
void strcpy (char *s1, const char *s2)  
{ 
 int i = 0; 
 while (s1[i] = s2[i]) 
  i++; 
} 
c) 
// pekare 
; void strcpy (char *s1, const char *s2)   
_strcpy: 
; { 
;  while (*s1++ = *s2++) 
_1: 
 LDX 2,SP 
 LDY 4,SP 
 LDAB 1,Y+ 
 STAB 1,X+ 
 STX 2,SP 
 STY 4,SP 
 TSTB 
 BNE _1 
;   ; 
; } 
 RTS 

// indexering 
; void strcpy (char *s1, const char *s2)   
_strcpy: 
; { 
 LEAS -3,SP 
;  int i = 0; 
 CLRA 
 CLRB 
 STD 1,SP 
;  while (s1[i] = s2[i]) 
_1: 
 LDD 1,SP 
 ADDD 7,SP 
 TFR D,X 
 LDAB 0,X 
 STAB 0,SP 
 LDD 1,SP 
 ADDD 5,SP 
 TFR D,X 
 LDAB 0,SP 
 STAB 0,X 
 TSTB 
 BEQ _2 
;   i++; 
 LDX 1,SP 
 INX 
 STX 1,SP 
 BRA _1 
_2: 
; } 
 LEAS 3,SP 
 RTS 
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2.11  

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
double nollstalle(double (*f)(double), double a, double b, double eps) 
{ 
 if (f(a) > 0 && f(b) < 0) 
 {  // byt a och b 
  double temp = a; 
  a=b; b=temp; 
 } 
 if (!(f(a) < 0 && f(b) > 0)) 
 { 
  printf("Nollställe saknas\n"); 
  exit(99); 
 } 
   // nu gäller f(a) < 0 < f(b) 
   while (fabs(a-b) > eps) 
   { 
     double xm=(a+b)/2, fm=f(xm); 
     if (fm < 0) 
       a=xm; 
     else if (fm > 0) 
       b=xm; 
     else 
       return xm;  // Vi råkade finna nollstället 
   } 
   return (a+b)/2; 
 } 
 

2.12  
typedef unsigned char *port8ptr; 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR 0x600  
 
#define ML4OUT *((port8ptr) ML4OUT_ADR) 
#define ML4IN *((port8ptr) ML4IN_ADR) 
 
void blinkdelay( void ) 
{ 
 int i; 
 for( i = 0; i < 0x300 ; i++ ); 
} 
 
void blink( void ) 
{ 
 ML4OUT = 0xFF;  
 blinkdelay(); 
 ML4OUT = 0; 
 blinkdelay(); 
} 
 
void main( void ) 
{ 
 while( 1 ) 
 { 
  blink (); 
 } 
} 
  



Exempelsamling i maskinnära programmering - lösningsförslag  10 

 

 
2.13  

typedef unsigned char *port8ptr; 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR 0x600  
 
#define ML4OUT *((port8ptr) ML4OUT_ADR) 
#define ML4IN *((port8ptr) ML4IN_ADR) 
 
void blinkdelay( void ) 
{ 
 int i; 
 for( i = 0; i < 0x200 ; i++ ); 
} 
 
void rljush( void ) 
{ 
 unsigned char c = 0; 
 while( 1 ) 
 { 
  if( c == 0 ) 
   c = 0x80; 
  ML4OUT = c; 
  blinkdelay(); 
  c = c >> 1 ; 
 }  
} 
 
void main( void ) 
{ 
 rljush (); 
} 

 
2.14  

typedef unsigned int *port16ptr; 
#define ML4OUT_ADR 0x400 
 
#define ML4OUT16 *((port16ptr) ML4OUT_ADR) 
 
void blinkdelay( void ) 
{ 
 int i; 
 for( i = 0; i < 0x200 ; i++ ); 
} 
 
 
void rljush16( void ) 
{ 
 unsigned int c = 0; 
 while( 1 ) 
 { 
  if( c == 0 ) 
   c = 0x8000; 
  ML4OUT16 = c; 
  blinkdelay(); 
  c = c >> 1 ; 
 }  
} 
 
void main( void ) 
{ 
 rljush16 (); 
} 
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2.15  
typedef unsigned char *port8ptr; 
 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR1 0x600  
#define ML4IN_ADR2 0x601  
 
#define ML4OUT *((port8ptr) ML4OUT_ADR) 
#define ML4IN1 *((port8ptr) ML4IN_ADR1) 
#define ML4IN2 *((port8ptr) ML4IN_ADR2) 
 
void DipSwitchOr( void ) 
{ 
 unsigned char c; 
 while( 1 ) 
 { 
  c = ML4IN1 | ML4IN2; 
  ML4OUT = c; 
 }  
} 
 
void main( void ) 
{ 
 DipSwitchOr (); 
}  
 
 

2.16  
typedef unsigned char *port8ptr; 
 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR 0x600  
 
#define ML4OUT *((port8ptr) ML4OUT_ADR) 
#define ML4IN *((port8ptr) ML4IN_ADR) 
 
void ff1( void ) 
{ 
 unsigned char pattern, bitpos; 
 while( 1 ) 
 { 
  pattern = ML4IN; 
  
  if( ! pattern ) 
   bitpos = 0; 
  else{ 
   for( bitpos = 1; bitpos < 8; bitpos++ ) 
   { 
    if( pattern & 1 ) 
     break; 
    pattern >>= 1; 
   } 
  } 
  ML4OUT = bitpos; 
 }  
} 
 
 
void main( void ) 
{ 
 ff1 (); 
} 
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2.17  
typedef unsigned char  *port8ptr; 
typedef unsigned short  *port16ptr; 
 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR1 0x600  
#define ML4IN_ADR2 0x601  
 
#define ML4OUT16 *((port16ptr) ML4OUT_ADR) 
 
#define ML4IN1 *((port8ptr) ML4IN_ADR1) 
#define ML4IN2 *((port8ptr) ML4IN_ADR2) 
 
void AddUnsigned8bitTo16( void ) 
{ 
 unsigned short int s; 
 while( 1 ) 
 { 
  s = ( unsigned short ) ML4IN1; 
  s = s + ( unsigned short ) ML4IN2; 
  ML4OUT16 = s; 
 }  
} 
 
void main( void ) 
{ 
 AddUnsigned8bitTo16 (); 
} 
 

2.18  
typedef  char  *port8ptr; 
typedef  short *port16ptr; 
 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR1 0x600  
#define ML4IN_ADR2 0x601  
 
#define ML4OUT16 *((port16ptr) ML4OUT_ADR) 
 
#define ML4IN1 *((port8ptr) ML4IN_ADR1) 
#define ML4IN2 *((port8ptr) ML4IN_ADR2) 
 
void AddSigned8bitTo16( void ) 
{ 
 short s; 
 while( 1 ) 
 { 
  s = ( short ) ML4IN1; 
  s = s + ( short ) ML4IN2; 
  ML4OUT16 = s; 
 }  
} 
 
 
void main() 
{ 
 AddSigned8bitTo16 (); 
} 
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2.19  

 
typedef unsigned char  *port8ptr; 
typedef unsigned int  *port16ptr; 
 
#define ML4OUT_ADR 0x400 
#define ML4IN_ADR1 0x600  
#define ML4IN_ADR2 0x601  
 
#define ML4OUT16 *((port16ptr) ML4OUT_ADR) 
 
#define ML4IN1 *((port8ptr) ML4IN_ADR1) 
#define ML4IN2 *((port8ptr) ML4IN_ADR2) 
 
void DipHex( void ) 
{ 
unsigned short int s; 
 while( 1 ) 
 { 
  s = ( unsigned short ) ML4IN1; 
  s = s * ( unsigned short ) ML4IN2; 
  ML4OUT16 = s; 
 }  
} 

 
2.20  

 typedef unsigned char  *port8ptr; 
 
 #define ML4OUT_ADR1 0x400 
 #define ML4OUT_ADR2 0x401 
 #define ML4IN_ADR1 0x600  
 #define ML4IN_ADR2 0x601  
 
 #define ML4OUT1 *((port8ptr) ML4OUT_ADR1) 
 #define ML4OUT2 *((port8ptr) ML4OUT_ADR2) 
 
 #define ML4IN1 *((port8ptr) ML4IN_ADR1) 
 #define ML4IN2 *((port8ptr) ML4IN_ADR2) 
 
 void DivModHex( void ) 
 { 
  unsigned char q,r,pa; 
  pa = ML4IN2; 
  if( pa != 0 ) 
  { 
   q = ML4IN1/pa; 
   r = ML4IN1%pa; 
  }else{ 
   q = 0xFF; 
   r = 0xFF; 
  } 
  ML4OUT1 = q; 
  ML4OUT2 = r; 
 } 

 
2.21  

typedef unsigned char  *port8ptr; 
 
#define ML4OUT  *((port8ptr) 0x400) 
#define ML4IN  *((port8ptr) 0x600) 
#define ERROR_CODE 0x5D 
 
unsigned char SegCodes[]={ 0x77,0x22,0x5B,0x6B,0x2E,0x6D,0x7D,0x23, 
            0x7F,0x6F,0x3F,0x7C,0x55,0x7A,0x5D,0x18 }; 
 
 
void DisplayNBCD( void ) 
{ 
 char c; 
 while( 1 ) 
 { 
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  c = ML4IN; 
  if( c & 0x80 ) 
  { 
   ML4OUT = 0; 
  }else{ 
   if( ( c & 0xF ) < 10 ) 
    ML4OUT = SegCodes[c & 0xF]; 
   else 
    ML4OUT = ERROR_CODE; 
  }  
 }  
} 
 
void main() 
{ 
 DisplayNBCD(); 
} 
 
 

2.22  
typedef unsigned char *port8ptr; 
 
#define OUT *((port8ptr) 0x400) 
#define IN1 *((port8ptr) 0x600) 
#define IN2 *((port8ptr) 0x601) 
 
void DipSwitchEor( void ) 
{ 
 while( 1 ) 
 { 
  OUT = IN1 ^ IN2; 
 }  
} 

2.23  
typedef unsigned char * port8ptr; 
#define DISPLAY *((port8ptr) 0x400) 
#define DIPSWITCH1 *((port8ptr) 0x600) 
#define DIPSWITCH2 *((port8ptr) 0x601) 
 
void CondRunDiode( void ) 
{ 
unsigned char value; 
value = 0x80;     /* initialvärde */ 
while( 1 ) 
{ 
 if( DIPSWITCH1 > DIPSWITCH2 ) 
 { /* ljus rinner åt vänster */ 
  DISPLAY = value; 
  value = value << 1; 
  if( value == 0 ) /* över kanten? ... */ 
   value = 1;   /* böja om från höger */  
 }else if ( DIPSWITCH1 < DIPSWITCH2 ) 
 { /* ljus rinner åt höger */ 
  DISPLAY = value; 
  value = value >> 1; 
  if( value == 0 ) /* över kanten? ... */ 
   value = 0x80;  /* böja om från vänster */ 
  
 }else  /* ljus står still */ 
  DISPLAY = value; 
}  
} 
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2.24  

//////////////////////////////////////////////////////////// 
// I filen ports.h: 
typedef unsigned char *portptr; 
 
// Keyboard (ML5) 
#define ML5KEYB_CTRL_ADR     0xC00 
#define ML5KEYB_STAT_ADR     0xC01 
#define ML5KEYB_CTRL         *((portptr) ML5KEYB_CTRL_ADR) 
#define ML5KEYB_STAT         *((portptr) ML5KEYB_STAT_ADR) 
 
//////////////////////////////////////////////////////////// 
// Filen clock.h 
 
typedef unsigned long int time_type;  // enhet: ms 
void hold(time_type);                 // argument = antal ms 
 
//////////////////////////////////////////////////////////// 
// Filen keyboardML5.c 
 
#include "keyboardML5.h" 
#include "ports.h" 
#include "clock.h" 
 
int keyb(void)  
{ 
 int radnr, kolnr; 
 unsigned int radbit, kolbits; 
 unsigned int kolmask = 0xf;      // markerar vilka kolumner som används 
 // tabell för avkodning av kolumnbitar, -1 markerar fel  
 int decode[16] = { -1, -1, -1, -1, -1, -1, -1,  3,  
        -1, -1, -1,  2, -1,  1,  0, -1}; 
 
 // vänta tills alla tangenter är uppe 
 ML5KEYB_CTRL = 0xf;                            // aktivera alla rader 
 while ((ML5KEYB_STAT & kolmask) != kolmask)    // är någon tangent nedtryct? 
  ; 
 
 // upprepa tills någon tangent trycks ner 
 while (1) { 
  // löp igenom alla rader och låt 'radbit' markera insignalerna 0-3 
  for (radnr=0, radbit=0x1; radnr<4 ; radnr++, radbit<<=1) { 
   ML5KEYB_CTRL = radbit;      // aktivera raden 
   kolbits = ML5KEYB_STAT & kolmask;  // avläs kolumnerna 
   if (kolbits != kolmask) {     // är någon tangent på raden nedtryckt? 
    hold(200);          // ja, vänta 200 ms 
    // avläs kolumnerna igen 
    if ((ML5KEYB_STAT & kolmask) == kolbits) { // fortfarande intryckt? 
     kolnr = decode[kolbits];      // ger kolumnnumret för nollan 
     return 4*(3-kolnr) + radnr; 
    } 
   } 
  } 
 } 
} 
 

2.25  
 

  a) 
_a   RMB  1 
_b   RMB  1 
_c   RMB  1 
b) 

LDAB  _b 
PSHB 
LDAB  _a 
PSHB 
JSR  _min 

   LEAS  2,SP 
STAB  _c 
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2.26  
  a) 

_a   RMB  2 
_b   RMB  2 
_c   RMB  2 
b) 

LDD  _b 
PSHD 
LDD  _a 
PSHD 
JSR  _min 

   LEAS  4,SP 
STD  _c 

 
2.27 a) 

_a   RMB  2 
_b   RMB  2 
_c   RMB  2 
b) 

LDD  _b 
PSHD 
LDD  _a 
PSHD 
JSR  _min 

   LEAS  4,SP 
STD  _c 

 
2.28 a) 

_cp  RMB  2 
b) 
   LDX  #_cp 
   PSHX 
   JSR  _identify 
   LEAS  2,SP 
   STD  _cp 
 

2.29 a)  LEAS  -2,SP 
b) 

Parameter/ 
variabel 

adressering 

a 4,SP 
b 0,SP 

 
2.30  
  a)  LEAS  -4,SP 

b) 
Parameter/ 

variabel 
adressering 

a 8,SP 
b 6,SP 
c 2,SP 
d 0,SP 

 
2.31  
  a)  LEAS  -5,SP 

b) 
Parameter/ 

variabel 
adressering 

a 12,SP 
b 11,SP 
c 7,SP 
d 4,SP 
e 0,SP 
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2.32  

; void f1( unsigned char c ) 
_f1: 
; { 
;  *( unsigned char *) 0x600 = c ; 
  LDAB  2,SP 
  STAB  $600 
;  delay(); 
  JSR  _delay 
;  c = c >> 1; 
  LDAB  2,SP 
  LSRB 
  STAB  2,SP 
;  *( unsigned char *) 0x600 = c ; 
  STAB  $600 
; } 
  RTS 
 
 
 

2.33  
void printerprint( char *s ) 
_printerprint: 
; { 
;  while( *s ) 
  LDX  2,SP 
printerprint1: 
  TST  ,X 
  BEQ  printerprint2 
;   { 
;    while( !( STATUS & 1) ) 
;   {} 
printerprint3: 
  LDAB  $0701 
  ANDB  #$01 
  BEQ  printerprint3 
 
;   DATA = *s; 
  LDAB  1,X+ (även ’s++’ nedan) 
  STAB  $0700 
;   s++; 
  BRA  printerprint1 
printerprint2: 
;   } 
; } 
  RTS 

2.34  
; void shortdelay( void ) 
_shortdelay: 
; { 
;  volatile unsigned char c; 
  LEAS  -1,SP 
;  for( c = 0; c < 0x200 ; c++ ); 
  CLR  0,SP 
_1: 
  LDAB  0,SP 
  CMPB  #$200 
  BGE  _2 
  INC  0,SP 
  BRA  _1 
_2: 
; } 
  LEAS  1,SP 
  RTS 
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2.35  
; void shortdelay( void ) 
_shortdelay: 
; { 
;  unsigned char c; 
;  for( c = 0; c < 0x200 ; c++ ); 
  CLRB 
_1: 
  CMPB  #$200 
  BGE  _2 
  INCB 
  BRA  _1 
_2: 
; } 
  RTS 

2.36  
; void printchar( char c ) 
_printchar: 
; { 
;  while( *((volatile unsigned char *) 0x600) ) 
_1: 
  TST  $600 
  BNE  _1 
;   ; 
;   *((unsigned char *) 0x400) = c; 
  LDAB  2,SP 
  STAB  $400 
; } 
  RTS 

2.37  
; void printmul( void ) 
_printmul: 
; { 
;  unsigned short int s; 
  LEAS  -2,SP 
;  s = ( unsigned short ) (*((unsigned char *) 0x600) ); 
  LDAB  $600 
  CLRA 
  STD  0,SP 
;  s = s * ( unsigned short ) (*((unsigned char *) 0x601) ); 
  LDAB  $601 
  TFR  D,Y 
  LDD  0,SP 
  EMUL 
  STD  0,SP 
;  *((unsigned short int *) 0x400) = s; 
  STD  $400 
; } 
  LEAS  2,SP 
  RTS 

2.38 a) 
_getCCR: 
  TFR  CCR,B 
  RTS 
b) 
_setCCR: 
  LDAB  2,SP 
  TFR  B,CCR 
  RTS 
 

2.39  
I den första lösningen är stacken balanserad då RTI utförs, det är dock inte fallet i den andra lösningen eftersom 
en lokal variabel deklarerats och epilogen (som balanserar stacken i funktionen) alltid placeras sist dvs. EFTER 
den infogade RTI-instruktionen. 
 



Exempelsamling i maskinnära programmering - lösningsförslag  19 

 

3  Undantagshantering 
3.1 a) 

******************************************************************* 
* AVBROTTSRUTIN-IRQCNT 
* Beskrivning:  Läs 8-bitars tal (tvåkomplement) från port ($0600).  
*       Typkonvertera och addera till 32-bitars tal (IRQVAR)  
*       Kvittera avbrott (skrivning till adress $0DC2) 
* Anrop:    via IRQ 
******************************************************************* 
IRQIN   EQU   $0600 
IRQCLR  EQU   $0DC2 
 
IRQCNT:  DES       ; plats för tecken-byte 
     LDAB   IRQIN   ; läs 8 bitar 
     SEX   B,D   ; teckenutvidga till 16 bitar i D 
     STAA   0,SP   ; spara tecken-byte 
     ADDD   IRQVAR+2  ; addera bit0-15  
     STD   IRQVAR+2 ; uppdatera bit 0-15 
     LDD   IRQVAR  ; bit 16-31 
     ADCB   0,SP   ; addera bit 16-23 
     ADCA   0,SP    ; addera bit 24-31 
     STD   IRQVAR 
     CLR   IRQCLR  ; nollställ avbrottsvippan 
     INS       ; återställ stacken 
     RTI 
 
IRQVAR  RMB   4 
 
b) 
******************************************************************* 
* SUBRUTIN-IRQINIT 
* Beskrivning:  Rutinen nollställer D-vippan, lägger in adressen  
*       till avbrottsrutinen på adressen $3FF2 och  
*       förbereder systemet för avbrott genom att I-flaggan  
*       nollställs. 
* Anrop:    JSR  IRQINIT 
******************************************************************* 
IRQINIT: MOVW   #0,IRQVAR   ; Init Var 
    MOVW   #0,IRQVAR+2 
    CLR   IRQCLR    ; nollställ avbrottsvippan 
     MOVW   #IRQCNT,$3FF2  ; avbrottsvektor 
     CLI          
     RTS 
 

3.2  
Övervakningsprogrammet startas med ett RESET som leder till följande programavsnitt: 
INIT:   LDS  BOS   ; Efter RESET skall stacken initieras och 
    LDAB  $0801   ; avbrottsvipporna nollställas 
    LDAB  $0802   ; (dummyläs $0801 och $0802) 
    CLI      ; Därefter skall IRQ-ingången demaskeras och  
     JMP  CONTROL  ; övervakningen startas 
Övervakningen sker huvudsakligen m h a avbrottsrutinen IRQALARM, som anropar väsentliga subrutiner 
IRQALARM: LDAB  $0800   ; avgör vad som begärt avbrott 
     BITB  #%00000001 ; kassan? 
     BEQ  L1 
     BITB  #%00000010 ; både kassan och vakt? 
     BEQ  L2    ; bara kassan 
    LDAB  $0801   ; tillåt registrering av nya avbrottsbegäran 
    LDAB  $0802 
     BSR  CHAOS   ; reglera för avbrott från både kassan och vakt 
     BRA  L3 
L2:   LDAB  $0802   ; tillåt registrering av ny avbrottsbegäran från kassan 
     BSR  ENTRANCE ; reglera för avbrott från enbart kassan 
     BRA  L3 
L1:   LDAB  $0801   ; tillåt registrering av ny avbrottsbegäran från vakt 
     BSR  GUARD   ; reglera för avbrott från enbart vakt 
L3:   RTI 
 
 



Exempelsamling i maskinnära programmering - lösningsförslag  20 

 

3.3 a)  Ur ingångssignalerna till NAND-grinden kan man dra slutsatsen att  
 CS’ = [VMA(R/W)’A15’A14’A13A12A11’A10’A9’A8’A7’A6’A5’A4’A3’A2’A1’A0’]’ 
vilket innebär att adressen är (0011 0000 0000 0000)2 = $3000 
 
****************************************************************** 
* Subroutine INISTR 
* 
* Utför initieringar för avbrottsstyrd utmatning av tecken från 
* parallell inport till skrivare 
*  
* INPUT:  Pekare till första tecken i sträng i X 
* OUTPUT: Inga 
* 
* Registerpåverkan: Inga 
* 
******************************************************************* 
 
INISTR:   PSHS  X 
     STX  STRPNT    ; initierar strängpekare i minnet 
     LDX  #PRIRQ    ; initierar avbrottsvektorn för IRQ 
     STX  $3FF2 
     CLR  $3000     ; matar ut ASCII-tecknet 00h (NUL) 
            ; nollställer avbrottsvippan 
     PULS  X 
     CLI        ; nollställer I-flaggan för att tillåta IRQ 
     RTS 
 
 
******************************************************************* 
* Interruptroutine PRIRQ 
* 
* Kopierar tecken från teckensträng till parallellutport. 
* Kopieringen avslutas när tecknet “NUL” = 00H upptäcks. 
*  
* INPUT: Pekare till första tecken i sträng på adress STRPNT 
* OUTPUT: Inga 
* 
* Registerpåverkan: Inga 
******************************************************************* 
PRIRQ:   LDX  STRPNT 
     LDAB  1,X+ 
     STX  STRPNT   ; uppdaterar strängpekare 
     TSTB       ; sätter flaggor utifrån A 
     BNE  GO_ON 
     PULS  A     ; strängslut: stänger av avbrott; hämtar CC från stacken 
     ORAA  #%00010000  ; nollställer I-flaggan 
     PSHS  A     ; lägger tillbaka på CC’s läge i stacken 
     BRA  RET 
GO_ON:   STAB  $3000    ; matar ut ASCII-tecken 
RET:    RTI 
 
3.7 
TEMP rmb  2  Avbrottsräknare (1000 IRQ = 1s) 
 
IRQINIT:  MOVW  #$2359,CLOCK  ; Init klockan tt:mm:ss 
      MOVB  #$59,CLOCK+2 
      MOVW  #1000, TEMP  ; Avbrottsräknare 
      CLR  IRQRES    ; nollställ avbrottsvippan 
      MOVW  #IRQ, $3ff2  ; avbrottsvektor 
     CLI          
      RTS 
 
IRQ:    CLR  IRQRES    ; nollställ avbrottsvippan 
      LDX  TEMP     ; 1000 avbrott? 
      LEAX  -1,X        
      STX  TEMP 
      BNE  IExit     ; nej 
     MOVW  #1000, TEMP  ; Avbrottsräknare 
 * Minska sekunder 
      LDAA  CLOCK+2     
      SUBA  #1 
      DAA 
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      STAA  CLOCK+2    ; Hel minut? 
      BPL  IExit     ; nej 
 * Minska minuter 
      MOVB  #$59,CLOCK+2  ; 59 nya sekunder  
      LDAA  CLOCK+1     
      ADDA  #-1 
      DAA 
      STAA  CLOCK+1    ; Hel timme? 
      BPL  IExit     ; nej 
 * Minska timmar 
      MOVB  #$59,CLOCK+1  ; 59 nya minuter  
      LDAA  CLOCK     
      ADDA  #-1 
      DAA 
      STAA  CLOCK     ; 24 timmar? 
      BPL  IExit     ; nej 
 
* Stanna klockan på något sätt! 
* Använd någon global variabel och kolla om klockan är noll eller 
* se till att förhindra framtida avbrott 
      LDAA  0,sp     ; Ettställ I-flaggan 
      ORAA  #$10  
      STAA  0,sp 
      MOVW  #0,CLOCK   ; Nolla klockan  
     CLR  CLOCK+2 
IExit:   RTI     
 

3.8  a) 
IrqRut:   LDAA  IrqStat    ; Läs statusflaggorna 
     LSRA 
     BCC  EjB0 
     JSR  DSR0     ; Serva enhet 0 
     BRA  IrqExit 
 
EjB0:    LSRA 
     BCC  EjB1 
     JSR  DSR1     ; Serva enhet 1 
     BRA  IrqExit 
 
EjB1:    LSRA 
     BCC  EjB2 
     JSR  DSR2     ; Serva enhet 2 
     BRA  IrqExit 
 
EjB2:    JSR  DSR3     ; Serva enhet 3 
 
IrqExit:  CLR IrqVippa 
     RTI 

b) Vi tappar avbrott om avbrott inträffar mellan instruktionerna ldaa IrqStat och clr  IrqVippa. 

c) Risken minskas om instruktionen clr  IrqVippa placeras direkt efter ldaa IrqStat. 

d) Välja hårdvara där vi har möjlighet att bestämma vilken av de fyra avbrottskällorna vi skall kvittera. 
Exempelvis 4 avbrottsvippor med separata RESET-möjligheter 

3.9   
// I filen ports.h 
typedef void (*vec) (void); 
typedef vec *vecptr; 
typedef unsigned int port; 
typedef port *portptr; 
#define set(r, mask)    (r) = (r) | mask; 
#define clear(r, mask)  (r) = (r) & ~(mask); 
 
// Klockregistret 
#define CLOCKREG_ADR     0x1230 
#define CLOCKREG         *((portptr) CLOCKREG_ADR) 
 
#define CLOCK_VEC_ADR      0xFF70   // Adress till avbrottsvektor 
#define CLOCK_VEC          *((vecptr) CLOCK_VEC_ADR) 
 
// Sensorerregistret 
#define SENSORREG_ADR     0x1234 
#define SENSORREG         *((portptr) SENSORREG_ADR) 
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#define SENSOR_VEC_ADR      0xFF80   // Adress till avbrottsvektor 
#define SENSOR_VEC          *((vecptr) SENSOR_VEC_ADR) 
 
#define enable_bit        0x01 
#define intr_bit          0x40 
#define done_bit          0x80 
 
 
// I filen tidtagare.c 
#include "ports.h" 
 
void display(long); 
void sensortrap(void); 
void clocktrap(void); 
 
#define TIME_INTERVAL  2 
 
static long int tick = 0; 
static int started = 0; 
static int stopped = 0; 
 
void init_clock(void) { 
  CLOCK_VEC = clocktrap; 
  set(CLOCKREG, intr_bit); 
}   
 
void clockinter(void) { 
  clear(CLOCKREG, done_bit); 
  tick++; 
} 
 
void init_sensor(void) { 
  SENSOR_VEC = sensortrap; 
  port shadow = 0; 
  set(shadow, enable_bit); 
  set(shadow, intr_bit); 
  SENSORREG = shadow; 
} 
 
void sensorinter(void) {  
  clear(SENSORREG, done_bit); 
  if (!started) { 
    set(CLOCKREG, enable_bit);  
    started = 1; 
  } 
  else { 
    clear(CLOCKREG, enable_bit);  
    stopped = 1; 
  } 
} 
 
int main() { 
  long int next; 
  init_clock(); 
  init_sensor();  
  display(0); 
  while (!started)  
    ; 
  while(!stopped) { 
    display(tick * TIME_INTERVAL / 10); 
    /* vänta 0.01 sek */ 
    next = tick + 10 / TIME_INTERVAL; 
    while(tick < next) 
      ; 
  } 
  display(tick * TIME_INTERVAL / 10); 
} 
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4 Programmering av periferikretsar 
4.1 a)  

typedef struct sPortP{ 
 volatile unsigned char ddr; 
 volatile unsigned char data; 
}PORTP, *PPORTP; 
#define  PORTP_BASE 0x700 
#define  portP ((PORTP *)(PORTP_BASE))   
 
void portPinit( void ) 
{ 
 portP->ddr = ~0xE0;  
} 
b) 
unsigned char inPortP( void ) 
{ 
return (( portP->data & 0xE0 )>> 5)  ; 
} 
c) 
void outPortP( unsigned char c ) 
{ 
 portP->data = c & 0x1F ; 
} 

 
4.2 a) 

typedef  struct sPortP{ 
 volatile unsigned char ddr; 
 volatile unsigned char icie; 
 volatile unsigned char data; 
}PORTP; 
#define  PORTP_BASE 0x700 
#define  portP ((PORTP *)(PORTP_BASE))   
 
void portPinit( void ) 
{ 
 portP->ddr = 0x0F;  /* b7-b4 inport, b3-b0 utport */ 
 portP->icie = 0xF0; /* b7-b4 inportar, avbrott aktiveras */ 
} 
b) 
void outPortP( unsigned char c ) 
{ 
 portP->data = c & 0x0F ; /* b7-b4 ska vara 0 */ 
} 
c) 
void irqPortP( void ) 
{ 
 switch( portP->data & 0cF0 )  /* bestäm avbrottskälla */ 

{ /* kvittera avbrott */ 
 case 0x80: portP-> icie = 0x80; break; 
 case 0x40: portP-> icie = 0x40; break; 
 case 0x20:  portP-> icie = 0x20; break; 
 case 0x10:  portP-> icie = 0x10; break; 
} 

} 
d) 
Assembler: 
; initieringar i huvudprogram... 
 IMPORT _irqPortP 
 
 MOVW  #PortPirq,$FFF2 
 CLI 
 
; avbrottsrutin 
PortPirq: 
 JSR  _irqPortP 
 RTI 
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4.3 a)  
; Adressdefinitioner för register 
REFDV  EQU $35 
SYNR   EQU $34 
CRGFLG  EQU $37 
CLKSEL  EQU $39 
; Bitdefinitioner 
PLLSEL  EQU $80 
LOCK   EQU 8 
 
; Registervärden 10MHz oscillator, 25 MHz busfrekvens 
SYNRVal: EQU 5 
REFDVVal: EQU 4 
 
: Generisk kod för programmerad arbetstakt... 
PLLINIT: MOVB #REFDVVal,REFDV  
    MOVB #SYNRVal,SYNR 
PLLINIT_1:  
    BRCLR CRGFLG,#LOCK, PLLINIT_1  ; vänta tills PLL låst... 
    BSET CLKSEL,#PLLSEL     ; växla systemklocka till PLL. 
    RTS 
b) 
typedef struct sCRG{ 
 volatile unsigned char SYNR; 
 volatile unsigned char REFDV; 
 volatile unsigned char CTFLG; 
 volatile unsigned char CRGFLG; 
 volatile unsigned char CRGINT; 
 volatile unsigned char CLKSEL; 
 volatile unsigned char PLLCTL; 
 volatile unsigned char RTICTL; 
 volatile unsigned char COPCTL; 
 volatile unsigned char FORBYP; 
 volatile unsigned char CTCTL; 
 volatile unsigned char ARMCOP; 
}CRG, *PCRG ; 
c) 
#define  CRG_BASE 0x34   /* Basadress för CRG-modulen */ 
#define  SYNRVal  5    
#define  REFDVVal 4    
 
#define  PLLSEL  0x80  /* Bitdefinitioner */  
#define  LOCK   8    
 
void InitPLL(void) 
{ 
 ( ( ( PCRG ) ( CRG_BASE ))->refdv ) = REFDVVal; 
 ( ( ( PCRG ) ( CRG_BASE ))->synr ) = SYNRVal; 
 /* vänta tills PLL låst... */ 
 while( (( ((volatile PCRG) (CRG_BASE))->crgflg ) & LOCK )== 0);   
 /* växla systemklocka till PLL */ 
 ( ((PCRG) (CRG_BASE))->clksel ) |= PLLSEL;  
} 
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d) 
typedef struct sCRG2{ 
union{ 
 volatile unsigned char reg; 
 volatile unsigned char synbits:6; 
}synr; 
union{ 
 volatile unsigned char reg; 
 volatile unsigned char refbits:4; 
}refdv; 
volatile unsigned char ctflg; 
union{ 
 volatile unsigned char reg; 
 struct{ 
  volatile unsigned char SCM:1; 
  volatile unsigned char SCMIF:1; 
  volatile unsigned char SCMIE:1; 
  volatile unsigned char LOCK:1; 
  volatile unsigned char LOCKIF:1; 
  volatile unsigned char LVRF:1; 
  volatile unsigned char PORF:1; 
  volatile unsigned char RTIF:1; 
  
 }bit; 
}crgflg; 
volatile unsigned char crgint; 
union{ 
 volatile unsigned char reg; 
 struct{ 
  volatile unsigned char COPWAI:1; 
  volatile unsigned char RTIWAI:1; 
  volatile unsigned char CWAI:1; 
  volatile unsigned char PLLWAI:1; 
  volatile unsigned char ROAWAI:1; 
  volatile unsigned char SYSWAI:1; 
  volatile unsigned char PSTP:1; 
  volatile unsigned char PLLSEL:1;  
 }bit; 
}clksel; 
        
volatile unsigned char pllctl; 
volatile unsigned char rtictl; 
volatile unsigned char copctl; 
volatile unsigned char forbyp; 
volatile unsigned char ctctl; 
volatile unsigned char armcop; 
}CRG2, *PCRG2 ; 
 
 
e) 
void InitPLL2(void) 
{ 
 ( ( ( PCRG2 ) ( CRG_BASE ))->refdv.refbits ) = REFDVVal; 
 ( ( ( PCRG2 ) ( CRG_BASE ))->synr.synbits ) = SYNRVal; 
 /* vänta tills PLL låst... */ 
 while( !  (((volatile PCRG2) (CRG_BASE))->crgflg.bit.LOCK ) ) 
  ;   
 /* växla systemklocka till PLL */ 
 ((PCRG2 ) (CRG_BASE))->clksel.bit.PLLSEL = 1;  
} 
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4.4 a) 
; Adressdefinitioner 
CRGFLG  EQU  $37   
CRGINT  EQU  $38 
RTICTL  EQU  $3B 
RTIE   EQU  $80 
RTIF   EQU  $80 
TIMBASE  EQU  $62       ; ur tabell  
 
RTINIT:  MOVB  #TIMBASE,RTICTL   ; För MC12/10MHz 
    MOVB  #RTIE,CRGINT    ; Aktivera avbrott från CRG-modul 
    MOVW  #RTIRQ, $3FF0    ; Avbrottsvektor 
    RTS 
b) 
9,83 ms. 
c) 
RTIRQ:  BSET  CRGFLG,# RTIF    ; Kvittera avbrott 
    JSR  _AtRTIrq 
    RTI 
 

4.5 a) 
25000000/(16×57600) = (27)10 = (1B)16 
b) 
SCI   EQU  $C8 
SCIBD   EQU  $C8 
SCICR1  EQU  $CA 
SCICR2  EQU  $CB 
SCISR1  EQU  $CC 
SCISR2  EQU  $CD 
SCIDRH  EQU  $CE 
SCIDRL  EQU  $CF 
 
TE    EQU  8        ; “Transmit enable” bit 
RE    EQU  4        ; “Receive enable” bit 
BAUDRATE EQU  27        ; enligt a) 
 
SERIAL_INIT: 
    MOVW  #BAUDRATE,SCIBD   ; Initiera baudrate 
    MOVB  #(TE|RE),SCICR2   ; Aktivera sändare mottagare 
    RTS 
c) 
typedef  struct sSCI{ 
  volatile unsigned short scibd; 
  volatile unsigned char  scicr1; 
  volatile unsigned char  scicr2; 
  volatile unsigned char  scisr1; 
  volatile unsigned char  scisr2; 
  volatile unsigned char  scidrh; 
  volatile unsigned char  scidrl; 
}SCI, *PSCI; 
d) 
#define  SCI_BASE  0xC8 
#define  TE     8      // “Transmit enable” bit 
#define  RE     4      // “Receive enable” bit 
#define  BAUDRATE  27      // enligt a) 
 
void serial_init( void ) 
{ 
  ( (( PSCI )( SCI_BASE ))->scicr2 ) = TE|RE; 
  ( (( PSCI )( SCI_BASE ))->scibd  ) = BAUDRATE; 
} 
e) 
RDRF   EQU  $40       ; “Receive register fullt” bit 
 
SERIAL_IN: 
    BRCLR SCISR1,#RDRF,SERIAL_IN 
    LDAB  SCIBD 
    RTS 
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f) 
#define  RDRF  0x40       // “Receive register fullt” bit 

char serial_in( void ) 
{ 

while( (( ((PSCI) (SCI_BASE))->scisr1 ) & RDRF )== 0);  
 return ( ((PSCI) (SCI_BASE))->scidrl ); 
} 
 
g) 
TDRE   EQU  $80       ; “Transmit register tomt” bit 
 
SERIAL_OUT: 
    BRCLR SCISR1,#TDRE,SERIAL_OUT 
    STAB  SCIBD 
    RTS 
h) 
#define  TDRE   0x80      // “Transmit register tomt” bit 

void serial_out( char c ) 
{ 

while( (( ((PSCI) (SCI_BASE))->scisr1 ) & TDRE )== 0); 
( ((PSCI) (SCI_BASE))->scidrl ) = c;  

} 
 
 


