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1.  z-transformen 

2.  Invers z-transformen 
 



  

Z-transformen 



Definition 

Z-transformen 
(enkelsidigt) 

X(z) = x[n]z−n
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Jämnför med Laplace 

Mest generellt koncept för tidsdiskreta signaler 

Den som vi kommer att använda 



Potensserie 
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Potenserien att komma ihåg 

en (potens)serie 

Kan inte summera till något vettigt 
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Exempel 

Serien måste konvergera till en 
gränsvärde 

         1+ 2+3+...+ k +...

När ak är en talföljd kallas uttrycket 



En potensserie som konvergerar 

Z-transformen 

Z-transformerade signaler konvergerar inte nödvändigt för alla z. 
Man brukar identifiera region i vilken är functionen regulär 
Konvergens uppnås när r=|z| 
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Obs! 

Men i denna kursen antar vi 
att signaler uppfyller detta  

X(z) = x[n]z−n
n=0
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Det finns två olika sätt att transformera dvs. beräkna X(z) från x[n]: 
 
1) Man tar uttrycket för transformen ur en tabell. 
 
2) Man beräknar uttrycket med hjälp av definitionen av z-transformen  

 (förra föreläsningen) 

Z-transformen: beräkningen 



Viktiga Z-transformer: 

 X(z) = δ[n]z−n
n=0
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Impuls δ[n] 

Stegfunktion σ[n] 

     X(z) = u[n]z−n
n=−∞
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x[n]= anu[n]
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Viktiga z-transformer: 

Reel exponentiell sekvens 
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Bestäm z-transformen för följande diskreta signaler: 

Exempel 

x[n] = {0.3n} 

 

x[n] ={5 cos(3n)} 



Ofta räknar man inte ut Z-transformen från “scratch” 
med hjälp av definitionen 

Istället använder man tabeller över vanliga transfrormer  

Beräkning av Z-transformen  

x(n) X(z)
δ(n) 1
δ(n− k) z−k

u(n) 1
1− z−1

=
z
z−1

anu(n) 1
1− az−1

=
z

z− a



Z-transformen av tidsförskjuten δ(t) 

z-transformen av δ [n +1] 

                X(z) = δ[n+1]z−n
n=−∞
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                X(z) = δ[n−1]z−n
n=0
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z-transformen av δ [n -1] 

z ≠ 0  

z ≠ ∞   



Linjäritet: 
 
 
 
Förskott: 
 
 
Fördrojning: 
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x[n− N ]= z−NX(z)

x[n+ N ]⇒ zNX(z)

Z-transformen: satser 

Obs! 
 Förskott  f[n+n0] = f[n+n0]u[n]  
 Fördrojning: f[n-n0] = f[n-n0]u[n-n0] 



Exempel 

x1[n]= {0.3n u[n-5]} 

Bestäm z-transformen för följande diskreta signaler: 



Faltning: 
 
 

Z-transformen: satserna 
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Multiplication: 
 
 
 
Multiplication n: 



  

Invers 
z-transformen 



Invers z-transformen  
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Normal arbetsgång är att  partialbråksuppdela uttrycket för z-
transformen och därefter identifiera ”standard uttrick från tabellen	
  
	
  

…precis som i LT	
  



1.  Skriv X(z) som en normalizerad rational polynom i z -1  
 ( multiplicera både nämnare och täljare med z –N) 

X(z) = z
−r (b0 + b1z

−1 +!+ bMz
−M )

1+ a1z
−1 +!+ aNz

−N

Steg för invers z-transform 

2. Dela upp X(z) i en summa av enkla bråk –
partialbråksuppdelning/inverteringssatserna 
 
 
 
3.  Identifiera ut tabellen 
  

Exempel 



Exempel 

Inverstransformera uttrycket  

Lösning 

(om vi inte multiplicerar med z-1) 



Annan lösning Exempel 

Det sätt vi kör:  
1.  Y(z)/z 
2.  Partiellbråkuppdela 
3.  Identifiera från tabellen 

Man kan t vissa fall få helt andra uttryck (i z-planet), 
som beskriver samma signal 

Dessa uttryck motsvarar en samma signal (tidsförskjutning ) 

Kom ihåg! 
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Bestäm x[n] om 

Exempel 

X(z) = 0.5z
(z−1)(z− 0.5)
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Obs! This method doesn’t produce a closed-form expression for x[n] 

2. Syntetisk division metod (exempel) 



Perform long division of the numerator polynomial by the denominator 
polynomial to produce the quotient polynomial  q(z -1) 
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Identify coefficients in the power series definition of X (z) where 

2. Syntetisk division metod 


