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Kap 1. Inledning 

Människan anses av naturen vara lat och, om man drar slutsatser av den tekniska utveck-

lingen, så söker hon i alla fall att finna lösningar som befriar henne från tunga, tråkiga och 

monotona arbetsuppgifter. Verksamheter runt omkring oss automatiseras i allt högre grad 

och förutsättningen för detta är möjligheten att styra all den utrustning som skall göra 

arbetet för oss. Det är här styrtekniken med PLC-styrningar kommer in, det kunskaps-

område som behandlar tekniken att styra de mer eller mindre komplicerade tekniska 

processer vi har skapat runt omkring oss. 

Det första man tänker på i sammanhanget är kanske automatiserade tillverkningsprocesser 

som t ex hopsättning av en bilkaross i Volvos karosseriverkstad. Där finns utgångs-

materialet i form av pressade plåtsjok. Där finns fixturer som placerar de olika plåtsjoken i 

rätt läge i förhållande till varandra. Där finns svetsutrustning som fogar samman de olika 

delarna till en hel kaross. För att sedan få denna tillverkningsprocess att löpa krävs en 

styrning. Ett styrsystem beordrar hanteringsutrustning att lägga in plåtar i fixturen, kollar 

via närvarogivare att plåtarna ligger rätt innan det beordrar robotarnas svetstänger att lägga 

punktsvetsar på önskade ställen m.m. Det sammanlagda antalet in - och utgångar hos det 

styrsystem som styr denna del av hopsättningen är fler tusen stycken. Utgångar är 

beordringssignalvägar från styrsystem till processen och ingångar är kvittenssignalvägar 

från process till styrsystem. 

Men inte bara industriella tillverkningsprocesser använder sig av PLC-teknik för att styra 

och reglera. Fastigheters värme- och ventilationssystem styrs idag av PLC-system liksom 

infrastrukturanläggningar som vattendistribution med tryck- och flödesregleringar av olika 

pumpstationer i nätet liksom vägtunnlar med styrning av fläktar, belysning och trafik-

övervakning. Dessa anläggningar tar normalt upp stora geografiska områden, ett fastighets-

bolag har fastigheter på många ställen i stan och vattenledningsnätet täcker hela kommuner, 

vilket gör behovet stort av att kommunicera information mellan de utspridda styrsystemen 

och operatörsstationer placerade i centralt kontor. 

Denna första del av kompendiet vill ge en grund för att lösa PLC-styrning av automa-

tiserade förlopp och att bringa struktur i dessa lösningar. Förkunskaper som krävs för att 

tillgodogöra sig materialet är grundläggande logik och även grunden i reglerteknik i den del 

som berör PID-regulatorn. PLC-tekniken baseras idag på en programmeringsstandard, IEC 

61131-3 och de första kapitlen baseras helt på denna standard. Det finns dock en uppsjö av 

PLC-fabrikat på marknaden och alla har sin programutvecklingsmiljö där de flesta stödjer 

sig på standarden men har också en del fabrikatsspecifika funktioner utöver standarden. I 

denna skrift är Mitsubishis PLC-system och deras utvecklingsmiljö GX IEC Developer det 

system och den utvecklingsmiljö som använts som ”referenssystem” dvs som miljö för 

programexempel och för exemplifiering av hur fabrikanternas egna funktioner kan komp-

lettera standarden. Standarden kom till efter att PLC:er funnits på marknaden i 20-talet år 

och då är det inte lätt att enas om en heltäckande standard som alla tillverkare är beredda att 

anamma fullt ut.  
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Kap 2. Funktionsbeskrivningar 

Inför utveckling och konstruktion av en maskin eller process är funktionsbeskrivningen 

som underlag för styrningen av maskinen eller processen en viktig del där många aktörer är 

inblandade. Vid upphandling av utvecklings- och konstruktionstjänster ställs en krav-

specifikation upp där det är mycket viktigt att vara tydlig vid kravformuleringen. En viktig 

del i denna kravspecifikation är att funktionsbeskrivningen är entydig, att beställaren på ett 

otvetydigt sätt för utföraren kan redogöra för det önskade beteendet hos den önskade 

produkten, för att därmed undvika missuppfattningar, extraarbete och framtida tvister. Ju 

tidigare en svaghet eller ett fel upptäcks i en utvecklingsprocess desto billigare är det att 

åtgärda. Om man exempelvis i funktionsbeskrivningen för styrningen av en produktions-

anläggning för ”gosenallebjörnar” har med fastnästning av nallebjörnens vänstra öra men 

missar proceduren att slutligen sy fast det med en rejäl söm. Om detta upptäcks vid igång-

körning av anläggningen kommer detta att förorsaka en del kostnader i form av ändrat 

processflöde, ändring av programvara, ändring av produktionsutrustning och försenad 

produktionsstart. Ännu värre är om det inte upptäcks i det steget heller utan ett antal tusen 

nallebjörnar har hunnit ut på marknaden och ett barn har bitit loss ett öra och kanske satt i 

halsen med följd stora tidningsrubriker och förlorad varumärkesstatus och därmed stora 

ekonomiska verkningar. Viktigt är alltså att kravspecifikationer och i dessa ingående 

funktionsbeskrivningar blir riktiga från början.  

För att en funktionsbeskrivning skall bli bra och uppfylla sitt syfte krävs det att sättet att 

beskriva funktionen på är sådant att alla parter som har kunskap, som är relevanta för att nå 

rätt funktion, också skall förstå beskrivningssättet av funktionen lika väl som att de som 

skall realisera funktionsbeskrivningen i form av t ex utrustning och styrprogram skall 

uppfatta funktionsbeskrivningen rätt dvs förstå beskrivningssättet och inte riskera miss-

tolkningar p g a beskrivningssättet.  

Kravet på en funktionsbeskrivning för styrning av en process är således att: 

- Den kan förstås av alla personalkategorier som är involverade i processens styrning 

såsom driftpersonal, underhållspersonal, projektansvariga, styrsystemprogrammerare, 

konstruktörer. 

- Den utgör ett entydigt och utrustningsneutralt underlag för utformning och program-

mering av styrutrustningen. 

- Den skall kunna användas och återkopplas till vid projektering, konstruktion, program-

mering, igångkörning, felsökning och underhåll av processen. 

- Den utgör ett underlag för anläggningens dokumentation.  

Här följer några sätt att beskriva funktioner hos en processtyrning med huvudvikten lagd på 

funktionsdiagrammet i avsnitt 2.4. 

 

 Verbal funktionsbeskrivning 

Det mest naturliga sättet för gemene man är att beskriva en funktion i verbal form. För 

enklare och mer övergripande beskrivningar kan ofta den verbala formen bli mest 
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överskådlig för alla inblandade parter. Övergripande beskrivningar kan vara säkerhets-

funktioner såsom nödstopp och skyddsutrustnings interagerande med styrningen, 

underhållsfunktioner såsom drifttidsövervakningar för olika processkomponenter m m. 

Dessa övergripande funktioner måste naturligtvis noggrant integreras i styrprogrammet men 

kan ofta med fördel separeras ifrån beskrivningen av den grundläggande funktionen hos 

processen. En verbal beskrivning kan med fördel kompletteras med figurer för bättre 

förståelse. 

Att använda verbal beskrivning för att funktionsbeskriva komplexa styrförlopp är inte att 

rekommendera då beskrivningen blir ordrik, svårläst och också svår att få entydig och 

korrekt. 

:Verbal beskrivning av beteendet hos en markis.  

 

 

Figur 2.1: Markis över uteplats. 

 

Markisen bestyckas med givare och manöverdon enligt  

Figur 2.2 nedan.  

Bestyckning: 

MAN/AUTO: Vred för val av manuell / automatisk markismanövrering.                     

IN / UT: Tryckknapp för manuell körning in / ut.   

YTTRE/MITT/INRE: Givare som känner av yttre / mittre / inre läge hos markis.   

SOL:  Givare som känner av solintensitet – omslag inställbart. 

VIND  Givare som känner av vindstyrka – omslag inställbart. 

MOTOR: Motor för ut- och inkörning av markisen.                      
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Figur 2.2: Givare och manöverdon för styrautomatik till markis. 

 

Funktion: 

1. Med omkopplare väljs MAN/AUT – manuell/automatisk manövrering. 

2. I MAN-läge körs markisen in /ut med tryckknappar IN / UT. Påverkad tryckknapp 

innebär körning av markis. 

3. I AUT-läge styrs markisen enligt pkt 4-7. 

4. Om solintensitet hög och vindstyrka låg kör markis till yttre läge.  

5. Om solintensitet hög och vindstyrka hög kör markis till mittläge.  

6. Om solintensitet låg och oavsett vindstyrka kör markis till inre läge.  

7. Om markis står stilla och ändå inget av inre / mitt / yttre gränsläge är påverkat kör inåt. 

Vi stannar där för nu är grundfunktionen beskriven men ytterligare förreglingar behövs för 

att gardera systemet mot oönskat beteende vi bortfall av någon givarfunktion m m. 

 

 Följddiagram. 

Följddiagram eller väg-tid-diagram är ett sätt att beskriva en tidssekvens av händelser. 

Framför allt används det för beskrivning av förflyttningssekvenser där traditionellt 

pneumatiska cylindrar förflyttar, stoppar, håller fast osv material eller komponenter i en 

behandlingskedja. 
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Vi betraktar ett förlopp enligt Figur 2.3, där lådor transporteras på transportband1, 

detekteras av en givare A, lyfts av cylinder C1 till nivån för band2 (C1F) stabiliseras där i 1 

sekund varefter cylinder C2 skjuter ut lådan (C2F) på transportband2 varefter cylindrarna 

går tillbaka till ursprungslägena (C1B resp C2B). 

   

C1F

C1B

C2B C2FC2

C1

A

Transportband1

Transportband2

 

Figur 2.3: Vertikalförflyttning av lådor. 

Följddiagrammet nedan, Figur 2.4 beskriver styrföljden för de två cylindrarna då signal ges 

från givare A. Detta beskriver bara själva styrföljden. Ytterligare funktioner som är 

inblandade i styrningen är troligen att något driftvillkor är uppfyllt dvs att hela 

anläggningen, där denna del ingår, är i driftläge. Vidare bör framgå vad som skall hända 

med styrningen efter nödstopp av anläggningen. Dessa ytterligare krav på styrningen kan 

med fördel beskrivas verbalt.   

tid

C2
tid

C1F

C1B

C2B

C1

C2F

1s

tid

A

 

Figur 2.4: Följddiagram för cylinderrörelser vid vertikalförflyttning. 
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 Flödesschema. 

Flödesschema är det klassiska sättet att beskriva programflöden och används också i styr-

sammanhang för att beskriva förlopp som skall omsättas till program för styrsystem. 

Det önskade beteendet hos markisstyrningen i avsnitt 2.1 beskrivs i flödesschemaform i 

Figur 2.5 nedan. Detta flödesschema är beteendebeskrivande utan att beteendet rent tekniskt 

skall lösas med givare och ställdon. Denna typ av flödesschema kan alltså tjäna som 

diskussionsunderlag för alla kategorier av inblandade intressenter i utvecklingen av 

markisen.  

 

Figur 2.5: Flödesschema för markisstyrning - beteendebeskrivande. 

För att bygga upp flödesdiagram används en ett antal symboler varav de viktigaste fem är 

följande: 

 

Programstart och -stopp anges med denna symbol.

Symboliserar val eller beslut och utgörs normalt av en 

fråga och har därmed mer än en utgång, vanligen två – 

”ja” resp. ”nej”.

Symboliserar process vilket innefattar händelser och 

beräkningar som inte omfattas av andra symboler.
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Input och output anges med denna symbol. Vid 

flödesschema för processtyrprogram förutsätts att 

kontinuerlig in- och utmatning av processignaler sker 

varför inte denna symbol används för detta.

Anger förbindelse till annat flödesschema. Används då 

hela schemat inte får plats på en A4-sida. 
 

 

Vi återvänder till markisstyrningen och lägger ett styrtekniskt perspektiv på flödesschemat. 

Med de signalbenämningar som framgår av Figur 2.2 kan nu styrningen beskrivas enligt 

flödesdiagrammen Figur 2.6 – Figur 2.8. Läsbarheten hos flödesschemat ökar om det går att 

på ett strukturerat sätt dela upp flödena i mindre delar. Här redovisas manuella körningen 

för sig i Figur 2.7, den automatiska styrningen i Figur 2.8 samt växlingen mellan manuell 

och automatik i Figur 2.6.   

 

Figur 2.6: Flödesschema för markisstyrning, val man/aut - styrsignalsbaserat. 

Detta är en så kallad förreglingsstyrning, till skillnad mot följdstyrning, vilket innebär att 

om vissa villkor är uppfyllda skall något specifikt hända, vid andra villkor skall något annat 

hända o s v. Det medför att då ett beslut gjorts som resulterar i någon av vägarna ut ur 

beslutssymbolen kommer, efter eventuell händelse, flödet att fortsätta nedåt till nästa 

beslutsvillkor. Flödet stannar aldrig upp utan en loop löper runt och avfrågar varje besluts-

villkor kontinuerligt.  Denna typ av styrningar realiseras med logisk kombinatorik i form av 

reläkopplingar, logikkretsar eller program baserade på logiska uttryck eller grindar.  
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Figur 2.7: Flödesschema för markisstyrning, manuell körning - styrsignalsbaserat. 

 

 

Figur 2.8: Flödesschema för markisstyrning, automatisk styrning - styrsignalsbaserat. 
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Betraktas istället vertikalförflyttningen enligt avsnitt 2.2 vilket utgör en följdstyrning eller 

sekvensstyrning så resulterar det i följddiagram enligt Figur 2.9. Här bromsas flödet upp 

genom ett antal återhopp så länge en händelse inte är slutförd. Omsätts detta flödesschema 

till ett styrprogram kommer loopningen i NO-loopen normalt att innebära ett uthopp till 

andra rutiner (ej med i detta flödesschema) för att snart återvända hit för ytterligare en 

beslutskontroll. Detta för att styrsystemet troligen har mer än denna delprocess att hålla 

reda på och då får inte programmet låsas i väntan på att givare skall påverkas utan mycket 

annat kan hinnas med i denna väntan. Ett annat sätt att beskriva sekvenser är med 

funktionsdiagram enligt nästa avsnitt som utgör bakgrund till ett grafiskt programmerings-

språk för sekventiella förlopp, SFC.  

    

                                  

 Figur 2.9: Flödesschema för följdstyrningen av två cylindrar - styrsignalsbaserat. 

A aktiverad?

Vertikalförflyttning

YES

C1F påverkad?

En sekund gått?

Plusgång C1

Vänta

YES

YES

YES

NO

NO

NO

NO

YES

NO

Plusgång C2

C2F påverkad?

Minusgång C1

Minusgång C2

C1B och C2B påverkade?



14 

 

 Funktionsdiagram. 

Funktionsdiagrammet eller F-diagrammet (eng. Sequence Function Chart) är ett 

standardiserat (IEC 848) grafiskt beskrivningssätt för styrning av processer. Ursprungligen 

togs det fram av det franska företaget Telemecanique, numera Schneider Electric, som ett 

beskrivningssätt att använda i samband med deras pneumatiska sekvensregister. 

Telemecanique mönsterskyddade detta beskrivningssätt under benämningen GRAFCET. 

Att det ursprungligen togs fram för sekvensstyrningar gör att det är mycket användbart i 

den typen av styrning men är även möjligt att använda vid beskrivning av förreglingar. 

Sekvensstyrning innebär förlopp av en serie händelser där en händelse kvitteras innan nästa 

händelse tar vid. 

Funktionsdiagrammet uppfyller de krav som kan ställas på funktionsbeskrivningar 

nämligen att det skall enkelt förstås av alla personalgrupper, vara utrustningsneutralt, och 

kunna användas vid projektering aven anläggning såväl som vid programmering, igång-

körning, underhåll, felsökning och dokumentation. Funktionsdiagrammet är också bas för 

ett av de standardiserade programmeringssätten för programmerbara styrsystem. 

I Figur 2.10 visas funktionsdiagrammets principiella uppbyggnad med några få steg från 

början i en sekvens. Rutorna beskriver steg (step) eller tillstånd hos sekvensen som placeras 

utmed en förloppslinje som alltid ritas vertikalt men kan förgrenas horisontellt. Startsteget 

utgör startpunkten vilket oftast är processens viloläge innan förloppet startats. Startsteget 

ritas med dubbel ram medan övriga med enkel. För att förflyttning skall ske från ett steg till 

nästa måste övergångsvillkoret (transition) vara uppfyllt. Övergångsvillkoret kan vara allt 

från ett enkelt villkor till ett omfattande logisk samband men oavsett omfattning kan 

övergångsvillkoret endast resultera i att det är sant eller falskt. För att ett steg skall bli aktivt 

krävs att föregående steg är aktivt och att övergångsvillkoret till nästa steg är sant. Då nästa 

steg blivit aktivt avaktiveras föregående steg. Endast ett steg kan alltså vara aktivt vid en 

tidpunkt med undantag då parallella processer genomförs, se senare. Startsteget är aktivt 

från början och avaktiveras då första steget aktiveras. Till varje steg och även startsteget 

kan kopplas en eller flera händelser (actions). Dessa händelser kan också vara villkorade 

vilket framgår senare.    

0

2

1

övergång0

händelse B

övergång2

övergång1

händelse A

händelse C

STARTSTEG

STEG (STEP)

ÖVERGÅNGSVILLKOR 
(TRANSITION)

HÄNDELSE (ACTION)

.   

Figur 2.10: Funktionsdiagram (Funtion Chart) – principiell uppbyggnad.. 
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Vi återknyter till den vertikallyftprocess som beskrevs i avsnitt 2.2 och återfinns i Figur 

2.11 nedan. I Figur 2.12 ges ett beteendebaserat funktionsdiagram för förloppet och i Figur 

2.13 ges ett styrsignalbaserat där det förutsätts att cylindrarna styrs via dubbelt styrda 

arbetsventiler med två styrsignaler vardera, VC+ resp VC-. I Figur 2.14 återges två 

alternativ av samma styrsignalbaserade funktionsdiagram men nu med förutsättningen att 

cylindrarna styrs via arbetsventiler med fjäderretur med en styrsignal vardera, VC för 

aktivering av plusgång.   

 

C1F

C1B

C2B C2FC2

C1

A

Transportband1

Transportband2

 
Figur 2.11: Vertikalförflyttning av lådor. 

 

 

 

0

2

1

Anläggning i drift och låd i läge 
på liften.

Fös av låda med avskjutcylinder 
efter 1 sekund

Lyftcylinder i övre läge

Kör upp lyftcylinder

Avskjutcylinder i främre läge

3

Lyftcylinder i nedre läge OCH avskjutcylinder i utgångsläge

Sänk lyftcylinder 

D

Återför avskjutningscylinder

 
 

Figur 2.12: Funktionsdiagram – beteendebaserat. 

Det beteendebaserade funktionsdiagrammet följer F-diagramstrukturen med klartext varför 

det är tolkningsbart för stora personalkategorier och bra diskussionsunderlag vid fastställande 

av beteende. 
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D
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Figur 2.13: Funktionsdiagram – styrsignalbaserat för dubbelt styrda ventiler. 
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D
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VC1=1

C2F

3

C1B OCH C2B

D

S

VC1=0S

 
 

Figur 2.14: Funktionsdiagram – styrsignalbaserat för fjäderreturventiler. 

Som framgår av de tre styrsignalbaserade funktionsdiagrammen så är strukturen exakt den 

samma som för det beteendebaserade men nu bestyckat med processignaler. Dessutom är 

signalgivningen beroende av vilken typ av givare och ställdon som processen bestyckas 

med. Observera att i vänstra alternativet i Figur 2.14 finns ingen signalgivning i steg 3 

vilket innebär att fjäderreturen ser till att båda cylindrarna går minus vilket skulle ske. Detta 

leder dock till att ett styrsignalbaserat funktionsdiagram blir mer svårtolkat än 

beteendebaserade. 

Det har också dykt upp några modifierare i form av D och S. D står för delay och betyder 

att en tidsfördröjning skall löpa ut innan händelsen sker. Fördröjningens storlek anges i 

händelserutan med D=x s. Modifieraren S står för stored, dvs kom ihåg tillståndet hos 

signalen i följande steg. Här 1-ställs VC1 i steg 1, hålls i detta tillstånd, och nollställs i steg 

3. Alternativet till S är att upprepa samma signal att vara aktiv i flera steg som i vänstra 

alternativet i steg 1 och 2. 
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Här följer tre sidors utdrag ur standarden IEC848 hur olika händelser (actions) kan beskrivas:   
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Alla processer utgörs inte av en enda rak sekvens som följer en förloppslinje utan kan 

förgrenas på olika sätt till alternativa eller parallella sekvenser. 

Alternativa sekvenser: 

61

6

a

b

c

65

d

66

7

e

 
Endast en väg är möjlig, om a är sant efter steg 6 följer steg 61, om är c aktivt följer steg 

65, om både a och c aktivt väljs från vänster dvs steg 61. 

Hopp – en form av alternativa sekvenser: 

4

3

a

b

5

6

cd

4

3

a

b

5

6

c

d

Bakåthopp  - repeterad sekvens Framåthopp  - sekvenspassage

 
Observera att det alltid skall finnas ett och endast ett övergångvillkor mellan två på 

varandra följande steg. 
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Parallella sekvenser: 

35

34

a

65

d

66

7

e

 
Vid parallella förlopp väljs båda vägarna, från steg 34 och aktiv signal a aktiverar både steg 

35 och steg 65. Vid parallella förlopp är alltså ett steg i varje förgrening aktivt. Därefter 

genomlöps var och en av grenarna i sitt tempo. Vid avslutning av parallella förlopp inväntar 

alla parallella grenar varandra och går vidare via gemensamt övergångsvillkor. I detta fall 

krävs för att komma till steg 7 att förloppet befinner sig i steg 35 och i steg 66 samt att 

övergångsvillkor e är uppfyllt. 

De horisontella förloppslinjerna vid förgreningar utgörs av en enkel linje vid alternativ 

förgrening och av dubbellinje vid parallell förgrening. 

Subsekvenser: 

För att minska detaljpackningen i ett funktionsdiagram kan en händelse i ett steg också 

utgöras av en sekvens, en subsekvens, vilken kan beskrivas i ett eget funktionsdiagram 

Observera hur stegen används som övergångsvillkor föra att styra sekvensflödet.  

4

a

Steg 4.3

5
4.2

4.1

4.3

Steg 5

Steg 4

4.0 Viloläge

Subsekvens slut

Subsekv 4.0 – 4.2

Huvudsekvens Subsekvens
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Som tidigare nämnts utgör funktionsdiagrammet basen för ett av de standardiserade 

(IEC 61131-3) programspråken för programmerbara styrsystem, PLC. Som avslutning på 

avsnittet visas i Figur 2.15 ett utdrag ur dokumentationen för ett program skrivet i språket 

Sequence Function Chart (SFC) som utgör en styrning av vertikalförflyttningen enligt Figur 

2.13. Närmare presentation av SFC-programmering kommer i senare avsnitt men en titt i 

programdokumentationen gör att programmets funktion kan anas med kunskap kring 

funktionsdiagram som bakgrund. 

 

 
 
 

Figur 2.15: Dokumentation av PLC-program skrivet i SFC-språk. 
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Kap 3. Programmerbara styrsystem - uppbyggnad. 

Fram till 1970-talet var den förhärskande tekniken att åstadkomma styrning av processer att 

använda reläteknik. Signalledningar från givare ute i processen kopplades in till reläer i ett 

skåp där logiken byggdes upp genom kopplingar mellan reläernas slavbrytare och resultatet 

skickades via styrsignalledningar ut för att aktivera olika don såsom kontaktorer för 

manövrering av elmotorer eller magnetventiler för cylindermanövrering. Anläggningarna 

var i princip uppbyggda enligt Figur 3.1 (vänster) nedan men en större anläggning kunde 

innefatta hundratals givare- och styrsignaler och tusentals reläer som fyllde hela rum med 

reläskåp. 

GransNer

Stopp

Sank

Lyft

GransUpp

UPP

NER

”Styrskåp” - relälogik

      

GransNer

Stopp

Sank

Lyft

GransUpp

UPP

NER

”Styrskåp” - PLC

PLC

 

Figur 3.1: Jämförelse reläsystem(vänster) och PLC-styrning (höger). 

Så kom transistorn, datorn och mikrokontrollern och därmed andra möjligheter att bygga 

logik än via reläer. I mitten av 1970-talet dök de första PLC-systemen upp på markanden 

vilket innebar att innehållet i styrskåpen byttes ut men signalledningar ute i processen var 

de samma, se Figur 3.1. Nu med ytterligare drygt 30 års utveckling bakom sig finns mycket 

kraftfulla PLC:er som kan uträtta mycket mer än de gamla reläsystemen och ingå i de 

omfattande informationssystem som krävs för dagens automationsnivåer. 

Graden av automatisering av de industriella processerna går hand i hand med tillgänglig-

heten till styrutrustning som är flexibel, lätthanterlig och billig. Utvecklingen av mikro-

datorn öppnade vägen för det programmerbara styrsystemet, PLC, som är ett datorbaserat 

styrsystem anpassat till styrning av maskiner och processer i industriell miljö. Från att från 

början varit utrustning som tog över den logiska styrning som tidigare utfördes av relä-

system expanderade arbetsuppgifterna till att ta hand om uppgifter som tidigare utfördes av 

separata instrument såsom PID-reglering av återkopplade system och recepthantering vid 

batch-processer. Idag finns allt från mindre PLC-system för logisk styrning av enskilda 

maskiner till komplexa kraftfulla PLC:er som utöver sin styruppgift är en spelare i fabriks-

nätverk av andra PLC:er, operatörsstationer, underhållssystem och affärssystem. 

Ett programmerbart styrsystem skiljer sig från ett vanligt datorsystem genom att program-

meringsspråken är anpassade till användningsområdet för att uppnå hög produktivitet vid 

programutveckling. Strävan har varit att utveckla ett förhållande människa/utrustning 

baserat på användarens tekniska erfarenhetsvärld där användaren av styrsystem primärt 

skall vara processkunnig och sekundärt datorspecialist. Utvecklingen har dock lett till att 

PLC-systemen mer och mer integreras i datorsystem med kommunikation både med 

intelligenta givare och don ute i processen och med överordnade datorer och databaser för 

produktionsplanering, underhållsplanering m m. Som automationsingenjör krävs idag 

kunskaper kring industriella processer såväl som inom datakommunikation och 

datorsystem. 
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Figur 3.2: Två typer av PLC-system. Ett kompakt och ett moduluppbyggt expanderbart. 

Utmärkande för ett programmerbart styrsystem är också att elektronik och chassi är 

dimensionerat att tåla den mekaniska miljö (vibrationer, stötar), kemiska miljö (gaser, fukt) 

och elektriska miljö (elektriska och magnetiska fält) som ofta är betydligt besvärligare på 

industrigolvet än i de normala datorsystemens kontorsmiljö. Vidare är kraven att 

installation och även utbyggnad av systemen skall vara enkel, att systemet skall kunna 

kommunicera med andra PLC-system, med operatörssystem för människa-maskin-

kommunikation, med decentraliserade I/O-enheter mm. 

PLC är en förkortning av Programmable Logic Controller och är i dag den gängse 

benämningen. En kort period i början av 1980-talet var den använda benämningen PC-

system, Programmable Controller, men den fick ge vika då samma akronym, PC, i 

betydelse Personal Computer tog över och ju blev ett välkänt begrepp för den stora 

allmänheten. Även beteckningen PBS (Programmerbara Binära System) har förekommit. 

På svenska marknaden finns idag flera tiotals system av olika modell från ett 20-tal olika 

leverantörer. Som större tillverkare kan nämnas ABB (Sverige), Siemens,  Beckhoff 

(Tyskland), Mitsubishi, Hitachi (Japan), Rockwell (Frankrike), Allen Bradley, Honeywell 

(USA). Ett flertal tillverkare av styrutrustning marknadsför också system från redan 

nämnda tillverkare under eget namn.  

Storleken på systemen varierar mycket. Små mycket lätthanterliga system med ett tiotal 

digitala in- och utgångar är så prisbilliga (2-5000 kr) att de i allt högre grad utnyttjas på 

områden som tidigare var förbehållna mindre reläsystem. De större systemen kan hantera 

flera tusen in-och utgångar, både digital och analoga, vilket gör att de kan användas för att 

lösa mer omfattande styrproblem. Dessa kan också klara av aritmetik, integration med 

operatörssystem med hantering av dynamiska processbilder samt kommunikation med 

över- och underordnade system. Trenden går numera åt mer och mer decentraliserade 

system med nätverk av ett antal PLC:er, kommunicerande via seriell fältbuss med 

distribuerade sensorer och aktuatorer som hanterar var sin del i en större process.  
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Programmerbara styrsystem har ingen längre historia bakom sig. Det första PLC-systemet 

utvecklades i slutet av 60-talet för användning inom bilindustrin. Under 70-talets andra 

hälft kom de små mikrodatorbaserade PLC-systemen och även de hierarkiska näten av PLC 

i kombination med processdatorer för styrning av hela fabriker. På 80-talet kom de små 

prisbilliga systemen med några få in- och utgångar som konkurrerar med reläsystem med 

endast ett tiotal reläer. 

Det är inte bara process- och tillverkningsindustrin som använder PLC-styrningar utan PLC 

har också idag en stor marknad vad gäller styrning av fastighetsinstallationer och infra-

strukturanläggningar som t ex trafikstyrning och -övervakning, ventilation, belysning mm i 

tunnlar.    

De mindre systemen används ofta för maskinstyrningar. De placeras nära den maskin de 

skall styra vilket gör att man får ett väl avgränsat system som är lätt att programmera och 

lätt att installera och felsöka i.  

Exempel på sådana styrobjekt är: 

- Transportsystem. 

- Förpackningsmaskiner. 

- Pumpanläggningar 

- Ventilationssystem 

De större PLC-systemen används för att styra och övervaka hela processer. I dessa system 

ingår ofta även hantering av analoga storheter och i systemet inbyggda regulatorer för 

återkopplad reglering av analoga storheter. Möjlighet för operatör att följa processen på 

bildskärm är ofta möjlig i dessa system liksom att via tangentbord eller operatörspanel 

kunna kommunicera med processen. En annan vanligt förekommande möjlighet är 

kommunikation med centraldator för produktionsstatistik, produktionsplanering och 

rapportering. 

Exempel på användning av "större" system är: 

- Kraftverk, kraftvärmeverk. 

- Kemiska processer t.ex raffinaderi. 

- Massatillverkning och pappersmaskiner. 

- Tillverknings- och monteringsliner för bilar, kylskåp m m. 

- Styrning ventilation, belysning, trafik mm i vägtunnlar. 

- Belysning, värme, ventilation, låssystem i fastigheter.  

I vilka styrsammanhang är det då olämpligt att använda PLC-system? En viktig egenskap 

hos PLC-system är att de är flexibla och därför lätt anpassningsbara till olika applikationer. 

Maskiner som skall mångfaldigas i stora mängder t ex kopieringsmaskiner, bakmaskiner, 

tvättmaskiner o dyl. är ju inte i behov av ett styrsystem som är flexibelt och därmed dyrare 
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än alternativ där man inte lagt ner kostnader för att få flexibilitet. I sådana applikationer är 

därför skräddarsydda, mikrokontrollerbaserade styrenheter i stor upplaga en betydligt 

billigare lösning. 

 PLC-systemet – hårdvarans uppbyggnad. 

PLC-system är gjorda för montage i elskåp i anslutning till den process de är satta att styra. 

Ofta är de anpassande för upphängning på DIN-skena som är en standardskena för upp-

hängning av olika typer av utrustning i elskåp. Av Figur 3.3 framgår vad som normalt finns 

i form av anslutningar, indikeringar m m för kommunikation med yttervärlden. Fel vid styr-

programexekveringen indikeras normalt med en lysdiod men inkoppling av program-

utvecklingsverktyget är sedan nödvändigt för att läsa av felkoder. Lysdioder för indikering 

av signalstatus på in- och utgångar är mycket bra hjälpmedel vid felsökning. Om fel uppstår 

kan man med hjälp av dessa indikeringar lokalisera felet till antingen någon yttre koppling 

eller till styrprogrammet. Genom att koppla in programutvecklingsverktyget som normalt är 

en PC-baserad programvara kan monitorering av programmet göras där aktuell signalstatus 

kan avläsas vilket ger ytterligare möjligheter till fördjupad felsökning. 

Enda manövreringsmöjligheten är normalt start/stopp av programexekvering samt reset 

vilket innebär återgång till programstart och eventuellt nollställning av valda minnen / 

register. Nollställning av alla minnen /register görs med en högre nivå av reset för att 

minimera risken att av misstag tömma all i PLC lagrad driftinformation. 

 

 

 

 

 

 

 

 

 

 

Figur 3.3: Schematisk bild över PLC:ets yttre. 

 

I Figur 3.4 nedan beskrivs i blockschemaform funktionella uppbyggnaden av ett PLC-

system. Som synes så skiljer det sig inte direkt ifrån ett blockschema över vilket dator som 

helst. 

 

Lysdioder indikerar 
POWER, RUN/STOP; 
ERROR 

Switch för 
RUN/STOP 

Anslutningsplintar för 
in- och utgångar med 
lysdiodsindikation. 

Port för kommunikation 
med programmerings-
utrustning 

Uttag för fältbuss-
kommunikation. 
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Figur 3.4: Blockschema för PLC-system. 

 

3.1.1. Strömförsörjningsenhet. 

Strömförsörjningsenheten försörjer all intern elektronik med lämplig spänning, normalt 

5 V. Den utnyttjas ibland också till att leverera kraft för försörjning av givarenheter m.m 

som ansluts till styrsystemets ingångar. Däremot kräver oftast aktuatorer såsom kontaktorer 

och magnetventiler kopplade till utgångarna så hög effekt att en extern kraftkälla används 

för detta. 

3.1.2. Centralenheten. 

CPU:n  (Central Processing Unit) är själva processorenheten som styr verksamheten i PLC-

systemet med hjälp av operativsystemet och av styrprogrammet. Det organiserar alltså 

flödet av data via en parallell kommunikationsbuss till och från de olika anslutna enheterna, 

utför logiska och aritmetiska operationer och administrerar minnet. Figur 3.5 visar 

specifikationen för några PLC-centralenheter. 

ROM (Read Only Memory) innehåller operativsystemet som behövs för att initiera 

systemet. Dessutom innehåller det översättaren som översätter de PLC-instruktioner som 

skrivs in till systemet till för CPU:t begripliga styrkoder. Operativsystemet är inplanterat 

vid leverans och kan endast uppdateras via tillverkarens försorg.   

RAM (Random Access Memory) används för att lagra de instruktioner som skrivs in till 

systemet från programmeringsenheten. RAM-minnet är flyktigt vilket innebär att det tappar 

sitt innehåll vid spänningsbortfall. Ofta är därför detta minne försett med batteriupp-

backning (backup). 

Digitala 
ingångar  
 
från proces-
sensorer  

Analoga 
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från proces-
sensorer via 
A/D-
omvandlare 

Digitala 
utgångar  
 
till process- 
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till process- 
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Kommunikation 
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Kommunikation 
med överordnade 
system / 
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program-
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EEPROM 
 

Intern buss 
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Parallellt med RAM-minnet finns ofta möjlighet att bränna in samma instruktioner som 

finns i RAM-minnet i ett EPROM (Eraseable Programmable Read Only Memory). Detta 

minne behåller sin information tills man raderar den med UV-ljus eller på elektrisk väg 

(EEPROM). EPROM:et är ofta monterat i en kassett som kan pluggas in i PLC-systemet 

vilket gör att man kan ha en fungerande programvara lagrad i en sådan kassett. Detta kortar 

ner ställtiden när man t.ex vill ändra produktionen från en detalj till en annan som kräver 

andra styrprogram för de i produktionen inblandade PLC-systemen. Har man en gång gjort 

programmen är det bara att byta EEPROM-kassett. Idag är ofta PLC-systemet nätverks-

anslutet och programvara kan enkelt underhållas eller bytas ut genom nedladdning via 

nätet. Normalt är det ett internt nätverk inom företaget med spärrad kontakt mot Internet för 

att förhindra intrång från obehöriga. 

 

Figur 3.5: Teknisk specifikation för några av Mitsubishi-systems CPU. 

 

3.1.3. Digitala ingångsenheter. 

Ingångsenheterna för digitala signaler anpassar kommunikationssignalerna mellan PLC-

systemets buss och processens givare. PLC-systemet har interna spänningsnivån 5 V och 

mycket låg effektnivå medan signaler från processen har betydligt högre spänningsnivå 

(ofta 24 V DC eller 230 V AC) och effektnivå. De högre nivåerna hos processignalerna 

beror på att de annars skulle störas i den ofta dåliga elektriska miljö de skall fungera inom. I 
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processen finns t.ex. stora elektriska motorer med matarkablage som alstrar starka 

magnetiska fält. Dessa fält kan i sin tur inducera spänningar i annat kablage som ingår i 

samma installation t.ex signalkablar från givare ute i processen. Skulle spännings- och 

effektnivån i dessa signalvägar vara på samma nivå som datorsystemets interna signalnivåer 

skulle signalerna lätt kunna störas och signalöverföringen inte vara tillförlitlig. Även med 

högre spänningsnivåer kommer stora transienta störningar att induceras i signalledningarna 

varför in- och utenheternas uppgift också är att filtrera bort transienter så att de inte når den 

interna bussen. Figur 3.6 beskriver spänningsdelning av 24 V DC insignaler och filtrering 

via optokopplare som skiljer processignalerna galvaniskt från interna bussens signaler.  

 

Figur 3.6: Signalanpassning digital ingångar, PLC (Mitsubishi manual). 

Av den tekniska specifikationen för en digital ingångsenhet, Figur 3.7, framgår bl a att 

enheten har 16 ingångar. För 24 V ingången gäller att inspänning över 19 V uppfattas som 

en logisk etta medan inspänning under 11 V uppfattas som logisk nolla. Mellan 11 och 19 

V är då logiska nivån obestämd. Ingångarnas omslagstider är inställbara men grund-

inställningen är 10 ms. Korta omslagstider innebär att korta transienta störningar kan slå 

igenom medan långa omslagstider ger bortfiltrering av störningar men nackdelen att 

signalomslag uppfattas efter en längre tid. Tiden 10 ms motsvarar ungefär program-

cykeltiden hos ett normalprogram och därmed slöar den inte ner hela styrsystemets 

svarstider men har ändå en viss filterverkan.   

I sammanhanget skall också nämnas att det finns moduler med interuptingångar och 

snabbräknaringångar. Interuptingångar används då en ingångssignal initierar ett snabbt 

händelseförlopp som PLC-programmets normala cykeltid inte skulle klara att observera och 

styra i den takt som krävs. Att ingången genererar ett interrupt innebär att normala styr-

programmet avbryts tillfälligt och en kortare och därmed snabbare programrutin startar som 

behandlar det snabba förloppet. Höghastighetsräknaringången klarar att räkna pulser från en 

pulsgivare med en frekvens som är högre än normala ingångarnas snabbaste omslagstid (se 

nästa avsnitt om PLC-systemets arbetssätt).  
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Figur 3.7: Specifikation digital ingångsmodul för PLC (Mitsubishi manual). 

 

3.1.4. Digitala utgångsenheter. 

Digitala utgångsmoduler matas med yttre spänning som normalt är antingen 24 V DC eller 

230 V AC. I Figur 3.8 matas utgångarna via reläer och därmed är både DC- och AC-

matningar möjliga. Parallellt med reläspolen ligger en diod, en s k frihjulsdiod, för att 

släcka den transient som annars skapas då strömmen genom spolen bryts. Av 

specifikationen, Figur 3.9, framgår bl a att varje utgång får belastas med maximala 

strömmen 2 A, att omslagstiden hos utgången ligger kring 10 ms och omslagstakten är 

maximerad till 1 omslag/sekund. I Figur 3.10 visas två andra typer av utgångar, transistor 

resp. TRIAC. Transistorn manövrerar DC-matningar medan TRIAC hanterar AC. Tittar 

man i specifikationen för dessa utgångsmoduler finner man att omslagstiderna är 10 gånger 

snabbare än reläutgångarna medan de tål betydligt lägre strömmar, 0,1A för transistor och 

0,6 A för TRIAC.    
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Figur 3.8: Signalanpassning digitala reläutgångar, PLC (Mitsubishi manual). 

 

Figur 3.9: Specifikation digital reläutgångsmodul för PLC (Mitsubishi manual). 
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Figur 3.10: Transistor- och TRIAC- utgångar, PLC (Mitsubishi manual). 

 

3.1.5. Analoga in- och utgångsenheter. 

Ingångsenheter för analoga signaler innehåller A/D-omvandlare (ADC) och levererar på 

kommando från centralenheten analoga signalvärden, ofta 0 – 10 V eller 4 – 20 mA, på 

digitaliserad form med en upplösning på 8 till 14 bitar. Intervallen hos analoga ingången är 

normalt inställbara. Antag t ex att analoga området 0-10 V omvandlas till digitala området 0 

– 8000. Då skulle en insignal på 2,34 V ge ett digitalt värde på 2,34/10⋅8000 = 1872 att 

hantera i styrprogrammet. A/D-omvandlaren är konfigurerbar också vad gäller 

omvandlingstider och när omvandling skall ske men normalt sker kontinuerlig omvandling 

där det omvandlade värdet läggs i ett minnesregister som sedan kan läsas av PLC-

programmet.  

Utgångsenheter för analoga signaler innehåller D/A-omvandlare (DAC) och levererar 

utifrån ett digitalt värde på 8 till 14 bitar analoga signalvärden, ofta 0 – 10 V eller 4-20 mA 

till utgången. Intervallen hos analoga utgången är normalt inställbara. Antag t ex att digitala 

området 0 – 8000 omvandlas till analoga området 4-20 mA, som är industristandard för 

analoga processignaler. Då skulle ett digitalt värde 2000 ge ett värde på 8 mA på den 

analoga utgången. D/A-omvandlaren är konfigurerbar också vad gäller omvandlingstider 
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och när omvandling skall ske men normalt sker kontinuerlig omvandling där det värde som 

skall omvandlas läggs i ett minnesregister. Värdet i minnesregistret omvandlas 

kontinuerligt och läggs ut på utgången.  

3.1.6. Kommunikationsmoduler. 

Kommunikationsmoduler möjliggör seriell kommunikation oftast via Ethernet, RS232, 

RS485, fabrikatsspecifika fältbussar (slutna protokoll) eller via olika typer av generella 

fältbussar (öppna protokoll) som t ex Interbus, Profibus, Modbus, CANopen. 

Kommunikation kan ske med yttre enheter såsom: 

- Överordnat styrsystem eller annat PLC-system i samma nätverk. 

- Operatörspanel eller operatörssystem (SCADA-system) för människa-maskin- 

kommunikation.        

- Decentraliserad in/ut-enhet (dec I/O) vilka inte är anslutna direkt till PLC-enheten utan 

placerade som noder ute i processen varifrån centralenheten kan läsa in signal-

tillstånden från/till flera in-/utgångar seriellt d v s på en enda ledare istället för en 

ledare per in-/utsignal. 

- Överföring av information från / till fabrikens affärssystem för produktionsplanering 

och underhållsplanering.    

- Intelligenta givare som levererar mätdata på seriell form. 

- Databas för t ex lagring av driftsdata eller hämtning av recept. 

Det förekommer alltså en mängd kommunikationssätt, fältbussar, utgående från lika många 

kommunikationsprotokoll – beskrivningar av hur kommunikationen skall gå till. Vilken typ 

som används är beroende av bl a typ av data som skall överföras, hur snabbt det skall ske, 

hur säkert det skall ske samt på tradition inom branschen. Ethernet, det kommunikationssätt 

som används på Internet, är dominerande framför allt när det gäller administrativ 

dataöverföring. Fältbussar används där kraven på snabbhet och dataframkomlighet är 

viktig. Tendensen är dock att Ethernetvarianter på sikt tar över där tidigare en uppsjö av 

olika fältbussar dominerat när det gäller snabb överföring av processdata mellan 

decentraliserade enheter, operatörssystem och centralenhet. 

Konfiguration av kommunikationsmoduler skiljer sig åt mellan olika fabrikat och olika 

kommunikationsprotokoll. Viss konfiguration kan vara integrerad i den PLC-program-

meringsmiljö som används men ofta gäller att speciell konfigurationsprogramvara är 

nödvändig.    

   

 PLC-systemets arbetssätt  - mjukvaran. 

En viktig egenskap hos PLC-system är att de snabbt skall kunna läsa in och behandla data 

som behövs för att styra ett eller flera förlopp. Till de mer tidsödande operationerna i ett 

datorsystem är in- och utmatning av signaler via in/ut-enheterna. 
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För att få så snabbt arbetssätt som möjligt tillämpar man en teknik som kallas input-output-

kopiering. Vid början av en programcykel kopieras alla insignalerna från in-enheterna till 

ett internt minne. Därefter bearbetas instruktion för instruktion i styrprogrammet och de 

resulterande utsignalerna lagras efter hand också i ett internt utgångsminne. Då alla 

instruktioner genomlöpts kopieras det interna utgångsminnet till utenheterna som 

verkställer styrsignalerna ut mot processen. Därmed är en programcykel (scan-cykel) 

genomförd och en ny börjar direkt med att på nytt läsa in-enheterna till interna 

ingångsminnet o s v. Arbetssättet illustreras i Figur 3.11. Normalt finns också möjlighet till 

villkorliga hopp förbi ett antal programrader i programmet. Hoppen påverkar dock inte 

cykeltiden. 

Styrsystemets cykeltid är tiden från det att läsning av in-enheter börjar tills utenheterna 

aktiverats. Cykeltiden beror naturligtvis av processorns arbetssätt och klockfrekvens samt 

av hur långt styrprogrammet är men ligger normalt på någon eller några tiotal 

millisekunder. Detta är oftast en tillräcklig snabbhet. Vid pulsräkning från en pulsgivare för 

t ex exakt positionsbestämning kan dock snabbheten vara för dålig varför man får tillgripa 

in-enheter i form av en snabbräknarenhet som räknar pulser vid mycket högre frekvens. 

Styrsystemet kan från en sådan enhet via bussen läsa av om önskad position har uppnåtts 

eller passerats. Alternativt levererar räknarenheten vid uppnått angivet räknarvärde ett 

interupt som avbryter den löpande programexekveringen och utför en önskad interuptrutin 

som verkställer vad som skall hända efter uppnått räknarvärde varefter program-

exekveringen återvänder dit där avbrottet skedde. Ett extra utgångskort kan också användas 

som aktiveras direkt av snabbräknarenheten för att slippa tidsfördröjningen man ändå får 

genom att blanda in centralenheten. 

 

Figur 3.11: Styrsystemets cykliska arbetssätt. 

 

Arbetssättet med ingångs-utgångs-kopiering innebär att man får ta hänsyn till detta vid 

programmeringen. En utgång får bara användas en enda gång i programmet. Om t ex en 

varningslampa skall tändas antingen för villkor 1 eller för villkor 2. i programkoden och 

man skriver först att villkor 1 skall aktivera utgången för lampan och lite senare i 
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programmet att villkor 2 skall aktivera samma utgång så är det endast det senare villkor 2 

som kommer att gälla. Resultatet av villkor 2 kommer alltid att skriva över resultatet från 

villkor 1 i det interna utgångsminnet. Resultatet av villkor 1 når alltså aldrig utgångarna. I 

stället måste man skriva programmet så att om villkor 1 ”eller” villkor 2 är uppfyllt så 

aktivera utgång för varningslampa. Utgången används då bara en gång. Det är alltså 

väsentligt att man tar hänsyn till arbetssättet med ingångs-utgångs-kopiering vid 

programmeringen annars uppstår lätt logiska fel. 

Det språk som används för programmering av PLC-system skall vara enkelt, kraftfullt och 

anpassat för typen av styrning. Tidigare var inte alla tillverkare eniga om hur ett sådant 

språk ser ut utan en flora av olika språkvarianter finns, som dock inte vid närmare 

beskådande skiljer sig så mycket från varandra. På 1990-talet arbetades en standard fram 

för programmering av PLC-system (IEC 61131-3) vilken de flesta leverantörer nu anpassat 

sig till vilket gör att man i framtiden kommer att känna igen sig i programutvecklings-

miljöerna oavsett vilket fabrikat av PLC-system man arbetar med.  

Fem olika sätt att koda instruktionsprogrammen, programspråk, är specificerade i 

standarden och är språktyper som förekommit tidigare men nu fått en enhetlig form. En del 

tillverkare tillhandahåller alla sätten medan andra har begränsat sig till något eller några.  

De fem olika programmeringssätten bygger i grunden alla på logiska (Booleska) 

instruktioner där tillståndskombinationer av ingångsvärden och tidigare mellanlagrade 

tillstånd resulterar i motsvarande utgångstillstånd. Logiska grundinstruktioner som AND, 

OR, ANDNOT och ORNOT utökas med SET och RESET av vippor (minnen) samt av 

räknar- och tidsfördröjningsinstruktioner. Ytterligare instruktioner finns i större eller 

mindre omfattning beroende på styrsystemets komplexitetsgrad. De fem språken är 

Ladderprogrammering, Funktionsblockprogrammering, Instruktionslista, Funktionsdiagram 

samt Strukturerad text. Här följer presentation av olika instruktioner och efter hand 

presenteras de olika programmeringssätten enligt standard IEC 61131-3. 

Programmeringsmiljön som de följande exemplen är programmerade i är GX IEC 

Developer som är en IEC 61131-3 baserad programutvecklingsmiljö och endast 

instruktioner enligt standarden används varför det som presenteras i detta avsnitt gäller 

allmänt för alla utvecklingsmiljöer som stödjer standarden. Men först en presentation av de 

olika signaler som skall hanteras i PLC-systemet. 

3.2.1. PLC-systemets signaluppsättning och beteckningsstandard.   

Kommunikation mellan PLC-system och till processen kopplade givare och don av on/off-

typ sker via digitala in- och utgångar. Via ingångar %IX mottar systemet signaler från 

externa switchande givare eller kontakter. De förekommer både som slutande (NO 

=normally open) och brytande kontakter (NC =normally closed) beroende bl.a på 

säkerhetsaspekter. Beteckning %IX är IEC-standardbeteckning på ingångar. 

Med utgångarna %QX överför PLC-systemet styrsignaler till styr- eller indikeringsdon som 

t.ex kontaktorer, magnetventiler eller indikeringslampor. Utgångsstatusen kan också 

användas internt i PLC-programmet på samma sätt som en ingång eller en minnescell. Det 

finns inga begränsningar på hur många gånger en in- eller utgång får användas som villkor i 

ett program. Beteckning %QX är IEC-standardbeteckning på utgångar. 

Adressering av ingångskanaler görs med beteckning %IXn där n är en löpande numrering 

av ingångarna. Om det gäller ett moduluppbyggt PLC där ett CPU placeras på ett bakplan 
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och sedan kompletteras med de funktionsmoduler som behövs så sker numreringen utifrån 

de adressplatser som föregående moduler upptagit. Om första modulen är en ingångsmodul 

med 16 ingångar adresseras dessa med %IX0 - %IX15. Är nästa modul en utgångsmodul 

med 16 utgångar adresseras dessa %QX16 - %QX31. Är sedan nästa en ingångsmodul med 

32 ingångar adresseras dessa %IX32 - %IX63 osv. Två placeringsexempel finns beskrivna i 

Figur 3.12 nedan. I exemplen som följer används systemsammansättning enligt den övre 

delen i Figur 3.12 d v s ingångar %IX0-%IXF (obs att vid modulplats 0 skrivs inte nollan 

ut) och utgångar %QX10 - %QX1F.  

 

 

 

 

 

 

 

 

Figur 3.12: In- och utgångsadresser i två olika systemsammansättningar. 

Internt finns ett stort antal enbits minnesflaggor som betecknas %MX0.n där n är ett 

löpnummer. Det finns också enbits latchade minnesflaggor betecknade %MX8.n. Det som 

skiljer är att %MX0-flaggorna nollställs vid ”normal” reset av CPU eller spänningsbortfall 

medan %MX8 behåller sitt tillstånd och en speciell svåråtkomlig latch-resetkrävs för att 

nollställa dessa.  

Det finns också ett antal enbits specialminnesflaggor vars beteende är förutbestämt. De ofta 

använda presenteras i Figur 3.13 nedan och utgörs dels av klocksignaler (pulståg) av olika 

frekvens och dels av en flagga som är ettställd endast första exekveringscykeln och därför 

bra att använda vid initieringar.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beskrivning Adress 

TRUE första scancykel efter RUN %MX10.402 

10 Hz  klockpulståg %MX10.410 

5 Hz  klockpulståg  %MX10.411 

1 Hz  klockpulståg %MX10.412 

0,5 Hz  klockpulståg %MX10.413 

Nätdel CPU 

Digital ingångs-
modul 16 kanal 
 
Adresser: 
%IX0-%IX15 

Digital utgångs-
modul 16 kanal 
 
Adresser: 
%QX16 -%QX31  

... osv 

Nätdel CPU 

Digital ingångs- 
Modul 16 kanal 
 
Adresser: 
%IX0-%IX15 

Digital ingångs- 
Modul 16 kanal 
 
Adresser: 
%IX16 -%IX31  

.... osv 
 

Digital utgångs-
modul 32 kanal 
 
Adresser: 
%QX32 -%QX63  
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Figur 3.13: Några specialminnesflaggor och dess adresser. 

Alla hittills nämnda variabler är enbits och därmed av datatypen BOOL. Internt finns också 

ett stort antal 16-bitars minnesregister som betecknas %MW0.n. De är i de följande 

exemplen decimalt numrerade. Det finns oftast något eller några tusental benämnda 

%MW0.0, %MW0.1,….%MW0.456, %MW0.457…… - %MW0.nn. Dessa register är av 

datatypen INT eller WORD. Man kan också adressera dessa 16-bitars register bitvis. Vill 

man t ex adressera bit nr 7 i register %MW.345 används adressen %MX0.345.7 vilken då 

är av typen BOOL. 

Här följer en tabell över grundläggande variabeltyper: 

Variabel IEC-

adress 

Datatyp Värde Beskrivning 

Digitala ingång %IXn BOOL TRUE 

FALSE 

Digitala ingångar,  

n=decimalt löpnummer 

Digital utgång %QXn BOOL TRUE 

FALSE 

Digitala utgångar,  

n=decimalt löpnummer 

Minnesflagga %MX0.n BOOL TRUE 

FALSE 

Interna enbits minnesflaggor, 

nollställs vid CPU-reset 

Minnesflagga, 

batteriuppback 

%MX8.n BOOL TRUE 

FALSE 

Interna enbits minnesflaggor,  

behåller sitt tillstånd vid  

enkel CPU-reset  

Specialminne %MX10.n BOOL TRUE 

FALSE 

Se tabell Figur 3.13 

16-bits register %MW0.n INT 

 

WORD 

-32768  ….  

+32767 

0 …. 65535 

16-bitars minnesregister 

32-bits register %MW0.n DINT 

 

DWORD 

 32-bitars minnesregister,  

tar upp adress n och n+1 

 

Figur 3.14: Grundläggande variabler i PLC-system. 

Det finns också datatyper DINT och DWORD där står D för Double d v s två 16-bitars 

register slås ihop till ett samverkande 32-bitars vilket innebär att betydligt större tal kan 

hanteras. Vid typ DINT och DWORD upptas två 16-bits registerplatser som adresseras 

%MD0.n där n är löpnummer. Deklaration av adressplats görs dock till en adress men då 

ockuperas också adressen närmast över t ex om %MD0.35 adresseras med en DINT 

kommer 16-bitars registerplatserna %MW0.35 och %MW0.36 att ockuperas. 

 



38 

 

3.2.2. Ladderprogrammering ( LD –Ladder Diagram ) 

Före PLC-systemens genombrott på 70-talet byggdes i stort sett all styrutrustning som 

reläsystem. En förutsättning för detta genombrott var att den nya styrutrustningen skulle 

vara attraktiv för den stora stab av ingenjörer som sysslade med reläsystemskonstruktion. 

För att åstadkomma detta skapades ladderprogramspråket vilket är ett grafiskt 

programmeringsspråk som bygger på en efterapning av reläschemat. Programmet byggs 

upp som ett relälinjeschema där insignalerna till de logiska operationerna ligger som 

slutande eller brytande kontakter och resulterande utsignaler ligger som belastningar i 

respektive krets. Programmeringssättet etablerade sig alltså mycket tidigt och är fortfarande 

mycket vanligt förekommande. Uppskattningsvis är 70-80 % av all hittills utvecklad PLC-

kod skriven på ladderform. Ladderdiagrammet anses ge en mer överskådlig bild över 

styrningen än vad instruktionslista och funktionsblock gör. 

Här följer några exempel på ladderprogram. 

: 

Kombinatoriska villkoret   %QX19 = %IX4 ∗ %IX7 + %IX11   

Ger ladderschema:  

 

Inför vi identifierare för de olika signalerna enligt globala variabellistan nedan där 

Identifier-benämningen är en mera processnära benämning än ingångsbeteckningen (IEC-

Adressen) så blir programmet mera lättolkat. (Kolumnen med MIT-adress anger adresser 

specifika för fabrikatet Mitsubishi från tiden före standarden. Dessa är uppbyggda efter 

funktionsmodulernas placering och med hexadecimal numrering 0-F av portarna på varje 

modul. Y13 är då utgångsport (Y) modulplats 1 och port nr 3, X4 är ingångsport (X), 

modulplats 0 (underförstått)och port nr 4.)     

 

Samma program presenteras då i editorn enligt: 
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Programspråket är alltså analogt med reläschema där snedstrecket i symbolen för 

KNAPP3 innebär invertering av signalen. 

 

: 

Relähållkrets blir i ladderform enligt vänstra nätverket nedan. Ett alternativt sätt att 

beskriva samma minnesfunktion i ladder visas till höger. I och med den beskrivningsformen 

har man lämnat kopplingen till reläschema men får mera lättolkade SET- och RESET-

villkor. S innebär alltså SET (1-ställ) och R står för RESET (0-ställ). Att resetvillkoret 

placerats efter setvillkoret innebär att minnet blir reset-dominant. 

 

 

: 

Ett ytterligare exempel på logiskt minne men med setvillkor A ∙ B , resetvillkor C + D och 

setdominant som visas i två varianter. 

   

 

3.2.3. Funktionsblock (FBD – Function Block Diagram)  

FBD beskriver logiken som kopplade logiska funktionsblock. I följande exempel används 

de mest grundläggande funktionerna men som kommer att framgå av fortsättningen finns 

ett stort antal funktionsblock tillgängliga i utvecklingsmiljöerna som används vid både 

FBD, LD och SFC-programmering. Här följer exempel på FBD-program som bygger på 

LD-exemplen ovan. 

 

: 

Liksom i Exempel 3.1 används det kombinatoriska villkoret 

%QX19 = %IX4 ∗ %IX7 + %IX11   

Ger FBD-program: 
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Alternativt med användning av deklarerade variabler med Identifier-benämningar: 

 

 

: 

FBD-program analogt med Exempel 3.2. Funktionsblocket kräver allokering av 

minnesplats varför det ges ett Instance-namn, här Minne1, som gör funktionsblocket unikt 

med egen identitet. RS innebär RESET-dominant. 

 

 

: 

FBD-program analogt med Exempel 3.3. SR innebär SET-dominant minne. 

 

 

3.2.4. Instruktionslistan ( IL – Instruction List )  

Instruktionslistprogram består av en serie av instruktioner som matas in efter varandra. 

Instruktionen består av en operationsdel och operaranddel. Operationsdelen bestämmer vad 

som skall göras dvs. oftast någon logisk operation. Operanden anger vilken signal som 

operationen skall utföras på. Här följer på IL-program analoga med tidigare LD- och FBD-

program, Exempel 3.1 - Exempel 3.3 respektive Exempel 3.4 - Exempel 3.6.  
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: 

 

:   

 

:   

 

Mindre PLC-system programmerades tidigare ofta direkt via programmeringsdosa kopplad 

till PLC-systemet. Då används instruktionslistan som programmeringsform då en sådan 

lista är lätt att knappa in via en enkel knappsats på programmeringsdosan och programmet 

kan presenteras rad för rad på en enkel display. Med datorbaserade programmeringsmiljöer 

har användningen av instruktionslista minskat väsentligt. IL-program kommer inte att 

beröras ytterligare i denna skrift. 

 

3.2.5. SFC och ST. 

Ytterligare två programspråk finns i standarden: 

- SFC – Sequence Function Chart – Funktionsdiagramprogrammering 

- ST – Structured Text – Programmering i strukturerad text, ett högnivåspråk liknande C 

SFC tas upp i senare separata avsnitt. 
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Kap 4. Instruktionsuppsättning i standard IEC 61131-3. 

Föregående avsnitt behandlade hur grundläggande logik programmeras i de tre IEC-

standardspråken LD, FBD och IL. När vi nu går vidare för att titta på ytterligare tillgängliga 

instruktioner finner man att dessa inte kan beskrivas i LD utan utgörs av funktionsblock 

vilka vid FBD-programmering faller in naturligt men också integreras i LD-program om 

man föredrar detta. Det som skiljer LD- och FBD-programmering är alltså hur man 

beskriver grundläggande logik och minnesfunktioner. Av den anledningen kommer nu  

ytterligare funktioner att beskrivas. Några exempel ges både i LD och FBD medan några 

presenteras i FBD-program varvid det överlåts till läsaren att implementera dem i LD-

program om så önskas. 

 

 Logik. 

De logiska grundfunktionerna AND, OR, NOT och XOR utgör basen för kombinatoriska 

villkor och hur de hanteras i programspråken FBD och LD är redan exemplifierat i Kap 3. 

Likaså har olika sätt att implementera minnen (vippor), både SET-dominanta och RESET-

dominanta exemplifierats där. För fullständighetens skull visas grundfunktionerna nedan 

både som FBD och LD: 

 

 

AND 
  

 

 

OR   

 
 

 

 

XOR 
 

 

 

 

NOT   

 

 

RS-vippa 

(RESET-dominant)  
 

 

 

SR-vippa 

(SET-dominant) 
  

 

Ingångar och utgångar kan inverteras vilket gör att NOT-blocket inte behöver användas så 

ofta. Se exempel nedan:  
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NAND 
  

 

 

Q = A + B                  
 

 

 

   

Som nämndes i Kap 3 finns också tillgång till register d v s möjlighet att lagra och hantera 

numeriska värden. Dessa register adresseras %MW0.n och är i de flesta PLC av storleken 

16 bitar och rymmer därmed värden mellan  0 och 65535 om registervariabeln deklareras 

som typ WORD (unsigned) eller värden mellan  -32768 och +32767 om den deklareras som 

typ INT (signed).  

Möjligheten att hantera numeriska värden innebär att behov uppstår att på olika sätt jämföra 

olika registervärden med varandra varför det finns ett antal instruktioner (funktionsblock) 

för att utföra dessa jämförelser. Följande instruktioner finns. 

EQ  -  EQual   -  lika med,  𝐴 = 𝐵 
 

NE  -  Not Equal   -  skiljt från,  𝐴 ≠ 𝐵 
 

GT  -  Greater Than  -  större än, 𝐴 > 𝐵 
 

GE  -  Greater or Equal   -  större eller lika med, 𝐴 ≥ 𝐵 
 

LT  -  Less Than   -  mindre än,  𝐴 < 𝐵 
 

LE  -  Less or Equal  -  mindre än eller lika med,  𝐴 ≤ 𝐵 
 

 

För alla dessa funktionsblock är ingångsvariablerna BOOL, INT, WORD, DINT, DWORD 

tillåtna. Ingångsvariablerna måste dock vara av samma typ d v s om A är av typ INT så 

måste B vara av typ INT o s v. Utgången, Q, är alltid en BOOL som är  TRUE om 

jämförelsen är sann, i annat fall FALSE.  

Jämförande instruktioner finns som jämför ett registervärde med ett annat registervärde 

enligt ovan men jämförelse kan också göras med en konstant eller med ett konstant värde, 

se senare Exempel 4.1.  

Dessa jämförelsegrindar kan ha fler än två ingångar. För nedanstående exempel gäller att 

𝑄 = 𝑇𝑅𝑈𝐸 om 𝐴 > 𝐵 > 𝐶 > 𝐷. 
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De nu introducerade grindarna är inte realiserbara med relälogik och därmed har vi också 

lämnat möjligheten att beskriva dem med ladderlogik. Exempel 4.1 nedan visar två analoga 

program i LD respektive FBD där det framgår att de två språken när man kommer in på 

instruktioner utanför grundläggande binär logik så används samma grindspråk i LD som i 

FBD. Variabellistan presenteras också för att visa de olika typ-deklarationerna. 

: 

En lampa, LAMPA, skall lysa om KNAPP1 och KNAPP2 påverkas eller om ett tal REG1 är 

mindre än 7. 

 

                

 

 

 Beräkningar 

Utöver att på olika sätt jämföra olika variabler är det ju också intressant att kunna utföra 

algebraiska beräkningar. Därför finns följande funktionsblock tillgängliga. 

(Samtliga dessa funktionsblock finns med Enable-ingång för villkorad exekvering)  

ADD  -  Addera   - 𝑄 = 𝐴 + 𝐵 
 

SUB  -  Subtrahera   - 𝑄 = 𝐴 − 𝐵 
 

MUL  -  Multiplicera   - 𝑄 = 𝐴 ∙ 𝐵 
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DIV  -  Dividera   - 𝑄 = 𝐴 ÷ 𝐵 
 

MOD  -  Modulus   - 𝑄 = 𝐴 𝑚𝑜𝑑 𝐵 
 

 

De fyra räknesätten får anses kända men kanske mer okända MOD är förknippad med 

division på det sättet att den ger den rest som inte kommer med efter en DIV-operation som 

endast ger heltalsdelen av divisionen utan avrundning.  

För alla variablerna A, B och Q gäller att tillåtna datatyper är INT eller DINT. Alla skall 

vara av samma typ. Observera att ingångsoperander som håller sig inom den deklarerade 

typens tillåtna intervall kan ge resultat som ligger utanför tillåtna intervallet. Om man t ex 

vid multiplikation deklarerar variablerna som INT och resultatet av multiplikationen 

överskrider 16 bitar så kommer de högre bitarna att gå förlorade och resultatet blir alltså 

felaktigt.  

 

 Typomvandlingar 

I sammanhanget kan påpekas att det finns ett antal tillgängliga funktionsblock för 

typomvandling t ex följande: 

 

 
 

Om man vill utvinna de binära bitarna från en en heltalvariabel t ex en INT (16-bitar) kan 

man göra det med INT_TO_BITARR blocket. 

 

 
 

 
Elementen Bit[0]-Bit[15] innehåller nu bitarna i variabeln VARDE. 

 

 Block med enable-ingång (EN / ENO). 

Nedan visas några av de ovan redan presenterade blocken men nu med ytterligare ingång 

och en ytterligare utgång.  
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Dessa block har ett tillägg i benämningen, _E. De två ingångarna med märkning _IN är de 

två ingångar som jämförs enligt jämförelseinstruktionen och resultatet av jämförelsen läggs 

på nedre omärkta utgången. Men resultatet av jämförelsen länkas endast ut till utgången om 

enable-ingången, EN, är aktiverad d v s matas med en BOOL som är TRUE. Om EN= 

FALSE behåller utgången det tillstånd den hade senast EN=TRUE oavsett vad som därefter 

händer på ingångarna _IN. ENO-utgången är endast en vidarekoppling av EN-ingången och 

behöver inte anslutas, därav inget ? på ENO-utgångsbenet.   

 Förflyttningar 

Förflyttning av värde från en variabel eller konstant till en annan variabel utan 

typomvandling utförs med MOVE och MOVE_E  blocken.  

 

I en POU skriven med FBD har blocket MOVE samma funktion som en trådförbindelse 

och behöver därmed inte användas. 

 

I en POU skriven med SFC har blocket MOVE funktionen att i en Action skriven i FBD 

minnas tillståndet i följande steg (Stored action). 

MOVE   - A → Q  
  

MOVE_E - A → Q  endast om B = TRUE  

 

: 

Ett värde lagrat i INT-variabeln VARDE skall om A eller B påverkas multipliceras med 2 

men om C påverkas multipliceras med 7. Resultatet lagras i INT-variabel RESULTAT.  

För båda alternativen gäller att om någon av A eller B är påverkade och C samtidigt är 

påverkad är det C som får genomslag och därmed multiplikation med 7 eftersom koden 

exekveras uppifrån och ned.  

Alternativ 1:                  Alternativ 2:  
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: 

Ett fyra bitars tal (0-15) kommer in till ett PLC via fyra digitala ingångar kopplade till 

BOOL-variablerna  BIT_0, BIT_1, BIT_2 och BIT_3. Programmet skall överföra detta 

fyrabitarsvärde till en INT-variabel, VARDE. 

Lösningsalternativ A: 

 
 

De fyra BOOL-variablerna BIT_0, BIT_1, BIT_2 och BIT_3 typomvandlas till INT-

variabler. Därefter multipliceras respektive bit med sin vikt varefter de summeras.  

 

Lösningsalternativ B: 

Här åstadkoms samma sak med hjälp av bitadresseringsmöjligheten i ett register (se avsnitt 

3.2.1). VARDE är adresserat enligt variabellistan nedan, till %MW0.0 och då når man 

respektive bit i detta INT-register med bitadresserna %MX0.0.0 , %MX0.0.1…..osv. Varje 

ingångsbit (BIT_0 osv) 1-ställer eller 0-ställer sin bit i VARDE. Observera den lilla 

inversringen på ingången till nedre MOVE-grinden i varje nätverksruta. INT-variableln 

VARDE syns alltså inte i koden men får sitt värde via adresseringen i variabellistan. 

Observera att denna bitvisa adressering inte är möjlig i alla PLC:er (t ex inte i Mitsubishi 

A1S men i Q02) 
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 Ytterligare registerhantering 

Här följer ytterligare några funktionsblock för registerhantering. 

 

MIN              - minsta värdet A,B,C till Q 

 

MAX            - största värdet A,B,C,D till Q 

 

LIMIT   - 

om Amin < A < Amax så Q=A  

om A ≤ Amin så Q = Amin 

om A ≥ Amax så Q = Amax  

ABS  - Q = |A| 
 

 

Blocken nedan är för förskjutning av innehållet i ett register deklarerat som WORD eller 

DWORD. Skiftning SHL och SHR innebär att bitinnehållet i registret skiftas vänster 

respektive höger så många steg som anges med konstanten n. De bitar som skiftas ut 

försvinner och de som töms blir nollställda.  

SHL, SHR        - shiftning av A (se text)   

 

Rotation ROL och ROR innebär att bitinnehållet i registret roteras åt vänster respektive åt 

höger så många steg som anges med konstanten n. Den bit som skiftas ut läggs i andra 

änden i den bit som töms.  

ROL; ROR                - rotation av A (se text)   

 

 

För alla ovan presenterade registerhanteringsinstruktioner finns för var och en också 

varianten med enable-ingång vilken gör att utförandet av instruktionen är villkorad.  

 Flankavkänningar. 

Inte så sällan är det intressant att trigga vissa instruktioner att utföras endast vid positiv eller 

negativ flank hos den signal som används som enablesignal. Positiv flank (rising edge) är 

när en binär signal (BOOL) slår om från låg till hög, FALSE till TRUE. Negativ flank 

(falling edge) är när en binär signal (BOOL) slår om från hög till låg. IEC-standarden 
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använder sig av ett flankavkännande block som kopplas till efterföljande blocks 

enableingång.  

 

 

 

: 

Register VARDE skall öka sitt värde med 7 varje gång det kommer en positiv flank på 

ingång A. Register VARDE skall minska sitt värde med 56 vid negativ flank på ingång B 

under förutsättning att flagga C är aktiv.  

Kod: 

 

Variabellista: 

 

 

Beteckningarna trig1 och trig2 är Instance för de två Function Blocks som används i 

Exempel 4.4. Som tidigare nämnts är en del funktionsblock (kallade Function Block) 

uppbyggda av flera instruktioner med interna variabler. För att ett Function Block skall bli 

unikt skapas en kopia med unika interna variabler genom att ge blocket ett namn, Instance. 

Denna Instance måste deklareras i variabellistan. Identifierarna trig1 och trig2 deklareras 

alltså som R_Trig respektive F_Trig_E i variabellistan eftersom triggningen med A var 

ovillkorlig men triggningen med B var under villkor att C var påverkad.  
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Observera att om inte triggning hade använts i Exempel 4.2 där VARDE räknas upp skulle 

uppräkning ske varje exekveringsvarv som EN-ingången var aktiverad vilket skulle 

innebära att VARDE ökade med något tusental per sekunds påverkan av EN. 

 Räknare. 

Att räkna pulser från pulsgivare för att bestämma antal passerade paket på en transportbana, 

varvtal på en axel e dyl är naturligtvis intressant i styrsammanhang. Med hjälp av de 

funktionsblock som redan är presenterade kan en räknarfunktion byggas och ett visst antal 

hos räknaren avkodas. Detta illustreras med följande Exempel 4.5: 

: 

Varje positiv flank på ingång A ökar register RAKNARE med ett. Varje positiv flank på 

ingång B minskar register RAKNARE med ett. Om innehållet i register RAKNARE är större 

än 14 aktiveras utgång Q. Register RAKNARE nollställs av ingång NOLLST.  

 

Triggningen av nollställningssignalen, NOLLST, är inte nödvändig men kan göras för att 

förhindra att en längre påverkan på NOLLST förorsakar att räknepulser går förlorade. 

I standard IEC 61131-3 finns också färdiga räknefunktionsblock, CTU, CTD och CTUD 

vilket står för Counter Triggered Upward, Counter Triggered Downward respektive 

Counter Triggered Upward / Downward. 

 

PV står för Preset Value (inställt värde), CV står för Current Value (aktuellt värde), Q är en 

boolesk utsignal.  

För CTU gäller att om RESET=TRUE så nollställs CV, Q=FALSE och ingen uppräkning är 

möjlig. Då RESET=FALSE ökas CV med 1 för varje positiv flank in på CU, då CV≥PV 

sätts Q=TRUE.  
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För CTD gäller att om LOAD=TRUE så sätts CV=PV, Q=FALSE och ingen nedräkning är 

möjlig. Då LOAD=FALSE minskas CV med 1 för varje positiv flank in på CD, då CV≤0 

sätts Q=TRUE.  

CTUD är en kombination av CTU och CTD med gemensamt PV. Utgång QU=TRUE då 

CV≥PV och QD=TRUE då CV≤0.   

För alla ovan presenterade räknarfunktionsblock finns för var och en också varianten med 

enable-ingång vilken gör att utförandet av instruktionen är villkorad. 

: 

Här följer en lösning på samma problem som i Exempel 4.5 men utan möjlighet till 

nedräkning, nu löst med tillgängliga räknarfunktionsblock. (Med ett CTUD-block kunde 

också nedräkningsfunktionen lösts.) 

 

 

 Tidskretsar. 

Att ta tid och skapa tidsfördröjningar för att bl a skapa tidsutrymme för händelser att ske i 

processen är en nödvändig funktion att ha tillgång till. Ett PLC innehåller ett antal timers 

som adresseras via Instance-benämningen hos följande tidsfunktionsblock. I standard IEC 

61131-3 finns färdiga tidsfunktionsblock, TON, TOF och TP vilket står för Timer On 

Delay, Timer Off Delay respektive Timer Pulse. 

 

PT står för Preset Time (inställd tid) vilken anges i datatyp TIME. Formen på tids-

angivelsen ser exempelvis ut enlig T#2h34m45s700ms eller T#7s. ET är också typ TIME 

och ger hittills förfluten tid (Elapsed Time).   

För TON gäller att om IN=FALSE så nollställs ET, Q sätts omedelbart FALSE och timern 

räknar inte. Då IN=TRUE räknas tiden upp i ET och då ET>PT sätts Q=TRUE. Tillslaget 

hos IN fördröjs alltså tiden PT innan den läggs på Q.  

För TOF gäller att om IN=TRUE så sätts Q omedelbart TRUE. Då IN=FALSE fortsätter Q 

att ligga TRUE ytterligare tiden PT varefter Q=FALSE. IN läggs alltså ut på Q och 

frånslaget hos Q fördröjs tiden PT efter det att IN=FALSE.  

För TP gäller att vid positiv flank på IN läggs Q=TRUE under tiden PT oavsett om signalen 

på IN är kortare eller längre än PT. ET visar hur lång tid som förflutit av pulsens längd. 

För alla ovan presenterade timerfunktionsblock finns för var och en också varianten med 

enable-ingång vilken gör att utförandet av instruktionen är villkorad. 
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: 

Då ingången LJUSKNAPP aktiveras tänds TRAPPBELYSNING och fortsätter lysa 

2 minuter.  För att förhindra ofrivilliga nuddningar av ljusknappen har en tidsfördröjning 

på 0,5 sekunder lagts in innan den reagerar med att tända ljuset.  

Lösningsalternativ A:  

Observera att utsignalen TRAPPBEL kan återkopplas till ingången på timer2 och därmed 

via RS-vippan ”släcka sig själv” efter 2 minuter.  

ET-utgången behöver inte anslutas. Den kan vara intressant att ansluta till en variabel av 

typ TIME för visning i ett operatörssystem. 

Detta alternativ innebär att om LJUSKNAPP är aktiverad längre än 2 minuter kommer en 

ny 2-minutersperiod att starta utan att TRAPPBEL släcks.  

 

Lösningsalternativ B:  

LD-lösning analog med FBD-lösningen i alternativ A. 

 

Lösningsalternativ C:  

Här utnyttjas ett tidsfördröjt frånslag vilket gör att belysningsperioden blir 2 minuter 

ytterligare efter det att ljusknappen släpps.  

 

 



54 

 

Lösningsalternativ D:  

Detta alternativ ger alltid en 2 minuter lång belysning varefter ljusknappen måste släppas 

och åter påverkas för att en ny 2-minutersperiod skall påbörjas. 

 

När insignalen, IN, på ovan presenterade TON-timer nollställs så nollställs också ET. 

Önskar man mäta totala tiden för ett diskontinuerligt förlopp, en händelse som dyker upp då 

och då, kan något av de interna klockpulstågen utnyttjas för att skapa en tidtagning av ett 

diskontinuerligt förlopp enligt följande exempel.    

 

: 

Den samlade tiden som två ingångar, A och B, båda är aktiverade mäts. När den samlade 

tiden överstiger 240 sekunder aktiveras utsignal Q. Då insignal NOLLST påverkas 

nollställs tidtagningen och Q avaktiveras. Nollställning är inte möjlig om inte avkodade 

tiden uppnåtts och Q därmed är aktiv. 

 

 

Global variabellista: 

 

Header – Lokal variabellista: 

 

Med denna typ av tidtagning kan också flera olika tider avkodas om så önskas. 
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I variabellistan framgår att TIDPULS är kopplad till adress %MX10.412som enligt Figur 

3.13 är en 1 Hz pulståg som då ger en positiv flank per sekund. Räkningen av pulser sker i 

en INT-variabel (men kunde också göras i TIME-variabel).  

Som synes används två olika variabellistor. Globala variabellistan tar upp variabler där 

man som programmerare väljer destinationsadress vilket är nödvändigt för bl a fysiska in- 

och utsignaler samt i detta fall val av klockpuls. För arbetsvariablerna sum_tid och trig1 

kan systemet själv välja adress. Mera om detta kommer att behandlas i senare avsnitt. 

Noggrannheten på denna klockning kan bli dålig. Till- och frånslag från A och B kan ju 

komma när som hels under sekunden och ett fel på upp till närmare en sekund är möjlig för 

varje tillslag. Ett alternativ är att använda klockpulssignalen %MX10.410 som jobbar med 

10 Hz samt koda av både positiv och negativ flank. Då fås istället uppräkning av sum_tid 

med 20 ggr/sekund och därmed bättre noggrannhet. Avkodningen av 240 sekunder får då 

ske med 20⋅240=4800. Se modifierad kod nedan.  

   

Denna lösning kräver dock en programcykeltid på mindre än 5 ms för att tidräkningen skall 

hänga med. Inga varningar ges för detta men PLC:ts operativsystem kan via 

monitoreringsfunktion i utvecklingsmiljön ge besked om programcykeltiden.  

 

 A/D- och D/A-omvandling. 

Kodning av A/D-omvandling (ADC) och D/A-omvandling (DAC) skiljer sig mellan olika 

PLC-fabrikat och ingår alltså inte i någon standard. En A/D-omvandling resulterar dock 

alltid i att det A/D-omvandlade värdet hamnar i ett register av typ INT eller WORD och 

kan därefter hanteras som vilket register som helst. ADC- och DAC-enheterna är ofta 

konfigurerbara med avseende på insignalsomfång och utsignalsomfång.  

Insignal till en ADC kan vara både ström och spänningssignal där strömsignalering med 

industristandarden 4-20 mA är vanlig men även t ex spänningssignalering 0-10V m fl 

förekommer. Utsignal är då ett digitalt siffervärde t ex 0-255 (8-bitars omvandlare), 0-1023 

(10-bitars) eller 0-4095 (12-bitars) men skalan kan också justeras till jämna värden och 

därmed inte utnyttja hela omvandlarens upplösning som t ex 0-4000.  

 

: 

En temperaturgivare är kalibrerad att för temperaturintervallet -40 till 100 °C ge en 

utsignal 4-20mA. Denna strömsignal kopplas till en ADC-ingång hos ett PLC där 
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insignalsintervall 4-20 mA omvandlas till utsignalsintervall 0-4000. I ett register, benämnt 

gradC, skall temperaturen i hela °C ligga. Det A/D-omvandlade värdet från temperatur-

givaren ligger i register benämnt ADCres. Båda registren antas vara av typ INT.  

Lösning: 

Sambandet mellan gradC och ADCres kan beskrivas grafiskt enligt 

 

Med tvåpunktformeln kan ekvationen för den räta linjen bestämmas: 

𝑔𝑟𝑎𝑑𝐶 − (−40) =  
100 − (−40)

4000 − 0
 ∙ (𝐴𝐷𝐶𝑟𝑒𝑠 − 0) 

vilket tillsnyggat ger: 

𝑔𝑟𝑎𝑑𝐶 =  
7

200
∙ 𝐴𝐷𝐶𝑟𝑒𝑠 − 40 

En variabel typ INT består av 16 bitar varav en teckenbit och kan därmed hantera tal 

mellan -32768 och +32767. I den beräkningskedja som skall programmeras får alltså inte 

något värde riskera att hamna utanför detta intervall. Vidare skall man sträva efter att ha 

så stora intervall för mellanresultat som möjligt för att inte tappa noggrannhet. Vi börjar 

med en dålig lösning: 

 

Detta är kanske den mest ”rakt på” lösningen utifrån det matematiska uttrycket ovan men 

man inser snart att resultatet av första divisionen alltid <1 vilket innebär att resultatet av 

denna heltalsdivision är noll. Detta gör att gradC = -40 oavsett vad ADCres är. 

Ny och bättre lösning: 

  

Med denna lösning blir resultatet i första mellanled i intervallet 0 – 28000 vilket ryms i 16 

bitar. I denna lösning finns ett avrundningsfel kvar. Resulterade gradC är heltalsdelen av 

den temperatur som beräknas d v s om temperaturen var t ex 72,8 °C så blir resultatet här 

72 °C. 
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: 

En DAC är kalibrerad så att det digitala värdet, lagrat i DACut, med omfång 0-4000 ger en 

utsignal 0-10V. När en digital insignal OKA aktiveras skall analoga utsignalen öka med 

0,1 V/sekund vilket motsvarar att DACut skall öka med 40 enheter/sekund. När en digital 

insignal MINSKA påverkas skall utsignalen minska i samma takt. DACut får inte gå utanför 

gränserna 0-4000.  

Lösning: 

 

 

 Datatyperna – ARRAY, REAL. 

Utöver datatyperna BOOL, INT, DINT, WORD, DWORD, och TIME som presenterats 

tidigare finns i standarden också typerna REAL och ARRAY. Typen REAL innebär 

hantering av ett flyttal och därmed användbart enbart när PLC-processorn kan hantera 

flyttal (Mitsubishi Q02 men inte A1S). De hittills presenterade funktionsblocken fungerar i 

de flesta fall inte mot REAL.  Denna datatyp är mest använd vid mer omfattande 

beräkningar som då normalt utförs i programspråket Structured Text (ST) som presenteras i 

senare avsnitt.  

Datatypen ARRAY innebär att vektorer i upp till 3 dimensioner kan hanteras. 

Typdeklarationen görs i variabellistan och en ARRAY deklareras t ex som 

 

 

 

I listan är VEKTOR_A endimensionell med 4 element av typen INT. VEKTOR_B är 

tvådimensionell med 4x5 element av typen BOOL medan VEKTOR_C är tredimensionell 

med 2x4x3 element av typen WORD 
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: 

Array LAGER[LAGERPLATS] skall hålla reda på vilken typ av produkt som lagras in på 

lagrets fyra platser. Typen av produkt som lagras in finns i WORD-variabeln PROD_NR 

och är ett artikelnummer som ryms inom WORD-variabelns 16 bitar. På något sätt har 

artikelnumret hamnat i PROD_NR för den artikel som står i tur att lagras. En BOOL-

flagga LAGRA aktiveras då lagring skall ske. Lagret fylls på från lagerplats 0 och i 

nummerordning uppåt. Hur det sedan töms o s v lämnar vi därhän. 

Lösning: 

 

 

 

LAGER-vektorn har i variabellistan fått destinationsadress %MW0.0 vilket är 

startadressen för vektorn. De fyra elementen (artikelnumren) kommer alltså att hamna i de 

fyra adresserna %MW0.0 till %MW0.3. 

Hur lagras då en tvådimensionell array? Antag att arrayen TVARR[0..2,0..3] dvs 34 

element deklareras med startdestinationsadress %MW100.0. De olika elementen hamnar då 

enligt följande i PLC:ets registerarea: 

TVARR[0,0] i 

%MW100.0  

TVARR[1,0] i 

%MW100.4 

TVARR[2,0] i 

%MW100.8 

TVARR[0,1] i 

%MW100.1 

TVARR[1,1] i 

%MW100.5 

TVARR[2,1] i 

%MW100.9 

TVARR[0,2] i 

%MW100.2 

TVARR[1,2] i 

%MW100.6   

TVARR[2,2]i 

%MW100.10 

TVARR[0,3] i 

%MW100.3 

TVARR[1,3] i 

%MW100.7 

TVARR[2,3] i 

%MW100.11 
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 Lista över vanliga IEC 61131-3 funktionsblock. 

Nedanstående tabell visar de vanligaste funktionsblocken som finns tillgängliga i IEC 61131-3. 

De flesta blocken finns också med enablefunktion dvs EN-ingång och ENO-utgång. In- och 

utgångar kan inverteras genom att klicka alldeles innanför anslutningen till blocket.  

I tabellen visas GX IEC Developers grafiska symboler. 

Funktion GX IEC Dev. Kort förklaring 

AND 

 

Den logiska funktionen ”OCH” jämför bit för bit av 

ingångarna och lägger resultatet på utgången till höger. 

In- och utgångar kan inverteras genom att klicka 

alldeles innanför anslutningen till blocket. Fler 

ingångar kan läggas till genom att ”dra” i blockets 

nederkant 

OR 

 

Den logiska funktionen ”ELLER” jämför bit för bit. In- 

och utgångar kan inverteras. Fler ingångar kan läggas 

till genom att ”dra” i blockets nederkant. 

XOR 

 

Den logiska funktionen ”EXCLUSIVT ELLER” 

NOT 

 

Den logiska funktionen ”NOT”. Utsignalen är inversen 

av insignalen. Eftersom in- och utgångar på de flesta 

block kan förses med inverteringsringar behöver detta 

block sällan användas. 

RS 

 

RS-vippan sätter TRUE på utgången när SET är TRUE, 

och FALSE på utgången när RESET1 är TRUE. Om 

båda ingångarna är TRUE samtidigt dominerar 

RESET1 (1:an betyder dominans). 

SR 

 

SR-vippan fungerar som ovanstående, men om båda 

ingångarna är TRUE samtidigt dominerar SET1. 

ADD 

 

Blocket ADD adderar ingångarnas värde och lägger 

resultatet på utgången till höger. Antalet ingångar är 

valfritt. 

SUB 

 

Utgången är här värdet av det den övre ingången minus 

den nedre.  
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MUL 

 

Utgången är produkten av ingångarna. Antalet ingångar 

är valfritt. 

DIV 

 

Det övre talet divideras med det nedre och resultatet 

läggs på utgången. Operationen är en heltalsdivision, 

d.v.s. eventuella decimaler i resultatet klipps bort. Om 

man är intresserad av resten som bildas vid en 

heltalsdivision finns blocket MOD. 

EQ 

 

Utgången får värdet TRUE om ingångarna har samma 

värde, annars FALSE. 

NE 

 

”Not Equal”-blocket ger inversen av ovanstånende, 

d.v.s. FALSE när ingångarna är lika och TRUE när de 

är olika. 

LT 

 

”Less Than” ger TRUE om den övre ingången är 

mindre än den nedre. 

LE 

 

”Less or Equal than” ger TRUE om den övre ingången 

är mindre än eller lika med den nedre. 

GT 

 

Ger på motsvarande sätt TRUE om den övre ingången 

är större än den nedre. 

GE 

 

Utgången är TRUE om den övre ingången är större än 

eller lika med den nedre. 

SEL 

 

Blocket väljer mellan IN0 och IN1. Om ingången G är 

FALSE kopplas värdet vid IN0 till utgången. Om G är 

TRUE kopplas i stället IN1 vidare. 

LIMIT 

 

Insignalen IN skickas vidare till utgången om den 

ligger inom intervallet MN≤IN≤MX. Annars får 

utgången värdet MN respektive MX i stället. 

Typkonv-

ertering  

Typkonverteringsblock finns i en mängd varianter.  

MOVE 
 

Värdet flyttas från ingången till utgången på blocket. 

Kan användas i actions (I SFC) för att minnas 

tillståndet hos variabler i efterföljande steg. (Stored 

action) 
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MOVE_E 

 

Som namnet antyder flyttas värdet från ingången till 

utgången på blocket när ”Enable” (EN) är TRUE.  

R_TRIG 

 

Utgången Q blir TRUE när ingången just fått värdet 

TRUE (positiv flank). Sedan återvänder utgången till 

FALSE vid nästa ”scan-cycle”. Alla funktionsblock 

som har ett minne, d.v.s. utgången beror inte enbart på 

ingångarnas momentana värde, måste ha ett 

instansnamn. 

F_TRIG 

 

Fungerar motsvarande för negativ flank. Utgången blir 

TRUE precis när ingången växlat till FALSE, men 

återvänder nästa ”scan-cycle” till FALSE. 

TON 

 

Blocket ”Timer On delay” ger ett fördröjt tillslag på Q 

när IN slås till. PT anger tidsfördröjningen. Om PT är 

T#2s kommer Q att bli TRUE två sekunder efter att IN 

blir TRUE (men bli FALSE samtidigt som IN). På ET 

visas tiden som har gått från tillslaget. ET måste inte 

användas. 

TOF 

 

Blocket ”Timer Off delay” ger ett fördröjt frånslag på 

Q när IN slås från. På ET visas tiden som har gått från 

frånslaget. Om fördröjning önskas på både positiv och 

negativ flank kan TON och TOF seriekopplas. 

TOF 

 

Blocket ”Timer Pulse” ger en puls av längd PT när IN 

aktiveras oberoende av varaktighet av IN. På ET visas 

tiden som har gått från tillslaget.  

CTU 

 

CTU räknar positiva flanker på CU och antalet syns på 

CV. Om man har ett ”mål” för antalet läggs detta på 

PV. När CV ≥ PV skickas en TRUE-signal ut på Q. 

Räknaren nollställs när RESET=TRUE. 

CTD 

 

CTD räknar på samma sätt, men i motsatt riktning, från 

PV ner till noll, i stället för tvärtom. Räknarvärdet 

ligger på CV och Q blir TRUE när CV=0. LOAD 

används för att återställa CV till startvärdet PV. 
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 Grundläggande datatyper IEC 61131-3 
 

Datatyp Värdeområde Exempel på konstanter 

BOOL FALSE    TRUE FALSE     TRUE 

INT -32768  ….  +32767 0    -23     876 

WORD 0 …. 65535 0     4567 

DINT -2147483648…. 2147483647 0    -456789     779544 

DWORD 0…. 4294967295 0      680777 

TIME T#-24h   ….. T#24h T#2h34m45s25ms     T#200ms 

REAL 3.4E±38 0.0      2.54       -7.865E4 

STRING Max 50 tecken ”HELLO” 

ARRAY Max 3 dimensioner  
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 Identifiers och reserverade nyckelord IEC 61131-3  

Identifiers (variabelnamn, funktionsnamn, programnamn mm) är ”case insensitive” d v s det 

görs ingen skillnad på versaler och gemener. 

 

- Identifiers får bestå av bokstäver (EJ å, ä ,ö), siffror och ”underscores  _” 

- Identifiers måste börja med en bokstav eller ”underscore _” 

 

Följande ord är reserverade nyckelord i IEC 61131-3 och får inte användas som identifiers: 

 

ABS    ACOS    ACTION    ADD    AND    ANDN    ANY    ANY_BIT    ANY_DATE    

ANY_INT    ANY_NUM    ANY_REAL    ARRAY    ASIN    AT    ATAN  

 

BOOL    BY    BYTE  

 

CAL    CALC    CALCN    CASE    CD    CDT    CLK    CONCAT    CONFIGURATION    

CONSTANT    COS    CTD    CTU    CTUD    CU    CV  

 

DATE    DATE_AND_TIME   DELETE    DINT    DIV    DO    DS     DT    DWORD  

 

ELSE    ESIF    END_ACTION    END_CASE    END_CONFIGURATION    END_FOR  

END_FUNCTION    END_FUNCTION_BLOCK    END_IF    END_PROGRAM    

END_REPEAT    END_RESOURCE    END_STEP    END_STRUCT    

END_TRANSITION    END_TYPE    END_VAR    END_WHILE    EN    ENO    EQ    ET    

EXIT    EXP    EXPT 

 

FALSE    F_EDGE    F_TRIG    FIND    FOR    FROM    FUNCTION      

FUNCTION_BLOCK  

 

GE    GT  

 

IF    IN    INITIAL_STEP    INSERT    INT    INTERVAL  

 

JMP    JMPC    JMPCN  

 

L    LD    LDN    LE    LEFT    LEN    LIMIT    LINT    LN    LOG    LREAL    LT    

LWORD  

 

MAX    MID    MIN    MOD    MOVE    MUL    MUX  

 

NE    NEG    NOT  

 

OF    ON    OR    ORN  

 

P    PRIORITY    PROGRAM    PT    PV  

 

Q    Q1    QU    QD  

 

R    R1    R_TRIG    READ_ONLY    READ_WRITE    REAL  RELEASE    REPEAT    

REPLACE    RESOURCE    RET    RETAIN    RETC    RETCN    RETURN    RIGHT    
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ROL    ROR    RS    RTC    R_EDGE  

 

S    S1    SD    SEL    SEMA    SHL    SHR    SIN    SINGLE    SINT    SL    SQRT    SR    ST    

STEP    STN    STRING    STRUCT    SUB  

 

TAN    TASK    THEN    TIME    TIME_OF_DAY    TO    TOD    TOF    TON    TP    

TRANS    TRUE    TYPE  

 

UDINT    UINT    ULINT    UNTIL    USINT  

 

VAR    VAR_ACCESS    VAR_EXTERNAL    VAR_GLOBAL    VAR_INPUT    

VAR_IN_OUT     VAR_OUTPUT  

 

WHILE    WITH    WORD  

 

XOR    XORN 

 

 

 Reserverade nyckelord Mitsubishi 

Följande ord är reserverade och specifika för Mitsubishi och får inte användas som identifiers: 

 

B0     B1    B2 …. 

C0    C1     C2 ….       

CC0     CC1     CC2 ….         

CN0     CN1     CN2 …. 

D0    D1     D2 …. 

F0     F1    F2 …. 

J0     J1     J2 …. 

L0     L1    L2 ..... 

M0     M1     M2 …. 

P0     P1     P2 …. 

S0     S1     S2 ….        

SB0    SB1     SB2 ….       

ST0     ST1     ST2 ….          

SW0     SW1     SW2 …. 

T0     T1     T2 ….       

TC0     TC1     TC2 ….  

U0     U1    U2 …. 

V0     V1     V2 …. 

W0     W1     W2  …. 

X0     X1     X2 …. 

Y0     Y1     Y2 …. 

Z0     Z1     Z2 …. 
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Kap 5. Specifikt för PLC-fabrikat Mitsubishi. 

I Kap 4 presenterades tillgängliga instruktioner och variabler för PLC-programmering 

enligt standard 61131-3. Programutvecklingsmiljön enligt samma standard beskrivs senare i 

Kap 6 och illustreras med utvecklingsmiljön GX IEC Developer vars utvecklingsmiljö är 

riktad till PLC av fabrikat Mitsubishi men stödjer standarden. 

Tillverkare av PLC-system har ansvar gentemot sina gamla kunder och användare från före 

standardens tillkomst. De kompletterar därför sina utvecklingsmiljöer med instruktioner 

och variabelbeteckningssätt som gällde för fabrikatet före standardens tillkomst och som 

kunderna är vana vid att använda. Eftersom detta skrivna material i första hand vänder sig 

till studenter som möter PLC-fabrikatet Mitsubishi i sin utbildning presenteras i detta 

avsnitt fabrikatets specifika instruktioner som finns med i utvecklingsmiljön GX IEC 

Developer och därför kan vara motiverat att känna till vid användandet av denna 

programmeringsmiljö. Många av dessa instruktioner kan också visa sig praktiska och 

smidiga att använda. Att de inte är med som standardinstruktioner beror på att 

framtagningen av en standard efter att många aktörer är etablerade på marknaden är ett 

tagande och givande och ett passande så att ingen aktör skall få konkurrensfördel.    

 

 Mitsubishis signalbeteckningar. 

Mitsubishis ursprungliga adresseringssätt skiljer sig ifrån IEC-standardens vilket beskrivs i 

nedanstående tabell där exempeladresser angivits. I utvecklingsmiljön GX IEC kan man 

välja vilken adressering man vill använda, IEC eller MIT. 

En fördel med MIT-adressering jämfört med IEC-adressering är att MIT har hexadecimal 

numrering och då varje modul (ingångsmodul, utgångsmodul osv) har 16 och ibland 32 

adressplatser innebär det att t ex 1 i adressen Y16 pekar på att adressen pekar mot modul 

nr 2 efter CPU-modulen på bakplanet. Standard IEC tillämpar decimal numrering varvid 

denna koppling till modulposition faller bort. 

Variabel Datatyp IEC-adress MIT-adress 

Q02_CPU 

MIT-adress 

A1S_CPU 

Digital ingång BOOL %IX10 XB XB 

Digital utgång BOOL %QX21 Y16 Y16 

Minnesflagga BOOL %MX0.238 M238 M238 

Minnesflagga, 

batteriuppbackad 

BOOL %MX8.124 L124 L124 

Specialminne BOOL %MX10.402 SM402 M9032 

16-bits register INT, WORD %MW0.324 D324 D324 

32-bits register DINT, DWORD %MW0.34+%MW0.35 D34+D35 D34+D35 

Specialregister WORD %MD10.210 SM210 D9025 
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Det finns ett antal specialminnesflaggor varav några användbara redovisas i tabell nedan 

med adresser. För klockpulstågen i tabellen anges periodtid för pulstågen som Tsv.  

Beskrivning IEC-adress MIT-adress 

Q02 

MIT-adress 

A1S 

TRUE första scan-cykeln efter RUN %MX10.402 SM402 M9038 

10 Hz klockpulståg ,Tsv 0,1s %MX10.410 SM410 M9030 

5 Hz klockpulståg, Tsv 0,2s %MX10.411 SM411 M9031 

1 Hz klockpulståg, Tsv  1s %MX10.412 SM412 M9032 

0,5 Hz klockpulståg, Tsv 2s %MX10.413 SM413 M9033 

Klockpulståg 

Tsv i sekunder skrivs i register 

%MX10.415 

%MD10.415 

SM415  

SD415 

   _ 

  

 Logiska instruktioner – Mitsubishispecifika. 

Vad gäller minnesfunktioner har IEC-standard RS- och SR-funktionsblocken redan 

presenterats. Mitsubishi har två fristående block, ett för SET och ett för RST vilket gör att 

set och reset kan separeras till olika platser i koden. Dessa block motsvarar  –(S)- och –(R)- 

vid ladderprogrammering. Det är framför allt användbart i SFC-programmering där man då 

i ett steg kan ettställa en signal för att sedan i något senare steg nollställa variabeln. Figur 

5.1 nedan visar de båda blocken och med den inbördes placeringen är de båda blocken 

analoga med ett RS-block d v s reset-dominant vippa. Med omvänd ordning, RST överst, 

blir det SR-funktion. Ändelsen _M i SET_M och RST_M är den ändelse som kännetecknar 

alla Mitsubishispecifika funktionsblock. 

 

 

Figur 5.1: Mitsubishispecifika  SET- och RST-block 

Det kan nämnas att vid kompilering av kod i GX IEC Developer översätts först till Melsec-

kod som är Mitsubishis egna utvecklingsmiljö med den ursprungliga instruktions-

uppsättningen. Melsec-koden översätts i nästa steg till maskinkod för PLC-processorn. Det 

innebär att t ex RS- och SR-blocken är SET_M- och RST_M- block paketerade på lämpligt 

sätt. Möjligheten att göra sådana ”paketeringar” och på det viset skapa egna funktionsblock 

är centralt i IEC-standarden och är viktig för rationell programutveckling.  

 Beräknings- och förflyttningsinstruktioner–

Mitsubishispecifika. 

När det gäller algebraiska operationer finns ett flertal Mitsubishi-specifika funktionsblock 

som kan rationalisera programutvecklingen. När det gäller addition finns följande 

additionsrelaterade block: 
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Den första, PLUS_3_M är identisk med IEC-blocket ADD_E dvs då EN aktiv utförs 

d1 = s1+s2. Block nr 2, PLUS_M, innebär att destinationsregistret vid d ökas med värdet 

(register eller konstant) kopplat till s då EN=TRUE. För båda dessa gäller att operationen 

utför varje programcykel som EN=TRUE. I det tredje blocket, PLUSP_M, är en positiv 

flanktriggning inbyggd i EN-ingången vilket innebär att destinationsregistret ökas endast 

vid positiv flank in till EN. 

Motsvarande block finns för de övriga räknesätten benämnda MINUS_3_M, 

MINUSP_3_M, MINUS_M, MINUSP_M, MULTI_3_M, DIVIDP_3_M ..o s v, 

Utöver dessa finns två block för att vid positiv flank öka respektive minska ett register med 

1. 

 

 

Förflyttning av registervärden eller konstanter gjordes med IEC-instruktionerna MOVE 

eller MOVE_E. Mitsubishispecifika block med motsvarande funktion ses nedan där som 

synes också inbyggd positiv flanktriggning finns med. 

 

     

 

En finess är också att med dessa block kan bitinformation överföras till 16-bitars register 

enligt följande exempel. 

 

: 

Vi tittar på en alternativ lösning till Exempel 4.3 som var formulerat som följer. Ett fyra 

bitars tal (0-15) kommer in till ett PLC via fyra digitala ingångar kopplade till BOOL-

variablerna BIT_0, BIT_1, BIT_2 och BIT_3. Programmet skall överföra detta 

fyrabitarsvärde till en INT-variabel, VARDE. 

Lösning: 

Med följande lösningssätt måste tilldelningen av ingångsvariablerna vara känd och 

utnyttjas i koden. Antag tilldelning enligt: 
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Nu kan överföring av de 4 bitarna göras med en enda instruktion: 

 
K1X0 innebär att med början från X0 och uppåt tas 4 bitar. X0 läggs då i lägsta biten, X1 i 

näst lägsta o s v. Dessa överförs ovillkorlig (TRUE) varje exekveringsvarv till registret 

VARDE. (För att ge ytterligare ett exempel så innebär K3M8 att med början från 

interminne M8 och uppåt överförs 12 bitar (3x4)där M8 blir lägsta bit o s v.)      

 

Vissa moduler i Mitsubishi-systemet kallas ”intelligenta moduler”. En ”intelligent modul” 

kan vara A/D- , D/A-omvandlarmoduler, kommunikationsmoduler för seriell 

kommunikation eller motorstyrningsmoduler.. Dessa intelligenta moduler innehåller en 

egen registeruppsättning med egna adresser. 

För förflyttning av registervärden mellan CPU-delens minne till en ”intelligent modul” hos 

PLC:t används följande två instruktioner.  

 
Modulerna adresserad´s efter den ordning till höger om CPU-modulen som de är placerade 

på PLC:ts monteringsunderlag, det så kallade bakplanet. 

TO_M förflyttar, då SKICKA=TRUE, registervärdet REG_1 till modul på adressplats 3 på 

bakplanet och till registeradress 7 i denna modul. Adressplats på bakplanet är normalt 

samma som positionen på bakplanet räknat från CPU-modulen och med början plats 0. Men 

en modul kan ta upp två adressmodulplatser. Modulnumrering för aktuellt styrsystem fås 

genom uppkoppling av systemet mot GX IEC Developer och kommendera Debug – System 

Monitor.  

FROM_M innebär att, då HAMTA=TRUE, hämtas registervärde från modulplats 5, adress 

2 till REG_2. Men eftersom det i detta fall står 3 vid n3 så innebär det att 3 register hämtas, 

adress 2 till REG_2, adress 3 till CPU-minnesadress ovanför REG_2s tilldelade adress och 

adress 3 till CPU-minnesadress två steg ovanför REG_2s tilldelade adress. Normalt läses ett 

register i taget dvs n3 sätts normalt till 1. 
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 Flankavkännande instruktioner – Mitsubishispecifika. 

Utöver de integrerade flanktriggningar som beskrivits i föregående avsnitt finns ett block 

för positiv flanktriggning, PLS_M vilket helt motsvarar R_TRIG. 

 

      

 

 Räknarinstruktioner – Mitsubishispecifika. 

Basblocket för alla IEC-räknarfunktionsblock i Mitsubishisystem är blocket 

COUNTER_M. Systemet innehåller ett antal räknare (counters), olika antal beroende på 

CPU-typ. För varje positiv flank på EN-ingången kommer ett till blocket kopplat register 

CNn att räknas upp med ett där n är räknarens löpnummer. I figuren har räknare nummer 4 

använts.  

 

 

När värdet kopplat till ingång CValue uppnåtts hos CNn kommer en flagga CCn att tändas. 

På COUNTER_M-blocket är CCn kopplat till en ingång CCoil som inte är möjlig att 

koppla vidare. Istället anropas CCn för att aktivera den händelse som skall aktiveras av 

räknaren. I figur nedan aktiverar CC4 signalen AKT.  CN4 nollställs av NOLLST och 

därmed nollställs även CC4.  

 Timerinstruktioner – Mitsubishispecifika. 

Basblocket för alla IEC-timerfunktionsblock i Mitsubishisystem är blocket COUNTER_M. 

Systemet innehåller ett antal timers, CCn, olika antal beroende på CPU-typ. Då insignal A 

till EN-ingången är aktiv pågår en tidtagning med upplösning 100 ms eller 10 ms. Då 

antalet intervall har uppnått TValue, i detta fall 100 aktiveras TCoil, i detta fall TC7. Då 

EN-ingången går låg nollställs tidräkningen och TCoil går låg, i detta fall TC7. TC0-TC199 

räknar i 100 ms-intervall och TC200-TC255 i 10 ms-intervall. 
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På TIMER_M-blocket är TCn kopplat till en ingång TCoil som inte är möjlig att koppla 

vidare. Istället anropas TCn, i detta fall TC7 för att aktivera den händelse som skall 

aktiveras av timern, i detta fall AKT. 

 

 FIFO-register. 

FIFO-register (first in - first out) används för buffring av data t ex vid lagring av 

komponentidentiteter i en buffert eller för att hålla reda på beställningsköer. Med hjälp av 

instruktionerna FIFW, FIFWP och FIFR, FIFRP kan man skriva till respektive läsa från ett 

sådant register. När ett värde skrivs till ett FIFO -register läggs det längst ner i bufferten 

och då man läser ur registret så tas värdet längst upp i bufferten och alla kvarvarande 

värden stegar upp ett steg. FIFO-registret adresseras till en adress t ex D200 i vilken lagras 

antalet värden som finns i registret. D200 räkas alltså upp med ett då skrivning sker till 

registret och räknas ner med ett då läsning sker ur registret. I nästa D-register, här D201, 

finns det värde som befinner sig högst upp i bufferten, D202 det näst längst upp osv. 

Observera att här är det oftast nödvändigt att använda FIFWP_M resp FIFRP_M dvs 

positiv flanktriggning för annars är risken stor att värden bara rasar in eller ut då enable-

villkoret är uppfyllt. Nedan följer ett exempel med kommentarer. Observera den något 

konstiga användningen av source (s) och destination (d) i FIFR instruktionen. 
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 A/D- och D/A-omvandling i Mitsubishisystem Q02. 

För att kommunicera med omvärlden med analoga signaler utrustas PLC-systemet med 

moduler för just analoga signaler in och ut. Dessa moduler innehåller då A/D- och D/A-

omvandlare och kommunikation med PLC:t sker via ett antal från CPU läs- eller skrivbara 

register i modulen. Till system Q02 finns några alternativa moduler tillgängliga. Här 

presenteras dock A/D-modul Q64AD som har 4 analoga ingångar med valbarhet vad gäller 

signaltyp (ström eller spänning), signalomfång och upplösning enligt tabell nedan. 

 

 

 

Vidare presenteras en D/A-modul Q64DA med 4 analoga utgångar och med samma 

egenskaper som ingångarna vad gäller omfång, upplösning och omvandlingstid. Modulerna 

har också mer avancerade funktioner i form av medelvärdesbildning mm.   

Arbetsområdet hos in- och utgångarna är inställbart. (Hos de vi använder i labbet är både in 

och utgångar normalt kalibrerade för digitalt 0 - 4000 motsvarande analogt 0 - 5 V.) 

Kommunikationen med modulen kräver att modulens placering på bakplanet är känd. På 

labsystemen sitter modulen i ordning CPU – 1 st digital in – 1 st digital ut – AD – DA 

vilket medför att AD-modulen upptar modulplats 2 och DA modulplats 3. För det enklaste 

användarfallet gäller att de kanaler som skall användas enablas samt att analoga signaler 

som A/D-omvandlats kan läsas till systemet i digital form och att digitala värden kan läsas 

ut för D/A-omvandling och placeras på analoga utgången.  

Inställning av signaltyp och omfång för de fyra kanalerna både för Q64DA och Q64AD 

ställs med en så kallad switch enligt:  

 

Signaltyp Hex-värde i Switch 1 

4 – 20 mA 0 

0 - 20 mA 1 

1 - 5 V 2 

0 - 5V 3 

-10V till 10V 4 

0 – 10V 5 
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Switcharna ställs in via GX IEC Developer – Parameter – PLC – I/O assignment och sedan 

Switch.  Kommunikationen med modulen kräver att modulens placering på bakplanet är 

känd. På labsystemen sitter modulerna i ordning CPU – X80 (16 digitala in) – Y10 (16 

digitala ut) – Q64AD – Q64DA vilket medför att A/D-modulen upptar modulplats 2 och 

D/A modulplats 3.  

Med samma konfiguration för både Q64AD- och Q64DA-modul: 

 

CH1 0-5V ⇒ Switch 1=3,   

CH2 -10 till 10V ⇒ Switch 1=4  

CH3 o CH4 4-20mA ⇒ Switch 1= 0 

 

 Konfigurationen  ser ut enligt nedan: 

. 

 

Switch 4 som är satt till 0000 innebär att normalt omvandlingsläge och normal upplösning 

valts. 

För att denna konfigurering skall slå igenom måste PLC:ts CPU resetas efter det att 

konfigurationen laddats över till PLC:t. 

Möjlighet finns att medelvärdesbilda över viss tid eller för ett visst antal omvandlingar men 

för detta hänvisas till manual. För det enklaste användarfallet med direkt avläsning av A/D-

omvandlade värdet resp. direkt utläsning av värde för D/A-omvandling gäller att de kanaler 

som skall användas enablas samt att analoga signaler som A/D-omvandlats kan läsas till 

systemet i digital form och att digitala värden kan läsas ut för D/A-omvandling och 

placering på den fysiska analoga utgången. 

Som nämnts ovan har modulerna ett antal från CPU:t läs- och/eller skrivbara register. 

Skrivning till register görs med instruktionen TO_M medan läsning från görs med 

FROM_M. De register som presenteras här är för att aktivera (enable) olika kanaler samt att 
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läsa in A/D-omvandlat värde samt skicka ut värde för D/A-omvandling. Utöver detta finns 

en del konfigurationsregister som förbises här.  

I Q64AD-modulens register nr 0 används endast de fyra lägsta bitarna. Dessa har följande 

funktion: 

- Bit 0 – 0/1 ⇒ enable / disable analog inkanal CH1 

- Bit 1 – 0/1 ⇒ enable / disable analog inkanal CH2 

- Bit 2 – 0/1 ⇒ enable / disable analog inkanal CH3 

- Bit 3 – 0/1 ⇒ enable / disable analog inkanal CH4 

För att överföra till Q64AD-modulen vilka kanaler som skall öppnas ges värden till TO_M-

instruktionen enligt: 

- s – decimala värdet som motsvarar de kanaler som skall enablas enligt ovan. 

- n1 – positionsvärdet på den plats modulen är placera på bakplanet.  

- n2 – det register nr som informationen skall läggas i (här 0) 

- n3 – hur många register som skall överföras. 

I register 11 i Q64AD-modulen finns det A/D-omvandlade värdet från CH1 att hämta, i 

register 12 hämtas CH2 osv. Instruktion för att hämta detta värde sker med FROM_M-

funktion. 

- d – Benämningen på D-register där det A/D-omvandlade resultatet läggs. 

- n1 – positionsvärdet på den plats modulen är placera på bakplanet.  

- n2 – det register nr som informationen skall hämtas från.  

- n3 – hur många register som skall överföras. 

I register 1 i Q64DA-modulen placeras det värde som skall D/A-omvandlas och hamnar 

som analogt utvärde CH1. Register 2 till CH2 osv. Instruktion för att lägga ut detta värde 

sker med TO_M-funktion. 

- s – Benämningen på D-register som innehåller värdet för D/A-omvandling. 

- n1 – positionsvärdet på den plats modulen är placera på bakplanet.  

- n2 – det register nr som informationen skall läggas i . 

- n3 – hur många register som skall överföras. 

En ytterligare funktion hos Q64DA-modulen är att ytterligare en flagga måste aktiveras för 

att analoga utsignalen skall släppas ut på plinten. Denna flagga är Yx1 för CH1, Yx2 för 

CH2 osv. där x är modulens placering på bakplanet. Om denna flagga är nollställd kommer 

signalen 0 V alt 0 A ligga ut. Anledningen till detta är att man med säkerhetslogik enkelt 
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skall kunna nolla utsignalen som kan innebära t ex stoppa varvtalsstyrda fläkten, stänga 

ventilen e dyl. 

Här följer ett exempel på detta. 

: 

Instruktionerna nedan gäller adressering av Q64AD-modul med 4 analoga kanaler in på 

modulplats 2 och en Q64DA med 4 analoga kanaler ut med placering modulplats på 

bakplanet.  

n1, n2 och n3 i instruktionerna nedan anger modulplats, buffertadress i modulens minne 

respektive antal 16-bitars register som sänds alt. hämtas. Kommentarrutorna i respektive 

Network anger vad de olika blocken har för uppgift. Endast kanal 1 utnyttjas på de två 

modulerna. 
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 A/D- och D/A-omvandling i Mitsubishisystem A1S. 

För att kommunicera med omvärlden med analoga signaler utrustas PLC-systemet med 

moduler för just analoga signaler in och ut. Dessa moduler innehåller då A/D- och D/A-

omvandlare och kommunikation med PLC:t sker via ett antal från CPU läs- eller skrivbara 

register i modulen. Till system A1S finns några alternativa moduler tillgängliga. Här 

presenteras dock modul ADA som har 2 analoga ingångar -10 till 10 V alternativt -20 till 

20 mA med en maximal upplösning på 0,83 mV alternativt 3,33 A. Vid denna upplösning 

är omvandlingstiden 3 ms/kanal. Upplösningen är inställbar om man vill ha snabbare 

omvandlingstid. Vidare har ADA-modulen en analog utgång med samma egenskaper som 

ingångarna vad gäller omfång, upplösning och omvandlingstid. Modulen har också mer 

avancerade funktioner i form av medelvärdesbildning och funktionsföljning. Det senare 

innebär att analoga utsignalen fås som funktion av de båda analoga ingångsvärdena.  

Arbetsområdet hos in- och utgångarna är inställbart. (Hos de vi använder i labbet är både in 

och utgångar normalt kalibrerade för digitalt 0 - 4000 motsvarar analogt 0 - 10 V.) 

Kommunikationen med modulen kräver att modulens placering på bakplanet är känd. 

Fysiskt tar modulen upp en plats men adressmässigt tar den två modulplatser. (På 

labsystemen sitter modulerna i ordning CPU – 1 st digital in – 1 st digital ut - ADA vilket 

medför att ADA-modulen upptar modulplats 2.) För det enklaste användarfallet gäller att de 
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kanaler som skall användas enablas samt att analoga signaler som A/D-omvandlats kan 

läsas till systemet i digital form och att digitala värden kan läsas ut för D/A-omvandling och 

placeras på analoga utgången.  

Som nämnts ovan har ADA-modulen ett antal från CPU:t läs- och/eller skrivbara register. 

Skrivning till register görs med instruktionen TO_M medan läsning från görs med 

FROM_M. De register som presenteras här är för att aktivera (enable) olika kanaler samt att 

läsa in A/D-omvandlat värde samt skicka ut värde för D/A-omvandling. Utöver detta finns 

en del konfigurationsregister som förbises här.  

I ADA-modulens register nr 0 används endast de tre lägsta bitarna. Dessa har följande 

funktion: 

- Bit 0 – enable / disable analog inkanal CH1 

- Bit 1 – enable / disable analog inkanal CH2 

- Bit 2 – enable / disable analog utkanal CH3 

För att överföra till ADA-modulen vilka kanaler som skall öppnas ges värden till TO_M-

instruktionen enligt: 

- s – decimala värdet som motsvarar de kanaler som skall enablas enligt ovan. 

- n1 – positionsvärdet på den plats modulen är placera på bakplanet. (här 2) 

- n2 – det register nr som informationen skall läggas i (här 0) 

- n3 – hur många register som skall överföras. 

Register 10 i ADA-modulen är det register där värde läggs för D/A-omvandling och sedan 

läggas ut som analog signal på analoga utgången, CH3. Instruktion för överföring av detta 

värde sker också med TO_M-instrutionen enligt: 

- s – Benämningen på D-register som innehåller värdet för D/A-omvandling. 

- n1 – positionsvärdet på den plats modulen är placera på bakplanet.(här 2)  

- n2 – det register nr som informationen skall läggas i (här 10) 

- n3 – hur många register som skall överföras. 

 

En ytterligare funktion hos ADA-modulen är att ytterligare en flagga måste aktiveras för att 

analoga utsignalen skall släppas ut på plinten. Denna flagga är Y30 om modulen är placerad 

på plats 2 (Y70 om placerad plats 6 osv). Om denna flagga nollställd kommer signalen 0 V 

alt 0 A ligga ut. Anledningen till detta är att man med säkerhetslogik enkelt skall kunna 

nolla utsignalen som kan innebära t ex stoppa varvtalsstyrda fläkten, stänga ventilen e dyl. 
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Register 11 är det register i ADA-modulen där det A/D-omvandlade värdet för analoga 

inkanalen CH1. Register 12 är motsvarande för CH2. A/D-omvandlingen sker kontinuerligt 

(konfigurerbart). A/D-conversion ready-flaggan är X21 (tvåan anger modulplats). Dessa 

register kan sedan läsas in till CPU:et med FROM_M-instruktion där : 

- d – Benämningen på D-register där det A/D-omvandlade resultatet läggs. 

- n1 – positionsvärdet på den plats modulen är placera på bakplanet.  

- n2 – det register nr som informationen skall hämtas från (här 11 alt 12) 

- n3 – hur många register som skall överföras. 

 

Här följer ett exempel på detta. 

: 

Instruktionerna nedan gäller adressering av ADA-modul med två analoga inkanaler och en 

analog utkanal med placering på modulplats 2 på bakplanet.  

n1, n2 och n3 i instruktionerna nedan anger modulplats, buffertadress i modulens minne 

respektive antal 16-bitars register som sänds alt. hämtas. Kommentarrutorna i respektive 

Network anger vad de olika blocken har för uppgift. 
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 PID-regulatorn i Q02-systemet. 

För Q-systemen finns följande funktionsblock för PID-reglering tillgängligt. PID-

regulatorns allmänna funktion anses vara känd och därmed de olika ingångs- och 

utgångsparametrarna hos blocket.  

 

SetPointValue  – Börvärde 

ProcessValue  – Ärvärde – hämtas normalt från A/D-omvandlare 

Kp  – proportionell förstärkning i % 

Ti  – integrationstid i antal 100 ms 

Td  – deriveringstid  i antal 10ms 

ControlDirection  – 1=omvänd, 0=direkt – där omvänd innebär ökande styrsignal 

    vid ökande reglerfel (börvärde – ärvärde) 

Ts  – samplingstid i antal 10 ms 

MvLimit  – begränsning av styrsignal 

ManAuto  – 1=manuell 0=automatik 

MvMan  – styrvärde vid manuell inställning 

ManipulatedValue  – styrsignal – skickas normalt till D/A-omvandling 
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 PID-regulatorn i A1S-systemet. 

I GX IEC Developer finns möjligheten att utveckla egna funktionsblock. Ett exempel på 

sådana är PID-regulatorblocket i A1S-systemet för reglering av återkopplade analoga 

processer. 

 

In-/utgång Typ Funktion 

Puls BOOL Flanktriggad signal var 100:e ms, exekv. 

Loop INT Löpnummer på reglerloop (1-30) 

Borvarde INT Börvärde regulator (0-12000) 

Arvarde INT Ärvärde regulator (0-12000) 

Omv_Dir DINT Direkt(0) / Omvänd(1) funktion (1) 

Kp_1proc DINT P-konstant i % ex. 100 %=1ggr; (1-100000 %) 

Ti_100ms DINT Integr.tid ex. 100=10s; (0.1-3000s) (2) 

Td_10ms DINT Deriv.tid ex. 100= 1s; (0.00-300s) (3) 

Ts_10ms DINT Samplingstid ex. 100 = 1s; (0.01-60 s) 

(Dock, 0.1s minsta tekniskt möjliga!) 

 Ut_max DINT Högst önskade utsignal (0-12000) 

Ut_min DINT Minst önskade utsignal (0-12000) 

Man_Auto INT Manuell(1) / Auto(0) utsignal 

Ut_Man DINT Manuell utsignal (0-12000) 

Ut INT Utsignal (0-12000) 

 

                                                 

1 Vid omvänd funktion ökar utsignalen vid ökande reglerfel (börvärde – ärvärde) 
2 Om ingen I-verkan önskas, skriv ett värde > 100000s. 
3 Om ingen D-verkan önskas, skriv värde 0s. 
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OBS! 

1. Sätt av 2k filregister i parametrarna. R0-R1050 används av regulatorerna!! Ställ in 

detta i Navigatorns PLC_Parameters – MemoryParam... 

2. För ingången Puls ovan, gör exempelvis ett program enligt nedan och anslut variabeln 

Exekvera till nämnda ingång! 

 

 

 

 Realtidsklockan. 

För att kunna göra tidsstyrningar, dvs. starta en aktivitet ett visst klockslag, en viss dag eller 

en viss veckodag finns en inbyggd realtidsklocka som håller reda på år, månad, dag, timme, 

minut, sekund och veckodag. Klockan finns integrerad i PLC-systemets processor och kan 

läsas och ställas av PLC-programmet via följande register i Q02 (inom parantes i A1S).  

 

SD210 (D9025) -  år och månad 

SD211 (D9026) - dag och timma 

SD212 (D9027) - minut och sekund 

SD213 (D9028) - veckodag 

I de register som innehåller dubbel information t.ex D9025 ligger år i de 8 högsta bitarna 

och månad i de 8 lägsta bitarna i registret. Data är lagrade i BCD-kod (Binary Coded 

Decimal) vilket görs för att lätt kunna lägga ut dem till t.ex en display. Skall de användas 

för tidsstyrning i programmet är det dock lämpligt att ha värdena som heltal varför 

omvandling till INT-typ är att föredra. Stöd för detta finns i instruktioner som 

BCD_TO_INT respektive INT_TO_BCD. 

Vad gäller veckodag är de numrerade enligt 0=söndag, …6=lördag. Veckodagen ges med 

fyra siffror där de två högsta avser århundrade. Exemelvis värdet 2005 innebär en fredag på 

2000-talet. 

Två stycken specialminnesceller används för att kommunicera SD210-SD213 (D9025 - 

D9028) med realtidsklockan. SM210 (M9025) används för att lägga in data i 

realtidsklockan dvs för att ställa den. SM213 (M9028) används för att läsa klockan dvs när 

denna flagga aktiveras kommer aktuella tidsdata att läggas i SD210-SD213 (D9025 - 

D9028). 
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Kap 6. Utvecklingsmiljön enligt standard IEC 61131-3.  

Som redan nämnts finns numera en standard, IEC 61131, som skall göra tillvaron lättare 

när det gäller att programmera PLC av olika fabrikat. Mitsubishi i Tyskland har utvecklat 

en editor, GX IEC Developer som stödjer denna standard men också kompletterat den med 

en mängd instruktioner utöver standarden vilka har sitt ursprung i Mitsubishis tidigare 

programeditor.  

Av IEC 61131:s fem alternativa programmeringssätt är alla tillgängliga i nuvarande version 

av GX IEC Developer nämligen ladderdiagram (LD), funktionsblock (FBD), 

funktionsdiagram (SFC=Sequential Function Chart), strukturerad text (ST) samt 

instruktionslista (IL). Programmeringssättet enligt denna standard håller alltså dörrarna 

öppna för alla de sätt som PLC programmerats på genom tiderna. Miljön vill dock 

uppmuntra till ett strukturerat sätt att programmera varför vi här innan vi går in på de olika 

instruktionssätten först bekantar oss med hur ett projekt struktureras.  

 Programstrukturen i GX IEC Developer. 

 

 

 

 

 

 

 

 

 

 

  

 

Figur 6.1: Programstrukturen i GX IEC Developer. 

Hela styrlösningen samlas under ett project och arbetar med ett bibliotek för varje project. 

Själva programfilen heter detsamma i alla project (softctrl.pro) varför uppmärksamhet krävs 

vid backup av project. Strukturen hos ett project framgår av Figur 6.1 ovan. 

Som framgår av Figur 6.1 ovan så kan ett projekt delas upp i en eller flera delar som 

benämns TASK. För dessa olika Task kan man styra under vilket villkor och med vilken 

prioritet de skall exekveras. De olika exekveringsvillkor (event) som kan användas är:  

PROJECT 

TASK_1 TASK_2 TASK_3 

POU_1 
 
    I L 

POU_6 
 
    I L 

POU_4 
 
    LD 

POU_5 
 
    FBD 

POU_2 
 
    SFC 

POU_3 
 
    FBD 

På TASK-nivån sätts villkor och prioritets-
ordning för exekvering av de under tasket 
liggande underprogrammen (POU)  

Underprogrammen (POU) kan 
skrivas i något av de tillgängliga 
programspråken. 
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- kontinuerlig exekvering – d v s så fort processorn hinner. 

- händelse (dvs yttre händelse som kommer in via ingång eller händelse som 

upptäcks via exekvering av annat task) 

- med jämna tidsintervall 

- interrupthändelse som genereras via de olika interruptpekarna I1-I31.(se 

nedan) 

Exekveringsvillkoret ställs in genom att markera aktuellt Task i Navigator och gå till Object 

– Information.  

Om olika Task har samma exekveringsvillkor kan exekveringsordningen styras via prioritet 

0 - 31 där 0 innebär högsta prioritet. Mera om exekveringsordning finns i avsnitt 6.6. 

Varje Task består i sin tur av ett eller flera POU (Program Organisation Unit) som skrivs i 

något av de fyra tillgängliga programmeringssätten instruktionslista (IL), ladderdiagram 

(LD), funktionsblock (FBD) eller funktionsdiagram (SFC). 

 

 Skapa project. 

Välj New under menyn Project. Då kommer detta fönster upp: 

 

Välj enligt figur om Q02-system skall användas eller AnS – A1S om A1S-system skall 

användas. Välj destination var projektet skall sparas. Välj Empty Project för att få börja 

med ett helt tomt projekt. Menyn för hantering av editorn ligger nu på en list i överkant 

medan Project Navigator dyker nu upp vid vänsterkanten. Resten är arbetsyta för 

programskapande. 

 

 Navigatorn. 

I Project Navigator läggs nu gången upp hur man tar fram en styrlösning. I navigator enligt 

figur nedan är redan inlagt två stycken Tasks och två stycken POU i Task_Pool respektive 

POU_Pool. 
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Library_Pool innehåller biblioteket av instruktioner och funktionsblock som finns 

tillgängliga i systemet. Det är dock lättare att söka dem på andra vägar vilket framgår 

senare. Här kan också egenutvecklade funktionsblock placeras, vilket behandlas senare. 

DUT_Pool (Data Unit Type) kan utnyttjas för att deklarera en global variabelgrupp som 

görs för förenklad upprepad användning vid styrning av flera likadant uppbyggda 

processdelar. För närmare förklaring hänvisas till manual.     

Nu återstår tre nivåer att presentera i navigatorn nämligen Global_Vars, POU_Pool och 

Task_Pool. Dessa är de centrala för att man efter deklaration av systemet skall kunna 

åstadkomma ett styrprogram.  

 

 Globala variabler. 

De globala variablerna deklareras alltid som VAR_GLOBAL och en benämning ges mot en 

absolut adress i PLC-minnet eller mot en in- eller utgång till systemet. De globala 

variablerna gäller för hela projektet och kan nås från olika POU (underprogram) och gör det 

möjligt att utbyta data mellan olika POU och TASK. 

Ett exempel på global variabellista visas nedan. I IEC-standarden har man föreskrivit att in- 

och utgångar, minnen, register m.m skall ha en viss adressbenämning. Användare av olika 

fabrikat är dock inarbetade på andra fabrikatsspecifika adressbenämningar varför man i 

denna editor kan använda IEC-adress alternativt Mitsubishi-adress. Skriver man den ena så 

ges den andra. Tidigare i denna skrift är det IEC-adresser som presenterats i beskrivningen 

av operanderna i avsnitt 3.2.1. Variabler, både lokala och globala, kan skapas löpande 

under programkonstruktionen och placeras då in i dessa listor. 
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Typ av variabel deklareras i Type där man kan välja mellan BOOL, INT, DINT, WORD, 

DWORD, REAL och ARRAY där en array kan bestå av 1, 2 eller 3 dimensioner av data. 

INT är ett 16-bitars register som kan anta värden från -32768 till +32767. DINT är ett 32-

bitars dito. WORD är en 16-bitars sträng som kan anta värden 0 till 65535. Observera att 

många registerhanterande instruktioner bara klarar datatyperna INT och DINT. 

I Initial skall man enligt standarden kunna ge ett initialvärde för de olika variablerna vid 

programladdning. GX IEC stödjer dock inte denna facilitet. Initialvärden är alltså alltid 

FALSE för boolska variabler och 0 för register. Vill man tilldela andra initialvärden kan 

detta göras med hjälp av %MX10.402 eller SM402 (Q02) alt. M9038 (A1S) som är en 

specialflagga som är ettställd endast första scan-cykeln efter exekveringsstart. 

Det finns i GX IEC möjlighet att smita förbi den globala variabellistan. De adresser, som 

inte är lämnade till systemet, är globala och kan anropas direkt utan att vara upptagna i 

globala variabellistan. Vilka adresser som finns tillgängliga går att finna under PLC i 

Navigatorn. Med adresser menas IEC-adresser av typ %MX0.89, %IX12, %QX23, 

%MW0.567 eller som motsvarande MIT-adresser av typ M89, XC, Y18, D567. Detta är 

dock inte att rekommendera då globala variabellistans syfte är att ge mer processnära namn 

till de olika variablerna för att därmed göra programkoden mera lättolkad och i mindre 

behov av kommentarer. 

 

 Skapa delprogram POU. 

Under menyraden finns en rad med verktygsikoner varav en är märkt POU. För att skapa ett 

nytt POU tryck på denna och en dialogruta kommer fram där man anger vad man vill döpa 

POU:t till och sedan välja i vilken form av de fyra möjliga man vill skriva underprogramet 

(Body). Det uppträder nu två underrubriker till POU i navigatorn nämligen Header och 

Body.  

 

6.5.1. Lokala variabellistan (Header). 

Lokalt använda variabler i detta POU skall vara deklarerade i dess Header-lista. 

Dubbelklicka på Header under aktuellt POU i Navigatorn för att skapa denna lista för 

lokala variabler. Dessa skall inte knytas till någon adress utan systemet väljer själv ur de 

variabler som är lämnade till systemet enligt tidigare beskrivning. Variabler, både lokala 

och globala, kan skapas löpande under programkonstruktionen och placeras då in i dessa 

listor. 
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6.5.2. Instruktionslista (IL). 

Går man sedan in i Body under aktuellt POU hamnar man i en fri editor vilket innebär att 

man kan skriva in önskad kod i vilken Windowseditor som helst och sedan kopiera in 

programmet via klippbordet. 

Det mörka fältet längst till vänster indikerar något som kallas Network. När man skriver 

instruktionslista kan man skriva hela programmet i ett Network. Nytt Network krävs bara 

vid hopp i programmet då hoppet sker till ett nytt Network försett med Label som utgör 

aktuell pekare. Dubbelklicka på Network och skriv in aktuell pekare. 

Själva programmet utgörs av två kolumner. Den första utgör instruktioner följt av andra 

kolumnens operander som finns deklarerade i headern. Med F2 får man upp en lista med 

tillåtna instruktioner. Hjälpfunktionen i denna dialogruta är lite konstig varför det är bättre 

att gå in i hjälp via Help och Overview i huvudmenyn. I hjälpen finner man bl.a alla 

instruktioner förklarade med hur de fungerar och vilka variabeltyper som kan användas. 

Exempel visas nedan. 

 

Programmet exekverar som en bit-ackumulator vilket innebär att resultatet av en instruktion 

lagras direkt efter exekvering i ackumulatorn. I ackumulatorn finns alltså alltid resultatet av 

föregående instruktion.  

I programlistan kan kommentarer skrivas in antingen i tredje kolumnen eller på ny rad. 

Kommentarerna skall börja med (* och sluta med *). 

En instruktionslista kan se ut som följer. Observera att alla använda operatorer inte är 

deklarerade i Headern avsnittet ovan. 
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Instruktionslistan är användbar och snabb för att skriva in enkel logik. Då man kommer in 

på funktioner som timers, räknare, jämförare osv är det enklare och klarare att använda 

ladderdiagram eller funktionsblock. 

De vanligaste tillgängliga instruktionerna är LD, AND, ANI, OR, ORI, ST, STN, S, R. 

 

6.5.3. Ladderdiagram eller Relälista (LD). 

Ladderdiagrammet eller relälistan är en grafisk beskrivning av styrlogiken som är 

uppbyggd enligt elschemaritning av relälogik. Relälogik var det sätt man löste styrningar 

med före elektronikens inträde på området. Eftersom traditionen och yrkeskunskapen från 

relätiden har flyttats över på moderna programmerbara system har detta resulterat i att man 

räknar med att 70 % - 80 % av all PLC-kod som finns är skriven i ladderform. Med nya 

kanske mer tilltalande sätt att programmera så är det ändå viktigt att känna till ladderkoden 

och kunna tolka den då man skall gå in i redan befintlig programdokumentation.  

Som framgår av exemplet nedan kan man nu lägga in mer avancerade funktioner i ladder-

koden än vad man kunde realisera med reläteknik tidigare. I ladderdiagrammet kan man 

enligt IEC 61131 lägga in samma funktionsblock som vid programmering just med 

funktionsblock (FBD), se nästa avsnitt. 

Laddereditorn är en grafisk editor där kontakter och spolar fritt kan placeras, flyttas och 

kopieras mellan olika Networks. Observera att endast en krets får finnas i varje 

Network. Ett nytt Network öppnas ovanför eller under det aktiverade med två alternativa 

ikoner i verktygsfältet. 

För att negera en kontakt dvs ändra från NO till NC dubbelklicka på kontakten för att få 

dialogruta. För att välja funktionsblock så välj verktygsikon med ”IC-krets-symbol”.  

Förbindelser mellan komponenterna fås genom att högerklicka och välja Interconnect 

Mode. Klicka på utgång, flytta musmarkör till ingång och klicka. För att ansluta signal till 

funktionsblock använd verktygsikon VAR-  och  -VAR beroende på in- eller utgång. 

Kommentarer läggs in genom att aktivera verktygsikon med pratbubbla och rita 

kommentarruta. 
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6.5.4. Funktionsblock (FBD). 

Funktionsblockeditorn är uppbyggd och används på samma sätt som ladderdiagrameditorn. 

Skillnaden är att booleska logiken byggs upp med logiska block istället för trådade 

kontakter och enskilda ingångar och utgångar ansluts med enbart signalbeteckning i stället 

för med kontaktsymbol respektive spolsymbol. För övrigt gäller alltså en krets per 

Network, funktionsblockval med IC-kretsikon, anslutning med VAR-ikon, pratbubbla för 

kommentarruta. Förbindelser mellan komponenterna fås genom att högerklicka och välja 

Interconnect Mode.  

Invertering av in- eller utgång görs genom att dubbelklicka på anslutningen till blocket. 

Vissa functions, som har benämning som slutar _E, har längst upp en ingång märkt EN 

(enable). Detta block exekveras endast om signalen till EN är TRUE. På dessa block finns 

också en utgång ENO vilken slaviskt följer signalen till EN. Denna utsignal kan användas 

till eventuellt efterföljande blocks EN-ingång.  

I biblioteket över functions finns dels Standard_Lib och dels Manufacturers_Lib. 

Standard_Lib innehåller de funktioner som skall finnas enligt IEC-standarden. Tillverkaren 

(i detta fall Mitsubishi) är dock intresserad att ha kvar sina ”gamla” funktioner som dess 

programmerare är vana att hantera varför man har kompletterat med ett Manufacturers_Lib. 

Dessa funktioner kan ofta vara användbara och är väl dokumenterade i Help-manualer. En 

del av dem presenteras i avsnitt 5.2. 

Här några exempel på kretsar i funktionsblockform vilka utgör ett POU: 
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Observera att exekveringen av Networken sker uppifrån och ner, stannar aldrig upp och 

väntar på något, utan upprepas cykliskt i den takt som styrs av exekveringsvillkoret för det 

Task som POU:et tillhör. 

 

6.5.5. Funktionsdiagram eller Grafcet (SFC). 

För att beskriva sekventiella förlopp finns numera en standardiserad form (IEC 848) kallad 

funktionsdiagram som är beskriven tidigare i kapitlet ”Funktionsbeskrivningar”. 

Funktionsdiagramformen går också under namnet Grafcet.  

Det är naturligt att funktionsdiagrammets lättbegripliga presentation av en problemlösning 

är lämplig att använda för att programmera styrlösningar till sekventiella förlopp. Därför 

blev en av de standardiserade programmeringsformerna för PLC just funktionsdiagrammet. 

Benämningen på detta språk är Sequence Function Chart (SFC) och en programeditor för 

detta språk finns i GX IEC Developer. Denna editor är en fast grafisk editor som följer ett 

visst fast mönster. När ett POU skapas som skall programmeras i SFC finner man att i 

Navigatorn uppträder tre underrubriker, Header och Body är kända sedan tidigare men nu 

finns också Action. I Body bygger man upp själva funktionsdiagramstrukturen medan man i 

olika Actions lagrar de händelser som skall ske i de olika stegen.  

Nedan visas en SFC-body där namn har satts på de olika stegen och övergångsvillkoren. 

Grafiskt byggs diagrammet upp med musen genom att aktivera grunddiagrammet på ”rätt” 

ställe och sedan lägga till steg, övergångsvillkor, parallella och alternativa förgreningar med 

hjälp av verktygsikonerna. Bättre än att försöka förklara varje steg är att uppmana 

användaren att testa sig fram. Avslutningen med ett tvärstreck efter OVERG60 innebär 

återhopp till startsteget (Initial).   

I SFC-programexemplet nedan visas dels en parallellförgrening och senare i sekvensen en 

alternativförgrening. Möjligheter finns också till återhopp uppåt i funktionsstegen som 

framgår av ”hopp” i figuren.  
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SFC-programmet översätts till en vanlig instruktionslista vid kompileringen. Det innebär att 

ett SFC-POU exekveras på samma sätt som andra. Att förloppet befinner sig i ett visst steg 

innebär inte att exekveringen stannar upp i väntan på att aktuellt övergångsvillkor skall 

uppfyllas utan exekveringen av alla andra i projektet ingående POU:n fortlöper 

kontinuerligt. 

Som synes i funktionsdiagramexemplet ovan kan också hopp utföras i förloppet. Undvik 

dock enligt god programmeringssed att gör hopp eftersom det ofta minskar programmets 

läsbarhet. 
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Händelser:  

Varje steg i programmet har tilldelats ett namn som inte skall deklareras i den lokala 

variabellistan. Till varje steg kan man knyta händelser eller om händelsen är villkorad ett 

PLC-program som kan skrivas i valfri editor. Det görs på följande sätt: 

  Klicka t ex på STEG1 vilket gör den rutan aktiverad vilket visas genom att en svart 

ram uppträder kring STEG1. Tryck den ikon som visas här intill. Då framträder Action-

rutan enligt nedan där tre rader skrivs in så att direktaktiveringen av en händelse (variabler), 

Utgang_1 sker samt aktivering av två PLC-program, Timer_4 och Handelseprog1 .  

 

 

   Med markören placerad på Handelseprog1 i Action-rutan aktiveras ikon som visas här 

intill. Då ges möjlighet att välja PLC-editor och skriva in sin villkorade händelse för steg1. 

Denna händelse kan se ut enligt nedan. Tittar man i Navigatorn upptäcker man nu att 

Handelseprog1 har hamnat i Action Pool i POU:t Grafcet. Observera att för att i detta fall 

Utgang_9 skall aktiveras måste det logiska villkoret Action Handelseprog1 vara uppfyllt 

samt förloppet befinna sig i STEG1 som denna Action är kopplad (associerad) till. 

Händelserna som är deklarerade i ett steg exekveras endast om förloppet befinner sig i det 

steget.  

 

 

När det gäller händelser som är bestyckade med modifierare av typ D och S d v s Delay av 

händelse resp ”Stored” händelse kan de hanteras på olika sätt. Vi betraktar några olika 

lösningar i följande exempel. 
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: 

Skriv SFC-programlösning för följande händelser som här beskrivs på 

funktionsdiagramform. 

1

FLAG3
D=5s

UT1=1

8

D

S

UT1=0S
 

Lösning alternativ 1: 

Lösning med IEC-standardinstruktioner där Actions skrivs i FBD. Notera att i detta fall 

behövs ett steg 2 som följer direkt på steg 1. Förklaring till detta följer efter figurerna.  För  

minnesfunktionen används instruktionen MOVE för att till UT1 lägga värdet TRUE i steg1 

respektive FALSE i steg 8. 

Följande Actions deklareras i steg1, steg 2 respektive steg 8.  

Action steg 1: 

 

Action steg 2: 

 

Action steg 8: 

 

Respektive Action exekveras först när man befinner sig i steget vilket innebär att UT1 

ettställs då steg 1 nås och förblir ettställt tills steg 8 nås då den nollställs. I steg 1 aktiveras 

Timer1. Om förloppet dröjer kvar i steg 1 mer än 5 sekunder kommer FLAG3 att ettställas. 

Lämnas nu steg 1 kommer Timer1 inte att exekveras mer men för rätt funktion krävs att 

Timer1 nollställs i nästa direkt följande steg (steg 2) varför steg 2 måste förses med en 

kopia av Timer1 men med FALSE på ingången varvid denna exekveras och timerns 

tidräknare  nollställs.  
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Lösning alternativ 2: 

Alternativ lösning med IEC-standardinstruktioner där Actions skrivs i LD där tillgång finns 

till Set- resp Reset-instruktioner som är separerade. Vad gäller tidsfunktionen är denna 

lösning identisk med lösningsalternativ 1.  

Följande Actions deklareras i steg1, steg2 respektive steg 8.  

Action steg 1: 

 

Action steg 2: 

 

Action steg 8: 

 

 

Lösning alternativ 3: 

Fortfarande lösning med IEC-block men nu används ett FBD-POU som mål för 

händelseflaggor som aktiveras i olika Actions. Denna metod tillämpas konsekvent då stora 

system programmeras där funktionsblock skapas för de olika objekten som ingår i systemet.  

I SFC-programmet aktiveras i steg 1 en BOOL- flagga SET_UT1 och en DELAY_FLAG3 

och i steg 8 en flagga RESET_UT1. Dessa flaggor deklareras som Globala variabler 

eftersom de skall verka över POU-gränser. Sedan skaps ett nytt POU med programspråk 

FBD, I detta läggs två networks för modifierad styrning av UT1 och FLAG3 som påverkas 

ifrån SFC-programmet: 
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Övergångsvillkor: 

Mellan två på varandra följande steg finns ett övergångsvillkor. Den benämning man satt på 

övergångsvillkoret är namnet på det PLC-program som skrivs i valfri editor. För att komma 

till nästa steg skall man skriva ett program som aktiverar en utgång med den unika 

benämningen TRAN eller med samma namn som övergångsprogrammet. 

Tillvägagångssättet är detsamma som villkorad händelse enligt ovan. Aktivera det aktuella 

övergångsvillkoret och tryck ikonknapp  så kommer dialogruta för New Transition där 

val av editor görs. 

Nedan visas ett exempel för OVERG12. 

 

Om förloppet befinner sig i STEG1 och övergångsvillkoret (transition) OVERG12 är 

uppfyllt kommer förloppet att hamna i STEG12 och STEG22.  

En brist finns i programvaran som gör att om övergångsvillkoret är allt för omfattande 

(flera ingångar och grindar) så vägrar kompilatorn och ger felmeddelandet ”Only one OUT 

instruction is allowed in a transition for the current CPU type”. I detta läget tvingas man 

skapa ett eget POU för övergångsvillkoret och använda resultatvariabeln som 

övergångsvillkor. Med detta förfarande är kompilatorn åter medgörlig. 

Ett alternativt sätt att skriva övergångsvillkor är att markera övergången och i menyn välja 

Tools – Edit Transition Condition och i den skriva in övergångsvillkoret i strukturerad text-

form. Detta kan se ut enligt: 

 

 

Man formulerar övergångsvillkoret på samma sätt som if-satser i andra högnivåspråk d v s  

resultatet ska vara antingen TRUE eller FALSE. Använd parenteser så att det framgår klart i 

vilken ordning operationerna ska utföras. 
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Följande operatorer kan användas: 

 

 

Master Control för SFC: 

Önskemål kan finnas att kunna stoppa sekvensen var som helst i förloppet. För detta 

ändamål finns ett antal funktionsblock tillgängliga för ”Master Control” över en SFC-

slinga. Dessa och deras funktion anges nedan. 

 

För SFC_CTRL gäller att om A=TRUE så exekveras SFC-POU:et med namn ”D” normalt. 

Om A=FALSE och B=FALSE kommer förloppet att stoppas i aktuellt steg (PAUSED) och 

alla out-aktiviteter att nollställas. Om A=FALSE och B=TRUE kommer de däremot att 

behålla sitt värde. C=TRUE medför reset av POU:et och återgång till Initial-steget. 

 

För SFC_PAUSE gäller att om EN =TRUE kommer förloppet att stoppas i aktuellt steg 

(PAUSED). Om C=FALSE kommer alla out-aktiviteter att nollställas medan om C=TRUE 

kommer de att behålla sitt värde. 

 

För SFC_START gäller PAUSE:ad sekvens enligt ovan startar igen on EN = TRUE och då 

från steg med benämning ”E”. 
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För SFC_STOPP gäller SFC ”D” stoppas, out-aktiviteter nollställs och reset ger återgång 

till Initial-steg. 

 

Flagga Q1 ettställs då SFC ”D” pausats med SFC_PAUSE enligt ovan. Detta kan användas 

för att flagga av att denna master control gått in. 

 

Flagga Q2 ettställs då SFC ”D” stoppats SFC_STOP enligt ovan. Detta kan användas för att 

flagga av att denna master control gått in. 

 

6.5.6. Strukturerad text. 

Det femte möjliga programspråket Structured Text, ST, är ett textbaserat språk liknande C 

och Pascal och är lämpligt för bl a beräkningsrutiner. Detta språk behandlas dock inte 

djupare här. 

6.5.7. Kontroll av inskriven kod. 

  Med denna knapp kan kontroll av program och benämningslistor göras. Kontrollen 

innebär att aktiverat fönster kontrolleras av kompilatorn och eventuella felmeddelanden 

rapporteras. Samtidigt sparas de ändringar som gjorts sedan föregående kontroll eller sedan 

fönstret aktiverades. Det senare sker även då fönstret stängs. Kontrollen innebär dock 

endast kontroll av syntaxen så någon kompilering sker inte. 

 Skapa TASK och kompilera projektet. 

Ett projekt består av ett eller flera Tasks. Till ett Task knyts ett eller flera delprogram 

(POU). Aktivera Navigatorfönstret och klicka sedan på knapp märkt TSK i 

verktygsikonraden. Ge detta nya TASK ett namn och dubbelklick sedan på detta namn i 

Navigatorn. Ett fönster kommer då upp där man kan skapa en lista på de POU som skall 

ingå i Tasket. Exekveringen av de olika POU:na kommer nu att ske i den ordning som de 

läggs i listan. 

Ett Task kan sedan exekveras på olika villkor. Markera aktuellt Task i Navigatorn, välj 

sedan Objekt i menyn och där Information. Där kan villkor för exekvering ställas in enligt: 

3. Varje programvarv. Sätt Event till TRUE. 

4. På händelse. Sätt Event till I/O-adressen eller benämningen på det villkor som skall 

aktivera exekveringen. 
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5. Tidsintervall. Sätt Event till FALSE samt Interval till det önskade tidsintervallet 

mellan programexekveringsstarterna. Denna tid måste vara längre än scancykeltiden.  

Vid icke kontinuerlig exekvering enligt pkt 2-3 ovan, dvs då exekveringsvillkoret för ett 

Task inte är TRUE (kontinuerlig exekvering) utan utförs på händelse eller med jämna 

tidsintervall uppför sig systemet något underligt. Möjligheten finns där för att lasta av 

centralenheten men för övrigt är avsikten att styrlogiken skall fungera normalt. Den 

funktion som fanns tillgänglig för att realisera denna IEC 61131-facilitet i Mitsubishi-

systemet var en Master Control-funktion som frikopplade utvalda delar av programkoden 

från exekvering. Det innebar att då faciliteten icke kontinuerlig exekvering tillämpas så 

faller alla M-flaggor (%MX-flaggor) och Y-utgångar (%QX-utgångar), som inte är styrda 

med SET/RESET-instruktion, så fort den tids- eller villkorsstyrda exekveringen utförts. Det 

innebär att om diskontinuerlig exekvering skall tillämpas så måste alla kombinatoriska 

uttryck låsas med SET och RESET för att förväntad funktion skall uppnås. 

 

: 

Logiska villkoret Q = C och (A eller B) måste skrivas på följande sätt om det ligger i ett 

POU under en TASK som exekveras på händelse eller med jämna tidsintervall. 

 

Vidare väljs också exekveringsprioritet (Priority) mellan 0 och 31 för Tasket där 0 är 

högsta prioritet. Vid kompilering medför detta att det Task med högst prioritet läggs överst 

i programlistan. 

Exekveringsordningen blir följande: 

6. TASK med högst prioritet, dvs lägst angivet prioritetsvärde (0-31), exekveras först. 

Default har alla TASK lägsta prioritet 31. 

7. De TASK med samma prioritet exekveras i den ordning de läggs i Navigatorn. 

8. De POU som ligger under ett TASK exekveras i den ordning de läggs i Navigatorn. 

9. Varje POU består av en instruktionslista eller av ett eller flera Networks i ladder (LD) 

eller funktionsblock (FBD) och dessa exekveras i ordning uppifrån och ner. 

10. Exekveringen sker cykliskt dvs om och om igen i den ordning som ges av pkt 1-4. 

11. Interrupt avbryter tillfälligt exekveringsordningen då interruptrutinen körs. 

Exekveringen återvänder efter interrupt tillbaka till det ställe i programcykeln den 

befann sig då interruptet kom. 

Kompilering av hela projektet sker sedan i meny Project rubrik Build eller Build all.  

Endast de POU som är knutna till ett Task blir kompilerade. Vid kompileringen skapas den 

kod som kan laddas ner till PLC-systemet. Med Build kompileras endast det som är ändrat i 

projektet sedan föregående kompilering. Man vet vilka Task och POU som är kompilerade 
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genom att den röda asterisk som finns vid rubrikerna i Navigatorn försvinner vid lyckad 

kompilering. 

 

 Överföring av program och OnLine-funktioner. 

I Online-menyn väljer man Transfer Setup för att ställa in hur överföring skall ske. För både 

Q02-systemen och A1S-systemen använder vi serieporten och RS232.   

I Online-menyn kan man också starta monitorering av program som finns i aktiverat fönster 

och följa statusen hos olika signaler. Entry Data Monitor kan också väljas för att läsa 

statusen hos valfria adresser. 

Man kan också göra onlineändringar av PLC-programmet. Med Projekt - Online Program 

Change kompileras det modifierade programmet och överförs till PLC:t då detta är i RUN 

mode. 

 Simulering av program. 

I GX IEC Developermiljön finns en simulator som aktiveras genom Online – GX 

Simulator. Aktivering av denna funktion innebär att överföring sker till en simulerad PLC-

enhet och signaler kan styras och monitoreras via en monitoreringsfunktion i programkoden 

och via Entry Data Monitor. OBSERVERA att det inte är möjligt att simulera POU:er 

skrivna i SFC. 

 Komma igång exempel. 

Här följer en snabb steg för steg-genomgång av ett programexempel som utför följande: 

a) Ingångarna In1, In2 och In3 kopplade till de fysiska ingångarna X1, X2  resp X3 

används. Om In1 varit aktiv i 4 sekunder och In2 ej är aktiv eller om In3 är aktiv skall 

utgång Y14 benämnd Utgang14 aktiveras.  

b) Ett registervärde Pott kopplat till register D54 skall räknas uppåt med en enhet per 

sekund. Registret får inte överskrida värdet 12. Pott skall nollställas om Utgang14 

aktiveras enligt a). 

 

1. Starta GX IEC Developer  v 7.04 och aktivera Project – New. 

2. Välj CPU-typ Q – Q02(H) alt. AnS  -  A1S. 

3. Ge projektet ett namn och biblioteksplacering. 

4. I New Project Startup Option väljs Empty Project.  

5. Vi kör detta exempel med defaultinställningar varför vi i Project Navigator inte bryr 

oss om PLC Parameter. 
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6. Välj Global Variables i Project Navigator. Asterix före någon rubrik innebär att den 

enheten inte är kompilerad. 

7. Lägg in i Global Variable List som VAR_GLOBAL Identifier In1 med MIT-adress X1 

så fås automatiskt motsvarande IEC-standardadress och typen sätts automatiskt till 

BOOL. 

8. Lägg till sex nya rader med hjälp av verktygsknapp  (tredje från höger). 

9. Systemet serverar nu ett förslag på de sex följande raderna där de två första är helt 

acceptabla. Redigera om de två sista raderna så att de får följande utseende. Alla 

variabler som är kopplade till en in- eller utgångsadress måste deklareras som Globala 

variabler. I detta fall gäller det alltså In1, In2, In3 och Utgang14. De andra tre, Pott, 

Timer1 och Trig1, behöver egentligen i detta fall inte deklareras som globala utan det 

hade varit tillfyllest att deklarera dem som lokala variabler i Headern.  

 

 
 

10. Gå till Project Navigator, markera POU-pool, klicka på verktygsknapp märkt POU. Ge 

POU:t ett namn och välj Function Block Diagram. Sedan OK. 

11. Dubbelklicka i Project Navigator på POU-pool så kommer några undernivåer fram. 

Dubbelklicka där på Header vilket öppnar en ruta för lokala variabellistan. Några 

ytterligare variabler behöver vi inte i detta fall. Gå tillbaka till Project Navigator och 

dubbelklicka Body. En Network-ruta finns nu i Body-rutan. Välj i verktygsknappraden 

en knapp med en ”IC-kapselsymbol” på. En dialogruta öppnas. Välj Operator Type till 

All Types och välj där en AND. Behåll Number of Pins vid defaultvärdet 2. Tryck 

Apply och gå upp i Network-rutan och klicka in funktionsblocket. Testa också att du 

kan flytta på blocket med musen. För att invertera ingång In2 klicka vid ”roten” av 

ingångsbenet. Hämta också ett OR-block och ett TON-block och placera på lämpligt 

ställe.  

12. Klicka på ? på in och utgångar. Högerklicka. Via dialogruta kan In1, In2, In3, 

Utgang14 läggas på sina ställen enligt figur nedan. Detta kan också skrivas in via 

tangentbordet. Markera ingången PT på TON-blocket och skriv T#4s vilket innebär 4 

sekunders fördröjning. Återstår att knyta ihop de olika blocken. Högerklicka och välj 

Interconnect Mode. Klicka på utgång, flytta musen och klicka på ingång. När alla 

förbindelser är gjorda högerklicka och välj Select Mode.  

13. Skapa två nya network med verktygsknapp  och lägg in block enligt figur nedan. 

ADD_E blocket innebär att Pott ökar med en enhet för varje positiv flank som läggs på 

EN-ingången. M9032 är ett pulståg med frekvensen 1 Hz. 
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14. Vi skall nu koppla det skapade delprogrammet, POU:et, till ett Task. Gå till Projekt 

Navigator, markera Task och klicka på verktygsknappen märkt TSK. Ge tasket ett 

namn. 

15. Dubbelklicka på det antagna tasknamnet i Project Navigator. En dialogruta kommer 

fram där önskade POU:n ansluts till detta Task. I detta fall finns bara ett val. 

16. Nu är projektet klart för kompilering. Gå till Project i huvudmenyn och aktivera 

Rebuild all. Förhoppningsvis inga fel annars gå in och korrigera.  

17. Dags för överföring till PLC-systemet. Välj huvudmenyns Project och Transfer och där 

Dopwnload to PLC. (Lyckas det inte så gå till Online-menyn välj Transfer Setup  -  

Ports  - Setup och ställ in rätt port.) 

18. Monitoreringar och on-line-ändringar kan sedan göras enligt avsnitt 6.7. 

19. Skulle samma problem lösas med ladderprogrammering LD skulle denna 

programmeringsform väljas under punkt 110 ovan. Det färdiga programmet skulle se 

ut enligt nedan. Som synes är det endast de logiska grindarna av typ AND och OR och 

negeringar som beskrivs med serie och parallellkopplade kontakter i ett ladderdiagram. 

För övrigt används samma funktionsblock som i FBD. 

 

20. För att skriva SFC-program är förfarandet ungefär detsamma. Det som skiljer är 

uppbyggnaden av själva funktionsdiagrammet.   
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 Dokumentation. 

Vid all form av utvecklingsarbete är dokumentation en nödvändighet. Det gäller i högsta 

grad i programutvecklingssammanhang. Är ett program inte dokumenterat på ett 

tillfredsställande sätt kan det vara mycket tidskrävande att redan efter en relativt kort tid 

återvända för att göra en modifiering, även om man själv utvecklat programmet. Om sedan 

någon som inte varit med i utvecklingsarbetet skall göra modifieringen kan det vara ännu 

besvärligare om bra dokumentation saknas. 

I utvecklingsmiljön GX IEC finns goda möjligheter till dokumentation. Dels skall man hela 

tiden arbeta med relevanta benämningar på de variabler eller signaler som används. Var 

alltså noggrann med att hitta processnära benämningar som därmed direkt gör 

programlogiken mera lättläst.  

Därutöver finns det mycket goda möjligheter att lägga in kommentarer där så önskas. 

Genom att aktivera ikonen   kan en kommentarruta ”ritas” i arbetsfältet genom att 

aktivera vänster musknapp. Resultatet blir enligt nedan. 

 

      

Utskrift av delar eller hela GX IEC Developer-projekt kan göras via Print-funktionen under 

Projekt i menyn. Utskrift sker av det som är markerat i Navigatorn. Om hela projektet 

markeras blir default-utskriften omfattande. Genom att ställa önskad omfattning i Print 

Options kan man styra omfattningen av utskriften. Utskriften sker på eget format men kan 

göras till en PDF-writer så att dokumentationen sedan kan kopplas till annat dokument. 
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Kap 7. Sekvensstyrningar i LD och FBD. 

Programmering av sekventiella förlopp är numera möjligt att göra i språket SFC, Sequence 

Function Chart. Sekventiella förlopp har dock utförts länge med reläer och sedan, innan 

SFC-språket dök upp, med LD- eller FBD-kod i PLC-styrningar. Följande avsnitt beskriver 

programmeringsmönstret för hur en sekvenskedja kodas på ett systematiskt sätt utgående 

från funktionsdiagrammet. Systematiken är viktig annars virrar man lätt bort sig i koden. 

Den nedan beskrivna metoden för LD-kod är också överförbar till relälösningar för 

sekvensiella förlopp. 

 

 Funktionsdiagrammet. 

Funktionsdiagrammets uppbyggnad är reglerad i tidigare presenterad standard IEC 848. Det 

som följer i detta kapitel utgår från ett enkelt sekventiellt förlopp beskrivet i funktions-

diagram i Figur 7.1.  

 

  

steg0

steg2

steg1

ovg0

ovg1

ovg2

s

actA

actB=1

actA

actB=0

actC=0

actC=1s

s

s

 

Figur 7.1: Funktionsdiagram för ett enkelt sekventiellt förlopp 

Vi skall nu titta på hur denna styrföljd kan realiseras I PLC-program med några olika 

metoder. Nedan visas Globala Variabellistan för de POU som presenteras senare. 
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 Lösning som Ladderprogram. 

Nedan framgår hur man delar upp förloppet i en sekvensdel och en händelsedel. 

Anledningen till det är att en och samma händelse kan ske i flera olika steg och då kan de 

inte aktiveras separat i varje aktuellt steg eftersom då endast den sista påverkan av 

händelsen skulle slå igenom. PLC:t arbetar så att insignaler läses in, sedan exekveras hela 

koden varefter utsignalerna läggs ut. Detta upprepas sedan cykliskt. I sekvensdelen kodar 

man alltså att steg och övergångar genomförs.  

En svaghet i sekvensdelen nedan är att om t ex ovg2 skulle vara aktiv då ovg1 blir aktiv 

skulle steg1 passeras direkt utan att någon exekvering av händelsedelen sker. Detta medför 

att dessa händelser i det fallet inte blir genomförda. Detta sätt att koda innebär att man 

måste försäkra sig om att ett stegs efterföljande övergångsvillkor verkligen kontrollerar att 

stegets händelse är utförd.  

 

 

I Händelsedelen tas varje händelse upp en gång och de steg som skall aktivera denna 

händelse samlas till en gemensam OR-grind. Detta säkrar att händelser alltid blir utförda. 
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Med en ändring av sekvensdelen till att behandla stegen i ordning nerifrån och upp enligt 

nedan elimineras problemet med risk för överhoppad händelse till att sista stegets, här 

steg2:s, händelse inte blir exekverad om ovg0 är aktiv då ovg2 blir aktiv. Särskild 

uppmärksamhet måste alltså ges sista steget i sekvenskedjan vid kodning av stegen nerifrån 

och upp i funktionsdiagrammet. Händelsedelen blir här densamma. 

 

Genom att utnyttja en flanktriggning vid övergången kan alla övergångar säkras för passage 

utan att händelser exekveras. Metoden innebär att två exekveringsvarv måste genomlöpas 

vid varje övergång vilket ökar fördröjningen något. Denna teknik framgår av koden nedan. 

 

 

Sekvensdelen kan naturligtvis också kodas i LD med hållkretsar. Nedan givna exempel är 

jämförbart med första lösningen ovan där risk fanns för missade utförda händelser om två 

övergångsvillkor efter varandra är uppfyllda samtidigt. Detta sätt att koda är det som ligger 

nära relälösningar från tider före PLC. Dessa relälösningar innebar alltså att det krävdes ett 

relä för varje steg i sekvensen. 
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 Lösning som Funktionsblock-program. 

Föredrar man att koda samma styrföljd i FBD enligt IEC kan koden se ut enligt nedan. Det 

första exemplet har samma uppbyggnad som första LD-exemplet ovan.  
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Nedan visas en lösning med övergångssäkring av händelser enligt det tidigare LD-exemplet 

men nu kodat i FBD. 
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