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Losningarna skall vara fullstindigt redovisade sd att dina resonemang gdr att folja!
Anvinda samband skall redovisas!

1 a. Den tidkontinuerliga funktionen x(t)= 10° -t-e71090% . 05105402t samplas fran t =0 med

. Ett diskret system har 6verforingsfunktionen H(z)=

frekvensen 25kHz. Bestim den diskreta signal som erhalles.

t
. Bestim Laplacetransformen F(s) for funktionen f(t)= 3+42t€ :
e
. Bestam den diskreta signalen x[nn] d4 dess z-transform ar X(z)= 02 %1 1
2z 1+

Ett diskret system har impulssvaret h[n]=(-0,4)" Bestam dess stegsvar.

z+0,4
ZZ+OBZ+a‘

Bestdm ett virde pd a iintervallet —0,9 <a < 0,9 som gor systemet instabilt.

Motivering krévs.

. Bestdm systemets impulssvar dd a=-0,2.

Ip
Ip

Ip

3p

Bestim 6vrforingsfunktionen H(z) for systemet t.h.

Uttrycket skall vara forenklat sa att det
innehaller endast positiva z-potenser! 2p

Betrakta signalen x(t)=3-5sin 53007t —2 sin(66007z't -30° )+ 6c0s18400¢ .

Bestam minsta samplingsfrekvens for att signalen skall kunna atervinnas ur sina sampel

+
C—— ut)

I kretsen t.h. dr kondensatorn urladdad % m
vid tiden t=0. £=0 R
. Bestam spanningen u(t) for t>0. 3p E
L=025H C=625uF R=50Q E=24V 3p
. Antag att R kan viljas fritt. For vilka R blir u(t) en
svangande funktion? 3p
Signalen x(t) i diagrammet t.h. kan approximeras som A o)
x
x(t) = ag + ay - cos ayt + by - sin ayt + a - cos 2apt + b, - sin 2apt 15 05 | os s 2

5 t(s)

Berdkna a, samt koefficienterna ay, a;, by, a, och b, i

denna summa.
Svara med firdigriknade virden!!

4p




b. Vilka frekvenser finns i den periodiska signalen nedan? 2p
A Xt)
T T T
—4 0 5

8. Omkopplaren i schemat t.h. 6ppnas vid t = 0 da kretsen befinner sig i

stationartillstdnd (strommar och spanningar konstanta).

Bestam i(t) for t >0 da

R =20Q, R,=80Q, L=10mH, C=2uF E=16V. 6p
9. Overforingsfunktionen H(s)= for systemet t.h. kan —

Uy (s) L
Ry
- |
skrivas H(s)=A- 05’1 . Bestim A, @, @, . Rs
1+— R C
“2 — -
+
OP:n far betraktas som ideal. w(t) 2
1
R =22kQ, R,=220kQ, R;=33kQ, C=10nF,  4p _ uy (t)
o, 0 —

10 Ett diskret notchfilter med samplingsfrekvensen 1000Hz beskrivs av differensekvationen

ylnl=x[n]+ \/Ex[n —1]+x[n-2]-0,95- \/Zy[n -1]-0,9025-y[n-2].

Vilken frekvens utsldcks av filtret? 3p
11.  Figuren visar blockschemat for ett system dar H,(s)= il och H,(s)= LZ i

s+ S+
For vilka viarden pa b ar systemet stabilt med ett icke-svdngande stegsvar? Sp
+
- H(s) >
X(s) Y(s)
Hy(s) |

12.  Ett diskret LP-filter beskrivs av differensekvationen y[n] =K- x[n]— a- y[n - 1].

Filtret har samplingsfrekvensen 1200Hz.

Bestim K och a sé att filtrets 6vre gransfrekvens blir 200Hz och s& att H(1)=1,

dar H(z) ar filtrets overforingsfunktion. 6p



Formelsamling Linjara system
Fouriertransformen

Funktionen f(f) ir reellviard och periodisk med perioden T och dirmed grundvinkelfrekvensen @y som
ges av wgT=2xw

Analoga signaler

PERIODISKA EFFEKTSIGNALER

KOMPLEX FOURIERSERIE

En periodisk signal f(t) med perioden T kan skrivas

f=co+ Y ek dar Coz%. J'f(t)dt | =%. J'f(t).e—fk%fdt k%0
k=—co 1period 1period

REELL FOURIERSERIE

En periodisk signal f(t) med perioden T kan skrivas
f)=ao+ ¥ (a coskayt + by sinkant) , dar a =2T” )
k=1

KOEFFICIENTSAMBAND:
ag=cg 2cx =ay —jbx sd att ag =2Recy by =-2Imcx k=1,2,3, ...

ENERGISIGNALER

Funktionen f(t) ar reellvdard och absolut integrerbar:

f (t)=2—17[_ofF (w)e”daw dir  F(w)=[f(He T dt

Parsevals formel: °ffz(t)all‘=%ef|F(a))|2ala)
—oo 0



Diskreta signaler
{x[n]} ar en tidsdiskret funktion (signal) som uppstar nir x(t) samplas med frekvensen f; .

De diskreta tidpunkterna ges av t=n-T;

Den normerade vinkelfrekvensen ges av Q= Zﬂ'L =wl,dar f och w &r frekvens resp. vinkelfrekvens hos

x(t). S

o0 . +2 .
Energisignal: X(@2)= a7 x[n] = Zia [ ”X(_Q)e"Q”dQ
N=—co T 4

Periodisk effektsignal:

x[n] 4r en periodisk effektsignal samplad N ganger per period, si att T = N-T, dar T &r periodtiden hos
den signal x(t) som samplas.

N-1 .
Fourierkoefficienterna ges av ¢, = 1 Y x[nle %0 dir 2, _2z k=0,1, 2, ..N-1
N n=0 N
N-1 .
Fourierserien ges av xn] = % e dar @, :%,
k=0

N = signalens period (antal sampel per period)

Diskret fouriertransform , DFT

Den diskreta Fouriertransformen Ylk] for en signal y[n] definieras som
N-1 _]Zl

v[kl= > yln] wf' , dar wy=e N k=01, 2,.N-1
n=0

Signalen y[n] kan atervinnas ur sin DFT Y[k] enligt

1 N1 2=
y[n]:F Svk]wit dir wy=e N n=0,1 2, .N-1
n=0



Laplacetransformen

oo

Definition: F(s)= I f(t)-estat

0
Tidsfunktion Transformuttryck
8(t) 1
1 t20 1
t = —_
o) {0 t<0 s
A
A (konstant) S
1
r(t)=t-o(t) Z
. n!
t", nx>1 g+l
—a t 1
N s+a
n!
—at n S
e t”, n=1 (5 + a)n+1
w
in ot
o s2 + o”
s
t
COS @ 2.7
f(t) s F(s)-f(0)
A0 s> - F(s)=5 - f(0)-f(0)
; 1
[r@as L k)
s
0
e f (1) F(s+a) Déampningssatsen

f(t-T)yot-T)

e ST F(s) Fordrojningssatsen




INVERTERINGSSATSERNA

Vi betraktar rationella uttryck av typen F(s) =T(s)/N(s), diar gradT(s)<gradN(s)

1.

En enkelpol s=a till en rationell laplacetransform F(s)=T(s)/N(s) ger vid inverstransformering

upphov till en term A- e | dir konstanten A kan beriknas enligt formeln

A:{—T,(s)} dir  N(5)=NG)
N'(s) s—a ds

En pol s=a av multipliciteten n till en rationell laplacetransform F(s)=T(s)/N(s) ger vid
inverstransformering upphov till en term fj(t) i tidsuttrycket som kan beriknas enligt féljande formel:

n-1
A= [ sy ro-e}
- B

S=a

Ett komplexkonjugerat polpar s=a*jw av multipliciteten 1 till en rationell laplacetransform

F(s)=T(s)/N(s) ger vid inverstransformering upphov till en term A- et -cos(at +¢) , dér de reella
konstantern A och ¢ kan bestimmas med hjilp av féljande samband:

Ae/?=2. {&

N'(s) :|S:0!+]' [

BEGYNNELSEVARDESSATSEN

Om gradT(s)<gradN(s) galler lim+f(t)=lims-F(s)

t—0 §—voo

SLUTVARDESSATSEN

Om alla poler till s- F(s) ligger i det vianstra komplexa halvplanet, géller

lim f(t)= lim s- F(s)
[—eo s—0



z-transformen

Definition: X(z)= Zx[n]-z‘”
n=0

{X[n]} , n= 0,1,2,...

X(2)
{6 1
z
{olnl)={1) z-1
VA
rln]=n-oln] (z-1P
zZ
{a"} a
VA
{ecn} L, eC
az
{a" -n} (z-a)2

a(z+a)z
.7 o

(z-a)?
Z-sin Q2
{sin[nd} 72 —(2cos Q) z+1
Z-(z—-cos )
{cos[n]} 72 —(2cos2) z+1
Z-asin Q2
{a" sin[n2])

72 —(2acos.(2)-z+a2

z-(z—-acos )
z2 —(2acos.Q)-z+a2

{a" cos[n2]}

Dédmpningssatsen:

Om {x[n} o{n]}>X(z) sagiller {a"x[n]oln]} > X(é)

Translation framdt (Fordrojningssatsen):
Om {x[n}o[n]} > X(z) sagiller {x(n—N]o[n-N]} o Z_N~X(Z)

Translation bakadt: Om {x[n} o[n]}>X(z) sa galler

{n+Nlolnl) o 2N X(2)-zN - xq0]-zN"1 . q1]-..—z} AN -1]



INVERTERINGSSATSERNA

I

Satserna avser bestimning av tidfunktionen {x[n]} svarande mot transformen X(z)=z NG)
z

déar T(z) och N(z) ar polynom med reella koefficienter och ddr grad T(z) < grad N(z).

Satserna avser vidare det fall att polerna dr av multipliciteten 1.

1.
Om z=c &r en enkelpol, reell eller komplex, till transformen ovan ger denna som bidrag vid

inverstransformeringen en term i den tiddiskreta funktionen {x[n]} av formen {Kc"}

dér konstanten K kan bestimmas enligt formeln
K{ T(z)} _T0©
N(@) ], N(©

2.

Om z=a ar en reell multipelpol med multipliciteten m kommer x[n] att innehélla termen

x[n]:;lz a! {(z—a)m T(z) ZH .

m-1)| dz"m Nz
( )' ! (
jQ2

Om z; =a+jb=re/? och z, =a—jb=re’

~—

3.

ar ett komplexkonjugerat polpar till transformen X(z) ovan ger
detta polpar som bidrag vid inverstransformeringen en term i den tiddiskreta funktionen {x[n]} av formen

(Ar" cos(2n + )}

dér konstanterna A och ¢ kan bestdimmas enligt formeln

A9 {M} . T,(a+jb)
N'(z) r=a+b N'(a+ jb)
GRANSVARDESSATSERNA
Begynnelsevirdessatsen: x[O]:Zli_r::o X(2)
Slutvirdessatsen: Om r%gr; x[n] existerar,
sa galler

lim x[n]=lim(z-1)- X(2)
1—c0 z—>1



Komplettering till bokens formelsamling

Komplexa tal

sin? a+cos? a=1 sin 2 =2sin acos o cos2a=cosZ a—sinZ
sin2 a:%(l—cos 2a) cos? a:%(l+cos 2a)
e/%=cosa+j-sina eTINT _cos(+nm)=(~1)"
e/ el . e/ _e 7
cosq=——— sing=———
2 2j
Rektanguldr form: z=x +jy x=rcos¢ och y=rsing
Polir form : z=r-el? tanp=Y och r=yx2+ y2
ang== och r=\x“+y
Eulers formel ¢/ = cosat+j-sin et
Speciellt: Lo e Lo oo
] ]
Polir — Rektangulir: z=r-¢/?=a+jb, dir a=rcosg b=rsing
Rektanguldr — Polir: z=a+jb=|7 ¢/, dir |=va*+b* dir
b
@ = arctan — a>0 b>0 1:akvadranten
©=180°- arctang a<0 b>0 2:akvadranten
argz=¢ = a
¢ = arctan|— —180° a<0 b<0 3:ekvadranten
a
@ = —arctan|—| a>0 b<0 4:ekvadranten
a
Ndgra prefix n 107 po10° mo102 ko103 Mo 10°
L iy : IH@)yax 4 -
Grinsvinkelfrekvensen w, for ett filter ges av |H(w) =——=22% |, dir H(w) ér filtrets
8 V2
frekvensfunktion.
dx 1 bx
Diverse j ———  =——arctan— X(2)=[Xx(2)],_.i2
a2 +p%x%  ab a w=e
t=n-Ty H(z)=K- (z— Znolll)(z - ZnollZ) H(s)=K- (s— Snolll)(s - Snollz)

(Z‘ZPOIIXZ—Zpolz) (S_Spollxs_spolz)



Elektriska kretsar

Tidplanet s-planet
. L 1 Li(0
i(1) _(;)_ Tl 9 i)
+ u,(r)
‘ + Ul - + U, ()
Utan begynnelseenergi Med begynnelseenergi
o)
i() ¢ 1s) 1s) i
i e )—
+ u - + UC(s) - N U (s)
C
Utan begynnelseenergi Med begynnelseenergi
o Z4(s)
+ +
0,65 20| vl )= 22 )
) Yh6) Y0 7B
! 2 R ARITAn R
Zy(s) Z3(s)
Zi(s)
AT AT
Nagra elektroniksamband
+ +
Z3(s) U Z1(5)+Z
0,65 ’ 0() AR
Z(s)
o) l 0
Z3(s)
2L Z1(s) -
Ur(s) + ' Uals) __ 25(5)
: 20 B0 20




