Idag

1. System och dess overforingsfunktion
2. S-planet & sammanhang med frekvensfunktionen
3. Impulssvar

4. Stegsvar



Varfor ar (Fourier/Laplace) transformer bra att ha

(1) Forenklar livet
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Krets = System

x(t) y(t)




System representering: Frekvenssvar/Stationartsvar

LTI system
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System representering: Overforningsfunktion

LTI system

X(s) Y(s)
Y (s)
H(s) =
($) X(5)
'Obs!

y(0) =y (0)=y”(0) =y (0) =...= y1(0) = 0
x(0) = x’(0)=x"(0) = x0) =...= x"V(0) =0



System representering: Overforningsfunktion

LTI system

X(s)

v

Y(s)=H(s)X(s)



Exempel

Bestam H(s) for system som beskriv av differentialekvationen:

Y + 4y’ + 10y(t) = x’(1)+ 2x(1)

X(s)

H(s)

Y(s),




Exempel (2)

Bestiam H(s) for foljande krets (filter):

X(s)

H(s)

Y(s),




Overforningsfunktion: Hur den ser ut

Om systemet beskrivs av en differentialekvation av typen

-1
anx(n) +an_1x(n )+ +ax=>b_ u( )+bm_1

Sa kommer 6verforingsfunktionen att vara en rationell funktioni s

-1
u(m : +...+b0u

m m-1
b,s" +b, " +..+Db

n n—1
ans +Cln_1S +...+Cl0

H(s) =

Den ar ett viktigt verktyg for att studera systemets egenskaper.



Undersokning av S-plan

X(8)

Y(s),

\ 4

H(s)

b, s"+b, 5" +.. b,
H(s) =

n n-1
ans +Cln_1S +...+a0

nollstalle 1

H(s) =K(S—Zl)(S—zz)...(s—Zm)

(s=p)s=p,)...(s=p,)

pol J



Frekvensfunktion & Bode

H(Gw) av en 1:a ordning system

/

Froguency (Hetx




Beloppsytta & fasytta

S ASE) s-plane

5 » Hi(s)
Z(s-p,)
LZ s—pil = (0 -0+ (@ —w)?,

/(s—p;) = tan"! (w—wi)

o — 0;




S-plan & Frekvensfunktion

jo
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s-plane
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S-plan & Frekvensfunktion

> 0
> (1)
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Poler & nolor i s-p

Beloppsyttan

Fasyttan

1 reel och 2 komplexa poler
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Analys ‘ Design



Varfor ar (Fourier/Laplace) transformer bra att ha

(2) Tillater systemdesign for en 'fagel’perspektiv

X(s) Y(s),

H(s)

Jag vill ha en krets som filtrerar bort alla frekvenser 6ver 100KHz
(a) Jag tillater ingen Oversvang
(b) Liten oversvang ar ok, men redan f=101kHz maste filtreras bort
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Filter

Butterworth Chebyshev type 1
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Filter design: polplacering
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Filter design: exempel pa 1:a ordning filtrar

‘ Filter Type and 7(s)

s-Plane Singularities

Bode Plot for |T|

Passive Realization
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Filter Type and 7(s)

s-Plane Singularities

Filterdesign: exempel pa 2:a ordning filter
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Filterdesign: exempel pa 2:a ordning filter forts...
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LTI system Representering

Varje LTI system kan unikt charakterizeras med sitt

Impulssvar h(t)
svar av systemet till en impulsfunktionen

Frekvenssvar HGjm):

svar av systemet till en komplex exponentiella e for alla
frekvenser f.

Overforingsfunktion H(s):
Laplacetransformen av impulssvar

Alla tre representeringar ar likvardiga
Om vi vet en representering, kan vi hitta de andra tva under forutsattning att de finns



System representering

X(t) y(t) ;
| I
X(s) Y(s)

Hur bestammer vi H(s)?

Vad ar det ‘enklaste’ signal att skicka in som ingang?



Singularity funktioner

Implusfunktion (Delta-funktionen)

0 =0 o(z)
1)=0(t) = 1t
(1) = 5(1) {OO .
Tva viktiga egenskaper
f(t)d(t —to) = f(to)d(t — to) &
/_oo f(t)6(t —to) dt = f(to) ¥
Stegfunktion (Trappfunktion) T
x(t) = u(?) =Jﬁ 5(7)dr 1
0 <0 f(x)
xO=u)=1" T :
— 1T

10



System representering: Impulssvar

X(t) = o(t) y(®)

I

Y(s)




Laplacetransform av impulsfunktion

For att ta Laplacetransformen av impulsfunktionen (%) sa modifierar vi
definitionen sa att

f@ - ff(f)e_”df
)

dar 0~ betyder att man skall ta gransvardet da fran vanster (dvs for t = 0)
Egenskaperna hos impulsfunktionen ger da att

5() — fé(t)e-”dt= fé(t)dt=1
0 0



System representering: Impulssvar

x(t) = o(t) y(t) ;
| I
1 Y(s)=

Y(s)=1H(s)

Alternativ definition av H(s)

Beskriver hur en linjarsystem svarar pa en impuls



System representering: Stegsvar

u(t) = o(t) y(t)
1/s Y( s)‘
1
Y(s)=—H(s)
S

Beskriver systemets egenskaper vid plotsliga stegvisa
forandringar hos signalen



