
UTKAST 6/3 2013- Maskinnära programmering för HC12

1

1 Maskinnära programmering för HC12

Kapitlets syfte är att illustrera såväl möjligheter som begränsningar med
maskinnära programmering. Större delen behandlar maskinnära
programmering i allmänhet såväl som högnivåprogrammering.
Dedicerade avsnitt tillämpar därefter kodningskonventioner och enkel
översättarteknik för kodgenerering.

Maskinorienterad programmering, UTKAST 6/3 2013

2

Assemblerspråket
Att programmera en dator i maskinspråk är en krävande och tidsödande uppgift, i stället använder
vi assemblerspråk. Processen att översätta ett assemblerprogram till ett program i maskinspråk
kallas att ”assemblera” (från engelskans assembly, ’sätta samman’). Utifrån ett program skrivet i
assemblerspråk sätts maskinspråket samman av assemblatorn.

Vi inleder detta kapitel med att beskriva den generella uppbyggnaden av ett assemblerspråk. Vi
beskriver dess relation till maskinspråk och behandlar översättningsprocessen mellan
assemblerspråk och maskinspråk. I denna inledning kommer vi att behandla flera viktiga begrepp
som är vanliga vid programutveckling.

Assemblerspråket är specifikt för en viss centralenhet (mikroprocessor) och vi exemplifierar här
med Freescales familj av MC68HCS12-kretsar CPU12 (Central Processing Unit 12).

Maskininstruktionen
En centralenhet tolkar och utför maskininstruktioner. En maskininstruktion är ett binärt ord, dvs
en följd av nollor och ettor organiserade i en fix längd (maskinord). Maskinordets längd varierar
mellan olika typer av centralenheter men är det samma för en given centralenhet. Man talar
exempelvis om 8-, 16-, 32- eller 64-bitars mikroprocessorer. Maskininstruktioner kan ha olika
längd, dvs. bestå av olika antal maskinord, beroende på instruktionens komplexitet. Man talar om
olika instruktionsformat och menar då hur en instruktion är uppdelad i operationskod och
operander. Med operationskod (OP-kod) menas den styrinformation som processorn läser för att
bestämma vad den skall utföra. OP-koden anger också hur många operander som finns och var
dessa finns.

En assemblerinstruktion har en mycket enkel uppbyggnad, en komplett maskininstruktion anges
med en mnemonic och eventuella operander. Speciella tecken används för att skilja mellan olika
adresseringssätt (addressing modes). En assemblerinstruktion motsvarar alltså en
maskininstruktion med ett direkt 1:1 förhållande, för varje korrekt assemblerinstruktion finns
alltså endast en maskininstruktion.

Exempel 1.1

CPU12-instruktionen ReTurn from Subroutine har mnemonic RTS.

 I assemblerprogrammet skrivs den:

 RTS
vid assembleringsprocessen översätts den till maskininstruktionen:

00111001 (binär form) vilket också kan skrivas $39 (hexadecimal form)

Assemblerspråket är radorienterat, dvs en rad i ett assemblerprogram kan innehålla högst en
assemblerinstruktion. För instruktioner med operander anges operanden efter instruktionens
mnemonic. För att skilja mnemonic från operand används ”blanksteg” dvs. mellanslag
(”SPACE”) eller tabulator (”TAB”).

Assemblerinstruktionens adresseringssätt anges ofta med någon form av specialtecken. Freescale
använder exempelvis ofta tecknet ’#’ för att ange omedelbar adressering (immediate adressing).
Adresseringssättet anger att instruktionens operand utgör data som då följer omedelbart efter
operationskoden.

Exempel 1.2

CPU12-instruktionen LoaD Ackumulator A har mnemonic LDAA.
I assemblerprogrammet skrivs den
 LDAA operand
operanden kan anta flera former beroende på vilket adresseringssätt som avses, exempelvis innebär:
 LDAA #45

UTKAST 6/3 2013- Maskinnära programmering för HC12

3

att värdet 45 placeras i ackumulator A, medan formen
 LDAA 45
anger att värdet som finns på adress 45 i datorns minne placeras i ackumulator A.

Vi återkommer strax till en uttömmande behandling av assembler/maskininstruktioner men ska
först behandla ett annat vanligt element, assemblerdirektiv.

Assemblerdirektiv
Assemblerspråket innehåller också en rad olika direktiv till assemblatorn. Assemblerdirektiv
används för att instruera assemblatorn att göra något. Assemblerdirektiv är vanligtvis, precis som
mnemonics, specifika för den centralenhet som används, man kan dock ofta se en viss enhetlighet
mellan assemblatorer för någon processorfamilj, eller processorfamiljer från samma tillverkare.

Exempel 1.3 Reservera minnesutrymme

Assemblerdirektiv kan användas för att reservera minnesutrymme. Assemblers för CPU12 accepterar exempelvis
följande direktiv:
 RMB antal Reserve Memory Bytes
där antal kan anges med godtycklig talbas och anger det antal bytes (8-bitars ord) man vill reservera. På samma sätt
återfinns ofta direktivet:
 RMW antal Reserve Memory Words
Detta har samma funktion men reserverar i stället words (16-bitars ord). Följande direktiv exempelvis, är därför
funktionellt likvärdiga:
 RMB 4 och
 RMW 2

Exempel 1.4 Reservera minnesutrymme och initiera minnesinnehåll

Assemblerdirektiv kan också användas för att låta assemblern reservera minnesinnehåll och initiera minnesinnehåll
med data. Assemblers för CPU12 accepterar exempelvis följande direktiv:
 FCB data Form Constant Byte(s)
där data exempelvis kan anges med godtycklig talbas och då anger det värde man vill initiera. Om värdet inte ryms
inom 8 bitar kommer assemblern att generera varnings- eller felutskrift.
På samma sätt återfinns ofta direktivet:
 FCW data Form Constant Word(s)
Detta har samma funktion men initierar i stället words (16-bitars ord). Följande direktiv exempelvis, är därför
funktionellt likvärdiga:
 FCB $10,$20 och
 FCW $1020

Exempel 1.5

Assemblerdirektivet ORG (origin) används för att ange an absolut startadress i datorns minne. På detta sätt kan vi
styra placeringen av kod respektive data till fixa adresser.

 ORG $2000

.. första instruktion (eller data) här placeras på adress $2000

 ORG $2800
 RMB 10 reservera minnesare 10 bytes, med start på adress $2800
 ORG $3000
 FCB 1,2,3,4,5 initiera minnesarea med start på adress $3000

Observera att assemblerdirektivet ORG i sig inte ger upphov till att vare sig kod eller data genereras för måldatorn.
Direktivet påverkar endast placeringen av efterföljande kod/data i minnet.

Maskinorienterad programmering, UTKAST 6/3 2013

4

Symbolhantering
Symboler används bland annat för att markera positioner i ett assemblerprogram. Varje
symbolnamn måste väljas unikt dvs, får bara definieras en gång i programmet. Symbolnamnets
längd måste vara begränsat. Exempelvis är symbolnamnets längd begränsat till 256 tecken i
QA/RA-assemblatorerna. Symbolens första tecken måste vara en bokstav (a-z eller A-Z) eller en
“understrykning”. Observera att de svenska tecknen å, ä och ö visserligen tillåts av QA/RA
assemblatorerna men de får vanligtvis inte förekomma i symbolnamn.

Införandet av symboler underlättar programmeringsarbetet. Symboler kan exempelvis motsvara
godtyckliga adresser i måldatorns minne. De är då i själva verket en slags ”markering” av någon
position vars absoluta adress egentligen är betydelselös för programmets funktion. En sådan
symbol kallas relokerbar, dvs ”möjlig att flytta”.

Exempel 1.6 Symboliska namn för variabler

 ORG $2800
start RMB 1
stopp RMB 1
Symbolen ’start’ hamnar här på adress $2800, medan symbolen ’stopp’ får absoluta adressen $2801. Genom att, i
programmet, referera dessa adresser via symbolerna behöver vi inte bekymra oss om de aktuella adresserna:

 LDAA start
 LDAA stop

I vissa fall är det inte möjligt att använda relokerbara symboler. Exempelvis finns, i varje
datorsystem, så kallade portar, med en fast adress i minnesarean. Vi kan fortfarande använda
symboliska namn på portar men vi måste använda ett annat assemblerdirektiv.

Exempel 1.7

Assemblerdirektivet EQU (equate) används för att ersätta en symbol med ett numeriskt värde. Direktivet används på
följande sätt:

symbolnamn EQU värde

Då ”symbolnamn” används i uttryck, assemblerdirektiv eller som operand i instruktioner kommer assemblern att
ersätta symbolen med”värde”.
Det är inte meningsfyllt att prata om storlek i samband med EQU-direktivet. Följande sekvens visar exempelvis hur
samma symolnamn är meningsfyllt i två fall men inte i det tredje fallet:

hugebyte EQU 257 ryms ej med 8 bitar, dock med 16...
 FCW hugebyte Ok!
 FCB hugebyte FEL...

Relokerbarhet
Absoluta symboler används för att representera data och adresser som inte får ändras. Exempelvis
måste en symbol för adressen till en IO-port vara absolut. Vi har redan sett assemblerdirektivet
EQU som kan användas för att definiera en sådan symbol. Med relokerbarhet menar vi
egenskapen att en symbols värde kan komma att ändras utan att det påverkar ett program. Vi har
sett exempel på direktiv även för sådana symboler (RMB, FCB, FCW) etc. Eftersom symboler
används, rent allmänt, för att representera någon speciell position i programmet, och därmed
också någon (oväsentligt vilken) adress i datorn minne, är det naturligt att symbolerna också är
relokerbara.

En absolut assemblator kan användas för att översätta en källtext till ett maskinprogram. Alla
symboler som refereras förutsätts då vara kända vid assembleringen. En relokerande assemblator
översätter inte källtexten direkt till ett maskinprogram. I stället skapas så kallad objektkod, där

UTKAST 6/3 2013- Maskinnära programmering för HC12

5

symbolers adresser och alla referenser till symboler sparas tillsammans med den kod och data
som så småningom ska komma att bli det färdiga maskinprogrammet. Det slutgiltiga
maskinprogrammet skapas här av en länkare, vars uppgift är att kombinera flera filer med
objektkod till ett slutgiltigt program med maskinkod. Detta innebär att symboler som definierats i
en fil med källtext kan refereras från en annan källtextfil.

En absolutassemblators arbetssätt

Arbetssätt hos en relokerande assemblator med länkare

Assemblerprogrammering med CPU12
Vi inleder dessa avsnitt med att beskriva hur man skriver ett komplett assemblerprogram för
CPU12. Vi använder några av de direktiv vi introducerat för att styra assemblatorn.

Nästa avsnitt behandlar programmerarens bild, CPU12’s instruktionsgrupper med en snabb
översikt av instruktionsuppsättningen. Avsnittet avslutas med en utförlig beskrivning av
processorns olika adresseringssätt.

Därefter följer ett längre avsnitt som beskriver ett strukturerat sätt att programmera CPU12 i
assembler. Här behandlas bland annat aritmetiska operationer, jämförelser och test, och hur du
styr programflödet. Efter en första genomläsning kan du utnyttja detta avsnitt som ett
uppslagsverk för att hitta svaren på hur du löser olika problem då du konstruerar dina
assemblerprogram.

Kapitlet avslutas med ett avsnitt som behandlar maskinnära programmering i C, dvs hur du
blandar kod skriven i programspråket ‘C’ med dina assemblerprogram. Speciellt beskriver vi
konventioner som används av XCC12 ("Cross C Compiler 12").

Ett assemblerprogram byggs upp av kod, data och assemblerdirektiv. Koden utgörs av
instruktionssekvenser som kan utföra operationer på data. Data kan utgöras av konstanter eller
variabler. Assemblerdirektiv kan användas bland annat för att reservera minnesutrymme för data,
ange var kod respektive data ska placeras m.m.

Det finns strikta regler för hur assemblerprogrammet ska se ut. Programmet läses av
assemblatorn, rad för rad, och översätts till maskinkod dvs, mönster av ettor och nollor.
Maskinkoden kan tolkas och utföras av processorn.

En rad, i assemblerprogrammet delas in i maximalt 4 fält. Första fältet kan enbart användas för att
ange en “etikett”. Man väljer då ett symboliskt namn och kan därefter använda detta namn för att

.Sxx

fil .S19

relokerande
assemblator

.O

länkare

.Sxx

fil

relokerande
assemblator

.O

.........

.Sxx

fil

.S19absolut-
assemblator

Maskinorienterad programmering, UTKAST 6/3 2013

6

ange (referera) denna position i programmet. Anledningen till att man använder sådana
symboliska namn är, som tidigare sagts, att man då slipper skriva absoluta minnesadresser i
programmet för de positioner vars absoluta adresser inte har någon egentlig betydelse.

Nästa fält i assemblerprogrammets rad kan vara en instruktion eller ett direktiv. Det är viktigt att
förstå skillnaden mellan en assemblerinstruktion och ett assemblerdirektiv. Direktivet instruerar
assemblatorn att göra någonting vid assembleringstillfället medan instruktionen översätts till
maskinkod för att så småningom utföras av processorn vid exekveringen av programmet.

Assemblatorns tredje fält ska ange eventuella operander för assemblerinstruktioner. Detta fält
används även tillsammans med assemblerdirektiv men vi kallar då detta argument till direktivet.

Assemblerraden kan avslutas med en godtycklig kommentarstext, dvs. någon beskrivning av vad
som utförs så att programmet blir lättare att läsa och förstå.

Fälten skiljs åt med blanktecken, dvs ”tabulatur” eller ”mellanslag”. Detta innebär att man inte
kan använda blanksteg i symbolnamn, eller exempelvis sätta in blanksteg mellan operanderna
(även om detta skulle se prydligare ut).

Första assemblerprogrammet

Vårt första assemblerprogram visar exempel på hur vi kan läsa data (8 bitar) från en inport
placerad på adress $600 i minnet, vi skriver därefter samma data till en utport på adress $400 i
minnet, detta upprepas i en “oändlig slinga”.

Start

Läs Inport

Skriv till Utport

Flödesplan för första assemblerprogrammet

Assemblerkod, det första assemblerprogrammet:

; Programmet läser från en inport och kopierar till en utport
InPort EQU $600
OutPort EQU $400
 ORG $1000
Start:
 LDAB InPort ; Läs från inporten…
 STAB OutPort ; Skriv till utporten
 BRA Start ; Börja om...
Symbolfält, blankt
eller kommentar

Instruktion
(mnemonic) eller

assembler-direktiv

Operand(er) till
instruktion eller

argument till
direktiv

Eventuell kommentarstext

Fälten separeras med blanktecken, dvs ”tabulatur” eller ”mellanslag”.

Assemblerradens fjärde fält kan användas för kommentarer till enskilda instruktioner eller
direktiv. För att ytterligare öka läsbarheten kan vi i bland tvingas skriva betydligt längre
kommentarer i programmet. Vi kan då, genom att ange ett semicolon (;) eller en stjärna (*) i
radens första position, använda återstoden av denna rad för kommentarer.

UTKAST 6/3 2013- Maskinnära programmering för HC12

7

CPU12 - programmerarens bild
I “programmerarens bild” av en processor ingår processorns arbetssätt, dess registeruppsättning,
vilka funktioner dessa register har, processorns adresseringssätt, dvs olika möjligheter att ange
var data finns och processorns instruktionsuppsättning. Det ska vi ägna oss åt i detta avsnitt.

Registermodell
CPU12 har olika typer av register, en av dessa typer kallas ”ackumulator” (accumulator) avsett
för aritmetik och logiska operationer. Som namnet antyder ackumuleras resultat i registret, dvs
vid binära operationer innehåller från början registret en operand, den andra operanden anges via
något adresseringssätt, resultatet av operationen ersätter det tidigare innehållet i ackumulatorn.

Utöver ackumulatorregistren finns:

 två 16-bitars ”index-register”, X och Y, huvudsakligen avsedda för adressberäkningar.
 en 16-bitars stackpekare, SP, systemets hårdvarustack.
 en 16-bitars programräknare, PC, för adressering av den instruktion som ska exekveras
 ett 8-bitars statusregister, CCR, med bl.a. aritmetikflaggor och avbrottsflaggor.

Ackumulerande register

Det finns två ackumulatorregister, A och B som kan användas oberoende av varandra.
Ordlängden hos dessa är 8 bitar. Vissa instruktioner (LDD, STD, ADDD etc) använder dock båda
ackumulatorerna samtidigt. Ackumulatorregistren sätts då samman av instruktionerna och bildar i
stället ett 16-bitars ord där ackumulator A innehåller de 8 mest signifikanta bitarna och
ackumulator B de 8 minst signifikanta bitarna. De flesta operationer kan utföras på såväl A som
B. Det finns dock några få undantag; ABA (Add B to A), SBA (Subtract B from A) och CBA
(Compare B to A). I dessa fall är operandernas ordning viktig. Den decimaljusterande
instruktionen DAA (Decimal Adjust A) som används i samband med BCD-aritmetik finns bara
för ackumulator A.

Indexregister

Nästa typ av register kallas ”indexregister”. Syftet med indexregister är att tillfälligt kunna
beräkna adressen till någon operand, därefter, med hjälp av ackumulatorn utföra operationer med
operanden på den beräknade adressen. En annan benämning på denna typ av register är helt
enkelt ”adressregister”. Flera adresseringssätt tillåter användning av indexregister där alltså
innehållet i registret tolkas som adress till instruktionens operand.

7 A 0 7 B 0

15 D 0

8-bitars ackumulatorer A och B

eller

15 X 0 Index register X

15 Y 0 Index register Y

15 SP 0 Stackpekare SP

15 PC 0 Programräknare PC

S X H I N Z V C Statusregister CCR

Maskinorienterad programmering, UTKAST 6/3 2013

8

Stackpekare

Stackpekaren är ett register med speciella funktioner. Dess innehåll sägs vara en ”pekare” till
systemets ”stack”. Stacken, oftast en liten del av primärminnet, används för att (automatiskt)
spara registerinnehåll (PC och CCR) vid subrutinanrop som exempelvis JSR (Jump to
SubRoutine) och CALL (Call subroutine in paged memory) sparas automatiskt registerinnehåll
som PC och CCR på stacken. Instruktioner som RTS (ReTurn from Subroutine) och RTC
(ReTurn from Call) återställer automatiskt registerinnehåll så att exekveringen fortsätter
omedelbart efter subrutinanropet.Vid avbrott, sparas automatiskt samtliga processorns registers
innehåll till stacken.

Stacken kan av programmeraren också användas för lagring av mellanresultat (temporära data).

Programräknare

Programräknaren är det speciella register som används för att adressera nästa instruktion som
skall utföras. Vid instruktionsexekvering uppdateras programräknaren av hårdvaran. Det finns
också adresseringssätt som omfattar programräknarens värde, exempelvis vid villkorliga
programflödesändringar.

Statusregister

Statusregistret innehåller såväl statusbitar, sätts av hårdvaran vid aritmetiska/logiska operationer,
som styrbitar för att bestämma processorns beteende under olika speciella omständigheter:

S: stop disable, den speciella instruktionen STOP, används för att avbryta processorns exekvering
och försätta den i ett tillstånd med minimal strömförbrukning. I vissa applikationer är detta inte
det lämpligaste och därför finns denna bit som måste nollställas för att STOP-instruktionen ska
utföras. Om S-biten däremot är 1 behandlas STOP som no operation. S-biten sätts till 1 av
hårdvara vid RESET.

I: mask interrupt, denna bit används för att ”maskera”, dvs utestänga en avbrottsbegäran via
processorns IRQ ingång. Vid ett avbrott sätts biten av hårdvaran efter det att processorns
registerinnehåll sparats till stacken. Biten sätts för att en avbrottsrutin ska kunna utföras utan att
bli ytterligare avbruten (nästlade avbrott). I en avbrottsrutin återställs normalt I-biten automatiskt
då rutinens sista instruktion, RTI, utförs eftersom processorns registerinnehåll, bl.a. CCR
återställs från stacken och hårdvaran satt I-biten efter att ha sparat registerinnehåll vid
avbrottsbegäran.

X: enable non-maskable interrupts, HC12 har två olika avbrottsmekanismer, den generella IRQ
som kan maskeras genom att sätta I-biten till 1 och XIRQ, en avbrottsingång som inte kan
maskeras. För att undvika att XIRQ oavsiktligt aktiveras exempelvis vid spänningstillslag finns
X-biten. Denna bit sätts till 1 av hårdvara vid RESET. Då biten är 1 accepteras inte XIRQ. Ett
användarprogram kan efter vederbörlig initiering nollställa biten varefter XIRQ kommer att
accepteras. Då biten nollställts kan den inte ettställas igen av programvara och XIRQ fungerar
därför därefter som icke-maskerbart avbrott.

Statusbitarna sätts, nollställs eller lämnas oförändrade beroende på instruktion. Bitarna har
följande betydelse:

H: halfcarry, används vid BCD-aritmetik där fyra bitar representerar ett tal 0-9. Det största tal
som kan representeras i exempelvis ackumulator A blir då 99. H sätts vid addition av två tal,
tolkade på BCD-form där addition av de minst signifikanta fyra bitarna genererar ”carry”. H-
biten påverkas endast av instruktionerna ABA (add ackumulator B to A), ADD (add without carry)
och ADC (add with carry). Efter någon av dessa instruktioner kan sedan DAA (decimal adjust A)
användas för att justera innehållet i ackumulator A till korrekt BCD-format.

UTKAST 6/3 2013- Maskinnära programmering för HC12

9

N: negative, är den mest signifikanta biten i ett resultat. Den vanliga tolkningen är därför N som
teckenbit (tvåkomplementform) dvs N-biten sätts till 1 om resultatet är mindre än noll, biten sätts
till noll annars. Observera att de flesta instruktioner, inte enbart aritmetiska, påverkar N-flaggan.

Z: zero, biten sätts till 1 då ett resultat blir noll, biten sätts till noll annars. Observera att de flesta
instruktioner, inte enbart aritmetiska, påverkar Z-flaggan.

V: overflow, biten sätts till 1 vid tvåkomplementspill, biten sätts till noll annars. Observera att de
flesta instruktioner, inte enbart aritmetiska, påverkar V-flaggan.

C: carry, sätts/nollställs som resultat av addition och som borrow vid subtraktion. C-biten
används också för att indikera fel vid multiplikation och division. Det finns också
skiftinstruktioner där C-biten ingår i skiften.

Datatyper
Begreppet datatyper introduceras ofta med användningen av
högnivåspråk. Exempel på högnivåspråk är C, Java, ADA etc.
Grundläggande för alla datatyper är den representation som kan
ges typen i den underliggande hårdvaran. Den i särklass
vanligaste datatypen är heltal. Maskinvaran sätter gränser för
hur små eller hur stora heltal som enkelt kan representeras, detta
avspeglas direkt utav det antal bitar som används vid
exempelvis aritmetiska operationer. För CPU12 gäller att full
16-bitars aritmetik kan utföras som enkla operationer
(instruktioner).

I programspråket ’C’ finns enkla och sammansatta datatyper. Låt oss titta närmre på dessa och se
hur vi lämpligast representerar dom i ett CPU12-system med avseende på den registeruppsättning
vi tidigare studerat. Observera att i ’C’ är representationen för datatyperna char, short och
long definierade av språket, medan storleken hos pekar-typer och heltalstypen int är
implementationsberoende, dvs dessa typer kan ha olika storlek beroende på den underliggande
hårdvaran.

Enkla datatyper med CPU12
char c; /* 8-bitars datatyp, storlek byte */

 short s; /* 16-bitars datatyp, storlek word */
 long l; /* 32-bitars datatyp, storlek long */
 int i; /* storlek implementationsberoende */

Representationen för datatypen int bör väljas för bästa prestanda. Eftersom CPU12 inte direkt
hanterar 32-bitars tal är det lämpligaste valet 16 bitar, dvs storlek word. Detta innebär då att
datatyperna short och int är ekvivalenta.

För pekar-typerna baseras valet av representation på de tillgängliga adressregistren (X och Y) och
det lämpligaste valet blir därför 16 bitar.

 char *cptr; /* pekar (16 bitar) på 8-bitars datatyp */
 short *sptr; /* pekar (16 bitar) på 16-bitars datatyp */
 int *iptr; /* pekar (16 bitar) på 32-bitars datatyp */
För pekar-typerna har vi dessutom hos CPU12 en liten komplikation eftersom arkitekturen också
definierar ett expanderat (”paged”) minnesutrymme. Detta kan adresseras med hjälp av extra
register (xPAGE) och ger då en maximal minnesrymd om 8 Mbyte. Användning av det
expanderade minnesutrymmet resulterar dock i större kodstorlek varför det är lämpligt att hålla i
sär de båda pekar-typerna. I många CPU12-kompilatorer har man därför infört attributet far för
en pekar-typ som kan användas för att adressera även det expanderade minnet. Denna pekartyp
kommer då att få storleken 23 (16+7) bitar. Användning av långa pekartyper är i högsta grad
beroende på den använda C-kompilatorn och vi koncentrerar oss här på den grundläggande
pekar-typen (16 bitar).

31 16 15 8 7 0

word

byte

long
Datatyper med storlekar byte,

word och long dvs 8,16 eller 32
bitar

Maskinorienterad programmering, UTKAST 6/3 2013

10

I C kallas en sammansatt datatyp struct. Denna kan sättas samman av såväl enkla datatyper
som andra sammansatta datatyper. En pekare till en struct har samma restriktioner som övriga
pekartyper och representeras därför lämpligen med 16 bitar. Vid kompilering av deklarationen
kan offseten till de ingående variablerna bestämmas eftersom storleken av alla datatyper som
ingår i structen måste vara kända.

Exempel 1.8 En på sammansatt datatyp

struct composite {
 long int a;
 short int b;
 short int c;
};
Ett adressregister, exempelvis X kan användas för att peka på den första komponenten (variabel a). Adresserna till
de övriga blir då:

Variabel b: X+4

Variabel c: X+6

Flyttal

CPU12 har inga instruktioner för hantering av flyttal. Alla flyttalsoperationer måste därför
implementeras i form av programbibliotek.

Instruktionsformer
I CPU12:s instruktionsuppsättning finns instruktioner med ingen, en eller två operander.
Instruktioner med två operander (binära operationer) finns i två syntaktiska varianter. I den
första varianten anges båda operander explicit i operandfältet. I en andra variant anges en av
operanderna i stället som en del av instruktionens mnemonic.
Formen för en instruktion med två explicita operander är

 mnemonic källoperand,destinationsoperand

där mnemonic anger vilken instruktion det är frågan om. Denna svarar precis mot en
maskininstruktion. Operanderna anger var data skall läsas/och eller skrivas, av instruktionen.

Formen för en instruktion där en av operanderna implicit är något register:

 mnemonicRegister operand

Exempel 1.9

Instruktion med två explicita operander

movb #1,variable

Instruktion med implicit källoperand register A

 staa variable

Instruktion med implicit destinationsoperand register A

 ldaa variable

källoperand mnemonic

destinationsoperandmnemonic
källoperand

destinationsoperand

mnemonic destinationsoperand
källoperand

UTKAST 6/3 2013- Maskinnära programmering för HC12

11

Instruktioner med en operand kallas unära operationer. Former för instruktioner med en operand
är:

mnemonic operand
mnemonic Register

Exempel 1.10

Instruktionen COM (complement) inverterar varje bit hos operanden
 COM variable ; invertera variabel i minnet
 COMA ; invertera innehållet i register A

För de flesta en-operandsinstruktioner gäller att operanden läses, operationen utförs och
operanden uppdateras med det nya resultatet. Det finns dock undantag exempelvis
testinstruktioner som endast påverkar flaggorna i CCR. Slutligen finns instruktioner som saknar
operand, exempelvis NOP (no operation), RTS (return from subroutine), STOP (stop execution).

Adresseringssätt
CPU12 tillhandahåller 15 olika adresseringssätt (eng: adressing mode). Med adresseringssätt
menas det sätt på vilket effektiva adressen (EA), bestäms. Med effektiva adressen menas adressen
till data som ska användas av instruktionen. Tabell 1.1 sammanfattar de tillgängliga
adresseringssätten:

Tabell 1.1 Adresseringssätt
Adresseringssätt Operand Beskrivning

Inherent Saknas Information om EA finns implicit i instruktionen
Immediate #opr8

eller
#opr16i

Data följer omedelbart efter instruktionen. Storlek (8 eller 16 bitar)
bestäms implicit av instruktionen.

Direct opr8 EA i adressintervallet $0000-$00FF där Opr8 anger de 8 minst
signifikanta bitarna.

Extended opr16 EA i adressintervallet $0000-$FFFF
Relative rel8

eller
rel16

8 eller 16 bitars offset, tolkad som tal med tecken, adderas till
programräknarens värde och bildar EA.

Indexed
5 bits offset

oprx5,x
oprx5,y
oprx5,sp
oprx5,pc

5-bitars konstant, tolkad som tal med tecken, adderas till värdet I
register (X,Y,SP eller PC). Resultatet är EA.

Indexed
pre-decrement

oprx3,-x
oprx3,-y
oprx3,-sp

En konstant, 1-8, subtraheras från värdet i register (X,Y eller SP).
Registret uppdateras med detta värde. Resultatet är EA.

Indexed
pre-increment

oprx3,+x
oprx3,+y
oprx3,+sp

En konstant, 1-8, adderas till värdet i register (X,Y eller SP).
Registret uppdateras med detta värde. Resultatet är EA.

Indexed
post-decrement

oprx3,x-
oprx3,y-
oprx3,sp-

Värdet i register (X,Y eller SP) är EA. Efter operation subtraheras en
konstant, 1-8, slutligen uppdateras registret med detta värde.

Indexed
post-increment

oprx3,x+
oprx3,y+
oprx3,sp+

Värdet i register (X,Y eller SP) är EA. Efter operation adderas en
konstant, 1-8, slutligen uppdateras registret med detta värde.

Indexed
ackumulator offset

A|B|D,x
A|B|D,y
A|B|D,sp
A|B|D,pc

Värdet i register (X,Y,SP eller PC) adderas till värdet i ackumulator
(A eller B eller D) och bildar EA.

Indexed
9 bits offset

oprx9,x
oprx9,y
oprx9,sp
oprx9,pc

9-bitars konstant, tolkad som tal med tecken, adderas till värdet i
register (X,Y,SP eller PC). Resultatet är EA.

Maskinorienterad programmering, UTKAST 6/3 2013

12

Indexed
16 bits offset

oprx16,x
oprx16,y
oprx16,sp
oprx16,pc

16-bitars konstant adderas till värdet I register (X,Y,SP eller PC).
Resultatet är EA.

Indexed indirect
16 bits offset

[oprx16,x]
[oprx16,y]
[oprx16,sp]
[oprx16,pc]

16-bitars konstant adderas till värdet i register (X,Y,SP eller PC).
Resultatet är adressen till EA.

Indexed indirect
D ackumulator offset

[D,x]
[D,y]
[D,sp]
[D,pc]

Värdet i register (X,Y,SP eller PC) adderas till värdet i ackumulator
D och bildar adressen till EA.

Var och en av CPU12:s adresseringssätt kommer nu att beskrivas i detalj med exempel på hur
effektiva adressen bestäms.

Inherent adressering
Detta adresseringssätt innebär att instruktionen inte kräver någon extra operandinformation.
Eventuella operander är fullständigt bestämda av instruktionen.

Exempel 1.11 Inherent adressering

 NOP ; (no operation)

 RTS ; (return from subroutine)

 INX ; (increment X)

Omedelbar (immediate) adressering
Operanden är med ”omedelbar adressering” placerad direkt efter operationskoden och
instruktionen kräver därför ingen speciell adressberäkning. Symbolen ’#’ används för att ange
omedelbar adressering. Det är ett vanligt fel att oavsiktligt utelämna denna. Exempelvis betyder:

 LDAA #$10

att hexadecimala talet $10 placeras i ackumulator A medan instruktionen:

 LDAA $10

anger att det 8-bitars tal som finns på adress $10 placeras i ackumulator A.

Operanden kan vara 8 eller 16 bitar vilket bestäms vid assembleringen beroende på vilken
instruktion som används:

Exempel 1.12 Omedelbar adressering

 LDAA #$10 ; 8 bitars operand

 LDAB #10 ; 8 bitars operand

 LDD #$1234 ; 16 bitars operand

Direkt (direct) adressering (HCS12)
Detta adresseringssätt kallas i bland också ”page zero adressing” eftersom den används för
operander i adressintervallet $0000-$00FF. Eftersom endast de 8 minst signifikanta bitarna av
adressen då behöver anges som operand sparar detta utrymme och exekveras snabbare. Observera
att syntaxen kan vara densamma som vid ”utökad adressering” (se nedan). Exempelvis kan
instruktionen:

LDAA $10

UTKAST 6/3 2013- Maskinnära programmering för HC12

13

använda direkt adressering eller utökad adressering. För att fullständigt ange att direkt
adressering ska utnyttjas, använd symbolen ’<’.

Exempel 1.13 ”Direct page”-adressering

LDAA <$10 ; tvingande direkt adressering

LDAA $10 ; tvetydigt, assemblator avgör adresseringssätt.

Direkt (direct) adressering (HCS12X)
HCS12X har utökats med ett 8-bitars register DP (Direct Page Register) som används vid
direktadressering. Innehållet i DP-registret bildar de 8 mest signifikanta bitarna och tillsammans
med operanden kan då 64 kByte av primärminnet adresseras. DP-registret finns i de speciella
minnesavbildningsblock (Memory Map Modeule, MMC) som lagts till i HCS12X. Vid RESET är
innehållet i DP 0 och funktionen kompatibel med HCS12.

Utökad (Extended) adressering
Med detta adresseringssätt kan 64-kByte av minnet adresseras. Adressen kodas alltså med 16
bitar.
Exempel 1.14 Utökad adressering

Följande instruktioner kopierar båda innehållet på adress 10 till register A
LDAA >$10 ; tvingande utökad adressering

LDAA $10

Följande instruktion kopierar en byte från adress F030

 LDAA $F020

Följande instruktion kopierar 2 bytes från adresserna F030 och F031

 LDD $F030

Maskinorienterad programmering, UTKAST 6/3 2013

14

Instruktionsgrupper
Det finns en rad omständigheter som påverkar såväl valet av instruktioner ur en
instruktionsuppsättning som de operander som kan användas till instruktionerna. I detta avsnitt
redogörs för de grupper av instruktioner som man kan identifiera i CPU12:s
instruktionsuppsättning. Vi ger exempel på hur instruktionerna kan användas För en fullständig
beskrivning av varje instruktion (varianter, operander, flaggsättning mm.) måste du dock studera
instruktionslistan.

Instruktioner för att kopiera data i minnet

Instruktionerna MOVB (move byte) och MOVW (move word) används för att kopiera data direkt
i minnet utan att något register behöver användas för mellanlagring.

Tabell 1.2: MOVE-instruktioner

Mnemonic Funktion Operation
MOVB Move byte (8 bitar) (M1)→M2
MOVW Move word (8 bitar) (M:M+1) 1→M:M+12

Notera att det hos HCS12 finns restriktioner för adresseringssätt hos såväl källoperand som
destinationsoperand. För HCS12X tillåts betydligt fler kombinationer.

Det finns också en rad olika instruktioner som använder register för att kopiera, flytta data etc
(LOAD-STORE). LOAD-instruktioner måste också användas om en efterföljande instruktion
förutsätter operanden i något register.

LOAD-instruktioner används för att kopiera data från minnet till något register. Det är viktigt att
skilja på typerna LD (load) och LEA (load effective address). Den sistnämnda typen har en
begränsad uppsättning adresseringssätt och används uteslutande för manipulation av pekare, dvs
minnesadresser.

Tabell 1.3: LOAD-instruktioner

Mnemonic Funktion Operation
LDAA Load A (M)→A
LDAB Load B (M)→B
LDD Load D (M:M+1)1→A:B
LDS Load SP (M:M+1)1→SPH:SPL
LDX Load index register X (M:M+1)1→XH:XL
LDY Load index register Y (M:M+1)1→YH:YL
LEAS Load effective address into SP Effective address→SP
LEAX Load effective address into X Effective address→X
LEAY Load effective address into Y Effective address→Y

STORE-instruktioner används för att överföra data från ett register till någon plats i minnet.

Tabell 1.4: STORE-instruktioner

Mnemonic Funktion Operation
STAA Store A (A)→M
STAB Store B (B)→M
STD Store D (A)→M, (B)→M+1
STS Store SP SPH:SPL →M:M+1
STX Store X XH:XL →M:M+1
STY Store Y YH:YL →M:M+1

UTKAST 6/3 2013- Maskinnära programmering för HC12

15

Exempel 1.15

Antag deklaration:
 char variable;
och tilldelningssatsen
 variable = 1;
Denna kan kodas på flera olika sätt, exempelvis:
1) MOVB #1,variable
2) LDAA #1
 STAA variable
3) LDAB #1
 STAB variable

Valet mellan MOV respektive LOAD/STORE instruktioner beror huvudsakligen på resten av programmet. Då det
gäller kodstorlek och exekveringshastighet är lösningarna likvärdiga. Fördelen med att använda MOV är då värdet
(1) inte ska användas i en direkt efterföljande operation, vi behöver inte upplåta något register för tilldelningen. Om å
andra sidan, nästa sats i programmet exempelvis är:

 variable = variable + another_variable;

hade det varit fördelaktigare att välja att välja något av alternativen 2) eller 3) eftersom vi då redan har den första
operanden i ett register, vilket krävs för att utföra en addition (mer om detta nedan).

Instruktioner för att kopiera/flytta data mellan register

Data kan överföras direkt mellan register utan att minnet behöver användas. Det finns två
varianter, TFR (transfer) för att kopiera data från ett register till ett annat och EXG (exhange) för
att byta innehåll mellan två register.

Tabell 1.5: TFR-instruktioner
Mnemonic Funktion Operation

TAB Transfer A to B
anm: Ekv. Med TFR A,B

(A)→B

TAP Transfer A to CCR
anm: Ekv. Med TFR A,CCR

(A)→CCR

TBA Transfer B to A (B)→A
TFR Transfer register to register (A,B,CCR,D,X,Y eller SP) →

(A,B,CCR,D,X,Y eller SP)
TPA Transfer CCR to A

anm: Ekv. Med TFR CCR,A
(CCR)→A

TSX Transfer SP to X
anm: Ekv. Med TFR SP,X

(SP)→X

TSY Transfer SP to Y
anm: Ekv. Med TFR SP,Y

(SP)→Y

TXS Transfer X to SP
anm: Ekv. Med TFR X,SP

(X)→SP

TYS Transfer Y to SP
anm: Ekv. Med TFR Y,SP

(Y)→SP

Observera att det finns speciella mnemonics för vissa registerkombinationer. Detta är en direkt
följd av att HC12 utformades kompatibel med föregångaren HC11, som inte hade den generella
TFR-instruktionen.

Anmärkning: Registren kan kombineras på åtskilliga sätt och om exempelvis storleken på de
ingående registren är olika tillämpas trunkering eller teckenutvidgning. Jämför med instruktionen
SEX (sign extend). HCS12X arkitekturen tillför här en rad nya registerkombinationer med
mening. Se instruktionslistan för en detaljerad beskrivning av detta.

TFR instruktioner kommer till användning speciellt för att tillfälligt spara delresultat vid
evaluering av uttryck men vissa programkonstruktioner kan också tvinga fram speciell
registeranvändning. Vi kommer att se exempel på detta längre fram.

Maskinorienterad programmering, UTKAST 6/3 2013

16

Tabell 1.6: EXG-instruktioner
Mnemonic Funktion Operation

EXG Exchange register to register (A,B,CCR,D,X,Y eller SP) ↔
(A,B,CCR,D,X,Y eller SP)

XGDX Exchange D with X
anm: Ekv. Med

EXG D,X
EXG X,D

(D) ↔ (X)

XGDY Exchange D with Y
anm: Ekv. Med

EXG D,Y
EXG Y,D

(D) ↔ (Y)

Slutligen finns instruktioner för att teckenutvidga innehållet i något 8 bitars register till ett resultat
som placeras i ett 16 bitars register:

Mnemonic Funktion Operation
SEX Teckenutvidga 8 bitars operand (A,B,CCR) →

(D,X,Y eller SP)

Exempel 1.16

Antag deklarationer:
 char c;

short s;
och tilldelningssatsen
 s = c;
Korekt kodning av tilldelningssatsen blir:
 LDAB c ; variabel c (8 bitar) till ackumulator B
 SEX B,D ; teckenutvidga, resultat nu I A:B
 STD s ; skriv tillbaks resultatet (16 bitar)

Aritmetisk operation addition

Addition av tal och en ”ackumulering” av resultatet är en grundläggande funktion hos alla
datorer. Ordlängden hos de tillgängliga registren är dimensionerande för hur stora tal som kan
adderas av en enstaka maskininstruktion. Hos HCS12 har vi exempelvis ADDA, ADDB för att
addera 8-bitars tal och ADDD för att addera 16-bitars tal. För att addera tal med större ord måste
vi upprepa additionen, men då också ta hänsyn till eventuell minnessiffra från tidigare operation.
Därför finns det alltid ytterligare en variant exempelvis ADCB (add with carry B). Hos HCS12
finns, av historiska skäl, ytterligare additionsinstruktioner, exempelvis ABA, men sådana har ofta
mindre betydelse eftersom dom bara kan användas under speciella omständigheter

UTKAST 6/3 2013- Maskinnära programmering för HC12

17

Tabell 1.7: Instruktioner för addition, HCS12
Mnemonic Funktion Operation

ABA Addera B till A (A)+(B) → A
ABX Addera B till X

anm: Ekv. med LEAX B,X
(X)+(B) → X

ABY Addera B till Y
anm: Ekv. med LEAY B,Y

(Y)+(B) → Y

ADCA Addition med carry till A (A)+(M)+C → A
ADCB Addition med carry till B (B)+(M)+C → B
ADDA Addition till A (A)+(M) → A
ADDB Addition till B (B)+(M) → B
ADDD Addition till D (A:B) (D)+(M:M+1) →D

Låt oss nu ge några exempel på hur dessa instruktioner används.

Exempel 1.17 Addition av 8 bitars tal

Antag deklarationer:
 char ca,cb,cc;
och tilldelningssatsen
 ca = cb + cc;
En kodning av tilldelningssatsen skulle kunna vara:
 LDAB cb ; operand 1
 ADDB cc ; adderas till operand 2
 STAB ca ; resultatet skrivs i minnet

Exempel 1.18 Addition av 16 bitars tal

Antag deklarationer:
 short sa,sb,sc;
och tilldelningssatsen
 sa = sb + sc;
En kodning av tilldelningssatsen skulle kunna vara:
 LDD sb ; operand 1
 ADDD sc ; adderas till operand 2
 STD sa ; resultatet skrivs i minnet

Exempel 1.19 Addition av 32-bitars tal (HCS12)

Antag deklarationer:
 long la,lb,lc;
och tilldelningssatsen
 la = lb + lc;
En kodning av tilldelningssatsen skulle kunna vara:
 LDD lb+2 ; minst signifikanta “word” av b
 ADDD lc+2 ; adderas till minst signifikanta “word” av c
 STD la+2 ; tilldela, minst signifikanta “word”
 LDD lb ; mest signifikanta “word” av b
 ADCB lc+1 ; adderas till låg byte av mest signifikanta “word” av c
 ADCA lc ; adderas till hög byte av mest signifikanta “word” av c
 STD la ; tilldela, mest signifikanta “word”
Att notera: Varken STD eller LDD påverkar C-flaggan i CCR. Om en minnessiffra (carry) genereras vid additionen
av de 16 minst signifikanta bitarna finns den alltså kvar inför nästa additionsoperation. När vi adderar de 16 mest
signifikanta bitarna använder vi sekvensen ADCB ... ADCA, eftersom register B utgör de minst signifikanta 8
bitarna i register D. Om en instruktion som ADED (add with carry D) hade funnits, hade vi använt den i stället.
Eventuell carry från första additionen följer alltså med här. Slutligen adderar vi de 8 mest signifikanta bitarna av
operanderna (ADCA) och på samma sätt har en eventuell carry propagerats hit. Slutligen skrivs mest signifikanta
“word” tillbaks till minnet.

Maskinorienterad programmering, UTKAST 6/3 2013

18

Den utvidgade arkitekturen HCS12X tillför följande instruktioner för addition

Tabell 1.8: Instruktioner för addition, HCS12X
Mnemonic Funktion Operation
ADDX Addition till X (X)+(M) → X
ADDY Addition till Y (Y)+(M) → Y
ADED Addition till D med carry (D)+(M:M+1)+C →D
ADEX Addition till X med carry (X)+(M:M+1)+C →X
ADEY Addition till Y med carry (Y)+(M:M+1)+C →Y

Exempel 1.20 Addition av 32 bitars tal (HCS12X)

Vi hade i stället kunnat koda föregående exempel så här:
 LDY lb+2 ; minst signifikanta “word” av b
 LDD lb ; mest signifikanta “word” av b
 ADDY lc+2 ; adderas till minst signifikanta “word” av c
 ADED lc ; adderas till mest signifikanta “word” av c, med carry
 STY la+2 ; tilldela, minst signifikanta “word”
 STD la ; tilldela, mest signifikanta “word”

Aritmetisk operation subtraktion

Instruktionerna för subtraktion följer mönstret av additionsinstruktioner.

Tabell 1.9: Instruktioner för subtraktion
Mnemonic Funktion Operation

SBA Subtrahera B från A (A)-(B) → A
SBCA Subtrahera med borrow från A (A)-(M)-C → A
SBCB Subtrahera med borrow från B (B)-(M)-C → B
SUBA Subtrahera från A (A)-(M) → A
SUBB Subtrahera från B (B)-(M) → B
SUBD Subtrahera från D (A:B) (D)-(M:M+1) →D

Exempel 1.21 Subtraktion av 8 bitars tal

Antag deklarationer:
 char ca,cb,cc;
och tilldelningssatsen
 ca = cb - cc;
En kodning av tilldelningssatsen skulle kunna vara:
 LDAB cb ; operand 1
 SUBB cc ; operand 2 subtraheras från innehållet i register B
 STAB ca ; resultatet skrivs i minnet

Exempel 1.22 Subtraktion av 16 bitars tal

Antag deklarationer:
 short sa,sb,sc;
och tilldelningssatsen
 sa = sb - sc;
En kodning av tilldelningssatsen skulle kunna vara:
 LDD sb ; operand 1
 ADDD sc ; operand 2 subtraheras från innehållet i register D
 STD sa ; resultatet skrivs i minnet

UTKAST 6/3 2013- Maskinnära programmering för HC12

19

Exempel 1.23: Subtraktion av 32-bitars tal (HCS12)

Antag deklarationer:
 long la,lb,lc;
och tilldelningssatsen
 la = lb - lc;
En kodning av tilldelningssatsen skulle kunna vara:
 LDD lb+2 ; minst signifikanta “word” av b
 SUBD lc+2 ; subtrahera signifikanta “word” av c från b
 STD la+2 ; tilldela, minst signifikanta “word”
 LDD lb ; mest signifikanta “word” av b
 SBCB lc+1 ; subtrahera låg byte i mest signifikanta “word” av c från b
 SBCA lc ; subtrahera hög byte i mest signifikanta “word” av c från b
 STD la ; tilldela, mest signifikanta “word”
Precis som för addition gäller att varken STD eller LDD påverkar C-flaggan i CCR. Om en minnessiffra (borrow)
genereras vid subtraktionen av de 16 minst signifikanta bitarna finns den alltså kvar inför nästa
subtraktionsoperation. När vi subtraherar de 16 mest signifikanta bitarna använder vi sekvensen SBCB ... SBCA,
eftersom register B utgör de minst signifikanta 8 bitarna i register D. Om en instruktion som SBED (subtract with
borrow D) hade funnits, hade vi använt den i stället. Eventuell borrow från första subtraktionen följer alltså med här.
Slutligen subtraherar vi de 8 mest signifikanta bitarna av operanderna (SBCA) och på samma sätt har en eventuell
borrow propagerats hit. Slutligen skrivs mest signifikanta “word” tillbaks till minnet.

Den utvidgade arkitekturen HCS12X tillför följande instruktioner för subtraktion

Tabell 1.10: Instruktioner för subtraktion, HCS12X
Mnemonic Funktion Operation
SUBX Subtraktion från X (X)-(M) → X
SUBY Subtraktion från Y (Y)-(M) → Y
SBED Subtraktion från D med borrow (D)-(M:M+1)-C →D
SBEX Subtraktion från X med borrow (X)-(M:M+1)-C →X
SBEY Subtraktion från Y med borrow (Y)-(M:M+1)-C →Y

Notera att C-flaggan representerar borrow vid subtraktion.

Exempel 1.24: Subtraktion av 32 bitars tal (HCS12X)

Vi hade i stället kunnat koda föregående exempel så här:
 LDY b+2 ; minst signifikanta “word” av b
 LDD b ; mest signifikanta “word” av b
 SUBY c+2 ; subtraheras från minst signifikanta “word” av c
 SBED c ; subtraheras från mest signifikanta “word” av c, med borrow
 STY a+2 ; tilldela, minst signifikanta “word”
 STD a ; tilldela, mest signifikanta “word”

BCD aritmetik

För BCD aritmetik används i första hand additionsintruktionerna ABA, ADCA och ADDA. Med
en instruktion (DAA) kan därefter resultatet decimaljusteras korrekt baserat på H-flaggan. Notera
dock att även instruktionerna ADCB och ADDB påverkar H-flaggan dock kan inte resultatet i B
decimaljusteras direkt (det finns ingen DAB-instruktion...).

Mnemonic Funktion Operation
DAA Decimaljustera A (A)10

Vid BCD-aritmetik kan ackumulator A användas för att representera två BCD-siffror. En
additionsoperation ger självfallet inte rätt resultat på BCD-form. För detta krävs att delresultatet
från operationen på de minst signifikanta fyra bitarna på något sätt propageras till de fyra mest
signifikanta bitarna, dvs från den minst signifikanta BCD-siffran till den mest signifikanta BCD-
siffran. C-flaggan kan uppenbarligen inte användas för detta, men för just denna situation finns en
speciell statusflagga hos HCS12, “half-carry” eller H. H-flaggan sätts till 1 om reultatet av
additionen av de minst signifikanta fyra bitarna är större än 9, annars sätts H-flaggan till 0.

Maskinorienterad programmering, UTKAST 6/3 2013

20

DAA-instruktionen testar H-flaggan, om denna är 1, adderas konstanten 6 till de minst
signifikanta fyra bitarna, H-flaggan propagerar därefter och innebär då att 1 adderas till de mest
signifikanta fyra bitarna. Om additionen av de mest signifikanta bitarna nu också ger ett resultat
större än 9, kommer C-flaggan att sättas till 1, annars nollställas.

Addition av större BCD-tal kan alltså utföras genom att ADDA (och därefter ADCA) används
med efterföljande decimaljustering.

Datatypen BCD finns sedan länge inte i något av de större programspråken. Användbarheten av
denna instruktion måste därför anses vara mycket begränsad.

Addition och subtraktion med 1

Addition (inkrementera) respektive subtraktion (dekrementera) med talet 1 är så vanliga
operationer att de av prestandaskäl implementerats som egna instruktioner.

Tabell 1.11: Addition med 1
Mnemonic Funktion Operation

INC Incrementera i minnet (M)+$01→ M
INCA Inkrementera A (A)+ $01→ A
INCB Inkrementera B (B)+ $01→ B
INS Inkrementera SP

anm: Ekv. med LEAS 1,SP
(SP)+ $0001 → SP

INX Inkrementera X
anm: Ekv. med LEAX 1,X

(X)+ $0001 → X

INY Inkrementera Y
anm: Ekv. med LEAY 1,Y

(Y)+ $0001 → Y

Tabell 1.12: Subtraktion med 1
Mnemonic Funktion Operation

DEC Dekrementera i minnet (M)-$01→ M
DECA Dekrementera A (A)- $01→ A
DECB Dekrementera B (B)- $01→ B
DES Dekrementera SP

anm: Ekv. med LEAS -1,SP
(SP)- $0001 → SP

DEX Dekrementera X
anm: Ekv. med LEAX -1,X

(X)- $0001 → X

DEY Dekrementera Y
anm: Ekv. med LEAY -1,Y

(Y)- $0001 → Y

INC och DEC instruktionerna kan alltså användas för att översätta satser som

var = var+1; vilket är ekvivalent med
var++;

eller

var = var -1; vilket är ekvivalent med
var--;

under förutsättning att datatypen för var är char, dvs 8 bitar.

Den ”naiva” översättningen är:

 LDAB var
 ADDB(SUBB) #1 alternativt: INCB(DECB)
 STAB var
medan den effektivare översättningen är:
 INC var
eller
 DEC var
observera dock att detta endast gäller 8-bitars datatyper. För större typer måste den ”naiva” kodningen användas.
Observera också att INC och DEC instruktionerna sätter flaggor i CCR på annat sätt än de vanliga ADD och SUB
instruktionerna, (C-flaggan påverkas inte). Den utvidgade arkitekturen HCS12X tillför följande dock instruktioner
för “increment” och “decrement”

UTKAST 6/3 2013- Maskinnära programmering för HC12

21

Tabell 1.13: Instruktioner för inkrementering, HCS12X
Mnemonic Funktion Operation
INCW Incrementera i minnet (M:M+1)+$0001 → (M:M+1)
INCX Inkrementera X

anm: Ekv. med LEAX 1,X
(X)+ $0001 → X

INCY Inkrementera Y
anm: Ekv. med LEAY 1,Y

(Y)+ $0001 → Y

Tabell 1.14: Instruktioner för dekrementering, HCS12X
Mnemonic Funktion Operation
DECW Dekrementera i minnet (M:M+1)-$0001 → (M:M+1)
DECX Dekrementera X

anm: Ekv. med LEAX -1,X
(X)- $0001 → X

DECY Dekrementera Y
anm: Ekv. med LEAY -1,Y

(Y)- $0001 → Y

Utvidgningen tillför egentligen bara den förenklade kodningen för
inkrementering/dekrementering av variabler i minnet. Vi kan med INCW hantera även 16-bitars
datatyper.

Booleska logiska operationer (AND,OR,EOR)

AND (and logical), OR (inclusive or logical) och EOR (exclusive or logical) används för att utföra
bitvis logiska operationer.

Instruktioner för bitoperationer utförs i HCS12 med 8-bitars operander.

Tabell 1.15: Logiska operationer
Mnemonic Funktion Operation
ANDA Bitvis “och” A med minnesinnehåll (A)(M) A
ANDB Bitvis “och” A med minnesinnehåll (B)(M) B
ANDCC Bitvis “och” CC med minnesinnehåll (CCR)(M) CCR
EORA Bitvis “exklusivt eller” A med

minnesinnehåll
(A)(M) A

EORB Bitvis “exklusivt eller” B med
minnesinnehåll

(B)(M) B

ORAA Bitvis “eller” A med minnesinnehåll (A)+(M) A
ORAB Bitvis “eller” B med minnesinnehåll (B)+(M) B
ORCC Bitvis “eller” CCR med minnesinnehåll (CCR)+(M) CCR

Exempel 1.25: Logiskt OCH med konstant

Antag deklarationer:
 char ca,cb;
och uttrycket
 ca = cb & 0xF;
En kodning av uttrycket skulle kunna vara:
 LDAB cb
 ANDB #$0F
 STAB ca
Om operanderna är 16 bitar med följande deklarationer:
 int ia,ib;
och uttrycket
 ia = ib & 0xF004;
får vi i stället följande kodning av uttrycket:
 LDD ib
 ANDB #$04
 ANDA #$F0
 STD ia

Maskinorienterad programmering, UTKAST 6/3 2013

22

Den utvidgade HCS12X medger bitvis logiska operationer även med 16-bitars operander. Något
av registren X eller Y måste då användas.

Tabell 1.16: Logiska operationer, HCS12X
Mnemonic Funktion Operation
ANDX Bitvis “och” X med minnesinnehåll (X)(M:M+1) X
ANDY Bitvis “och” Y med minnesinnehåll (Y)(M:M+1) Y
EORX Bitvis “exklusivt eller” X med

minnesinnehåll
(X)  (M:M+1) X

EORY Bitvis “exklusivt eller” Y med
minnesinnehåll

(Y)  (M:M+1) Y

ORX Bitvis “eller” X med minnesinnehåll (X)+(M:M+1) X
ORY Bitvis “eller” Y med minnesinnehåll (Y)+(M:M+1) Y

Unära operationer (nollställ, bitvis invertering och 2-komplement)

För unära operatorer - (unärt minus) och ~ (komplementering) används instruktionerna NEG
(negate) respektive COM (logical complement). CLR (clear) används för att nollställa operanden.
Alla dessa instruktioner har en operand.

NEG används fär att bilda 2-komplementet av operanden. Detta betyder alltså att man helt enkelt
byter tecken på talet.

Tabell 1.17: Unära operationer
Mnemonic Funktion Operation

CLC Nollställ carryflaggan i CCR 0  C
CLI Nollställ avbrottsmask i CCR 0  I
CLR Nollställ minnesinnehåll $00  M
CLRA Nollställ A $00  A
CLRB Nollställ B $00  B
CLV Nollställ overflowflaggan I CCR 0  V
COM Ettkomplementera minnesinnehåll $FF-(M)  M
COMA Ettkomplementera A $FF-(A)  A
COMB Ettkomplementera B $FF-(B)  A
NEG Tvåkomplementera minnesinnehåll $00-(M)  M
NEGA Tvåkomplementera A $00-(A)  A
NEGB Tvåkomplementera B $00-(B)  B

Den utvidgade arkitekturen HCS12X tillför följande instruktioner för unära operationer

Tabell 1.18: Instruktioner för unära operationer, HCS12X
Mnemonic Funktion Operation
CLRW Nollställ minnesinnehåll (16 bitar) $0000 M:M+1
CLRX Nollställ X $0000  X
CLRY Nollställ Y $0000  Y
COMW Ettkomplementera minnesinnehåll $FFFF-(M M+1)  M M+1
COMX Ettkomplementera X $FFFF-(X)  X
COMY Ettkomplementera Y $FFFF-(Y)  Y
NEGW Tvåkomplementera minnesinnehåll $0000-(M:M+1)  M:M+1
NEGX Tvåkomplementera X $0000-(X)  X
NEGY Tvåkomplementera Y $0000-(Y)  Y

UTKAST 6/3 2013- Maskinnära programmering för HC12

23

Exempel 1.26: Teckenbyte för 8-bitars heltal

Antag deklarationer:
 char ca,cb;
och uttrycket
 ca = -cb;
En kodning av uttrycket skulle kunna vara:
 LDAB cb
 NEGB
 STAB ca

Exempel 1.27: Teckenbyte för 16-bitars tal

Antag deklarationer:
 int ia,ib;
och uttrycket
 ia = -ib;
För HCS12 kan uttrycket kodas:
 LDD ib
 COMA
 COMB
 ADDD #1
 STD ia
Det kan verka onödigt komplicerat men kommer sig av det faktum att NEG-operationen inte kan utföras med register
D (A:B). Om vi i stället använder HCS12X kan vi koda samma uttryck:
 LDX ib
 NEGX
 STX ia

Det logiska komplementet, dvs 1-komplementet, bildas på motsvarande sätt genom att
instruktionen NEG bytes mot instruktionen COM.

Exempel 1.28: Bitvis komplementering

Instruktionsföljden
 LDAB #%10101010
 COMB
ger i register B:
 0101 0101
Antag deklarationer:
 char ca,cb;
och uttrycket
 ca = ~cb;
En kodning av uttrycket skulle kunna vara:
 LDAB cb
 COMB
 STAB ca

Skiftinstruktioner

Skiftoperationer används för att flytta grupper av bitar ett eller flera steg. I programspråket ‘C’
finns två olika skiftoperationer:
 A << B A skiftas vänster B steg
 A >> B A skiftas höger B steg
Medan A måste vara en variabel, kan B vara såväl en konstant som någon (annan) variabel.
CPU12 stödjer skiftoperationer med tre olika instruktioner:
 logiskt skift (LS)
 aritmetiskt skift (AS)
 rotation med Carry (RO)
Såväl vänsterskift som högerskift kan utföras. Instruktionerna kan användas i någon av dessa
former:

Maskinorienterad programmering, UTKAST 6/3 2013

24

1. instruktion <ea>, “minnesshift”, <ea> anger en minnescell, innehållet i denna skiftas 1
steg. Operandens storlek är här alltid 8 bitar.

2. instruktionACK “register-skift”, innehållet i ett register (A,B,D) skiftas ett steg.

Tabell 1.19: Logiska skift
Mnemonic Funktion Operation

LSL Logiskt vänsterskift i minnet

b0 b7C
0

LSLA Logiskt vänsterskift A
LSLB Logiskt vänsterskift B
LSLD Logiskt vänsterskift D

b0b7C b0 b7

0

A B

LSR Logiskt högerskift i minnet

b0 b7 C
0

LSRA Logiskt högerskift A
LSRB Logiskt högerskift B
LSRD Logiskt högerskift D

b0b7 C b0 b7

0

A B

Exempel 1.29

Antag att följande ’C’-deklarationer är givna:
unsigned char uc, ucResult;
Koda följande sats i ’C’, som assemblerkod:
 ucResult = (uc >> 1) & 1;
1 Lösning:
 LDAB uc
 LSRB
 ANDB #1
 STAB ucResult

Observera att logiska högerskift normalt inte används för tal med tecken. Detta beror på att
teckeninformationen i så fall riskerar att förloras eftersom en nolla alltid skiftas in från höger till
teckenbitens position. För att klara även teckenskift finns därför aritmetiskt skift. Observera också
att aritmetiskt vänsterskift är det samma som logiskt vänsterskift.

Tabell 1.20: Aritmetiska skift
Mnemonic Funktion Operation

ASL Aritmetiskt vänsterskift i minnet
(ekv. med LSL)

b0 b7C
0

ASLA Aritmetiskt vänsterskift A
(ekv. med LSLA)

ASLB Aritmetiskt vänsterskift B
(ekv. med LSLB)

ASLD Aritmetiskt vänsterskift D
(ekv. med LSLD)

b0b7C b0 b7

0

A B

ASR Aritmetiskt högerskift i minnet

b0 b7 C

ASRA Aritmetiskt högerskift A

ASRB Aritmetiskt högerskift B

UTKAST 6/3 2013- Maskinnära programmering för HC12

25

Exempel 1.30

Antag att följande ’C’-deklarationer är givna:
signed char sc, scResult;
signed int si, siResult;
Koda följande satser i ’C’, som assemblerkod:
 scResult = (sc >> 1) & 0x80;
 siResult = (si >> 1) & 0x8000;

Lösning:
 LDAB sc
 ASRB
 ANDB #$80
 STAB scResult
 LDD si
 ASRA
 LSRB
 ANDA #$80
 STD scResult

Den tredje typen av skiftinstruktion, rotate, kallas också i bland också för “carry-skift”.

Tabell 1.21: Carry-skift
Mnemonic Funktion Operation

ROL Rotation vänster via carry i
minnet

b0b7 C
ROLA Rotation vänster via carry A
ROLB Rotation vänster via carry B
ROR Rotation höger via carry i minnet

b0 b7 C
RORA Rotation höger via carry A
RORB Rotation höger via carry B

Exempel 1.31

Antag att följande ’C’-deklaration är given:
signed long sl, slResult;
Koda följande C-sats i assemblerkod:
 slResult = sl >> 1 ;
Lösning:
 LDD sl ; msw av ’sl’
 ASRA
 RORB
 STD slResult ; anm. påverkar EJ carry…
 LDD sl+2 ; lsw av ’sl’, anm. påverkar EJ carry…
 RORA
 RORB
 STD slResult +2

Ytterligare skiftinstruktioner tillkommer hos HCS12X, se Tabell 1.22 nedan..

Maskinorienterad programmering, UTKAST 6/3 2013

26

Tabell 1.22: Skiftinstruktioner, HCS12X
Mnemonic Funktion Operation
ASLW
LSLW

Aritmetiskt/Logiskt vänsterskift i
minnet, 16 bitar

b14b15C b0 b1
0

ASLX
LSLX

Aritmetiskt/Logiskt vänsterskift
register X

b14b15C b0 b1
0

X
ASLY
LSLY

Aritmetiskt/Logiskt vänsterskift
register Y

b14b15C b0 b1
0

Y
ASRW Aritmetiskt högerskift i minnet,

16 bitar

b14b15 C b0 b1
ASRX Aritmetiskt högerskift register X

b14b15 C b0 b1 X
ASRY Aritmetiskt högerskift register Y

b14b15 C b0 b1 Y
LSRW Logiskt högerskift i minnet, 16

bitar

b14b15 C b0 b1
0

LSRX Logiskt högerskift register X

b14b15 C b0 b1
0

X
LSRY Logiskt högerskift register Y

b14b15 C b0 b1
0

Y
ROLW Carry-skift vänster i minnet, 16

bitar
b14 b0b15C b1

ROLX Carry-skift vänster register X

b14 b0b15C b1 X
RORY Carry-skift vänster register Y

b14 b0b15C b1 Y
RORW Carry-skift höger i minnet, 16

bitar
b14 b0 b15 C b1

RORX Carry-skift höger register X

b14 b0 b15 C b1 X
RORY Carry-skift vänster register Y

b14 b0 b15 C b1 Y

Exempel 1.32

Exempel 1.31 ovan kan, för HCS12X, kodas:
 LDX sl ; msw av ’sl’
 LDY sl+2 ; lsw av ’sl’
 ASRX
 RORY
 STX slResult
 STY slResult+2

UTKAST 6/3 2013- Maskinnära programmering för HC12

27

Jämförelse och test

Jämförelseinstruktioner, ”compare”, liknar subtraktionsinstruktioner med skillnaden att resultatet
inte skrivs tillbaks till destinationsoperanden. Endast flaggorna (N,Z,V och C) i CCR påverkas
alltså av dessa instruktioner.

För att testa en operand används TST (test an operand). Resultatet av testen sätter flaggorna N
och Z i CCR medan flaggorna V och C alltid nollställs av TST-instruktionen. Detta innebär att
instruktionerna TSTA och CMPA #0 inte är ekvivalenta.

Tabell 1.23: Jämförelseinstruktioner
Mnemonic Funktion Operation

CBA Jämför B med A (A)-(B)
CMPA Jämför A med minne (A)-(M)
CMPB Jämför B med minne (B)-(M)
CPD Jämför D med minne (A:B)-(M:M+1)
CPS Jämför SP med minne (SP)-(M:M+1)
CPX Jämför X med minne (X)-(M:M+1)
CPY Jämför Y med minne (Y)-(M:M+1)

Tabell 1.24: Testinstruktioner
Mnemonic Funktion Operation

TST Testa minnesinnehåll (M)-$00
TSTA Testa register A (A)-$00
TSTB Testa register B (B)-$00

Tabell 1.25: Jämförelseinstruktioner, HCS12X
Mnemonic Funktion Operation
CPED Jämför D med minne och Borrow (A:B)-((M:M+1)+C)
CPES Jämför SP med minne och Borrow (SP)-((M:M+1)+C)
CPEX Jämför X med minne och Borrow (X)-((M:M+1)+C)
CPEY Jämför Y med minne och Borrow (Y)-((M:M+1)+C)

Tabell 1.26: Testinstruktioner, HCS12X
Mnemonic Funktion Operation
TSTW Testa minnesinnehåll, 16 bitar (M M+1)-$0000
TSTX Testa register X (X)-$0000
TSTY Testa register Y (Y)-$0000

Vi exemplifierar jämförelse och test instruktioner i samband med villkorliga instruktioner för
programflödeskontroll nedan.

Ovillkorlig programflödeskontroll

Instruktioner som JMP (jump) BRA (branch always) JSR (jump to subroutine) och BSR (branch
to subroutine) används för att åstadkomma programflödesändringar oavsett flaggsättningen i
CCR. Instruktionerna JSR och BSR har dessutom egenskapen att adressen till nästa instruktion
lagras undan på stacken innan hoppet utförs. Dessa instruktioner kan användas tillsammans med
instruktionen RTS, (return from subroutine) för att skapa subrutiner av programkod som skall
utföras många gånger eller kanske delas av olika program.

Maskinorienterad programmering, UTKAST 6/3 2013

28

Tabell 1.27: Ovillkorlig programflödeskontroll
Mnemonic Funktion Operation

BSR Anrop av subrutin.
PC-relativ operand

SP-2  SP
RetAdrL:RetAdrH  M(SP):M(SP+1)

Adress  PC
BRA “Hopp” till adress.

PC-relativ operand
Adress  PC

CALL Anrop av subrutin
Absolut operand (20 bitar)

Anm: Användes vid
programflödesändring mellan olika

minnesbankar ($8000-$BFFF)

SP-2  SP
RetAdrL:RetAdrH  M(SP):M(SP+1)

Subrutinadress  PC
SP-1  SP

(PPAGE)  M(SP)

PAGE  PPAGE
Subrutinadress  PC

JMP “Hopp” till address.
Absolut operand

Subrutinadress  PC

JSR Anrop av subrutin
Absolut operand

SP-2  SP
RetAdrL:RetAdrH  M(SP):M(SP+1)

Subrutinadress  PC
RTC Återvänd från subrutin.

Returadress från STACK och PPAGE
M(SP)  (PPAGE)

SP+1  SP
M(SP):M(SP+1)  PCH:PCL

SP+2  SP
RTS Återvänd från subrutin.

Returadress från STACK
M(SP):M(SP+1)  PCH:PCL

SP+2  SP

Att modularisera ett program innebär att dess olika funktioner placeras i block med överskådlig
och sammanhållen programkod. Ett naturligt sätt att modularisera är att dela upp programkoden i
subrutiner. En subrutin kännetecknas av sitt gränssnitt och gränssnittet utgörs av:

 Namn
 Indata
 Utdata

Om dessa egenskaper dokumenterats väl är det möjligt att använda subrutinen utan att samtidigt
tvingas sätta sig in i den detaljerade funktionen. Det är därför viktigt att denna dokumentation
finns med och att den utformats på rätt sätt.

Exempel 1.33 ”Header” för subrutin

En text beskrivande subrutinen ”COMMAND” kan lämpligen utformas på följande sätt:
*
* SUBRUTIN – COMMAND
* Beskrivning: Rutinen avgör vilken
* kommandosubrutin som skall
* utföras och anropar denna.
*
* Indata: Kommandonummer i reg A
* Utdata: Inga
*
* Registerpåverkan: A,X
*
*
*
* Anropade subutiner: SUB0, SUB1, SUB2
*
* LDAA #cmd
* Anrop: JSR COMMAND
*

Namnet åtföljs av en kort beskrivning av
subrutinens funktion.

Eventuella indata/utdata anges, dessutom vilka
register som används för indata/utdata.

De registerinnehåll som ändras av subrutinen
anges speciellt.

Ytterligare subrutiner som anropas från den
dokumenterade rutinen bör anges.

Exempel på hur subrutinen anropas bör anges.

UTKAST 6/3 2013- Maskinnära programmering för HC12

29

CPU12 stöder modularisering bland annat med instruktionerna BSR (branch to subroutine) och
RTS (return from subroutine). BSR kan ses som en ovillkorlig hopp-instruktion, men till skillnad
från exempelvis BRA, gäller att exekveringen ska fortsätta direkt efter BSR då subrutinen utförts.
Följakligen måste returadressen, dvs adressen till instruktionen omedelbart efter BSR sparas på
något sätt. På motsvarande sätt måste adressen kunna placeras i PC då instruktionen RTS
exekveras. Stacken används för att spara returadresser, dvs vid:

 BSR placeras adressen till nästa instruktion på
stacken, stackpekaren minskas med 2 bytes,

 adressen till subrutinen placeras i PC
och vid:

 RTS 2 bytes tas från stacken och placeras i PC
 stackpekaren ökas med 4 bytes

Som framgår av Tabell 1.27 ovan finns det olika varianter av instruktioner som används för
subrutinanrop. De skiljer sig åt i kodningen (se instruktionslistan) och man väljer variant
beroende på avståndet mellan anropet och den anropade subrutinen.

Exempel 1.34 Användning av BSR

Instruktionen BSR kodas:

 07 rr där rr står för 8 bitars PC-relativ offset (med tecken)

Den anropade subrutinen kan därför finnas på någon adress maximalt 127 bytes framåt eller 128 bytes bakåt räknat
från adressen till BSR-instruktionen+2.

Villkorlig programflödeskontroll

Instruktioner för kontroll av programflödet är centrala i varje mikroprocessors
instruktionsuppsättning. Beteckningen ”branch” vilken kan översättas med ”förgrening” är
gemensam för instruktioner för ”vägval” i programutförandet. För en villkorlig ”branch”-
instruktion är vägvalet självfallet associerat till något villkor, ”condition” varför den den
gemensamma beteckningen för dessa instruktioner är ”branch on condition”, dvs en villkorlig
ändring av programmets flöde. Detta åstadkommes genom att något villkor testas, om villkoret är
sant utförs en programflödesändring, dvs ett ”hopp” i programmet. Om villkoret däremot är
falskt, fortsätter programutförandet genom att nästa instruktion i minnet exekveras.

Villkorliga instruktioner används alltså alltid tillsammans med någon (omedelbart föregående)
instruktion som åstadkommit flaggsättning. Ofta är detta någon av instruktionerna cmp eller tst
men det kan också vara i kombination med någon aritmetisk instruktion. Det är därför viktigt att
du alltid kontrollerar hur flaggorna sätts av instruktionen som föregår branch-instruktionen.

En villkorlig (branch-) instruktion:

Testar villkoret mot innehållet i flaggregistret (CCR)
Om resultatet av testen är SANT, utförs instruktionen (hoppet)
Om resultatet är FALSKT fortsätter exekveringen med nästa instruktion (hoppet utförs inte).

16 olika villkor (hoppinstruktioner) kan anges och vi ska här titta närmare på dessa villkor och i
vilka sammanhang de kan användas

Maskinorienterad programmering, UTKAST 6/3 2013

30

Tabell 1.28: Villkorlig programflödeskontroll
Mnemonic Funktion Villkor

Enkla flaggtest
BCS “Hopp” om carry C=1
BCC “Hopp” om ICKE carry C=0
BEQ “Hopp” om zero Z=1
BNE “Hopp” om ICKE zero Z=0
BMI “Hopp” om negative N=1
BPL “Hopp” om ICKE negative N=0
BVS “Hopp” om overflow V=1
BVC “Hopp” om ICKE overflow V=0

Test av tal utan tecken
BHI Villkor: R>M C + Z = 0
BHS Villkor: RM C=0
BLO Villkor: R<M C=1
BLS Villkor: RM C + Z = 1

Test av tal med tecken
BGT Villkor: R>M Z + (N  V) = 0
BGE Villkor: RM N  V = 0
BLT Villkor: R<M N  V = 1
BLE Villkor: RM Z + (N  V) = 1

Observera speciellt de villkorliga instruktionerna för realtionera ”större än”, större eller lika”, etc.
Här måste rätt instruktion väljas baserat på om vi jämför tal betraktade som med eller utan
tecken.

Exempel 1.36 Jämförelser tal med/utan tecken

Vi jämför instruktionerna BHI (branch higher) och BGT (branch greater than). Antag att vi vill testa om innehållet i
register B är större än -2, vi prövar med kodsekvensen

 CMPB #-2
 BHI St_n2
 ... denna kod ska utföras om innehållet i B är mindre än -2
St_n2:
 ... denna kod ska utföras om innehållet i B är större än, eller lika med -2

Vi antar att B’s innehåll är 3, vilket bör resultera i att instruktionen (hoppet) utförs ty 3 > -2. Vi utför nu operation
och flaggsättning:
 10 10 10 10 10 10 10
 (3) 0 0 0 0 0 0 1 1
 -(-2) 1 1 1 1 1 1 1 0
 = 0 0 0 0 0 1 0 1
Observera speciellt att en Borrow genereras vid operationen

I processorn utförs dock subtraktionen som addition av tvåkomplementet, dvs:
 (3) 0000 0011
 +(2) 0000 0010
 = 0 0000 0101
Carry-biten blir 0 när vi räknar, Carry flaggan sätts dock till inversen av detta ty vid SUB och CMP-instruktioner
representerar Carry-flaggan Borrow...

Flaggsättning:
Minns att C-flaggan vid denna operation representerar " Borrow"...
 C = 1 ty borrow genererades
 Z = 0 ty resultatet är skilt från 0
 V = 0 ty inget tvåkomplementsspill genererades
 N = 0 ty mest signifikanta biten är 0

I vårt exempel förväntar vi oss att hoppet till St_n2 ska utföras, men detta är inte fallet eftersom villkoret för BHI ej

är uppfyllt, (C Z).

UTKAST 6/3 2013- Maskinnära programmering för HC12

31

Om vi istället hade valt instruktionen BGT, (N V Z N V Z    ), fungerar det korrekt (jämför
flaggsättningen med villkoret för BGT). Förklaringen ligger i att vi betraktar jämförelse av tal med tecken.

Vi kan sammanfatta de villkorliga testoperationerna genom att koppla dessa till motsvarande
operatorer i programspråket C.

Tabell 1.29: C-operatorer och villkorlig programflödeskontroll
C-operator Betydelse Datatyp Instruktion

== Lika med signed/unsigned BEQ
!= Skild från signed/unsigned BNE
< Mindre än signed BLT
 unsigned BCS
<= Mindre än eller

lika
signed BLE

 unsigned BLS
> Större än signed BGT
 unsigned BHI
>= Större än eller

lika
signed BGE

 unsigned BCC

Av tabellen framgår hur operator tillsammans med den aktuella datatypen avgör villken villkorlig
instruktion som ska användas.

Exempel 1.37 Kodning av jämförelseoperation

Antag att följande ’C’-deklaration är given:

unsigned char uc1,uc2;

Koda följande C-sats i assemblerkod:

 if(uc1 > uc2)

S1;

Lösning:

Vi väljer villkorlig instruktion BHI eftersom denna svarar mot operator och datatyp:
 LDAB uc1
 CMPB uc2
 BHI S1
 BRA skip
S1: ...

...
skip:
Observera att vi kan avlägsna BRA- instruktionen genom att välja komplementinstruktionen till BHI, dvs BLS:
 LDAB uc1
 CMPB uc2
 BLS skip
S1: ...

...
skip:

Maskinorienterad programmering, UTKAST 6/3 2013

32

Bittest och villkorlig programflödesändring

Tabell 1.30: Villkorlig programflödeskontroll baserad på bittest
Mnemonic Funktion Villkor
BRCLR “Hopp” om bit-operands alla bitar är 0 (M)(mm) = 0
BRSET “Hopp” om bit-operands alla bitar är 1 (M)(mm) = 0

Dessa instruktioner kombinerar test och villkorlig programflödesändring. Speciellt är de
användbara i programslingor med statustest av IO-enheter.

Exempel 1.38

Antag att en IO-enhet placerats på address $400 i datorn’s mine. Antag vidare att bit 0 indikerar någon speciell
händelse. Om bit 0 är 1 innebär detta att händelsen inträffat och att vänteslingan kan avslutas. Följande konstruktion
implementerar då denna vänteslinga:

wait_here:
 BRCLR $0400,#%00000001,wait_here
BRCLR testar om data på address $400 efter en logisk AND-operation med %00000001 är noll. I så fall utförs
“hopp” till positionen “wait_here”, annars fortsätter programutförandet med efterföljande instruktion.

Instruktioner för räknande programslingor

Villkorliga instruktioner används för att styra programflödet baserat på en tidigare jämförelse.
Vissa typer av programkonstruktioner är mycket vanliga och CPU12 omfattar därför en speciell
uppsättning instruktioner utformade enbart för att stödja sådana programkonstruktioner.

Tabell 1.31: Instruktioner för räknande programslingor
Mnemonic Funktion Villkor
DBEQ Dekrementera innehåll i register.

“Hoppa” om resultatet = 0.
(register: A,B,D,X,Y,SP)

(register) – 1  register
om(register)=0; “hoppa”;
annars: nästa instruktion

DBNE Dekrementera innehåll i register.
“Hoppa” om resultatet  0.
(register: A,B,D,X,Y,SP)

(register) – 1  register
om(register)0; “hoppa”;
annars: nästa instruktion

IBEQ Inkrementera innehåll i register. “Hoppa”
om resultatet = 0.

(register: A,B,D,X,Y,SP)

(register) + 1  register
om(register)=0; “hoppa”;
annars: nästa instruktion

IBNE Inkrementera innehåll i register. “Hoppa”
om resultatet  0.

(register: A,B,D,X,Y,SP)

(register) + 1  register
om(register)0; “hoppa”;
annars: nästa instruktion

TBEQ Testa innehåll i register. “Hoppa” om
resultatet = 0.

(register: A,B,D,X,Y,SP)

om(register)=0; “hoppa”;
annars: nästa instruktion

TBNE Testa innehåll i register. “Hoppa” om
resultatet  0.

(register: A,B,D,X,Y,SP)

om(register)0; “hoppa”;
annars: nästa instruktion

Exempel 1.39 Kodning av ”for-loop”

Antag deklarationen:
 int i;
Koda C-programsekvensen:
 for(i = 10; i > 0; i--)
 {
 ...
 }
dummy:
Lösning:
 MOVW #10,i
 LDD i
for_loop_iteration:
 DBEQ D,dummy

UTKAST 6/3 2013- Maskinnära programmering för HC12

33

 ...
 BRA for_loop_iteration
dummy:

Vi inser igen att en och samma programkonstruktion kan kodas i assembler på flera olika sätt.
Försök själv att koda ovanstående exempel utan att använda sammansatta instruktioner som
dessa.

Ytterligare en vanlig programkonstruktion ”while(...) do” implementeras också enkelt, betrakta
följande exempel:

Exempel 1.40 Kodning av ”while-loop”

Antag deklarationen:
 int i;
Koda C-programsekvensen:
 while(i)
 {
 ...
 }
dummy:
Lösning:
 LDD i
while_loop_iteration:
 TBEQ D,dummy
 ...
 BRA while _loop_iteration
dummy:

Multiplikation och division

Eftersom multiplikation utförs på olika sätt beroende på om operanderna betraktas som tal med
eller utan tecken, finns det också flera varianter av multiplikations-instruktionen:

Tabell 1.32 Instruktioner för multiplikation
Mnemonic Funktion Operation

MUL Multiplikation, utan tecken (88 bitar) (A)(B)  A:B
EMUL Multiplikation, utan tecken (1616 bitar) (D)(Y)  Y:D
EMULS Multiplikation, med tecken (1616 bitar) (D)(Y)  Y:D

Användning av instruktioner för multiplikation
 Tal med tecken (signed) Tal utan tecken (unsigned)

8 bitar Ingen instruktion finns för detta. I stället
används MUL kompletterad med s.k.

”teckenöverläggning”, se exempel nedan.

MUL
(A)×(B)→(D)

Innehållen i ackumulatorerna
multipliceras. Resultatet, 16 bitar, finns

efter instruktionen i ackumulator D.
16 bitar EMULS

(D)×(Y)→(Y:D)
Innehållen i D och Y multipliceras.

Resultatet, 32 bitar, finns efter instruktionen
i register Y (mest sign. 16 bitar) och i

ackumulator D (minst signifikanta 16 bitar)

EMUL
Samma som EMULS men vid

multiplikationen behandlas talen utan
tecken.

Maskinorienterad programmering, UTKAST 6/3 2013

34

Exempel 1.41 Kodning av ”unsigned character”-multiplikation

Antag att följande ’C’-deklarationer är givna:
unsigned char uc1, uc2, ucResult;

Koda följande operation, given i ’C’, i assemblerspråk:
 ucResult = uc1 * uc2;
Lösning:
; ucResult = uc1 * uc2;

LDAA uc1
LDAB uc2
MUL
STAB ucResult

Exempel 1.42 Kodning av ”short”-multiplikation

Antag att följande ’C’-deklarationer är givna:
unsigned short us1, us2, usResult;
signed short ss1, ss2, ssResult;

Koda följande operationer, givna i ’C’, i assemblerspråk:
 usResult = us1 * us2;
 ssResult = ss1 * ss2;
Lösning:
; usResult = us1 * us2;

LDD us1
LDY us2
EMUL
STD usResult

; ssResult = ss1 * ss2;

LDD ss1
LDY ss2
EMULS
STD ssResult

Tabell 1.33 Instruktioner för division
Mnemonic Funktion Operation
IDIV Division, utan tecken (16/16 bitar) (D)(X)  X

Resten  D
IDIVS Division, med tecken (16/16 bitar) (D)(X)  X

Resten  D
FDIV Bråkdelsdivision (16/16 bitar) (D)(X)  X

Resten  D
EDIV Division, utan tecken (32/16 bitar) (Y:D)(X)  Y

Resten  D
EDIVS Division, med tecken (32/16 bitar) (Y:D)(X)  Y

Resten  D

Stackoperationer

Operationer som påverkar stackpekaren (SP) kallar vi stackoperationer. Stacken används för att
tillfälligt spara data och adresser. Det finns instruktioner som implicit använder stacken,
exempelvis JSR, RTS vilka beskrivits tidigare nedan. I dessa fall hanteras stacken, undanlagring
och återställning, utan att programmeraren behöver vidta speciella åtgärder. Ur programmerarens

UTKAST 6/3 2013- Maskinnära programmering för HC12

35

synvinkel är stacken däremot intressant som lagringsplats för ”temporära data”, dvs ett sätt att
reservera minnesutrymme för en kortare instruktionssekvens. Då sekvensen är avslutad kan
stacken återställas och samma minnesutrymme kan på så sätt återanvändas av senare
instruktionssekvenser som kräver plats för temporär undanlagring/återställning.

Stackoperationer kan indelas i två grupper

 Operationer som enbart påverkar stackpekaren.

 Operationer som implicit använder (och eventuellt påverkar) stackpekaren.

Flertalet operationer som inbegriper stackpekaren har vi behandlat i tidigare sammanhang,

Mnemonic Funktion Operation
PSHA

Placera innehållet i register A på
stacken

(SP)-1  SP, (A)  M(SP)

PSHB

Placera innehållet i register B på
stacken

(SP)-1  SP, (B)  M(SP)

PSHC

Placera innehållet i register CCR på
stacken

(SP)-1  SP, (CCR)  M(SP)

PSHD

Placera innehållet i register D på
stacken

(SP)-2  SP, (A: B)  M(SP) :M(SP+1)

PSHX

Placera innehållet i register X på
stacken

(SP)-2  SP, (X)  M(SP) :M(SP+1)

PSHY

Placera innehållet i register Y på
stacken

(SP)-2  SP, (Y)  M(SP) :M(SP+1)

PULA

Återställ innehållet i register A från
stacken

 (M(SP))  A, (SP)+1  SP

PULB

Återställ innehållet i register B från
stacken

(M(SP))  <B, (SP)+1  SP

PULC

Återställ innehållet i register CCR från
stacken

 (M(SP))  CCR, (SP)+1  SP

PULD

Återställ innehållet i register D från
stacken

 (M(SP) :M(SP+1))  A:B,
(SP)+2  SP

PULX

Återställ innehållet i register X från
stacken

 (M(SP) :M(SP+1))  X,
(SP)+2  SP

PULY

Återställ innehållet i register Y från
stacken

 (M(SP) :M(SP+1))  Y,
(SP)+2  SP

För HCS12X tillkommer följande stackoperationer:

Mnemonic Funktion Operation
PSHCW

Placera innehållet i register CCRH:CCR

på stacken.

(SP)-2  SP,
(CCRH: CCR)  M(SP) :M(SP+1)

PULCW

Återställ innehållet i register CCRH:CCR
från stacken.

 (M(SP) :M(SP+1)) CCRH: CCR,
(SP)+2  SP

Vi har minst tre olika situationer som kräver temporär lagring med användning av stacken. Det
första fallet beskrivs enklast av att vi behöver använda någon speciell instruktion som kräver ett
specifikt register och att detta register för tillfället används för att lagra ett tidigare delresultat.

Maskinorienterad programmering, UTKAST 6/3 2013

36

Situationen kallas”register spill”, och kan enkelt hanteras med hjälp av en tillfällig undanlagring
på stacken.

Exempel 1.43 Hantering av ”register spill”.

Låt föjande deklarationer vara givna:

unsigned short int _a,_b,_c,_d;

Skriv en sekvens assemblerinstruktioner som evaluerar följande uttryck och lämnar resultatet i
register D.

(_a*_b)+(_c*_d);

Lösning:

För 16 bitars multiplikation använder vi EMUL-instruktionen. Denna förutsäller att operanderna
finns i D respektive Y-registren.

 LDD _a
 LDY _b
 EMUL ; första parentesen evaluerad
 PSHD ; placera delresultat på stacken
 LDD _c
 LDY _d
 EMUL ; andra parentesen evaluerad
 ADDD 0,SP ; addera med första delresultatet
 LEAS 2,SP ; återställ stackpekaren

Efter instruktionssekvensen finns hela uttryckets värde i register D, stackpekaren har återställts
till det värde den hade före instruktionssekvensen.

Ett annat fall är då vi vill reservera ”tillfällig plats” eller mera konkret, ”deklarera lokala
variabler”. Sådana är synliga endast i den funktion (subrutin) de deklarerats och används aldrig
före eller efter funktionen anropats. Det är därför en god tanke att använda temporär lagring för
dessa. Minnet kan ju då återanvändas av en annan funktion. Vi återkommer till detta.

Exempel 1.44 Användning av ”tillfälligt variabelutrymme”

Antag att följande ’C’-deklarationer är givna:
signed char sc1, sc2, scResult;

Koda följande operation, given i ’C’, i assemblerspråk:
 scResult = sc1 * sc2;
Lösning:
Eftersom det inte finns någon maskininstruktion för multiplikation av 8-bitars tal med tecken tvingas vi här göra
teckenöverläggning för att bestämma tecken hos resultatet. Vi inför en temporär variabel sign för att hålla reda på
resultatets tecken. Så här skulle då operationen kunna kodas i ’C’:
 sign = 0;
 if((sc1 & 0x80)&&(sc2 & 0x80)) /* båda är < 0 */
 scResult = (-sc1) * (-sc2);
 else if((!(sc1 & 0x80)) && (!(sc1 & 0x80))) /* båda är => 0 */
 scResult = sc1 * sc2;
 else if((sc1 & 0x80) && (!(sc2 & 0x80))){ /* sc1 < 0, sc2 => 0 */
 scResult = -sc1 * sc2;
 sign=1;
 }
 else { /* sc1 => 0, sc2 < 0 */
 scResult = sc1 * -sc2;
 sign = 1;
 }

 if(sign == 1)

UTKAST 6/3 2013- Maskinnära programmering för HC12

37

 scResult = - scResult;

Låt oss nu se hur vi kan koda detta som assemblerkod:
 LEAS -1,SP ; unsigned char sign;
 CLR 0,SP ; sign = 0;

; if((sc1 & 0x80)&&(sc2 & 0x80)) /* båda är < 0 */
 LDAA _sc1
 BPL _2
 LDAB _sc2
 BPL _2
; scResult = (-sc1) * (-sc2);
 NEGA
 NEGB
 BRA _8
_2:
; else if((!(sc1 & 0x80)) && (!(sc1 & 0x80))) /* båda är => 0 */
 TSTA
 BMI _4
 TSTB
 BMI _4
; scResult = sc1 * sc2;
 BRA _8
_4:
; else if((sc1 & 0x80) && (!(sc2 & 0x80))){ /* sc1 < 0, sc2 => 0 */
 TSTA
 BPL _6
 TSTB
 BMI _6
; scResult = -sc1 * sc2;
 NEGA
 MOVB #1,0,SP ; sign=1;
 BRA _8
_6:
; else { /* sc1 => 0, sc2 < 0 */
; scResult = sc1 * -sc2;
 NEGB
 MOVB #1,0,SP ; sign = 1;
_8:
 MUL
 STAB _scResult

; if(sign == 1)
 LDAA 0,SP
 BEQ _9
; scResult = - scResult;
 NEGB
 STAB _scResult
_9:
 LEAS 1,SP

En tredje situation är då värden ska överföras till och från en funktion. Beroende på antalet
värden som ska överföras kan här stacken komma till användning. Vi återkommer även till detta
nedan.

Om man programmerar i ett högnivåspråk, behöver man normalt inte bekymra sig för ”temporär
lagring” eftersom kompilatorn då hanterar kodgenereringen. Om man däremot kodar i
assemblerspråk, och kombinerar detta med kompilatorgenererad kod, är det ytterligt viktigt att
man förstått kompilatorns konventioner i dessa sammanhang.

Maskinorienterad programmering, UTKAST 6/3 2013

38

UTKAST 6/3 2013- Maskinnära programmering för HC12

39

Parameteröverföring
Vi har redan sett exempel på hur parametrar kan överföras till/från en subrutin med hjälp av
processorns register. Det är ett enkelt och mycket effektivt sätt att överföra parametrar. Vi kan
också införa konventioner alltså regler för hur parameterlistorna ska översättas, dvs utgående från
ordningsföljden av parametrar tilldelas register efter ett förutbestämt mönster.

Exempel Parametrar i register

Antag deklarationer:

int la,lb,lc;
Antag vidare att vi alltid använder register D, X, Y (i denna ordning) för parametrar som skickas till en subrutin. Då
kan funktionsanropet

 dummyfunc(la,lb,lc);
översättas till:

 LDD la
 LDX lb
 LDY lc
 BSR dummyfunc
Då vi kodar subrutinen dummyfunc vet vi (på grund av våra regler) att den första parametern skickas i D, den andra
i X och den tredje i Y (osv).

Det visade exemplet indikerar dock en rad problem för mer generella fall. Exempelvis kan
parameterlistor vara långa och hur gör vi om inte processorns register räcker till? För att hantera
det generella fallen kommer de följande avsnitten kommer också att behandla några andra
metoder för parameteröverföring till och från subrutiner. I avsnitten om kombinerad
programmering dvs hur man konstruerar program i såväl assemblerkod som ett högnivåspråk,
återkommer vi till detta och visar metoder som vanligtvis används av C-kompilatorer.

Stacken används för temporär lagring

 “Stacken” dvs en minnesarea som upplåtits för tillfällig mellanlagring kan användas för att spara
registerinnehåll. Registren kan därefter användas för såväl uttrycksevaluering som parametrar,
stacken återställes därefter och de ursprungliga registerinnehållen återställes samtidigt.

Då vi sparar ett registerinnehåll på stacken (detta kallas av tradition “push”) kan vi föreställa oss
att vi lägger detta, överst, på en “hög” (eng. stack), då vi återställer (kallas av tradition “pop”)
innebär detta att vi tar, det som ligger överst, på “högen”. Jämför detta med hur CPU12 placerar
returadressen vid subrutinanrop, på stacken där register SP utgör stackpekare. Av resonemanget
framgår vikten av att vi lägger på och plockar av stacken i rätt ordning.

CPU12 stödjer stackhantering med adresseringsmoderna

preautodecrement n,-SP

och

postautoincrement n,SP+

Maskinorienterad programmering, UTKAST 6/3 2013

40

Exempel

Vi vill spara initiala värden i register D och X på stacken för att kunna använda dessa värden i upprepade
beräkningar:

 STD 2,-SP
 STX 2,-SP
Antag att stackpekarens innehåll före instruktionerna är $3000. Stackens utseende efter
instruktionerna blir då:

Adress Innehåll SP
före

SP
efter

3000 ◄
2FFF D.lsb
2FFE D.msb
2FFD X.lsb
2FFC X.msb ◄
2FFB

Antag vidare att D och X nu används för beräkningar och att vi därefter åter igen behöver de initiala värdena. Vi ser
att SP nu pekar på den sist lagrade byten. För att återföra de ursprungliga värdena till D och X utan att påverka
stacken kan vi nu använda:

 LDD 2,SP
 LDX 0,SP
 Då beräkningarna är slutförda kan vi välja mellan att antingen återställa såväl de initiala värdena till D och X samt
stackpekaren med:

 LDX 2,SP+
 LDD 2,SP+
eller, om vi inte vill modifiera D,X utan bara återställa stackpekaren:

 LEAS 4,SP

Parametrar överförda via stacken

Det mest generella sättet att överföra parametrar är via stacken. Metoden har fördelen att antalet
parametrar inte är beroende av antalet register i processorn. Ett subrutinanrop föregås då av ett
antal instruktioner som placerar parametrarna på stacken. Efter subrutinanropet måste stacken
återställas. I subrutinen refereras parametrarna via den offset de får i förhållande till
stackpekaren.

Exempel Parametrar via stack

Antag deklarationer:

int la,lb,lc;
Antag vidare att listan av parametrar som skickas till en subrutin behandlas från höger till vänster. Då kan
funktionsanropet

 dummyfunc(la,lb,lc);
översättas till:

 LDD lc
 PSHD (alternativt STD 2,-SP)
 LDD lb
 PSHD
 LDD la
 PSHD
 BSR dummyfunc
 LEAS 6,SP

UTKAST 6/3 2013- Maskinnära programmering för HC12

41

Då vi kodar subrutinen dummyfunc vet vi nu dess parametrar är åtkomliga via stacken enligt följande.

Innehåll Kommentar Adressering via SP i subrutinen
lc.lsb Parameter lc

6,SP lc.msb
lb.lsb Parameter lb

4,SP lb.msb
la.lsb Parameter la

2,SP la.msb
PC.lsb Återhoppsadress,

placeras här vid BSR 0,SP PC.msb
Parametrarna kan nu refereras enligt följande:

dummyfunc:
 . .
 LDD 2,SP parameter la till register D
 . .
 LDD 4,SP parameter lb till register D
 . .
 LDD 6,SP parameter lc till register D

Parametrar i programkod (In Line)

Ett annat sätt att överföra parametrar är direkt i koden. Metoden förutsätter då att parametrarna är
konstanta. Metoden är ovanlig men förekommer exempelvis vid implementering av så kallade
”systemanrop”.

Exempel

“In line” parameteröverföring, värdet 10 ska överföras till en subrutin:

 BSR dummyfunc
 FCB 10
 NOP
I dummyfunc måste nu återhoppsadressen (på stacken) modifieras. Annars kommer konstanten 10 att tolkas som en
instruktion omedelbart efter återhoppet. Följande instruktionssekvens illustrerar, dels hur parametern tas fram och
dels justering av återhoppsadress:

dummyfunc:
 LDAB [0,SP] parameter->B
 LDX 0,SP återhoppsadress->X
 INX modifiera ..
 STX 0,SP .. tillbaks till stack
 . . .
 . . .
 . . .
 RTS

Positionsoberoende kod

Med positionsoberoende kod menar man maskinkod som fungerar korrekt oberoende av var den
placeras i primärminnet. Låt oss belysa detta med följande rader assemblerkod och den
maskinkod som assemblatorn skapar av instruktionssekvenserna:

 ORG $1000
main:
 NOP
 JMP main

Genererad kod:
A7 06 10 00
Den absoluta adressen till symbolen
main är kodad i instruktionen.

Maskinorienterad programmering, UTKAST 6/3 2013

42

Programkoden är inte positionsoberoende ty maskinkoden kan inte flyttas (relokeras) i
primärminnet och fortfarande fungera korrekt om inte den absoluta adressen $1000 samtidigt
modifieras i koden.

Betrakta nu följande kod i stället, observera att funktionen är identisk med föregåend sekvens:

 ORG $1000
main:
 NOP
 BRA main

Programkoden är positionsoberoende ty maskinkoden kan flyttas i primärminnet och programmet
kommer fortfarande att fungera som avsett.

Egenskaperna hos positionsoberoende kod kan speciellt utnyttjas av operativsystem, eftersom ett
positionsoberoende program kan flyttas utan att koden kräver modifiering kan operativsystemet
bättre utnyttja datorsystemets primärminne.

Genererad kod:
A7 20 FD
Adressen till main anges som en offset till
programräknaren (FD=-3, PC-relativ)

UTKAST 6/3 2013- Maskinnära programmering för HC12

43

Undantagshantering hos CPU12
Med ”undantag” (exception) menar vi speciella händelser som föranleder avbrott i sekventiellt
utförande av instruktioner. Sådana händelser kan vara någon form av extern styrning (RESET,
IRQ eller XIRQ, dvs. avbrott) men de kan också föranledas av något internt fel som uppstår
under instruktionsexekvering.

Extern styrning av CPU12, reset respektive avbrott

Processorns tillstånd
Processorn befinner sig alltid i något av tillstånden:

 Normal, processorn hämtar och utför instruktioner, dvs. normal exekvering.

 Exception, något “undantag” har inträffat som gör att processorn inte kan (eller ska) fortsätta
normal exekvering.

Figur: Processorns olika tillstånd

Vi använder begreppet ”undantagshantering” (exception handling) för alla sorters händelser som
tar processorn ut ur tillståndet “Normal”. Dessa händelser kan delas in i tre olika grupper: se även
figur.

 RESET MPU, händelser som alltid föranleder återstart (RESET) av processorn.

 AVBROTT, externa händelser, dvs. utanför processorn, detta kan alltså vara enheter på samma
krets som processorn (sammanbyggda periferienheter), det kan ocså vara en speciell insignal
(IRQ eller XIRQ) som aktiveras.

 INTERNA, händelser som uppträder under programexekvering, exempelvis att en otillåten
instruktion avkodas eller den speciella instruktionen SWI.

Olika typer av exceptions

EXCEPTIONNORMAL

EXCEPTION

RESET
MPU

RESET COP CMON

AVBROTT

INTERNA

IOF

POR

INTP IRQ XIRQ

SWI

CPU12

RESET

IRQ

XIRQ

Maskinorienterad programmering, UTKAST 6/3 2013

44

RESET MPU

Det finns fyra olika händelser som föranleder återstart av processorn:

 POR, Power On Reset, vid spänningstillslag

 RESET, insignal till processorn aktiveras.

 COP, Computer Operating Properly. Detta är en så kallad watchdog-funktion som fungerar så
att processorn måste skriva något värde till ett speciellt register med jämna mellanrum. Om
programmet inte klarar av att genomföra detta så återstartas processorn (RESET) automatiskt.
Typiska intervall för sådan uppdatering ligger mellan 15 och 500 ms. Funktionen kan alltså
användas för att återstarta processorn då ett program av någon anledning hänger sig.
Funktionen kan stängas av genom att en speciell bit i ett styrregister nollställs strax efter
återstart.

 CMON, Clock Monitor Reset, är en annan tidsstyrd kontrollfunktion hos. Denna övervakar
klockfrekvensen (E-klockan) och om frekvensen sjunker under 10 kHz genereras RESET.

AVBROTT

Avbrott kan komma från tre olika typer av källor. Exempelvis kan någon av de sammanbyggda
periferienheterna (portar, räknare etc.) generera avbrott. För dessa finns förutbestämda
autovektorer, dvs. vid avbrott från någon specifik enhet hämtar processorn avbrottsvektorn från
en adress som avdelats för just denna enhet. Det finns också en speciell avbrottsingång, IRQ, som
man ansluter till externa periferienheter, detta avbrott har endast en speciell avbrottsvektor.
Ytterligare en typ av avbrottsingång XIRQ kan också anslutas externt. Avbrottet har också en
speciell avbrottsvektor men skiljer sig på viktiga punkter från IRQ. Medan IRQ kan maskeras
(behandlas under avbrottsprioriteter nedan) är XIRQ en form av icke maskerbart avbrott (non-
maskable interrupt).

INTERNA

Undantagshantering kan också föranledas av interna händelser. Om processorn avkodar en
otillåten operationskod kallas detta Illegal Opcode Fetch (IOF). Processorn avbryter då, sparar
registerinnehåll på stacken, läser autovektorn för IOF och utför undantagshantering. Instruktionen
SoftWare Interrupt (SWI) fungerar på samma sätt, men har en annan autovektor och en bestämd
operationskod.

Följande tabeller, Tabell: 1.34 och Tabell 1.35 anger autovektorer hos MC68HCS12. I tabell
Tabell: 1.34 finns de autovektorer som är gemensamma för alla HCS12-varianter. Tabell Tabell
1.35 listar autovektorer för varianten MC9S12DG256. Observera att andra varianter kan ha olika
autovektortabeller.

Adress (hex) Funktion
FFFE RESET, Startvektor
FFFC Clock Monitor Fail
FFFA COP Watchdog Timeout
FFF8 Illegal Op Code (ej impl i simulator)
FFF6 SWI
FFF4 XIRQ
FFF2 IRQ

FF00-FFF0 Enhetsspecifika vektorer, skiljer sig något
beroende på de olika varianterna

Tabell: 1.34 MC68HCS12, gemensamma autovektorer

UTKAST 6/3 2013- Maskinnära programmering för HC12

45

Adress
(hex)

Funktion

FFF0 Real Time Interrupt
FFEE Enhanced Capture Timer channel
FFEC Enhanced Capture Timer channel 1
FFEA Enhanced Capture Timer channel 2
FFE8 Enhanced Capture Timer channel 3
FFE6 Enhanced Capture Timer channel 4
FFE4 Enhanced Capture Timer channel 5
FFE2 Enhanced Capture Timer channel 6
FFE0 Enhanced Capture Timer channel 7
FFDE Enhanced Capture Timer overflow
FFDC Pulse accumulator A overflow
FFDA Pulse accumulator input edge
FFD8 SPI0
FFD6 SCI0
FFD4 SCI1
FFD2 ATD0
FFD0 ATD1
FFCE Port J
FFCC Port H
FFCA Modulus Down Counter underflow
FFC8 Pulse Accumulator B Overflow
FFC6 PLL lock
FFC4 CRG Self Clock Mode
FFC2 Används ej (BDLC)
FFC0 IIC Bus
FFBE SPI1
FFBC Reserverad
FFBA EEPROM I-Bit
FFB8 FLASH I-Bit
FFB6 CAN0 wake-up
FFB4 CAN0 errors
FFB2 CAN0 receive
FFB0 CAN0 transmit
FFAE Används ej (CAN1 wake-up)
FFAC Används ej (CAN1 errors)
FFAA Används ej (CAN1 receive)
FFA8 Används ej (CAN1 transmit)
FFA6 Används ej (ByteFlight Rx FIFO not empty)
FFA4 Används ej (ByteFlight receive)
FFA2 Används ej (ByteFlight general)
FFA0 Används ej (ByteFlight Synchronisation)
FF9E-
FF98

Reserverade

FF96 CAN4 wake-up
FF94 CAN4 errors
FF92 CAN4 receive
FF90 CAN4 transmit
FF8E Port P Interrupt
FF8C PWM Emergency Shutdown
FF8A-
FF80

Reserverade

Tabell 1.35 MC9S12DG128B/256B, autovektorer

Då undantagshantering påbörjas sparas först samtliga registerinnehåll på stacken. Bit I i CCR
sätts till 1 för att förhindra ytterligare ett omedelbart avbrott. Därefter laddas PC med den
autovektorn för den aktuella undantagshanteringen i avbrottsrutinen. Figur nedan visar
processorns flaggregister Condition Code Register (CCR) och figur illustrerar hur
registerinnehållen placerats på stacken inför utförandet av avbrottsrutinen.

Maskinorienterad programmering, UTKAST 6/3 2013

46

Processorns CCR

Bitar H,N,Z,V,C är statusbitar som sätts till 0 eller 1 vid exekvering av olika instruktioner.

S – Har endast betydelse vid utförande av STOP instruktion. Om bit S är 1 behandlas STOP som
en NOP instruktion. Om bit S är 0 och STOP exekveras placeras processorn i stopp-tillstånd, dvs.
alla operationer upphör och återupptas först vid ett IRQ eller XIRQ.

X – Bit X är en speciell typ av avbrottsmask för XIRQ. Bit X är 1 vid RESET och nollställs
vanligtvis av programmet som startas omedelbart efter RESET. Då bit X nollställts kan den inte
ett-ställas igen och XIRQ fungerar då som icke-maskerbart avbrott. XIRQ är verkningslös då bit
X är 1.

I – Avbrottsmask, om bit I är 0 betjänas avbrott IRQ, annars inte.

Stackordning i avbrottsrutin, HCS12

Avbrottsprioriteter
Då flera avbrott uppträder samtidigt avgör avbrottsarbitreringen vilket avbrott som ska betjänas
först. Ordningen kan i någon grad påverkas för de olika processorerna. Detta varierar mellan
olika varianter inom respektive processorfamilj HC11 och HCS12. Generellt gäller dock att
RESET MPU utförs alltid, IOF och SWI, XIRQ betjänas endast om bit X är noll, IRQ betjänas
endast om bit I i CCR är noll.

Instruktioner för undantagshantering
Vid undantag sparas samtliga processorns register på stacken av hårdvaran.

S X H I N Z V C

7 0

CARRY/BORROW

OVERFLOW

ZERO

NEGATIVE

I-INTERRUPT MASK

HALF CARRY

X-INTERRUPT MASK

SP

PCL
PCH
IYL
IYH
IXL
IXH

ACCA
ACCB
CCR

Innehåll i processorns programräknare vid avbrottet, dvs
adressen till nästa instruktion som ska utföras

Innehåll i processorns register (Y,X och D) vid avbrottet

Innehåll i processorns register CCR vid avbrottet

UTKAST 6/3 2013- Maskinnära programmering för HC12

47

HCS12

Mnemonic Funktion Operation
RTI

Återgå från undantagsrutin.

(M(SP))  CCR; (SP) + 1  SP
(M(SP) : M(SP+1))  B : A; (SP) + 2  SP

(M(SP) : M(SP+1))  XH : XL; (SP) + 4  SP
(M(SP) : M(SP+1))  PCH : PCL; (SP) – 2  SP

(M(SP) : M(SP+1))  YH : YL; (SP) + 4  SP
SWI ”Software Interrupt” (SP)-2  SP, RTNH :RTNL  (M(SP) :M(SP+1))

(SP)-2  SP, YH :YL  (M(SP) :M(SP+1))
(SP)-2  SP, XH :XL  (M(SP) :M(SP+1))
(SP)-2  SP, B :A  (M(SP) :M(SP+1))
(SP)-1  SP, CCR  (M(SP) :M(SP+1))

TRAP Icke implementerad
instruktion

(SP)-2  SP, RTNH :RTNL  (M(SP) :M(SP+1))
(SP)-2  SP, YH :YL  (M(SP) :M(SP+1))
(SP)-2  SP, XH :XL  (M(SP) :M(SP+1))
(SP)-2  SP, B :A  (M(SP) :M(SP+1))
(SP)-1  SP, CCR  (M(SP) :M(SP+1))

HCS12X

Mnemonic Funktion Operation
RTI

Återgå från undantagsrutin.

(M(SP) : M(SP+1))  CCRH : CCRL; (SP) + 2  SP
(M(SP) : M(SP+1))  B : A; (SP) + 2  SP
(M(SP) : M(SP+1))  XH : XL; (SP) + 4  SP
(M(SP) : M(SP+1))  PCH : PCL; (SP) – 2  SP

(M(SP) : M(SP+1))  YH : YL; (SP) + 4  SP
SWI ”Software Interrupt” (SP)-2  SP; RTNH :RTNL  (M(SP) :M(SP+1))

(SP)-2  SP; YH :YL  (M(SP) :M(SP+1))
(SP)-2  SP; XH :XL  (M(SP) :M(SP+1))
(SP)-2  SP; B :A  (M(SP) :M(SP+1))

(SP)-2  SP; CCRH :CCR  (M(SP) :M(SP+1))
TRAP Icke implementerad

instruktion
(SP)-2  SP; RTNH :RTNL  (M(SP) :M(SP+1))

(SP)-2  SP; YH :YL  (M(SP) :M(SP+1))
(SP)-2  SP; XH :XL  (M(SP) :M(SP+1))
(SP)-2  SP; B :A  (M(SP) :M(SP+1))

(SP)-2  SP; CCRH :CCR  (M(SP) :M(SP+1))

Maskinorienterad programmering, UTKAST 6/3 2013

48

Exempel 1.45 Placering av Exceptionvektorer, assemblerkod

Följande programskelett illustrerar hur några avbrottsrutiner respektive avbrottsvektorer kan
definieras i en fristående HCS12-applikation.

 ORG $FFF2
 FDB irq_service_routine
 FDB xirq_service_routine
 FDB software_interrupt_service_routine
 FDB illegal_opcode_service_routine
 FDB cop_service_routine
 FDB clock_monitor_fail_service_routine
 FDB Application_Start

; Symbolen “Application_Start_Address” kan vara godtycklig.

 ORG Application_Start_Address

Application_Start:

 LDS #TopOfStack

 ...

 ...

 ANDCC #$FE ; nollställ I-flagga

 JSR _main

 ...

; Avbrottshanterare

irq_service_routine:
 RTI

xirq_service_routine:
 RTI

software_interrupt_service_routine:
 RTI

illegal_opcode_service_routine:
 RTI

cop_service_routine:
 RTI

clock_monitor_fail_service_routine:
 RTI

UTKAST 6/3 2013- Maskinnära programmering för HC12

49

Kombinerad programmering
Programmering i assemblerspråk har fördelar men också stora nackdelar. Det är ett långsamt, och
därmed också kostsamt sätt att programmera. Det färdiga assemblerprogrammet kan dessutom
bara användas till den typ av maskin det skrivits för. Redan under 1950-talet började man
utveckla programspråk som dels skulle göra programmeringsarbetet lättare, dvs språket ska ha
konstruktioner som ligger närmre de algoritmer man vill att datorn ska utföra. och samtidigt
skulle programspråket vara oberoende av den underliggande hårdvaran, dvs då nya datortyper
introducerades skulle äldre programvara snabbt kunna flyttas till dessa bättre maskiner.

Programspråket C skapades av Dennis Ritchie (Bell Laboratories) i början av 1970-talet. Även
om C är ett generellt användbart språk har det traditionellt använts som systemprogramspråk.
Speciellt är operativsystemet UNIX och dess i dag mer bekanta efterföljare LINUX, skrivet i
programspråket C. Den ursprungliga versionen av C blev snabbt populär, skälen till detta var
flera: C tillhandahåller programkonstruktioner som gör det enkelt att implementera algoritmer på
ett effektivt sätt. Alla vanliga datatyper finns representerade såväl som pekare och strängar. Det
finns en rikhaltig uppsättning operatorer och ett "standard I/O" (input/output) bibliotek som
täcker in- och utmatning till filer och terminaler. C-program är "effektiva", C-operatorer och
programflödes-konstruktioner är nära relaterade till instruktioner som tillhandahålls av flertalet
processorer. Ett annat sätt att uttrycka det: Det semantiska gapet mellan C och datorns hårdvara
är litet. C skapade stora möjligheter att skriva portabla program, dvs applikationer som enkelt
kunde kopieras till nya system.

Populariteten hos C innebar dock att områden som inte hade beaktats av Kernighan/Ritchie
blottlades, dvs brister hos språket identifierades och åtgärdades, ofta lokalt. Som en direkt följd
skapades flera olika "dialekter" av språket. Utvecklingen av UNIX System V (AT and T)
respektive Berkeley UNIX accelererade divergensen hos C-dialekterna. 1983 skapades kommite'n
ANSI X3J11 (American National Standards Institute) med målsättning att inrätta en standard för
programspråket C. Den standard som då definierades populärt för ANSI-C, medan den
ursprungliga definitionen av C har kommit att kallas K/R C (Kernighan/Ritchie C).
Standardiseringen av C har därefter tagits upp av ISO (International Standard Organisation) som
därefter kontinuerligt drivit standardiseringen av C.

XCC - korskompilator
XCC är en ANSI-C korskompilator för flera olika typer av mikroprocessorer. Vi beskriver här
speciellt XCC12 för 68HCS12(X). I själva verket består XCC av flera delar: En preprocessor
som hanterar alla preprocessor-direktiv i C, en översättare/kodgenerator som kontrollerar
syntaxen i C-programmet och genererar assemblerkod för 68HC12, en assembler som
assemblerar koden och genererar relokerbar kod i objektfiler och slutligen en länkare som
kombinerar flera olika objektfiler till en, och skapar en laddfil som kan laddas i en 68HC12-
baserad dator eller en simulator. Under detta moment relokeras koden, dvs alla symboliska namn
ersätts med med absoluta adresser i måldatorns minne.

Minnesdisposition
Programkod och data indelas i olika segment, betrakta följande figur som beskriver hur
minnesdispositionen för ett komplett program, under exekvering, kan se ut:

Maskinorienterad programmering, UTKAST 6/3 2013

50

Figur 1.1: Minnesdisposition vid programexekvering

Figur 1.1 förstås bäst mot bakgrund av hur ett program översätts, sparas (eventuellt på en
hårddisk), laddas till primärminnet och exekveras.

prefix

Prefixet, eller som det också kallas, startupsekvens, placeras först i varje C-program. Detta görs
för att programmet alltid ska ha en enkelt identifierad startpunkt. Av konvention använder XCC
segmentnamnet init för startupsekvensen. Den enklaste formen av prefix startupsekvens kan
exempelvis vara:

 SEGMENT init
 LDS #TopOfStack
 JSR _main
Vi känner igen symbolen ”main” som namnet på det huvudprogram som måste finnas i varje C-
program. Vi använder "underscore" framför symbolnamnet för att skilja C-funktionen "main"
från (den översatta) assemblerfunktionen.

programkod

Här placeras all programkod. Den får inte vara självmodifierande, dvs segmentet förutsätts vara
read-only. Kompilatorn gör en "bild" av maskinkod som laddas i minnet. Av konvention kallas
detta segment för text.

konstant data

Deklarationer som exempelvis:

 const int c = 2;

innebär att symbolen c alltid kommer att ha värdet 2 under programmets exekvering. Detta kan
ge kompilatorn värdefull information. Exempelvis kan kontroll utföras, att c inte av misstag
tilldelas andra värden i programmet. Informationen kan också användas för effektivare
kodgenerering med användning av omedelbart (immediate) adresseringssätt. I de fall konstant
data tilldelas minne placeras de av konvention i segmentet rodata.

Run-Time, minnet
existerar endast då

programmet exekveras

Image, skapas av
kompilator/länkare

laddas till minnet
omedelbart före

exekvering

Initial stackpekare

Början för dynamisk
minnesallokering

Programmets startpunkt

stack

heap

icke initierade data
(bss)

initierade data
(data)

programkod

(text)

prefix
(init)

konstant data
(rodata)

UTKAST 6/3 2013- Maskinnära programmering för HC12

51

initierade data

Deklarationer som exempelvis:

int a = 2;

char array[] = {"Detta är en text"};

kan också användas för deklarera och initiera variabler. Innehållet är definierat från start, men
kan komma att ändras under exekvering. Kompilatorn måste göra en "bild" av detta segment för
att dessa initialvärden ska kunna laddas till minnet före exekvering. Eftersom sådana variabler
kan komma att modifieras måste data-segmentet placeras i read/write minne.

Exempel 1.46

Beroende på hur en textsträng deklareras kommer kompilatorn att placera den i olika segment:

Satsen

 printf("Denna text ...");

ger samma resultat på bildskärmen som:

 char reftext[]={"Denna text ..."};

 printf("%s", reftext);

dvs en textsträng skrivs ut.

Kompilatorn betraktar dock textsträngarna på helt olika sätt. I det första fallet är det en konstant sträng, som inte kan
refereras av programmet från någon annan punkt än just i printf-satsen. Eftersom den inte kan refereras med någon
tilldelningssats kan den heller inte ändras, textsträngen är därför read-only, och kan placeras i något av rodata eller
text-segmenten.

I det andra fallet är det omedelbart klart att denna texsträng kan refereras även från andra ställen i programmet, t.ex:

 strcpy(reftext, "Annan text...");

Textsträngen kan därför inte placeras i text segmentet, i stället hamnar den i data segmentet.

icke initierade data

Deklarationer som:

int a;
char array[34];

osv, har inte något definierat innehåll från start. Det behövs alltså ingen "bild" av detta segment,
till skillnad från data/rodata segmenten. Variabler som deklareras på detta sätt hamnar i
segmentet bss.

stack

Stacken används av program under exekvering. Stackpekaren initieras under startupsekvensen.
Stackens storlek bestäms av olika faktorer som hur mycket read/write-minne som finns
tillgängligt i maskinen, hur mycket utrymme som reserverats för ”heap”, samt utrymmet som
upplåtits för variabler (bss).

heap

Heapen benämns ofta det minnesutrymme som reserverats för programmets dynamisk
minneshantering malloc(), free() etc. Även storleken av detta utrymme bestäms som regel
automatiskt. I XCC, exempelvis kommer allt tillgängligt read/write minne utöver bss att
användas för stack och heap vid programmets exekvering.

Låt oss sammanfatta detta. Vid kompilering skapas objektmoduler med följande
information/innehåll:

Maskinorienterad programmering, UTKAST 6/3 2013

52

 ”Read-Only”-sektion innehållande en "bild" av segmenten init, text, data och
rodata.

 Information om storleken av bss-segmentet.

 Symboltabell innehållande alla globala symbolers relativa adresser (offset till segmentets
början) i respektive segment. Observera att alla symboler är relokerbara, dvs absoluta
adresser har ännu ej bestämts.

Vid länkningsproceduren kombineras nu innehållen från alla objektmoduler segmentsvis. Totala
storleken av bss-segmentet bestäms och alla globala symbolers relativa adresser modifieras. Se,
som exempel Figur 1.2.

Figur 1.2: modulerna ”_startup”, ”_m1” och _m2” kombineras till en ny objektmodul

Slutligen, måste alla segment tilldelas absoluta startadresser. Symbolerna kan därefter ges
absoluta adresser och en sista relokering utför innan laddfilen skapas.

I/O-programmering
I detta avsnitt ska vi ge konkreta exempel på hur grundläggande funktioner i en HCS12 kan
programmeras.

Inledningsvis behandlar vi klock-modulen. Vi visar först hur vi programstyrt bestämmer kretsens
busfrekvens, dvs tidbasen i systemet. Vi ger därefter exempel på två olika implementeringar av
en realtidsklocka. Den första implementeringen duger bra för många ändamål och ger en
noggrannhet om c:a 1 ms. Vi visar ytterligare en implementering, med betydligt bättre
noggrannhet, några tiotals nanosekunder.

Vi behandlar parallell in- och utmatning via portar A och B i HCS12, vi diskuterar också hur
detta kan generaliseras att gälla även andra parallellportar hos HCS12.

Vi visar seriell kommunikation med HCS12’s ”SCI”-moduler.

Vi ger också några enkla exempel på pulsbreddsmodulering och A/D omvandling.

Genomgående illustreras programmeringen med implementering i assemblerspråk såväl som i C.
I flera fall illustreras också applikationer med avbrott.

Slutligen ger vi exempel på hur en komplett fristående applikation för HCS12 bör utformas, dvs
hur initiering och start procedur utförs och hur avbrottstabeller tillhandahålls.

text

data

init

bss

text

data
rodata

bss

_startup_m1 _m2
init
text

text

data
data
rodata

bss _m1+_m2

_m1

_m2

_m1
_m2
_m2

_startup

UTKAST 6/3 2013- Maskinnära programmering för HC12

53

Klockmodulen i HCS12
Klockmodulen (CRG, Clock/Reset Generator) tillhandahåller flera funktioner, bland annat:

 PLL (Phase Locked Loop) oscillator för programmerbar busfrekvens.

 ”Watchdog”-funktion, med programmerbar time-out.

 Periodisk avbrottsgenerator (RTI, Real Time Interrupt)

I HCS12-familjen har CRG-modulen vanligtvis basadress $34 men man ska alltid kontrollera vad
som gäller för den specifika variant man använder. Modulens register visas i Figur 1.3. Utrymmet
här medger inte att vi ger detaljerad behandling av samtliga register. För en fullständig
beskrivning hänvisas till fabrikantens dokumentation.

Clock Reset Generator (CRG)

Offset 7 6 5 4 3 2 1 0 Mnemonic Namn

$00
R 0 0

SYN5 SYN4 SYN3 SYN2 SYN1 SYN0 SYNR Synthesizer
Register W

$01
R 0 0 0 0

REFDV3 REFDV2 REFDV1 REFDV0 REFDV Reference Divide
Register W

$02
R 0 0 0 0 0 0 0 0

CTFLG *)Test Flags
Register W

$03
R

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM CRGFLG Flags Register

W

$04
R

RTIE
0 0

LOCKIE
0 0

SCMIE
0

CRGINT Interrupt Enable
Register W

$05
R
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI CLKSEL Clock Select

Register W

$06
R

CME PLLON AUTO AOQ
0

PRE PCE SCME PLLCTL PLL Control
Register W

$07
R 0

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0 RTICTL RTI Control
Register W

$08
R

WCOP RSBCK
0 0 0

CR2 CR1 CR0 COPCTL COP Control
Register W

$09
R 0 0 0 0 0 0 0 0

FORBYP *)Force and Bypass
Test Register W

$0A
R 0 0 0 0 0 0 0 0

CTCTL *)Test Control
Register W

$0B
R 0 0 0 0 0 0 0 0

ARMCOP COP Arm/Timer
Reset W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Anm: Skuggade fält utmärker bitar som ej kan skrivas
*) Registren används endast för fabrikstest av kretsen.

Figur 1.3: Register i CRG-modulen

Kontroll av busfrekvens PLL, SYNR och REFDV

Systemets klocka (busfrekvens) kan väljas mellan PLLCLK och OSCCLK. Sambanden mellan de
olika klockorna beskrivs av följande ekvation:

)1(

)1(
2





REFDV

SYNR
OSCCLKPLLCLK

Genom att ett-ställa biten PLLSEL i register CLKSEL väljs PLLCLK som bas för arbetstakten.
Den effektiva busfrekensen bestäms då av OSCCLK och kvoten mellan SYNR och REFDV. Det
finns dock två viktiga begränsningar i valet av värden hos SYNR och REFDV.

 PLLCLK får aldrig vara mindre än OSCCLK eftersom detta äventyrar stabilitetsvillkoren i
oscillatorn.

 PLLCLK/2 får aldrig vara större än nominella arbetsfrekvensen hos kretsen. För första
generationens HCS12 innebär detta att PLLCLK/2 < 25 MHz.

Maskinorienterad programmering, UTKAST 6/3 2013

54

Exempel 1.47

Antag vi vill maximera arbetstakten hos en HCS12 med 8 MHz kristall. Vi får:

)1(

)1(
8250





REFDV

SYNR
MHzMHz

Den närmsta arbetstakt vi kan skapa är 48 MHz med valen SYNR = 5 och REFDV = 1, vi får då:

MHzMHzMHz 48382
)11(

)15(
82 






För att byta systemklocka ska vi alltså modifiera registren SYNR och REFDV. Därefter sätter vi
biten PLLSEL till 1. Innan vi ändrar denna bit till ett måste vi dock kontrollera att PLL-kretsen
genererar en stabil PLLCLK, vi säger att den då är låst. Detta kontrolleras via biten LOCK i
registret CRGFLG.

Exempel 1.48: Busfrekvens hos HCS12, assemblerspråk

* Adressdefinitioner för register
REFDV EQU $35
SYNR EQU $34
CLKSEL EQU $39
* Bitdefinitioner
PLLSEL EQU $80
LOCK EQU 8

* Registervärden enligt Exempel 1.47
REFDVVal: EQU 1
SYNRVal: EQU 5

* Generisk kod för programmerad arbetstakt...
 MOVB #REFDVVal,REFDV
 MOVB #SYNRVal,SYNR
wait:
 BRCLR CRGFLG,#LOCK,wait ; vänta tills PLL låst...
 BSET CLKSEL,#PLLSEL ; växla systemklocka till PLL.

Exempel 1.49: Busfrekvens hos HCS12, motsvarande i C:

Här är det lämpligt att göra en typdeklaration för CRG-modulen, exempelvis enligt följande:

typedef struct sCRG{
 volatile unsigned char synr;
 volatile unsigned char refdv;
 volatile unsigned char ctflg;
 volatile unsigned char crgflg;
 volatile unsigned char crgint;
 volatile unsigned char clksel;
 volatile unsigned char pllctl;
 volatile unsigned char rtictl;
 volatile unsigned char copctl;
 volatile unsigned char forbyp;
}CRG, *PCRG ;

#define CRG_BASE 0x34 /* Basadress för CRG-modulen */
#define REFDVVal 1 /* Registervärden enligt Exempel 1.47.. */
#define SYNRVal 5

#define PLLSEL 0x80 /* Bitdefinitioner */
#define LOCK 8

UTKAST 6/3 2013- Maskinnära programmering för HC12

55

/* Generisk kod för programmerad arbetstakt... */

 (((PCRG) (CRG_BASE))->refdv) = REFDVVal;
 (((PCRG) (CRG_BASE))->synr) = SYNRVal;
 /* vänta tills PLL låst... */
 while(((((volatile PCRG) (CRG_BASE))->crgflg) & LOCK)== 0);
 /* växla systemklocka till PLL */
 (((PCRG) (CRG_BASE))->clksel) |= PLLSEL;

Observera speciellt sekvensens sista tilldelningssats som valts för att endast påverka biten
PLLSEL och låta övriga bitar i registret vara opåverkade.

Realtidsklockan i CRG-modulen

CRG-modulen innehåller även en RTI- (Real Time Interrupt) funktion med vars hjälp vi enkelt
implementerar en noggrann klocka (realtidsklocka). RTI-funktionen utgörs av en enkel räknare
kopplad till centralenhetens avbrottsingång. Funktionen kontrolleras via tre register: CRGINT för
att kontrollera avbrottsfunktionen, RTICTL för att bestämma avbrottsfrekvensen och CRGFLG
för att kvittera avbrott (jämför Figur 1.3).

CRGINT (basadress + 4)

Registret används för att aktivera avbrott

$04
R

RTIE
0 0

LOCKIE
0 0

SCMIE
0

W

 RTIE: Aktivera avbrott från RTI-funktionen. Denna bit måste sättas till 1 för att avbrott ska
genereras.

 LOCKIE, SCMIE, används ej här.

RTICTL (basadress + 7)

Registret används för att initiera en tidbas för den periodiska räknaren. En skrivning till detta
register aktiverar RTI-funktionen.

$07
R 0

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
W

RTR-bitarna bestämmer avbrottsintervallet från räknaren. Systemets klockfrekvens
(kristalloscillatorns frekvens) delas med ett tal specificerat av RTR-bitarna enligt följande tabell:

RTR
[3:0]

RTR[6:4]

 000
(OFF)

001 010 011 100 101 110 111

0000 OFF 210 211 212 213 214 215 216
0001 OFF 2x210 2x211 2x212 2x213 2x214 2x215 2x216
0010 OFF 3x210 3x211 3x212 3x213 3x214 3x215 3x216
0011 OFF 4x210 4x211 4x212 4x213 4x214 4x215 4x216
0100 OFF 5x210 5x211 5x212 5x213 5x214 5x215 5x216
0101 OFF 6x210 6x211 6x212 6x213 6x214 6x215 6x216
0110 OFF 7x210 7x211 7x212 7x213 7x214 7x215 7x216
0111 OFF 8x210 8x211 8x212 8x213 8x214 8x215 8x216
1000 OFF 9x210 9x211 9x212 9x213 9x214 9x215 9x216
1001 OFF 10x210 10x211 10x212 10x213 10x214 10x215 10x216
1010 OFF 11x210 11x211 11x212 11x213 11x214 11x215 11x216
1011 OFF 12x210 12x211 12x212 12x213 12x214 12x215 12x216
1100 OFF 13x210 13x211 13x212 13x213 13x214 13x215 13x216
1101 OFF 14x210 14x211 14x212 14x213 14x214 14x215 14x216
1110 OFF 15x210 15x211 15x212 15x213 15x214 15x215 15x216
1111 OFF 16x210 16x211 16x212 16x213 16x214 16x215 16x216

Tabell 1.36

Maskinorienterad programmering, UTKAST 6/3 2013

56

Exempel 1.50: Bestämning av avbrottsintervall

Antag vi önskar avbrott med 10 ms intervall och att vår kristallfrekvens är 8 MHz.
Det gäller att:

RTIfreq
RTR

OSCCLK


dvs




2

6

10

1108

RTR

41082  yxRTR där: 1≤x≤16 och 10≤y≤16
Identifiera x = 8 ger:

)10log(2log102 44 yy

29,13
2log

4

2log

10log 4

y

Vi provar oss slutligen fram till det bästa värdet (approximativt 8×104)
8×213 = 65536
9×213 = 73728
10×213 = 81920
Den bästa approximationen har vi för
RTR = 100 1001 = $49, som medför: 10x213 = 81920
Eftersom detta värde är något större än det optimala, kommer vi att få en något längre periodtid, nämligen:
 avbrottsfrekvens = 8×106 / 81920 = 97.656 Hz
vilket ger periodtiden:
 0.01024 s = 10,24 ms.
Klockan kommer alltså att "gå för sakta" som en följd av detta systematiska fel.

CRGFLG (basadress + 3)

Statusregister, alla bitar är läsbara och varje bit representerar någon händelse.

$03
R

RTIF PORF LVRF LOCKIF LOCK SCMIE SCMIF
SCM

W

 RTIF: Biten sätts till 1 vid avbrott från RTI-funktionen. Avbrottsignalen kvitteras genom att
en etta skrivs till RTIF-biten.

 Övriga bitar, används ej här, nollor kan skrivas till dessa bitar utan att påverka någon
funktion.

Då räknaren initierats/aktiverats, kommer den att räkna ned ett intervall och därefter begära
avbrott, räknarvärdet initieras därefter på nytt automatiskt av kretsen och ett nytt intervall
påbörjas. Avbrottet måste kvitteras för att återställa IRQ-signalen till en passiv nivå, detta görs i
avbrottsrutinen. I följande exempel illustraras hur en enkel realtidsklocka implementeras i ett
HCS12 system.

UTKAST 6/3 2013- Maskinnära programmering för HC12

57

Exempel 1.51: Implementering av realtidsklocka med HCS12

I detta exempel visas en mycket enkel implementering av en realtidsklocka. Om det använda
systemet är försett med en 8 MHz kristall så kommer avbrott att genereras med 10,24 ms
intervall. Vi implementerar först med HCS12 assemblerspråk
* Adressdefinitioner
CRGFLG EQU $37
CRGINT EQU $38
RTICTL EQU $3B

 SEGMENT text
timer_init:

* Initiera RTC avbrottsfrekvens (se Exempel 1.50)
 MOVB #$49,RTICTL ; För MC12/8MHz
* Anmärkning ang. avbrottsfrekvens.
* Om programexemplet används i simulatorn kommer denna
* perioden att bli mycket lång. Det kan vara bättre att
* använda kortast tänkbara intervall för tester i simulatorn
* MOVB #$10,RTICTL ; För simulator

* Aktivera avbrott från CRG-modul
 MOVB #$80,CRGINT

* Avbrottsvektor
 LDX #timer_interrupt
* För laborationssystem ‘MC12’ med ‘DBG12’
 STX $3FF0
* För simulator (ETERM och XCC)
 STX $FFF0

* nollställ CPU’ns I-flagga (tillåt avbrott)
 CLI
 RTS
*
* Avbrottsrutin
* Normalt sett ska vi här underhålla en mjukvaruklocka
* men i detta exempel gör vi minsta möjliga...

timer_interrupt:
* Kvittera avbrott från RTC
 BSET CRGFLG,#$80
 RTI

Implementering av samma realtidsklocka, i ’C’

void timer_init(void)
{ /* RTC avbrottsfrekvens ...*/
 (((PCRG) (CRG_BASE))->rtictl) = 0x49;
 /* Avbrottsvektor för laborationssystem ‘MC12’ med ‘DBG12’ */
 *(unsigned short *) 0x3FF0 = (unsigned short) timer_interrupt;
 /* Avbrottsvektor för simulator */
 *(unsigned short *) 0xFFF0 = (unsigned short) timer_interrupt;
 /* Aktivera avbrott från CRG-modul */
 (((PCRG) (CRG_BASE))->crgint) = 0x80;
 __asm(" CLI"); /* nollställ CPU’ns I-flagga (tillåt avbrott) */
}

__interrupt void timer_interrupt(void)
{ // Kvittera avbrott från RTC
 (((PCRG) (CRG_BASE))->crgflg) |= 0x80;
}

Maskinorienterad programmering, UTKAST 6/3 2013

58

Observera dock att varje enhet i ‘clock’ motsvarar 10,24 ms. För att få en exakt klocka måste
alltså även dennatid korrigeras med jämna mellanrum.

Parallell kommunikation via portar A ocb B
Funktionen hos merparten av de fysiska anslutningarna (pinnarna) hos en HCS12 är
programmerbar. Exempel på det är portar A och B. Betrakta Figur 1.4, som är tagen från
blockbeskrivningen av en DG256. Figuren illustrerar hur de 16 anslutningarna, som går under
namnen Port A resp Port B, kan användas på tre olika sätt.

1. Multiplexed Wide Bus – 16 bitars extern adressbuss och 16 bitars databus.

2. Multiplexed Narrow Bus – 16 bitars extern adressbuss och 8 bitars databus

3. Single chip – Ingen extern bus. Port A och Port B kan användas som generella IO-portar.

Figur 1.4: Alternativ användning av PA/PB

Vi tittar nu på hur vi kan använda dessa portar i ”Single Chip”-mode. Se Figur 1.5 som visar de
första registren i MEBI-modulen. PORTA och PORTB är två identiska 8-bitars portar. Riktningen
(in eller ut) kan för varje bit väljas oberoende av de övriga bitarna. Detta görs genom initiering av
Data Direction Register A (DDRA) respektive Data Direction Register B (DDRB). MEBI-modulen
har vanligtvis basadressen 0 i alla HCS12-system.

Multiplexed External Bus Interface (MEBI)

Offset 7 6 5 4 3 2 1 0 Mnemonic

$00
R

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 PORTA
W

$01
R

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 PORTB
W

$02
R 1=OUT

0=IN
1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN DDRA

W

$03
R 1=OUT

0=IN
1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

1=OUT
0=IN

DDRB
W

$04
R

.........
W

Figur 1.5: Register för Port A/B som generell IO

UTKAST 6/3 2013- Maskinnära programmering för HC12

59

DDRA bestämmer riktning för varje bit i PORTA. ”1” i DDRA innebär att motsvarande bit i PORTA
fungerar som en utport. ”0” i DDRA innebär att motsvarande bit fungerar som en inport.
En läsning från PORTA kommer att returnera den logiska nivån för en ports pinne om biten är en
inport, annars returneras det senaste värde som skrevs till biten. PORTB och DDRB fungerar på
identiskt sätt.
Exempel 1.52

Ange i såväl assemblerspråk som C, programkonstruktioner som initierar port A för användning
som inport samt port B för användning som utport.
Lösning:
PORTA EQU 0
PORTB EQU 1
DDRA EQU 2
DDRB EQU 3
 ...
 CLR DDRA
 MOVB #$FF,DDRB
 ...

typedef struct sMEBI{
 volatile unsigned char porta;
 volatile unsigned char portb;
 volatile unsigned char ddra;
 volatile unsigned char ddrb;
}MEBI, *PMEBI;

#define MEBI_BASE 0

(((PMEBI)(MEBI_BASE))-> ddra) = 0;
(((PMEBI)(MEBI_BASE))-> ddrb) = 0xFF;

Seriell kommunikation via SCI
SCI-modulen är konstruerad för olika serieprotokoll som punkt-till-punkt, exempelvis RS232, och
buss-protokoll som exempelvis Local Interconection Network (LIN). SCI-modulens
registeruppsättning visas i Figur 1.6.

Serial Communication Interface (SCI)

Offset 7 6 5 4 3 2 1 0 Mnemonic Namn

$00
R 0 0 0

SBR12 SBR11 SBR10 SBR9 SBR8 SCIBDH Baud Rate
Register High W

$01
R

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 SCIBDL Baud Rate
Register Low W

$02
R

LOOPS SCISWAI RSRC M WAKE ILT PE PT SCICR1 Control Register
1 W

$03
R

TIE TCIE RIE ILIE TE RE RWU SBK SCICR2 Control Register
2 W

$04
R TDRE TC RDRF IDLE OR NF FE PF

SCISR1 Status Register 1W

$05
R 0 0 0 0 0

BRK13 TXDIR
RAF

SCISR2 Status Register 2W

$06
R R8

T8
0 0 0 0 0 0

SCIDRH Data Register
High W

$07
R R7 R6 R5 R4 R3 R2 R1 R0

SCIDRL Data Register
Low W T7 T6 T5 T4 T3 T2 T1 T0

Figur 1.6: SCI Register

Maskinorienterad programmering, UTKAST 6/3 2013

60

Dataöverföringen sker via SCIDRH och SCIDRL. SCIDRH används endast vid 9 bitars
dataöverföring. Observera att tecken kan skickas och tas emot samtidigt (full duplex) eftersom det
finns separata register (T, transmitter och R, receiver).

Innehållen i SCIBDH och SCIBDL används för att bestämma överföringshastigheten, baud rate,
som beräknas enligt följande:

BR

PLLCLK
baudrate




16

där: BR är innehållet i SCIBDH-SCIBDL (1-8191).
Vi kan också skriva sambandet som:

baudrate

PLLCLK
BR




16

vilket ger oss ett enkelt samband för att bestämma initieringsvärden till SCIBDH/SCIBDL för
någon önskad baudrate.

Exempel 1.53

Bestäm initieringsvärden BR för olika baudrates, 9 600, 57 600 och 256 kbaud i ett HCS12-
system med 48 MHz systemklocka.

Lösning:

Vi använder samband enligt ovan och sammanställer resultaten i följande tabell:

9 600
5,312

960016

1048 6





 9615
31216

1048 6





, 9585
31316

1048 6





57 600
08333,52

5760016

1048 6





 57692
5216

1048 6





256 000
71875,11

25600016

1048 6





 250000
1216

1048 6





Det framgår omedelbart att vi inte kan besämma BR för en exakt överensstämmelse. Vi ser att vi
tvingas använda 9615 (eller 9585) i stället för 9600 vilket vanligtvis fungerar eftersom det finns
vissa toleranser i samplingen.

Låt oss nu studera SCI-modulen genom att bygga upp några typiska användarfall. Utgående från
Figur 1.6 deklarerar vi först en lämplig datatyp för modulen:

typedef struct sSCI{
 volatile unsigned short scibd;
 volatile unsigned char scicr1;
 volatile unsigned char scicr2;
 volatile unsigned char scisr1;
 volatile unsigned char scisr2;
 volatile unsigned char scidrh;
 volatile unsigned char scidrl;
}SCI, *PSCI;

RS232 kommunikation, 9600 baud, 8 bitar data, ingen paritet, utan avbrott

Betrakta kontrollregister 2, bitar 7-4 används enbart då vi vill använda avbrott. I detta fall ska
därför dessa bitar vara 0.

UTKAST 6/3 2013- Maskinnära programmering för HC12

61

Offset 7 6 5 4 3 2 1 0 Mnemonic Namn

$03
R

TIE TCIE RIE ILIE TE RE RWU SBK SCICR2 Control
Register 2 W

Biten RWU används då vi utnyttjar energibesparande moder och SBK (Send BreaK character) har
speciell funktion som vi återkommer till senare. Bitar TE och RE har vi dock användning för.
Deras respektive funktion är:

Bit 3
TE

Transmitter Enable Bit — TE aktiverar SCI’ns sändare och konfigurerar pinnen TXD så att den
kontrolleras av SCI’n.
0 Transmitter inaktiv
1 Transmitter aktiv

Bit 2
RE

Receiver Enable Bit — RE aktiverar SCI’ns mottagare.
0 Receiver inaktiv
1 Receiver aktiv

Av funktionsbeskrivningen drar man slutsatsen att SCI’n kan användas som enbart sändare, som
sändare/mottagare, dock ej som enbart mottagare.

Vi finner att i detta fall ska bitar TE och RE sättas till 1 medan övriga bitar ska vara 0.

 (((PSCI)(SCI_BASE))->scicr2) = 0x0C;

Vi använder baudrate-beräkningar från Exempel 1.53 vilket ger oss följande initiering av
baudrate registren:

(((PSCI)(SCI_BASE))->scibd) = 312;

Låt oss nu titta närmre på statusregister 1.

$04
R TDRE TC RDRF IDLE OR NF FE PF

SCISR1 Status Register 1W

Följande tabell beskriver kortfattat statusbitarnas betydelse:

Bit Beskrivning

7
TDRE

Transmit Data Register Empty Flag — Då TDRE är satt till 1 kan ett nytt tecken skrivas till SCIDR(T).
Biten nollställs av att SCISR1 läses och SCIDRL skrivs, i denna ordning. Då tecknet skiftats ut från
SCIDRL sätter SCI TDRE till 1 igen.
0 SCIDRL(T) upptaget
1 SCIDRL(T) ledigt

6
TC

Transmit Complete Flag — TC nollställs då en sändning påbörjas och är noll så länge sändningen
pågår.
0 Sändning pågår
1 Ingen sändning pågår

RDR
F

Receive Data Register Full Flag — RDRF sätts till 1 då ett nytt tecken finns i SCIDRL. Flaggan nollställs
av att SCISR1 läses och SCIDRL läses, i denna ordning.
0 Inget nytt tecken
1 Nytt tecken

4
IDLE

Idle Line Flag — IDLE sätts till 1 då 10 konsekutiva logiska ettor (om M=0) eller 11 konsekutiva logiska
ettor (om M=1) mottagits. Funktionen används i buss-konfigurationer för att detektera ”ledig buss”.
0 Mottagaren är aktiv
1 Mottagaren är inaktiv, bussen är ledig

3
OR

Overrun Flag — OR sätts till 1 om ett nytt tecken anländer till SCIDRL(R) innan det tidigare tecknet lasts.
Nollställs igen då SCISR1 läses.
0 Inget förlorat tecken
1 Förlorat tecken

2
NF

Noise Flag — NF sätts till 1 om störande brus förekommer på mottagarens ingång. Nollställs igen då
SCISR1 läses.
0 Ingen störning
1 Störande brus

1 Framing Error Flag — FE sätts till 1 då en stoppbit läses som en logisk nolla. Nollställs igen då SCISR1

Maskinorienterad programmering, UTKAST 6/3 2013

62

FE läses. Observera att inget nytt tecken kan mottas innan FE nollställs. Typiskt inträffar detta fel om
sändare/mottagare arbetar med olika baudrate.
0 Inget ramfel
1 Ramfel

0
PF

Parity Error Flag — PF sätts till 1 då ett paritetsfel upptäcks och PE samtidigt är 1. Nollställs igen då
SCISR1 och SCIDRL läses efter varandra.
0 Inget paritetsfel
1 Paritetsfel

För att kunna sända ett tecken måste SCIDRL(T) vara tomt, annars förstör vi ett tidigare försök
att skicka ett tecken. Följande programkonstruktion utför en upprepad statustest:

while(((((PSCI) (SCI_BASE))->scisr1) & 0x80)== 0);

den är ekvivalent med följande sekvens instruktioner:

_1:
 LDAB SCISR1
 ANDB #$80
 BEQ _1

Dvs. programmet ”hänger” till TDRE blir 1 och SCIDRL(T) är redo för ett nytt tecken

På motsvarande sätt indikerar RDRF att SCIDRL(R) innehåller ett nytt tecken som anlänt på
seriegränssnittet. Statustesten blir den samma fast en annan bit testas:

while(((((PSCI) (SCI_BASE))->scisr1) & 0x20)== 0);

Vi kan nu sätta samman en uppsättning funktioner enligt följande:

 void serial_init(void); /* initiera gränssnittet */

 void serial_out(char c); /* skicka ett tecken via gränssnittet */

 char serial_in(void); /* ta mot ett tecken från gränssnittet */

Implementeringen, ”busy wait” av dessa följer här:

Exempel 1.54: RS232 kommunikation, “busy-wait”, i C

Vi förutsätter att SCI_BASE (basadress till SCI-modulen) är definierad.

void serial_init(void)
{
 (((PSCI)(SCI_BASE))->scicr2) = 0x0C;
 (((PSCI)(SCI_BASE))->scibd) = 312;
}

void serial_out(char c)
{

while(((((PSCI) (SCI_BASE))->scisr1) & 0x80)== 0);
(((PSCI) (SCI_BASE))->scidrl) = c;

}

char serial_in(void)
{

while(((((PSCI) (SCI_BASE))->scisr1) & 0x20)== 0);
 return (((PSCI) (SCI_BASE))->scidrl);
}

UTKAST 6/3 2013- Maskinnära programmering för HC12

63

Exempel 1.55: RS232 kommunikation, “busy-wait”, i HC12 assemblerspråk

Vi förutsätter här att SCI (basadressen till SCI-modulen) är definierad.

SCIBD EQU SCI
SCICR1 EQU SCI+2
SCICR2 EQU SCI+3
SCISR1 EQU SCI+4
SCISR2 EQU SCI+5
SCIDRH EQU SCI+6
SCIDRL EQU SCI+7

 SEGMENT text
 EXPORT _serial_init

EXPORT _serial_in
 EXPORT _serial_out

_serial_init:
 LDAB #$0C
 STAB SCICR2
 LDD #312
 STD SCIBD
 RTS

_serial_out:
 BRCLR SCISR1,#0x80,_serial_out
 LDAB 2,SP
 STAB SCIBD
 RTS

_serial_in:
 BRCLR SCISR1,#0x20,_serial_in
 LDAB SCIBD
 RTS

Vi har nu en uppsättning funktioner som hanterar seriekommunikation i dess enklaste form. Det
finns dock flera kompletteringar man kan göra för att öka robusthet och användbarhet av
funkktionerna. Vi kan exempelvis lägga till felkontroll i mottagarrutinen så att inte felaktiga
tecken returneras, det skulle kunna se ut på följande sätt:

char serial_in_errorcheck(void)
{
 char c;
 while(1)
 {

while(((((PSCI) (SCI_BASE))->scisr1) & 0x20)== 0);
 c = (((PSCI) (SCI_BASE))->scidrl); /* Läs tecken */

if(((((PSCI)(SCI_BASE))->scisr1) & 0xF)==0)
{ /* allt är Ok, returnera tecknet */

 return (((PSCI) (SCI_BASE))->scidrl);
 }

/* Felaktigt tecken, kassera och vänta på nytt... */
}

}

”Busy-wait” strategin är tilltalande i sin enkelhet men är inte alltid användbar i praktiken. En
variant är då att använda ”Polling” (rundfrågning). Vi kan utöka vår uppsättning med två
funktioner vars uppgift blir att undersöka status hos SCI’n men inte bli ”hängande” i någon
vänteslinga. Ett gränssnitt bestående av fem funktioner skulle då kunna implementeras av
följande:

Maskinorienterad programmering, UTKAST 6/3 2013

64

 void serial_init(void); /* initiera gränssnittet */
 int check_serial_out(void); /* kontrollera om tecken kan skickas */
 void serial_out(char c); /* skicka ett tecken via gränssnittet */
 int check_serial_in(void); /* kontrollera om tecken finns */
 char serial_in(void); /* ta mot ett tecken från gränssnittet */

Exempel 1.56: RS232 kommunikation, “polling”, i C

Vi förutsätter att SCI_BASE (basadress till SCI-modulen) är definierad.

void serial_init(void)
{
 (((PSCI)(SCI_BASE))->scicr2) = 0x0C;
 (((PSCI)(SCI_BASE))->scibd) = 312;
}

int check_serial_out(void)
{
 /* returnera 1, om sändaren ledig,returnera 0 annars */

return(((((PSCI) (SCI_BASE))->scisr1) & 0x80)!= 0);

}

void serial_out(char c)
{

 (((PSCI) (SCI_BASE))->scidrl) = c;
}

int check_serial_in(void)
{
 /* returnera 1, om tecken finns hos mottagaren,

returnera 0 annars */
return(((((PSCI) (SCI_BASE))->scisr1) & 0x20)!= 0);

}

char serial_in(void)
{
 return (((PSCI) (SCI_BASE))->scidrl);
}

