
lösning 1:a ordning ODE ekvation 

Bestäm LTI systemsvår (utgång y(t)) på en ingång signal x(t).  
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Taking Fourier transforms of both signals: 
 
 
 
gives the overall frequency response: 

x(t) y(t) 

Färdiga eller? 

X ω( ) Y ω( )



Att konventera till tidsdomän måste vi uttrycka Y(jw) som 
partialbröksuppdelning 
 
 
 
 
Systemsvår är då 
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lösning 1:a ordning ODE ekvation 

Nästa föreläsning 



  

Idag 

 
1.  Bodediagram 

 
2.  Laplacetransform 
 

3.  Egenskaper 



  

Bodediagram 



Amplitudförstärkningskurvor blir ofta ganska svårtolkade i linjär 
-linjär plot, istället ritar man amplitudkurvan i log-log skala.  
 
Vidare så multiplicerar man ofta förstärkningen med 20 för att 
erhålla en decibelskala  

Frekvensspektrum 

( ) ( )( )ωωω HtH ∠+ cos  

H ( jω) = Y ( jω)
X( jω)

Bode diagram 

vi plottar 20 log|H(iω)| med en logaritmiskt växande frekvens  



  

Förstarkning 

Förstarkning [dB] 
logskala 

Frekvens [rad/s] 

Fas [Grad] 
logskala 

Fas [Grad] 

Frekvensspektrum linjär vs dB skala 



Decibel [dB] är ett logaritmikt mått  
 
Det används för att ange ett förhållande till ett referensvärde 

och definieras enligt 
 
 
 
 
 
 
 
Decibel används ofta för att beskriva ljudnivå, elektrisk 

signalstyrka och digitala signaler.  
 
 
 

dB
P
P

= 10
2
110log P2: Effekt 

P1: referens värde 

Decibel 

dB =10 log10 P2
P1

=10 log10U2 ^ 2
U1^ 2

= 20 log10U2
U1



Lär oss känna våra logs 

Koncept : 
(1) Genom decibelnummer kan vi 

 se skilnader tidligare   
 
 
 
 
 

(2) decibelnummer kan läggas till (eller subtraheras) när vi mäter 
flera punkter (cascading) i stället för multiplikationer. 

Effektförändrig mellan p1 och p4 

20 log (0.01)  = -40 dB 
20 log (0.1)  = -20 dB 
20 log (0.5)  =   -3 dB 
20 log (1)  =    0 dB 
20 log (2)  =    3 dB 
20 log (10)  =  20 dB 
20 log (100)  =  40 dB 
... 
20 log(1000000) = 120dB 
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(Approximativt) Bodediagram 

För att variationer i amplitud ska synas lika bra vid höga 
frekvenser som vid låga frekvenser så används en logaritmisk 
frekvens-axel 

Inom elektronik används ofta decibel - skala för effekter och 
amplituder 



Bodediagram 

Brytfrekvens 
ωc =

1
τ i

vi skissa |H (jω)|dB och φ (H (jω)) som funktion av ω eller f med 
logaritmisk skala på ω-axeln 

AvdB  = 20 log10 |H (jω)| 
φ  = -tan-1  (ω /ωc) 

En snabb teknik för att uppskatta en komplicerad överföringsfunktion 
med flera poler och nollor 

pol 

nolla 

H (ω) = k (1+ jωτ z1)(1+ jωτ z2 )!(1+ jωτ zn )
(ω2+ jωτ p2 )(1+ jωτ p2 )!(1+ jωτ pm )



Simple Pole: 
 
 
Simple Zero: 
 
 
DC Zero: 
 
 
DC Pole: 
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Sammanfattning av enkla individuella faktorer 

Alla lutningar 
20dB/dek 



Case I : 

Magnitude: 
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Case II : 

Magnitude: 

Phase: 
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Case III : 

Magnitude: 

Phase: 
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Case IV : a
( jω + a)

or (1
a
jω +1)−1

Magnitude: 

Phase: 
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Case VI : 

Magnitude: 

Phase: 
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Case V : 

Magnitude: 
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Consider the following transfer function 
 
 
 
 
Brytfrekvenser: inverterad tidskonstanter 
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Kom ihåg: log av produkt är summa av logs 
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Bryta ner amplituder 
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Exempel 



Aktuella amplitudt 

Aktuella fast 



Hur bra approximation man får? 
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Exempel 

Bestäm H(jw) av följande krets. Rita Bodediagramet. 
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Exempel 

Är det något som H(jω) inte beskriver?  

H ( jω) = 1
1+ jω



Motivering 

+ 
- 

i uc u1 

R 

C 

i(t) = u1(t)−uc (t)
R

i(t) =C duc (t)
dt

duc (t)
dt

+
1
RC

uc (t) =
1
RC

u1(t)

Differential ekvation 

Transienter! 

t=0 



  

Laplacetransformen 



Euler began looking at integrals as solutions to differential equations 
in the mid 1700’s: 

 
 
Lagrange took this a step further while working on probability density 

functions and looked at forms of the following equation: 
 
 
 
Finally, in 1785, Laplace began using a transformation to solve 

equations of finite differences which eventually lead to the current 
transform 

Histori av Laplace transform 



“The French Newton” 

Pierre-Simon Laplace 

Developed mathematics in 
astronomy, physics, and statistics 

 
Began work in calculus which led to 

the Laplace Transform 
 
Focused later on celestial mechanics 
 
One of the first scientists to suggest 

the existence of black holes 



The Laplace transform is a linear operator that switched 
a function x(t) to X(s). 
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Definition 

s =σ + jω

X( jω) = x(t)e− jωt dt
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∫
Jämnför med Fourier transform 

Men vi ska använda 
en enkelsidigt variant    

σ 0 <σ = Re{s}≤σ1

[s-1] 
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(enkelsidigt) 

Definition 
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Konvergensområde 

+   Enklare att få svår på transienter 
+   konsistent med vanlig praktik 
-  Bortser x(t) för t<0 

Att ha med 
impulser i t=0 
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Definition 

Den inversa laplacetransformen är densamma för den dubbelsidiga 
som för den enkelsidiga transformen: 

Invers Laplace transform 

Dock denna används typisk inte 
Vi kommer använda partialbröksuppdelning 
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Begränsking 

f (t) ≤Meat , t ≥ t0

Rt ≤≤0
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Laplacetransformen	
  F(s)	
  av	
  en	
  funk;on	
  f(t)	
  existerar	
  om	
  f(t)	
   

f (t) = eat
2

Ingen	
  LT 



Konvergens och ROC 

•  Laplacetransformen inte altid konvergerar till en ändlig värde för 
alla signaler och alla värden av s 

•  Värdena för er som Laplace trans konvergerar kallas regionen 
konvergens (ROC) 
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Exempel 

Inkludera alltid ROC i din lösning! 



Konvergens och ROC 

ROC existerar inte nodvändigt 
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Det finns ingen gemensam ROC à Laplace Transform 
can inte appliceras! 



LT: Egenskaper 

Linjäritet 

ROC=R1 
ROC=R2 

ROC= R1∩R2 



LT: Egenskaper 

TidSkalning 



LT: Egenskaper 

Tidtranslation 



LT: Egenskaper 
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Först Tidsförskjutning sedan skalning!!! 

OBS: kombinering av Tidtranslation och tidskalning 



LT: Egenskaper 

Förskjutning i s-domän  



LT: Egenskaper 

Differentiation i tiden   



Laplace transforms are the 
primary tool used to solve DEs in 
control engineering. 
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Mot lösningen differential ekvationer…  


