

Matlab

Acknowledgement: many slides in this lecture were
downloaded from various sources in the internet

Vad är Matlab?

MATrix LABoratory
 is a high-performance language for technical computing.
 is a dynamic, interpreted, environment for matrix/vector analysis

1.  Interactive system
 Ideal environment for programming and analysing discrete
 (indexed) signals and systems

2.  Programming language
 User can build programs (in .m files or at command line) C/
 Java-like syntax

Vad är Matlab?

It integrates computation, visualization, and programming in an easy-
to-use environment. Typical uses include:

• Math and computation
• Algorithm development
• Modeling, simulation, and prototyping
• Data analysis, exploration, and visualization
• Scientific and engineering graphics

MATLAB is an interactive system whose basic data element is an
array that does not require dimensioning. This allows you to solve
many technical computing problems, especially those with matrix and
vector formulations, in a fraction of the time it would take to write a
program in a scalar non-interactive language such as C or Fortran.

Vad är Matlab?

◆ The MATLAB language
 - High-level matrix/array language with control flow statements,
 functions, data structures, input/output, and object-oriented programming
 features

◆ The MATLAB working environment
 - Facilities for managing the variables and importing and exporting data
 - Tools for developing, managing, debugging, and profiling M-files

◆ Handle Graphics
 - Two-dimensional and three-dimensional data visualization, image processing,
 animation, and presentation graphics
 - Graphical User Interface functions

◆ The MATLAB mathematical function library
◆ The MATLAB Application Program Interface (API)

 - Allows you to write C and Fortran programs that interact with MATLAB

Five parts of Matlab

Matlab is basically a high level language which has many specialized
toolboxes for making things easier for us

Assembly

High Level
Languages such as

C, Pascal etc.

Matlab

Vad är Matlab?

How high?

Strengths of MATLAB
relatively easy to learn
MATLAB code is optimized to be quick when performing matrix

operations
it may behave like a calculator or as a programming language
is interpreted, errors are easier to fix
(Although primarily procedural, MATLAB does have some object-oriented

elements)

Varför Matlab?

Weaknesses of MATLAB
MATLAB is NOT a general purpose programming language
MATLAB is an interpreted language (making it for the most part slower

than a compiled language such as C++)
MATLAB is designed for scientific computation and is not suitable for

some things (such as parsing text)

Matlab is too broad for our purposes in this course.

The features we are going to use is:

 Matlab

Command
Line m-files

functions

mat-files

Command execution
like DOS command

window

Series of
Matlab

commands

Input
Output

capability

Data
storage/
loading

Vad är intressant för oss?

n  No need for types. i.e.,

n  All variables are created with double precision unless
specified and they are matrices.

n  After these statements, the variables are 1x1 matrices
with double precision

int a;
double b;
float c;

Example:
>>x=5;
>>x1=2;

Variables

Matlab screen

Current Directory
View folders and m-files

Command Window
type commands Workspace

View program variables
Double click on a variable
 to see it in the Array Editor

Editor
write programs (m-files)

Matlab Help!

Learning to program (Matlab) is a “bums on seats” activity.
There is no substitute for practice, making mistakes, understanding

concepts

Lots of help available
•  Type help in the command window or help operator. This displays

the help associated with the specified operator/function
•  Type lookfor topic to search for Matlab commands that are related to

the specified topic
•  Type helpdesk in the command window or select help on the pull down

menu. This allows you to access several, well-written programming
tutorials.

•  Google!!!

Grundläggande Matlab
operationer

Grundläggande Matlab operationer

>> % This is a comment, it starts with a “%”
>> y = 5*3 + 2^2; % simple arithmetic
>> x = [1 2 4 5 6]; % create the vector “x”
>> x1 = x.^2; % square each element in x
>> E = sum(abs(x).^2); % Calculate signal energy
>> P = E/length(x); % Calculate a signal power
>> x2 = x(1:3); % Select first 3 elements in x
>> z = 1+i; % Create a complex number
>> a = real(z); % Pick off real part
>> b = imag(z); % Pick off imaginary part
>> plot(x); % Plot the vector as a signal
>> t = 0:0.1:100; % Generate sampled time
>> x3=exp(-t).*cos(t); % Generate a discrete signal
>> plot(t, x3, ‘x’); % Plot points

Andra Matlab programmering struktur
Loops

for i=1:100

 sum = sum+i;

end

Goes round the for loop 100 times,
starting at i=1 and finishing at
i=100

i=1;

while i<=100

 sum = sum+i;

 i = i+1;

end

Similar, but uses a while loop
instead of a for loop

Decisions

if i==5

 a = i*2;

else

 a = i*4;

end

Executes whichever branch is
appropriate depending on test

switch i

case 5

 a = i*2;

otherwise

 a = i*4;

end

Similar, but uses a switch

Nästa förelsning

Matlab remembers old commands
And variables as well
Each Function maintains its own scope

The keyword clear removes all variables from workspace
The keyword who lists the variables
The keyword whos lists the variables with dimensions etc

Viktigt…

Array, Matrix

n  a vector x = [1 2 5 1]

 x =

 1 2 5 1

n  a matrix x = [1 2 3; 5 1 4; 3 2 -1]

 x =
 1 2 3
 5 1 4
 3 2 -1

n  transpose y = x’ y =
 1
 2

 5
 1

Long Array, Matrix

n  t =1:10

 t =

 1 2 3 4 5 6 7 8 9 10

n  k =2:-0.5:-1

 k =

 2 1.5 1 0.5 0 -0.5 -1

n  B = [1:4; 5:8]

 x =

 1 2 3 4
 5 6 7 8

Generating Vectors from functions
n  zeros(M,N) MxN matrix of zeros

n  ones(M,N) MxN matrix of ones

n  rand(M,N) MxN matrix of uniformly
 distributed random

 numbers on (0,1)

x = zeros(1,3)
x =

 0 0 0

x = ones(1,3)

x =
 1 1 1

x = rand(1,3)
x =

 0.9501 0.2311 0.6068

Matrix Index

n  The matrix indices begin from 1 (not 0 (as in C))
n  The matrix indices must be positive integer

Given:

A(-2), A(0)

Error: ??? Subscript indices must either be real positive integers or logicals.

A(4,2)
Error: ??? Index exceeds matrix dimensions.

Concatenation of Matrices

n  x = [1 2], y = [4 5], z=[0 0]

 A = [x y]

 1 2 4 5

 B = [x ; y]

 1 2
 4 5

 C = [x y ;z]
Error:
??? Error using ==> vertcat CAT arguments dimensions are not consistent.

Operators (arithmetic)

+ addition
- subtraction
* multiplication
/ division
^ power
‘ complex conjugate transpose

\ inverse (solving systems of linear

equations)

Matrices Operations

Given A and B:

Addition Subtraction Product Transpose

Operators (Element by Element)

.* element-by-element multiplication
./ element-by-element division
. ̂element-by-element power

The use of “.” – “Element” Operation

K= x^2
Erorr:
 ??? Error using ==> mpower Matrix must be square.
B=x*y
Erorr:
??? Error using ==> mtimes Inner matrix dimensions must agree.

A = [1 2 3; 5 1 4; 3 2 1]
 A =
 1 2 3
 5 1 4
 3 2 -1

y = A(3 ,:)

y=
 3 4 -1

b = x .* y

b=
 3 8 -3

c = x . / y

c=
 0.33 0.5 -3

d = x .^2

d=
 1 4 9

x = A(1,:)

x=
 1 2 3

y = A(:,3)

n  Complex numbers
n  real(); imag();abs()

and 4π.

sum()
abs()
sqrt()
length()
size()
max()
min()

whos
who

zeros()
ones()
rand()
()
()
()
()

Hur funkar egentligen sum() …

Basic Task: Plot the function sin(x)
between 0≤x≤4π

n  Create an x-array of 100 samples between 0
and 4π.

n  Calculate sin(.) of the x-array

n  Plot the y-array

>>x=linspace(0,4*pi,100);

>>y=sin(x);

>>plot(y)
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Plot the function e-x/3sin(x) between
0≤x≤4π
n  Create an x-array of 100 samples between 0

and 4π.

n  Calculate sin(.) of the x-array

n  Calculate e-x/3 of the x-array

n  Multiply the arrays y and y1

>>x=linspace(0,4*pi,100);

>>y=sin(x);

>>y1=exp(-x/3);

>>y2=y*y1;

Plot the function e-x/3sin(x) between
0≤x≤4π
n  Multiply the arrays y and y1 correctly

n  Plot the y2-array

>>y2=y.*y1;

>>plot(y2)

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Display Facilities

n  plot(.)

n  stem(.)

Example:
>>x=linspace(0,4*pi,100);
>>y=sin(x);
>>plot(y)
>>plot(x,y)

Example:
>>stem(y)
>>stem(x,y)

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Display Facilities

n  title(.)

n  xlabel(.)

n  ylabel(.)

>>title(‘This is the sinus function’)

>>xlabel(‘x (secs)’)

>>ylabel(‘sin(x)’)
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
This is the sinus function

x (secs)

si
n(

x)

Plotting

MAKING X-Y PLOTS

MATLAB has many functions and commands that can be used to
create various types of plots.

we will only create two dimensional x – y plots.

8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

DISTANCE (cm)

IN
TE

NS
IT

Y
(lu

x)
Light Intensity as a Function of Distance

Comparison between theory and experiment.

Theory
Experiment

Plot title

y axis
label

x axis
label

Text

Tick-mark label

EXAMPLE OF A 2-D PLOT

Data symbol

Legend

Tick-mark

TWO-DIMENSIONAL plot() COMMAND

 where x is a vector (one dimensional array), and y is a vector.
 Both vectors must have the same number of elements.

v  The plot command creates a single curve with the x values on

 the abscissa (horizontal axis) and the y values on the ordinate
 (vertical axis).

v  The curve is made from segments of lines that connect the
 points that are defined by the x and y coordinates of the
 elements in the two vectors.

The basic 2-D plot command is:

plot(x,y)

v  If data is given, the information is entered as the elements of the
 vectors x and y.

v  If the values of y are determined by a function from the values

 of x, than a vector x is created first, and then the values of y
 are calculated for each value of x. The spacing (difference)

 between the elements of x must be such that the plotted curve
 will show the details of the function.

CREATING THE X AND Y VECTORS

PLOT OF GIVEN DATA

Given data:

>> x=[1 2 3 5 7 7.5 8 10];
>> y=[2 6.5 7 7 5.5 4 6 8];
>> plot(x,y)

A plot can be created by the commands shown below. This can be
done in the Command Window, or by writing and then running a
script file.

Once the plot command is executed, the Figure Window opens with
the following plot.

x

y

1 2 3 5 7 7.5 8

6.5 7 7 5.5 4 6 8

10

2

PLOT OF GIVEN DATA

LINE SPECIFIERS IN THE plot() COMMAND

 Line specifiers can be added in the plot command to:
Ø  Specify the style of the line.
Ø  Specify the color of the line.
Ø  Specify the type of the markers (if markers are desired).

plot(x,y,’line specifiers’)

LINE SPECIFIERS IN THE plot() COMMAND

Line Specifier Line Specifier Marker Specifier
Style Color Type

Solid - red r plus sign +
dotted : green g circle o
dashed -- blue b asterisk *
dash-dot -. Cyan c point .

 magenta m square s
 yellow y diamond d
 black k

plot(x,y,‘line specifiers’)

LINE SPECIFIERS IN THE plot() COMMAND

Ø  The specifiers are typed inside the plot() command as strings.

Ø  Within the string the specifiers can be typed in any order.

Ø  The specifiers are optional. This means that none, one, two, or

all the three can be included in a command.

EXAMPLES:

plot(x,y) A solid blue line connects the points with no markers.

plot(x,y,’r’) A solid red line connects the points with no markers.

plot(x,y,’--y’) A yellow dashed line connects the points.

plot(x,y,’*’) The points are marked with * (no line between the
 points.)

plot(x,y,’g:d’) A green dotted line connects the points which are
 marked with diamond markers.

Year

Sales (M)

1988 1989 1990 1991 1992 1993 1994

127 130 136 145 158 178 211

PLOT OF GIVEN DATA USING LINE
SPECIFIERS IN THE plot() COMMAND

>> year = [1988:1:1994];
>> sales = [127, 130, 136, 145, 158, 178, 211];
>> plot(year,sales,'--r*')

Line Specifiers:
dashed red line and
asterisk markers.

PLOT OF GIVEN DATA USING LINE
SPECIFIERS IN THE plot() COMMAND

Dashed red line and
asterisk markers.

% A script file that creates a plot of

% the function: 3.5^(-0.5x)*cos(6x)

x = [-2:0.01:4];

y = 3.5.^(-0.5*x).*cos(6*x);

plot(x,y)

CREATING A PLOT OF A FUNCTION

Consider: 42for)6cos(5.3 5.0 ≤≤−= − xxy x

A script file for plotting the function is:

Creating a vector with spacing of 0.01.

Calculating a value of y
 for each x.

Once the plot command is executed, the Figure Window opens with
the following plot.

A PLOT OF A FUNCTION

42for)6cos(5.3 5.0 ≤≤−= − xxy x

CREATING A PLOT OF A FUNCTION

If the vector x is created with large spacing, the graph is not accurate.
Below is the previous plot with spacing of 0.3.

x = [-2:0.3:4];
y = 3.5.^(-0.5*x).*cos(6*x);
plot(x,y)

THE fplot COMMAND

fplot(‘function’,limits)

The fplot command can be used to plot a function
with the form: y = f(x)

Ø  The function is typed in as a string.

Ø  The limits is a vector with the domain of x, and optionally with limits

of the y axis:

[xmin,xmax] or [xmin,xmax,ymin,ymax]

Ø  Line specifiers can be added.

PLOT OF A FUNCTION WITH THE fplot() COMMAND

>> fplot('x^2 + 4 * sin(2*x) - 1', [-3 3])

33for1)2sin(42 ≤≤−−+= xxxyA plot of:

PLOTTING MULTIPLE GRAPHS IN THE SAME PLOT

Plotting two (or more) graphs in one plot:

1.  Using the plot command.

2. Using the hold on, hold off commands.

USING THE plot() COMMAND TO PLOT
MULTIPLE GRAPHS IN THE SAME PLOT

Plots three graphs in the same plot:

 y versus x, v versus u, and h versus t.

Ø  By default, MATLAB makes the curves in different colors.

Ø  Additional curves can be added.

Ø  The curves can have a specific style by adding specifiers after
each pair, for example:

plot(x,y,u,v,t,h)

plot(x,y,’-b’,u,v,’—r’,t,h,’g:’)

USING THE plot() COMMAND TO PLOT
MULTIPLE GRAPHS IN THE SAME PLOT

42 ≤≤− x

Plot of the function, and its first and second
derivatives, for , all in the same plot.

10263 3 +−= xxy
42 ≤≤− x

x = [-2:0.01:4];

y = 3*x.^3-26*x+6;

yd = 9*x.^2-26;

ydd = 18*x;

plot(x,y,'-b',x,yd,'--r',x,ydd,':k')

vector x with the domain of the function.

Vector y with the function value at each x.

42 ≤≤− x

Vector yd with values of the first derivative.
Vector ydd with values of the second derivative.

Create three graphs, y vs. x (solid blue
line), yd vs. x (dashed red line), and ydd
vs. x (dotted black line) in the same figure.

-2 -1 0 1 2 3 4
-40

-20

0

20

40

60

80

100

120

USING THE plot() COMMAND TO PLOT
MULTIPLE GRAPHS IN THE SAME PLOT

hold on Holds the current plot and all axis properties so that
subsequent plot commands add to the existing plot.

hold off Returns to the default mode whereby plot commands
erase the previous plots and reset all axis properties
before drawing new plots.

USING THE hold on, hold off, COMMANDS
TO PLOT MULTIPLE GRAPHS IN THE SAME PLOT

This method is useful when all the information (vectors) used for
the plotting is not available a the same time.

Plot of the function, and its first and second
derivatives, for all in the same plot.

10263 3 +−= xxy
42 ≤≤− x

x = [-2:0.01:4];
y = 3*x.^3-26*x+6;
yd = 9*x.^2-26;
ydd = 18*x;
plot(x,y,'-b')
hold on
plot(x,yd,'--r')
plot(x,ydd,':k')
hold off

Two more graphs are created.

First graph is created.

USING THE hold on, hold off, COMMANDS
TO PLOT MULTIPLE GRAPHS IN THE SAME PLOT

8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

DISTANCE (cm)

IN
TE

NS
IT

Y
(lu

x)
Light Intensity as a Function of Distance

Comparison between theory and experiment.

Theory
Experiment

Plot title

y axis
label

x axis
label

Text

EXAMPLE OF A FORMATTED 2-D PLOT

Data symbol

Legend

Tick-mark

Tick-mark label

FORMATTING PLOTS

A plot can be formatted to have a required appearance.

With formatting you can:

Ø  Add title to the plot.
Ø  Add labels to axes.
Ø  Change range of the axes.
Ø  Add legend.
Ø  Add text blocks.
Ø  Add grid.

FORMATTING PLOTS

There are two methods to format a plot:

1.  Formatting commands.
 In this method commands, that make changes or additions to
the plot, are entered after the plot() command. This can be
done in the Command Window, or as part of a program in a
script file.

2.  Formatting the plot interactively in the Figure Window.

 In this method the plot is formatted by clicking on the plot and
using the menu to make changes or add details.

FORMATTING COMMANDS

title(‘string’)

 Adds the string as a title at the top of the plot.

xlabel(‘string’)

 Adds the string as a label to the x-axis.

ylabel(‘string’)

 Adds the string as a label to the y-axis.

axis([xmin xmax ymin ymax])

 Sets the minimum and maximum limits of the x- and y-axes.

FORMATTING COMMANDS

legend(‘string1’,’string2’,’string3’)

 Creates a legend using the strings to label various curves (when
several curves are in one plot). The location of the legend is
specified by the mouse.

text(x,y,’string’)
 Places the string (text) on the plot at coordinate x,y relative to
the plot axes.

gtext(‘string’)
 Places the string (text) on the plot. When the command
executes the figure window pops and the text location is clicked
with the mouse.

EXAMPLE OF A FORMATTED PLOT

Below is a script file of the formatted light intensity plot (2nd slide).
(Some of the formatting options were not covered in the lectures,
but are described in the book)

x=[10:0.1:22];

y=95000./x.^2;

xd=[10:2:22];

yd=[950 640 460 340 250 180 140];

plot(x,y,'-','LineWidth',1.0)

hold on

plot(xd,yd,'ro--','linewidth',1.0,'markersize',10)

hold off

Creating a vector with
light intensity from data.

Creating a vector with coordinates of data points.

Creating vector x for plotting the theoretical curve.

Creating vector y for plotting the theoretical curve.

EXAMPLE OF A FORMATTED PLOT

Formatting of the light intensity plot (cont.)

xlabel('DISTANCE (cm)')

ylabel('INTENSITY (lux)')

title('\fontname{Arial}Light Intensity as a Function of
Distance','FontSize',14)

axis([8 24 0 1200])

text(14,700,'Comparison between theory and
experiment.','EdgeColor','r','LineWidth',2)

legend('Theory','Experiment',0)

Creating text.

Creating a legend.

Title for the plot.

Setting limits of the axes.

Labels for the axes.

The plot that is obtained is shown again in the next slide.

EXAMPLE OF A FORMATTED PLOT

FORMATTING A PLOT IN THE FIGURE WINDOW

Once a figure window is open, the figure can be formatted interactively.

Use Figure,
Axes, and
Current Object-
Properties in
the Edit menu

Click here to start the
plot edit mode.

Use the insert menu to

Graphics-Stem()

• stem()is to plot discrete sequence data
•  The usage of stem() is very similar to
plot()

>> n=-10:10;
>> f=stem(n,cos(n*pi/4))
>> title('cos(n\pi/4)')
>> xlabel('n')

-10 -5 0 5 10
-1

-0.5

0

0.5

1
cos(nπ/4)

n

subplots
•  Use subplots to divide a plotting window

into several panes.

>> x=0:0.1:10;
>> f=figure;
>> f1=subplot(1,2,1);
>> plot(x,cos(x),'r');
>> grid on;
>> title('Cosine')
>> f2=subplot(1,2,2);
>> plot(x,sin(x),'d');
>> grid on;
>> title('Sine');

0 5 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Cosine

0 5 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Sine

>> f=figure;
>> x=-5:0.1:5;
>> h=plot(x,cos(2*x+pi/3));
>> title('Figure 1');
>> xlabel('x');
>> saveas(h,'figure1.fig')
>> saveas(h,'figure1.eps')

Save plots

•  Use saveas(h,'filename.ext') to save a
figure to a file.

Useful extension types:
 bmp: Windows bitmap
 emf: Enhanced metafile
 eps: EPS Level 1
 fig: MATLAB figure
 jpg: JPEG image
 m: MATLAB M-file
 tif: TIFF image, compressed

File I/O

•  Matlab has a native file format to save and
load workspaces. Use keywords load and
save.

•  In addition MATLAB knows a large
number of popular formats. Type “help
fileformats” for a listing.

•  In addition MATLAB supports ‘C’ style
low level file I/O. Type “help fprintf” for
more information.

•  Plot the following signals in linear scale

•  Plot the following signals, use log scale for y-axis

•  Plot the real part and imaginary part of the following signal

•  For the signal in previous question, plot its phase and magnitude

50)(
55)3sin()(

32 <<=

<<−=
+ tety

tttx
t

100)12()(2 <<+= + ttetx t

100)()3/(5.0 <<= ++ tetx tjt π

Try yourself…

Matrix Operations 1/5

•  Go to Page 422 in the MATLAB Handout

•  Matrix addition:

•  Matrix Multiplication:

[] [] []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

5
2
1

,
431
327
264

,
929
738
050

CBA

[] []

[] []

[] [] [] []ABBA

AB

BA

+=+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−++

+++

+−++

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−++−+

+++

−+++

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=+

5110
10515
2114

94)2(391
733287
025604

929
738
050

431
327
264

5110
10515
2114

)4(93219
372378
)2(06540

431
327
264

929
738
050

[] []
() ()
() ()

() () () () ()

[] []
() () () ()

()
() () () ()

[] [] [] []ABBA

AB

BA

⋅≠⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅−+⋅+⋅−⋅−+⋅+⋅⋅−+⋅+⋅

⋅+⋅+⋅−⋅+⋅+⋅⋅+⋅+⋅

⋅−+⋅+⋅−⋅−+⋅+⋅⋅−+⋅+⋅

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⋅+⋅−+−⋅⋅+⋅−+⋅⋅+⋅−+⋅

−⋅+⋅+−⋅⋅+⋅+⋅⋅+⋅+⋅

−⋅+⋅+−⋅⋅+⋅+⋅⋅+⋅+⋅

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=⋅

152212
413543
244230

947301243351948301
937207233257938207
927604223654928604

929
738
050

431
327
264

607731
357560
151035

493229392269197249
473328372368177348
403520302560107540

431
327
264

929
738
050

Matrix Operations 2/5
•  Matrix multiplication can also be considered as linear equations.

•  The transpose of any matrix switches the column with row

•  The determinant a matrix

[] [] []

[] [] []
()
()

() () ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅+⋅−+−⋅

⋅+⋅+−⋅

⋅+⋅+−⋅

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=⋅=

=⋅+⋅+⋅

=⋅+⋅+⋅

=⋅+⋅+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⋅=

32
33
10

592219
572318
502510

5
2
1

929
738
050

3333232131

2323222121

1313212111

3

2

1

3

2

1

333231

232221

131211

CAD

DCACACA
DCACACA
DCACACA

D
D
D

C
C
C

AAA
AAA
AAA

CAD

() () ()

()() () ()() 45392807998572930
929
738
050

223132211323313321122332332211

333231

232221

131211

−=⋅−−⋅⋅+⋅−⋅⋅−⋅−−⋅⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

⋅−⋅⋅+⋅−⋅⋅−⋅−⋅⋅=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

A

AAAAAAAAAAAAAAA
AAA
AAA
AAA

A

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

970
235
980

929
738
050

332313

322212

312111

333231

232221

131211
TT

T

AAA
AAA
AAA

AAA
AAA
AAA

A

Matrix Operations 3/5
•  The inverse of the A matrix:

– Find the determinant of the matrix
– Find the transpose of the matrix
– Find the cofactors of the matrix
–  Insert the cofactors into the matrix

[]

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=⋅==

−
⋅⋅−=

−

−
=

−
⋅=

=⋅⋅−==⋅=
−

−
=⋅⋅−=

=⋅=
−

=
−

⋅⋅−=
−

=
−

⋅=

=

−

−−−

−−−

−−−

−

8889.019556.0
002.0
7778.019111.0

40
35
801

45
45

25
9011

45
43

23
981

0
70
80110

90
901

45
9

97
9811

45
35

70
351

45
45

90
2511

45
41

97
231

1

1
33

1
32

1
31

1
23

1
22

1
21

1
13

1
12

1
11

1

A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

Matrix Operations 4/5
•  To create a matrix inside MATLAB:

–  Brackets “[]”
–  Space or comma “,” , indicates a new column
–  A semicolon “;” indicates a new row

•  Follow the directions inside example 15.4 (pg. 422-423)
•  Add Matrices (A+B)
•  Subtract Matrices (A-B)
•  Multiply Matrices (A*B)
•  Find the determinant of a Matrix (det(A))

•  Follow the directions inside example 15.5 (pg. 424)
–  Solve a set of linear equations
–  Gauss elimination (A\B)
–  Inverse of a matrix (A-1=inv(A))
–  A\B=inv(A)*B

Matrix Operations 5/5

•  Element by element operation:

•  In the MATLAB command window type:

a.*b

[] []

[] []
()

() ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⋅⋅−⋅

⋅⋅⋅

−⋅⋅⋅

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⋅

3669
21656
0300

493219
372378
206540

431
327
264

.
929
738
050

.

..

333332323131

232322222121

131312121111

333231

232221

131211

333231

232221

131211

BA

BABABA
BABABA
BABABA

BBB
BBB
BBB

AAA
AAA
AAA

BA

