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Lösningarna skall vara fullständigt redovisade så att dina resonemang går att följa!  
Använda samband skall redovisas!  
 

1  a. Den tidkontinuerliga funktionen ( ) tettx t π10540cos10 16005 ⋅⋅⋅= −  samplas från 0=t  med 

   frekvensen 25kHz. Bestäm den diskreta signal som erhålles.  1p 

  b. Bestäm Laplacetransformen ( )sF  för funktionen ( )
t

t

e

e
tf

4

23 +
= . 1p 

 

  c. Bestäm den diskreta signalen [ ]nx  då dess z-transform är  ( )
12,0

2
1 +

=
−z

zX  1p 

 

2.   Ett diskret system har impulssvaret [ ] ( )nnh 4,0−=  Bestäm dess stegsvar. 3p 
 

3 a. Ett diskret system har överföringsfunktionen ( )
azz

z
zH

++

+
=

8,0

4,0
2

.  

   Bestäm ett värde på a  i intervallet 9,09,0 <<− a  som gör systemet instabilt. 
   Motivering krävs. 1p 
  b. Bestäm systemets impulssvar då 2,0−=a . 3p 

 
     

 

4.  Bestäm övrföringsfunktionen ( )zH  för systemet t.h. 

Uttrycket skall vara förenklat så att det  
innehåller endast positiva z-potenser! 2p 

  
 
 
 
 
 
 
 
 
 

5.  Betrakta signalen ( ) ( ) ttttx 18400cos6306600sin25300sin53 +−−−= oππ . 
   Bestäm minsta samplingsfrekvens för att signalen skall kunna återvinnas ur sina sampel 2p 
 
 
 
6. I kretsen t.h. är kondensatorn urladdad 
 vid tiden 0=t . 
 a. Bestäm spänningen )(tu  för 0≥t . 3p 

 V2450F625H25,0 ==== ERCL Ωµ  3p 

 b. Antag att R kan väljas fritt. För vilka R blir )(tu  en 
svängande funktion? 3p 
 

 
7 a. Signalen ( )tx  i diagrammet t.h. kan approximeras som  

( ) tbtatbtaatx 020201010 2sin2cossincos ωωωω ⋅+⋅+⋅+⋅+=  

Beräkna 0ω samt koefficienterna 0a , 1a , 1b , 2a  och  2b   i 

denna summa. 
Svara med färdigräknade värden!! 
   4p 

 

( )tx

( )st-1,5 1,5

-1

0,5 2,5-0,5

0=t R L

C ( )
−

+

tuE



 b.  Vilka frekvenser finns i den periodiska signalen nedan? 2p 

 
 
 
 
8. Omkopplaren i schemat t.h. öppnas vid t = 0 då kretsen befinner sig i 

stationärtillstånd (strömmar och spänningar konstanta). 
 Bestäm ( )ti  för 0>t  då  

V16F2mH,10,80,20 21 ===== ECLRR µΩΩ .     6p 

 
 

9.  Överföringsfunktionen ( ) ( )
( )sU

sU
sH

1

2=  för systemet t.h. kan 

skrivas ( )

2

1

1

1

ω

ω
s

s

AsH
+

+

⋅= . Bestäm 21,, ωωA . 

  OP:n får betraktas som ideal. 

  nF,10k3,3,k220,k2,2 321 ==== CRRR Ω,ΩΩ 4p 

 
 
 

10  Ett diskret notchfilter med samplingsfrekvensen 1000Hz beskrivs av differensekvationen  

   [ ] [ ] [ ] [ ] [ ] [ ]29025,01295,0212 −⋅−−⋅⋅−−+−+= nynynxnxnxny . 

   Vilken frekvens utsläcks av filtret?    3p 

 

11.  Figuren visar blockschemat för ett system där ( )
1

3
1

+
=

s
sH  och ( )

22
+

=
s

b
sH . 

   För vilka värden på b  är systemet stabilt med ett icke-svängande stegsvar?  5p 
 

   

( )sH1

( )sH2

( )sX ( )sY

 
 
12.  Ett diskret LP-filter beskrivs av differensekvationen [ ] [ ] [ ]1−⋅−⋅= nyanxKny . 

   Filtret har samplingsfrekvensen 1200Hz. 
   Bestäm K och a så att filtrets övre gränsfrekvens blir 200Hz och så att ( ) 11 =H , 

   där ( )zH  är filtrets överföringsfunktion.   6p 
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Formelsamling Linjära system 

Fouriertransformen 

Funktionen )(tf  är reellvärd och periodisk med perioden T  och därmed grundvinkelfrekvensen 0ω  som 

ges av πω 20 =T  

 

Analoga signaler 

PERIODISKA EFFEKTSIGNALER 

 

KOMPLEX FOURIERSERIE 

En periodisk signal ( )tf  med perioden T  kan skrivas 

( ) ∑
∞

≠
−∞=

+=

0

j
0

0

k
k

tk
kecctf ω      där ( )∫⋅=

period1

0
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1
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0 ≠⋅⋅= ∫ − kdtetf
T

c tjk
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π
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0 =  . 

REELL FOURIERSERIE 

En periodisk signal ( )tf  med perioden T  kan skrivas 

 

( ) ( )∑ ++=
∞

=1
000 sincos

k
k tkkbtkaatf ωω  , där 

T

π
ω

2
0 =  . 

 

KOEFFICIENTSAMBAND:  

00 ca =     kkk bac j2 −=  så att  .....,3,2,1Im2Re2 =−== kcbca kkkk  

 

ENERGISIGNALER 

Funktionen )(tf  är reellvärd och absolut integrerbar:  

∫
−

=
∞

∞

ωω
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ω de)(
2
1

)( j tFtf     där     ∫
−=

∞

∞−

tttfF dje)()( ωω  
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∞∞
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22 )(
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Diskreta signaler 

 
[ ]{ }nx  är en tidsdiskret funktion (signal) som uppstår när ( )tx  samplas med frekvensen sf . 

De diskreta tidpunkterna ges av  sTnt ⋅=  

 Den normerade vinkelfrekvensen ges av s
s

T
f

f
Ω ωπ == 2 , där f  och ω   är frekvens resp. vinkelfrekvens hos 

( )tx . 

 

Energisignal: ( ) [ ]∑=
∞

∞−=

−

n

njenxX ΩΩ         [ ] ( )∫=
+ π

Ω ΩΩ
π

2

2

1 a
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nj deXnx  

 

Periodisk effektsignal:   

 

[ ]nx  är en periodisk effektsignal samplad  N gånger per period, så att sTNT ⋅= , där T  är periodtiden hos 

den signal ( )tx   som samplas. 

Fourierkoefficienterna ges av [ ]∑=
−

=

Ω−
1

0

0
1 N

n

njk
k enx

N
c , där 

N

π
Ω

2
0 =    1...,2,1,0 −= Nk       

Fourierserien ges av        [ ] ∑=
−

=

Ω
1

0

0
N

k

njk
kecnx , där 

N

π
Ω

2
0 = . 

N = signalens period (antal sampel per period) 
 
 
Diskret fouriertransform , DFT 

 
Den diskreta Fouriertransformen [ ]kY  för en signal [ ]ny  definieras som 

 

[ ] [ ]   
1

0
∑

−

=

⋅=
N

n

kn
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2
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π
−
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Signalen [ ]ny  kan återvinnas ur sin DFT [ ]kY  enligt 
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Laplacetransformen 

 

Definition:    ( ) ( )∫
∞

−⋅=

0

dtetfsF st  

 

 
Tidsfunktion Transformuttryck 
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

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)(tf ′  )0()( fsFs −⋅  

)(tf ′′  )0()0()(2 ffssFs ′−⋅−⋅  

ττ d)(
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∫
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)(e tft ⋅−α  )( α+sF  Dämpningssatsen 

)()( TtTtf −⋅− σ  )(e sFsT ⋅−   Fördröjningssatsen  



INVERTERINGSSATSERNA 
 
Vi betraktar rationella uttryck av typen )(/)()( sNsTsF = , där )(grad)(grad sNsT <  

 
1. 

En enkelpol as =  till en rationell laplacetransform  )(/)()( sNsTsF =   ger vid inverstransformering 

upphov till en term  atA e⋅  ,  där konstanten  A  kan beräknas enligt formeln 

assN

sT
A

=









′
=

)(

)(
 där      

sd

sdN
sN
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2. 

En pol  as=   av multipliciteten  n   till en rationell laplacetransform )(/)()( sNsTsF =   ger vid 

inverstransformering upphov till en term ( )tf1  i tidsuttrycket som kan beräknas enligt följande formel: 

( ) { }
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n
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3. 

Ett komplexkonjugerat polpar  ωα j±=s   av multipliciteten 1 till en rationell laplacetransform  

)(/)()( sNsTsF =   ger vid inverstransformering upphov till en term    )cos(e ϕωα +⋅⋅ tA t  ,   där de reella 

konstantern   ϕ och A    kan bestämmas med hjälp av följande samband: 

ωα

ϕ
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)(
2e

+=









′
⋅=

s

j
sN
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BEGYNNELSEVÄRDESSATSEN 

Om  )(grad)(grad sNsT <   gäller      )(lim)(lim
0

sFstf
st

⋅=
∞→→ +

 

 

SLUTVÄRDESSATSEN 

Om alla poler till  )(sFs ⋅  ligger i det vänstra komplexa halvplanet, gäller 

)(lim)(lim
0

sFstf
st

⋅=
+→∞→

 



z-transformen 

Definit ion:  ( ) [ ]∑
∞

=

−⋅=

0n

nznxzX  

 

 

Dämpningssatsen:   

 Om )(]}[][{ zXnnx ⊃⋅σ     så gäller    )(]}[][{
a

z
Xnnxan ⊃⋅σ   

Translation framåt (Fördröjningssatsen) :  

 Om )(]}[][{ zXnnx ⊃⋅σ   så gäller  )(]}[][{ zXzNnNnx N ⋅⊃−⋅− −σ   

Translation bakåt:  Om )(]}[][{ zXnnx ⊃⋅σ   så gäller 

]1[...]1[]0[)(}][][ 11 −⋅−−⋅−⋅−⋅⊃⋅+ − NxzxzxzzXznNn NNNσx{  

 }][{ nx ,   ...,2,1,0=n   )(zX  
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 }e{ cn   cez

z

−
 

 }{ nan ⋅   2)( az

za

−
 

 { }2nan ⋅  
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INVERTERINGSSATSERNA 

Satserna avser bestämning av tidfunktionen ]}[{ nx  svarande mot transformen   
)(

)(
)(

zN

zT
zzX ⋅=   

där )(zT  och )(zN  är polynom med reella koefficienter och  där )( grad)( grad zNzT < . 

Satserna avser vidare det fall att polerna är  av mult ip lici teten 1.  

 
1. 

Om cz =  är en enkelpol, reell eller komplex, till transformen ovan ger denna som bidrag vid 

inverstransformeringen en term i den tiddiskreta funktionen ]}[{ nx  av formen  }{ ncK  

där konstanten K  kan bestämmas enligt formeln 

)(

)(

)(

)(
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cT
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zT
K
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=









′
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2. 

Om az =  är en reell multipelpol med multipliciteten m  kommer [ ]nx  att innehålla termen  

[ ]
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( ) ( )
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m

m
z
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d

m
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=
−
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


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


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
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





−
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=
1

1

!1

1
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3. 

Om Ωjrjbaz e1 =+=  och Ωjrjbaz −=−= e2  är ett komplexkonjugerat polpar till transformen )(zX  ovan ger 

detta polpar som bidrag vid inverstransformeringen en term i den tiddiskreta funktionen ]}[{ nx  av formen 

)}cos({ ϕΩ +nnrA  

där konstanterna A  och ϕ  kan bestämmas enligt formeln 

   
)(

)(
2
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2e

jbaN
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A
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+
⋅=


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

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GRÄNSVÄRDESSATSERNA 
 

Begynnelsevärdessatsen: )(lim]0[ zXx
z ∞→

=  

Slutvärdessatsen: Om ][lim nx
n ∞→

 existerar, 

så gäller      

)()1(lim][lim
1

zXznx
zn

⋅−=
→∞→

 

 



Komplettering till bokens formelsamling 

Komplexa tal 
 

12cos2sin =+ αα  ααα cossin22sin =  ααα 2sin2cos2cos −=  

)2cos1(
2
12sin αα −=  )2cos1(

2
12cos αα +=    

ααα sincose ⋅+= jj  njn n )1()(cose −=±=± ππ   

2

ee
cos

αα

α
jj −+

=   
j

jj

2

ee
sin

αα

α
−−

=  

 
Rektangulär form:    z = x + jy  x = r⋅cosϕ   och  y = r⋅sinϕ 

Polär form :             ϕjerz ⋅=  22tan yxroch
x
y

+==ϕ  

Eulers formel tjte tj ωωω sincos ⋅+=  

 

Speciellt: 00 9090 11 jj e
j

ejj
j

−==−=  

Polär  →   Rektangulär :   jbaerz j +=⋅= ϕ ,   där   ϕϕ sincos rbra ==  

 

Rektangulär  →   Polär :   ϕjezjbaz ⋅=+= , där 22 baz +=   där   




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



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
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kvadranten e:400arctan

kvadranten e:3180arctan

kvadranten a:2arctan-180

kvadranten a:1    arctan

arg

ba
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b

0b0a
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b

0b0a
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b

0b0a
a

b

z

ϕ

ϕ

ϕ

ϕ

ϕ
o

o

 

 

Några prefix 63369 10M10k10m10µ10n ↔↔↔↔↔ −−−  

 

Gränsvinkelfrekvensen gω för ett filter  ges av ( )
( )

2
MAX

ω
ω

H
H =  , där ( )ωH  är filtrets 

frekvensfunktion. 
 

Diverse 
a
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abxba
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1
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=
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sTnt ⋅=  ( ) ( )( )
( )( )21
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polpol
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zzzz
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( )( )21
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ssss

ssss
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Elektriska kretsar 
 
 Tidplanet   s-planet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Några elektroniksamband 

 
 
 
 
 
 
 
 
 
 

 
 

 

( )sZ1

( )sZ2( )
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+
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2 ⋅
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−

+
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+
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+
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=
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+
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2
1
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sZsZ

sZ
sI ⋅

+
=
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1
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u(0)

s

+            U
C
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I(s)
1

sC

Med begynnelseenergi

+    u
C
(t)    -

i(t)
C

+      U
C
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I(s)
1

sC

Utan begynnelseenergi

+            U
L
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I(s)
sL

L i(0)

Med begynnelseenergi
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L
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i(t) L

+     U
L
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I(s)
sL

Utan begynnelseenergi


