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Sampling



AD/DA konversion i Radio
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Mal med Samplingen

Sampling

—Rekonstruktiod.

En korrekt samplad signal kan rekonstrueras
exakt, dvs ingen information forloras | processen



A/D Kkonversion: sampling
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Ideel sampler
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Ideel sampler

Impulstag




Ideel sampler
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Ideel sampler

xln]=x@)\._,=x(nT)
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Exempel

Signalen x(t) = ¢%%sin(1000mxt) u(t), samplas med frekvensen
10 kHz. Bestim den uppkomna tidsdiskreta fuktionens
utseende.



Rollen av samplingsfrekvens
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Rollen av samplingsfrekvens

fv = Zﬂignal
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Rollen av samplingsfrekvens

Signalerna kan forvaxlas -
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Aliasing

Det finns ett oédndligt antal sinusvagor som ger
exakt samma sampelpunkter



Spektrum av en samplad signal
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Basband

Frekvensspektrum speglas | alla multiplar av
nykvistfrekvensen £/

Frekvensomradet [f,/2,f./2] kallas basbandet



Spektrum av en samplad signal
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Samplingsteoremet (Nyquist)

Om en bandbegransad signal skall kunna
atervinnas ur sina sampel maste
samplingsfrekvensen men en faktor 2 overstiga
den hogsta frekvens som signalen innehaller

»fsample = 2f MAXsignal

Alternativt

En signal kan samplas korrekt om den inte
innehaller frekvenser over halva
samplingsfrekvensen (Nyquistfrekvensen)




Sinusvag samplad med Nyquistfrekvens




Digital signal



Digitala signaler

11.1 1 Kontinuerlig Analog signal

Kvantisering = e
Begrinsat antal P T
nivaer = P
Diskret Amplitud |
001-
000

| Samplad Signal = Diskret tid |

Digital Signal = Diskret tid och amplitud



Binira talstyper
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Tillbaka till analogt

D/A omvandlare
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Tillbaka till analogt

D/A omvandlare
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Tillbaka till analogt

D/A omvandlare
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Tillbaka till analogt

D/A omvandlare

Inverterande
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Summatorn
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Tidsdiskreta system



Systemegenskaper

x[n] y([n]
Linjaritet Minne
Tidsinvarians Inverterbarhet

Stabilitet Kausalitet



Systemegenskaper

Linjaritet

1 Additivitet: T{Xl[”l] + xz[n]} = T{xl[n]} + 7T {xz[n]}

2 Skaling: T{ax[n]} _ aT{x[n]}
y[n] = x[n -n,]
I detaly:
T{X;[n]+x,[n]} = Xnh-n]+X,[n-n_]
TOGINDY + TNl = %, [n-ny]+ x,[n-n,]
T{ax[n]} - ax,[n-n,]

aT{x[n]}

ax;[n-n,]



Systemegenskaper

Tidsinvarians

tidsforskjutning over insignalen resulterar endast 1 samma
tidsskift 1 utsignalen

y[n] = T{x[n]} = y[n-n,] = Tix[n -n, ]}

Exempel

Delay the input the output is Y, n] = (x[n - n,1f
Delay the output gives y[n - no] = (x[n = no])2

y[n] = (x[n]y

Delay the input the outputis vy, |n|]=x[Mn-n_]

yln] = X[Mn] Delay the output gives y[n - no] = X[M(” — Ny )]



Systemegenskaper

Kausalitet

y[n] bildas enbart av nuvarande och tidigare varden pa x.

Exempel.:
y[n] =x[n] + x[n-1]

Minne

y[n] bildas enbart av nuvarande varden pa x.

Ex. System utan minne y[n] = k*x[n]
Ex. System med minne y[n] = k,;x[n] + k,x[n-1]



Systemegenskaper

Stabilitet

Ett system sdgs vara BIBO*-stabilt om och endast om alla
begriansade insignaler resulterar 1 en begransad utsignal

\x[n]\ <B, <o= \y[n]\ =B, <

Exempel.

y[n] = (X[n])2 if input is bounded by [x[n] < B, <
output isbounded by |y[n] = Bj < =

yIn] = logy, (x[n])
evenif input is bounded by [x[n] < B, <

output not bounded for x|n]= 0 = y|[0] = IoglOQX[n]) = —o0



Exempel:

Bestam om systemet y[n] = 7x[n] + 6 ar

Invertibel
Tidsinvariant
Kausalt
Linjar

BIBO stabilt
har Minne



Impulssvar h|n]

Ett LTI-systems impulssvar A(n) ar filtrets utsignal da insignalen ar
en impuls o(n)

O[n] h[n]
d[n] h[n]
A_T—i—w‘ ‘-QLJ—U—A-A—
Faltning yln]= E hlk]lx[n-k]

k=—OO



Faltning

Faltning ar en matematisk operation som kombinerar tva
sekvenser med varandra

Ekvationen kan tolkas som att man

1. \t/énder bak-och-fram pa x(k) och forskjuter n
steg

2. Multiplicerar med h(k)
3. Summerar produkten over alla k



Faltning

Kontinuerlig exempel
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Exempel: faltning

Bestam utsignalen y[n] av systemet med impulssvaret
h[n] da insignalen ar x[n].



