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From a long view of the history of mankind—seen from say, ten thousand years from now—
there can be little doubt that the most significant event of the 19th century will be judged as

Maxwell’s discovery of the laws of electrodynamics. The American civil war will pale into

provincial insignificance in comparison with this important scientific event of the same
decade.

Richard P. Feynman (1918–1988)

Physicist, Nobel laureate

11.1 Introduction: The Electromagnetic Field

Most students in engineering and science have heard the term “Maxwell’s equations,” and some may also have heard that

Maxwell’s equations “describe all electromagnetic phenomena.”However, it is not always clear what exactly do we mean by

these equations. How are they any different from what we have studied in the previous chapters? We recall discussing static

and time-dependent fields and, in the process, discussed many applications. To do so, we used the definitions of the curl and

divergence of the electric and magnetic fields: what we called “the postulates.” Are Maxwell’s equations different? Do they

add anything to the previously described phenomena? Perhaps the best question to ask is the following: Is there any other

electromagnetic phenomenon that was not discussed in the previous chapters because the definitions we used were not

sufficient to do so? If so, do Maxwell’s equations define these yet unknown properties of the electromagnetic field? The

answer to the latter is emphatically yes.

In fact, we do not need to go far to find applications which could not be treated using, for example, Faraday’s law. The

most obvious is transmission of power as, for example, in radio or television. All applications related to transmission of

power (radar, communication, radio, etc.) were conspicuously missing in the previous chapters, but there is an even more

important (and related) aspect of the electromagnetic field which was not mentioned until now. Take, for example, induction

of voltage in a loop. Faraday’s law gives an accurate statement of how the induction occurs and the magnitude of the induced

emf. Now let’s say that two loops are located a short distance from each other and one loop induces an electromotive force in

the second. If we were to separate the loops a very long distance from each other and measure the induced voltage in the

second loop, the magnitude will be very small. The question is, however, this: Is there any lag in time between switching on

the current in the first loop and detection of the induced voltage in the second loop because of the distance between the

loops? Faraday’s law says nothing about that and neither do any of the postulates used previously. Intuitively, we know there

must be a time lag since nothing can occur instantaneously. In this regard, consider the following: On January 22, 2003,

NASA received the last transmission from the Pioneer 10 space probe. At that time, Pioneer 10 was 5 weeks shy of its 31st

year of space flight and was over 12.2 billion km from the Earth.1 At that distance, the transmission took approximately 11 h

18 min to reach the Earth. This is hardly instantaneous. In fact, if we divide distance by time, we find that the information has

1Pioneer 10 was launched on March 2, 1972, with the intention of moving out of the solar system. Designed for a mission of 21 months, it was the

first spacecraft to pass through the asteroid belt and out of the solar system. The spacecraft carries a unique plaque that identifies the Earth and its

inhabitants as the designers of the craft. Pioneer 10 is still flying, heading for the red star Aldebaran in the constellation Taurus where it is expected
to arrive in about two million years. Stay tuned!
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traveled through space at the speed of light. It should then be obvious that something must be missing since we cannot

account for this time lag when using Faraday’s or Ampere’s laws.

Maxwell’s equations are, in fact, the four postulates we introduced in the previous chapter with a modification to

Ampere’s law to account for finite speed of propagation of power. This modification is rather simple and we usually refer to

it as displacement current or displacement current density and is simply a statement of conservation of charge. However, in

spite of its simplicity, it is far reaching and, as we shall see shortly, crucial to all applications involving transmission of

signals or power. In a way, the remainder of this book is dedicated to the discussion of this aspect of electromagnetic fields.

To return now to the applications discussed in the previous chapters, we should ask ourselves the following question: If

the postulates used need to be modified, do we also need to go back and discuss all that we have done and perhaps modify all

previous relations? The answer, fortunately, is no. In all applications until now, there was no need for these modifications

even though the solutions obtained were often only approximations. However, these were very good approximations and

there would be very little to be gained by including the ideas introduced in this chapter into the previous results, as we shall

see. For example, two coils, near each other, experience a force. The force is not instantaneous, but because the distance

between the coils is small, the time lag is so small as to be justifiably neglected.

11.2 Maxwell’s Equations

When, in 1873, James Clerk Maxwell2 wrote his now famous Treatise on Electricity and Magnetism, he wrote in the preface

to the book that his purpose was essentially that of explaining Faraday’s ideas (published in Experimental Researches in
Electricity in 1839) into a mathematical and, therefore, more universal form. He makes it amply clear that his treatise is a sort

of summary or unification of the knowledge in electrical and magnetic fields as put forward by others, including those who

preceded Faraday (Ampere, Gauss, Coulomb, and others). We might add that the notation we use today to write Maxwell’s

equations was introduced by Oliver Heaviside3 almost 20 years after Maxwell’s theory appeared. If you were to read

Maxwell’s book, you might not recognize the equations written in the previous chapters or in this. What then is Maxwell’s

unique contribution? Why do we normally refer to the electromagnetic field equations as “Maxwell’s equations”? Surely, it

is more than simply because he summarized what others have done.

His main contribution is in proposing the inclusion of displacement currents4 in Ampere’s law. This seemingly minor

change in the field equations as known before his time was, in fact, a fundamental change in the theory of electromagnetics.

Maxwell’s ideas, which were often expressed in mechanical terms, were not immediately accepted since they implied a

number of aspects of the electric and magnetic fields that had no proof at the time. Maxwell himself had no experimental

2 James Clerk Maxwell (1831–1879), Scottish scientist, trained as a mathematician. Between 1856 and 1860 he lectured in Aberdeen and in 1860

became Professor of Natural Philosophy and Astronomy at King’s College, London, until 1865. After that, he resigned and busied himself in

writing, including on the Treatise on Electricity and Magnetism, published in 1873. Maxwell’s work was not limited to electricity and magnetism.

He wrote on the theory of gases, on heat, and on such topics as light, color, color blindness, the rings of Saturn, and others. The three-color

combination (red, green, and blue) used to this day in defining color processes such as television and monitor screens was invented by Maxwell in

1855. Although a modest man, he knew the value of his work and was proud of it. The publication of the Treatise on Electricity and Magnetismwas

a turning point in electromagnetics. It was for the first time since Oersted’s discovery of the link between electricity and magnetism that this link

extended to the generation and propagation of waves. This was shown experimentally by Hertz 15 years later and opened the way to the invention

of radio and the communication era.
3 Oliver Heaviside (1850–1925). Oliver Heaviside was by all accounts the “enfant terrible” of electromagnetics. A brilliant man with a natural gift

for mathematical analysis, he was the incarnation of antiestablishment. Heaviside dropped out of school at age 16 and at age 18 started working for

the Anglo-Danish cable company. He worked for about 6 years during which he taught himself the theories of electricity and magnetism and,

apparently, applied mathematics. After that, Heaviside set out to understand and explain Maxwell’s theory, and in the process, he derived the

modern form of Maxwell’s equations (at about the same time Hertz did). He was one of the first to use phasors and did much to propagate the use of

vector analysis. Heaviside may well be considered the developer of operational calculus and of the theory of transmission lines. Much of his work

remains uncredited, a process which started in his lifetime. He was reclusive and abrasive, qualities that did not win him friends. Constant attacks

on the “mathematicians of Cambridge” caused much friction, as did the fact that his papers were difficult to understand. For example, he insisted

that potentials have no value. In his words, these were “Maxwell’s monsters” and should be “murdered.” Similarly, he dismissed the theory of

relativity. With all his failings, quite a bit of what we study today in electromagnetics and circuits must be credited to Heaviside.
4 The term displacement and displacement current were coined by Maxwell from the analogies he used. To Maxwell, flux lines were analogous to

lines of flow in an incompressible fluid. Using this analogy, he called the quantity D, the electric displacement and therefore the current density

produced by its time derivative, the displacement current density.
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proof for the existence of displacement currents, but it is obvious from reading his book that he considered both displacement

currents and the implications of their existence as fact. Experimental proof of the existence of electromagnetic waves at

frequencies well below those of light came only in 1888, when the young Heinrich Hertz5 showed through his famous

experiments that an electromagnetic disturbance travels through air and can be received at a distance. This was almost 10

years after Maxwell died and 15 years after he wrote the Treatise. Some of the most important implications of displacement

currents and of Maxwell’s equations in general are as follows:

(1) Interdependence of the electric and magnetic fields.

(2) The existence of electromagnetic waves.

(3) Finite speed of propagation of electromagnetic waves.

(4) Propagation in free space is at the speed of light, and light itself is an electromagnetic wave.

11.2.1 Maxwell’s Equations in Differential Form

To understand the importance of these concepts and Maxwell’s contribution to the theory of electromagnetics, it is well

worth looking at the electromagnetic field equations as they existed before Maxwell’s introduction of displacement currents

(below on the left) and after Maxwell’s modification (below on the right):

Field equations before Maxwell’s modification Field equations after Maxwell’s modification

∇� E ¼ �∂B
∂t

(11.1) ∇� E ¼ �∂B
∂t

(11.5)

∇ � H ¼ J [A/m2] (11.2)
∇�H ¼ Jþ ∂D

∂t
[A/m2] (11.6)

∇ �D ¼ ρv [C/m3] (11.3) ∇ �D ¼ ρv [C/m3] (11.7)

∇ �B ¼ 0 (11.4) ∇ �B ¼ 0 (11.8)

Comparison between the two sets reveals that the only difference is in the last term of Eq. (11.6). This term is a current

density and is called the displacement current density.

Perhaps the easiest way to show that the pre-Maxwell equations are not, in general, adequate is to show that they are not

consistent with the continuity equation or that conservation of charge is not satisfied unless the displacement current density

in Eq. (11.6) is introduced. To do so, we take the divergence on both sides of Eq. (11.2):

∇� ∇�Hð Þ ¼ ∇�J ð11:9Þ
On the left-hand side, the divergence of the curl of a vector is identically zero. Thus, we get

∇�J ¼ 0 ð11:10Þ
On the other hand, if we do the same with Eq. (11.6), we get

∇� ∇�Hð Þ ¼ ∇� Jþ∇� ∂D
∂t

� �
ð11:11Þ

5 Heinrich Rudolph Hertz (1857–1894). Hertz was trained as an engineer but had considerable interest in other areas, including mathematics and

languages. At the suggestion of Herman von Helmholtz, he undertook a series of experiments which, in 1888, led to verification of Maxwell’s

theory. This included proof of propagation of waves which he showed by receiving the disturbance produced by a spark with a receiver which was

essentially a loop with a gap. In the process, he measured the speed of propagation and found it to be that of light. The conclusion that light itself

was an electromagnetic wave was a logical extension from these experiments. At the age of 31, Hertz succeeded where others failed. In his

experiments, he showed many of the properties of waves, including reflection, polarization, refraction, periodicity, resonance, and even the use of

parabolic antennas. It is all the more tragic that he died only 6 years later at the age of 37. The notation we use in this book is due to Hertz (and

Heaviside) rather than due to Maxwell. Unlike Maxwell, who emphasized the use of potentials, Hertz and Heaviside emphasized the use of the

electric and magnetic fields.
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Again, the left-hand side is identically zero and we can write

∇�J ¼ � ∂
∂t

∇�Dð Þ ð11:12Þ

where the time derivative and the divergence were interchanged. Substituting ∇ �D from Eq. (11.7) gives

∇�J ¼ �∂ρv
∂t

ð11:13Þ

which is exactly the continuity equation [see Eq. (7.32)]. Thus, introduction of the displacement current density in Eq. (11.2)

is equivalent to enforcing the law of conservation of charge as was discussed in Section 7.6. That this should be so is

intuitively understood: If the law of conservation of charge is correct and if the field equations must obey this law, then the

law must be incorporated into the equations. However, there is one question that we have alluded to in the introduction. If,

indeed, the displacement current density must be included, how is it possible that all the results obtained in previous chapters

were considered to be correct while explicitly neglecting the displacement current term? An even more important question

is: What are the implications of the new results that the inclusion of displacement current suggests? The answer to the first

question is, in fact, implicit in the continuity equation itself. If we assume that the time derivative of current density is zero,

that is, that the charge density is constant with time, the continuity equation states that ∇ � J ¼ 0. This corresponds to the

pre-Maxwell equations. In other words, as long as we deal with steady (DC) currents or with zero currents (static charges),

all relations we have developed in previous chapters are correct (and, in fact, exact). The answer to the second question is

much more involved and will be answered gradually in the following chapters. At this point we simply note that as long as

the displacement current is small [low value of the time derivative in Eq. (11.6) or (11.13) or, alternatively, low frequencies],

the displacement current density may be neglected. A more quantitative explanation will follow in Chapter 12. We now

give a very simple example that indicates the importance of displacement currents for understanding even the simplest

aspects of electromagnetics.

Example 11.1 Displacement Current in a Capacitor Consider the capacitor in Figure 11.1a. The capacitor is

connected to an AC source to form a closed circuit. Calculate the displacement current in the capacitor.

Solution: A current flowing in the circuit can be physically measured using an AC amperemeter. The current may be

calculated using circuit concepts, and since current in a closed circuit is the same everywhere in the circuit, this must also

be equal to the displacement current in the capacitor. A second method is to calculate the electric flux density D in the

capacitor and then calculate ∂D/∂t in the capacitor to obtain the displacement current density.

Method (1) The current in the circuit in Figure 11.1a is

I ¼ C
dVc

dt
¼ CVsωcosωt A½ �

C

Ic Vc

Vssinω t

a

C

Ic

Ic

Id

b

Figure 11.1 Displacement current in a capacitor. (a) Capacitor connected to an AC generator. (b) Relation between the

conduction and displacement current
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Because this is the current at any point in the circuit, and a closed circuit must have the same current everywhere, this

current must also exist inside the capacitor. There is no other way. We are therefore forced to allow for the existence of a

current through the dielectric in the capacitor even though a dielectric cannot support a conduction current (after all, it is

an insulator). Therefore, the displacement current in the dielectric must be equal to the conduction current in the circuit

(Figure 11.1b); that is,

Id ¼ CVsωcosωt A½ �
Method (2) An alternative method is to calculate the electric flux density D in the capacitor and the displacement current

from its time derivative. For a parallel plate capacitor, the electric field intensity between the plates is uniform and its

magnitude is

E ¼ Vc
d
¼ Vssinωt

d

V

m

� �

where Vc is the potential across the capacitor’s plates and d the distance between the plates. Using this relation and D ¼ εE,
the displacement current density is calculated using Eq. (11.6):

Jd ¼ ∂D
∂t

¼ ε
∂E
∂t

¼ ε
∂
∂t

Vssinωt

d

� �
¼ ε

d
Vsωcosωt

A

m2

� �

To find the total displacement current, the current density must be integrated over the surface area of the plates of the

capacitor. Denoting this area as S, we get

Id ¼
ð
s0
Jd � ds0 ¼ εVsωcosωt

d

ð
s0
ds

0 ¼ εSVsωcosωt

d
¼ CVsωcosωt A½ �

where C ¼ εS/d is the capacitance of a parallel plate capacitor of plate area S and distance d between the plates. This result is
identical to that in Method (1).

Here, we have an example in which the displacement current is actually necessary to account for the behavior of the

circuit. In its absence, we must assume that current cannot flow through the capacitor. In circuit theory, displacement

currents are not normally used or assumed. To account for their effects, the common explanation is that the plates of the

capacitor are alternately charged with positive and negative charges.

Example 11.2 A slab of perfect dielectric material (εr ¼ 2) is placed in a microwave oven. The oven produces an

electric field (as well as a magnetic field). Assume that the electric field intensity is uniform in the slab and sinusoidal

in form and that it is perpendicular to the surface of the slab. The microwave oven operates at a frequency of 2.45 GHz

(1 GHz ¼ 109 Hz) and produces an electric field intensity with amplitude 500 V/m inside the dielectric:

(a) Calculate the displacement current density in the dielectric.

(b) Is there a displacement current in air? If so, calculate it.

Solution: Calculate the electric flux density D in the dielectric and calculate its derivative with respect to time to get the

displacement current density. The displacement current only requires that an electric field exists and is always in the

direction of the electric field intensity. Therefore, any material in which there is an electric field will support a displacement

current, including free space:

(a) The electric field intensity and electric flux density in the dielectric are

E ¼ E0sinωt ! D ¼ εrε0E0sinωt V=m½ �
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The displacement current density in the dielectric is

Jd ¼ ∂D
∂t

¼ εrε0E0ωcosωt
A

m2

� �

For the values given, this current density is

Jd ¼ 2� 8:854� 10�12� 500� 2� π � 2:45� 109� cos
�
2� π � 2:45� 10

9
�
t ¼ 136:3cos 4:9� 109π

� �
t

A

m2

� �

with a peak current density of 136.3 A/m2.

(b) In air, the electric flux density D is the same as in the dielectric (D1n ¼ D2n, although the electric field intensity is twice

as high in air). Since D is the same, so must the displacement current density be the same. The displacement current

density in air is

Jd ¼ 136:3cos 4:9� 109π
� �

t
A

m2

� �
:

11.2.2 Maxwell’s Equations in Integral Form

Equations (11.5) through (11.8) are the differential or point form of Maxwell’s equations. As such, they describe the fields

in space and, as we shall see shortly, lead to partial differential equations. This form, however, is not always convenient. For

the calculation of fields and field-related quantities, an integral expression is often more convenient and, sometimes, more

descriptive of the phenomenon involved. It is therefore useful to obtain the integral forms of Maxwell’s equations. This is

done by integrating the two curl equations over an arbitrary open surface and the two divergence equations over an arbitrary

volume. We start with Eq. (11.6) since the integral form of the remaining equations was obtained in Chapters 4, 8, and 10.

Integrating over an arbitrary open surface s, we getð
s

∇�Hð Þ� ds ¼ð
s

J� dsþ ð
s

∂D
∂t
�ds ð11:14Þ

The expression on the left-hand side is converted to a contour integral using Stokes’ theorem. Ampere’s law now becomesð
s

∇�Hð Þ�ds ¼ þ
C

H� dl ¼ Ic þ
ð
s

∂D
∂t
�ds ¼ Ic þ Id ð11:15Þ

The term on the left-hand side is the circulation of the magnetic field intensity, whereas on the right-hand side, the first

term is the conduction current (all currents except displacement currents, including induced currents) and the second is the

displacement current. The integral form of Maxwell’s equations is thereforeþ
C

E� dl ¼ � dΦ

dt
Faraday’s lawð Þ ð11:16Þ

þ
C

H� dl ¼ Ic þ
ð
s

∂D
∂t
�ds Ampere’s lawð Þ ð11:17Þ

þ
s

D�ds ¼ Q Gauss’s lawð Þ ð11:18Þ
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þ
s

B� ds ¼ 0 no monopolesð Þ ð11:19Þ

The first of these is Faraday’s law as derived in Chapter 10. The second is Ampere’s law. We first introduced this law in

Chapter 8 for the magnetic fields of steady currents. The law as given here is sometimes called the modified Ampere’s law

to distinguish it from the pre-Maxwell form defined in Chapter 8. The third relation is Gauss’s law, which was discussed in

Chapter 4. The fourth indicates the divergence-free condition of the magnetic flux density which was discussed at length

in Chapter 8 as indicating the fact that the magnetic field is always generated by a pair of poles (i.e., no single magnetic

poles exist).

In practical applications, we may be required to solve for any or all of the variables in Maxwell’s equations. It is well

worth pausing here to discuss these equations. In particular, we ask ourselves if, indeed, these equations are all that we need

to solve an electromagnetic problem.

First, we note that the equations [either in differential form in Eqs. (11.5) through (11.8) or in integral form in

Eqs. (11.16) through (11.19)], contain four vector variables E, D, B, and H and two sources: J (or I) and ρv (or Q). The
first is a vector source, whereas the second a scalar source. Each vector variable has three components in space, and,

therefore, we actually have 12 unknown values for the 12 components of the fields. Since the first two equations are vector

equations, they are equivalent to six scalar equations. The last two equations [Eqs. (11.18) and (11.19)] are scalar equations.

Thus, we have 8 scalar equations in 12 unknowns. Clearly, some additional relations must be added in order to solve the

equations. Before we add any relations, we must also ascertain if the four Maxwell’s equations are independent. If they are

not, additional relations might be required.

Recall the way that Maxwell’s equations were derived. They were based on the definition of the curl and divergence.

At no point did we require that the equations be independent. In fact, the last two equations in each set can be derived from

the first two with the aid of the continuity equation. To see that this is the case, consider Eq. (11.6). If we take the divergence

on both sides of the equation, we get

∇� ∇�Hð Þ ¼ ∇�Jþ∇� ∂D
∂t

ð11:20Þ

The left-hand side is zero (the divergence of the curl of any vector is identically zero). If we interchange the time

derivative and the gradient in the last term on the right-hand side, we get

0 ¼ ∇�Jþ ∂
∂t

∇�Dð Þ ð11:21Þ

Now, from the continuity equation [Eq. (11.13)]

∇�J ¼ �∂ρv
∂t

! 0 ¼ �∂ρv
∂t

þ ∂
∂t

∇�Dð Þ ð11:22Þ

and, finally,

∇�D ¼ ρv ð11:23Þ
This is exactly Eq. (11.7). A similar calculation shows that Eq. (11.18) can be derived from Eq. (11.5).

This dependency of the equations means that, in fact, we only have two independent vector equations (the two

curl equations) in four vector unknowns. Thus, only 6 scalar equations are available for solution and the number of

unknowns is 12. We therefore need two more independent vector equations to solve the system. These equations are the

two constitutive relations B ¼ μH andD ¼ εE. That this must be so can also be seen from the fact that Maxwell’s equations

as written in Eqs. (11.5) through (11.8) or (11.16) through (11.19) do not refer to material properties at all. On the other hand,

we know that fields are very much dependent on materials. This dependency is expressed by the constitutive relations.
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In addition, the Lorentz force equation, first introduced in Chapter 8, should be considered as part of a complete set of

equations required for the solution of an electromagnetic field problem. The complete set of equations is summarized in

Table 11.1. Thus, a total of seven equations are normally considered to constitute a complete set. An additional constitutive

relation was defined in Eq. (7.12) as J ¼ σE. This is not included in Table 11.1 because it is limited to conducting regions

and because it will be generalized in Chapter 12. In time-dependent applications of electromagnetics, only the first two

Maxwell’s equations are independent and need to be used for the solution, together with the constitutive relations. The force

equation is included in the complete set because it cannot be derived from Maxwell’s equations. For this reason, the above

complete set is sometimes called the Maxwell–Lorentz equations.

Finally, because the material constitutive relations are an integral part of the electromagnetic field equations, it is worth

reiterating the fact that material properties may be, in general, linear or nonlinear, isotropic or anisotropic, and homogeneous

or nonhomogeneous. These properties were first defined in Section 4.5.4.1 and are repeated below as a reminder:

Linear: Linearity in material properties (μ, ε, σ) means these properties do not change as the fields vary.

Homogeneous: Material properties do not depend on position: The material properties do not vary from point to point

in space.

Isotropic: Material properties are independent of direction in space.

As an example, we may speak of nonlinear electromagnetic field equations if the equations are used in nonlinear media.

In the following chapters, we will use mostly linear, isotropic, homogeneous media (simple media).

Example 11.3 Show that if J ¼ 0 in Eq. (11.29) and Q ¼ 0 in Eq. (11.30), the two divergence equations in

Eqs. (11.30) and (11.31) can be obtained fromEqs. (11.28) and (11.29)without the need to invoke the continuity equation.

Solution: By taking the divergence of Eqs. (11.24) and (11.25), we obtain the divergence equations in differential form.

Integration on both sides of the result gives the answer:

∇� ∇� Eð Þ ¼ �∇� ∂B
∂t

¼ �∂ ∇�Bð Þ
∂t

where the time derivative and the divergence were interchanged since these operations are mutually exclusive. Because the

divergence of the curl of any vector field is identically zero, it follows that

∇�B ¼ 0

Taking the volume integral of this relation and using the divergence theorem, we getð
v

�
∇�B�dv ¼ þ

s

B�ds ¼ 0 !
þ
s

B�ds ¼ 0

This is Eq. (11.31).

Table 11.1 Summary of the electromagnetic field equations in differential and integral forms

Maxwell’s equations Differential form Integral form

Faraday’s law
∇� E ¼ �∂B

∂t
(11.24)

þ
C

E�dl ¼ � dΦ

dt
[V] (11.28)

Ampere’s law
∇�H ¼ Jþ ∂D

∂t
[A/m2] (11.25)

þ
C

H�dl ¼ ð
s

Jþ ∂D
∂t

� �
� ds [A] (11.29)

Gauss’s law ∇ �D ¼ ρv [C/m3] (11.26)
þ
s
D � ds ¼ Q [C] (11.30)

No monopoles ∇ �B ¼ 0 (11.27)
þ
s
B � ds ¼ 0 (11.31)

Constitutive relations B ¼ μH [T] (11.32)

D ¼ εE [C/m2] (11.33)

The Lorentz force equation F ¼ q(E + v � B) [N] (11.34)
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Similarly, starting with Eq. (11.25), setting J ¼ 0, and taking the divergence on both sides, we get

∇� ∇�Hð Þ ¼ 0 ¼ ∇� ∂D
∂t

¼ ∂ ∇�Dð Þ
∂t

! ∇�D ¼ 0

Again taking the volume integral and using the divergence theorem givesð
v

�
∇�D�dv ¼ þ

s

D�ds ¼ 0 !
þ
s

D� ds ¼ 0

The latter is identical to Eq. (11.30) for Q ¼ 0.

11.3 Time-Dependent Potential Functions

The concept of potential functions was introduced in Section 8.7 where the magnetic scalar and vector potentials were

discussed. Also, the electric scalar potential was discussed at length in Chapter 4. The utility of these potential functions in

the calculation of the electric and magnetic fields was shown and this utility was the justification of deriving the potentials in

the first place. Here, we revisit the idea of scalar and vector potentials, but now the potentials are time-dependent although

their purpose is still the same: to allow alternative, often simpler calculation of field quantities. We will also show that the

potentials, and in particular the magnetic vector potential, lead to second-order partial differential equations representation

of Maxwell’s equations. The reason for pursuing this representation is the hope that by doing so, we may be able to find

solutions to the field equations based on standard differential equations methods.

We recall that for a vector function to be represented by a scalar function alone, the vector functionmust be curl-free; that is,

If ∇� F ¼ 0 ! F ¼ �∇Ω ð11:35Þ
where Ω is a scalar function and is called a scalar potential in the context of electromagnetics. Similarly, for a vector field to

be represented by an auxiliary vector function, the vector field must be divergence-free:

If ∇�F ¼ 0 ! F ¼ ∇�W ð11:36Þ
The vector function W is now a vector potential.

Vector and scalar potentials may be used even if the vector field is neither curl-free nor divergence-free. To do so,

we invoke the Helmholtz theorem and write the vector field as the sum of an irrotational term and a solenoidal term

(see Section 2.5.1):

G ¼ �∇U þ∇� C ð11:37Þ
where U is a scalar potential and C a vector potential. The first term (the gradient of U) is irrotational since taking its curl

yields zero. The second term is solenoidal since taking its divergence yields zero. Thus, the general process of defining scalar

and vector potentials for vector fields is as follows:

(1) If the vector field is curl-free (irrotational), a scalar potential may be defined which completely describes the vector field.

(2) If the vector field is divergence-free (solenoidal), a vector potential may be defined which completely describes

the vector field.

(3) For a general vector field, both a scalar and a vector potential are required to describe the vector field. The gradient of the

scalar potential is used to describe the irrotational part of the field, whereas the vector potential is used to describe

the solenoidal part of the field.

The potentials we define need not have any physical meaning, although they often do. Their definition is based on the

vector properties of the fields and may be viewed as transformations. As such, as long as the transformation is unique and is

properly defined, the potentials are valid. We will discuss here the electric scalar potential and the magnetic vector potential;

these are needed for our discussion of electromagnetic fields. There are, however, many other potential functions that may be

defined. We will only touch on some of these as examples.
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11.3.1 Scalar Potentials

Regarding Maxwell’s equations above, there are two scalar potentials that may be defined: the electric scalar potential and

the magnetic scalar potential. However, inspection of Maxwell’s equations shows that the equations are not, in general, curl-

free. Therefore, scalar potentials cannot be used to solve for general electric and magnetic fields. There are, however, two

situations in which scalar potentials may be used:

(1) If the time derivative of the magnetic flux density in Faraday’s law [Eq. (11.24)] is zero, the electric field intensity is

curl-free, and the electric potential may be used in lieu of the electric field intensity:

E ¼ �∇V if ∇� E ¼ 0 ð11:38Þ
(2) If the displacement current density and the conduction current density in Ampere’s law [Eq. (11.25)] are zero, the

magnetic field intensity is curl-free, and the magnetic scalar potential may be used in lieu of the magnetic field intensity:

H ¼ �∇ψ if ∇�H ¼ 0 ð11:39Þ
The electric scalar potential V and the magnetic scalar potential ψ can only be used by themselves for static electric and

magnetic fields because only under static conditions can the electric and magnetic field intensity be curl-free. However,

they are also useful in general electromagnetic fields in combination with vector potentials, as we shall see later.

11.3.2 The Magnetic Vector Potential

The magnetic vector potential was defined in Section 8.7.1 as

B ¼ ∇� A because ∇�B ¼ 0 ð11:40Þ
This also applies to time-dependent magnetic fields because the definition is based entirely on the divergence-free

condition of the magnetic flux density. The magnetic vector potential may be used in many ways, one of which was given in

Chapter 8, where the Biot–Savart law in terms of the magnetic vector potential was used. Here, we will use the function to

represent Maxwell’s equations and, in the process, to show that it may be used for calculation of field quantities. To do so, we

substitute the definition into Maxwell’s first and second equations:

∇� E ¼ �∂ ∇� Að Þ
∂t

ð11:41Þ

∇� 1

μ
∇� A ¼ Jþ ∂D

∂t
ð11:42Þ

From Eq. (11.41) by interchanging the time derivative with the ∇ operator, we write

∇� E ¼ ∇� �∂A
∂t

� �
! ∇� Eþ ∂A

∂t

� �
¼ 0 ð11:43Þ

Now the term in the parentheses is curl-free and it may be written as the gradient of the electric scalar potential:

∇� Eþ ∂A
∂t

� �
¼ 0 ! Eþ ∂A

∂t

� �
¼ �∇V ð11:44Þ

Rearranging this expression gives the general electric field intensity as

E ¼ �∂A
∂t

�∇V
V

m

� �
ð11:45Þ

This form is exactly that required by the Helmholtz theorem [Eq. (11.37)]. This, when substituted back into

Faraday’s law, gives the same relation as in Eq. (11.43) because ∇ � (∇V ) ¼ 0. Also, the expression gives the
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correct result for the static electric field for which E ¼ –∇V. Now, we substitute the electric field intensity from Eq. (11.45)

into Eq. (11.42):

∇� 1

μ
∇� A ¼ Jþ ∂

∂t
ε �∂A

∂t
�∇V

� �
ð11:46Þ

For simplicity, we will assume that the material in which this relation is defined is linear, isotropic and homogeneous such

that the permeability μ and permittivity ε are independent of position. This gives

∇� ∇� Að Þ ¼ μJ� με
∂2A

∂t2
� με

∂
∂t

∇Vð Þ ð11:47Þ

The left-hand side of Eq. (11.47) can be expanded using the identity ∇ � (∇ � A) ¼ ∇(∇ �A) – ∇2A

[see Eq. (2.136)]. Substituting this and rearranging terms, we get

∇ ∇�Að Þ �∇2A ¼ μJ� με
∂2A

∂t2
�∇ με

∂V
∂t

� �
ð11:48Þ

Inspection ofEq. (11.48) as well as the process leading to it reveals thatMaxwell’s equations were now replaced by a single

equation in terms of the magnetic vector potential and the electric scalar potential. In fact, since the magnetic vector potential

has three components, the equation is equivalent to three scalar equations. However, we need one more relation to take into

account the electric scalar potential V. One possibility is to assume that V is zero. The second is to assume it is independent of

time and the third is to assume it is constant in space. None of these is a general property of the electric field, and, therefore, we

cannot assume these in general, although one of these may be occasionally used depending on the application. To resolve this

difficulty, we use the fact that the divergence of A has not yet been defined. Since a vector is only uniquely defined if both its

curl and its divergence are specified, we are free to choose the divergence of the magnetic vector potential. The second relation

needed is therefore the divergence of the magnetic vector potential. From Eq. (11.48), we note that if we choose

∇�A ¼ �με
∂V
∂t

ð11:49Þ

the last term in Eq. (11.48) disappears and we get

�∇2A ¼ μJ� με
∂2A

∂t2
ð11:50Þ

and this equation is now the equivalent form of Maxwell’s equations; that is, instead of solving Maxwell’s equations for the

magnetic field intensity and the electric field intensity, we can solve for the magnetic vector potential and then obtain the

magnetic and electric field intensities as well as flux densities from the magnetic vector potential.

The relation in Eq. (11.49) is called the Lorenz condition or the Lorenz gauge. There are three questions associated with

Eqs. (11.49) and (11.50). First, is the Lorenz gauge the only possible choice? Second, how do we know that this choice is

correct? Third, why should we use the magnetic vector potential in the first place since we can obtain a second-order

equation in terms ofH or E, as will be shown shortly? The answer to the first question is no. There are other choices that may

be used, but this particular choice eliminates the scalar potential in the equation and therefore simplifies the equation which,

in turn, also should simplify its solution. A commonly used gauge, particularly in static applications, is∇ � J ¼ 0, which is

called the Coulomb’s gauge and was introduced in Chapter 8 [Eqs. (8.37) and (8.38)]. The answer to the second question is

that this choice is “consistent with the field equations.” The latter statement means that Lorenz’s condition is consistent with

the principle of conservation of charge. The answer to the third question is twofold: First, it allows representation in terms of

a single field variable A, instead of the need for E andH. Second, and perhaps more important, the magnetic vector potential

is sometimes more convenient to use than the electric field intensity E or the magnetic field intensity H. While it is not the

purpose here to prove this, it should be noticed that the magnetic vector potential is always in the direction of the current

density J. This means that if the current density has a single component in space, the magnetic vector potential also has a

single component. On the other hand, the magnetic field intensity has two components (perpendicular to the current).

Without actually solving the equations, it is intuitively understood that solving for a single component of a field in space

should be easier than solving for two components.
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11.3.3 Other Potential Functions

By now, it should be understood that a potential function can be defined based on the properties of the original field, for the purpose

of replacing the field with an equivalent but perhaps simpler representation. Many other potential functions may be defined in

addition to themagnetic vector potential and the electric scalar potential discussed here. InSection 11.3.1, we defined themagnetic

scalar potential in current-free regions. A current vector potential for steady currents in conducting media may be defined in a

manner similar to the magnetic vector potential using the condition∇ � J ¼ 0 (seeExercise 11.1). Other potentials are the Hertz,

Lorentz, and Whittaker potentials. However, because these potentials are not required for the development of the concepts

presented in this book, we do not pursue these here (but see Exercise 11.1 and Problems 11.20, 11.21, 11.23, 11.24, and 12.6).

Example 11.4 Vector and Scalar Potentials in ConductingMedia It is required to define the electromagnetic field

equations for low frequencies in a highly conductive material in terms of the magnetic vector potentialA. The material

may be assumed to be linear, homogeneous, and isotropic in all its material properties. Show that by using Coulomb’s

gauge (∇ �A ¼ 0), the field equations reduce to:

∇2A ¼ �μJ

Solution: The field equations are manipulated as in Eqs. (11.41) through (11.48). This results in

∇ ∇�Að Þ �∇2A ¼ μJ� με
∂2A

∂t2
�∇ με

∂V
∂t

� �

To simplify this equation, we must find a way of eliminating the first term on the left-hand side and the last term on the

right-hand side. The first is obtained by substituting Coulomb’s gauge:

�∇2A ¼ μJ� με
∂2A

∂t2
�∇ με

∂V
∂t

� �

Now, we note that in a highly conducting material, the electric field intensity E is very low (the electric field intensity is

zero in a perfectly conducting medium). From Eq. (11.45), we conclude that this can happen only if both ∂A/∂t and∇V are

small. If we rewrite the field equation as

�∇2A ¼ μJþ με
∂
∂t

�∂A
∂t

�∇V

� �

the term in parentheses is the electric field intensity [see Eq. (11.45)] and because both ∇V and ∂A/∂t are small, the entire

second term on the right-hand side may be neglected, leading to the result:

∇2A ¼ �μJ

Exercise 11.1 Vector and Scalar Potential Functions A vector potential T is defined in a conducting material with

steady current (∇ � J ¼ 0) as

∇� T ¼ J, ∇�T ¼ σμ
∂ψ
∂t

, and H ¼ T�∇ψ

where ψ is a scalar function:

(a) If displacement currents are neglected and the only currents are induced currents, show from Maxwell’s

equations that

∇2T ¼ σμ
∂T
∂t

(b) What would you call the potentials T and ψ?

Answer (b) T is a current vector potential (also called an electric vector potential) and ψ is a magnetic scalar potential.
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11.4 Interface Conditions for the Electromagnetic Field

We now return to a question we asked earlier: What happens to the electromagnetic field at the interface between two

different materials? In the application of Maxwell’s equations to various problems, we often encounter interfaces between

different materials, with different material properties. The constitutive relations for the electric and magnetic fields indicate

that fields are different in different materials. This, of course, is not new: The electrostatic field and the magnetostatic field

were shown to behave differently in different materials. The interface conditions for the general, time-dependent electro-

magnetic fields as described by Maxwell’s equations are essentially those we used for the static electric and magnetic fields

together with any added condition that time dependency and the addition of the displacement current density in Ampere’s

law might add. In fact, we find that the modifications necessary are minor.

To define interface conditions, we must apply Maxwell’s equations for the general electromagnetic field at the interface.

From Eqs. (11.1) through (11.8), Table 11.1, and the discussion in Section 11.2, it is clear that the only equations that have

changed due to the time-dependent nature of the electromagnetic field are Faraday’s law (discussed in Chapter 10) and

Ampere’s law (through the addition of displacement current). To see what needs to be done, consider Table 11.2, which lists

the electrostatic and magnetostatic field equations together with the interface conditions we obtained in Sections 4.6 and 9.3,

as well as Maxwell’s equations. This table clearly indicates that the interface conditions on the normal components of the

magnetic flux density and electric flux density did not change since the equations that defined them did not change. However,

the fields D1n, D2n, B1n, and B2n as well as the charge density ρs are now time-dependent quantities. The interface conditions

for the tangential components of the electric and magnetic field intensities need to be derived anew because the equations

have been modified. This need is indicated by question marks in Table 11.2. This is our next task.

Interface conditions are derived as follows:

(1) Two general materials are assumed to be in contact, forming an interface. By an interface, we mean an infinitely thin

boundary, with no properties of its own. On each side of the interface, the materials have uniform properties and are

linear. The interface may contain surface current densities and surface charge densities.

(2) Maxwell’s equations in integral form are applied to the interface. From these, we find the conditions on the electric and

magnetic fields on both sides of the interface since the fields must satisfy Maxwell’s equations everywhere.

(3) Conditions at the interface are given in terms of components of the field at the interface. The tangential and normal

components at the interface are the required interface conditions.

(4) The interface condition for the tangential components of E is derived from Eq. (11.28).

(5) The interface condition for the tangential components of H is derived from Eq. (11.29).

Table 11.2 Summary of the electromagnetic field equations and interface conditions

Static field equations

Interface conditions

for static fields

Maxwell’s equations

in integral form

Interface conditions for

time-dependent fieldsþ
C
E � dl ¼ 0

E1t ¼ E2t

þ
C

E�dl ¼ � dΦ

dt
[V]

?

þ
C
H � dl ¼ Ienclosed [A]

n̂ � H1 �H2ð Þ ¼ Js A=m½ �
or

H1t � H2t ¼ Js
* [A/m]

þ
C

H�dl ¼ þ
s

Jþ ∂D
∂t

� �
� ds [A]

?

þ
s
D � ds ¼ Q [C]

n̂ � D1 � D2ð Þ ¼ ρs C=m2½ �
or

D1n�D2n ¼ ρs [C/m2]

þ
s
D � ds ¼ Q [C]

n̂ � D1 � D2ð Þ ¼ ρs C=m2½ �
or

D1n�D2n ¼ ρs [C/m2]þ
s
B � ds ¼ 0 B1n ¼ B2n

þ
s
B � ds ¼ 0 B1n ¼ B2n

*This form requires the use of the right-hand rule to establish the vector relation between the tangential fields and the current

density
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11.4.1 Interface Conditions for the Electric Field

To derive the interface conditions, we assume two different materials with properties as shown in Figure 11.2a. We assume

a surface charge density ρs at the interface between the two different materials and apply Eq. (11.28). Because Eq. (11.28) is

a closed contour integral, we choose a closed contour that includes the interface alone, with two sides parallel to the interface

and two sides perpendicular to the interface. The integration is in the direction shown. The closed contour is formed by the

segments ab, bc, cd, and da: þ
abcda

E�dl ¼ � dΦabcda

dt
¼ 0 ð11:51Þ

We note the following:

(1) The total flux Φ enclosed in the loop abcda is zero because, in the limit, the area enclosed by the loop is zero. This

follows from the requirement that the contour only enclose the interface itself.

(2) The distances bc and da also tend to zero. Thus, the contribution of these two segments of the contour to the closed

contour integration must be zero.

(3) The electric field in material (2) is in the direction of integration (in the direction of dl); in material (1), the electric field

intensity is in the direction opposite the direction of integration.

From these considerations we can now write Eq. (11.51) asþ
abcda

E� dl ¼ ð
ab

E1 �dl1 þ
ð
cd

E2 � dl2 ¼ 0 ð11:52Þ

Since the tangential component of E2 is in the direction dl2 and the tangential component of E1 is in the negative dl1
direction, we get

�
ð
ab

E1tdl1 þ
ð
cd

E2tdl2 ¼ 0 ð11:53Þ

By choosing the distance ab ¼ cd, we get

E1t ¼ E2t or
D1t

ε1
¼ D2t

ε2
ð11:54Þ

where D1t ¼ ε1E1t and D2t ¼ ε2E2t.
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Figure 11.2 (a) Conditions

for the tangential

components of E at a general

interface. (b) Conditions for

the tangential components of

H at a general interface
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The following should be noted from these relations:

(1) The tangential component of the electric field intensity is continuous across an interface between two general materials,

regardless of charge densities on the surface.

(2) The tangential component of the electric flux density is discontinuous across the interface. The discontinuity is equal to

the ratio between the permittivities of the materials.

(3) Interface conditions for the electric field intensity are independent of the magnetic field.

(4) The interface conditions for the time-dependent electric field are identical to those for the static electric field as given in

Chapter 4. This is a consequence of Faraday’s law: The connection between the electric and the magnetic fields is

through the flux and the total flux on the interface is always zero (the interface has “zero” area).

11.4.2 Interface Conditions for the Magnetic Field

An almost identical sequence follows for the evaluation of the interface conditions for the magnetic field. The same interface

between two general materials as in Figure 11.2a is used except that now, because we use Ampere’s law, there are no charge

densities on the interface but, rather, a current density. The conditions for application of Ampere’s law are shown in

Figure 11.2b. The following conditions are used:

(1) The contour abcda encloses the interface alone; that is, bc and da tend to zero and the area of the contour tends to zero.

(2) The tangential component of the magnetic field intensity in material (1) is in the same direction as the direction of

integration, whereas in material (2), it is in the opposite direction.

(3) The total current enclosed by the contour is equal to the (surface) current density on the surface multiplied by the length

ab (or cd, since these may be taken to be equal).

From these, we can write þ
c

H�dl ¼ ð
abcda

H�dl ¼ ð
ab

H1tdl1 �
ð
cd

H2tdl2 ¼
ð
ab

Jsdl ð11:55Þ

Note that in Eq. (11.29), the integration for current is a surface integration because, in general, J is a current distributed

over a volume. However, here, the current is distributed over a surface; therefore, the integration is on the line ab. The closed
contour integral of H � dl always equals the current enclosed by the contour. Note also that the contribution to the line

integral due to displacement current densities is zero. This can be best understood from the fact that as we approach the

interface, the area enclosed by the contour abcda tends to zero, and, therefore, the surface integral over the volume current

density ∂D/∂t tends to zero. Choosing ab ¼ cd, we get

H1t � H2t ¼ Js and
B1t

μ1
� B2t

μ2
¼ Js

A

m

� �
ð11:56Þ

where B ¼ μH was used to obtain the second relation from the first.

The interface conditions for the magnetic field may be summarized as follows:

(1) The tangential component of the magnetic field intensity is discontinuous in the presence of surface current densities.

The discontinuity is equal to the surface current density. In the absence of surface current densities, the tangential

component of the magnetic field intensity is continuous across the interface.

(2) The tangential component of the magnetic flux density is discontinuous.

The interface condition in Eq. (11.56) assumes the magnetic field intensity only has one tangential component or that

each tangential component is treated separately. We have faced the same issue in Section 9.3.1. To establish a more general

relation, we note from Figure 11.2 that the tangential components of the magnetic field intensity may be written as H1t

¼ n̂ �H1 A=m½ � and H2t ¼ �n̂ �H2 A=m½ � where n̂ points into material (1) [see Eq. (9.42)]. With these observations,

Eq. (11.56) is written as [see Eq. (9.42)]:

n̂ � H1 �H2ð Þ ¼ Js
A

m

� �
or n̂ � B1

μ1
� B2

μ2

� �
¼ Js

A

m

� �
ð11:57Þ
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As was discussed in Section 9.3.1, this form guarantees the correct magnitude and direction of the fields without resorting

to the right-hand rule. Equation (11.57) should be used in all instances, although, when the magnetic field intensities have

only one tangential component, Eq. (11.56) is equally suitable. These interface conditions are identical to the conditions we

obtained for the magnetostatic field in Chapter 9. The conditions obtained for general materials are summarized in

Table 11.3. There are a total of eight interface conditions, although only the four relations in the first and third row of

Table 11.3 were obtained from Maxwell’s equations directly. The other four were obtained from the constitutive relations.

But, do we need all these relations or, more importantly, are all these relations independent relations?

In Section 11.2.2, we mentioned that the two divergence equations can always be derived from the two curl equations.

Gauss’s law can be derived from Ampere’s law and the equation of continuity and the zero divergence condition for the

magnetic flux density can be derived from Faraday’s law and the equation of continuity. Therefore, the last two interface

conditions (those derived from the divergence equations) are not independent conditions. This means that to specify the

continuity of the tangential electric field intensity and the continuity of the normal magnetic flux density is equivalent: The

two can be derived from the same equations. Clearly, there is no need to specify both, and if we do, this may lead to

overspecification. Similarly, the conditions for the tangential component of the magnetic field intensity and the normal

component of the electric flux density are equivalent and only one should be specified.

Important Note: The electric and magnetic fields are mutually dependent on each other only in time-dependent cases. This

also applies to interface conditions. The static electric and magnetic fields are independent of each other and we are therefore

free to specify any and all boundary conditions.

The interface conditions as discussed here are for two general materials. Because of this, we had to include both surface

charge densities and surface current densities in the conditions. As we have seen in Chapters 4 and 9, a surface charge

density may exist on the surface of a dielectric due to polarization or due to physical charges being placed or generated on the

surface (for example, by friction). Another possible source of charges at an interface is due to flow of current across the

interface between lossy dielectrics (see Section 7.8). Surface charges may also exist at the interface between perfect

conductors and dielectrics. Surface current densities may exist at the surface of conductors and in particular perfect

conductors. Thus, in many practical applications, we do not need to worry about charge or current densities at the interface.

In particular, two types of interfaces are unique and often useful:

(1) Interfaces between perfect dielectrics (lossless dielectrics).

(2) Interfaces between a perfect dielectric and a perfect conductor.

In the first of these, there are neither current densities nor charge densities at the interface. The interface conditions

therefore reduce to those in Table 11.4.

Table 11.3 Electromagnetic interface conditions for general materials

Electric field Magnetic field

Tangential components E1t ¼ E2t n̂ � H1 �H2ð Þ ¼ Js A=m½ �
or

H1t – H2t ¼ Js
* [A/m]

D1t

ε1
¼ D2t

ε2
n̂ � B1

μ1
� B2

μ2

� �
¼ Js A=m½ �

or

B1t

μ1
� B2t

μ2
¼ Js

A

m

� �

Normal components n̂ � D1 � D2ð Þ ¼ ρs C=m2½ �
or

D1n – D2n ¼ ρs [C/m2]

B1n ¼ B2n

n̂ � ε1E1 � ε2E2ð Þ ¼ ρs C=m2½ �
or

ε1E1n – ε2E2n ¼ ρs [C/m2]

μ1H1n ¼ μ2H2n

* This form requires the use of the right-hand rule to establish the vector relation between the tangential componenets and the

current density
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The second type of interface discussed here is that between a perfect dielectric and a perfect conductor. In this case, the

overriding condition is that of the conductor, that is, that all fields in the perfect conductor must be zero. Assuming material

(2) is the perfect conductor, E2t, H2t, D2n, and B2n are zero. The interface conditions are given in Table 11.5.

Example 11.5 Interface Conditions for Electromagnetic Fields A magnetic field exists in material (1) in

Figure 11.3a as H1 x; y; z; tð Þ ¼ x̂ þ ŷ2� ẑ3ð Þ cos377t [A/m]. Material (1) has a relative permeability of 100. The

interface between material (1) and free space [material (2)] is on the plane z ¼ 0 and there are no currents on the

interface. Calculate the magnetic field intensity H and the magnetic flux density B in material (2).

Solution: Themagnetic field intensity has a tangential component and a normal component. In vector components, these are

H1t x; y; z; tð Þ ¼ x̂ þ ŷ2ð Þcos377t H1n x; y; z; tð Þ ¼ �ẑ3cos377t A=m½ �
The tangential components of the magnetic field intensity are continuous across the interface (no current density on the

interface):

H2t ¼ H1t ¼ x̂ þ ŷ2ð Þcos377t A=m½ �
The normal component of the magnetic flux density is continuous across the interface:

μ1H1n ¼ μ2H2n ! H2n ¼ μ1
μ2

H1n ¼ μr1μ0
μ0

H1n ¼ μr1H1n ¼ �ẑ300 cos377t

Thus, the magnetic field intensity in material (2) is

H2 ¼ H2t þH2n ¼ x̂ þ ŷ2� ẑ300ð Þcos377t A

m

� �
The magnetic flux density in material (2) is

B2 ¼ μ0H2 ¼ x̂ þ ŷ2� ẑ300ð Þμ0cos377t T½ �

Table 11.5 Summary of interface conditions between a perfect dielectric and a perfect conductor

Electric field Magnetic field

Tangential components E1t ¼ E2t ¼ 0 D1t ¼ D2t ¼ 0 H1t ¼ Js
* B1t ¼ μ1Js

*

Normal components D1n ¼ ρs E1n ¼ ρs/ε1 B1n ¼ 0 H1n ¼ 0

*The directions of Js and H1t or B1t are related through the right-hand rule

x

y z

x

y z
μ1=100μ0 μ2=μ0

μ2=μ0

μ1=2μ0

ε1=4ε0
ε2=ε0

ε2=2ε0Js=x105 A/m

ρs=10−9 C/m2

ε1=4ε0

material (1) material (2)material (2)material (1)
a bFigure 11.3 (a) Interface

between two materials.

(b) Interface between two

general materials with a

current density on the

interface

Table 11.4 Summary of interface conditions between two perfect dielectrics

Electric field Magnetic field

Tangential components E1t ¼ E2t D1t/ε1 ¼ D2t/ε2 H1t ¼ H2t B1t/μ1 ¼ B2t/μ2
Normal components D1n ¼ D2n ε1E1n – ε2E2n B1n ¼ B2n μ1H1n ¼ μ2H2n
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Exercise 11.2 The configuration in Example 11.5 is given. The electric field intensity in material (1) is

E1

�
x, y, z, t

� ¼ k x̂ þ ŷ2� ẑ3ð Þcos377t [V/m], where k is a constant. Calculate the electric field intensity and electric

flux density in material (2). Assume there are no charges on the interface.

Answer

E2 x; y; z; tð Þ ¼ k
�
x̂ þ ŷ2� ẑ12

�
cos377t

�
V=m

	
,

D2 x; y; z; tð Þ ¼ k
�
x̂ þ ŷ2� ẑ3

�
ε0cos377t

�
C=m2

	

Example 11.6 Interface Conditions for the Static Electric and Magnetic Fields An interface between two

general materials contains both a current density given as Js ¼ x̂105 A=m and a uniform surface charge density

given as ρs ¼ 10�9 C/m2. The static magnetic field intensity and static electric field intensity in material (1) are

H1 ¼ x̂105 þ ŷ105 � ẑ105 A=m½ �, E1 ¼ x̂100þ ŷ20� ẑ100 V=m½ �
For the material properties given in Figure 11.3b, (μ1 ¼ 2μ0, μ2 ¼ μ0 [H/m], ε1 ¼ 4ε0, and ε2 ¼ 2ε0 [F/m]), find:

(a) The electric field intensity in material (2).

(b) The magnetic flux density in material (2).

Note: Static electric and magnetic fields are independent of each other.

Solution: Since both current densities and charge densities exist on the interface, we must use the general interface

conditions in Table 11.2:

(a) The tangential and normal vector components of E in material (1) are

E1t ¼ x̂100þ ŷ20, E1n ¼ �ẑ100 V=m½ �
The tangential component of the electric field intensity is continuous across the interface:

E2t ¼ E1t ¼ x̂100þ ŷ20 V=m½ �
The normal component of the electric field intensity is discontinuous across the interface:

ε1E1n � ε2E2n ¼ ρs ! E2n ¼ ε1E1n � ρs
ε2

V=m½ �

where we assume E1n points away from the interface and E2n points toward the interface. This gives

E2n ¼ 4ε0 �100ð Þ � 10�9

2ε0
¼ �200� 10�9

2� 8:854� 10�12
¼ �256:47

V

m

� �

Thus, the electric field intensity in material (2) is

E2 ¼ E2t þ E2n ¼ x̂100þ ŷ20� ẑ256:47
V

m

� �

(b) First, we write the magnetic flux density (B ¼ μH)

B1 ¼ x̂2μ0 � 105 þ ŷ2μ0 � 105 � ẑ2μ0 � 105 T½ �
For convenience we separate the magnetic flux density into its tangential and normal components as follows:

B1t ¼ μ1H1t ¼ x̂2μ0 � 105 þ ŷ2μ0 � 105, B1n ¼ μ1H1n ¼ �ẑ2μ0 � 105 T½ �
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The tangential component of the magnetic flux density is discontinuous across the interface (Table 11.3):

n̂ � B1

μ1
� B2

μ2

� �
¼ Js ! n̂ � B2 ¼ �B2t ¼ μ2

n̂ � B1

μ1
� Js

� �
T½ �

Since the normal must point into medium (1), we write n̂ ¼ �ẑ and get

�ẑ � B2 ¼ B2t ¼ μ2
�ẑ � B1

μ1
� Js

� �
T½ �

or

B2t ¼ μ2
ẑ � B1

μ1
þ Js

� �
T½ �

Substituting for B1 and Js,

B2t ¼ μ0
ẑ � x̂2μ0 � 105 þ ŷ2μ0 � 105 � ẑ2μ0 � 105

� �
2μ0

þ x̂ � 105

 !
¼ ŷ105μ0 T½ �

The normal component of B is continuous across the interface:

B2n ¼ B1n ¼ �ẑ2� 105μ0 T½ �

Thus, the magnetic flux density in material (2) is

B2 ¼ ŷ105μ0 � ẑ2� 105μ0 T½ �

11.5 Particular Forms of Maxwell’s Equations

Maxwell’s equations as given in Section 11.2.2 are general and apply to all electromagnetic situations and for any type of

time dependency. In this sense, whenever there is a need to solve an electromagnetic problem, we can start with Eqs. (11.24)

through (11.27) or, if integral representation is more convenient, with Eqs. (11.28) through (11.31). However, more often

than not, there is no need to resort to the general system. For example, we might need to solve the equations at low

frequencies, in which case the displacement currents might be negligible or do not exist. In still other situations the current

densities or charge densities in the system, or both, are negligible. Some of these representations are particularly useful, and,

therefore, we discuss these here, before we apply them to particular electromagnetic problems in the following chapters. In

particular, the time-harmonic representation of the equations is often useful.

11.5.1 Time-Harmonic Representation

In a time-harmonic field, the time dependency is sinusoidal. This is a form often encountered in engineering and, as is well

known from circuit theory, offers distinct advantages in analysis. As with circuits, the time-harmonic form can be used for

almost any waveform through the use of Fourier series. This approach implies linearity in relations. The same is true in

electromagnetics. Much of the remaining material in this book will be based on the time-harmonic representation of the

electromagnetic field equations. For this reason, we present now Maxwell’s equations in time-harmonic form.

There are two basic differences between time-dependent and time-harmonic forms:

(1) Field variables as well as sources are phasors.

(2) The time derivative operator d/dt is replaced by jω.
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Before discussing these any further, it is useful to review the concept of phasors, particularly because we will use phasors

in conjunction with vector variables.

The phasor notation is a method of representing complex numbers. Consider a complex number b ¼ u0 + jv0, where

j ¼ ffiffiffiffiffiffiffi�1
p

:The complex number b can be represented in a plane, called a complex plane, as in Figure 11.4a. The real part of

b is u0, and it is the projection of b on the real axis, whereas the imaginary part of a is vo and represents its projection on the

imaginary axis.

Instead of writing b in the above form, we can also write b in terms of a magnitude and an angle. The phasor notation is

based on the latter form and arises from Euler’s equation:

be jφ ¼ bcos φð Þ þ jbsin φð Þ ð11:58Þ
That is, if the radius of a circle of magnitude b makes an angle φ with the real axis, its projections on the real and

imaginary axes are bcos(φ) and bsin(φ), respectively. These concepts are shown in Figure 11.4b. The phase angle φ can be

general and we will assume that it has the form φ ¼ ωt + θ, where ω is an angular frequency, t is time, and θ is some fixed

phase angle. Substituting this in Eq. (11.58) gives

be jφ ¼ be j ωtþθð Þ ¼ be jωte jθ ¼ bcos ωtþ θð Þ þ jbsin ωtþ θð Þ ð11:59Þ

A sinusoidal function of the type often used in fields is

f 1 x; y; z; tð Þ ¼ A0

�
x, y, z

�
cos
�
ωtþ θ

�
or f 2 x; y; z; tð Þ ¼ A0

�
x, y, z

�
sin
�
ωtþ θ

� ð11:60Þ

The phasor notation now allows us to write

A0 x; y; zð Þcos ωtþ θð Þ ¼ Re A0 x; y; zð Þe jωte jθ
� � ð11:61Þ

A0 x; y; zð Þsin ωtþ θð Þ ¼ Im A0 x; y; zð Þe jωte jθ
� � ð11:62Þ

where A0 is real and independent of time, Re{ } means the real part of the function, and Im{ } means the imaginary part of

the function. Finally, we define the phasor as that part of the function which does not contain time; that is,

Ap x; y; zð Þ ¼ A0 x; y; zð Þe jθ ð11:63Þ

This is sometimes written as an amplitude and phase as

Ap x; y; zð Þ ¼ A0 x; y; zð Þ∠θ ð11:64Þ

Summarizing, the phasor can be written in three different forms:

Ap x; y; zð Þ ¼ A0 x; y; zð Þe jθ ¼ A0 x; y; zð Þ∠θ ¼ A0 x; y; zð Þcosθ þ jA0 x; y; zð Þsinθ ð11:65Þ

The first form is called the exponential form, the second is the polar form, and the third is the rectangular form. Most

of our work in this book will be carried out in the exponential form. On occasion, we will use the polar form, particularly

u

a bjv

ϕ

b
u

jv

ϕ
b

bcosϕ

bsinϕ
v0

u0

Figure 11.4 (a) Representation of a complex number b. (b) Harmonic representation of a general complex number of

magnitude b
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for presentation of results because it is a more compact method. The rectangular form is also convenient in some cases

because of its explicit representation in complex variables. Using the exponential form of the phasor, the time domain form,

A(x,y,z,t), can be written as

A x; y; z; tð Þ ¼ Re A0 x; y; zð Þe jθe jωt
� � ð11:66Þ

Now, the reason for the use of phasors is apparent: It allows representation of fields in terms of a magnitude (A0) and a

phase angle (θ) without explicitly considering time, since the phasor does not contain the term e jωt.When we need to convert

phasors to time, the term e jωt is included as in Eq. (11.66).

In the above discussion, we assumed A to be a scalar function. However, the definition of the phasor, because it has to do

with any complex number, applies equally well to vectors. All we need to do is replace the scalar A by a vector A. Similarly,

the amplitude A0 now becomes a vector A0. The phasor form of A is Ap. Thus, given a time-dependent vector A(x,y,z,t),

the phasor form of A(x,y,z,t) is Ap(x,y,z), and given the phasor form Ap, the time-dependent vector is A(x,y,z,t) ¼
Re{Ap(x,y,z)e

jωt}.

One of the most distinct advantages in working with phasors is the ease with which time derivatives are performed.

The time derivative of a general vector A(x,y,z,t) is

d

dt
A x; y; z; tð Þð Þ ¼ Re jωAp x; y; zð Þe jωt

� � ð11:67Þ

In the practical use of phasors, we do not keep the term e jωt, but it is understood to exist. Neither do we denote the phasor

in any other way. In this section, the phasor was denoted with a subscript p. In later use we will drop this notation because it

will normally be understood from the context if we are using phasors or not.

Example 11.7 Phasors A time-dependent electric field intensity is given as E ¼ x̂ 10π þ j20πð Þ
cos 106t� 120y
� �

V=m½ �. Write the electric field intensity as a phasor using the following:

(a) The rectangular notation.

(b) The polar representation.

(c) The exponential representation.

Solution:

(a) First, we must write the electric field intensity as follows:

E ¼ x̂
�
10π cos 106t � 120y

� �þ j20πcos
�
106t� 120y

��
¼ x̂

�
10π cos 106t� 120y

� �þ 20πcos
�
106t� 120yþ π=2

�� �
V=m

	
Each term can be written in rectangular form noting its amplitude and phase. Comparison with Eq. (11.59) shows that

ωt ¼ 106t, θ1 ¼ �120y, and θ2 ¼ �120y + π/2. Removing the term ejωt, the phasor form becomes [see Eq. (11.65)]

E ¼ x̂
�
10πcos �120yð Þ þ j10πsin

�� 120y
�þ 20πcos

�� 120yþ π=2
�

þ j20πsin �120yþ π=2ð Þ� �
V=m

	
Or, writing cos(�120y) ¼ cos(120y), sin(�120y) ¼ –sin(120y), cos(�120y + π/2) ¼ sin(120y), and sin(�120y + π/2)

¼ cos(120y), we can simplify the expression

E ¼ x̂ 10πcos120y� j10πsin120yþ 20πsin120yþ j20πcos120y½ �
¼ x̂

�
10π þ 20πð Þcos120y� j

�
10π � 20π

�
sin120y

	 �
V=m

	
:

(b) In polar representation, we get

E ¼ x̂10π∠� 120y þ x̂20π∠� 120yþ π=2 V=m½ �:
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(c) In exponential form,

E ¼ x̂ 10πe�j120y þ 20πe�j120ye jπ=2

 �

V=m½ �:

Example 11.8 Phasors The magnetic field intensity in a material is given as a phasor:

H ¼ x̂ 100þ j50ð Þ þ ŷ50þ ẑ100½ �e j60e�j3x A=m½ �
(a) Write the magnetic field intensity in rectangular form.

(b) What is the time-dependent magnetic field intensity H in the material?

Solution:

(a) First, we write the magnetic field intensity as

H ¼ x̂ 100e j60e�j3x þ 50e j60e�j3xe jπ=2

 �

þ ŷ50e j60e�j3x þ ẑ100e j60e�j3x A=m½ �

The magnetic field intensity in rectangular form is

H ¼ x̂ 100cos 60� 3xð Þ þ j100sin
�
60� 3x

�þ 50cos 60� 3xþ π=2ð Þ þ j50sin
�
60� 3xþ π=2

�� 	
þ ŷ
�
50cos 60� 3xð Þ þ j50sin

�
60� 3x

�	þ ẑ
�
100cos 60� 3xð Þ þ j100sin

�
60� 3x

�	 �
A=m

	
:

(b) The time-dependent field is written as

H tð Þ ¼ Re
�
He jωt

� ¼ x̂
�
100cos

�
ωtþ 60� 3x

�þ 50cos
�
ωtþ 60� 3xþ π=2

�	
þ ŷ50cos ωtþ 60� 3xð Þ þ ẑ100cos

�
ωtþ 60� 3x

� �
A=m

	
:

11.5.2 Maxwell’s Equations: The Time-Harmonic Form

With the notation given above, we can now write Maxwell’s equations in terms of phasors. Implicit in this development is

linearity of material properties. Assuming that all vector and scalar quantities are phasors, we simply replace d/dt or ∂/∂t by
jω in Eqs. (11.24) through (11.34). The time-harmonic differential and integral forms of Maxwell’s equations together with

the constitutive relations and the Lorentz force are summarized in Table 11.6.

Table 11.6 Summary of the time-harmonic electromagnetic field equations

Differential form Integral form

Maxwell’s equations ∇ � E ¼ � jωB (11.68)
þ
C
E � dl ¼ � jω

ð
s
B � ds [V] (11.72)

∇ � H ¼ J + jωD [A/m2] (11.69)
þ
C
H � dl ¼ ð

s
(J + jωD) � ds [A] (11.73)

∇ �D ¼ ρv [C/m3] (11.70)
þ
s
D � ds ¼ Q [C] (11.74)

∇ �B ¼ 0 (11.71)
þ
s
B � ds ¼ 0 (11.75)

Constitutive relations B ¼ μH [T] (11.76)

D ¼ εE [C/m2] (11.77)

The Lorentz force equation F ¼ q(E + v � B) [N] (11.78)
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Note that the constitutive relations and the Lorentz force equations have not changed although all vector quantities are

now assumed to be phasors. Of course, velocity is still a real number. ε and μ remain unaffected by the phasor notation. The

charge Q or the charge density ρv may, in some cases, be time dependent, in which case they also become phasors.

Another important point to be noted here is that if displacement currents in Eq. (11.69) or (11.73) are neglected, the pre-

Maxwell system of equations is obtained, but the fields are now time-harmonic fields. This system of equations, which is

characterized by slow varying fields (and hence the neglection of displacement currents), is called the quasi-static field

equations. The term quasi-static means that the equations are static-like in the sense that the equations satisfy Laplace’s or

Poisson’s equations. One of the advantages of this form is that it extends many of the properties as well as the methods used

for static fields to time-dependent fields.

Finally, if we set all time derivatives to zero, the purely static equations used for electrostatics and magnetostatics are

obtained. As was said previously, under this condition, the electric field Eqs. (11.68) and (11.70) and the magnetic field

Eqs. (11.69) and (11.71) (or their integral counterparts) are decoupled, and there is no need to discuss them as a system of

equations.

11.5.3 Source-Free Equations

The general forms of Maxwell’s equations can sometimes be simplified if the sources do not need to be taken into account.

Under these conditions, the current density J, the charge density ρv, or both are removed from the equations and a much

simpler form of the equations is obtained. This is true in the time-dependent or phasor forms of the equations. The time-

dependent and time-harmonic source-free Maxwell’s equations are summarized in Tables 11.7 and 11.8.

That these equations are simpler than those given in Eqs. (11.24) through (11.27) or (11.28) through (11.31) is obvious.

For example, the divergence of D (or E) is zero, which makes the electric field solenoidal. The fact that we do not need to

treat sources makes the solution of field problems much simpler, provided that the conditions under which these equations

apply are satisfied.

Table 11.7 The source-free time-dependent Maxwell’s equations

Differential Integral

Faraday’s law
∇� E ¼ �∂B

∂t

þ
C

E�dl ¼ � dΦ

dt
[V]

Ampere’s law
∇�H ¼ �∂D

∂t
[A/m2]

þ
C

H�dl ¼ ð
s

∂D
dt
� ds [A]

Gauss’s law ∇ �D ¼ 0
þ
s
D � ds ¼ 0

No monopoles ∇ �B ¼ 0
þ
s
B � ds ¼ 0

Table 11.8 The source-free time-harmonic Maxwell’s equations

Faraday’s law ∇ � E ¼ –jωB
þ
C
E � dl ¼ � jω

þ
s
B � ds [V]

Ampere’s law ∇ � H ¼ jωD [A/m2]
þ
C
H � dl ¼ jω

ð
s
D � ds [A]

Gauss’s law ∇ �D ¼ 0
þ
s
D � ds ¼ 0

No monopoles ∇ �B ¼ 0
þ
s
B � ds ¼ 0
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We will not expand on this here except to point out that treatment of fields under source-free conditions is quite common.

You may wish to think about it in this fashion: If you are interested in evaluating the field distribution in a volume such as a

room due to say, terrestrial magnetism, or the transmission from a distant TV station, there is little choice but to solve the

problem in the absence of sources. In both of these cases, we have no knowledge of the sources, and, in fact, we may not even

know where the sources are located. The fields, however, are real. We can measure them at various locations, we can find

their distribution in space, and we can calculate a number of other properties related to the fields.

11.6 Summary

The main topic in this chapter is the introduction of displacement current density in Ampere’s law and its consequences.

The final result is Maxwell’s equations, which include the postulates in the previous chapters but also the modification due to

displacement currents. The displacement current density modifies Ampere’s law by adding the term Jd ¼ ∂D/∂t [A/m2]

as follows:

∇�H ¼ Jþ ∂D
∂t

A

m2

� �
ð11:6Þ

This, together with Faraday’s and Gauss’s laws, forms what are called Maxwell’s equations given below in differential

form (left) and integral form (right):

∇� E ¼ �∂B
∂t

ð11:24Þ or :

þ
C

E� dl ¼ �∂Φ
∂t

V½ � ð11:28Þ

∇�H ¼ Jþ ∂D
∂t

�
A=m2

	 ð11:25Þ or :

þ
C

H� dl ¼ ð
s

Jþ ∂D
∂t

0
@

1
A� ds A½ � ð11:29Þ

∇�D ¼ ρv
�
C=m3

	 ð11:26Þ or :

þ
s

D�ds ¼ Q
�
C
	 ð11:30Þ

∇�B ¼ 0 ð11:27Þ or :

þ
s

B�ds ¼ 0 ð11:31Þ

The material constitutive relations D ¼ εE and B ¼ μH and the Lorentz force F ¼ q(E + v � B) are part of the general

system of equations called the Maxwell–Lorentz equations (see Table 11.1). The third constitutive relation, J ¼ σE, applies
in conducting media.

Time-dependent potentials are defined based on the properties of the curl and divergence of fields:

E ¼ �∇V, if ∇� E ¼ 0 ð11:38Þ
V is the electric scalar potential (voltage).

H ¼ �∇ψ , if ∇�H ¼ 0 ð11:39Þ
ψ is the magnetic scalar potential.

B ¼ ∇� A, because ∇�B ¼ 0 ð11:40Þ
A is the magnetic vector potential.

The time-dependent electric field intensity, based on Ampere’s law [Eq. (11.24)], is

E ¼ �∂A
∂t

�∇V
V

m

� �
ð11:45Þ
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Gauges define the divergence of vector potentials (in this case the magnetic vector potential).

∇ �A ¼ 0 for static fields (Coulomb’s gauge) and

∇�A ¼ �με
∂V
∂t

ð11:49Þ

for time-dependent fields (Lorenz’s gauge).

Interface conditions for time-dependent fields are identical to those for static fields as discussed in Chapters 4 and 9.

These are summarized in Tables 11.2 through 11.5 (see Figure 11.2 for reference):

E1t ¼ E2t,
D1t

ε1
¼ D2t

ε2
and D1n � D2n ¼ ρs, ε1E1n � ε2E2n ¼ ρs

n̂ � H1t �H2tð Þ ¼ Js, n̂ � B1t

μ1
� B2t

μ2

0
@

1
A ¼ Js and B1n ¼ B2n, μ1H1n ¼ μ2H2n

Electromagnetic fields are often represented in terms of phasors. Phasor representation of any function A (scalar or

vector) is as follows:

Ap x; y; zð Þ ¼ A0 x; y; zð Þe jθ ¼ A0 x; y; zð Þ∠θ ¼ A0 x; y; zð Þcosθ þ jA0 x; y; zð Þsinθ ð11:65Þ

Transformation into the time domain is as follows:

A x; y; z; tð Þ ¼ Re A0 x; y; zð Þe jθejωt
� � ð11:66Þ

d

dt
A x; y; z; tð Þð Þ ¼ Re jωAp x; y; zð Þe jωt

� � ð11:67Þ

Time-harmonic field equations play an important role in electromagnetics. Maxwell’s equations in the frequency domain

(see Table 11.6) are:

∇� E ¼ �jωB ð11:68Þ or :

þ
C

E� dl ¼ �jω

ð
s

B�ds V½ � ð11:72Þ

∇�H ¼ Jþ jωD
�
A=m2

	 ð11:69Þ or :

þ
C

H� dl ¼ ð
s

Jþ jωDð Þ� ds A½ � ð11:73Þ

∇�D ¼ ρv
�
C=m3

	 ð11:70Þ or :

þ
s

D�ds ¼ Q
�
C
	 ð11:74Þ

∇�B ¼ 0 ð11:71Þ or :

þ
s

B�ds ¼ 0 ð11:75Þ

where E, H, D, B, and J are vector phasors and Q and ρv are scalar phasors. Note however that we do not mark these in any

particular way—it is understood from the context when these quantities must be phasors.

Source-free equations are obtained by setting J ¼ 0, ρv ¼ 0 in either the time or frequency domain equations. These are

summarized in Tables 11.7 and 11.8.

Problems

Maxwell’s Equations, Displacement Current, and Continuity

11.1 Displacement Current Density. A magnetic flux density, B ¼ ŷ0.1(cos100t)(cos5z) [T] exists in a linear, isotropic,

homogeneous material characterized by ε and μ. Find the displacement current density in the material if there are no

source charges or current densities in the material.
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11.2 Displacement Current in Spherical Capacitor. Determine the displacement current Id [A] which flows between two

concentric, conducting spherical shells of radii a and b [m] where b > a in free space with a voltage difference V0sinωt
[V] applied between the spheres.

11.3 Application: Displacement Current in Cylindrical Capacitor. A voltage source V0sinωt [V] is connected between

two concentric conductive cylinders r ¼ a and r ¼ b [A], where b > a, with lengthL [A]. ε ¼ εrε0 [F/m], μ ¼ μ0 [H/m],

and σ ¼ 0 for a < r < b. Neglect any end effects and find:

(a) The displacement current density at any point a < r < b.
(b) The total displacement current Id flowing between the two cylinders.

11.4 Conservation of Charge and Displacement Current. Show that the displacement current in Maxwell’s second

equation (Ampere’s law) is a direct consequence of the law of conservation of charge.

11.5 Application: Displacement and Conduction Current Densities in Lossy Capacitor. A lossy dielectric is located

between two parallel plates which are connected to an AC source (Figure 11.5). Material properties of the dielectric

are ε ¼ 9ε0 [F/m], μ ¼ μ0 [H/m], and σ ¼ 4 S/m. The source is given as V ¼ 1cosωt [V]. Calculate the frequency at

which the magnitude of the displacement current density is equal to the magnitude of the conduction current density.

Assume all material properties are independent of frequency.

Vμ,ε,σd

Figure 11.5

11.6 Displacement and Conduction Current Densities. A capacitor is made of two parallel plates with a dielectric

between them. The relative permittivity of the dielectric is εr ¼ 4, the distance between plates is d ¼ 1 mm, and the

area of each plate is S ¼ 100 mm2. Because of an accident, the dielectric became wet with a salt solution and therefore

became conducting with conductivity σ ¼ 10�3 S/m. If the capacitor is connected to an AC source of amplitude V [V]

and frequency ω [rad/s], show that:

(a) The ratio between the amplitudes of the conduction current density and displacement current density is

Jcond
Jdisp

¼ σ

ωε
:

(b) The conduction and displacement current densities are 90� out of phase.

11.7 Application: Lossy Capacitor. The capacitor in Problem 11.6 is connected to a 12 V DC source and charged for a

long period of time. Now the source is disconnected. Find the time constant of discharge of the capacitor.

11.8. Displacement Current. An AC generator operating at a frequency of 1 GHz is connected with a wire to a small

conducting sphere of radius a ¼ 10 mm at some distance away (see Figure 11.6). If the sphere is in free space,

calculate the current in the wire. Neglect any effect the ground may have. The generator generates a sinusoidal voltage

of amplitude 100 V.

100 V, 100 MHz
generator

a

Figure 11.6
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Maxwell’s Equations

11.9 Maxwell’s Equations. What value of A and β are required if the two fields:

E ¼ ŷ120πcos 106πt� βx
� � �

V=m
	

H ¼ ẑAπcos 106πt� βx
� � �

A=m
	

satisfy Maxwell’s equations in a linear, isotropic, homogeneous medium with εr ¼ μr ¼ 4 and σ ¼ 0? Assume there

are no current or charge densities in space.

11.10 Dependency in Maxwell’s Equations. Show that Eq. (11.8) (∇ �B ¼ 0) can be derived from Eq. (11.5) and,

therefore, is not an independent equation.

11.11 Dependency in Maxwell’s Equations. Show that Eq. (11.7) (∇ �D ¼ ρv) can be derived from Eq. (11.6) with the

use of the continuity equation [Eq. (11.13)] and, therefore, is not an independent equation.

11.12 The Lorenz Condition (Gauge). Show that the Lorenz condition in Eq. (11.49) leads to the continuity equation.

Hint: Use the expression for electric potential due to a general volume charge distribution and the expression for the

magnetic vector potential due to a general current density in a volume.

11.13 Maxwell’s Equations. Maxwell’s equations in Eqs. (11.24) through (11.27) are equivalent to eight scalar equations.

Find these equations by writing the vector fields explicitly in Cartesian coordinates and equating components.

11.14 Maxwell’s Equations in Cylindrical Coordinates. Write Maxwell’s equations explicitly in cylindrical coordinates

by expanding the expressions in Eqs. (11.24) through (11.27).

11.15 Maxwell’s Equations. A time-dependent magnetic field is given as B ¼ x̂20e j 104tþ10�4zð Þ T½ � in a material with

properties εr ¼ 9 and μr ¼ 1. Assume there are no sources in the material. Using Maxwell’s equations:

(a) Calculate the electric field intensity in the material.

(b) Calculate the electric flux density and the magnetic field intensity in the material.

11.16 Maxwell’s Equations. A time-dependent electric field intensity is given as E ¼ x̂10πcos 106t� 50z
� �

V=m½ �. The
field exists in a material with properties εr ¼ 4 and μr ¼ 1. Given that J ¼ 0 and ρv ¼ 0, calculate the magnetic field

intensity and magnetic flux density in the material.

Potential Functions

11.17 Current Density as a Primary Variable inMaxwell’s Equations. Given: Maxwell’s equations in a linear, isotropic,

homogeneous medium. Assume that there are no source current densities and no charge densities anywhere in the

solution space. An induced current density Je [A/m
2] exists in conducting materials. Assume the whole space is

conducting, with a very low conductivity, σ [S/m]. Rewrite Maxwell’s equations in terms of the current density

Je ¼ σE. In other words, assume you need to solve for Je directly.

11.18 Magnetic Scalar Potential. Write an equation, equivalent to Maxwell’s equations in terms of a magnetic scalar

potential in a linear, isotropic, homogeneous medium. State the conditions under which this can be done:

(a) Show that Maxwell’s equations reduce to a second-order partial differential equation. What are the assumptions

necessary for this equation to be correct?

(b) What can you say about the relation between the electric and magnetic field intensities under the given

conditions?

11.19 Magnetic Vector Potential. Given: Maxwell’s equations and the vector B ¼ ∇ � A, in a linear, isotropic,

homogeneous medium. Assume that E ¼ 0 for static fields:

(a) By neglecting the displacement currents, show that Maxwell’s equations reduce to a second-order partial

differential equation in A alone.

(b) What is the electric field intensity?

(c) Show that by using the Coulomb’s gauge, the equation in (a) is a simple Poisson equation.
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11.20 An Electric Vector Potential. A vector potential may be derived as ∇ � F ¼ –D where D is the electric flux

density:

(a) What must be the static magnetic field intensity (other than H ¼ 0 orH ¼ C, where C is a constant vector) if we

know that in the static case, ∇ � H ¼ 0?

(b) Find a representation of Maxwell’s equations in terms of the vector potential F in a current-free region

(i.e., a region without source currents).

(c) What might the divergence of F be for the representation in (b) to be useful? Explain.

11.21 Modified Magnetic Vector Potential. A modified vector potential may be defined as F ¼ A + ∇ψ , where A is the

magnetic vector potential as defined in Eq. (11.40) and ψ is any scalar function:

(a) Show that this is a correct definition of the vector potential.

(b) Find an expression of Maxwell’s equations in terms of F alone.

(c) How would you name the two potentials F and ψ?

Interface Conditions for General Fields

11.22 Displacement Current Density in a Dielectric. A time-dependent electric field intensity is applied on a dielectric as

shown in Figure 11.7. The electric field intensity in free space is given as E ¼ ẑE0cosωt V=m½ �. The relative

permittivity of the material is εr ¼ 25. For E0 ¼ 100 V/m and ω ¼ 109 rad/s, calculate the peak displacement current

density in the dielectric (there are no surface charges at the interface between air and material).

E zεr=25
dielectric

Figure 11.7

11.23 The Hertz Potential. In a linear, isotropic, homogeneous medium devoid of sources, one can derive the fields from a

single potential called the Hertz potential, π, as follows:

A ¼ jωμεπ, V ¼ �∇�π
where A is the magnetic vector potential and V the electric scalar potential.

Find the expressions for the electric and magnetic field intensities to show that they are dependent on π alone.

11.24 The Use of a Gauge. In a linear, isotropic, homogeneous medium devoid of sources, one can define the magnetic

Hertz potential πm as

E ¼ �jωμ∇� πm V=m½ �
Show that one can write Maxwell’s equations in the frequency domain in terms of πm alone provided a proper gauge is

defined. What is that gauge?

11.25 Interface Conditions for General Materials. Two dielectrics meet at an interface (see Figure 11.8) at x ¼ 0.

A sinusoidal electric field intensity of peak value 5 V/m and frequency 1 kHz exists in dielectric (1). For x < 0,

ε ¼ 2ε0 [F/m], and μ ¼ μ0 [H/m]. For x > 0, ε ¼ 3ε0, and μ ¼ 2μ0. If the electric field intensity vector is incident at
30 from the normal, find the magnitudes of E and D on each side of the interface. Assume no current or charge

densities exist at the interface.
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x

y

zE
x=0

ε =2ε0, μ=μ0 ε =3ε0, μ=2μ0

30°

material (1) material (2)

interface

Figure 11.8

11.26 Calculation of Fields Across Interfaces. A region, denoted as region (1), occupies the space x < 0 and has relative

permeability μr1 ¼ 6. The magnetic field intensity in region (1) isH1 ¼ x̂4þ ŷ � ẑ2 [A/m]. Region (2) is defined as

x > 0 with μr2 ¼ 5.0. No current exists at the interface. Find B in region (2).

11.27 Interface Conditions for Permeable Materials. An interface between free space and a perfectly permeable material

exists. In free space (1), μ ¼ μ0 [H/m], ε ¼ ε0 [F/m], and σ ¼0. In the permeable material (2), μ ¼ 1, σ ¼ 0, and

ε ¼ ε0. Define the interface conditions at the interface between the two materials.

11.28 Surface Current Density at Interfaces. Two magnetic materials meet at an interface as shown in Figure 11.9.

Material (1) has relative permeability of 4 and material (2) has relative permeability of 2. The interface is at z ¼ 0.

The magnetic flux density in material (1) is given as B ¼ x̂0:1þ ŷ0:2þ ẑ0:1 T½ �. In material (2), it is known that

all tangential components of H are zero.

(a) Calculate the surface current density that must exist on the interface for this condition to be satisfied.

(b) Calculate the magnetic flux density in material (2).

x

y

z

B

μ1=4μ 0 μ2 =2μ 0

material (1) material (2)

interface

Figure 11.9

11.29 Simulated Surface Current Density. It is possible to simulate a current sheet at an interface by placing thin parallel

wires at the interface. Suppose two materials meet at an interface on the x–y plane at z ¼ 0. Both materials are the

same, with relative permeability μr ¼ 2. The magnetic field intensity in material (1) (z > 0) is given as H1 ¼ x̂105

þŷ2� 105 þ ẑ104 [A/m]. Suppose now that wires are placed on the interface such that the current in the wire points

at 45� to the x axis, as shown in Figure 11.10. The current in each wire is 0.1 A and there are two wires per mm length.

Calculate:

(a) The magnetic field intensity in material (1) and in material (2) before the current in the wires is added.

(b) The magnetic field intensity in both materials after the current is switched on.
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x

y

z n=2 wires/mm

I

1 m
m

45°

material (1): z>0

material (2): z<0

interface

Figure 11.10

11.30 Simulated Surface Current Density. Suppose that in the previous problem, the magnetic field intensity in material

(1) with the same current sheet (i.e., the total field in material (1) due to all sources, including the current sheet) is

given as H1 ¼ x̂105 þ ŷ2� 105 þ ẑ104 [A/m]:

(a) What is now the magnetic field intensity in material (2).

(b) Discuss the difference between the solution to this problem and the previous problem.

Time-Harmonic Equations/Phasors

11.31 Vector Operations on Phasors. Two complex vectors are given as A ¼ a + jb and B ¼ c + jd, where a, b, c, and d
are real vectors. Calculate (* indicates complex conjugate):

A � A A � A� A � B A � B�

A� A A� A� A� B A� B�

11.32 Conversion of Phasors to the Time Domain. A magnetic field intensity is given as H ¼ ŷ5e�jβz [A/m]. Write the

time-dependent magnetic field intensity.

11.33 Conversion to Phasors. The following magnetic field intensity is given in a domain 0 � x � a, 0 � y � b:

H x; y; z; tð Þ ¼ H0sin
mπx

a
cos

nπy

b
cos ωt� kzð Þ A=m½ �

where x, y, and z are the space variables, m and n are integers, and k is a constant. Find the rectangular, polar, and

exponential phasor representations of the field.

11.34 Conversion to Phasors. An electric field intensity is given as

E z; tð Þ ¼ E1cos ωt� kzþ ψð Þ þ E2cos ωtþ kzþ ψð Þ V=m½ �
Write the phasor form of E in polar and exponential forms.

11.35 Conversion of Phasors to the Time Domain. A phasor is given as

E x; zð Þ ¼ E0e
�jβ0 xsinθiþzcosθið Þ V=m½ �

where x and z are variables and β0 and θi are constants. Find the time-dependent form of the field E.

11.36 Conversion to Phasors. The electric field intensity in a domain is given as

Ex z; tð Þ ¼ E0cos ωt� kzþ ϕð Þ V=m½ �
Find:

(a) The phasor representation of the field in exponential form.

(b) The first-order time derivative of the phasor.
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11.37 Time-Harmonic Fields. The electric field intensity

E ¼ x̂10πcos 106t� 50z
� �þ ŷ10πcos 106t� 50z

� �
V=m½ �

is given in a linear, isotropic, homogeneous medium of permeability μ0 [H/m] and permittivity ε0 [F/m]. Write the

magnetic field intensity and the magnetic flux density:

(a) In terms of the time-dependent electric field intensity.

(b) In terms of the time-harmonic electric field intensity.

11.38 Time-Harmonic Fields. The magnetic field intensity in free space is given asH ¼ x̂Hx þ ŷHy þ ẑHz

� �
ejβzejϕ [A/m],

where Hx, Hy and Hz are complex numbers given as Hx ¼ hx + jgx, Hy ¼ hy + jgy and Hz ¼ hz + jgz:

(a) What is the time-dependent magnetic field intensity H in air?

(b) Write the magnetic field intensity in terms of amplitude and phase.

11.39 Two vector fields are given in phasor form as

E1 ¼ x̂ 20þ j20ð Þe j0:3πz þ ŷ 10� j20ð Þe j0:3πz, E2 ¼ �x̂ 20� j10ð Þe j0:3πz þ ŷ 20þ j20ð Þe j0:3πz V=m½ �

Calculate:

(a) The time domain representation of the two fields.

(b) The sum E1 + E2 in phasor form and in the time domain.

(c) The difference E1 – E2 in phasor form and in the time domain.

(d) The vector product of the two fields in the time domain and in phasor form.

(e) The scalar product of the two fields in the time domain and in phasor form.
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