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1 Maskinnara programmering for HC12

Kapitlets syfte ar att illustrera saval mojligheter som begransningar med
maskinnara programmering. Storre delen behandlar maskinnéara
programmering i allmanhet sdval som hognivaprogrammering.
Dedicerade avsnitt tillampar déarefter kodningskonventioner och enkel
oversattarteknik for kodgenerering.
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Assemblerspraket

Att programmera en dator i maskinspréak &r en kravande och tidsddande uppgift, i stéllet anvander
vi assemblersprak. Processen att dversdtta ett assemblerprogram till ett program i maskinsprak
kallas att “assemblera” (fran engelskans assembly, ’sitta samman’). Utifran ett program skrivet i
assemblersprak sitts maskinspraket samman av assemblatorn.

Vi inleder detta kapitel med att beskriva den generella uppbyggnaden av ett assemblersprak. Vi
beskriver dess relation till maskinsprdk och behandlar Gversittningsprocessen mellan
assemblersprak och maskinsprak. I denna inledning kommer vi att behandla flera viktiga begrepp
som &r vanliga vid programutveckling.

Assemblerspréket &dr specifikt for en viss centralenhet (mikroprocessor) och vi exemplifierar hér
med Freescales familj av MC68HCS12-kretsar CPU12 (Central Processing Unit 12).

Maskininstruktionen

En centralenhet tolkar och utfor maskininstruktioner. En maskininstruktion &r ett bindrt ord, dvs
en foljd av nollor och ettor organiserade i en fix langd (maskinord). Maskinordets langd varierar
mellan olika typer av centralenheter men 4r det samma for en given centralenhet. Man talar
exempelvis om 8-, 16-, 32- eller 64-bitars mikroprocessorer. Maskininstruktioner kan ha olika
langd, dvs. bestd av olika antal maskinord, beroende pa instruktionens komplexitet. Man talar om
olika instruktionsformat och menar da hur en instruktion &r uppdelad i operationskod och
operander. Med operationskod (OP-kod) menas den styrinformation som processorn lédser for att
bestimma vad den skall utféra. OP-koden anger ocksd hur manga operander som finns och var
dessa finns.

En assemblerinstruktion har en mycket enkel uppbyggnad, en komplett maskininstruktion anges
med en mnemonic och eventuella operander. Speciella tecken anvénds for att skilja mellan olika
adresseringssitt  (addressing modes). En assemblerinstruktion motsvarar alltsd en
maskininstruktion med ett direkt 1:1 forhéllande, for varje korrekt assemblerinstruktion finns
alltsa endast en maskininstruktion.

Exempel 1.1
CPU12-instruktionen ReTurn from Subroutine har mnemonic RTS.

I assemblerprogrammet skrivs den:

RTS
vid assembleringsprocessen oversétts den till maskininstruktionen:

00111001 (binér form) vilket ocksé kan skrivas $39 (hexadecimal form)

Assemblerspraket dr radorienterat, dvs en rad i ett assemblerprogram kan innehélla hogst en
assemblerinstruktion. For instruktioner med operander anges operanden efter instruktionens
mnemonic. For att skilja mnemonic frdn operand anvédnds “blanksteg” dvs. mellanslag
("SPACE”) eller tabulator ("TAB”).

Assemblerinstruktionens adresseringssétt anges ofta med ndgon form av specialtecken. Freescale
anvander exempelvis ofta tecknet *#’ for att ange omedelbar adressering (immediate adressing).
Adresseringssittet anger att instruktionens operand utgor data som da foljer omedelbart efter
operationskoden.

Exempel 1.2

CPU12-instruktionen LoaD Ackumulator A har mnemonic LDAA.
I assemblerprogrammet skrivs den
LDAA operand

operanden kan anta flera former beroende pé vilket adresseringssitt som avses, exempelvis innebr:
LDAA #45
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att vérdet 45 placeras i ackumulator A, medan formen
LDAA 45

anger att virdet som finns pa adress 45 i datorns minne placeras i ackumulator A.

Vi aterkommer strax till en uttémmande behandling av assembler/maskininstruktioner men ska
forst behandla ett annat vanligt element, assemblerdirektiv.

Assemblerdirektiv

Assemblerspraket innehaller ocksa en rad olika direktiv till assemblatorn. Assemblerdirektiv
anvinds fOr att instruera assemblatorn att géra nagot. Assemblerdirektiv dr vanligtvis, precis som
mnemonics, specifika for den centralenhet som anvinds, man kan dock ofta se en viss enhetlighet
mellan assemblatorer for ndgon processorfamilj, eller processorfamiljer frdn samma tillverkare.

Exempel 1.3 Reservera minnesutrymme

Assemblerdirektiv kan anvindas for att reservera minnesutrymme. Assemblers for CPU12 accepterar exempelvis
foljande direktiv:

RMB antal Reserve Memory Bytes
dér antal kan anges med godtycklig talbas och anger det antal bytes (8-bitars ord) man vill reservera. Pa samma sétt
aterfinns ofta direktivet:

RMW  antal Reserve Memory Words
Detta har samma funktion men reserverar i stéllet words (16-bitars ord). Foljande direktiv exempelvis, ar darfor
funktionellt likvardiga:

RMB 4 och

RMW 2

Exempel 1.4 Reservera minnesutrymme och initiera minnesinnehall

Assemblerdirektiv kan ocksd anvindas for att l1ata assemblern reservera minnesinnehall och initiera minnesinnehall
med data. Assemblers for CPU12 accepterar exempelvis foljande direktiv:

FCB data Form Constant Byte(s)
dér data exempelvis kan anges med godtycklig talbas och da anger det virde man vill initiera. Om vérdet inte ryms
inom 8 bitar kommer assemblern att generera varnings- eller felutskrift.
Pa samma sétt aterfinns ofta direktivet:

FCW  data Form Constant Word(s)
Detta har samma funktion men initierar i stillet words (16-bitars ord). Foljande direktiv exempelvis, dr darfor
funktionellt likvardiga:

FCB $10,%20 och
FCW  $1020
Exempel 1.5

Assemblerdirektivet ORG (origin) anvénds for att ange an absolut startadress i datorns minne. P& detta sétt kan vi
styra placeringen av kod respektive data till fixa adresser.

ORG  $2000

forsta instruktion (eller data) hir placeras pa adress $2000

ORG  $2800

RMB 10 reservera minnesare 10 bytes, med start pad adress $2800
ORG  $3000

FCB 1,2,3,4,5 initiera minnesarea med start pa adress $3000

Observera att assemblerdirektivet ORG i sig inte ger upphov till att vare sig kod eller data genereras for méldatorn.
Direktivet paverkar endast placeringen av efterféljande kod/data i minnet.
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Symbolhantering

Symboler anvidnds bland annat for att markera positioner i ett assemblerprogram. Varje
symbolnamn maste véljas unikt dvs, far bara definieras en gang i programmet. Symbolnamnets
langd maéste vara begriansat. Exempelvis dr symbolnamnets lingd begrénsat till 256 tecken i
QA/RA-assemblatorerna. Symbolens forsta tecken maste vara en bokstav (a-z eller A-Z) eller en
“understrykning”. Observera att de svenska tecknen &, & och ¢ visserligen tillits av QA/RA
assemblatorerna men de far vanligtvis inte forekomma i symbolnamn.

Infoérandet av symboler underlittar programmeringsarbetet. Symboler kan exempelvis motsvara
godtyckliga adresser 1 mdldatorns minne. De &r da 1 sjdlva verket en slags “markering” av ndgon
position vars absoluta adress egentligen dr betydelselds for programmets funktion. En séddan
symbol kallas relokerbar, dvs ”mgjlig att flytta”.

Exempel 1.6 Symboliska namn for variabler

ORG $2800
start RMB 1
stopp RMB 1

Symbolen ’start” hamnar hir pa adress $2800, medan symbolen ’stopp’ far absoluta adressen $2801. Genom att, i
programmet, referera dessa adresser via symbolerna behover vi inte bekymra oss om de aktuella adresserna:

LDAA start
LDAA stop

I vissa fall dr det inte mgjligt att anvénda relokerbara symboler. Exempelvis finns, i varje
datorsystem, si kallade portar, med en fast adress i minnesarean. Vi kan fortfarande anvinda
symboliska namn pd portar men vi méste anvinda ett annat assemblerdirektiv.

Exempel 1.7

Assemblerdirektivet EQU (equate) anvinds for att ersitta en symbol med ett numeriskt vérde. Direktivet anvédnds pa
foljande satt:

symbolnamn EQU  varde

Da ”symbolnamn” anvénds i uttryck, assemblerdirektiv eller som operand i instruktioner kommer assemblern att
ersitta symbolen med”vérde”.

Det dr inte meningsfyllt att prata om storlek i samband med EQU-direktivet. Féljande sekvens visar exempelvis hur
samma symolnamn dr meningsfyllt i tva fall men inte i det tredje fallet:

hugebyte EQU 257 ryms ej med 8 bitar, dock med 16...
FCW  hugebyte Ok!
FCB hugebyte FEL...

Relokerbarhet

Absoluta symboler anvénds for att representera data och adresser som inte far dndras. Exempelvis
mdste en symbol for adressen till en IO-port vara absolut. Vi har redan sett assemblerdirektivet
EQU som kan anvindas for att definiera en sidan symbol. Med relokerbarhet menar vi
egenskapen att en symbols virde kan komma att dndras utan att det paverkar ett program. Vi har
sett exempel pa direktiv dven for sddana symboler (RMB, FCB, FCW) etc. Eftersom symboler
anvinds, rent allmint, for att representera niagon speciell position i programmet, och diarmed
ocksa nagon (ovasentligt vilken) adress i datorn minne, dr det naturligt att symbolerna ocksa ar
relokerbara.

En absolut assemblator kan anvéndas for att Oversétta en kalltext till ett maskinprogram. Alla
symboler som refereras forutsitts da vara kdnda vid assembleringen. En relokerande assemblator
oversitter inte kélltexten direkt till ett maskinprogram. I stéllet skapas s& kallad objektkod, dar
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symbolers adresser och alla referenser till symboler sparas tillsammans med den kod och data
som sda smaningom ska komma att bli det fdardiga maskinprogrammet. Det slutgiltiga
maskinprogrammet skapas hiar av en lankare, vars uppgift dr att kombinera flera filer med
objektkod till ett slutgiltigt program med maskinkod. Detta innebér att symboler som definierats i
en fil med kélltext kan refereras fran en annan kélltextfil.

fil

a D
Sxx absolut- S19
::> assemblator |:>
C.

En absolutassemblators arbetssatt

fil

> I \
Sxx relokerande |:>
: |::> assemblator
a

a )
>|:> lankare |::>
a

- I |

Sxx relokerande
::> assemblator
a J

fil

Arbetssétt hos en relokerande assemblator med lankare

Assemblerprogrammering med CPU12

Vi inleder dessa avsnitt med att beskriva hur man skriver ett komplett assemblerprogram for
CPUI12. Vi anvinder nagra av de direktiv vi introducerat for att styra assemblatorn.

Nista avsnitt behandlar programmerarens bild, CPU12’s instruktionsgrupper med en snabb
oversikt av instruktionsuppsittningen. Avsnittet avslutas med en utforlig beskrivning av
processorns olika adresseringssatt.

Direfter foljer ett langre avsnitt som beskriver ett strukturerat sétt att programmera CPUI12 i
assembler. Har behandlas bland annat aritmetiska operationer, jimforelser och test, och hur du
styr programflddet. Efter en fOrsta genomldsning kan du utnyttja detta avsnitt som ett
uppslagsverk for att hitta svaren pd hur du loser olika problem da du konstruerar dina
assemblerprogram.

Kapitlet avslutas med ett avsnitt som behandlar maskinndra programmering i C, dvs hur du
blandar kod skriven i programspraket ‘C’ med dina assemblerprogram. Speciellt beskriver vi
konventioner som anvinds av XCC12 ("Cross C Compiler 12").

Ett assemblerprogram byggs upp av kod, data och assemblerdirektiv. Koden utgdrs av
instruktionssekvenser som kan utfora operationer pa data. Data kan utgéras av konstanter eller
variabler. Assemblerdirektiv kan anvédndas bland annat for att reservera minnesutrymme for data,
ange var kod respektive data ska placeras m.m.

Det finns strikta regler for hur assemblerprogrammet ska se ut. Programmet ldses av
assemblatorn, rad for rad, och Oversitts till maskinkod dvs, monster av ettor och nollor.
Maskinkoden kan tolkas och utforas av processorn.

En rad, i assemblerprogrammet delas in i maximalt 4 félt. Forsta faltet kan enbart anvédndas for att
ange en “etikett”. Man véljer da ett Ssymboliskt namn och kan dérefter anvianda detta namn for att
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ange (referera) denna position i programmet. Anledningen till att man anvénder sadana
symboliska namn &r, som tidigare sagts, att man da slipper skriva absoluta minnesadresser i
programmet for de positioner vars absoluta adresser inte har nagon egentlig betydelse.

Niésta falt 1 assemblerprogrammets rad kan vara en instruktion eller ett direktiv. Det dr viktigt att
forsta skillnaden mellan en assemblerinstruktion och ett assemblerdirektiv. Direktivet instruerar
assemblatorn att géra nagonting vid assembleringstillfdllet medan instruktionen Oversatts till
maskinkod for att s& smaningom utforas av processorn vid exekveringen av programmet.

Assemblatorns tredje filt ska ange eventuella operander for assemblerinstruktioner. Detta filt
anvands dven tillsammans med assemblerdirektiv men vi kallar da detta argument till direktivet.

Assemblerraden kan avslutas med en godtycklig kommentarstext, dvs. ndgon beskrivning av vad
som utfors sa att programmet blir léttare att lasa och forsta.

Félten skiljs & med blanktecken, dvs tabulatur” eller “mellanslag”. Detta innebér att man inte
kan anvidnda blanksteg i symbolnamn, eller exempelvis sétta in blanksteg mellan operanderna
(aven om detta skulle se prydligare ut).

Fdrsta assemblerprogrammet

Viért forsta assemblerprogram visar exempel pd hur vi kan ldsa data (8 bitar) frdn en inport
placerad pé adress $600 i minnet, vi skriver direfter samma data till en utport pa adress $400 i
minnet, detta upprepas i en “oédndlig slinga”.

Las Inport

N
Skriv till Utport

I

Flodesplan for forsta assemblerprogrammet

Assemblerkod, det forsta assemblerprogrammet:
; Programmet laser fran en inport och kopierar till en utport

InPort EQU $600
OutPort EQU $400
ORG $1000
Start:
LDAB InPort ; Las fran inporten..
STAB OutPort ; Skriv till utporten
BRA Start ; Borja om...
Symbolfilt, blankt Instruktion Operand(er) till Eventuell kommentarstext
eller kommentar (mnemonic) eller instruktion eller
assembler-direktiv argument till
direktiv

Félten separeras med blanktecken, dvs "tabulatur” eller "mellanslag”.

Assemblerradens fjirde fdlt kan anvdndas for kommentarer till enskilda instruktioner eller
direktiv. For att ytterligare Oka ldsbarheten kan vi i bland tvingas skriva betydligt lingre
kommentarer i programmet. Vi kan da, genom att ange ett semicolon ( ;) eller en stjarna (*) i
radens forsta position, anvénda dterstoden av denna rad for kommentarer.
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CPU12 - programmerarens bild

I “programmerarens bild” av en processor ingar processorns arbetssitt, dess registeruppsittning,
vilka funktioner dessa register har, processorns adresseringssitt, dvs olika mojligheter att ange
var data finns och processorns instruktionsuppsdttning. Det ska vi 4gna oss at i detta avsnitt.

Registermodell

CPUI12 har olika typer av register, en av dessa typer kallas “ackumulator” (accumulator) avsett
for aritmetik och logiska operationer. Som namnet antyder ackumuleras resultat i registret, dvs
vid binéra operationer innehéller frdn borjan registret en operand, den andra operanden anges via
ndgot adresseringssitt, resultatet av operationen ersatter det tidigare innehdllet i ackumulatorn.

Utover ackumulatorregistren finns:

tva 16-bitars “index-register”, X och Y, huvudsakligen avsedda for adressberédkningar.
en 16-bitars stackpekare, SP, systemets hirdvarustack.

en 16-bitars programridknare, PC, for adressering av den instruktion som ska exekveras
ett 8-bitars statusregister, CCR, med bl.a. aritmetikflaggor och avbrottsflaggor.

7 A 0|7 B 0 8-bitars ackumulatorer A och B
15 D 0 eller
15 X 0 Index register X
15 Y 0 Index register Y
15 SP 0 Stackpekare SP
15 PC 0 Programréiknare PC
S X H 1 N zZ Vv C Statusregister CCR

Ackumulerande register

Det finns tvd ackumulatorregister, A och B som kan anvéndas oberoende av varandra.
Ordlangden hos dessa ér 8 bitar. Vissa instruktioner (LDD, STD, ADDD etc) anviander dock bada
ackumulatorerna samtidigt. Ackumulatorregistren sdtts dd samman av instruktionerna och bildar i
stillet ett 16-bitars ord dar ackumulator A innehaller de 8 mest signifikanta bitarna och
ackumulator B de 8 minst signifikanta bitarna. De flesta operationer kan utforas pa sivil A som
B. Det finns dock nagra fa undantag; ABA (Add B to A), SBA (Subtract B from A) och CBA
(Compare B to A). I dessa fall &r operandernas ordning viktig. Den decimaljusterande
instruktionen DAA (Decimal Adjust A) som anvidnds i samband med BCD-aritmetik finns bara
for ackumulator A.

Indexregister

Nista typ av register kallas “indexregister”. Syftet med indexregister dr att tillfalligt kunna
berdkna adressen till ndgon operand, dérefter, med hjdlp av ackumulatorn utféra operationer med
operanden pd den beriknade adressen. En annan bendmning pd denna typ av register dr helt
enkelt “adressregister”. Flera adresseringssitt tillater anvindning av indexregister dar alltsa
innehallet i registret tolkas som adress till instruktionens operand.
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Stackpekare

Stackpekaren ér ett register med speciella funktioner. Dess innehdll ségs vara en “pekare” till
systemets “’stack”. Stacken, oftast en liten del av primdrminnet, anvinds for att (automatiskt)
spara registerinnehdll (PC och CCR) vid subrutinanrop som exempelvis JSR (Jump to
SubRoutine) och CALL (Call subroutine in paged memory) sparas automatiskt registerinnehéll
som PC och CCR pé stacken. Instruktioner som RTS (ReTurn from Subroutine) och RTC
(ReTurn from Call) é&terstdller automatiskt registerinnehdll sa att exekveringen fortsdtter
omedelbart efter subrutinanropet.Vid avbrott, sparas automatiskt samtliga processorns registers
innehall till stacken.

Stacken kan av programmeraren ocksa anvédndas for lagring av mellanresultat (temporéra data).

Programraknare

Programriknaren dr det speciella register som anvinds for att adressera nésta instruktion som
skall utforas. Vid instruktionsexekvering uppdateras programréknaren av hardvaran. Det finns
ocksa adresseringssitt som omfattar programriknarens virde, exempelvis vid villkorliga
programflodesidndringar.

Statusregister

Statusregistret innehéller sdvil statusbitar, sétts av hiardvaran vid aritmetiska/logiska operationer,
som styrbitar for att bestimma processorns beteende under olika speciella omstiandigheter:

S: stop disable, den speciella instruktionen STOP, anvinds for att avbryta processorns exekvering
och forsitta den 1 ett tillstind med minimal stromférbrukning. I vissa applikationer dr detta inte
det ldmpligaste och darfor finns denna bit som maéste nollstéllas for att STOP-instruktionen ska
utféras. Om S-biten ddremot ar 1 behandlas STOP som no operation. S-biten sitts till 1 av
hérdvara vid RESET.

I: mask interrupt, denna bit anvénds for att “maskera”, dvs utestinga en avbrottsbegiran via
processorns IRQ ingang. Vid ett avbrott sdtts biten av hardvaran efter det att processorns
registerinnehdll sparats till stacken. Biten sitts for att en avbrottsrutin ska kunna utféras utan att
bli ytterligare avbruten (néstlade avbrott). I en avbrottsrutin aterstills normalt I-biten automatiskt
dd rutinens sista instruktion, RTI, utfors eftersom processorns registerinnehdll, bl.a. CCR
aterstéills fran stacken och hardvaran satt I-biten efter att ha sparat registerinnehall vid
avbrottsbegéran.

X: enable non-maskable interrupts, HC12 har tva olika avbrottsmekanismer, den generella IRQ
som kan maskeras genom att sitta I-biten till 1 och XIRQ, en avbrottsingdng som inte kan
maskeras. For att undvika att XIRQ oavsiktligt aktiveras exempelvis vid spanningstillslag finns
X-biten. Denna bit sitts till 1 av hdrdvara vid RESET. D4 biten &r 1 accepteras inte XIRQ. Ett
anvandarprogram kan efter vederborlig initiering nollstélla biten varefter XIRQ kommer att
accepteras. Da biten nollstillts kan den inte ettstdllas igen av programvara och XIRQ fungerar
dérfor déarefter som icke-maskerbart avbrott.

Statusbitarna sitts, nollstdlls eller 1&mnas of6rindrade beroende pd instruktion. Bitarna har
foljande betydelse:

H: halfcarry, anvinds vid BCD-aritmetik dir fyra bitar representerar ett tal 0-9. Det storsta tal
som kan representeras 1 exempelvis ackumulator A blir da 99. H sitts vid addition av tva tal,
tolkade pd& BCD-form dér addition av de minst signifikanta fyra bitarna genererar “carry”. H-
biten paverkas endast av instruktionerna ABA (add ackumulator B to A), ADD (add without carry)
och ADC (add with carry). Efter ndgon av dessa instruktioner kan sedan DAA (decimal adjust A)
anvindas for att justera innehéllet 1 ackumulator A till korrekt BCD-format.
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N: negative, dr den mest signifikanta biten i ett resultat. Den vanliga tolkningen ar darfor N som
teckenbit (tvikomplementform) dvs N-biten sitts till 1 om resultatet &r mindre &n noll, biten sétts
till noll annars. Observera att de flesta instruktioner, inte enbart aritmetiska, paverkar N-flaggan.

Z: zero, biten satts till 1 da ett resultat blir noll, biten sétts till noll annars. Observera att de flesta
instruktioner, inte enbart aritmetiska, paverkar Z-flaggan.

V: overflow, biten sitts till 1 vid tvakomplementspill, biten sétts till noll annars. Observera att de
flesta instruktioner, inte enbart aritmetiska, paverkar V-flaggan.

C: carry, sitts/nollstélls som resultat av addition och som borrow vid subtraktion. C-biten
anvands ocksd for att indikera fel vid multiplikation och division. Det finns ocksa
skiftinstruktioner dér C-biten ingar 1 skiften.

Datatyper

Begreppet datatyper introduceras ofta med anvéndningen av | 3 1615 87 0
hognivasprdk. Exempel pa hognivdsprak dr C, Java, ADA etc.

Grundldggande for alla datatyper dr den representation som kan -
ges typen 1 den underliggande hédrdvaran. Den 1 sdrklass byte
vanligaste datatypen dr heltal. Maskinvaran sitter grinser for word
hur sma eller hur stora heltal som enkelt kan representeras, detta | —= fong -
avspeglas direkt utav det antal bitar som anvidnds vid

exempelvis aritmetiska operationer. For CPU12 giller att full Datatyper med storlekar byte,
16-bitars aritmetik kan utféras som enkla operationer | Wordochlongdvs8,16 eller32
(instruktioner). bitar

I programspraket *C’ finns enkla och sammansatta datatyper. Lat oss titta ndrmre pa dessa och se
hur vi ldmpligast representerar dom 1 ett CPU12-system med avseende pa den registeruppséttning
vi tidigare studerat. Observera att i C’ dr representationen for datatyperna char, short och
long definierade av spraket, medan storleken hos pekar-typer och heltalstypen EInt éar
implementationsberoende, dvs dessa typer kan ha olika storlek beroende pa den underliggande
hardvaran.

Enkla datatyper med CPU12

char c; /* 8-bitars datatyp, storlek byte */
short S; /* 16-bitars datatyp, storlek word */
long I; /* 32-bitars datatyp, storlek long */
int i; /* storlek implementationsberoende */

Representationen for datatypen Int bor viljas for bista prestanda. Eftersom CPU12 inte direkt
hanterar 32-bitars tal dr det lampligaste valet 16 bitar, dvs storlek word. Detta innebér da att
datatyperna short och int ér ekvivalenta.

For pekar-typerna baseras valet av representation pa de tillgangliga adressregistren (X och Y) och
det lampligaste valet blir darfor 16 bitar.

char *cptr; /* pekar (16 bitar) pa 8-bitars datatyp */
short *sptr; /* pekar (16 bitar) pa 16-bitars datatyp */
int *iptr; /* pekar (16 bitar) pa& 32-bitars datatyp */

For pekar-typerna har vi dessutom hos CPU12 en liten komplikation eftersom arkitekturen ocksa
definierar ett expanderat (“paged”) minnesutrymme. Detta kan adresseras med hjélp av extra
register (XPAGE) och ger dd& en maximal minnesrymd om 8 Mbyte. Anvidndning av det
expanderade minnesutrymmet resulterar dock i storre kodstorlek varfor det dr lampligt att hélla 1
siar de bada pekar-typerna. I manga CPU12-kompilatorer har man darfor infort attributet far for
en pekar-typ som kan anvéndas for att adressera dven det expanderade minnet. Denna pekartyp
kommer da att fa storleken 23 (16+7) bitar. Anvdndning av ldnga pekartyper dr i hogsta grad
beroende pa den anvidnda C-kompilatorn och vi koncentrerar oss hidr pa den grundliggande
pekar-typen (16 bitar).
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I C kallas en sammansatt datatyp struct. Denna kan séttas samman av savil enkla datatyper
som andra sammansatta datatyper. En pekare till en Struct har samma restriktioner som dvriga
pekartyper och representeras darfor lampligen med 16 bitar. Vid kompilering av deklarationen
kan offseten till de ingdende variablerna bestimmas eftersom storleken av alla datatyper som
ingér i structen maste vara kénda.

Exempel 1.8 En pa sammansatt datatyp

struct composite {

long int a;
short int b;
short int C;

};
Ett adressregister, exempelvis X kan anvindas for att peka pa den forsta komponenten (variabel a). Adresserna till
de Ovriga blir da:

Variabel b: X+4
Variabel c: X+6
Flyttal

CPUI12 har inga instruktioner for hantering av flyttal. Alla flyttalsoperationer maste darfor
implementeras i form av programbibliotek.

Instruktionsformer

I CPUI2:s instruktionsuppsittning finns instruktioner med ingen, en eller tvd operander.
Instruktioner med tva operander (bindra operationer) finns i tva syntaktiska varianter. I den
forsta varianten anges bada operander explicit i operandfiltet. I en andra variant anges en av
operanderna i stdllet som en del av instruktionens mnemonic.

Formen for en instruktion med tva explicita operander ar

mnemonic kalloperand,destinationsoperand

ddar mnemonic anger vilken instruktion det 4r fragan om. Denna svarar precis mot en
maskininstruktion. Operanderna anger var data skall 14sas/och eller skrivas, av instruktionen.

Formen for en instruktion dir en av operanderna implicit 4r nagot register:

mnemonicRegister  operand

Exempel 1.9
Instruktion med tva explicita operander
movb #1,variable
mnemonic \kalloperana\ destinationsoperand
Instruktion med implicit kdlloperand register A
staa variable
mnemonic kallopera;a\\\\\destinationSOperand
Instruktion med implicit destinationsoperand register A

lIdaa variable
— kalloperand

mnemonic  destinationsoperand

10
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Instruktioner med en operand kallas undra operationer. Former for instruktioner med en operand
ar:

mnemonic operand
mnemonic Register

Exempel 1.10
Instruktionen COM (complement) inverterar varje bit hos operanden
com variable ; Invertera variabel i minnet
COMA ; invertera innehdllet i register A

For de flesta en-operandsinstruktioner giller att operanden ldses, operationen utférs och
operanden uppdateras med det nya resultatet. Det finns dock undantag exempelvis
testinstruktioner som endast paverkar flaggorna i CCR. Slutligen finns instruktioner som saknar
operand, exempelvis NOP (no operation), RTS (return from subroutine), STOP (stop execution).

Adresseringssatt

CPUI12 tillhandahaller 15 olika adresseringssétt (eng: adressing mode). Med adresseringssétt
menas det sitt pa vilket effektiva adressen (EA), bestdms. Med effektiva adressen menas adressen
till data som ska anvidndas av instruktionen. Tabell 1.1 sammanfattar de tillgdngliga
adresseringssitten:

Tabell 1.1 Adresseringssatt
Adresseringssétt Operand Beskrivning
Inherent Saknas Information om EA finns implicit i instruktionen
Immediate #opr8 Data foljer omedelbart efter instruktionen. Storlek (8 eller 16 bitar)
eller bestdms implicit av instruktionen.
#opri6i
Direct opr8 EA i adressintervallet $0000-$00FF dér Opr8 anger de 8 minst
signifikanta bitarna.
Extended oprl6 EA i adressintervallet $0000-SFFFF
Relative rel8 8 eller 16 bitars offset, tolkad som tal med tecken, adderas till
eller programréknarens vérde och bildar EA.
rell6
Indexed oprx5,x 5-bitars konstant, tolkad som tal med tecken, adderas till vardet I
5 bits offset oprx5,y register (X,Y,SP eller PC). Resultatet &r EA.
oprx5,sp
oprx5,pc
Indexed oprx3,-x En konstant, 1-8, subtraheras fran virdet i register (X,Y eller SP).
pre-decrement oprx3,-y Registret uppdateras med detta virde. Resultatet dr EA.
oprx3,-sp
Indexed oprx3,+x En konstant, 1-8, adderas till véardet i register (X,Y eller SP).
pre-increment oprx3,+y Registret uppdateras med detta véirde. Resultatet &r EA.
oprx3,+sp
Indexed oprx3,x- Virdet i register (X,Y eller SP) ar EA. Efter operation subtraheras en
post-decrement oprx3,y- konstant, 1-8, slutligen uppdateras registret med detta vérde.
oprx3,sp-
Indexed oprx3,x+ Virdet i register (X,Y eller SP) dr EA. Efter operation adderas en
post-increment oprx3,y+ konstant, 1-8, slutligen uppdateras registret med detta vérde.
oprx3,sp+
Indexed A|B]D,x Virdet i register (X,Y,SP eller PC) adderas till virdet i ackumulator
ackumulator offset AlBID,y (A eller B eller D) och bildar EA.
A|B]D,sp
A|]B|D,pc
Indexed oprx9,x 9-bitars konstant, tolkad som tal med tecken, adderas till vardet i
9 bits offset oprx9,y register (X,Y,SP eller PC). Resultatet &r EA.
oprx9,sp
oprx9, pc

11
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Indexed oprx16,x 16-bitars konstant adderas till vérdet I register (X,Y,SP eller PC).
16 bits offset oprx16,y Resultatet dr EA.
oprx16,sp
oprx16,pc
Indexed indirect [oprx16,x] 16-bitars konstant adderas till vérdet i register (X,Y,SP eller PC).
16 bits offset [oprx16,y] Resultatet ar adressen till EA.

[oprx16,sp]
[oprx16,pc]

Indexed indirect [D.x] Virdet i register (X,Y,SP eller PC) adderas till vardet i ackumulator
D ackumulator offset [D.v] D och bildar adressen till EA.
[D.sp]
[D.pc]

Var och en av CPUI12:s adresseringssitt kommer nu att beskrivas i detalj med exempel pa hur
effektiva adressen bestdms.

Inherent adressering

Detta adresseringssitt innebdr att instruktionen inte krdver ndgon extra operandinformation.
Eventuella operander ér fullstindigt bestdmda av instruktionen.

Exempel 1.11 Inherent adressering
NOP ; (no operation)
RTS ; (return from subroutine)
INX ; (increment X)

Omedelbar (immediate) adressering

Operanden dr med “omedelbar adressering” placerad direkt efter operationskoden och
instruktionen kriver darfor ingen speciell adressberdkning. Symbolen ’#° anvénds for att ange
omedelbar adressering. Det &r ett vanligt fel att oavsiktligt utelimna denna. Exempelvis betyder:

LDAA #$10

att hexadecimala talet $10 placeras i ackumulator A medan instruktionen:
LDAA $10
anger att det 8-bitars tal som finns pa adress $10 placeras i ackumulator A.

Operanden kan vara 8 eller 16 bitar vilket bestims vid assembleringen beroende péd vilken
instruktion som anvénds:

Exempel 1.12 Omedelbar adressering
LDAA #3$10 ; 8 bitars operand
LDAB #10 ; 8 bitars operand
LDD #$1234 ; 16 bitars operand

Direkt (direct) adressering (HCS12)

Detta adresseringssitt kallas 1 bland ocksa “page zero adressing” eftersom den anvinds for
operander i adressintervallet $0000-$O00FF. Eftersom endast de 8 minst signifikanta bitarna av
adressen dd behover anges som operand sparar detta utrymme och exekveras snabbare. Observera
att syntaxen kan vara densamma som vid “utbkad adressering” (se nedan). Exempelvis kan
instruktionen:

LDAA $10

12
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anvianda direkt adressering eller utokad adressering. For att fullstindigt ange att direkt
adressering ska utnyttjas, anvind symbolen *<’.

Exempel 1.13 ”Direct page”-adressering
LDAA <$10 ; tvingande direkt adressering
LDAA $10 ; tvetydigt, assemblator avgor adresseringssatt.

Direkt (direct) adressering (HCS12X)

HCS12X har ut6kats med ett 8-bitars register DP (Direct Page Register) som anvénds vid
direktadressering. Innehallet i DP-registret bildar de 8 mest signifikanta bitarna och tillsammans
med operanden kan d& 64 kByte av primidrminnet adresseras. DP-registret finns i de speciella
minnesavbildningsblock (Memory Map Modeule, MMC) som lagts till i HCS12X. Vid RESET ér
innehallet 1 DP 0 och funktionen kompatibel med HCS12.

Utokad (Extended) adressering

Med detta adresseringssitt kan 64-kByte av minnet adresseras. Adressen kodas alltsd med 16
bitar.

Exempel 1.14 Utokad adressering

Foljande instruktioner kopierar bada innehéllet pa adress 10 till register A

LDAA >$10 ; tvingande utdkad adressering
LDAA $10
Foljande instruktion kopierar en byte frdn adress FO30
LDAA $F020
Foljande instruktion kopierar 2 bytes frn adresserna FO30 och F031
LDD $FO030

13
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Instruktionsgrupper

Det finns en rad omstidndigheter som pédverkar savdl valet av instruktioner ur en
instruktionsuppsittning som de operander som kan anvindas till instruktionerna. I detta avsnitt
redogérs for de grupper av instruktioner som man kan identifiera i CPUl2:s
instruktionsuppsittning. Vi ger exempel pa hur instruktionerna kan anviandas For en fullstindig
beskrivning av varje instruktion (varianter, operander, flaggsattning mm.) maste du dock studera
instruktionslistan.

Instruktioner for att kopiera data i minnet
Instruktionerna MOVB (move byte) och MOVW (move word) anvénds for att kopiera data direkt
1 minnet utan att nagot register behdver anvéndas for mellanlagring.

Tabell 1.2;: MOVE-instruktioner

Mnemonic Funktion Operation
MOVB Move byte (8 bitar) (M1)—M,
MOVW Move word (8 bitar) (M:M+1) 4—>M:M+1,

Notera att det hos HCS12 finns restriktioner for adresseringssitt hos savil kélloperand som
destinationsoperand. For HCS12X tilléts betydligt fler kombinationer.

Det finns ocksa en rad olika instruktioner som anvénder register for att kopiera, flytta data etc
(LOAD-STORE). LOAD-instruktioner maste ocksd anvidndas om en efterfoljande instruktion
forutsitter operanden i nagot register.

LOAD-instruktioner anvinds for att kopiera data fran minnet till ndgot register. Det ar viktigt att
skilja pa typerna LD (load) och LEA (load effective address). Den sistndmnda typen har en
begransad uppsittning adresseringssétt och anvinds uteslutande for manipulation av pekare, dvs
minnesadresser.

Tabell 1.3: LOAD-instruktioner

Mnemonic Funktion Operation
LDAA Load A (M)—A
LDAB Load B (M)—B
LDD Load D (M:M+1),—A:B
LDS Load SP (M:M+1),—SPy:SP,

LDX Load index register X (M:M+1)1—>X5: XL

LDY

Load index register Y

(M:M+1 )1—>YH:Y|_

LEAS Load effective address into SP Effective address—SP
LEAX Load effective address into X Effective address—X
LEAY Load effective address into Y Effective address—Y

STORE-instruktioner anvinds for att dverfora data frin ett register till ndgon plats i minnet.

Tabell 1.4: STORE-instruktioner

Mnemonic Funktion Operation
STAA Store A (A)—M
STAB Store B (B)—M
STD Store D (A)—M, (B)>M+1
STS Store SP SPy:SP. ->M:M+1
STX Store X Xu: XL —M:M+1
STY Store Y YuY —M:M+1

14
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Exempel 1.15

Antag deklaration:
char variable;
och tilldelningssatsen
variable = 1;
Denna kan kodas pé flera olika sitt, exempelvis:
1) MOVB #1,variable
2) LDAA #1
STAA variable
3) LDAB #1
STAB variable

Valet mellan MOV respektive LOAD/STORE instruktioner beror huvudsakligen pé resten av programmet. Da det
géller kodstorlek och exekveringshastighet dr 16sningarna likvardiga. Férdelen med att anvinda MOV ar da vérdet
(1) inte ska anvéndas i en direkt efterfoljande operation, vi behdver inte upplata nagot register for tilldelningen. Om &
andra sidan, nésta sats i programmet exempelvis ar:

variable = variable + another_variable;

hade det varit fordelaktigare att vilja att vélja nagot av alternativen 2) eller 3) eftersom vi da redan har den forsta
operanden i ett register, vilket krivs for att utfora en addition (mer om detta nedan).

Instruktioner for att kopiera/flytta data mellan register

Data kan Overforas direkt mellan register utan att minnet behdver anvindas. Det finns tva
varianter, TFR (transfer) for att kopiera data fran ett register till ett annat och EXG (exhange) for
att byta innehéll mellan tva register.

Tabell 1.5: TFR-instruktioner

Mnemonic Funktion Operation
TAB Transfer Ato B (A)—B
anm: Ekv. Med TFR A,B
TAP Transfer A to CCR (A)—>CCR
anm: Ekv. Med TFR A,CCR
TBA Transfer B to A (B)—A
TFR Transfer register to register (A,B,CCR,D,X,Y eller SP) —
(A,B,CCR,D,X,Y eller SP)
TPA Transfer CCR to A (CCR)—A
anm: Ekv. Med TFR CCR,A
TSX Transfer SP to X (SP)—X
anm: Ekv. Med TFR SP,X
TSY Transfer SPto Y (SP)—Y
anm: Ekv. Med TFR SP,Y
TXS Transfer X to SP (X)—SP
anm: Ekv. Med TFR X, SP
TYS Transfer Y to SP (Y)—SP
anm: Ekv. Med TFR Y, SP

Observera att det finns speciella mnemonics for vissa registerkombinationer. Detta &r en direkt
foljd av att HC12 utformades kompatibel med foregdngaren HC11, som inte hade den generella
TFR-instruktionen.

Anmérkning: Registren kan kombineras pd atskilliga sdtt och om exempelvis storleken pa de
ingdende registren &r olika tillimpas trunkering eller teckenutvidgning. Jamfor med instruktionen
SEX (sign extend). HCS12X arkitekturen tillfor hiar en rad nya registerkombinationer med
mening. Se instruktionslistan for en detaljerad beskrivning av detta.

TFR instruktioner kommer till anvdndning speciellt for att tillfdlligt spara delresultat vid
evaluering av uttryck men vissa programkonstruktioner kan ocksd tvinga fram speciell
registeranvindning. Vi kommer att se exempel pé detta ldngre fram.
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Tabell 1.6: EXG-instruktioner

Mnemonic Funktion Operation
EXG Exchange register to register (A,B,CCR,D,X,Y eller SP) &
(A,B,CCR,D,X,Y eller SP)
XGDX Exchange D with X (D) « (X)
anm: Ekv. Med
EXG D,X
EXG X,D
XGDY Exchange D with Y (D) < (Y)
anm: Ekv. Med
EXG D,Y
EXG Y,D

Slutligen finns instruktioner for att teckenutvidga innehallet i nagot 8 bitars register till ett resultat
som placeras i ett 16 bitars register:

Mnemonic Funktion Operation
SEX Teckenutvidga 8 bitars operand (A,B,CCR) —
(D,X,Y eller SP)

Exempel 1.16

Antag deklarationer:
char c;
short s;
och tilldelningssatsen
s = c;
Korekt kodning av tilldelningssatsen blir:
LDAB c ; variabel c (8 bitar) till ackumulator B
SEX B,D ; teckenutvidga, resultat nu 1 A:B
STD s ; skriv tillbaks resultatet (16 bitar)

Aritmetisk operation addition

Addition av tal och en “ackumulering” av resultatet d&r en grundliggande funktion hos alla
datorer. Ordlangden hos de tillgéngliga registren dr dimensionerande for hur stora tal som kan
adderas av en enstaka maskininstruktion. Hos HCS12 har vi exempelvis ADDA, ADDB for att
addera 8-bitars tal och ADDD f{or att addera 16-bitars tal. For att addera tal med storre ord maste
vi upprepa additionen, men da ocksa ta hinsyn till eventuell minnessiffra frin tidigare operation.
Darfor finns det alltid ytterligare en variant exempelvis ADCB (add with carry B). Hos HCS12
finns, av historiska skél, ytterligare additionsinstruktioner, exempelvis ABA, men séddana har ofta
mindre betydelse eftersom dom bara kan anvédndas under speciella omstindigheter

16
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Tabell 1.7: Instruktioner for addition, HCS12

Mnemonic Funktion Operation
ABA Addera B till A (A)+(B)— A
ABX Addera B till X (X)+(B) —» X

anm: Ekv. med LEAX B,X
ABY Addera B till Y (Y+(B)—-Y
anm: Ekv. med LEAY B,Y
ADCA Addition med carry till A (A)+(M)+C — A
ADCB Addition med carry till B (B)+(M)+C — B
ADDA Addition till A (A)+(M) - A
ADDB Addition till B (B)+(M) —» B
ADDD Addition till D (A:B) (D)+(M:M+1) —»D

Lat oss nu ge nagra exempel pa hur dessa instruktioner anvinds.

Exempel 1.17 Addition av 8 bitars tal

Antag deklarationer:
char

och tilldelningssatsen

ca = cb + cc;
En kodning av tilldelningssatsen skulle kunna vara:

ca,cb,cc;

LDAB cb ; operand 1
ADDB cc ; adderas till operand 2
STAB ca ; resultatet skrivs i1 minnet

Exempel 1.18 Addition av 16 bitars tal

Antag deklarationer:

short sa,sb,sc;

och tilldelningssatsen

sa = sb + sc;
En kodning av tilldelningssatsen skulle kunna vara:
LDD sb ; operand 1
ADDD sc ; adderas till operand 2
STD sa ; resultatet skrivs i1 minnet

Exempel 1.19 Addition av 32-bitars tal (HCS12)

Antag deklarationer:
long
och tilldelningssatsen
la =

Ib + Ic;

la,lb,lc;

En kodning av tilldelningssatsen skulle kunna vara:

LDD Ib+2 ; minst signifikanta “word” av b

ADDD Ic+2 ; adderas till minst signifikanta “word” av c

STD la+t2 ; tilldela, minst signifikanta “word”

LDD Ib ; mest signifikanta “word” av b

ADCB Ic+l ; adderas till lag byte av mest signifikanta “word” av c
ADCA Ic ; adderas till hdg byte av mest signifikanta “word” av c
STD la ; tilldela, mest signifikanta “word”

Att notera: Varken STD eller LDD paverkar C-flaggan i CCR. Om en minnessiffra (carry) genereras vid additionen
av de 16 minst signifikanta bitarna finns den alltsd kvar infor nésta additionsoperation. Nér vi adderar de 16 mest
signifikanta bitarna anvinder vi sekvensen ADCB ... ADCA, eftersom register B utgdr de minst signifikanta §
bitarna i register D. Om en instruktion som ADED (add with carry D) hade funnits, hade vi anvént den i stéllet.
Eventuell carry fran forsta additionen foljer alltsd med hér. Slutligen adderar vi de 8 mest signifikanta bitarna av
operanderna (ADCA) och pé samma sitt har en eventuell carry propagerats hit. Slutligen skrivs mest signifikanta

“word” tillbaks till minnet.
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Den utvidgade arkitekturen HCS12X tillfor f6ljande instruktioner for addition

Tabell 1.8: Instruktioner for addition, HCS12X

Mnemonic Funktion Operation
ADDX Addition till X (X)+(M) - X
ADDY Addition till Y Y)+M)—>Y
ADED Addition till D med carry (D)+(M:M+1)+C —D
ADEX Addition till X med carry X)+(M:M+1)+C —X
ADEY Addition till Y med carry (Y)+(M:M+1)+C Y

Exempel 1.20 Addition av 32 bitars tal (HCS12X)

Vi hade i stéllet kunnat koda foregédende exempel sa hér:

LDY 1b+2
LDD Ib
ADDY Ic+2
ADED Ic
STY lat+2
STD la

minst signifikanta “word” av b
mest signifikanta “word” av b

adderas till minst signifikanta “word” av c
adderas till mest signifikanta “word” av c, med carry
tilldela, minst signifikanta “word”

tilldela, mest signifikanta “word”

Aritmetisk operation subtraktion
Instruktionerna for subtraktion f6ljer monstret av additionsinstruktioner.

Tabell 1.9: Instruktioner for subtraktion

Mnemonic Funktion Operation
SBA Subtrahera B fran A (A)>-(B) > A
SBCA Subtrahera med borrow fran A (A)-(M)-C — A
SBCB Subtrahera med borrow fran B (B)-(M)-C — B
SUBA Subtrahera fran A (A-(M)—> A
SUBB Subtrahera fran B (B)-(M) —» B
SUBD Subtrahera fran D (A:B) (D)-(M:M+1) —D

Exempel 1.21 Subtraktion av 8 bitars tal

Antag deklarationer:

char ca,cb,cc;

och tilldelningssatsen

ca =cb - cc;

En kodning av tilldelningssatsen skulle kunna vara:
; operand 1
; operand 2 subtraheras fran innehdallet i register B

LDAB cb
SUBB cc
STAB ca

; resultatet skrivs i minnet

Exempel 1.22 Subtraktion av 16 bitars tal

Antag deklarationer:

short sa,sb,sc;

och tilldelningssatsen

sa = sb - sc;

En kodning av tilldelningssatsen skulle kunna vara:
; operand 1
; operand 2 subtraheras fran innehallet i register D

LDD sb
ADDD sc
STD sa

; resultatet skrivs i1 minnet
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Exempel 1.23: Subtraktion av 32-bitars tal (HCS12)

Antag deklarationer:
long la,lb,lc;
och tilldelningssatsen
la =1b - Ic;
En kodning av tilldelningssatsen skulle kunna vara:

LDD Ib+2 ; minst signifikanta “word” av b

SUBD Ic+2 ; subtrahera signifikanta “word” av ¢ fran b

STD la+t2 ; tilldela, minst signifikanta “word”

LDD Ib ; mest signifikanta “word” av b

SBCB lIc+1l ; subtrahera lag byte i mest signifikanta “word” av ¢ fran b
SBCA Ic ; subtrahera hog byte i mest signifikanta “word” av ¢ fran b
STD la ; tilldela, mest signifikanta “word”

Precis som for addition géller att varken STD eller LDD péverkar C-flaggan i CCR. Om en minnessiffra (borrow)
genereras vid subtraktionen av de 16 minst signifikanta bitarna finns den alltsi kvar infor nista
subtraktionsoperation. Nér vi subtraherar de 16 mest signifikanta bitarna anvénder vi sekvensen SBCB ... SBCA,
eftersom register B utgdr de minst signifikanta 8 bitarna i register D. Om en instruktion som SBED (subtract with
borrow D) hade funnits, hade vi anvént den i stéllet. Eventuell borrow fran forsta subtraktionen foljer alltsd med hir.
Slutligen subtraherar vi de 8 mest signifikanta bitarna av operanderna (SBCA) och pa samma sitt har en eventuell
borrow propagerats hit. Slutligen skrivs mest signifikanta “word” tillbaks till minnet.

Den utvidgade arkitekturen HCS12X tillfor f6ljande instruktioner for subtraktion

Tabell 1.10: Instruktioner for subtraktion, HCS12X

Mnemonic Funktion Operation
SUBX Subtraktion fran X (X)-(M) —» X
SUBY Subtraktion fran Y (Y)-(M) - Y
SBED Subtraktion fran D med borrow (D)-(M:M+1)-C —D
SBEX Subtraktion fran X med borrow (X)-(M:M+1)-C —»X
SBEY Subtraktion fran Y med borrow (Y)-(M:M+1)-C Y

Notera att C-flaggan representerar borrow vid subtraktion.
Exempel 1.24: Subtraktion av 32 bitars tal (HCS12X)

Vi hade i stillet kunnat koda foregéende exempel sa hér:

LDY b+2 ; minst signifikanta “word” av b

LDD b ; mest signifikanta “word” av b

SUBY c+2 ; subtraheras fran minst signifikanta “word” av c

SBED c ; subtraheras fran mest signifikanta “word” av c, med borrow
STY at2 ; tilldela, minst signifikanta “word”

STD a ; tilldela, mest signifikanta “word”

BCD aritmetik

For BCD aritmetik anvédnds 1 forsta hand additionsintruktionerna ABA, ADCA och ADDA. Med
en instruktion (DAA) kan dérefter resultatet decimaljusteras korrekt baserat pd H-flaggan. Notera
dock att dven instruktionerna ADCB och ADDB paverkar H-flaggan dock kan inte resultatet 1 B
decimaljusteras direkt (det finns ingen DAB-instruktion...).

Mnemonic Funktion Operation
DAA Decimaljustera A (A)1o

Vid BCD-aritmetik kan ackumulator A anvidndas for att representera tvd BCD-siffror. En
additionsoperation ger sjélvfallet inte rétt resultat pA BCD-form. For detta krévs att delresultatet
frdn operationen pa de minst signifikanta fyra bitarna pa nagot sétt propageras till de fyra mest
signifikanta bitarna, dvs frdn den minst signifikanta BCD-siffran till den mest signifikanta BCD-
siffran. C-flaggan kan uppenbarligen inte anvédndas for detta, men for just denna situation finns en
speciell statusflagga hos HCS12, “half-carry” eller H. H-flaggan sitts till 1 om reultatet av
additionen av de minst signifikanta fyra bitarna &r stérre dn 9, annars sitts H-flaggan till 0.
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DAA-instruktionen testar H-flaggan, om denna ar 1, adderas konstanten 6 till de minst
signifikanta fyra bitarna, H-flaggan propagerar dérefter och innebdr da att 1 adderas till de mest
signifikanta fyra bitarna. Om additionen av de mest signifikanta bitarna nu ocksé ger ett resultat
storre dn 9, kommer C-flaggan att séttas till 1, annars nollstéllas.

Addition av storre BCD-tal kan alltsé utforas genom att ADDA (och dérefter ADCA) anvéinds
med efterféljande decimaljustering.

Datatypen BCD finns sedan linge inte i ndgot av de storre programspraken. Anvéndbarheten av
denna instruktion maste dérfor anses vara mycket begriansad.
Addition och subtraktion med 1

Addition (inkrementera) respektive subtraktion (dekrementera) med talet 1 dr sd vanliga
operationer att de av prestandaskél implementerats som egna instruktioner.

Tabell 1.11: Addition med 1

Mnemonic Funktion Operation

INC Incrementera i minnet (M)+$01 —> M

INCA Inkrementera A (A)+ $01— A

INCB Inkrementera B (B)+ $01—B

INS Inkrementera SP (SP)+ $0001 — SP
anm: Ekv. med LEAS 1,SP

INX Inkrementera X (X)+ $0001 — X
anm: Ekv. med LEAX 1,X

INY Inkrementera Y (Y)+ $0001 — Y

anm: Ekv. med LEAY 1,Y
Tabell 1.12: Subtraktion med 1

Mnemonic Funktion Operation
DEC Dekrementera i minnet (M)-$01 —> M
DECA Dekrementera A (A)- $01 — A
DECB Dekrementera B (B)- $01 — B
DES Dekrementera SP (SP)- $0001 — SP
anm: Ekv. med LEAS -1,SP

DEX Dekrementera X (X)- $0001 — X
anm: Ekv. med LEAX -1,X

DEY Dekrementera Y (Y)- $0001 — Y

anm: Ekv. med LEAY -1,Y

INC och DEC instruktionerna kan alltsa anvédndas for att dversitta satser som

var = var+1; vilket dr ekvivalent med
var++;
eller

var = var -1; vilketar ekvivalent med
var--;
under forutsittning att datatypen for var ar char, dvs 8 bitar.

Den naiva” dverséttningen &r:

LDAB var

ADDB(SUBB) #1 alternativt: INCB(DECB)

STAB var
medan den effektivare oversattningen é&r:

INC var
eller

DEC var
observera dock att detta endast géller 8-bitars datatyper. For storre typer méste den “naiva” kodningen anvéndas.
Observera ocksé att INC och DEC instruktionerna sétter flaggor i CCR pa annat sétt 4n de vanliga ADD och SUB
instruktionerna, (C-flaggan péverkas inte). Den utvidgade arkitekturen HCS12X tillfor foljande dock instruktioner
for “increment” och “decrement”
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Tabell 1.13: Instruktioner for inkrementering, HCS12X

Mnemonic Funktion Operation
INCW Incrementera i minnet (M:M+1)+$0001 — (M:M+1)
INCX Inkrementera X (X)+ $0001 — X
anm: Ekv. med LEAX 1,X
INCY Inkrementera Y (Y)+ $0001 —» Y
anm: Ekv. med LEAY 1,Y

Tabell 1.14: Instruktioner fér dekrementering, HCS12X

Mnemonic Funktion Operation
DECW Dekrementera i minnet (M:M+1)-$0001 — (M:M+1)
DECX Dekrementera X (X)- $0001 — X
anm: Ekv. med LEAX -1,X
DECY Dekrementera Y (Y)- $0001 - Y
anm: Ekv. med LEAY -1,Y

Utvidgningen tillfor egentligen bara den forenklade kodningen for
inkrementering/dekrementering av variabler i minnet. Vi kan med INCW hantera dven 16-bitars
datatyper.

Booleska logiska operationer (AND,OR,EOR)

AND (and logical), OR (inclusive or logical) och EOR (exclusive or logical) anvinds for att utfora
bitvis logiska operationer.

Instruktioner for bitoperationer utfors 1 HCS12 med 8-bitars operander.

Tabell 1.15: Logiska operationer

Mnemonic Funktion Operation
ANDA Bitvis “och” A med minnesinnehall (A)e(M)= A
ANDB Bitvis “och” A med minnesinnehall (B)e(M)= B
ANDCC Bitvis “och” CC med minnesinnehall (CCR)e(M)= CCR
EORA Bitvis “exklusivt eller” A med (A)e(M)= A

minnesinnehall
EORB Bitvis “exklusivt eller” B med (B)®(M)= B
minnesinnehall
ORAA Bitvis “eller” A med minnesinnehall (A)+(M)= A
ORAB Bitvis “eller” B med minnesinnehall (B)+(M)= B
ORCC Bitvis “eller” CCR med minnesinnehall (CCR)+(M)= CCR

Exempel 1.25: Logiskt OCH med konstant

Antag deklarationer:
char ca,cb;
och uttrycket
ca = cb & OxF;
En kodning av uttrycket skulle kunna vara:
LDAB cb
ANDB  #$0F
STAB ca
Om operanderna ar 16 bitar med foljande deklarationer:
int ia,ib;
och uttrycket
ia = ib & OxF004;
far vii stillet f6ljande kodning av uttrycket:
LDD ib
ANDB #$04
ANDA  #$FO
STD ia

21



Maskinorienterad programmering, UTKAST 6/3 2013

Den utvidgade HCS12X medger bitvis logiska operationer dven med 16-bitars operander. Nagot
av registren X eller Y maste d& anvindas.

Tabell 1.16: Logiska operationer, HCS12X

Mnemonic Funktion Operation
ANDX Bitvis “och” X med minnesinnehall X)o( M:M+1)= X
ANDY Bitvis “och” Y med minnesinnehall (Y)o( M:M+1)= Y
EORX Bitvis “exklusivt eller” X med X)® (M:M+1)= X

minnesinnehall
EORY Bitvis “exklusivt eller” Y med Y)® (MM+1)=Y
minnesinnehall
ORX Bitvis “eller” X med minnesinnehall (X)+H(M:M+1)= X
ORY Bitvis “eller” Y med minnesinnehall Y)+H(M:M+1)= Y

Unara operationer (nollstall, bitvis invertering och 2-komplement)

For undra operatorer - (undrt minus) och ~ (komplementering) anvands instruktionerna NEG
(negate) respektive COM (logical complement). CLR (clear) anvénds for att nollstélla operanden.
Alla dessa instruktioner har en operand.

NEG anvénds fér att bilda 2-komplementet av operanden. Detta betyder alltsa att man helt enkelt
byter tecken pa talet.

Tabell 1.17: Unara operationer

Mnemonic Funktion Operation
CLC Nollstall carryflaggan i CCR 0=C
CL1 Nollstall avbrottsmask i CCR 0=1
CLR Nollstall minnesinnehall $00 => M
CLRA Nollstall A $00= A
CLRB Nollstall B $00 =B
CLv Nollstall overflowflaggan | CCR 0>V
COM Ettkomplementera minnesinnehall $FF-(M)=> M

COMA Ettkomplementera A $FF-(A) = A
COMB Ettkomplementera B $FF-B) = A
NEG Tvakomplementera minnesinnehall $00-(M) => M
NEGA Tvakomplementera A $00-(A) = A
NEGB Tvakomplementera B $00-(B) = B

Den utvidgade arkitekturen HCS12X tillfor f6ljande instruktioner for unira operationer

Tabell 1.18: Instruktioner fér unara operationer, HCS12X

Mnemonic Funktion Operation

CLRW Nollstall minnesinnehall (16 bitar) $0000= M:M+1
CLRX Nollstall X $0000 = X

CLRY Nollstall Y $0000 =Y

comw Ettkomplementera minnesinnehall $FFFF-(M M+1) = M M+1
COMX Ettkomplementera X $FFFF-(X) = X
COMY Ettkomplementera Y SFFFF-(Y) = Y
NEGW Tvakomplementera minnesinnehall $0000-(M:M+1) = M:M+1
NEGX Tvakomplementera X $0000-(X) = X
NEGY Tvakomplementera Y $0000-(Y)=> Y
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Exempel 1.26: Teckenbyte for 8-bitars heltal

Antag deklarationer:
char ca,cb;

och uttrycket
ca = -cb;
En kodning av uttrycket skulle kunna vara:
LDAB cb
NEGB
STAB ca

Exempel 1.27: Teckenbyte for 16-bitars tal

Antag deklarationer:
int ia,ib;

och uttrycket
ia = -ib;
For HCS12 kan uttrycket kodas:
LDD ib
COMA
COMB
ADDD #1
STD ia

Det kan verka onddigt komplicerat men kommer sig av det faktum att NEG-operationen inte kan utforas med register
D (A:B). Om vi i stillet anvinder HCS12X kan vi koda samma uttryck:

LDX ib
NEGX
STX ia

Det logiska komplementet, dvs I-komplementet, bildas pd& motsvarande sitt genom att
instruktionen NEG bytes mot instruktionen COM.

Exempel 1.28: Bitvis komplementering

Instruktionsfoljden
LDAB #%10101010
COMB
ger i register B:
0101 0101
Antag deklarationer:
char ca,cb;

och uttrycket
ca = ~Cb;
En kodning av uttrycket skulle kunna vara:
LDAB cb
COMB
STAB ca

Skiftinstruktioner
Skiftoperationer anvinds for att flytta grupper av bitar ett eller flera steg. I programspraket ‘C’
finns tva olika skiftoperationer:

A << B A skiftas vénster B steg

A > B A skiftas hoger B steg
Medan A maste vara en variabel, kan B vara sividl en konstant som ndgon (annan) variabel.
CPU12 stodjer skiftoperationer med tre olika instruktioner:

logiskt skift (LS)
aritmetiskt skift (AS)
rotation med Carry (RO)

Savil vansterskift som hogerskift kan utforas. Instruktionerna kan anvindas i ndgon av dessa
former:
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1. instruktion <ea>, “minnesshift”’, <ea>anger en minnescell, innehallet i denna skiftas 1

steg. Operandens storlek &r héar alltid 8 bitar.
2. instruktionACK  “register-skift”, innehéllet i ett register (A,B,D) skiftas ett steg.

Tabell 1.19: Logiska skift

Mnemonic Funktion Operation

LSL Logiskt vansterskift i minnet —

LSLA Logiskt vansterskift A LT TTTTTT ko

LSLB Logiskt vénsterskift B C b bo

LSLD Logiskt vansterskift D D —  —
Ll T T TITTIT T TTTTTTT o
C b7 A bo by B bo

LSR Logiskt hdgerskift i minnet —_—

LSRA Logiskt hégerskift A 0= T T T TTTT ]

LSRB Logiskt hogerskift B b7 b C

LSRD Logiskt hogerskift D o [ [T T TTTITTTTTTTP[]

bz A bo b7 B b C
Exempel 1.29

Antag att foljande *C’-deklarationer ar givna:

unsigned char uc, ucResult;

Koda f6ljande sats i ’C’, som assemblerkod:
ucResult = Cuc >> 1) & 1;

1 Losning:
LDAB uc
LSRB
ANDB #1

STAB ucResult

Observera att logiska hogerskift normalt inte anvinds for tal med tecken. Detta beror pa att
teckeninformationen i sa fall riskerar att forloras eftersom en nolla alltid skiftas in fran hoger till
teckenbitens position. For att klara dven teckenskift finns darfor aritmetiskt skift. Observera ocksa
att aritmetiskt vinsterskift dr det samma som logiskt vénsterskift.

Tabell 1.20: Aritmetiska skift

Mnemonic Funktion Operation
ASL Aritmetiskt vansterskift i minnet
(ekv. med LSL)
4—
ASLA Aritmetiskt vansterskift A ]
(ekv. med LSLA) C b7| L |b0|<-0
ASLB Aritmetiskt vansterskift B
(ekv. med LSLB)
ASLD Aritmetiskt vansterskift D ey I<—I T T T I‘_I T T T T
0
(ekv. med LSLD) c o \ by by 5 by
ASR Aritmetiskt hdgerskift i minnet —_—
ASRA Aritmetiskt hégerskift A l—_.{‘| [ T T TT1TT1T ]
ASRB Aritmetiskt hogerskift B by bo C
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Exempel 1.30

Antag att foljande *C’-deklarationer &r givna:

signed char sc, scResult;

signed int si, siResult;

Koda foljande satser i *’C’, som assemblerkod:
scResult = ( sc >> 1 ) & 0x80;
siResult = ( si >> 1 ) & 0x8000;

Lésning:
LDAB sc
ASRB
ANDB  #$80
STAB scResult
LDD si
ASRA
LSRB
ANDA  #$80

STD scResult

Den tredje typen av skiftinstruktion, rotate, kallas ocksa i bland ocksé for “carry-skift”.

Tabell 1.21: Carry-skift

Mnemonic Funktion Operation
ROL Rotation vanster via carry i
minnet L—DHIIIIIII)J
ROLA Rotation vanster via carry A C by bo
ROLB Rotation vanster via carry B
ROR Rotation héger via carry i minnet L{ >
RORA Rotation héger via carry A [ T T T 11
RORB Rotation hdger via carry B b7 bo C
Exempel 1.31

Antag att foljande *C’-deklaration dr given:
signed long sl, slResult;
Koda f6ljande C-sats i assemblerkod:

Isw av ”sl”, anm. paverkar EJ carry..

slResult = sl >> 1 ;
Lésning:
LDD sl ; msw av ’sl”’
ASRA
RORB
STD slResult ; anm. paverkar EJ carry..
LDD  sl+2 ;
RORA
RORB

STD slResult +2

Ytterligare skiftinstruktioner tillkommer hos HCS12X, se Tabell 1.22 nedan..
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Tabell 1.22: Skiftinstruktioner, HCS12X

Mnemonic Funktion Operation
ASLW Aritmetiskt/Logiskt vansterskift i <
LSLW minnet. 16 bitar LT T T ITTTTTTTTTTITIT ko
! C  Dbisbus b1 bo
ASLX Aritmetiskt/Logiskt vansterskift <
LSLX : I
S register X C bubr X b by
ASLY Aritmetiskt/Logiskt vansterskift <
i LT T T T TTTTTTITITTITIT ko
LSLY register Y C  brbr > b by
ASRW Aritmetiskt hdgerskift i minnet, ,:I >
i [T T T T T T I T TTITTTIT]
16 bitar brs bra bibp C
ASRX Aritmetiskt hdgerskift register X >
9 9 e
b1s b1g X bibp C
ASRY Aritmetiskt hdgerskift register Y >
9 9 I
b1s b1g Y bibp C
LSRW Logiskt hégerskift i minnet, 16 >
9 9 bitar o= [T T T TTTTTTTTTTT{]
bi1s b1a bibp C
LSRX Logiskt hégerskift register X >
9 I I o= [ [T T T TTITTTITTTTT{]
b1s b1a X bibp C
LSRY Logiskt hégerskift register Y >
9 I I o= [ [T T T TTITTTITTTTT{]
b1s b1a Y bibp C
ROLW Carry-skift vanster i minnet, 16 <
bitar A JH T T T T T TTTTTTTTTIT e
C bis by b1 bo
ROLX Carry-skift vanster register X <
A JH T T T T T TTTTTTTTTT e
C bis by X b1 bo
RORY Carry-skift vanster register Y <
“—~ e T T T T T TTTTTTTTTT e
C bis bia Y b1 bo
RORW Carry-skift héger i minnet, 16 Lq >
bitar [T T TTTTTTTTTTTPH
b1s b1a bi bp C
RORX Carry-skift hoger register X L‘ >
[T T T T TTITTTTITTITTIT M
b1s b1g X bi bp C
RORY Carry-skift vanster register Y L‘ >
[ TTTTTTTITTTITTITTIT M
b1s b1a Y b1 bp C

Exempel 1.32
Exempel 1.31 ovan kan, for HCS12X, kodas:

LDX
LDY
ASRX
RORY
STX
STY

sl ; msw av ’sl”’
sl+2 ; Isw av ’sl”’
slResult

slResult+2
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Jamforelse och test

Jamforelseinstruktioner, “compare”, liknar subtraktionsinstruktioner med skillnaden att resultatet
inte skrivs tillbaks till destinationsoperanden. Endast flaggorna (N,Z,V och C) i CCR paverkas
alltsa av dessa instruktioner.

For att testa en operand anviands TST (test an operand). Resultatet av testen sitter flaggorna N
och Z i CCR medan flaggorna V och C alltid nollstdlls av TST-instruktionen. Detta innebér att
instruktionerna TSTA och CMPA #0 inte ar ekvivalenta.

Tabell 1.23: Jamforelseinstruktioner

Mnemonic Funktion Operation
CBA Jamfér B med A (A)-(B)
CMPA Jamfér A med minne (A)-(M)
CMPB Jamfér B med minne (B)-(M)
CPD Jamfér D med minne (A:B)-(M:M+1)
CPS Jamfér SP med minne (SP)-(M:M+1)
CPX Jamfér X med minne (X)-(M:M+1)
CPY Jamfér Y med minne (Y)-(M:M+1)
Tabell 1.24: Testinstruktioner
Mnemonic Funktion Operation
TST Testa minnesinnehall (M)-$00
TSTA Testa register A (A)-$00
TSTB Testa register B (B)-$00
Tabell 1.25: Jamforelseinstruktioner, HCS12X
Mnemonic Funktion Operation
CPED Jamfér D med minne och Borrow (A:B)-(M:M+1)+C)
CPES Jamfér SP med minne och Borrow (SP)-((M:M+1)+C)
CPEX Jamfér X med minne och Borrow (X)-((M:M+1)+C)
CPEY Jamfoér Y med minne och Borrow (Y)-((M:M+1)+C)
Tabell 1.26: Testinstruktioner, HCS12X
Mnemonic Funktion Operation
TSTW Testa minnesinnehall, 16 bitar (M M+1)-$0000
TSTX Testa register X (X)-$0000
TSTY Testa register Y (Y)-$0000

Vi exemplifierar jamforelse och test instruktioner i samband med villkorliga instruktioner for
programflodeskontroll nedan.

Ovillkorlig programflédeskontroll

Instruktioner som JMP (jump) BRA (branch always) JSR (jump to subroutine) och BSR (branch
to subroutine) anvinds for att astadkomma programflodesandringar oavsett flaggsdttningen i
CCR. Instruktionerna JSR och BSR har dessutom egenskapen att adressen till nésta instruktion
lagras undan pa stacken innan hoppet utfors. Dessa instruktioner kan anvéndas tillsammans med
instruktionen RTS, (return from subroutine) for att skapa subrutiner av programkod som skall
utforas minga ganger eller kanske delas av olika program.
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Tabell 1.27: Ovillkorlig programflédeskontroll

Mnemonic Funktion Operation
BSR Anrop av subrutin. SP-2 = SP
PC-relativ operand RetAdrL:RetAdrH = Msp):Msp+1)
Adress = PC
BRA “Hopp” till adress. Adress = PC
PC-relativ operand
CALL Anrop av subrutin SP-2 = SP
Absolut operand (20 bitar) RetAdrL:RetAdrH = Mgp):Msp)
Anm: Anvandes vid Subrutinadress = PC
programflodesandring mellan olika SP-1 = SP
minnesbankar ($8000-$BFFF) (PPAGE) = Mgp)

PAGE = PPAGE
Subrutinadress = PC

JIMP “Hopp” till address. Subrutinadress = PC
Absolut operand
JSR Anrop av subrutin SP-2 = SP
Absolut operand RetAdrL:RetAdrH = Msp):Msp+1
Subrutinadress = PC
RTC Atervand fran subrutin. Msp) = (PPAGE)
Returadress fran STACK och PPAGE SP+1 = SP
M(sp)lM(spﬂ) = PCH:PCL
SP+2 = SP
RTS Atervand fran subrutin. M(SP):M(SP+1) = PCy:PC_
Returadress fran STACK SP+2 — SP

Att modularisera ett program innebér att dess olika funktioner placeras i block med 6verskadlig
och sammanhéllen programkod. Ett naturligt sitt att modularisera dr att dela upp programkoden i
subrutiner. En subrutin kéinnetecknas av sitt granssnitt och grénssnittet utgors av:

e Namn
e Indata
e Utdata

Om dessa egenskaper dokumenterats vél dr det mojligt att anvénda subrutinen utan att samtidigt
tvingas sitta sig in i den detaljerade funktionen. Det &r darfor viktigt att denna dokumentation
finns med och att den utformats pé ritt sitt.

Exempel 1.33 "Header” for subrutin

En text beskrivande subrutinen "COMMAND” kan ldmpligen utformas pa féljande sitt:

SUBRUTIN — COMMAND A y
Beskrivning- Rutinen avgor vilken Namnet atfoljs av en kort beskrivning av

kommandosubrutin som skall subrutinens funktion.
utfdras och anropar denna.

Eventuella indata/utdata anges, dessutom vilka

*

*

* Indata: Kommandonummer i reg A . . L.

* Utdata: Inga register som anvénds for indata/utdata.

* Registerpverkan:  A,X De registerinnehdll som &@ndras av subrutinen
* .

* anges speciellt.

*

* Anropade subutiner: SUBO, SUB1, SUB2 Ytterligare subrutiner som anropas frdn den
” dokumenterade rutinen bor anges.

* LDAA  #cmd

* Anrop: JSR COMMAND

Exempel pa hur subrutinen anropas bor anges.
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CPUI12 stoder modularisering bland annat med instruktionerna BSR (branch to subroutine) och
RTS (return from subroutine). BSR kan ses som en ovillkorlig hopp-instruktion, men till skillnad
frdn exempelvis BRA, giller att exekveringen ska fortsétta direkt efter BSR da subrutinen utforts.
Foljakligen maste returadressen, dvs adressen till instruktionen omedelbart efter BSR sparas pa
nagot sitt. P4 motsvarande sitt maste adressen kunna placeras i PC da instruktionen RTS
exekveras. Stacken anvinds for att spara returadresser, dvs vid:

BSR placeras adressen till ndsta instruktion pé
stacken, stackpekaren minskas med 2 bytes,
adressen till subrutinen placeras i PC

och vid:

RTS 2 bytes tas fran stacken och placeras i PC
stackpekaren 6kas med 4 bytes

Som framgér av Tabell 1.27 ovan finns det olika varianter av instruktioner som anvinds for
subrutinanrop. De skiljer sig at i kodningen (se instruktionslistan) och man viljer variant
beroende pé avstdndet mellan anropet och den anropade subrutinen.

Exempel 1.34 Anvandning av BSR
Instruktionen BSR kodas:
07 rr dir rr star for 8 bitars PC-relativ offset (med tecken)

Den anropade subrutinen kan déarfor finnas pa ndgon adress maximalt 127 bytes framat eller 128 bytes bakat raknat
fran adressen till BSR-instruktionen+2.

Villkorlig programflédeskontroll

Instruktioner for kontroll av programflodet &r centrala 1 varje mikroprocessors
instruktionsuppsittning. Beteckningen “branch” vilken kan Oversdttas med ”forgrening” ar
gemensam fOr instruktioner for “vdgval” i programutférandet. For en villkorlig “branch”-
instruktion dr viagvalet sjdlvfallet associerat till ndgot villkor, “condition” varfér den den
gemensamma beteckningen for dessa instruktioner dr “branch on condition”, dvs en villkorlig
andring av programmets flode. Detta astadkommes genom att ndgot villkor testas, om villkoret &r
sant utfors en programflodesdndring, dvs ett "hopp” i programmet. Om villkoret ddremot ar
falskt, fortsétter programutférandet genom att nésta instruktion i minnet exekveras.

Villkorliga instruktioner anvinds alltsd alltid tillsammans med nigon (omedelbart foregdende)
instruktion som dstadkommit flaggsattning. Ofta ar detta ndgon av instruktionerna cmp eller tst
men det kan ocksé vara i kombination med nagon aritmetisk instruktion. Det dr darfor viktigt att
du alltid kontrollerar hur flaggorna sitts av instruktionen som foregir branch-instruktionen.

En villkorlig (branch-) instruktion:

Testar villkoret mot innehallet i flaggregistret (CCR)
Om resultatet av testen 4r SANT, utfors instruktionen (hoppet)
Om resultatet &r FALSKT fortsdtter exekveringen med nésta instruktion (hoppet utfors inte).

16 olika villkor (hoppinstruktioner) kan anges och vi ska hér titta ndrmare pa dessa villkor och i
vilka sammanhang de kan anvindas
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Tabell 1.28: Villkorlig programflédeskontroll

Mnemonic | Funktion | Villkor
Enkla flaggtest
BCS “Hopp” om carry C=1
BCC “Hopp” om ICKE carry C=0
BEQ “Hopp” om zero Z=1
BNE “Hopp” om ICKE zero Z=0
BMI “Hopp” om negative N=1
BPL “Hopp” om ICKE negative N=0
BVS “Hopp” om overflow V=1
BVC “Hopp” om ICKE overflow V=0
Test av tal utan tecken
BHI Villkor: R>M C+Z=0
BHS Villkor: R>M C=0
BLO Villkor: R<M C=1
BLS Villkor: R<M C+zZ=
Test av tal med tecken
BGT Villkor: R>M Z+(N®eV)=0
BGE Villkor: R>M NOV=0
BLT Villkor: R<M NeV=1
BLE Villkor: R<M Z+(NoV)=1

Observera speciellt de villkorliga instruktionerna for realtionera ”stdrre dn”, storre eller lika”, etc.
Héar maéste ratt instruktion viljas baserat pd om vi jamfor tal betraktade som med eller utan
tecken.

Exempel 1.36 Jamforelser tal med/utan tecken

Vi jamfor instruktionerna BHI (branch higher) och BGT (branch greater than). Antag att vi vill testa om innehallet i
register B ar storre an -2, vi provar med kodsekvensen

CMPB #-2
BHI St_n2

denna kod ska utforas om innehéllet 1 B 4r mindre 4n -2
St_n2:
denna kod ska utforas om innehallet 1 B &r storre én, eller lika med -2

Vi antar att B’s innehall 4r 3, vilket bor resultera i att instruktionen (hoppet) utfors ty 3 > -2. Vi utfor nu operation
och flaggsittning:
40 10 20 10 20 20 10
©)) 0O 0 OO O 0 1 1
-(-2) 11 1 1 1 1 1 0
= 0 0 OO 0O 1 0 1

Observera speciellt att en Borrow genereras vid operationen

I processorn utfors dock subtraktionen som addition av tvakomplementet, dvs:

[©) 0000 0011
+(2) 0000 0010
= 0 0000 0101

Carry-biten blir 0 nér vi raknar, Carry flaggan sitts dock till inversen av detta ty vid SUB och CMP-instruktioner
representerar Carry-flaggan Borrow...

Flaggsittning:
Minns att C-flaggan vid denna operation representerar " Borrow"...
C =1 ty borrow genererades
Z =0 ty resultatet ar skilt fran 0
V =0 ty inget tvakomplementsspill genererades
N = 0 ty mest signifikanta biten ar 0

I vért exempel forvintar vi oss att hoppet till St_n2 ska utféras, men detta &r inte fallet eftersom villkoret for BHI ej
aruppfyllt, (CAZ ).
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Om vi istéllet hade valt instruktionen BGT, (N AV A Zv N AV A Z), fungerar det korrekt (jamfor
flaggsattningen med villkoret for BGT). Forklaringen ligger i att vi betraktar jamforelse av tal med tecken.

Vi kan sammanfatta de villkorliga testoperationerna genom att koppla dessa till motsvarande
operatorer i programspraket C.

Tabell 1.29: C-operatorer och villkorlig programflodeskontroll

C-operator Betydelse Datatyp Instruktion
== Lika med signed/unsigned BEQ
1= Skild fran signed/unsigned BNE

< Mindre dn signed BLT

unsigned BCS

<= Mindre én eller signed BLE
lika

unsigned BLS

> Storre én signed BGT

unsigned BHI

>= Storre &n eller signed BGE
lika

unsigned BCC

Av tabellen framgér hur operator tillsammans med den aktuella datatypen avgor villken villkorlig

instruktion som ska anvéindas.

Exempel 1.37 Kodning av jamfdrelseoperation

Antag att foljande *C’-deklaration &r given:
unsigned char ucl,uc2;
Koda foljande C-sats i assemblerkod:
ifC ucl > uc2 )

S1;
Lésning:
Vi viljer villkorlig instruktion BHI eftersom denna svarar mot operator och datatyp:
LDAB ucl
CMPB uc2
BHI S1
BRA  skip
S1: .-
skip:
Observera att vi kan avlagsna BRA- instruktionen genom att vélja komplementinstruktionen till BHI, dvs BLS:
LDAB ucl
CMPB uc2
BLS skip
S1: .-
skip:
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Bittest och villkorlig programflédesandring

Tabell 1.30: Villkorlig programflédeskontroll baserad pa bittest

Mnemonic Funktion Villkor
BRCLR “Hopp” om bit-operands alla bitar &r 0 (M)e(mm) =0
BRSET “Hopp” om bit-operands alla bitar &r 1 (M)e(mm) =0

Dessa instruktioner kombinerar test och villkorlig programflodesdndring. Speciellt dr de
anvandbara 1 programslingor med statustest av IO-enheter.

Exempel 1.38

Antag att en IO-enhet placerats pa address $400 i datorn’s mine. Antag vidare att bit 0 indikerar ndgon speciell
héndelse. Om bit 0 dr 1 innebér detta att hdndelsen intrdffat och att vénteslingan kan avslutas. Féljande konstruktion
implementerar da denna vénteslinga:

wait_here:

BRCLR $0400,#%00000001,wait_here
BRCLR testar om data pa address $400 efter en logisk AND-operation med %00000001 &r noll. I s& fall utfors
“hopp” till positionen “wait_here”, annars fortsétter programutférandet med efterfoljande instruktion.

Instruktioner for raknande programslingor

Villkorliga instruktioner anvénds for att styra programflodet baserat pa en tidigare jamforelse.
Vissa typer av programkonstruktioner dr mycket vanliga och CPU12 omfattar darfor en speciell
uppsittning instruktioner utformade enbart for att stodja sddana programkonstruktioner.

Tabell 1.31: Instruktioner for raknande programslingor

Mnemonic Funktion Villkor

DBEQ Dekrementera innehall i register. (register) — 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
DBNE Dekrementera innehall i register. (register) — 1 = register
“Hoppa” om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
IBEQ Inkrementera innehall i register. “Hoppa” (register) + 1 = register
om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
IBNE Inkrementera innehall i register. “Hoppa” (register) + 1 = register
om resultatet = 0. om(register)=0; “hoppa”;
(register: A,B,D,X,Y,SP) annars: nasta instruktion
TBEQ Testa innehall i register. “Hoppa” om om(register)=0; “hoppa”;
resultatet = 0. annars: nasta instruktion

(register: A,B,D,X,Y,SP)
TBNE Testa innehall i register. “Hoppa” om om(register)=0; “hoppa”;
resultatet = 0. annars: nasta instruktion

(register: A,B,D,X,Y,SP)

Exempel 1.39 Kodning av *for-loop”

Antag deklarationen:
int i;
Koda C-programsekvensen:
for(C i = 10; i > 0; i--)

{
}
dummy :
Losning:
MOVW  #10, 1
LDD i

for_loop_iteration:
DBEQ D,dummy
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BRA  for_loop_iteration
dummy:

Vi inser igen att en och samma programkonstruktion kan kodas i assembler pa flera olika satt.
Forsok sjilv att koda ovanstaende exempel utan att anvdnda sammansatta instruktioner som
dessa.

Ytterligare en vanlig programkonstruktion “while(...) do” implementeras ocksd enkelt, betrakta
foljande exempel:

Exempel 1.40 Kodning av ”while-loop™

Antag deklarationen:

int i;
Koda C-programsekvensen:
while( 1)
{
}
dummy:
Lésning:
LDD i

while_loop_iteration:

TBEQ D, dummy

BRA  while _loop_iteration
dummy:

Multiplikation och division

Eftersom multiplikation utfors pé olika sitt beroende pd om operanderna betraktas som tal med
eller utan tecken, finns det ocksa flera varianter av multiplikations-instruktionen:

Tabell 1.32 Instruktioner for multiplikation

Mnemonic Funktion Operation
MUL Multiplikation, utan tecken (8x8 bitar) (A)x(B) = AB
EMUL Multiplikation, utan tecken (16x16 bitar) (D)x(Y) = Y:D
EMULS Multiplikation, med tecken (16x16 bitar) (D)x(Y)=Y:D

Anvindning av instruktioner fér multiplikation

Tal med tecken (signed) Tal utan tecken (unsigned)
8 bitar Ingen instruktion finns for detta. I stéllet MUL
anvands MUL kompletterad med s.k. (A)x(B)—(D)
“teckendverldggning”, se exempel nedan. Innehallen i ackumulatorerna

multipliceras. Resultatet, 16 bitar, finns
efter instruktionen i ackumulator D.

16 bitar EMULS EMUL
D)x(Y)—(Y:D) Samma som EMULS men vid
Innehéllen i D och Y multipliceras. multiplikationen behandlas talen utan
Resultatet, 32 bitar, finns efter instruktionen tecken.

i register Y (mest sign. 16 bitar) och i
ackumulator D (minst signifikanta 16 bitar)
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Exempel 1.41 Kodning av unsigned character”-multiplikation

Antag att foljande ’C’-deklarationer &r givna:
unsigned char ucl, uc2, ucResult;
Koda f6ljande operation, given i ’C’, i assemblersprak:
ucResult = ucl * uc2;
Losning:
; ucResult = ucl * uc2;
LDAA ucl
LDAB uc2
MUL
STAB ucResult

Exempel 1.42 Kodning av ’short”-multiplikation

Antag att foljande ’C’-deklarationer &r givna:
unsigned short usl, us2, usResult;
signed short ss1, ss2, ssResult;
Koda f6ljande operationer, givna i ’C’, i assemblersprak:

usResult = usl * us2;
ssResult = ssl1 * ss2;
Ldsning:
; UusResult = usl * us2;
LDD usl
LDY us2
EMUL
STD usResult
; SsResult = ssl * ss2;
LDD ssl
LDY ss2
EMULS
STD ssResult
Tabell 1.33 Instruktioner for division
Mnemonic Funktion Operation
IDIV Division, utan tecken (16/16 bitar) (D)+(X) = X
Resten = D
IDIVS Division, med tecken (16/16 bitar) (D)+(X) = X
Resten = D
FDIV Brakdelsdivision (16/16 bitar) (D)+(X)=> X
Resten = D
EDIV Division, utan tecken (32/16 bitar) (Y:D)+(X) =Y
Resten = D
EDIVS Division, med tecken (32/16 bitar) (Y:D)=(X) =Y
Resten = D

Stackoperationer

Operationer som paverkar stackpekaren (SP) kallar vi stackoperationer. Stacken anvinds for att
tillfalligt spara data och adresser. Det finns instruktioner som implicit anvinder stacken,
exempelvis JSR, RTS vilka beskrivits tidigare nedan. I dessa fall hanteras stacken, undanlagring
och aterstéllning, utan att programmeraren behover vidta speciella atgarder. Ur programmerarens

34



UTKAST 6/3 2013- Maskinnara programmering fér HC12

synvinkel ér stacken ddremot intressant som lagringsplats for “tempordra data”, dvs ett sitt att
reservera minnesutrymme for en kortare instruktionssekvens. Da sekvensen dr avslutad kan
stacken dterstdllas och samma minnesutrymme kan pa si sitt &dteranvdndas av senare

instruktionssekvenser som kréver plats for temporér undanlagring/dterstillning.

Stackoperationer kan indelas i tva grupper

e Operationer som enbart paverkar stackpekaren.

e Operationer som implicit anviander (och eventuellt paverkar) stackpekaren.

Flertalet operationer som inbegriper stackpekaren har vi behandlat i tidigare sammanhang,

Mnemonic Funktion Operation

PSHA Placera innehdllet i register A pa (SP)-1 = SP, (A) = Mgp)
stacken

PSHB Placera innehdllet i register B p& (SP)-1 = SP, (B) = Msp)
stacken

PSHC Placera innehallet i register CCR pa (SP)-1 = SP, (CCR) = Msp)
stacken

PSHD Placera innehallet i register D pé (SP)-2 = SP, (A B) = M(sp) :M(sp+1)
stacken

PSHX Placera innehallet i register X pa (SP)-2 = SP, (X) = Msp) :Msp+1)
stacken

PSHY Placera innehallet i register Y pa (SP)-2 = SP, (Y) = Msp) :M(sp+1)
stacken

PULA Aterstall innehallet i register A fran (Msp)) = A, (SP)+1 = SP
stacken

PULB Aterstall innehallet i register B fran (Msp)) = <B, (SP)+1 = SP
stacken

PULC Aterstéll innehallet i register CCR fran (Mgp)) = CCR, (SP)+1 = SP
stacken

PULD Aterstéll innehallet i register D fran (Mp) :M(sp+1)) = A:B,
stacken (SP)+2 = SP

PULX Aterstéll innehallet i register X fran (Mspy :Mgp+1)) = X,
stacken (SP)+2 = SP

PULY Aterstéll innehallet i register Y fran (Msp) :M(gp+1)) = Y,
stacken (SP)+2 = SP

For HCS12X tillkommer foljande stackoperationer:
Mnemonic Funktion Operation
PSHCW Placera innehallet i register CCR;:CCR (SP)-2 = SP,
pé stacken. (CCRH CCR) = M(Sp) :M(Sp+1)
PULCW Atersta” innehallet i register CCRHCCR (M(SP) :M(SP+1)):> CCRH: CCR,
fran stacken. (SP)+2 = SP

Vi har minst tre olika situationer som kriver tempordr lagring med anvdndning av stacken. Det
forsta fallet beskrivs enklast av att vi behover anvidnda nigon speciell instruktion som kriver ett
specifikt register och att detta register for tillfillet anvénds fOr att lagra ett tidigare delresultat.
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Situationen kallas”register spill”, och kan enkelt hanteras med hjélp av en tillfallig undanlagring
pa stacken.

Exempel 1.43 Hantering av ’register spill”.
Lat fojande deklarationer vara givna:
unsigned short int _a, b, c, d;

Skriv en sekvens assemblerinstruktioner som evaluerar foljande uttryck och lamnar resultatet i
register D.

(a*_b)+( c* d);
Losning:

For 16 bitars multiplikation anvéinder vi EMUL-instruktionen. Denna forutsiller att operanderna
finns 1 D respektive Y-registren.

LDD _a

LDY b

EMUL ; Forsta parentesen evaluerad
PSHD ; placera delresultat pa stacken
LDD _c

LDy _d

EMUL ; andra parentesen evaluerad

ADDD O0,SP ; addera med forsta delresultatet
LEAS 2,SP ; aterstall stackpekaren

Efter instruktionssekvensen finns hela uttryckets vérde i register D, stackpekaren har éterstéllts
till det varde den hade fore instruktionssekvensen.

Ett annat fall dr da vi vill reservera tillfillig plats” eller mera konkret, “deklarera lokala
variabler”. Sddana dr synliga endast i den funktion (subrutin) de deklarerats och anvénds aldrig
fore eller efter funktionen anropats. Det dr dirfor en god tanke att anvénda temporér lagring for
dessa. Minnet kan ju dé ateranvéndas av en annan funktion. Vi dterkommer till detta.

Exempel 1.44 Anvandning av ’tillfalligt variabelutrymme”

Antag att foljande *C’-deklarationer ar givna:
signed char scl, sc2, scResult;
Koda f6ljande operation, given i ’C’, i assemblersprak:
scResult = scl * sc2;
Lésning:
Eftersom det inte finns ndgon maskininstruktion fér multiplikation av 8-bitars tal med tecken tvingas vi hér gora
teckendverlaggning for att bestimma tecken hos resultatet. Vi infor en temporir variabel sign for att hélla reda pa
resultatets tecken. Sa hér skulle d& operationen kunna kodas i ’C’:
sign = 0;
if( (scl & 0x80 )&&( sc2 & 0x80 ) ) /* bada ar < 0 */
scResult = (-scl) * (-sc2);
else if( (I(scl & 0x80 )) && (¥( scl & 0x80 )) ) /* bada ar => 0 */
scResult = scl * sc2;
else if( (scl & 0x80 ) && (¥( sc2 & 0x80 )) ){ /* scl < 0, sc2 => 0 */
scResult = -scl * sc2;
sign=1;

else { /* scl => 0, sc2 < 0 */
scResult = scl * -sc2;
sign = 1;

}
if( sign == 1)
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scResult = - scResult;

Lt oss nu se hur vi kan koda detta som assemblerkod:

LEAS -1,SP ; unsigned char  sign;
CLR 0,SP ; sign = 0;
; 1FC (scl & 0x80 )&&( sc2 & 0x80 ) ) /* bada ar < 0 */
LDAA _scl
BPL 2
LDAB _sc2
BPL 2
; scResult = (-scl) * (-sc2);
NEGA
NEGB
BRA 8
_2:
; else if( (M (scl & 0x80 )) && ('( scl & 0x80 )) ) /* bada ar => 0 */
TSTA
BMI 4
TSTB
BMI 4
; SCResult = scl * sc2;
BRA _8
_4:
; else 1T( (scl & 0x80 ) && (¥( sc2 & 0x80 )) ){ /* sc1 <0, sc2 => 0 */
TSTA
BPL _6
TSTB
BMI _6
; ScResult = -scl * sc2;
NEGA
MovB #1,0,SP ; signh=1;
BRA _8
_6:

; else { /* scl => 0, sc2 <0 */
; ScResult = scl * -sc2;

NEGB

MOvB #1,0,SP ; sign = 1;
8:

MUL
STAB _scResult

; iIf(Csign == 1)

LDAA O0,SP
BEQ 9

; ScResult = - scResult;
NEGB

STAB _scResult
_9:
LEAS 1,SP

En tredje situation dr da vérden ska Gverforas till och frén en funktion. Beroende pd antalet
viarden som ska overforas kan hdr stacken komma till anvandning. Vi dterkommer dven till detta
nedan.

Om man programmerar i ett hognivasprak, behdver man normalt inte bekymra sig for “temporér
lagring” eftersom kompilatorn d& hanterar kodgenereringen. Om man ddremot kodar i
assemblersprak, och kombinerar detta med kompilatorgenererad kod, dr det ytterligt viktigt att
man forstatt kompilatorns konventioner i dessa sammanhang.
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Table 5-26. Condition Code Instructions

Mnemonic Function Operation
ANDCC Logical AND CCR with mamary (CCR) e (M)= CCR
CLC Clear C hit 0=C
CLI Clear | hit 0=l
CLv Clear V' bit 0=V
ORCC Logical OR CCR with memory (CCR)+ (M) = CCR
FSHC Push CCR onto stack (SP)— 1= 3P, CCR = Mzp,
PSHCW Push CCRy:CCR onto stack (5P} -2 = SP; (CCRy.CCR) =
MizeyMispiq)
PULC Pull CCR from stack [M-:EF']] = CCR; (5P)+ 1= 5P
PULCW Full CCRyCCR from stack (Mi=pyMigpsq)) = CCRyICCR;
(SP)+2= 5P
SEC Set C hit 1=C
SEl Set | hit 1=l
SEV Set v hit 1=V
TAP Transfer A to CCR (&)= CCR
TPA Transfer CCR to A (CCRI= A
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Parameterdverforing

Vi har redan sett exempel pad hur parametrar kan overforas till/frén en subrutin med hjélp av
processorns register. Det dr ett enkelt och mycket effektivt sétt att dverfora parametrar. Vi kan
ocksa infora konventioner alltsa regler for hur parameterlistorna ska oversittas, dvs utgaende fran
ordningsfdljden av parametrar tilldelas register efter ett forutbestimt monster.

Exempel Parametrar i register
Antag deklarationer:

int la,1b,lIc;
Antag vidare att vi alltid anvinder register D, X, Y (i denna ordning) for parametrar som skickas till en subrutin. Da
kan funktionsanropet

dummyfunc(la, b, Ic);
Oversittas till:

LDD la

LDX Ib

LDY Ic

BSR dummyfunc
Da vi kodar subrutinen dummyfunc vet vi (pa grund av vara regler) att den forsta parametern skickas i D, den andra
i X och den tredje i Y (osv).

Det visade exemplet indikerar dock en rad problem for mer generella fall. Exempelvis kan
parameterlistor vara ldnga och hur gor vi om inte processorns register racker till? For att hantera
det generella fallen kommer de foljande avsnitten kommer ocksé att behandla ndgra andra
metoder fOor parameterdverforing till och frén subrutiner. I avsnitten om kombinerad
programmering dvs hur man konstruerar program i saval assemblerkod som ett hognivasprak,
aterkommer vi till detta och visar metoder som vanligtvis anviands av C-kompilatorer.

Stacken anvands for temporar lagring

“Stacken” dvs en minnesarea som upplatits for tillfallig mellanlagring kan anvéndas for att spara
registerinnehall. Registren kan dérefter anvidndas for savél uttrycksevaluering som parametrar,
stacken aterstélles direfter och de ursprungliga registerinnehéllen terstélles samtidigt.

Da vi sparar ett registerinnehall pa stacken (detta kallas av tradition “push”) kan vi forestélla oss
att vi lagger detta, dverst, pad en “hog” (eng. stack), d& vi aterstdller (kallas av tradition “pop”)
innebdr detta att vi tar, det som ligger dverst, pd “hogen”. Jimfor detta med hur CPU12 placerar
returadressen vid subrutinanrop, pa stacken dér register SP utgor stackpekare. Av resonemanget
framgar vikten av att vi lagger pa och plockar av stacken i ritt ordning.

CPUI12 stodjer stackhantering med adresseringsmoderna
preautodecrement n,-SP
och

postautoincrement n,SP+
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Exempel

Vi vill spara initiala vdrden i register D och X pé stacken for att kunna anvinda dessa vérden i upprepade
berdkningar:

STD 2,-SP

STX 2,-SP
Antag att stackpekarens innehdll fore instruktionerna ar $3000. Stackens utseende efter
instruktionerna blir da:

Adress Innehall | SP | SP
fore | efter
3000 |
2FFF | D.Isb
2FFE | D.msb
2FFD | X.Isb
2FFC | X.msb |
2FFB

Antag vidare att D och X nu anvinds for berdkningar och att vi direfter ater igen behover de initiala vérdena. Vi ser
att SP nu pekar pé den sist lagrade byten. For att aterfora de ursprungliga vérdena till D och X utan att paverka
stacken kan vi nu anvénda:

Lbo  2,SP

LDX O0,SP
Da berdkningarna ir slutforda kan vi vdlja mellan att antingen aterstélla savil de initiala virdena till D och X samt
stackpekaren med:

LDX 2,SP+
LDD 2,SP+

eller, om vi inte vill modifiera D,X utan bara aterstélla stackpekaren:
LEAS 4,SP

Parametrar overférda via stacken

Det mest generella sittet att dverfora parametrar &r via stacken. Metoden har fordelen att antalet
parametrar inte dr beroende av antalet register 1 processorn. Ett subrutinanrop foregas da av ett
antal instruktioner som placerar parametrarna pa stacken. Efter subrutinanropet méste stacken
aterstéllas. 1 subrutinen refereras parametrarna via den offset de far 1 forhéllande till
stackpekaren.

Exempel Parametrar via stack
Antag deklarationer:

int la,lb,lc;
Antag vidare att listan av parametrar som skickas till en subrutin behandlas frdn hoger till véinster. D4 kan
funktionsanropet

dummyfunc(la, b, Ic);
Oversittas till:
LDD Ic
PSHD (alternativt STD 2,-SP)
LDD 1b
PSHD
LDD la
PSHD
BSR dummyfunc
LEAS 6,SP
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Da vi kodar subrutinen dummyfunc vet vi nu dess parametrar dr dtkomliga via stacken enligt foljande.

Innehall Kommentar Adressering via SP i subrutinen
Ic.Isb Parameter Ic

Ic.msb 6,SP

Ib.Isb Parameter Ib

Ib_msb 4,SP

la_lIsb Parameter 1a

la.msb 2,SP

PC.Isb | Aterhoppsadress,

PC.msb placeras hir vid BSR 0,SP

Parametrarna kan nu refereras enligt foljande:

dummyfunc:
LDD 2,SP parameter la till register D
LDD 4,SP parameter Ib till register D

LDD 6,SP parameter Ic till register D

Parametrar i programkod (In Line)

Ett annat sitt att Overfora parametrar dr direkt i koden. Metoden forutsitter da att parametrarna ar
konstanta. Metoden dr ovanlig men forekommer exempelvis vid implementering av sd kallade
’systemanrop”.

Exempel
“In line” parameterdverforing, vardet 10 ska overforas till en subrutin:

BSR dummyfunc

FCB 10

NOP
I dummyfunc maéste nu dterhoppsadressen (pé stacken) modifieras. Annars kommer konstanten 10 att tolkas som en
instruktion omedelbart efter aterhoppet. Fdljande instruktionssekvens illustrerar, dels hur parametern tas fram och
dels justering av aterhoppsadress:

dummyfunc:
LDAB [O,SP] parameter->B
LDX 0,SP aterhoppsadress->X
INX modifiera ..
STX 0,SP .. tillbaks till stack
RTS

Positionsoberoende kod

Med positionsoberoende kod menar man maskinkod som fungerar korrekt oberoende av var den
placeras i primarminnet. Lat oss belysa detta med foljande rader assemblerkod och den
maskinkod som assemblatorn skapar av instruktionssekvenserna:

ORG $1000 Genererad kod:

main: A7 06 10 00
NOP Den absoluta adressen till symbolen
IMP main main ar kodad 1 instruktionen.
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Programkoden &r inte positionsoberoende ty maskinkoden kan inte flyttas (relokeras) i
primiarminnet och fortfarande fungera korrekt om inte den absoluta adressen $1000 samtidigt
modifieras i koden.

Betrakta nu foljande kod i stéllet, observera att funktionen ar identisk med foregédend sekvens:

ORG $1000

main: Genererad kod:
) A7 20 FD
NOP . . .
BRA main Adressen till main anges som en offset till
programriknaren (FD=-3, PC-relativ)

Programkoden &r positionsoberoende ty maskinkoden kan flyttas i primdrminnet och programmet
kommer fortfarande att fungera som avsett.

Egenskaperna hos positionsoberoende kod kan speciellt utnyttjas av operativsystem, eftersom ett
positionsoberoende program kan flyttas utan att koden krdver modifiering kan operativsystemet
battre utnyttja datorsystemets primarminne.

42



UTKAST 6/3 2013- Maskinnara programmering fér HC12

Undantagshantering hos CPU12

Med “undantag” (exception) menar vi speciella hdandelser som foranleder avbrott i sekventiellt
utforande av instruktioner. Sddana héndelser kan vara nagon form av extern styrning (RESET,
IRQ eller XIRQ, dvs. avbrott) men de kan ocksd foranledas av ndgot internt fel som uppstér
under instruktionsexekvering.

O—— RESET
O—— IRQ
O—— XIRQ

CPU12

Extern styrning av CPU12, reset respektive avbrott

Processorns tillstand
Processorn befinner sig alltid i ndgot av tillstdnden:

e Normal, processorn hamtar och utfor instruktioner, dvs. normal exekvering.
e Exception, nagot “undantag” har intrdffat som gor att processorn inte kan (eller ska) fortsétta

normal exekvering.

Figur: Processorns olika tillstand

Vi anvinder begreppet “undantagshantering” (exception handling) for alla sorters handelser som
tar processorn ut ur tillstdndet “Normal”. Dessa hindelser kan delas in i tre olika grupper: se dven
figur.

e RESET MPU, héndelser som alltid foranleder aterstart (RESET) av processorn.

e AVBROTT, externa hindelser, dvs. utanfor processorn, detta kan alltsé vara enheter pad samma
krets som processorn (sammanbyggda periferienheter), det kan ocsa vara en speciell insignal
(IRQ eller XIRQ) som aktiveras.

e INTERNA, hiandelser som upptrdder under programexekvering, exempelvis att en otillaten
instruktion avkodas eller den speciella instruktionen SWI.

CErceron>
CaD G
SeHe °\E &
(e (Cra ) (xma)

Olika typer av exceptions
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RESET MPU
Det finns fyra olika hdndelser som foranleder aterstart av processorn:

e POR, Power On Reset, vid spinningstillslag
e RESET, insignal till processorn aktiveras.

e COP, Computer Operating Properly. Detta &r en sa kallad watchdog-funktion som fungerar sa
att processorn maste skriva nagot varde till ett speciellt register med jimna mellanrum. Om
programmet inte klarar av att genomfora detta s terstartas processorn (RESET) automatiskt.
Typiska intervall for sddan uppdatering ligger mellan 15 och 500 ms. Funktionen kan alltsa
anvindas fOr att aterstarta processorn da ett program av nagon anledning hédnger sig.
Funktionen kan stingas av genom att en speciell bit i ett styrregister nollstélls strax efter
aterstart.

e CMON, Clock Monitor Reset, dr en annan tidsstyrd kontrollfunktion hos. Denna 6vervakar
klockfrekvensen (E-klockan) och om frekvensen sjunker under 10 kHz genereras RESET.

AVBROTT

Avbrott kan komma fran tre olika typer av kéllor. Exempelvis kan nagon av de sammanbyggda
periferienheterna (portar, rdknare etc.) generera avbrott. For dessa finns forutbestimda
autovektorer, dvs. vid avbrott fran ndgon specifik enhet hdmtar processorn avbrottsvektorn fran
en adress som avdelats for just denna enhet. Det finns ocksa en speciell avbrottsingang, IRQ, som
man ansluter till externa periferienheter, detta avbrott har endast en speciell avbrottsvektor.
Ytterligare en typ av avbrottsingang XIRQ kan ocksa anslutas externt. Avbrottet har ocksd en
speciell avbrottsvektor men skiljer sig pd viktiga punkter frdn IRQ. Medan IRQ kan maskeras
(behandlas under avbrottsprioriteter nedan) dr XIRQ en form av icke maskerbart avbrott (non-
maskable interrupt).

INTERNA

Undantagshantering kan ocksa foranledas av interna hidndelser. Om processorn avkodar en
otillaten operationskod kallas detta lllegal Opcode Fetch (IOF). Processorn avbryter da, sparar
registerinnehdll pé stacken, laser autovektorn for IOF och utfér undantagshantering. Instruktionen
SoftWare Interrupt (SWI) fungerar pa samma sétt, men har en annan autovektor och en bestimd
operationskod.

Foljande tabeller, Tabell: 1.34 och Tabell 1.35 anger autovektorer hos MC68HCS12. 1 tabell
Tabell: 1.34 finns de autovektorer som dr gemensamma for alla HCS12-varianter. Tabell Tabell
1.35 listar autovektorer for varianten MC9S12DG256. Observera att andra varianter kan ha olika
autovektortabeller.

Adress (hex) Funktion
FFFE RESET, Startvektor
FFFC Clock Monitor Fail
FFFA COP Watchdog Timeout
FFF8 lllegal Op Code (ej impl i simulator)
FFF6 SWI
FFF4 XIRQ
FFF2 IRQ
FFOO-FFFO Enhetsspecifika vektorer, skiljer sig nagot
beroende pa de olika varianterna

Tabell: 1.34 MC68HCS12, gemensamma autovektorer
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Adress
(hex) Funktion

FFFO Real Time Interrupt

FFEE Enhanced Capture Timer channel

FFEC Enhanced Capture Timer channel 1

FFEA Enhanced Capture Timer channel 2

FFE8 Enhanced Capture Timer channel 3

FFE6 Enhanced Capture Timer channel 4

FFE4 Enhanced Capture Timer channel 5

FFE2 Enhanced Capture Timer channel 6

FFEO Enhanced Capture Timer channel 7

FFDE Enhanced Capture Timer overflow

FFDC Pulse accumulator A overflow

FFDA Pulse accumulator input edge

FFD8 SPI0
FFD6 SCI0
FFD4 SCI1
FFD2 ATDO
FFDO ATD1
FFCE Port J
FFCC Port H

FFCA Modulus Down Counter underflow

FFC8 Pulse Accumulator B Overflow

FFC6 PLL lock

FFC4 CRG Self Clock Mode

FFC2 Anvands ej (BDLC)

FFCO IIC Bus

FFBE SPI1

FFBC Reserverad

FFBA EEPROM I-Bit

FFB8 FLASH I-Bit

FFB6 CANO wake-up

FFB4 CANO errors

FFB2 CANO receive

FFBO CANO transmit

FFAE Anvands ej (CAN1 wake-up)

FFAC Anvands ej (CAN1 errors)

FFAA Anvands ej (CAN1 receive)

FFA8 Anvands ej (CAN1 transmit)

FFAB Anvands ej (ByteFlight Rx FIFO not empty)

FFA2 Anvands ej (ByteFlight general)

(

FFA4 Anvands ej (ByteFlight receive)
(
(

FFAOQ Anvands ej (ByteFlight Synchronisation)

FFOE- Reserverade
FF98

FF96 CAN4 wake-up

FF94 CAN4 errors

FF92 CAN4 receive

FF90 CAN4 transmit

FF8E Port P Interrupt

FF8C | PWM Emergency Shutdown

FF8A- Reserverade
FF80

Tabell 1.35 MC9S12DG128B/256B, autovektorer

D& undantagshantering paborjas sparas forst samtliga registerinnehdll pa stacken. Bit I i CCR
satts till 1 for att forhindra ytterligare ett omedelbart avbrott. Dérefter laddas PC med den
autovektorn for den aktuella undantagshanteringen i avbrottsrutinen. Figur nedan visar
processorns flaggregister Condition Code Register (CCR) och figur illustrerar hur
registerinnehdllen placerats pa stacken infor utférandet av avbrottsrutinen.
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0
S|X|{H|I'IN|Z|V|C

|_ CARRY/BORROW
— OVERFLOW
~ ZERO
NEGATIVE
IINTERRUPT MASK
HALF CARRY
X-INTERRUPT MASK

Processorns CCR

Bitar H,N,Z,V,C ér statusbitar som sétts till 0 eller 1 vid exekvering av olika instruktioner.

S — Har endast betydelse vid utférande av STOP instruktion. Om bit S 4r 1 behandlas STOP som
en NOP instruktion. Om bit S dr 0 och STOP exekveras placeras processorn i stopp-tillstand, dvs.
alla operationer upphor och aterupptas forst vid ett IRQ eller XIRQ.

X — Bit X &r en speciell typ av avbrottsmask for XIRQ. Bit X dr 1 vid RESET och nollstills
vanligtvis av programmet som startas omedelbart efter RESET. Da bit X nollstillts kan den inte
ett-stillas igen och XIRQ fungerar dd som icke-maskerbart avbrott. XIRQ ar verkningslos dé bit
Xarl.

I — Avbrottsmask, om bit I 4r 0 betjdnas avbrott IRQ, annars inte.

PCL Innehall i processorns programraknare vid avbrottet, dvs
PCH adressen till nasta instruktion som ska utféras

YL
IYH
IXL

IXH
ACCA

ACCB
SP—— CCR Innehall i processorns register CCR vid avbrottet

Stackordning i avbrottsrutin, HCS12

Innehall i processorns register (Y,X och D) vid avbrottet

Avbrottsprioriteter

Da flera avbrott upptrader samtidigt avgor avbrottsarbitreringen vilket avbrott som ska betjénas
forst. Ordningen kan i ndgon grad paverkas for de olika processorerna. Detta varierar mellan
olika varianter inom respektive processorfamilj HC11 och HCS12. Generellt giller dock att
RESET MPU utfors alltid, IOF och SWI, XIRQ betjdnas endast om bit X &r noll, IRQ betjdnas
endast om bit I 1 CCR ér noll.

Instruktioner for undantagshantering
Vid undantag sparas samtliga processorns register pa stacken av hardvaran.
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HCS12

Mnemonic

Funktion

Operation

RTI

Aterga fran undantagsrutin.

(M(sp)) = CCR; (SP)+1 = SP
(M(sp) : M(sp+1)) =B:A; (SP) +2=SP
(M(SP) : M(SP+1)) = Xy : X (SP)+4 = SP
(M(Sp) . M(Sp+1)) = PCH . PCL; (SP) -2=SP
(Mspy : Msp+1)) = Yu: Y (SP)+4 = SP

Swi

"Software Interrupt”

(SP)—2 = SP, RTNy :RTN. = ( M(Sp) :M(Sp+1))
(SP)-2 =SSP, YyY.=> ( M(Sp) :M(3p+1))
(SP)-2 = SP, Xy X = ( M(Sp) :M(3p+1))

(SP)-2 = SP,B. A= ( M(Sp) :M(Sp+1))
(SP)-1 = SP, CCR = (Msp) :Msp+1))

TRAP

Icke implementerad
instruktion

(SP)—2 = SP, RTNH :RTNL = ( M(Sp) :M(Sp+1))
(SP)-2 = SP, YH :Y|_ = ( M(Sp) :M(Sp+1))
(SP)-2 = SP, XH :X|_ = ( M(Sp) :M(Sp+1))

(SP)—2 = SP, B:A= ( M(Sp) :M(Sp+1))
(SP)-1 = SP, CCR = ( M(sp) :M(sp+1))

HCS12X

Mnemonic

Funktion

Operation

RTI

Aterga fran undantagsrutin.

(SP+1)) = CCRy :CCRy; (SP)+2 = SP

(sp+1)) =B:A; (SP) +2 = SP

M( 1) = XH: XL; (SP) +4 = SP

(M SP) - M(Sp+1 ) = PCH : PCL; (SP) -2=SP
(Mpy : Msp+1)) = YH: YL; (SP) +4 = SP

Swi

"Software Interrupt”

(SP)-2 = SP; RTNy :RTN,. = (M(Sp) :M(sp+1))
(SP)-2 = SP; Yy = (M(Sp) :M(sp+1))
(SP)-2 = SP, XH :X|_ = (M(Sp) :M(3p+1))

(SP)-2 = SP;B: A= (M(Sp) :M(3p+1))

(SP)-2 = SP; CCRy :CCR = (Msp) :Migps1)

TRAP

Icke implementerad
instruktion

(SP)-2 = SP; RTNy :RTN. = (M(Sp) :M(Sp+1))
(SP)—2 = SP, YH :YL = (M(Sp) :M(Sp+1))
(SP)—2 = SP, XH :XL = (M(Sp) :M(Sp+1))

(SP)-2 = SP, B:A= (M(Sp) :M(Sp+1))

(SP)-2 = SP; CCRy :CCR =» (M(sp) :M(sp+1))
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Exempel 1.45 Placering av Exceptionvektorer, assemblerkod

Foljande programskelett illustrerar hur nagra avbrottsrutiner respektive avbrottsvektorer kan
definieras i en fristdende HCS12-applikation.

ORG $FFF2

FDB Irg_service_routine

FDB xirg_service_routine

FDB software_interrupt_service_routine
FDB i1llegal _opcode_service_routine

FDB cop_service_routine

FDB clock monitor_fail_service routine
FDB Application_Start

; Symbolen “Application_Start_Address” kan vara godtycklig.

ORG Application_Start_Address
Application_Start:

LDS #TopOfStack

ANDCC #SFE ; nollstall 1-flagga

JSR _main

: Avbrottshanterare
Irg_service_routine:
RTI

xirg_service_routine:
RTI

software_interrupt_service_routine:
RTI

illegal opcode_service routine:
RTI

cop_service_routine:
RTI

clock_monitor_fail_service_routine:
RTI
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Kombinerad programmering

Programmering i assemblersprék har fordelar men ocksé stora nackdelar. Det dr ett langsamt, och
ddrmed ocksa kostsamt sitt att programmera. Det fardiga assemblerprogrammet kan dessutom
bara anvindas till den typ av maskin det skrivits for. Redan under 1950-talet borjade man
utveckla programsprék som dels skulle gora programmeringsarbetet littare, dvs spraket ska ha
konstruktioner som ligger ndrmre de algoritmer man vill att datorn ska utfora. och samtidigt
skulle programspraket vara oberoende av den underliggande hardvaran, dvs da nya datortyper
introducerades skulle dldre programvara snabbt kunna flyttas till dessa bittre maskiner.

Programspréiket C skapades av Dennis Ritchie (Bell Laboratories) i borjan av 1970-talet. Aven
om C dr ett generellt anvindbart sprik har det traditionellt anvénts som systemprogramsprak.
Speciellt dr operativsystemet UNIX och dess i dag mer bekanta efterfoljare LINUX, skrivet i
programspriket C. Den ursprungliga versionen av C blev snabbt populdr, skilen till detta var
flera: C tillhandahaller programkonstruktioner som gor det enkelt att implementera algoritmer pa
ett effektivt sdtt. Alla vanliga datatyper finns representerade sévil som pekare och stringar. Det
finns en rikhaltig uppséttning operatorer och ett "standard I/O" (input/output) bibliotek som
tacker in- och utmatning till filer och terminaler. C-program &r "effektiva", C-operatorer och
programflddes-konstruktioner &r néra relaterade till instruktioner som tillhandahélls av flertalet
processorer. Ett annat sétt att uttrycka det: Det semantiska gapet mellan C och datorns hérdvara
ar litet. C skapade stora mdjligheter att skriva portabla program, dvs applikationer som enkelt
kunde kopieras till nya system.

Populariteten hos C innebar dock att omradden som inte hade beaktats av Kernighan/Ritchie
blottlades, dvs brister hos spraket identifierades och atgédrdades, ofta lokalt. Som en direkt f6ljd
skapades flera olika "dialekter" av spraket. Utvecklingen av UNIX System V (AT and T)
respektive Berkeley UNIX accelererade divergensen hos C-dialekterna. 1983 skapades kommite'n
ANSI X3J11 (American National Standards Institute) med malsdttning att inrédtta en standard for
programsprdket C. Den standard som d& definierades populdrt for ANSI-C, medan den
ursprungliga definitionen av C har kommit att kallas K/R C (Kernighan/Ritchie C).
Standardiseringen av C har ddrefter tagits upp av ISO (International Standard Organisation) som
dérefter kontinuerligt drivit standardiseringen av C.

XCC - korskompilator

XCC ér en ANSI-C korskompilator for flera olika typer av mikroprocessorer. Vi beskriver hér
speciellt XCC12 for 68HCS12(X). I sjilva verket bestar XCC av flera delar: En preprocessor
som hanterar alla preprocessor-direktiv i C, en Oversattare/kodgenerator som kontrollerar
syntaxen 1 C-programmet och genererar assemblerkod for 68HC12, en assembler som
assemblerar koden och genererar relokerbar kod i objektfiler och slutligen en lankare som
kombinerar flera olika objektfiler till en, och skapar en laddfil som kan laddas i en 68HC12-
baserad dator eller en simulator. Under detta moment relokeras koden, dvs alla symboliska namn
ersitts med med absoluta adresser i maldatorns minne.

Minnesdisposition

Programkod och data indelas i olika segment, betrakta foljande figur som beskriver hur
minnesdispositionen for ett komplett program, under exekvering, kan se ut:

49



Maskinorienterad programmering, UTKAST 6/3 2013

a stack ¢— |nitial stackpekare

Run-Time, minnet heap L } .
existerar endast d& << Bérjian  fér  dynamisk
programmet exekveras [«— minnesallokering
icke initierade data
(bss)

programkod

Y

Image, skapas av
kompilator/lankare (text)
laddas till minnet
omedelbart fére
exekvering initierade data
(data)
konstant data
\_ (rodata)
prefix ["— Programmets startpunkt
(init)

Figur 1.1: Minnesdisposition vid programexekvering

Figur 1.1 forstas bast mot bakgrund av hur ett program Oversitts, sparas (eventuellt pd en
harddisk), laddas till primdrminnet och exekveras.

prefix

Prefixet, eller som det ocksa kallas, startupsekvens, placeras forst i varje C-program. Detta gors
for att programmet alltid ska ha en enkelt identifierad startpunkt. Av konvention anvinder XCC
segmentnamnet INTtE for startupsekvensen. Den enklaste formen av prefix startupsekvens kan
exempelvis vara:

SEGMENT init

LDS #TopOfStack

JSR _main
Vi kdnner igen symbolen main” som namnet pa det huvudprogram som maste finnas 1 varje C-
program. Vi anvinder "underscore" framfor symbolnamnet for att skilja C-funktionen "main"
frén (den Oversatta) assemblerfunktionen.

programkod

Har placeras all programkod. Den far inte vara sjdlvmodifierande, dvs segmentet forutsétts vara
read-only. Kompilatorn gor en "bild" av maskinkod som laddas i minnet. Av konvention kallas
detta segment for text.

konstant data
Deklarationer som exempelvis:

const int c = 2;
innebér att symbolen C alltid kommer att ha vérdet 2 under programmets exekvering. Detta kan
ge kompilatorn virdefull information. Exempelvis kan kontroll utforas, att C inte av misstag
tilldelas andra vérden i1 programmet. Informationen kan ocksd anvidndas for effektivare

kodgenerering med anviandning av omedelbart (immediate) adresseringssitt. I de fall konstant
data tilldelas minne placeras de av konvention i segmentet rodata.
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initierade data

Deklarationer som exempelvis:

int a = 2;

char array[] = {''Detta ar en text'};
kan ocksd anviandas for deklarera och initiera variabler. Innehallet dr definierat fran start, men
kan komma att dndras under exekvering. Kompilatorn méste gora en "bild" av detta segment for

att dessa initialvirden ska kunna laddas till minnet fore exekvering. Eftersom sddana variabler
kan komma att modifieras maste data-segmentet placeras i read/write minne.

Exempel 1.46
Beroende pa hur en textstring deklareras kommer kompilatorn att placera den i olika segment:
Satsen
printf("'Denna text ...");
ger samma resultat pd bildskdrmen som:
char reftext[]={""Denna text ..."};
printf('%s", reftext);
dvs en textstrang skrivs ut.

Kompilatorn betraktar dock textstrdngarna pé helt olika sétt. I det forsta fallet dr det en konstant string, som inte kan
refereras av programmet frdn ndgon annan punkt én just i printf-satsen. Eftersom den inte kan refereras med niagon
tilldelningssats kan den heller inte dndras, textstrangen dr darfor read-only, och kan placeras i ndgot av rodata eller
text-segmenten.

I det andra fallet ar det omedelbart klart att denna texstring kan refereras dven fran andra stillen i programmet, t.ex:
strcpy(reftext, "Annan text...');

Textstrangen kan darfor inte placeras i text segmentet, i stillet hamnar den i data segmentet.

icke initierade data
Deklarationer som:
int a;
char array[34];
osv, har inte ndgot definierat innehall fran start. Det behovs alltsa ingen "bild" av detta segment,

till skillnad fran data/rodata segmenten. Variabler som deklareras pa detta sitt hamnar i
segmentet bss.

stack

Stacken anvinds av program under exekvering. Stackpekaren initieras under startupsekvensen.
Stackens storlek bestims av olika faktorer som hur mycket read/write-minne som finns
tillgdngligt 1 maskinen, hur mycket utrymme som reserverats for “heap”, samt utrymmet som
upplatits for variabler (bsS).

heap

Heapen bendmns ofta det minnesutrymme som reserverats for programmets dynamisk
minneshantering mal loc(), free() etc. Aven storleken av detta utrymme bestims som regel
automatiskt. I XCC, exempelvis kommer allt tillgéngligt read/write minne utéver bSs att
anvindas for stack och heap vid programmets exekvering.

Lat oss sammanfatta detta. Vid kompilering skapas objektmoduler med f6ljande
information/innehall:
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e ’Read-Only”-sektion innehéllande en "bild" av segmenten init, text, data och
rodata.

e Information om storleken av bss-segmentet.

e Symboltabell innehéllande alla globala symbolers relativa adresser (offset till segmentets
borjan) 1 respektive segment. Observera att alla symboler ar relokerbara, dvs absoluta
adresser har dnnu ej bestamts.

Vid lankningsproceduren kombineras nu innehéllen fran alla objektmoduler segmentsvis. Totala
storleken av bss-segmentet bestdms och alla globala symbolers relativa adresser modifieras. Se,
som exempel Figur 1.2.

m2
e eXE _startup
Ll _mi
AR CRRAS
il
Bes
_m2
_ml
_m2
_m2
_ml+_m2

Figur 1.2: modulerna ”_startup”, ”_m1” och _m2” kombineras till en ny objektmodul

Slutligen, maste alla segment tilldelas absoluta startadresser. Symbolerna kan dérefter ges
absoluta adresser och en sista relokering utfor innan laddfilen skapas.

I/O-programmering

I detta avsnitt ska vi ge konkreta exempel pd hur grundliggande funktioner i en HCS12 kan
programmeras.

Inledningsvis behandlar vi klock-modulen. Vi visar forst hur vi programstyrt bestimmer kretsens
busfrekvens, dvs tidbasen i systemet. Vi ger dérefter exempel pé tvd olika implementeringar av
en realtidsklocka. Den forsta implementeringen duger bra for manga dndamal och ger en
noggrannhet om c:a 1 ms. Vi visar ytterligare en implementering, med betydligt béttre
noggrannhet, nagra tiotals nanosekunder.

Vi behandlar parallell in- och utmatning via portar A och B i HCS12, vi diskuterar ocksd hur
detta kan generaliseras att gilla &ven andra parallellportar hos HCS12.

Vi visar seriell kommunikation med HCS12’s ”SCI”-moduler.
Vi ger ocksé nagra enkla exempel pa pulsbreddsmodulering och A/D omvandling.

Genomgdende illustreras programmeringen med implementering i assemblersprak savél som i C.
I flera fall illustreras ocksé applikationer med avbrott.

Slutligen ger vi exempel pd hur en komplett fristdende applikation for HCS12 bor utformas, dvs
hur initiering och start procedur utfors och hur avbrottstabeller tillhandahalls.
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Klockmodulen i HCS12
Klockmodulen (CRG, Clock/Reset Generator) tillhandahaller flera funktioner, bland annat:

e PLL (Phase Locked Loop) oscillator for programmerbar busfrekvens.
e “Watchdog”-funktion, med programmerbar time-out.
e Periodisk avbrottsgenerator (RTI, Real Time Interrupt)

I HCS12-familjen har CRG-modulen vanligtvis basadress $34 men man ska alltid kontrollera vad
som géller for den specifika variant man anviander. Modulens register visas i Figur 1.3. Utrymmet
hidr medger inte att vi ger detaljerad behandling av samtliga register. For en fullstindig
beskrivning hédnvisas till fabrikantens dokumentation.

Clock Reset Generator (CRQG)

Offset 7 6 5 4 3 2 1 0 Mnemonic Namn
$00 \?, 0 O | syns | syna | syn3 | syn2 | synNi | svNo SYNR Synthesizer
Register
R| O 0 0 0 i
$01 REFDV3|REFDV2|REFDV1|REFDVO| REFDV Reference Divide
w Register
Rl 0 0 0 0 0 0 0 0 *
$02 [ CTFLG el
Register
$03 % RTIF | PORF | LVRF |LocKIE| Lock |scmie | scmie —M | CRGFLG Flags Register
R
$04 | rTIE |2 O | ockig—2 O |some |2 CRGINT | [nterruptEnable
w Register
R
$05 |-PLLSEL| PSTP [SYSWAI|ROAWAI|PLLWAI| CWAI [RTIWAI|COPWAI| CLKSEL Clock Select
w Register
R
$06 | CME |PLLON| AUTO | AOQ 0 PRE | PCE | SCME | PLLCTL PLL Control
w Register
R
$07 O | RTR6 | RTRS | RTR4 | RTR3 | RTR2 | RTRL | RTRO | RTICTL RTI Control
W Register
R
$08 |- wcop | RsBoK —2 0 0 CR2 | CRL | CRO | COPCTL COP Control
W Register
R %
$09 0 0 0 0 0 0 0 0 FORBYP )Force and Bypass
W Test Register
R ES
$OA 0 0 0 0 0 0 0 0 CTCTL )Test Control
w Register
R 0 0 0 0 0 0 0 0 COP Arm/Timer
$0B 7T Bit7 [ Bite | Bits | Bit4 | Bit3 | Bit2 | Bitl | Bito | /RMCOP Reset

Anm: Skuggade félt utmérker bitar som ej kan skrivas
*) Registren anvinds endast for fabrikstest av kretsen.
Figur 1.3: Register i CRG-modulen

Kontroll av busfrekvens PLL, SYNR och REFDV
Systemets klocka (busfrekvens) kan viljas mellan PLLCLK och OSCCLK. Sambanden mellan de
olika klockorna beskrivs av foljande ekvation:
(SYNR+1)
(REFDV +1)

Genom att ett-stdlla biten PLLSEL 1 register CLKSEL véljs PLLCLK som bas for arbetstakten.
Den effektiva busfrekensen bestdms dd av OSCCLK och kvoten mellan SYNR och REFDV. Det
finns dock tva viktiga begransningar i valet av viarden hos SYNR och REFDV.

PLLCLK =2x0OSCCLK x

e PLLCLK far aldrig vara mindre &n OSCCLK eftersom detta dventyrar stabilitetsvillkoren i
oscillatorn.

e PLLCLK/2 far aldrig vara storre an nominella arbetsfrekvensen hos kretsen. For forsta
generationens HCS12 innebér detta att PLLCLK/2 <25 MHz.
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Exempel 1.47
Antag vi vill maximera arbetstakten hos en HCS12 med 8 MHz kristall. Vi far:
(SYNR+1)
(REFDV +1)
Den nédrmsta arbetstakt vi kan skapa dr 48 MHz med valen SYNR =5 och REFDV = 1, vi far dé:

(5+1)
(1+1)

S50MHz > 2x8MHz x

2 x 8MHz x =2x8x3MHz = 48MHz

For att byta systemklocka ska vi alltsa modifiera registren SYNR och REFDV. Dérefter sitter vi
biten PLLSEL till 1. Innan vi &ndrar denna bit till ett maste vi dock kontrollera att PLL-kretsen
genererar en stabil PLLCLK, vi siger att den d& ar l&st. Detta kontrolleras via biten LOCK i
registret CRGFLG.

Exempel 1.48: Busfrekvens hos HCS12, assemblersprak

* Adressdefinitioner for register

REFDV EQU $35
SYNR EQU $34
CLKSEL EQU $39
* Bitdefinitioner
PLLSEL EQU $80
LOCK EQU 8

* Registervarden enligt Exempel 1.47
REFDVVal : EQU 1
SYNRVal: EQU 5

* Generisk kod for programmerad arbetstakt...
MOVB #REFDVVal,REFDV
MOVB #SYNRVal,SYNR

] BRCLR CRGFLG,#LOCK,wait ; vanta tills PLL last...
BSET CLKSEL,#PLLSEL ; vaxla systemklocka till PLL.

Exempel 1.49: Busfrekvens hos HCS12, motsvarande i C:

Hir ar det lampligt att gora en typdeklaration for CRG-modulen, exempelvis enligt foljande:

typedef struct sCRG{
volatile unsigned char synr;
volatile unsigned char refdv;
volatile unsigned char ctflg;
volatile unsigned char crgfilg;
volatile unsigned char crgint;
volatile unsigned char clksel;
volatile unsigned char pllctl;
volatile unsigned char rtictl;
volatile unsigned char copctl;
volatile unsigned char forbyp;

}CRG, *PCRG ;

#define CRG_BASE 0x34 /* Basadress for CRG-modulen */
#define REFDVVal 1 /* Registervarden enligt Exempel 1.47.. */
#define SYNRVal 5

#define PLLSEL 0x80 /* Bitdefinitioner */

#define LOCK 8
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/* Generisk kod for programmerad arbetstakt... */

( ( ( PCRG ) ( CRG_BASE ))->refdv ) = REFDVVal;

( ¢ ¢ PCRG ) ( CRG_BASE ))->synr ) = SYNRval;

/* vanta tills PLL last... */

while( (( ((volatile PCRG) (CRG_BASE))->crgflg ) & LOCK )== 0);
/* véxla systemklocka till PLL */

( ((PCRG) (CRG_BASE))->clksel ) |= PLLSEL;

Observera speciellt sekvensens sista tilldelningssats som valts for att endast paverka biten
PLLSEL och lata Gvriga bitar i registret vara opdverkade.

Realtidsklockan i CRG-modulen

CRG-modulen innehaller dven en RTI- (Real Time Interrupt) funktion med vars hjélp vi enkelt
implementerar en noggrann klocka (realtidsklocka). RTI-funktionen utgdrs av en enkel rdknare
kopplad till centralenhetens avbrottsingang. Funktionen kontrolleras via tre register: CRGINT for
att kontrollera avbrottsfunktionen, RTICTL for att bestimma avbrottsfrekvensen och CRGFLG
for att kvittera avbrott (jamfor Figur 1.3).

CRGINT (basadress + 4)

Registret anvinds for att aktivera avbrott

R 0 0 0 0 0
$04 [ RTIE LOCKIE SCMIE
e RTIE: Aktivera avbrott fran RTI-funktionen. Denna bit maste séttas till 1 for att avbrott ska
genereras.

e LOCKIE, SCMIE, anvinds ej hér.
RTICTL (basadress + 7)

Registret anvinds for att initiera en tidbas for den periodiska riaknaren. En skrivning till detta

register aktiverar RTI-funktionen.

$07 ; 0 RTR6 | RTR5 | RTR4 | RTR3 | RTR2 | RTR1 | RTRO
RTR-bitarna  bestimmer avbrottsintervallet fran rdknaren. Systemets klockfrekvens
(kristalloscillatorns frekvens) delas med ett tal specificerat av RTR-bitarna enligt foljande tabell:
RTR RTR[6:4]
[3:0]
000 001 010 011 100 101 110 111
(OFF)
0000 OFF 210 211 211 215 214 21b 21b
0001 OFF 2x2™ 2x2™" 2x2™ 2x2™ 2x2™ 2x2™ 2x2™
0010 OFF 3x2™ 3x2"" 3x2™ 3x2™ 3x2™ 3x2™ 3x2™
0011 OFF 4x2™ 4x2™ 4x2" 4x2" 4x2" 4x2™ 4x2™®
0100 OFF 5x2™ 5x2"" 5x2™ 5x2" 5x2™ 5x2™ 5x2'°
0101 OFF 6x2™ 6x2"" 6x2™ 6x2"° 6x2" 6x2™ 6x2™
0110 OFF 7x2™° 7x2"" 7x2™ 7x2" 7x2" 7x2™ 7x2°
0111 OFF 8x2™ 8x2"" 8x2™ 8x2™ 8x2™ 8x2™ 8x2™
1000 OFF ox2™ ox2™ ox2'™ ax2™ ox2™ ox2™ ax2™
1001 OFF 10x2™° 10x2"" 10x2"° 10x2"° 10x2™ 10x2™ 10x2™°
1010 OFF 11x2™° 11x2"" 11x2"° 11x2"° 11x2™ 11x2™° 11x2™°
1011 OFF 12x2™° 12x2"" 12x2"° 12x2™° 12x2™ 12x2™° 12x2™°
1100 OFF 13x2™° 13x2"" 13x2"° 13x2™° 13x2™ 13x2™ 13x2™°
1101 OFF 14x2™ 14x2"" 14x2" 14x2"° 14x2™ 14x2™ 14x2™
1110 OFF 15x2° 15x2"" 15x2"° 15x2™7° 15x2™ 15x2™° 15x2™°
1111 OFF 16x2™° 16x2"" 16x2"° 16x2"° 16x2" 16x2"° 16x2™°
Tabell 1.36
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Exempel 1.50: Bestdmning av avbrottsintervall

Antag vi onskar avbrott med 10 ms intervall och att var kristallfrekvens &r 8 MHz.

Det géller att:
—OSCCLK = RTlfreq
RTR
dvs
8x10° 1
= =
RTR 107

RTR = xx 2" =8x10" dir: 1<x<16 och 10<y<16
Identifiera x = 8 ger:

2V =10* = log2’ =log(10*) =

log10* 4
=98 T 11329
log2 log2
Vi provar oss slutligen fram till det bésta virdet (approximativt 8x10%)
8x2" = 65536
9x2" =73728

10x2" = 81920
Den bésta approximationen har vi for
RTR = 100 1001 = $49, som medfor: 10x2"* = 81920
Eftersom detta vérde &r nigot storre &n det optimala, kommer vi att fa en nagot langre periodtid, nimligen:
avbrottsfrekvens = 8x10°/ 81920 = 97.656 Hz
vilket ger periodtiden:
0.01024 s = 10,24 ms.
Klockan kommer alltsa att "ga for sakta" som en foljd av detta systematiska fel.

CRGFLG (basadress + 3)

Statusregister, alla bitar dr ldsbara och varje bit representerar ndgon hédndelse.

$03 % RTIF | PORF | LVRF |LOCKIF| LOCK | SCMIE | SCMIF SCM

e RTIF: Biten sitts till 1 vid avbrott frdn RTI-funktionen. Avbrottsignalen kvitteras genom att
en etta skrivs till RTIF-biten.

e Ovriga bitar, anviinds ej hir, nollor kan skrivas till dessa bitar utan att piverka nigon
funktion.

Da rdknaren initierats/aktiverats, kommer den att rdkna ned ett intervall och direfter begira
avbrott, riknarvirdet initieras dérefter pa nytt automatiskt av kretsen och ett nytt intervall
paborjas. Avbrottet maste kvitteras for att aterstélla IRQ-signalen till en passiv niva, detta gors i
avbrottsrutinen. [ foljande exempel illustraras hur en enkel realtidsklocka implementeras i ett
HCS12 system.
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Exempel 1.51: Implementering av realtidsklocka med HCS12

I detta exempel visas en mycket enkel implementering av en realtidsklocka. Om det anvénda
systemet dr forsett med en 8 MHz kristall s& kommer avbrott att genereras med 10,24 ms

intervall. Vi implementerar férst med HCS12 assemblersprak
* Adressdefinitioner

CRGFLG EQU $37

CRGINT EQU $38

RTICTL EQU $3B
SEGMENT text

timer_init:

* Initiera RTC avbrottsfrekvens (se Exempel 1.50 )
MOVB #$49,RTICTL ; F6r MC12/8MHz
Anmarkning ang. avbrottsfrekvens.
Om programexemplet anvands i simulatorn kommer denna
perioden att bli mycket lang. Det kan vara battre att
anvanda kortast téankbara intervall for tester i simulatorn
MOVB #$10,RTICTL ; For simulator

o F % X

* Aktivera avbrott fran CRG-modul

MOVB #$80,CRGINT

* Avbrottsvektor
LDX #timer_interrupt

* FOr laborationssystem “MC12” med “DBG12”
STX $3FFO

* FOr simulator (ETERM och XCC)
STX $FFFO

* nollstall CPU’ns I-flagga (tillat avbrott)
CLI
RTS

Avbrottsrutin

Normalt sett ska vi har underhalla en mjukvaruklocka
men i detta exempel gor vi minsta méjliga...

* X ok X

timer_interrupt:

* Kvittera avbrott fran RTC
BSET CRGFLG, #%$80
RTI

Implementering av samma realtidsklocka, i ’C’

void timer_init( void )
{ /* RTC avbrottsfrekvens ...*/
( ( ( PCRG ) ( CRG_BASE ))->rtictl ) = 0x49;
/* Avbrottsvektor for laborationssystem “MC12” med “DBG12” */
*(unsigned short *) Ox3FFO = (unsigned short) timer_interrupt;
/* Avbrottsvektor for simulator */
*(unsigned short *) OxFFFO = (unsigned short) timer_interrupt;
/* Aktivera avbrott fran CRG-modul */
( ( ( PCRG ) ( CRG_BASE ))->crgint ) = 0x80;
__asm(" CLI'); /* nollstall CPU’ns I-flagga (tillat avbrott) */

}

__interrupt void timer_interrupt( void )
{ // Kvittera avbrott fran RTC
( ( ( PCRG ) ( CRG_BASE ))->crgflg ) |= 0x80;

57



Maskinorienterad programmering, UTKAST 6/3 2013

Observera dock att varje enhet i ‘clock’ motsvarar 10,24 ms. For att fi en exakt klocka maste
alltsd dven dennatid korrigeras med jimna mellanrum.

Parallell kommunikation via portar A ocb B

Funktionen hos merparten av de fysiska anslutningarna (pinnarna) hos en HCSI2 ér
programmerbar. Exempel pa det dr portar A och B. Betrakta Figur 1.4, som é&r tagen fran
blockbeskrivningen av en DG256. Figuren illustrerar hur de 16 anslutningarna, som géir under
namnen Port A resp Port B, kan anvéndas pa tre olika sétt.

1. Multiplexed Wide Bus — 16 bitars extern adressbuss och 16 bitars databus.
2. Multiplexed Narrow Bus — 16 bitars extern adressbuss och 8 bitars databus

3. Single chip — Ingen extern bus. Port A och Port B kan anvindas som generella IO-portar.

EIFEEEEEEEEEREEE]

Multiplexed Address/Data Bus

EEEEERERREREREEE

DDRA DDRB
PTA PTB
T
en O CO ch cd 0 &0 Ch
&&&53%&& cooodood
w = Mmoo
rrrrrr @ a [l A A =]
OCC(C (@ OC L@
cooooooog cooocoood
cooooood cocoocoodod
<@ ool of <L of of of < oL o of of f f T

—————————————————————————————————

Multiplexed T T X & T %
‘Wide Bus B %

1 [ )
_________________________________

' Multiplexed
' Narrow Bus

_____________________

Figur 1.4: Alternativ anvandning av PA/PB

Vi tittar nu pé hur vi kan anvénda dessa portar i ’Single Chip”-mode. Se Figur 1.5 som visar de
forsta registren i MEBI-modulen. PORTA och PORTB ér tvé identiska 8-bitars portar. Riktningen
(in eller ut) kan for varje bit viljas oberoende av de dvriga bitarna. Detta gors genom initiering av
Data Direction Register A (DDRA) respektive Data Direction Register B (DDRB). MEBI-modulen
har vanligtvis basadressen 0 i alla HCS12-system.

Multiplexed External Bus Interface (MEBI)
Offset 7 6 5 4 3 2 1 0 Mnemonic
$00 % Bit7 | Bit6 | Bith Bit4 Bit3 Bit2 Bitl BitO PORTA
$01 % Bit7 | Bit6 | Bith Bit4 Bit3 Bit2 Bitl BitO PORTB
$02 | R |1=0UT|1=0UT| 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT DDRA
W | O=IN| O=IN| O=IN O0=IN O=IN O=IN O=IN O=IN
$03 | R |1=0UT|1=0UT| 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT | 1=0UT DDRB
W | O=IN| O=IN | O=IN O0=IN O=IN O=IN O=IN O=IN
soa | R
v P PP

Figur 1.5: Register for Port A/B som generell IO
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DDRA bestammer riktning for varje bit i PORTA. ”1” 1 DDRA innebér att motsvarande bit i PORTA
fungerar som en utport. ”0” i DDRA innebér att motsvarande bit fungerar som en inport.

En lasning frdn PORTA kommer att returnera den logiska nivan f6r en ports pinne om biten dr en
inport, annars returneras det senaste virde som skrevs till biten. PORTB och DDRB fungerar pa
identiskt sétt.

Exempel 1.52

Ange i sévil assemblersprak som C, programkonstruktioner som initierar port A for anvindning
som inport samt port B for anvindning som utport.

Losning:

PORTA EQU ©

PORTB EQU 1

DDRA EQU 2

DDRB EQU 3
CLR  DDRA

MOVB #$FF,DDRB

typedef struct sMEBI{
volatile unsigned char porta;
volatile unsigned char portb;
volatile unsigned char ddra;
volatile unsigned char ddrb;
IMEBI, *PMEBI ;

#define MEBI_BASE O
( ( ( PMEBI )( MEBI_BASE ))-> ddra ) = O;
( ( ( PMEBI )( MEBI_BASE ))-> ddrb ) = OXFF;

Seriell kommunikation via SCI

SCI-modulen &r konstruerad for olika serieprotokoll som punkt-till-punkt, exempelvis RS232, och
buss-protokoll som exempelvis Local Interconection Network (LIN). SCI-modulens
registeruppsattning visas i Figur 1.6.

Serial Communication Interface (SCI)

Offset 7 6 5 4 3 2 1 0 Mnemonic Namn
$00/2 0 0 0 SBR12 |SBR11|SBR10| SBR9 | SBR8 | SCIBDH Baud Rate

_ Register High
$01-"1 sBR7 | SBR6 | SBR5 | SBR4 | SBR3 | SBR2 | SBR1 | SBRO | scispL | BaudRate

W Register Low
$02—5}-Loops SCISWAI| RSRC M WAKE | ILT PE PT SCICR1 COHHOngyﬁer
$03—%— TIE | TCIE | RIE | ILIE| TE | RE | RWU | SBK | SCICR2 (bn“d;“%“wr
504 @ TDRE TC RDRF | IDLE | OR NF FE PF | ocrsrL Status Register |
sospR O L0 0 ____0___0 gryis SCISR2 |Status Register 2
$06 \Siv liﬁ--_-_“ 0 SCIDRH DataH%gﬁister

R R4 R3 R2 Data Register
0717 T6 T5 T4 T3 T2 T1 TO SCIDRL Low

Figur 1.6: SCI Register
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Datadverforingen sker via SCIDRH och SCIDRL. SCIDRH anvinds endast vid 9 bitars
datadverforing. Observera att tecken kan skickas och tas emot samtidigt (full duplex) eftersom det
finns separata register (T, transmitter och R, receiver).

Innehallen i SCI1BDH och SCIBDL anvinds for att bestimma &verforingshastigheten, baud rate,

som berédknas enligt féljande:
PLLCLK

16x BR
dar: BR ér innehéllet i SCIBDH-SCIBDL (1-8191).
Vi kan ocksé skriva sambandet som:
_ PLLCLK
16 x baudrate

vilket ger oss ett enkelt samband for att bestimma initieringsvirden till SCI1BDH/SCIBDL for
nagon 6nskad baudrate.

baudrate =

Exempel 1.53

Bestdm initieringsvirden BR for olika baudrates, 9 600, 57 600 och 256 kbaud i ett HCS12-
system med 48 MHz systemklocka.

Ldsning:

Vi anvinder samband enligt ovan och sammanstiller resultaten i foljande tabell:

9 600 6 ‘ 6
A0 4105 410" 9615, A8¥10° gsgs
16x9600 16x312 16x313
57 600 ‘ ‘
B0 s 08333 | 28100 s7600
16x57600 16x52

256 000 6 :
_ X0 1875 | A0 550000
16x 256000 16x12

Det framgar omedelbart att vi inte kan besdmma BR for en exakt Gverensstimmelse. Vi ser att vi
tvingas anvianda 9615 (eller 9585) 1 stéllet for 9600 vilket vanligtvis fungerar eftersom det finns
vissa toleranser i samplingen.

Lat oss nu studera SCI-modulen genom att bygga upp négra typiska anvédndarfall. Utgdende frdn
Figur 1.6 deklarerar vi forst en 1amplig datatyp for modulen:

typedef struct sSCI{

volatile
volatile
volatile
volatile
volatile
volatile
volatile

}SCi, *PSCI;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short scibd;
char scicrl;
char scicr2;
char scisrl;
char scisr2;
char scidrh;
char scidrl;

RS232 kommunikation, 9600 baud, 8 bitar data, ingen paritet, utan avbrott

Betrakta kontrollregister 2, bitar 7-4 anvénds enbart da vi vill anvidnda avbrott. I detta fall ska
déarfor dessa bitar vara 0.
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Offset 7 6 5 4 3 2 1 0 Mnemonic Namn
R Control
$03+— TIE TCIE RIE ILIE TE RE RWU SBK SCICR2 .
W Register 2

Biten RWU anvénds dé vi utnyttjar energibesparande moder och SBK (Send BreaK character) har
speciell funktion som vi aterkommer till senare. Bitar TE och RE har vi dock anvdndning for.
Deras respektive funktion &r:

Bit 3 Transmitter Enable Bit — TE aktiverar SCI'ns séndare och konfigurerar pinnen TXD sa att den
TE kontrolleras av SCI'n.

0 Transmitter inaktiv

1 Transmitter aktiv

Bit 2 Receiver Enable Bit — RE aktiverar SCI'ns mottagare.
RE 0 Receiver inaktiv
1 Receiver aktiv

Av funktionsbeskrivningen drar man slutsatsen att SCI’n kan anvédndas som enbart sdndare, som
sandare/mottagare, dock ej som enbart mottagare.

Vi finner att i detta fall ska bitar TE och RE sittas till 1 medan 6vriga bitar ska vara 0.
( (( PSCI )( SCI_BASE ))->scicr2 ) = Ox0C;

Vi anvénder baudrate-berdkningar fran Exempel 1.53 vilket ger oss foljande initiering av
baudrate registren:

( (( PSCI )( SCI_BASE ))->scibd) = 312;

Lat oss nu titta ndrmre pé statusregister 1.

R | TDRE T RDRF IDLE R NF FE PF
$04 W c 0 SCISR1 (Status Register 1

Foljande tabell beskriver kortfattat statusbitarnas betydelse:

Bit Beskrivning

7 Transmit Data Register Empty Flag — Da TDRE ar satt till 1 kan ett nytt tecken skrivas till SCIDR(T).
TDRE | Biten nollstélls av att SCISR1 lases och SCIDRL skrivs, i denna ordning. Da tecknet skiftats ut fran
SCIDRL satter SCI TDRE till 1 igen.

0 SCIDRL(T) upptaget
1 SCIDRL(T) ledigt
6 Transmit Complete Flag — TC nollstalls d& en séandning pabdrjas och ar noll s& lange sandningen
TC pagar.
0 Sandning pagar
1 Ingen sandning pagar
RDR | Receive Data Register Full Flag — RDREF sétts till 1 da ett nytt tecken finns i SCIDRL. Flaggan nollstalls
F av att SCISR1 lases och SCIDRL lases, i denna ordning.
0 Inget nytt tecken
1 Nytt tecken
4 Idle Line Flag — IDLE sétts till 1 da 10 konsekutiva logiska ettor (om M=0) eller 11 konsekutiva logiska
IDLE | ettor (om M=1) mottagits. Funktionen anvands i buss-konfigurationer for att detektera “"ledig buss”.
0 Mottagaren ar aktiv
1 Mottagaren ar inaktiv, bussen ar ledig
3 Overrun Flag — OR satts till 1 om ett nytt tecken anlander till SCIDRL(R) innan det tidigare tecknet lasts.
OR | Nollstalls igen da SCISR1 lases.
0 Inget forlorat tecken
1 Forlorat tecken
2 Noise Flag — NF satts till 1 om stérande brus férekommer pa mottagarens ingang. Nollstalls igen da
NF SCISR1 lases.
0 Ingen stdrning
1 Storande brus

1 Framing Error Flag — FE satts till 1 da en stoppbit Idses som en logisk nolla. Nollstalls igen da SCISR1

61



Maskinorienterad programmering, UTKAST 6/3 2013

FE lases. Observera att inget nytt tecken kan mottas innan FE nollstalls. Typiskt intraffar detta fel om
sandare/mottagare arbetar med olika baudrate.

0 Inget ramfel

1 Ramfel

0 Parity Error Flag — PF sétts till 1 da ett paritetsfel upptacks och PE samtidigt &r 1. Nollstélls igen da
PF SCISR1 och SCIDRL lases efter varandra.

0 Inget paritetsfel

1 Paritetsfel

For att kunna sdnda ett tecken maste SCIDRL(T) vara tomt, annars forstor vi ett tidigare forsok
att skicka ett tecken. Foljande programkonstruktion utfor en upprepad statustest:

while( ((C ((PSCI) (SCl_BASE))->scisrl ) & 0x80 )== 0);

den dr ekvivalent med f6ljande sekvens instruktioner:

_1:
LDAB SCISR1
ANDB  #$80
BEQ _1

Dvs. programmet “hanger” till TDRE blir 1 och SCIDRL(T) ér redo for ett nytt tecken
Pa motsvarande sitt indikerar RDRF att SCIDRL(R) innehéller ett nytt tecken som anlint pa
seriegrinssnittet. Statustesten blir den samma fast en annan bit testas:
while( (C ((PSCI) (SCI_BASE))->scisrl ) & 0x20 )== 0);
Vi kan nu sédtta samman en uppsittning funktioner enligt féljande:
void serial_init( void ); /* initiera granssnittet */
void serial_out( char c ); /* skicka ett tecken via granssnittet */

char serial_in( void ); /* ta mot ett tecken fran granssnittet */

Implementeringen, “busy wait” av dessa foljer hér:

Exempel 1.54: RS232 kommunikation, “busy-wait”, i C
Vi forutsitter att SCI_BASE (basadress till SCI-modulen) &r definierad.

void serial_init( void )

(C (C PSCI )( SCI_BASE ))->scicr2 ) = 0x0C;
(C (C PSCI )( SCI_BASE ))->scibd ) = 312;
}
void serial_out( char c )
{

while(C ((C ((PSCI) (SCI_BASE))->scisrl ) & 0x80 )== 0);
C ((PSCI) (SCI_BASE))->scidrl ) = c;

char serial_in( void )

while( (C ((PSCI) (SCl_BASE))->scisrl ) & 0x20 )== 0);
return ( ((PSCI) (SCI1_BASE))->scidrl );
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Exempel 1.55: RS232 kommunikation, “busy-wait”, i HC12 assemblersprak
Vi forutsatter hér att SCI (basadressen till SCI-modulen) ar definierad.

SCIBD EQU SCI
SCICR1 EQU SCI+2
SCICR2 EQU SCI+3
SCISR1 EQU SCI+4
SCISR2 EQU SCI+5
SCIDRH EQU SCI+6
SCIDRL EQU SCI+7
SEGMENT text
EXPORT _serial_init
EXPORT _serial_in
EXPORT _serial_out
_serial_init:
LDAB #$0C
STAB SCICR2
LDD #312
STD SCIBD
RTS
_serial_out:
BRCLR SCISR1,#0x80,_ serial_out
LDAB 2,SP
STAB SCIBD
RTS
_serial_in:
BRCLR SCISR1,#0x20,_serial_in
LDAB SCIBD
RTS

Vi har nu en uppsittning funktioner som hanterar serieckommunikation i dess enklaste form. Det
finns dock flera kompletteringar man kan gora for att oka robusthet och anvéndbarhet av
funkktionerna. Vi kan exempelvis ldgga till felkontroll i mottagarrutinen sa att inte felaktiga
tecken returneras, det skulle kunna se ut pé foljande sétt:

char serial_in_errorcheck( void )

{
char c;
while(1)
{
while( (( ((PSCI) (SCl_BASE))->scisrl ) & 0x20 )== 0);
c = ( ((PSCI) (SCI_BASE))->scidrl ); /* Las tecken */
iF(((((PSCI)( SCI_BASE ))->scisrl) & OxF )==0)
{ /* allt ar Ok, returnera tecknet */
return ( ((PSCI1) (SCI_BASE))->scidrl );
/* Felaktigt tecken, kassera och vanta pa nytt... */
}
}

“Busy-wait” strategin &r tilltalande i sin enkelhet men dr inte alltid anvindbar i1 praktiken. En
variant dr dd att anvdnda “Polling” (rundfrdgning). Vi kan utdka vér uppséttning med tva
funktioner vars uppgift blir att undersoka status hos SCI’'n men inte bli “hdngande” i nidgon
vanteslinga. Ett granssnitt bestdende av fem funktioner skulle dd& kunna implementeras av
foljande:

63



Maskinorienterad programmering, UTKAST 6/3 2013

void serial_init( void ); /* initiera granssnittet */

int check serial_out( void ); /* kontrollera om tecken kan skickas */
void serial_out( char c ); /* skicka ett tecken via grénssnittet */
int check_serial_in( void ); /7* kontrollera om tecken finns */

char serial_in( void ); /* ta mot ett tecken fran granssnittet */

Exempel 1.56: RS232 kommunikation, “polling”, i C
Vi forutsatter att SC1_BASE (basadress till SCI-modulen) ér definierad.
void serial_init( void )

( (C PSCI )( SCI_BASE ))->scicr2 ) = 0x0C;
( (C PSCI )( SCI_BASE ))->scibd ) = 312;
}
int check serial_out( void )
{
/* returnera 1, om sandaren ledig,returnera 0 annars */
return( (C ((PSCI) (SCI1_BASE))->scisrl ) & 0x80 )!= 0);
}

void serial_out( char c )

( ((PSCI) (SCI_BASE))->scidrl ) = c;

int check serial_in( void )

{
/* returnera 1, om tecken finns hos mottagaren,
returnera 0 annars */
return( (( ((PSCI) (SCI_BASE))->scisrl ) & 0x20 )!= 0);
}
char serial_in( void )
{
return ( ((PSCI) (SCI_BASE))->scidrl );
by
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