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Swift as a shadow, short as any dream,
Brief as the lightning in the collied night,

William Shakespeare, A midsummer night’s dream

16.1 Introduction

Chapter 14 discussed the propagation properties of transmission lines with particular emphasis on impedance, the reflection

coefficient, and time-harmonic representation. Voltage and current were phasors, and a number of properties such as the

speed of propagation, wavelength, and phase and attenuation constants were used as a direct consequence of the time-

harmonic nature of the waves. Much of the discussion paralleled that of propagation of plane waves in unbounded domains.

There are, however, important applications in which the single-frequency, time-harmonic representation is not appropri-

ate. For example, when we close a switch on a transmission line connecting the line with the generator, a transient ensues. In

effect, we are connecting a step source to the line. Similarly, when disconnecting the line, we should expect a transient.

When a power transmission line, which may normally operate under steady-state conditions, is shorted because of a fault or

when the load suddenly changes, a transient is again generated. In still other cases, such as in digital communication lines,

narrow pulses may be sent at relatively high rates. Similarly, the lines connecting digital circuit components on a board

transfer pulses which may be wide or narrow, depending on the application. A number of transient waveforms of this type

are shown in Figure 16.1. In all of these applications, we cannot use the methods of the previous chapters directly. In fact,

many of the basic concepts used in the previous chapters are not properly defined in this new environment. For example, the

speed of propagation, wavelength, phase constant, and even impedance are only properly defined in the time-harmonic

environment.

The approach adopted here is a very different and fundamental approach. Imagine that we could observe the behavior of

the line at all times and at any point we wished. This would give us all the information needed to evaluate the behavior of the

line. In effect, we are going to “ride” the various waves that may exist on the line as they propagate. This approach has the

great advantage that it is simple and intuitive. It will provide simple solutions to a number of important transmission line

applications with few assumptions.

Two types of transients will be discussed here. The first is narrow pulses and the second is the step source.

The intermediate case of long pulses will be treated as the superposition of step sources.

Figure 16.1 Common transients encountered in analog and digital communication lines
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16.2 Propagation of Narrow Pulses on Finite, Lossless Transmission Lines

Narrow pulses are common in digital systems but also on communication lines and are characterized by widths which are

very small compared with the propagation time along the line. In other words, if a line is of length d [m] and the speed of

propagation is vp [m/s], the time of propagation on the line is tp ¼ d/vp [s]. A pulse of width Δt � tp is considered a narrow

pulse. Note, however, that Δt itself is not necessarily small.

A narrow pulse propagates on a lossless line without distortion since the speed of propagation is independent of

frequency. All frequencies are propagated at the same speed. Thus, we can still use the concept of phase velocity even

though it was initially defined for time-harmonic waves. The speed of propagation on the line is

vp ¼ 1ffiffiffiffiffiffi
LC

p m

s

h i
ð16:1Þ

where L and C are the inductance and capacitance per unit length of the line, respectively.

Consider first the line in Figure 16.2. The load is matched to the line so there will be no reflection from the load. The

generator produces a pulse at time t ¼ 0. The pulse appears at the input to the line with the following amplitude for voltage

and current:

Vþ ¼ Vg
Z0

Z0 þ Zg
V½ �, Iþ ¼ Vþ

Z0

¼ Vg

Z0 þ Zg
A½ � ð16:2Þ

This is due to the impedance divider created by the generator’s internal impedance and the line impedance. The line

current is equal to the forward-propagating voltage divided by the line impedance, which, in this case, equals Z0 since

the pulse has not propagated down the line and the only impedance it sees is the characteristic impedance of the line. This

pulse now propagates toward the load, which it reaches after a time t ¼ d/vp. Since the load impedance is equal to the

characteristic line impedance, there is no reflection at the load (ΓL ¼ 0), and all energy in the forward-propagating pulse is

transferred to the load. Nothing more happens on the line unless additional pulses are generated.

Now suppose the line is not matched, as shown in Figure 16.3. At time t ¼ 0, a pulse appears at the generator terminals.

Since nothing happened on the line itself, the generator only sees the characteristic line impedance. Thus, the initial pulse

that appears at the generator’s terminals is the same as for the matched line in Eq. (16.2). The pulse propagates at the same

speed and reaches the load. The pulse is partly transmitted into the load, but because the line and load are not matched, there

is a reflection coefficient at the load:

ΓL ¼ V�

Vþ ¼ � I�

Iþ
¼ ZL � Z0

ZL þ Z0

ð16:3Þ
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Figure 16.2 (a) Propagation of a narrow pulse on a matched line. (b) Equivalent circuit at the generator at t ¼ 0
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Also, because the sum of the forward and reflected waves must equal the transmitted wave, the transmission coefficient at

the load is

TL ¼ 1þ ΓL ¼ 1þ ZL � Z0

ZL þ Z0

¼ 2ZL

ZL þ Z0

ð16:4Þ

The reflected voltage and current waves are

V�
1 ¼ΓLV

þ ¼ ZL � Z0

ZL þ Z0

Vþ ¼ Z0

Z0 þ Zg

ZL � Z0

ZL þ Z0

� �
Vg V½ � ð16:5Þ

I�1 ¼ �ΓLI
þ ¼ �Vþ

Z0

ZL � Z0

ZL þ Z0

� �
A½ � ð16:6Þ

The total voltage at the load at time t ¼ d/vp is the sum of the incoming and reflected waves:

VL1 ¼ Vþþ V�
1 ¼ Vþ 1þ ΓLð Þ V½ � ð16:7Þ

where the index 1 indicates that this is the first reflection at the load. Note that although a sum is used, the reflection

coefficient can be negative. The current in the load is given from Eq. (16.3) as

IL1 ¼ Vþ

Z0

1� ΓLð Þ A½ � ð16:8Þ

The sum of the forward- and backward-propagating waves only exists for a period equal to the width of the pulse. After

that, only the backward-propagating waves in Eqs. (16.5) and (16.6) exist on the line. To see how this comes about, the

forward-propagating wave and the backward-propagating wave can be viewed as two separate waves propagating in

opposite directions, as shown in Figure 16.4a. For clarity, we assume that ΓL is negative, but it may also be positive.

After t ¼ t1, the pulses add up as shown by the solid lines in Figure 16.4b. At a time t > t1 + Δt, the only wave on the line is
the backward-propagating wave, as shown in Figure 16.4c.
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Figure 16.3 Mismatched
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shown
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The reflected voltage (or current) now travels back and, after an additional time equal to d/vp, reaches the generator.

However, now the generator does not act as a generator but rather like a load Zg since the source of the reflected wave is at

the actual load. As with the load, part of the wave is reflected and part is transmitted into the generator (where it must be

dissipated). Thus, the backward-propagating wave is reflected into a new, forward-propagating wave at the generator, with

the generator reflection coefficient:

Γg ¼ Vþ
1

V�
1

¼ � Iþ1
I�1

¼ Zg � Z0

Zg þ Z0

ð16:9Þ

The reflected waves at the generator are

Vþ
1 ¼ΓgV

�
1 ¼ ΓLΓgV

þ V½ � and Iþ1 ¼ �ΓgI
�
1 ¼ ΓLΓgV

þ

Z0

A½ � ð16:10Þ

and the total voltage and current at the generator connections are

Vin1¼V�
1 þ Vþ

1 ¼ VþΓL 1þ Γg

� �
V½ � and Iin1 ¼ I�1 þ Iþ1 ¼ �IþΓL 1� Γg

� �
A½ � ð16:11Þ

Again, these sums only exist during a time Δt. After that, only the new forward-propagating wave exists. This process

repeats itself indefinitely, with each reflection at each end of the line being viewed as a new wave propagating toward the

other end. The reflection process is shown schematically in Figure 16.3 for a few voltage reflections.

If instead of a single pulse, the generator produces a train of pulses, each pulse is reflected as described above. However,

both forward-propagating and backward-propagating pulses may meet along the line. When this happens the voltage and

current on the line are superposition of the various pulses. Each pulse continues to travel as if it were alone on the line.

Example 16.1 The generator in Figure 16.5 produces 10 V pulses that are 20 ns wide. Consider a single pulse,

produced at t ¼ 0. Calculate the voltage and current at the load for all times between zero and 5.5 μs. Assume the line

is lossless and speed of propagation on the line is c/3 [m/s].

V −

V −

V
−

V ++V −

t=d/vp

V +

V +

a

b

c

Figure 16.4 Conditions at the load before, during, and after reflection. (a) The pulse front reaches the load. (b) A reflected

wave is generated and propagates toward the generator, partially overlapping the incident pulse. (c) After one pulse width,

only the backward-propagating pulse is left

100m

50 Ω

125 Ω

10 V 10VZ0=75 Ω vp =c/3

V+
125 Ω

75 Ω

Figure 16.5 A line with mismatched load and generator
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Solution: The reflection coefficients at the load (looking into the load) and generator (looking into the generator, from the

load) are first calculated. Then, we follow the pulse, based on the time of propagation between generator and load. The time

it takes the pulse to travel from the generator to load is

t ¼ L

vp
¼ 100

1� 108
¼ 1 μs½ �

The reflection coefficients at the load and generator are

ΓL ¼ ZL � Z0

ZL þ Z0

¼ 50� 75

50þ 75
¼ �0:2, Γg ¼ Zg � Z0

Zg þ Z0

¼ 125� 75

125þ 75
¼ 0:25

The voltage and current at the generator at t ¼ 0 are

Vþ ¼ Vg
Z0

Z0 þ Zg
¼ Vg

75

75þ 125
¼ 0:375Vg ¼ 3:75 V½ �

Iþ ¼ Vg

Z0 þ Zg
¼ 10

75þ 125
¼ 0:05 A½ �

These propagate toward the load. After 1 μs, both reach the load. The reflected waves are V1
� ¼ ΓLV

+ and I1
� ¼ � ΓLI

+:

V�
1 ¼ VþΓL ¼ �0:2Vþ ¼ �0:75 V½ �, I�1 ¼ �IþΓL ¼ 0:2Iþ ¼ 0:01 A½ �

The forward- and backward-propagating waves add up for 20 ns at the load. For these 20 ns, the voltage at the load is

0.8 V+ ¼ 3 V and the current is 1.2 I+ ¼ 0.06 A. Both reflected waves propagate back to the generator where a second

reflection takes place but now with the reflection coefficient of the generator:

Vþ
1 ¼ V�

1 Γg ¼ VþΓLΓg ¼ 0:25� �0:2ð ÞVþ ¼ �0:1875
�
V
�

Iþ1 ¼ I�1 Γg ¼ IþΓLΓg ¼ �0:2� 0:25� Iþ ¼ �0:0025 A½ �

Again, at the generator, the voltage is the sum of the backward- and forward-propagating waves for 20 ns. The process

now repeats itself with the new forward-propagating waves. At t ¼ 3 μs, we are at the load:

V�
2 ¼Vþ

1 ΓL ¼ �0:2Vþ
1 ¼ 0:0375 V½ �, I�2 ¼ �Iþ2 ΓL ¼ 0:2Iþ1 ¼ �0:0005 A½ �

At t ¼ 4 μs, the voltage at the generator is

Vþ
2 ¼ V�

2 Γg ¼ 0:009373 V½ �, Iþ2 ¼ �I�2 Γg ¼ 0:000125 A½ �

At t ¼ 5 μs, the voltage at the load is

V�
3 ¼ Vþ

2 ΓL ¼ �0:001875 V½ �, I�3 ¼ �Iþ2 ΓL ¼ 0:000025 A½ �

The results are shown in Figures 16.6a and 16.6b for the voltage and current at the generator and load. The sums of the

forward and backward waves are shown.
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16.3 Propagation of Narrow Pulses on Finite, Distortionless Transmission Lines

Although we now assume the line to be lossy, with an attenuation constant α, the line is also assumed to be distortionless

(i.e., R/L ¼ G/C) so that pulses do not distort. For a single pulse as described in the previous section, all aspects of

propagation remain the same, but, in addition, the pulse magnitude is attenuated exponentially as it propagates from

generator to load, or load to generator. The problem analyzed here is shown in Figure 16.7a.

With the forward-propagating wave in Eq. (16.2), the wave propagates along the line and is attenuated. For the first wave

(0 < t < d/vp), the voltage on the line at a point P0 is

V zð Þ ¼ Vþe�αz
0 ¼ Vg

Z0

Z0 þ Zg
e�αz

0
V½ � ð16:12Þ

where z0 is the distance from generator to point P0 in Figure 16.7a. At the load, the forward-propagating wave is

Vþ
L ¼ Vþe�αd V½ � ð16:13Þ

The reflected wave is

V�
1 ¼ ΓLV

þe�αd V½ � ð16:14Þ
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Figure 16.6 (a) Voltage and current at the generator in Figure 16.5, immediately after the pulses are generated. (b) Voltage

and current pulses at the load in Figure 16.5
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At the load, the total voltage is the sum of this and the reflected voltage. This gives

VL ¼ Vþe�αd 1þ ΓLð Þ V½ � ð16:15Þ

However, this sum only exists for a time equal to the pulse width Δt. The reflected wave in Eq. (16.14) propagates back

and is attenuated. The expression for the reflected wave anywhere on the line between load and generator is

V�
1 zð Þ ¼ ΓLV

þe�ade�az V½ � ð16:16Þ

This reflected wave reaches the generator and is reflected at the generator unless the generator is matched. At the

generator, the first reflection is

V�
1 z ¼ dð Þ ¼ Vþe�2adΓL V½ � ð16:17Þ

Taking into account the generator reflection coefficient Γg, the total voltage at the generator connections is

Vg1 ¼ VþΓLe
�2ad 1þ Γg

� �
V½ � ð16:18Þ

This sum also exists for a period Δt. The new forward-propagating wave after the first reflection at the generator is

Vþ
1 z

0
	 


¼ Vþe�2ade�az
0
ΓLΓg V½ � ð16:19Þ

Thus, the attenuation depends on the total distance traveled by the wave, regardless of how many reflections it has

undergone. This is shown schematically in Figure 16.7b. Note, also, that each pulse is assumed to travel independently of

any other pulses on the line. If two pulses meet anywhere on the line, then the voltage and current at that point and time is the

superposition of the pulses. This applies particularly to the location of the load and generator, since for any pulse width, the

reflected and incident pulses overlap during a time equal to the pulse width. A sum of more than one pulse may exist on the

line at other locations if multiple pulses exist on the line and propagate independently.

Example 16.2 Consider, again, Example 16.1, but now the line has an attenuation constant α ¼ 0.002 Np/m. Draw

the voltage and current at the generator for 0 < t < 5.5 μs.

Solution: From the above discussion, the voltages and currents at any given time are those for the lossless line multiplied by

the attenuation from t ¼ 0 to the time considered. Thus, from the results in Example 16.1, the voltage and current at the

generator only exist at times t ¼ 0, t ¼ 2 μs, and t ¼ 4 μs. At t ¼ 0, the waves have not propagated. Thus

Vþ ¼ 3:75 V½ �, Iþ ¼ 0:05 A½ �

At time t ¼ 2 μs, the waves at the generator are V1
�, I1

�, V1
+ and I1

+. These are attenuated as if they propagated a distance

of 200 m. Thus,

V�
1 ¼ �0:75e�0:002�200 ¼ �0:50274 V½ �,
I�1 ¼ 0:01e�0:002�200 ¼ 0:0067 A½ �
Vþ
1 ¼ �0:1875e�0:002�200 ¼ �0:1257 V½ �,
Iþ1 ¼ �0:0025e�0:002�200 ¼ �0:001676 A½ �

At t ¼ 4 μs, at the generator, the total distance traveled by the wave is 400 m. The waves at this time are V2
�, I2

�, V2
+

and I2
+:

V�
2 ¼ 0:0375e�0:002�400 ¼ 0:01685 V½ �,
I�2 ¼ �0:0005e�0:002�400 ¼ �0:0002247 A½ �
Vþ
2 ¼ 0:009375e�0:002�400 ¼ 0:0042125 V½ �,
Iþ2 ¼ 0:000125e�0:002�400 ¼ 0:00005617 A½ �
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The total current and voltage at the generator is the sum of the forward- and backward-propagating waves for the duration

of the narrow pulse (20 ns). The resulting voltage and current at the generator are shown in Figure 16.8a, which shows the

voltage and current on the line at t ¼ 0, t ¼ 2 μs, t ¼ 4 μs, etc. The values shown are the sums of the forward and backward

amplitudes.

Exercise 16.1 In Example 16.2, find the voltage and current in the middle of the transmission line for times

0 < t < 5 μs.

Answer See Figure 16.8b.

Example 16.3 Application: Time Domain Reflectometry Time domain reflectometry (TDR) is a method of

testing that relies on reflections from mismatched loads to locate the load. This is very useful in locating short circuits

or cuts in inaccessible lines such as underground cables. A pulse is sent on the line and its reflections are recorded on a

screen or chart. The distance between every two pulses is twice the time it takes to propagate to the fault. If the speed of

propagation is known for the line, the exact location of the fault can be found. From the magnitude, shape, and sign of

the signals, it is also possible to evaluate the type of fault (short, low, or high impedance, open) before repair. This can

save considerable time and labor, especially if cables are buried.

A lossless underground telephone cable has inductance per unit length of 1 μH/m and capacitance of 25 pF/m. The

cable has developed a fault and it is required to locate the fault and identify its nature. The time domain reflectometer

reading looks as in Figure 16.9b:

(a) Find the distance of the fault from the source.

(b) What kind of fault does the cable have?

1 μs 2 μs 3 μs 4 μs

t

t

V

I

t

t

V

I

3.75 V

−.6284 V

.021 V

.05 A .005 A

−.000168 A

3.393 V

a b

45.2 mA

51 μA

−1.5 mA

−.556 V

.0038 V

1 μs 2 μs 3 μs 4 μs 5 μs

7.41 mA

−.248 mA

−.1137 V

.0186 V

Figure 16.8 (a) Voltage and current at the generator in Example 16.2. (b) Voltage and current in the middle of the line in

Exercise 16.1

a

V=1V

V=−1/3VΔt=33μs

generator oscilloscope
transmission line

fault

a b

Figure 16.9 (a) A time domain reflectometer. (b) The signal obtained from the faulty cable
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Solution: The distance to the fault is calculated from the time difference between two pulses and the speed of propagation

on the line. The type of fault can be identified from the reflection coefficient at the fault:

(a) The speed of propagation on the line is

vp ¼ 1ffiffiffiffiffiffi
LC

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10�6 � 25� 10�12

p ¼ 2� 108
m

s

h i
:

The distance of the fault is

d ¼ vpΔt
2

¼ 2� 108 � 3:3� 10�5

2
¼ 3, 300 m½ �:

(b) Because the first reflection is negative, the impedance at the load is smaller than the line impedance, as can be seen from

the formula for the reflection coefficient at the load. The line impedance can be calculated from the inductance and

capacitance per unit length:

Z0 ¼
ffiffiffiffi
L

C

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10�6

25� 10�12

s
¼ 200 Ω½ �

The reflection coefficient is

ΓL ¼ V�

Vþ ¼ �1

3
¼ ZL � Z0

ZL þ Z0

! ZL ¼ Z0

1� 1=3ð Þ�
1þ 1=3

� ¼ Z0

2
¼ 100 Ω½ �

Thus, the fault is a “partial short,” such as may be caused by loss of insulation or water in the cable. The calculation of the

fault impedance is only possible if the line is lossless and if the pulses do not distort. In practical applications, the line is

never lossless and, therefore, the pulses are distorted. It is much more difficult to classify the fault exactly (although still

possible), but the location of the fault is relatively easy to find. Also, step sources are often used and multiple reflection

recorded to better analyze the fault.

Exercise 16.2 In Example 16.3, suppose that the amplitude of the reflected wave equals 99 % of the amplitude of

the forward-propagating wave. What is the impedance of the fault if the intrinsic line impedance is Z0 ¼ 200 Ω?

Answer ZL ¼ 39,800 Ω. This is a partially open line.

16.4 Transients on Transmission Lines: Long Pulses

The condition considered here is that of a very long pulse, again, the length being related to the length of the line and speed of

propagation. In other words, we assume now that Δt� d/vp, where Δt is the pulse width, d the length of the line, and vp the
speed of propagation on the line. The main difference between this assumption and the assumption in the previous case is

that the pulse can now propagate back and forth from generator to load during the pulse widthΔtmany times. In particular, a

positively going or negatively going step function satisfies this condition. A number of pulses that may be considered here

are shown in Figure 16.10.

V=0

V=0 V=0 V=0

V=0

V=V0

V=V0 V=V0

V=V0V=V0

>>d/vpΔt

Figure 16.10 Some typical

long pulses
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Consider the circuit in Figure 16.11a. Initially, the switch is open and there is no current on the line. Suppose now the

switch is closed at time t ¼ 0. Initially, the condition is the same as in the previous case; that is, the disturbance on the line

must propagate to the load starting at t ¼ 0. The generator “sees” a load equal to Z0 since no wave has propagated to the load
yet. The voltage across the line and the current in the line at z ¼ 0 are

Vþ ¼ Vg
Z0

Z0 þ Zg
V½ �, Iþ ¼ Vg

Z0 þ Zg
A½ � ð16:20Þ

The equivalent circuit at t ¼ 0 is shown in Figure 16.11b and is the same as a lumped parameter circuit. The closing of

the switch has created a disturbance on the line: The forward wave V+ now propagates toward the load at the speed of

propagation vp on the line. For a lossless or distortionless line, this speed is always given by Eq. (16.1) and is independent of

the frequencies in the pulse. For a line of length d, the time of propagation to reach the end of the line is Δt ¼ d/vp. After this
time, the forward-propagating wave appears at the load. There are three possible conditions that may occur at the load:

(1) Load impedance equals the characteristic impedance: ZL ¼ Z0. In this case, the reflection coefficient at the load is zero.

There is no reflection at the load and the circuit reaches steady state after a time t ¼ d/vp. The line voltage and line

current are shown in Figure 16.12 for three times.

(2) Load impedance greater than Z0: ZL > Z0. In this case, the reflection coefficient is positive and, therefore, the reflected

voltage wave is in the same direction as the forward-propagating wave. The reflected current at the load is in the

direction opposite the forward current as shown in Eq. (16.3).

(3) Load impedance less than Z0: ZL < Z0. In this case, the reflection coefficient is negative (ΓL < 0). The reflected voltage

wave is opposite in polarity compared to the forward voltage wave, and the current is of the same polarity as the forward

current wave.

Thus, we can treat cases 2 and 3 in identical fashion using the reflection coefficient, but in actual, numerical calculations,

the sign of the reflection coefficient must be taken into account.

After the forward wave reaches the load, it is reflected. We call this the first reflection. The reflected waves are

V�
1 ¼ ΓLV

þ V½ �, I�1 ¼ �ΓLI
þ A½ � ð16:21Þ

These two waves propagate back toward the generator as for the narrow pulse, but unlike the narrow pulse situation, the

forward-propagating wave still exists on the line (since the pulse is very wide). Thus, the voltage (or current) anywhere on

VgVg

Zg

ZLZ0 Z0

Zg

a b

V +

switch

Figure 16.11 (a) A step pulse on a line generated by connecting the generator at t ¼ 0. (b) Calculation of the forward

waves V+ and I+ at the generator at t ¼ 0

load

z=0 z=dz=d/4

t=0

t=Δ t/4

t>>Δ t

V=0

V=0

V=0

V=V+

V=V+

generatorFigure 16.12 Line voltage

and current on a line with

matched load, at different

times and locations
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the line is the sum of the forward-propagating wave V+ and backward-propagating wave V1
� (I+ and I1

� for the current wave).

The line voltage and current at any time Δt < t < 2Δt are

V1 ¼ Vþ 1þ ΓLð Þ V½ �, I1 ¼ Iþ 1� ΓLð Þ A½ �, Δt < t < 2Δt ð16:22Þ

After an additional time Δt (2Δt from the time the switch was closed), the reflected wave V1
– reaches the generator.

Although the generator has its own voltage, it behaves as a load with load impedance Zg for the reflected wave. Thus, a

reflection coefficient Γg exists at the generator, unless Zg ¼ Z0. For Zg 6¼ Z0, the generator reflection coefficient is given in

Eq. (16.9). Note that now the forward- and backward-propagating waves have changed roles. This should not be too

confusing since the waves reflected from the load propagate backward toward the generator. These waves are reflected at the

generator to produce new forward-propagating waves toward the load. These are

Vþ
2 ¼ ΓgV

�
1 ¼ ΓLΓgV

þ V½ �, Iþ2 ¼ �ΓgI
� ¼ ΓLΓgI

þ A½ � ð16:23Þ

The total voltage and current on the line at time 2Δt < t < 3Δt are

V2 ¼ Vþ 1þ ΓL þ ΓLΓg

� �
V½ �, I2 ¼ Iþ 1� ΓL þ ΓLΓg

� �
A½ �, 2Δt < t < 3Δt ð16:24Þ

After an additional time Δt, the new forward-propagating waves (V2
+ and I2

+) reach the load and are reflected again. The

new reflected waves, which then propagate backward toward the generator, are

V�
3 ¼ΓLV

þ
2 ¼ Γ2

LΓgV
þ V½ �, I�3 ¼ �ΓLI

�
2 ¼ �Γ2

LΓgI
þ A½ � ð16:25Þ

and the total line voltage and current are

V3¼Vþ 1þ ΓL þ ΓLΓg þ Γ2
LΓg

� �
V½ �, I3 ¼ Iþ 1� ΓL þ ΓLΓg � Γ2

LΓg

� �
A½ �, 3Δt < t < 4Δt ð16:26Þ

The pattern is now clear: Every reflection adds to (or subtracts from) the previous reflections to produce a total wave.

Continuing the pattern, the voltage and current after many reflections may be written as

V ¼ Vþ 1þ ΓL þ ΓLΓg þ Γ2
LΓg þ Γ2

LΓ
2
g þ Γ3

LΓ
2
g þ . . .

	 

¼ Vþ 1þ ΓLΓg þ Γ2

LΓ
2
g þ Γ3

LΓ
3
g þ . . .

	 

þ VþΓL 1þ ΓLΓg þ Γ2

LΓ
2
g þ Γ3

LΓ
3
g þ . . .

	 

V½ �

ð16:27Þ

I ¼ Iþ 1� ΓL þ ΓLΓg � Γ2
LΓg þ Γ2

LΓ
2
g � Γ3

LΓ
2
g þ . . .

	 

¼ Iþ 1þ ΓLΓg þ Γ2

LΓ
2
g þ Γ3

LΓ
3
g þ . . .

	 

� IþΓL 1þ ΓLΓg þ Γ2

LΓ
2
g þ Γ3

LΓ
3
g þ . . .

	 

A½ �

ð16:28Þ

The term in parentheses is a geometric series (since jΓLj < 1, jΓg j < 1), and for a large number of terms, we get

1þ ΓLΓg þ Γ2
LΓ

2
g þ Γ3

LΓ
3
g þ . . . ¼ 1

1� ΓLΓg
, ΓLj j, Γg

�� �� < 1 ð16:29Þ

Substituting in Eq. (16.27), we get

V1 ¼ Vþ 1

1� ΓLΓg
þ VþΓL

1

1� ΓLΓg
¼ Vþ 1þ ΓL

1� ΓLΓg
V½ � ð16:30Þ
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Performing similar operations for I in Eq. (16.28), we get

I1 ¼ Iþ
1� ΓL

1� ΓLΓg
A½ � ð16:31Þ

where the index indicates an infinite number of reflections (infinite time). This gives the steady-state solution for voltage and

current on the line. Substituting for ΓL and Γg from Eqs. (16.3) and (16.9), and rearranging terms, we get

V1 ¼ Vþ 1þ ΓL

1� ΓLΓg
¼ Vþ ZL Z0 þ Zg

� �
Z0 Zg þ ZL

� � V½ � ð16:32Þ

Now, substituting for V+ from Eq. (16.20), we get for the voltage on the line, which is also the voltage on the load at

steady state,

V1 ¼ Vg
ZL

Zg þ ZL
V½ � ð16:33Þ

This is the steady-state solution for the circuit, as required. Similarly, for the current in the circuit (load), we get the

steady-state solution as

I1 ¼ Vg

Zg þ ZL
A½ � ð16:34Þ

Although the method is simple and intuitive, it is rather lengthy, except for the steady-state solution. However, it is

possible to reduce the method into a simple diagram which may be viewed as a tool for keeping track of the various

reflections that occur. The diagram is called a reflection diagram (also called a bounce or Bewley diagram) and is shown in

Figures 16.13 through 16.15. The method consists of the following:

(1) The generator and load are replaced by two perpendicular lines separated a distance d apart. The horizontal distance

represents location on the line, and the vertical axis represents time with t ¼ 0, usually at the generator. The reflection

coefficient at the generator (looking from the line into the generator) is placed on the left vertical line, whereas the

reflection coefficient at the load (looking from the line into the load) is placed on the right vertical line. The same applies

to the current diagram. These considerations are shown in Figure 16.13.

(2) Time is indicated along the lines starting from top to bottom in increments of 2Δt. The left line is marked 0, 2Δt, 4Δt,
6Δt, etc. The right line is markedΔt, 3Δt, 5Δt, 7Δt, etc. This conforms with the above notation and indicates that a wave

propagates between generator and load or vice versa in a time Δt ¼ d/vp.

(3) The initial voltage and current, at time t ¼ 0, are calculated from Eq. (16.20). These are marked at time t ¼ 0 on the

diagram, pointing toward the load as shown in Figure 16.13.

(4) The foregoing steps give the initial or preparatory steps. Now, we allow the initial waves to propagate, and each

encounter with a reflection coefficient multiplies the wave by that reflection coefficient [Eq. (16.21)] and changes the

t=0

tim
e

load

a b

d

t=0

tim
e

loadgen.

d

gen.

Δt Δt

2Δt2Δt

3Δ t 3Δt

ΓL=
ZL−Z0

ZL+Z0
ΓL=

ZL−Z0

ZL+Z0

Γg=
Zg−Z0

Zg+Z0
Γg=

Zg−Z0

Zg+Z0

V+=
VgZ0

Zg+Z0
I+=

Vg

Zg+Z0

Figure 16.13 Preparatory steps in the reflection diagram. (a) Voltage reflection diagram. (b) Current reflection diagram
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direction of propagation. Figure 16.14 shows a few steps in the diagram. All odd-numbered reflections occur at the load;

all even-numbered reflections occur at the generator.

(5) To calculate the voltage or current at any point on the line and at any time, we proceed by marking the location at which

the values are required. For example, suppose we wish to calculate the line voltage and line current at point z0 in

Figure 16.14. A line parallel to the load or generator line is drawn at z ¼ z0. This line shows the voltage at any point in
time from zero (top) to infinity (bottom). The line z ¼ z0 intersects the reflected voltages and currents at times t1, t2, t3,

etc., as shown. The line voltage and current are shown in Figure 16.15. Note that in this figure, both ΓL and Γg are

assumed to be positive. Thus, the voltage at z0 increases in diminishing steps. The values of voltage or current remain

constant between two reflections, until an additional reflection reaches the same point.

(6) The voltage or current at any given time at a given point between generator and load is calculated by summing up all

reflections for all times up to the required time, at the required point. As an example, the voltage and current at time

t ¼ t0 at z ¼ z0 in Figure 16.14 is the sum of the first four reflections and the initial voltage. In this case,

V0 ¼ Vþ 1þ ΓL þ ΓLΓg þ Γ2
LΓg þ Γ2

LΓ
2
g

	 

½V�, I0 ¼ Iþ 1� ΓL þ ΓLΓg � Γ2

LΓg þ Γ2
LΓ

2
g

	 

½A� ð16:35Þ

These values are shown in Figure 16.15.

t=0

a b

t=0
t1t1
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t3 t3

t4t4

t5t5

t=Δ tt=Δ t

t=2Δ tt=2Δ t

t=3Δ t t=3Δ t
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t=5Δ tt=5Δ t

t=6Δ tt=6Δ t
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z=dz=0 z=0 z=dz=z0z=z0
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+ΓL

V +ΓLΓg I+ΓLΓg
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+ΓL
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2Γg

2 I+ΓL
2Γg

2

V
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2

−I
+ΓL

3 Γg
2

Figure 16.14 (a) The voltage reflection diagram for a general transmission line with reflection coefficients ΓL and Γg.

(b) The current reflection diagram for the conditions in (a)
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Figure 16.15 Voltage and

current on the line at a given

location as a function of time
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Example 16.4 A transmission line is connected as shown in Figure 16.16. The inductance per unit length of the line

is 5 μH/m, and the capacitance per unit length is 5 pF/m. The switch is closed at t ¼ 0. Calculate:

(a) The steady-state voltage and current on the line.

(b) The voltage at the load as measured by an oscilloscope between t ¼ 0 and t ¼ 3 μs.
(c) The current midway between generator and load as measured between t ¼ 0 and t ¼ 3 μs.

Solution: For steady state, we can either use Eqs. (16.30) and (16.31) or Eqs. (16.33) and (16.34). The former will be used

here. As for the transient solution, we use Eqs. (16.27) and (16.28) with the appropriate number of reflections. The latter is

found from the length of the line and speed of propagation:

(a) The speed of propagation on the line is vp ¼ 1=
ffiffiffiffiffiffi
LC

p ¼ 2� 108 m=s. Thus, the time required for propagation between

the generator and load is 0.5 μs. To calculate the steady-state solution and to build the reflection diagram, we need the

reflection coefficients at the load and generator (looking into the load or generator, respectively) and the initial voltage

and current at t ¼ 0 (V+ and I+). These are

ΓL
ZL � Z0

ZL þ Z0

¼ 150� 50

150þ 50
¼ 0:5, Γg ¼ Zg � Z0

Zg þ Z0

¼ 75� 50

75þ 50
¼ 0:2

Vþ ¼ V0Z0

Zg þ Z0

¼ 24� 50

125
¼ 9:6 V½ �, Iþ ¼ V0

Zg þ Z0

¼ 24

125
¼ 0:192

�
A
�

The steady-state solution is

V1 ¼ Vþ 1þ ΓL

1� ΓLΓg
¼ 9:6� 1þ 0:5

1� 0:5� 0:2
¼ 16 V½ �,

I1 ¼ Iþ
1� ΓL

1� ΓLΓg
¼ 0:192� 0:5

0:9
¼ 0:1067 A½ �:

(b) The reflection diagram for voltages is now as in Figure 16.17a, where the first few reflections are shown. The time

t ¼ 3 μs is shown as a horizontal line. The voltage at the load is the sum of all values at the load from t ¼ 0 to t ¼ 3 μs
since all remain on the line indefinitely (the pulse is very long). These are shown in Figure 16.17b. Note the way the

diagram is drawn in comparison to Figure 16.15. The steady state in this case is reached quite fast. At t ¼ 3 μs, the load
voltage is 15.984 V which is only 16 mV lower than the steady state voltage.

t=0
a b

Vg=24 V

Zg

ZLZ0 =50 Ω V +

d=100 m

24 V

75 Ω

50 Ω

75 Ω 150  Ω
Figure 16.16 A transmission line on which the generator is switched on at t ¼ 0
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(c) The current midway between generator and load is found from the current reflection diagram in Figure 16.18a. The

horizontal line at t ¼ 3 μs and the vertical line at z ¼ d/2 are shown. The plot of current with time is shown in

Figure 16.18b. Note that the current is zero for the first 0.25 μs. Then, it remains constant for 0.5 μs until the reflected
wave reaches this point again, and so on. The current at t ¼ 3 μs is 0.10656 A. The line is almost at steady state.

16.5 Transients on Transmission Lines: Finite-Length Pulses

In the preceding two sections, we discussed the behavior of two types of pulses. One was a very short pulse and the second

was very long. If, instead, a finite-width pulse is prescribed, we can use the superposition of solutions we already obtained to

calculate the transmission line response to the pulse. A method of obtaining a pulse of width T is shown in Figure 16.19.

In essence, we create a finite duration pulse as a superposition of two step functions. The first step function is applied at a

time t ¼ 0 and the second is applied at a time t + T. This, of course, is done so that we may use the solution in the previous

section. Each step function is evaluated separately, and then the results are added to obtain the pulse response. The additional

important point is to displace the second diagram by a time T to ensure that the correct pulse width is created. This method

can be extended to almost any pulse shape, although the method may be lengthy. For example, a triangular pulse may

be approximated by any number of steps. If the steps are small and a large number of steps are used, the pulse may be

approximated quite accurately. The approximation for a triangular pulse is shown in Figure 16.20, using four steps on the
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Figure 16.17 (a) Voltage

reflection diagram for the

line in Figure 16.16.

(b) Voltage at the load

in Figure 16.16
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rising edge and four steps on the falling edge. The first four pulses are exactly the same, but the first pulse starts at t0 + T/16 and
each subsequent pulse is displaced an additional T/8. The net effect is a narrowing of the pulse compared to the actual triangular

pulse, but this is of minor concern since we can decrease this narrowing by increasing the number of pulses we use. The last

four pulses are the same in magnitude but are negative. The following example shows how this method is applied.

Example 16.5 Transient Due to a Triangular Pulse The transmission line in Figure 16.21a is driven with a single

triangular pulse as shown. The speed of propagation on the line is 108 m/s:

(a) Find the current in the load at all times between t ¼ 0 and t ¼ 50 μs.
(b) Find the steady-state voltage on the line.

0

0

0

0

t+Tt
t

V0

V0

2V0

T

Figure 16.19 The superposition of two shifted step pulses results in a finite duration pulse
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0

0

0

0
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Figure 16.20 Approximation

of a triangular pulse by step
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Figure 16.21 (a) A transmission line driven by a single triangular pulse. (b) Representation of the triangular pulse as a

combination of steps
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Solution: To solve the problem, we can divide the pulse into any number of steps. The larger the number of steps, the better

the approximation to the exact solution. Here, we choose to divide the pulse into four steps on each slope, as in

Figure 16.21b. The solution is then a superposition of four positive steps and four negative steps, each of magnitude

15 V/150 Ω ¼ 0.1 A. The reflection diagram for one positive (or negative) step is shown in Figure 16.22a. The reflection

coefficients are shown on the diagram:

(a) The solution involves some approximations. The most obvious is the use of the finite number of steps. The second

approximation necessary is shown in Figure 16.21b. The pulses are chosen such that they approximate the original

triangular pulse which passes through the centers of the vertical and horizontal lines forming the pulse. The width of the

approximate pulse is only 17.5 μs with each pulse displaced 2.5 μs with respect to the other. Also, the first pulse starts

1.25 μs from the time the true triangular pulse starts, but, in the interest of simplicity, we start the first pulse at t ¼ 0.

From the diagram in Figure 16.22a, the current in the load is calculated and shown in Figure 16.22b for the first step.

Note that the first jump occurs at t ¼ 10 μs and is equal to 0.1 � 0.1/3 ¼ 0.0667 A. The second jump at t ¼ 30 μs adds
0.1/9 � 0.1/27 ¼ 0.0074 A. The remaining three pulses are the same, but are displaced to the right by 2.5 μs each.
Similarly, the negative pulses are identical in form but negative, and they are also displaced by 2.5 μs each with respect

to the previous pulse. If we draw the eight pulses with the proper shift in time, we get the result in Figure 16.23. The

result is the sum of all eight pulses and is shown at the bottom of the diagram. Note, in particular, the multiple pulses

produced by the multiple reflections. These pulses die out with time.

(b) The steady-state voltage on the line is zero. This can be seen from Figure 16.23. The steady-state response to each step is

identical except for signs. There are four positive responses and four negative responses. Their sum is zero; that is, the

pulse is eventually dissipated.
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Figure 16.22 (a) Current reflection diagram for the first step in Figure 16.21b. (b) Current at the load due to the first pulse
in Figure 16.21b
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16.6 Reflections from Discontinuities

A discontinuity on a line is any condition that changes the impedance on the line. For example, the connecting point between

two lines of different characteristic impedances is a discontinuity that will cause a reflection at the point of discontinuity.

Similarly, a uniform line on which a load has been connected somewhere on the line becomes a discontinuous line. These

two situations are shown in Figures 16.24a and 16.24b. A similar situation is caused by connecting more than one

transmission line at the end of a transmission line as shown in Figure 16.24c. The introduction of a discontinuity causes

both reflections and transmission of waves at the discontinuity as well as at any other location at which there is a mismatch in

impedance. To understand the behavior of the transient waves in the presence of a discontinuity, consider Figure 16.24a.

The waves are found as for the mismatched load in Section 16.4, but now we have three locations to deal with: load,

generator, and discontinuity. If there is more than one discontinuity, each discontinuity must be treated separately.

To understand how the waves behave, we will follow the propagation of waves in Figure 16.24a and draw the reflection

diagram as we go along. For simplicity, we assume that the generator is matched (Zg ¼ Z0). Therefore, the forward-

propagating wave launched by the generator at time t ¼ 0 is

t=0 t=10 μs t=20 μs t=30 μs t=40 μs t=50 μs t=60 μs

1

2

3

4
5

6

7

8

load t

Figure 16.23 Superposition of the responses of the eight pulses that make up the triangular signal
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Figure 16.24 Discontinues on transmission lines. (a) Due to connection of two lines. (b) Due to connection of loads on the

lines. (c) Due to a distribution point
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Vþ
0 ¼ VgZ0

Z0 þ Z0

¼ Vg

2
V½ � ð16:36Þ

This wave propagates on line 1 at a speed of propagation vp1. After a time Δt1 ¼ d1/vp1, the wave reaches the

discontinuity. Part of the wave is reflected and part of it is transmitted with the reflection and transmission coefficients

Γ12 and T12, respectively:

Γ12 ¼ Z1 � Z0

Z1 þ Z0

, T12 ¼ 2Z1

Z1 þ Z0

ð16:37Þ

The reflection coefficient Γ12 is the reflection coefficient at the interface between line 1 and line 2, and the transmission

coefficient indicates the transmission from line 1 to line 2. These two coefficients are shown in Figure 16.25, where the

arrows indicate the direction of the waves being reflected and transmitted. The reflected and transmitted voltage waves at d1
are

V�
1 ¼Vþ

0 Γ12, Vþ
1 ¼ Vþ

0 T12 V½ � ð16:38Þ

The reflected wave V1
� propagates back to the generator and reaches the generator after a time Δt1. Since the reflection

coefficient at the generator is zero, no additional reflections occur at this point. The wave transmitted across the discontinu-

ity, V1
+, propagates toward the load at a speed of propagation vp2 and reaches the load after an additional time Δt2 ¼ d2/vp2.

At the load, the wave is partly reflected and partly transmitted into the load (where it is dissipated or, in the case of an

antenna, radiated). The reflection and transmission coefficients at the load are

ΓL ¼ ZL � Z1

ZL þ Z1

, TL ¼ 2ZL

ZL þ Z1

ð16:39Þ

Thus, the reflected and transmitted waves are

V�
2 ¼Vþ

2 ΓL ¼ Vþ
0 T12ΓL, Vþ

L1 ¼ Vþ
0 T12TL V½ � ð16:40Þ

V2
� propagates back toward the discontinuity, which it reaches after an additional timeΔt2. At the discontinuity, there will

be a reflected and transmitted wave, but since the wave reaches the discontinuity from line 2, the reflection and transmission

coefficients are different. These are denoted Γ21 and T21:

Γ21 ¼ Z0 � Z1

Z1 þ Z0

, T21 ¼ 2Z0

Z1 þ Z0

ð16:41Þ

The reflected wave (into line 2) and the transmitted wave (from line 2 into line 1) are

Vþ
3 ¼V�

2 Γ21 ¼ Vþ
0 T12ΓLΓ21, V�

3 ¼ Vþ
0 T12ΓLT21 V½ � ð16:42Þ

Now, these two waves propagate in opposite directions. V3
+ propagates toward the load whereas V3

– propagates toward the

generator. The sequence repeats itself indefinitely. A few reflections are shown in Figure 16.25, together with the definitions

of reflection and transmission coefficients at the various locations.

All other aspects of propagation remain as discussed in Section 16.4. Note, in particular, the times at which the waves

reach various locations on the line. The main difficulty in treating discontinuities is in keeping track of the increasing number

of reflections and transmissions and the associated times. We note also that the reflection and transmission coefficients at the

discontinuity depend on the direction of propagation. The following relations hold:

Γ21 ¼ �Γ12, T21 ¼ 1� Γ12 ð16:43Þ

and these can be obtained from Eqs. (16.37) and (16.41). Once the diagrams are defined, the waves at any location on the line

may be found as previously, by finding the intersection of the time line and position line (t0 and z0 in Figure 16.25) and

summing all terms up to that time along the time line. These aspects of calculation are demonstrated in Example 16.6.

Clearly, an essentially identical process applies to the current diagram.
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Example 16.6 Application: Line Patching A segment of a lossless transmission line of finite length d ¼ 100 m and

characteristic impedance Z2 ¼ 75 Ω is connected between two infinite lossless lines, each with characteristic

impedance Z1 ¼ Z3 ¼ 50 Ω as a temporary fix until the proper line can be obtained, as shown in Figure 16.26. A

step voltage V0 arrives at the connection between lines 1 and 2 at t ¼ 0 from the left. The speed of propagation on the

lines is vp ¼ 108 m/s. With the properties given in the figure, calculate the voltage on each line at t ¼ 5.8 μs. In lines 1
and 3, calculate the voltage at the discontinuity. In line 2, calculate it midway.

Solution: In the two infinite lines, there can be no reflections except at the two connections shown. At the discontinuities

there are two reflection coefficients and two transmission coefficients as shown in Figures 16.26 and 16.27. The latter figure

also shows the first few reflected and transmitted waves at both discontinuities. These are the only waves possible. To find

the wave on each line at a given time, the time and position lines are drawn, shown as dashed lines in Figure 16.27, and the

terms up to the given time and position are summed up.

(1) (2) (3)

d=100 m
Z3=50 ΩZ1=50 Ω Z2=75 Ω

Γ12 Γ21

T21

T12 T23

T32

Γ23 Γ32

Figure 16.26 A finite

transmission line segment

connected between two

infinite lines. The various

reflection and transmission

coefficients are shown

t=0

z=0

Γ12 Γ21

Τ12 Τ21

ΓL

ΤL

Γg=0
Τg=1

V0=Vg/2
V1

+=VgΤ12/2
VgΤ12ΤL/2V1

−=VgΓ12/2
VgΓ12/2

V2
−=VgΤ12ΓL/2

V3
−=VgΤ12Τ21ΓL/2

VgΤ12Τ21ΓL/2
V3

+=VgΓ21Τ12ΓL/2 VgΓ21Τ12ΓLΤL/2

V4
−=VgΓ21Τ12ΓL

2 /2

V5
−=VgΓ21Τ21Τ12ΓL

2 /2VgΓ21Τ21Τ12ΓL
2/2

V5
+=VgΓ21

2 Τ12ΓL
2/2 VgΓ21

2 Τ12ΤLΓL
2/2

V6
−=VgΓ21

2 Τ12ΓL
3 /2

t=t0

z=z0 z=d1
z=d1+d2

Δt1+Δt2

Δt1+3Δt2

Δt1+5Δt2

2Δt1

2(Δt1+Δt2)

2Δt1+4Δt2

Δt1

Δt1+2Δt2

Δt1+4Δt2

+

Figure 16.25 Voltage reflection diagram for the line in Figure 16.24a, with Zg ¼ Z0
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On line 1 (immediately to the left of the connection (z ¼ 0�)):

Vt¼5:8s¼V0 1þ Γ12 þ T12T21Γ23 1þ Γ23Γ21ð Þ½ � V½ �

On line 2 (at the center of the line (z ¼ 50 m)):

Vt¼5:8s¼V0T12 1þ Γ23 þ Γ23Γ21 þ Γ2
23Γ21 þ Γ2

23Γ
2
21 þ Γ3

23Γ
2
21

� �
V½ �

On line 3 (immediately to the right of the connection (z ¼ 100 m+)):

Vt¼5:8s¼V0 T23T12 1þ Γ23Γ21 þ Γ2
23Γ

2
21

�� �
V½ �

The various reflection and transmission coefficients needed are

Γ12 ¼ Z2 � Z1

Z2 þ Z1

¼ 75� 50

75þ 50
¼ 0:2, T12 ¼ 2Z2

Z2 þ Z1

¼ 150

125
¼ 1:2,

Γ21 ¼ �Γ12 ¼ �0:2, T21 ¼ 2Z1

Z2 þ Z1

¼ 100

125
¼ 0:8,

Γ23 ¼ Z3 � Z2

Z3 þ Z2

¼ 50� 75

50þ 75
¼ �0:2, T23 ¼ 2Z3

Z3 þ Z2

¼ 100

125
¼ 0:8,

The voltages are as follows:

In line 1, immediately to the left of the discontinuity:

Vt¼5:8s ¼ V0 1þ 0:2� 1:2� 0:8� 0:2� 1þ 0:04ð Þ½ � ¼ 1:00032V0 V½ �

In line 2, at the center of the line:

Vt¼5:8s ¼ V0 � 1:2� 1� 0:2þ 0:2� 0:2� 0:04� 0:2þ 0:04� 0:04� 0:008� 0:04½ � ¼ 0:999936V0 V½ �

In line 3, immediately to the right of the discontinuity:

Vt¼5:8s ¼ V0 � 0:8� 1:2� 1þ 0:2� 0:2þ 0:04� 0:04½ � ¼ 0:999936V0 V½ �

t=0

z=0 z=100 m

Γ12 Γ21 Γ23 Γ32

Τ12 Τ21 Τ23 Τ32

V0Τ12

V0

V0Γ12 V0Τ12Τ23

V0Τ12Γ23

V0Τ12Γ23Γ21 V0Τ12Τ23Γ23Γ21

V0Τ12Γ23
2 Γ21

V0Τ12Γ23Τ21

V0Τ12Γ23
2 Γ21Τ21

V0Τ12Γ23
3 Γ21

2 Τ21

V0Τ12Γ23
2 Γ21

2

V0Τ12Γ23
3 Γ21 1

2

V0Τ12Γ23
3 Γ21

3

V0Τ12Γ23
4 Γ21

3

V0Τ12Τ23Γ23
2 Γ21

2

V0Τ12Τ23Γ23
3 Γ21

3

2 μs

4 μs

6 μs

8 μs

7 μs

5 μs

3 μs

1 μs

t=5.8 μs

z=50 m

Figure 16.27 Voltage

reflection diagram for the

line in Figure 16.26
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Exercise 16.3

(a) Calculate the steady-state voltage on the three lines in Example 16.6 using the general coefficients.

(b) With the constants found in Example 16.6, show that the steady-state voltages are equal to V0.

Answer

(a)

V1¼ V0 1þ Γ12 þ Γ23T12T21

1� Γ23Γ21

2
4

3
5, V2 ¼ V0T12

1þ Γ23

1� Γ23Γ21

, V3 ¼ V0

T23T12

1� Γ23Γ21

V½ �:

16.7 Transients on Lines with Reactive Loading

The transient representation in the previous section was based on the concept of reflection and the reflection coefficient. The

reflection coefficient is only properly defined if the reflected wave is directly proportional to the forward-propagating wave.

In other words, to calculate the reflection coefficient, we assumed that V– ¼ ΓV+. If, however, the reflected wave depends on

the forward wave’s amplitude in a nonlinear fashion, then the reflection coefficient is not a constant and the method of the

previous sections cannot be used. As an example, suppose that a line is terminated with a nonlinear resistor, whose resistance

depends on the line voltage as

ZL ¼ R0 1þ kV2
� �

Ω½ � ð16:44Þ

where V is the total voltage on the load. Assuming the characteristic impedance of the line is Z0 ¼ R0, the reflection

coefficient is

ΓL ¼
R0 1þ kV2

� �� R0

R0 1þ kV2
� �þ R0

¼ kV2

kV2 þ 2
ð16:45Þ

This reflection coefficient cannot be used in the relations in Sections 16.2 through 16.6 because it is not a constant. Thus,

we must resort to other means when trying to find the transients on the line. Note that if we had a method of evaluating the

voltage in Eq. (16.45), then ΓL could be evaluated and the methods of the previous section would apply. Thus, the basic

method is to calculate the forward-propagating wave and, from this, to calculate the reflected wave without resorting to the

use of the reflection coefficient. To see how this is done, we consider two situations: the first deals with capacitive loading

and the second with inductive loading.

16.7.1 Capacitive Loading

Consider a transmission line with characteristic impedance Z0 ¼ R0 connected to a generator with internal impedance

Zg ¼ Rg and a capacitor as a load as shown in Figure 16.28.

t=0

d

C
VL

IL

Vg

Zg

Z0=R0

Figure 16.28 A capacitively

loaded transmission line
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The calculation starts by calculating the forward-propagating wave, as in Eq. (16.20). The initial voltage and current on

the line (immediately after closing the switch) are

Vþ ¼ Vg
R0

R0 þ Rg
, Iþ ¼ Vg

R0 þ Rg
V½ � ð16:46Þ

These waves propagate toward the load at a speed vp defined by the line parameters. At the load, however, the reflected

voltage and current must be calculated from the differential equation relating current and voltage for a capacitor, because a

reflection coefficient based on impedances cannot be used:

iL tð Þ ¼ C
d

dt
vL tð Þð Þ A½ � ð16:47Þ

where vL(t) is the total voltage at the load. Note also that this voltage is time dependent, whereas V+ is a constant voltage, and

that iL(t) only exists after a time t � Δt. We can also write at the load the general relations

vL tð Þ ¼ Vþ þ V� tð Þ V½ �, iL tð Þ ¼ Vþ � V� tð Þ
R0

A½ � ð16:48Þ

Solving for iL(t),

iL tð Þ ¼ 2Vþ � vL tð Þ
R0

A½ � ð16:49Þ

Substituting this in Eq. (16.47) and rearranging terms gives

C
d

dt
vL tð Þð Þ þ 1

R0

vL tð Þ � 2Vþ

R0

¼ 0 ð16:50Þ

Since V+ is known from Eq. (16.46), we can solve this differential equation for any time t � Δt. The solution gives the

voltage at the load:

vL tð Þ ¼ 2Vþ 1� e� t�Δtð Þ=R0C
	 


¼ 2VgR0

R0 þ Rg
1� e� t�Δtð Þ=R0C

	 

V½ �, t � Δt ð16:51Þ

The current in the load is

iL tð Þ ¼ 2Vþ � vL tð Þ
R0

¼ 2Vþe� t�Δtð Þ=R0C

R0

¼ 2VgR0e
� t�Δtð Þ=R0C

R0 R0 þ Rg

� � A½ �, t � Δt ð16:52Þ

Now, the reflected voltage and current waves can be calculated from Eq. (16.48):

V�
1 tð Þ ¼ Vþ 1� 2e� t�Δtð Þ=R0C

	 

¼ VgR0

R0 þ Rg
1� 2e� t�Δtð Þ=R0C

	 

V½ � ð16:53Þ

I�1 tð Þ ¼ �V� tð Þ
R0

¼ �Vþ

R0

1� 2e� t�Δtð Þ=R0C
	 


¼ � VgR0

R0 R0 þ Rg

� � 1� 2e� t�Δtð Þ=R0C
	 


A½ � ð16:54Þ

The total voltage and current on the line are given by the sum of the forward- and backward-propagating waves. The

forward, reflected, and total voltages on the line are shown in Figure 16.29a. The load voltage and current are shown in

Figure 16.29b.
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The backward-propagating waves in Eqs. (16.53) and (16.54) propagate toward the generator. If the generator is matched

to the line (i.e., Rg ¼ R0), there will be no reflection at the generator and the solutions in Eqs. (16.51) and (16.52) apply. If,

on the other hand, the generator is not matched, there will be a reflection at the generator as well, but because the generator

impedance is resistive, the reflection coefficient Γg can be used as in the previous cases. A new forward-propagating wave is

obtained which again travels toward the load, and the above steps are repeated. Any number of reflections may be considered

in this way, and a steady state is achieved only after a large (infinite) number of reflections have occurred.

16.7.2 Inductive Loading

If an inductor replaces the capacitor in Figure 16.28, the treatment is similar except that now the basic equation to deal with is

vL tð Þ ¼ L
d

dt
iL tð Þð Þ V½ � ð16:55Þ

All other aspects, including the relations at the load [Eqs. (16.48) and (16.49)] and the forward-propagating wave, are the

same as for the capacitive load.

The differential equation to solve at the load is now

L
d

dt
iL tð Þð Þ þ R0iL tð Þ � 2Vþ ¼ 0 ð16:56Þ

This gives the current at the load as

iL tð Þ ¼ 2Vþ

R0

1� e� t�Δtð ÞR0=L
	 


¼ 2VgR0

R0 R0 þ Rg

� � 1� e� t�Δtð ÞR0=L
	 


A½ �, t � Δt ð16:57Þ

and the voltage as

vL tð Þ ¼ 2Vþe� t�Δtð ÞR0=L ¼ 2VgR0

R0 þ Rg
e� t�Δtð ÞR0=L V½ �, t � Δt ð16:58Þ

Vg

R0+Rg

R0+Rg

R0+Rg

2
R0+Rg

t<Δt

d

a

b

−
R0+Rg

V(t)

Δt<t<2Δt

Δt<t<2Δt

d

d

V (t)

V+

z ' R0+Rg

t

t

2Vg

(Rg+R0)

L(t)

L(t)

Δt

Δt

1−e−(t−Δt)/R0C

e−(t−Δt)/R0C

1z '

1z '

−

v

i

R0

VgR0

VgR0

VgR0

VgR0

2VgR0

Figure 16.29 (a) Forward, reflected, and total voltage on the line in Figure 16.28. (b) Load voltage and current for the line

in Figure 16.28
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The reflected voltage and current are

V�
1 tð Þ ¼ vL tð Þ � Vþ ¼ Vþ 2e� t�Δtð ÞR0=L � 1

	 

¼ VgR0

R0 þ Rg
2e� t�Δtð ÞR0=L � 1

	 

V½ � ð16:59Þ

I�1 tð Þ ¼ � vL tð Þ � Vþ

R0

¼ � VgR0

R0 R0 þ Rg

� � 2e� t�Δtð ÞR0=L � 1
	 


A½ � ð16:60Þ

Figure 16.30a shows these relations and their variation on the line and with time, and Figure 16.30b shows the voltage

and current at the load. As was the case with the capacitive loading in the previous section, if the generator is matched, the

results here describe the behavior of the line at all times. If the generator is not matched, the above behavior only applies up

to a time t ¼ 2Δt. At this time, the backward-propagating wave reaches the generator and is reflected, generating a new

forward-propagating wave.

Example 16.7 A transmission line with matched generator is 120 m long and terminated by a capacitor as shown in

Figure 16.31. The characteristic impedance of the line is Z0 ¼ 50 Ω, the load capacitance is C ¼ 100 pF, and the

speed of propagation on the line is c [m/s]. Calculate the voltage at the load for all times.

2
R0+Rg

2Vg

(Rg+R0)

R0+Rg

R0+Rg

R0+Rg

2
R0+Rg

t<Δt

d

V(t)

Δt<t<2Δt

Δt<t<2Δt

d

d

V+

z'

z1'

z1'

t

tΔt

Δt

L(t)i

L(t)v

V (t)−

VgR0

V

a

b

gR0

VgR0

VgR0

VgR0

Figure 16.30 (a) Forward, reflected, and total voltage on the line in Figure 16.28 after the capacitance was replaced with

an inductance L. (b) Load voltage and current on the line for the conditions in (a)

t=0

C

Zg

V0

100 V

50 Ω

d=120 m

100 pFZ0=R0=50 Ω

Figure 16.31 A capacitively

loaded transmission line with

matched generator
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Solution: Because the generator is matched (Zg ¼ Z0), the amplitude of the forward-propagating wave is V0/2. There will
be one reflection at the load, and after the backward-propagating wave reaches the generator, there will be no more

reflections. Beyond that, the capacitor continues to charge until it reaches steady state. At steady state, the capacitor’s

voltage equals V0.

At t ¼ 0, the switch is closed and the forward-propagating wave is generated. This travels toward the load at the speed of

propagation vp ¼ 3 � 108 m/s. The forward-propagating wave reaches the load at time Δt ¼ d/vp ¼ 0.4 μs. During this

time, the voltage at the load is zero. The voltage on the line varies from point to point, depending on time, as shown in

Figure 16.32a. At time t ¼ Δt ¼ 0.4 μs, the backward-propagating wave is generated. The backward-propagating wave is

V� tð Þ ¼ Vþ 1� 2e� t�Δtð Þ=R0C
	 


¼ 50 1� 2e� t�4�10�7ð Þ=5�10�9
	 


V½ �, t � Δt

The voltage on the line and load is the sum of the forward- and backward-propagating waves:

v tð Þ ¼ VþþVþ 1� 2e� t�Δtð Þ=R0C
	 


¼ 100 1� e� t�4�10�7ð Þ=5�10�9
	 


V½ �, t � Δt

This is shown in Figure 16.32b for two times, t1 and t2, before the backward-propagating wave reaches the generator. The
direction of propagation of the waveform is also shown. The capacitor’s voltage increases with time until, after considerable

time (relative to the time constant) has expired, the capacitor is at a voltage equal to Vg.

After time t ¼ 2Δt ¼ 0.8 μs, the backward-propagating wave has reached the generator, and since there is no reflection at
the generator, the line voltage continues its climb toward steady state as shown in Figure 16.33a. The voltage at the load as it

varies with time is shown in Figure 16.33b. The load voltage is zero between 0 ¼ t < 0.4 μs. After that it is the sum of the

incident and reflected waves and shows steady charging from vL ¼ 0 toward vL ¼ Vg.

Exercise 16.4 The line in Figure 16.31 is given. Find the load current for all times.

Answer

iL tð Þ ¼ 0, 0 � t � 0:4 μs,

iL tð Þ ¼ 2e� t�4�10�7ð Þ=5�10�9

A½ �, t � 0:4 μs:

d

V(z)

z

50V

a b

z

50V

V(t) Δt<t<2Δt

d

100V

t2>t1

VC t=t2

VC at t=t1
z1 z2 z1z2

t1t2t2t1

0< t<Δt

t=Δt at

Figure 16.32 (a)

Propagation of the voltage

wave in Figure 16.31 for

t < Δt. (b) The reflected
and forward waves for

Δt < t < 2Δt

t2

z

50V

d

100V

50V

100V

a b

t

V(t) V(t)

t=0 t=0.4 μs

t=2Δ t

Figure 16.33 (a) The total

wave at t ¼ 2Δt (in
Figure 16.31). (b) Load

voltage as a function of time
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Exercise 16.5 The line in Figure 16.31 is given, but the load is an inductor L ¼ 100 μH. Find the load voltage and

current for all times.

Answer

vL tð Þ ¼ 0, 0 � t � 0:4Δs, vL
�
t
� ¼ 100e� t�4�10�7ð Þ5�105 V½ �, t � 0:4Δs

iL tð Þ ¼ 0, 0 � t � 0:4Δs, iL
�
t
� ¼ 2

�
1� e� t�4�10�7ð Þ5�105

�
A½ �, t � 0:4Δs:

16.8 Initial Conditions on Transmission Lines

There is one additional condition that may exist on a line that we have not considered yet. Until now, we assumed that the

line was completely neutral before the transient on the line was introduced. This means, for example, that no current or

voltage was present anywhere on the line. In the case of the capacitive or inductive loading, this meant that the solution

started with the capacitor or inductor discharged. There are, however, a number of situations in which the conditions are

different. For example, a transmission line may operate in its steady-state mode when at some time t ¼ t0, a disturbance

occurs. A short on a power line is of this type. Another example may be a line, operating at a given steady-state condition, on

which the load is changed suddenly. A line which is at some initial voltage and current at the time the disturbance occurs is

called an initially charged line. Treatment of transients on this type of line is performed by superposition of the steady-state

line conditions and the conditions due to the transient.

Consider an open line on which the voltage is constant and equals V0, as shown in Figure 16.34a. Now, a load is

connected across the terminals at some time t ¼ 0. The initial conditions on the initially charged line (Figure 16.34b) are

V¼V0 V½ �, I ¼ 0 A½ � ð16:61Þ

When the load resistance is connected at time t ¼ 0, the reflection coefficient changes at the load. Initially, the reflection

coefficient was 1, but now it changes to a smaller value ΓL ¼ (RL � R0)/RL + R0) and may be positive or negative.

Regardless of the magnitude of the reflection coefficient, a backward-propagating wave is generated, which we denote as

V1
�, indicating that this is the first reflection. The total voltage across the load is the sum of the previously existing condition

and the reflected voltage:

Vt ¼ V0 þ V�
1 V½ � ð16:62Þ

The initial current in the line was zero. Now, however, there must be a current I1
� reflected from the load. Similarly, from

the fact that the current in the line must be continuous, we can write

I�1 ¼ �IL A½ � ð16:63Þ

From the equivalent circuit in Figure 16.34b, we have

IL ¼ Vt

RL
¼ V0 þ V�

1

RL
¼ �I�1 A½ � ð16:64Þ

On the other hand, on the line itself, we must have

I�1 ¼ V�
1

Z0

A½ � ð16:65Þ

Thus, we can write

V0 þ V�
1 ¼ �I�1 RL ¼ �V�

1 RL

Z0

V½ � ð16:66Þ
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From this, we obtain the reflected voltage wave as

V�
1 ¼ �V0

Z0

Z0 þ RL
V½ � ð16:67Þ

and from Eq. (16.20), the reflected current wave is

I�1 ¼ � V0

Z0 þ RL
A½ � ð16:68Þ

Now, we can replace the problem by the equivalent circuit at the load as given in Figure 16.34c. This equivalent source

produces the initial condition for the transient. In other words, this equivalent circuit only exists for the purpose of generating

the backward-propagating wave which, in this case, may be viewed as a generator output. Now, we may use the reflection

diagram as for any other transient, except that the generator now is at the load (the load generates the input signal that causes

the transient). To this, we must add the initial conditions on the line. These points are further clarified in Example 16.8.

Example 16.8 A high-voltage DC (HVDC) line operates at steady state. The voltage on the line is 106 V, and the

current is zero (no load). The characteristic line impedance is 200 Ω and the generator impedance is 300 Ω. The line
length (distance between generator and load) is 1,000 km. Assume a lossless line and the speed of propagation is

2.5 � 108 m/s. A 30 Ω load is connected on the line at t ¼ 0:

(a) Calculate the voltage and current at the load at t ¼ 10 ms.

(b) Calculate the new steady-state voltage and current on the line.

Solution: Because the load is connected when the line is at the steady-state voltage, the reflection caused by the connection

of the load becomes the generator for the transient. This transient is then superimposed on the initial line voltage (or current).

The line after connecting the load is shown in Figure 16.35a and the equivalent circuit for the transient shown in

Figure 16.35b:

(a) First, we calculate the transient voltage and current using the circuit in Figure 16.35b. The reflection coefficients at the

load and generator are

ΓL ¼ RL � Z0

Z0 þ RL
¼ 30� 20

30þ 20
¼ 0:2, Γg ¼ Rg � Z0

Z0 þ Rg
¼ 30� 20

30þ 20
¼ 0:2

The reflected voltage and current due to connection of the load are given in Eqs. (16.67) and (16.68):

V�
1 ¼ �V0

Z0

Z0 þ RL
¼ �106 � 200

500
¼ �0:4� 106 V½ �,

I�1 ¼ � V0

Z0 þ RL
¼ � 106

500
¼ �2, 000 A½ �

z=0

Rg

Vg V0

RL

V

a b c

0 RLVt=V0+V−

I − IL

V1
−

I1
−

Figure 16.34 (a) Open line in steady state. (b) A load connected across the line in (a). (c) Equivalent circuit at the load

representing the conditions in (a) and (b)
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The time it takes the current or voltage wave to propagate the length of the line is

Δt¼ L

vp
¼ 106

2:5� 108
¼ 0:004 s½ �

These now form the basis of two bounce diagrams shown in Figures 16.36a and 16.36b. Note that the reflection

coefficients for the voltage diagram are both positive, whereas for current, we use the negatives of the reflection

coefficients as indicated in Eq. (16.3) and, more directly, in Eq. (16.6). The propagation starts from the load.

At 10 ms, the waves have bounced once from the generator and once from the load. The transient voltage at the load is

VL 10msð Þ ¼ V1 þ V1Γg þ V1ΓgΓL ¼ �0:4� 106 1þ 0:2þ 0:04ð Þ ¼ �0:496� 106
�
V
�

To this is added the initial condition on the line of 106 V to give the actual load voltage as 106 � 0.496 � 106 ¼ 0.504

� 106 V. In other words, the load voltage has dropped to almost half its initial value. The current in the line is

Iline 10 msð Þ ¼ I1 � I1Γg þ I1ΓgΓL ¼ �2, 000 1� 0:2þ 0:04ð Þ ¼ �1, 680
�
A
�

Since the initial current on the line is zero, the total line current at the load also equals �1680 A. The current in the load

is in the opposite direction to the line current, as can be seen in Figure 16.34. Thus, the load current is 1680 A.

(b) In the steady state, we can use Eqs. (16.31) and (16.32). The steady-state voltage and currents on the line due to the

transient only are

V1¼ Vþ 1þ ΓL

1� ΓLΓg
! V1 ¼ V�

1

1þ Γg

1� ΓLΓg
¼ �0:4� 106

1þ 0:2

1� 0:04
¼ �0:5� 106 V½ �

I1 ¼ Iþ
1� ΓL

1� ΓLΓg
! I1 ¼ I�1

1� Γg

1� ΓLΓg
¼ �2, 000

1� 0:2

1� 0:04
¼ �1, 666:67 A½ �

As previously, we must add to these the initial values at the load. With these and recalling that the current in the load is

opposite the current in the line, we get the steady-state voltage and current of the load as

VL ¼ 0:5� 106 V½ �, IL ¼ 1, 666:67 A½ �:

V1
−= V0Z0

Z0+ZL

I1
−=− V0

Z0+ZL

Vg=V0
V1

−
Vg

ΓL

20 Ω 20 Ω

30 Ω

30 

a b

Ω
V=106 V

vp=2.5 108 m/s

ZL

−

×

Figure 16.35 (a) A load connected across a high-voltage line at steady state. (b) The equivalent circuit used to find the

transient
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16.9 Experiments

Experiment 1 (Time Domain Reflectometry. Demonstrates: Reflection and Reflected Waves) Time domain reflectom-

etry can be demonstrated quite easily with an oscilloscope and a signal generator. The best method is to use a step signal

generator, but single, narrow pulses or low-duty-cycle pulses may also be used. If a line is available, it can be used. If not, a

cable on a spool can be used or you may use the simulated line in Figure 16.38. The reflection from the open circuit at the

other end of the cable should be recorded on the screen as a pulse following the application of the narrow pulse. Multiple

reflections are easily obtained, especially with shorted and open lines. The experiment is shown in Figure 16.37.

Time domain reflectometry can be used to detect breaks on lines as well as to detect legal and illegal connections to lines,

especially if these are not properly matched. In cable TV maintenance, it is routinely used to locate flaws and bad

connections and to detect illegal connections. Time domain reflectometry of transmission lines is an important diagnostics

tool because it can also analyze the conditions of the flaw in addition to its location on the line. The type of flaw or

discontinuity, impedance on the line, as well as reflection coefficients, standing wave ratios, and the like may be deduced

(see Problems 16.1 and 16.17 through 16.20).

Experiment 2 (Simulated Transmission Line. Demonstrates: Line Properties, Simulated Transmission Line) For

most lines, to be able to see the effects discussed in this chapter, the line must be long or the frequency must be high, neither of

which is convenient. It is possible to build an artificial or simulated transmission line from simple circuit elements. The series

resistance, series inductance, parallel capacitance, and parallel conductance are simulated by resistors, inductors, capacitors,

and parallel resistors, respectively. Each group of elements is considered a “cell” or “element” of the line and we may,

arbitrarily, associate it with a given length of line such as 1 m or 1 km. Because the components may be chosen individually,

any kind of line may be easily simulated. Figure 16.38 shows a simulated transmission line that may be used for a number of

experiments. The line parameters may be changed by simply changing the components in each cell, and different lines may be

connected to simulate discontinuities. Lossless lines are simulated by using low-resistance inductors and low-loss capacitors.

line

Rg

mismatched
load

oscilloscope

generator

Figure 16.37 Demonstration

of time domain reflectometry

3300 pF 3300 pF 3300 pF

86 μH 86 μH 86 μH

Figure 16.38 A simulated transmission line

Γg=0.2 ΓL=0.2

z=L

V1
−

V1
−Γg

V1
−ΓgΓL

V1
−Γg

2ΓL

Γg=0.2 ΓL=0.2

z=L

I1
−

−I1
−Γg

I1
−ΓgΓL

−I1
−Γg

2ΓL

I1
−Γg

2 ΓL
2

z=0 z=0

V1
−Γg

2 ΓL
2

4 ms 4 ms

8 ms8 ms

a b

12 ms12 ms

16 ms

20 ms20 ms

t=0 t=0

16 ms

10 ms 10 ms

Figure 16.36 (a) Voltage reflection diagram for the transient due to Figure 16.35b. (b) Current reflection diagram for the

transient due to Figure 16.35b
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16.10 Summary

Following the frequency domain analysis inChapters 14 and 15, this chapter discusses transient analysis and propagation of

pulses on transmission lines. Again, the dominant issues are the reflection and transmission coefficients at discontinuities on

transmission lines but the analysis is in the time domain.

Narrow Pulses Narrow pulses propagate, attenuate as they propagate, reflect, and transmit at all discontinuities.

The forward-propagating waves generated by the generator (such as when closing a switch):

Vþ ¼ Vg
Z0

Z0 þ Zg
V½ � Iþ ¼ Vg

Z0 þ Zg
A½ � ð16:2Þ

When the pulse reaches the load (Figure 16.3), the first reflection is

ΓL ¼ ZL � Z0

ZL þ Z0

16:3ð Þ V�
1 ¼ VþΓL V½ � 16:5ð Þ I�1 ¼ �VþΓL

Z0

A½ � 16:6ð Þ

The total voltage and current at load during the length of the pulse after first reflection:

VL1 ¼ Vþ 1þ ΓLð Þ V½ � 16:7ð Þ IL1 ¼ Vþ

Z0

1� ΓLð Þ A½ � 16:8ð Þ

Back at the generator, the first reflection of the backward-propagating wave:

Γg ¼ Zg � Z0

Zg þ Z0

16:9ð Þ Vþ
1 ¼ ΓLΓgV

þ V½ �, Iþ1 ¼ VþΓLΓg

Z0

A½ � 16:10ð Þ

Notes:

(1) Reflections repeat indefinitely unless the load and/or generator are matched.

(2) The process stops at a matched location (no reflection).

(3) Total voltage or current at a given location during the width of the pulses is the sum of the voltages (currents) at that

point (load and generator in particular).

(4) Attenuation (if any) is cumulative—it only depends on the total distance traveled by the pulse.

Step Pulses The step pulse propagates, reflects, and transmits at any discontinuity on the line.

Reflection Diagram A space–time diagram showing the propagation of the wave in space and time:

(1) Time is horizontal, space is vertical (see Figures 16.13 and 16.14).

(2) Voltages and currents reflected from all discontinuities are traced through time and space.

(3) The voltage (or current) at any point on the line is the sum of all voltages (or currents) at that location up to that time.

Steady-State Voltages and Currents on Lossless Lines

V1 ¼ Vþ 1þ ΓL

1� ΓLΓg
¼ Vg

ZL

Zg þ ZL
V½ � ð16:30; 16:33Þ

I1 ¼ Iþ
1� ΓL

1� ΓLΓg
¼ Vg

Zg þ ZL
A½ � ð16:31; 16:34Þ
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Finite-length pulses

(1) Finite-length pulses are viewed as superposition of positive and negative step pulses (Figure 16.19).

(2) Treat the positive going step pulse and the negative going step pulse separately using the reflection diagram and add the

results together (see Example 16.5).

(3) Can also generate shaped pulses by superposition of pulses of various amplitudes and widths (Example 16.5).

Reactive Loads The reflection coefficient is not properly defined—it depends on amplitude.

Calculate the reflected voltage by solving a differential equation at the reflecting point (for example, at the load) as follows.

For Capacitive Loading

iL tð Þ ¼ C
d

dt
vL tð Þð Þ A½ � ð16:47Þ

Given a transmission line with characteristic impedance R0, internal generator impedance Rg, and a capacitor C as load,

the reflected voltages and currents at the load are [see Eq. (16.46) for calculation of V+]

V�
1 tð Þ ¼ Vþ 1� 2e� t�Δtð Þ=R0C

	 

¼ VgR0

R0 þ Rg
1� 2e� t�Δtð Þ=R0C

	 

V½ � ð16:53Þ

I�1 tð Þ ¼ �V� tð Þ
R0

1� 2e� t�Δtð Þ=R0C
	 


¼ � VgR0

R0 R0 þ Rg

� � 1� 2e� t�Δtð Þ=R0C
	 


A½ � ð16:54Þ

For Inductive Loading

vL tð Þ ¼ L
d

dt
iL tð Þð Þ V½ � ð16:55Þ

Given a forward-propagating voltage V+, the reflected voltage and current at the load are

V�
1 tð Þ ¼ Vþ 2e� t�Δtð ÞR0=L � 1

	 

¼ VgR0

R0 þ Rg
2e� t�Δtð ÞR0=L � 1

	 

V½ � ð16:59Þ

I�1 tð Þ ¼ � VgR0

R0 R0 þ Rg

� � 2e� t�Δtð ÞR0=L � 1
	 


A½ � ð16:60Þ

These then propagate on the line and may reflect again off the generator (unless it is matched).

Initial Conditions on Lines A line at steady state is characterized by a constant voltage V0 and current I0. Change in

loading then adds reflected voltages and currents which take the line to a new steady state after these generated voltages and

currents settle. The reflected voltage and current due to connection of a load, RL, to an open line with characteristic

impedance Z0 are

V�
1 ¼ �V0

Z0

Z0 þ RL
V½ � 16:67ð Þ I�1 ¼ � V0

Z0 þ RL
A½ � 16:68ð Þ

These now propagate on the line exactly as any step voltage and current and add to the existing conditions on the line.

Any discontinuity will create additional reflections until a new steady state is achieved.

Time Domain Reflectometry In this method, often used for testing of line conditions, a pulse is sent on the line and the

reflected pulse is received after a time Δt. The distance to the discontinuity that caused the reflection is d ¼ vΔt/2 where v is
the speed of propagation on the line. By measuring time one can identify the location of discontinuity provided the speed of

propagation on the line is known.
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Problems

Propagation of Narrow Pulses on Finite, Lossless, and Lossy Transmission Lines

16.1 Narrow Pulses on Mismatched Line. A generator is matched to a line. A single, narrow pulse is applied to the line.

The load equals 2Z0 [Ω], where Z0 ¼ 50 Ω is the characteristic impedance of the line. If the pulse is 20 ns wide and the

delay on the line (time of propagation to load) is 100 ns, calculate the line voltage and current at the load for t > 0 for a

generator voltage of 1 V.

16.2 Narrow Pulses on Mismatched Line. A generator with an internal impedance 2Z0 [Ω] is connected to a line of

characteristic impedance Z0 ¼ 50 Ω. A single, narrow pulse is applied to the line. The load equals 2Z0 [Ω]. If the
pulse is 20 ns wide and the delay on the line is 100 ns, calculate the line voltage and current for t > 0 for a generator

voltage of 1 V.

16.3 Application: Transients in Digital Circuits. Two sensors are connected as inputs to an AND gate as shown in

Figure 16.39. The lines have characteristic impedance of 50 Ω. Input impedance to each input of the gate is 50 Ω.
The sensors supply an open circuit voltage of 10 V and the AND gate has a threshold of 3.25 V (i.e., if both inputs are

above this value, the output is 5 V; if one or both are below 3.25 V, the output is zero). One line is 10 m long, the second

is 100 m long, and the speed of propagation is 0.1c [m/s]. Each of the sensors sends a single pulse, 50 ns wide at t ¼ 0.

The sensors are matched to the line:

(a) Calculate the gate output for t > 0.

(b) What must be the minimum pulse width for the output to ever be “1”? What are your conclusions from this result?

10 m

100 m

sensor A

sensor B

Figure 16.39

16.4 Application: Reflectometry (Narrow Pulses). A lossless cable TV coaxial transmission line is matched to both

generator and load. As a routine test, a signal is applied to the input and sent down the line. The distance to the receiver

is known to be d ¼ 1 km. The speed of propagation on the line is vp ¼ c [m/s], and the characteristic impedance on the

line is Z0 ¼ 75 Ω:

(a) The signal in Figure 16.40a is obtained on the oscilloscope screen. IfΔt ¼ 0.1 μs, what happened to the line and at
what location?

(b) The signal in Figure 16.40b is obtained on the oscilloscope screen. If Δt ¼ 0.2 μs, what happened on the line and
at what location?

10 V

−1 V

10 V

2 V

V V

a b

Δ t=0.1 μs Δ t=0.2 μs
tt

Figure 16.40

16.5 Application: Reflections on Lossy Line. The cable in Problem 16.4 is given again. However, now the line is

considered distortionless, with an attenuation constant of 0.001 Np/m:

(a) The signal in Figure 16.40a is obtained on the oscilloscope screen. IfΔt ¼ 0.1 μs, what happened to the line and at
what location?

(b) The signal in Figure 16.40b is obtained on the oscilloscope screen. If Δt ¼ 0.2 μs, what happened on the line

and at what location?

(c) Compare the location of the fault on the line and magnitude of fault impedance with those for the lossless line in

Problem 16.4.
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Transients on Transmission Lines: Long Pulses

16.6 Transients on an Open Line. A lossless open transmission line is given as shown in Figure 16.41. The line is 10 m

long and has a capacitance of 200 pF/m and inductance of 0.5 μH/m. Calculate the transient voltage at a distance of 5 m

from the DC source:

(a) 0.5 μs after closing the switch.

(b) 50 μs after closing the switch.

10 V

10 m

Z0=50 Ω
Zg=100 Ω

Figure 16.41

16.7 Line Voltage on Long, Loaded Line. A line is very long and the speed of propagation on the line is 108 m/s. Assume

the ideal DC source has been switched on. The voltage wave reaches the load at time t0. Calculate the voltage at point
A � A0 (2 m from the load) for t > t0 and for times t < t0 (Figure 16.42).

V=10 V

A

A'
2 m

Z0=100 Ω ZL=50 Ω

∞

Figure 16.42

16.8 Transient and Steady-State Voltages on Lossless Line. A lossless transmission line of length d is given as in

Figure 16.43. The transmission line has a capacitance per unit length of C0 [F/m] and an inductance per unit length of

L0 [H/m]. The switch is closed at time t ¼ 0. Given: L0 ¼ 10 μH/m, C0 ¼ 1,000 pF/m, d ¼ 1,000 m, Rg ¼ 100 Ω,
RL ¼ 50 Ω, and V0 ¼ 100 V:

(a) Calculate the steady-state voltage on the line.

(b) Calculate the steady-state current in the line.

(c) How long does it take the voltage to reach steady state at the load?

(d) How long does it take the voltage to reach steady state at the generator?

d

RL

Rg

V0

switch

Figure 16.43

Transients on Transmission Lines: Finite-Length Pulses

16.9 Transient Due to a Single Square Pulse. The transmission line in Figure 16.44 is given. The generator supplies a

single pulse as shown. Calculate:

(a) The voltage and current at the generator 10 μs after the pulse began.
(b) The steady-state current and voltage on the line.
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240 m

50 Ω

125 Ω

75 Ω
ZL

vp=0.8 c5 μs

100 V

Figure 16.44

16.10 Transient Due to a Single Square Pulse on Lossy Line. The circuit in Figure 16.44 is given. In addition, the line has

an attenuation constant α ¼ 0.0001 Np/m. Assume the line is distortionless and calculate the voltage and current at

the generator 10.5 μs after the pulse began.

Reflections from Discontinuities

16.11 Reflections from Discontinuities. Three sections of lines are connected as shown in Figure 16.45. The propagation

time on each section is indicated:

(a) If the load RL is matched, but the generator’s impedance is 50 Ω, calculate the line voltage at g, L, and on both

sides of the discontinuities a and b, 45 ns after the switch is closed.

(b) Same as (a) but if both the source and load are matched.

line 1 line 2 line 1

12 V

A

A'

B

B'

RL

Zg

50 Ω

10 ns 10 ns10 ns

75 Ω 75 Ω

a bg L

Figure 16.45

16.12 Reflections from Discontinuities. Use the same figure and data as in Problem 16.11. The load now is a short circuit.

Given a matched source, calculate the voltage and current at g, L, and on both sides of the discontinuities a and b,

45 ns after the switch is closed.

Reactive Loading

16.13 Application: Capacitively Loaded Transmission Line. A long lossless transmission line with a characteristic

impedance of 50Ω is terminated with a 1 μF capacitor. The length of the line is 100 m and the speed of propagation on

the line is c/3 [m/s]. At t ¼ 0, a 100 V matched generator is switched on. Calculate and plot:

(a) The load voltage and current for t > 0.

(b) The line voltage and current at any point on the line for t > 0.

16.14 Application: Inductively Loaded Transmission Line. A long lossless transmission line with characteristic imped-

ance of 50 Ω is terminated with a 1 μH inductor. The line is 10 km long and the speed of propagation on the line is

c/3 [m/s]. At t ¼ 0, a 100 V matched generator is switched on:

(a) Calculate and plot the load voltage and current for t > 0.

(b) Calculate and plot the line voltage and current at any point on the line for t > 0.
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16.15 Application: Initially Charged Line. A 300 m long, lossless transmission line has characteristic impedance of 75 Ω
and speed of propagation of c/3 [m/s]. The transmission line is matched at the generator and is open ended. The

generator’s voltage is 100 V. After the line has reached steady state, the generator is disconnected and a resistor

R ¼ 125 Ω is connected across the open end. Calculate and plot the voltage on and the current in R.

16.16 Application: Initially Charged Line. A 100 m long lossless transmission line has characteristic impedance of 75 Ω
and speed of propagation of 0.2c [m/s]. The transmission line is matched at the generator and is open ended. The

generator’s voltage is 100 V. After the line has reached steady state, the generator is disconnected and a resistor

R ¼ 125 Ω is connected across the open end:

(a) Calculate the voltage and current in R.
(b) How long does it take for the voltage on R to be below 1 V?

Time Domain Reflectometry

16.17 Application: Time Domain Reflectometry. An underground cable used for transmission of power has developed a

fault. The speed of propagation on the line is known and equal to vp [m/s]. To locate the fault before starting to dig,

time domain reflectometry is performed. A 1 V step pulse is applied to the input with matched impedance and the

output in Figure 16.46a is obtained on the oscilloscope. The characteristic impedance of the cable is Z0 ¼ 50 Ω. Use
vp ¼ 0.2c [m/s] and calculate:

(a) The location of the fault.

(b) Type of fault: calculate the impedance on the line at the fault.

0 V

a b

c d

0.5 V

1 V

0.5 V

0 V

0.5 V
0.75 V

0.5 V
0.25 V

0 V

0 V

0 V
t=0t=0

t=0t=0 t=100 μs t=50 μs

t=50 μst=100 μs

Figure 16.46

16.18 Application: Time Domain Reflectometry. The measurement in Problem 16.17 is performed on a line and the

signal in Figure 16.46b is recorded on the time domain reflectometer. Using the data in Problem 16.17, calculate:

(a) The location of the fault.

(b) Type of fault: calculate the impedance on the line at the fault.

16.19 Application: Time Domain Reflectometry. The measurement in Problem 16.17 is performed on a line and the

signal in Figure 16.46c is recorded on the time domain reflectometer. Using the data in Problem 16.17, calculate:

(a) The location of the fault.

(b) Type of fault: find the impedance on the line at the fault.

16.20 Application: Time Domain Reflectometry. The measurement in Problem 16.17 is performed on a line and the

signal in Figure 16.46d is recorded on the time domain reflectometer. Using the data in Problem 16.17, calculate:

(a) The location of the fault.

(b) Type of fault: find the impedance on the line at the fault.
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