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3.1 

Stegsvaret för processen har översväng och måste därmed ha komplexa rötter i 

överföringsfunktionens nämnare. För att bestämma överföringsfunktionen kan man då tillämpa 

den metoden och formler som beskrivs i [1]. Metoden kräver att man läser följande parametrar 

manuellt ut ur processens stegsvar:​.  
● Perioden på svängningarna . [s]T 0 = 4  

● Den statiska förstärkningen .k = 1  

● Amplituden på  den första och andra översvängen:  och , samt kvoten, 2a = 0 8 ,b = 0 5  

mellan dem ., 1d = b
a = 0 6  

● Parametern ​= 0,078. ζ = 1
√( )² + 12π

lnd
 

● Parametern ​ = 1,58. ω0 = 2π
T (1 − ζ²)0

 

Överföringsfunktionen Gp kan nu bestämmas enligt följande ekvation i MATLAB: 

 Gp = k·ω ²0
s² + 2ζω s + ω ²0 0

 

 

MATLAB 
kod 

k = 1; 
T0 = 4; 
 
b = 0.5; 
a = 0.82; 
d = b/a 
 
zeta = 1/(sqrt(((2*pi) / log(d))^2 + 1) ) 
w0 = (2*pi)/(T0*sqrt(1 - zeta^2 )) 
 
Gp = (k*w0^2)/(s^2 + 2*zeta*w0*s + w0^2 ) 

Svar Gp = 
  
          2.483 
  ---------------------- 
  s^2 + 0.2473 s + 2.483 
  
Continuous-time transfer function. 
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Om denna överföringsfunktion nu matas in i Simulink med ett steg på 1 enhet som insignal, så 

erhålls följande stegsvar: 

 

Figur 1: Stegsvaret för den beräknade överföringsfunktion. 

 

Jämförelse med det originala stegsvaret visar att skillnaden är väldigt liten, och att 

överföringsfunktionen därmed är korrekt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



John Croft - 19930814-7959, Tiell 2 

3.2 
För att få ett återkopplat system utan översvängningar i utsignalen så krävs det att dess totala 

överföringsfunktion ( ) har ett monotont växande insvängningsförlopp. Detta kanGtot  

åstadkommas om , där tidskonstanten ​T​  i vårt fall väljs till 1,15. Gtot =  1
(1+T )s 2  

 

Eftersom för ett återkopplat system generellt är ​, så kan formeln skrivas omGtot  Gtot =  G GR P
1+G GR P

 

på följande sätt för att lösa ut överföringsfunktionen för regulatorn,  

 GR = Gtot
G (1−G )P tot

 

 

 

 

 

 

 

 

Med MATLAB och den beräknade från förra uppgiften så kan bestämmas:GP GR  

 

MATLAB 

kod 

Gtot = 1/((1 + 1.15*s)^2) 

 

Gr = Gtot / (Gp * (1 - Gtot)); 

Gr = minreal(Gr); 

Svar Gr = 

  

  0.3046 s^2 + 0.07533 s + 0.7561 

  ------------------------------- 

           s^2 + 1.739 s 

  

Continuous-time transfer function. 

 

Denna överföringsfunktion kan nu användas i Simulink för att bekräfta att man inte får några 

översvängningar. Systemets blockschema och stegsvar visas i figur 2 och 3: 
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Figur 2: Blockschemat för det analoga systemet i uppgift 2. 

 

 

 

 

Figur 3: Stegsvaret för det analoga systemet i uppgift 2. 

I stegsvaret så ser man att den beräknade analoga regulatorn ger ett stegsvar för systemet med 

ett insvängningsförlopp som är monotont växande, utan några översväng. 
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3.3 
Diskretiseringen av den analoga överföringsfunktionen för regulatorn gjordes i MATLAB. Bilinjär 

approximation (även känd som ‘​Tustin’s Method​ ’) användes, och samplingstiden sattes till 0,2 

sekunder. 

MATLAB 
kod 

Hr = c2d(Gr, 0.2, 'tustin') 

Svar Hr = 
  
  0.2723 z^2 - 0.506 z + 0.2595 
  ----------------------------- 
     z^2 - 1.704 z + 0.7037 
  
Sample time: 0.2 seconds 
Discrete-time transfer function. 

 

Simulink kan nu användas för att undersöka systemets beteende vid en stegformad 

börvärdesändring. 

 

Blockschemat för det diskretiserade systemet. 
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Figur 4: Stegsvaret för det diskretiserade systemet. Röda stegartade kurvan är styrsignalen från 
regulatorn, den svarta kurvan är utsignalen från systemet, dvs ärvärdet. 

I stegsvaret för det diskretiserade systemet (figur 4) så ser man att utsignalen från systemet följer 

ungefär samma kurva som för det rent analoga systemet. Det finns dock ett mindre kvarstående 

fel på ca. 0.012 enheter. Experimentellt kan man visa att denna kvartstående fel ändras beroende 

på den för regulatorn valda samplingstiden. Vid just denna samplingstid så var det kvarstående 

felet förhållandevis stort, och en annan samplingstid skulle lämpligen väljas i praktiken för att 

minimera den. Detta påvisar dock att diskretiseringsprocessen bara är approximativ och inte 

nödvändigtvis är helt exakt. 
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3.4 
Differensfunktionen för den diskretiserade regulatorn beräknades manuellt till: 

 

u(k) = 1,704*u(k-1) - 0,7037*u(k-2) + 0,2723*e(k) - 0,506*e(k-1) + 0,2595*e(k-2) 

 

där ​e​  är insignalen (felet), ​u​  är utsignalen (styrsignalen) och ​k ​ är sample-tidsenheter. 
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