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1 Laboration 1
Under laboration 1 utfördes flera experiment för att bestämma vågegenskaperna hos en konstgjord transmis-
sionsledning. Ledningen består av 19 identiska segment (av modelltyp B, se figur 1) i serie, med totalt 20
mätpunkter (ändnoderna i figur 1).

Figur 1: Ett segment i den konstgjorda transmissionsledningen består av diskreta passiva komponenter.

1.1 Mätning av ledningens karakteristiska impedans. Z0

Den karakteristiska impedansen går inte att direkt mäta upp och därför krävs det att man använder en metod
som utnyttjar ledningens mätbara inimpedans Zin, i två olika lägen, för att bestämma den. När ledningens
ända är kortsluten kallar man Zin för kortslutningsimpedansen eller Zk, och när ändan är öppen (avbrott) så
kallas Zin för tomgångsimpedansen eller Zt.

Zk och Zt mättes vid 10kHz med en LCR mätare över ett separat ledningssegment (för att få ett noggrannare
resultat) till 40,9Ω respektive 59Ω.

Med hjälp av den generella ekvationen för Zin kan två separata uttryck för Zk och Zt härledas:

Zin = Z0
ZL + jZ0tan(βl)

Z0 + jZLtan(βl)
⇒

⇒ Zin =

{
Zk = jZ0tan(βl) , omZL = 0

Zt = 5 , omZL =∞

Dessa uttryck kan nu multipliceras ihop för att lösa ut Z0:

Z0 =
√
Zk · Zt ⇒

√
40, 9 · 59 = 49, 7Ω

1.2 Mätning av ledningens dämpningskoefficient, α
Ledningen avslutades först med ett dekadmotstånd inställd på beloppet av Z0, för att eliminera vågreflexioner.
En sinusformad spänning med ett effektivvärde av 3,0V anslöts sedan och spänningsamplituden mättes upp i
varje mätpunkt längs konstledningen. De uppmätta värden redovisas i tabell 1.

Eftersom ekvationen för en våg i en förlustbehäftad ledning är A · e−αxsin(ωt − βx) så förväntas det att
amplituden är exponentiellt avtagande längs ledningen. Om den naturliga logaritmen av den uppmätta datan
beräknas så erhålls dock en rak linje vars lutning är dämpningskoefficienten, α. Detta härleds på följande sätt:

Låt sin(ωt− βx) = 1 ⇒ A · e−αx ⇒ y = lnA− αx

I figur 2 visas den uppmätta exponentiella kurvan samt den linjäriserade kurvan. Observera att kurvorna
inte följer mätpunkterna exakt eftersom lastimpedansen ZL inte var tillräckligt noga anpassad till Z0, och
impedansskillnaden ger en stående våg som följd.

Dämpningskoefficienten kan nu läsas direkt ur grafen.

α = 0, 0628Np
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Mätposition [n] Amplitud [V]
0 2.99
1 2.81
2 2.59
3 2.30
4 2.28
5 2.21
6 2.13
7 1.87
8 1.73
9 1.64
10 1.66
11 1.52
12 1.39
13 1.22
14 1.24
15 1.26
16 1.20
17 0.96
18 0.86
19 0.91

Tabell 1: Spänningsamplituder uppmätta vid varje segment längs konstledningen.

Figur 2: I grafen syns hur mätpunkterna (U) följer en exponentiell kurva. När man beräknar den naturliga
logaritmen av datan erhålls en rak linje vars lutning är lika med dämpningskoefficienten, α.

1.3 Mätning av faskonstanten (vågtalet), β, samt bestämning av gångkonstanten,
γ

Faskonstanten är den fasförskjutning som spänningsvågen påverkas av i varje längdenhet av transmissionsled-
ningen. Den bestämdes genom att använda en oscilloskop med två kanaler för att kunna mäta den sinusformade
spänningskurvan vid två intilliggande ledningssegmentet. En fasdifferens β = 0.65 [rad/segment] observerades.
Experimentet upprepadas i flera positioner för att säkerställa ett korrekt svar, med samma resultat.
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Man kan nu bestämma gångkonstanten γ, våglängden λ och våghastigheten Vvåg :

γ = α+ jβ ⇒ 0, 0628 + j0, 65

λ =
2π

β
=

2π

0.65
= 9, 67 [segment]

Vvåg =
ω

β
=

2π · 10kHz
0, 65

≈ 96700 [segment/sekund].

Den kompletta vågekvationen är nu 3e−0,0628xsin(10 · 103ω − 0, 65x).

2 Laboration 2
Redovisningen för laboration 2 är uppdelad i två delar då två olika typer av experiment utfördes:
1. Pulsreflexionsmätningar där våg-, lednings- och belastningsegenskaper bestäms utifrån en pulssignals reflex-
ioner.
2. Reflexionsmätningar vid sinusformad spänningsmatning.

2.1 Bestämning av pulsvågens utbredningsfart och ledningens εr-värde
Tiden för en pulsvåg att utbreda sig från en viss position på ledningen (i vårt fall, där den är kopplad till
oscilloskopet) till lastenpositionen kan benämnas τ . Vid lasten får man alltid en vågreflexion så länge Z0 6= ZL,
som utbreder sig åt motsatt håll i samma hastighet. Detta gör att oscilloskopet kommer att vid startpositionen
efter dubbla denna restid, 2τ , mäta en skillnad i spänning motsvarande den reflekterade vågens spänning,
V −
0 . Eftersom ledningens längd, l, är känd och 2τ kan bestämmas med oscilloskopet så kan utbredningsfarten

beräknas:

Vvåg =
2l

2τ
=

2 · 20m

2 · 100ns
≈ 2

3
C0, där C0 är ljusets hastighet i vakuum.

Utbredningsfarten möjliggör också beräkningen av den relativa permittiviteten, εr, av ledningens dielekt-
rikum, dvs materialet mellan inner- och ytterledningsytorna. För en koaxialledning så kan man förutsätta att
signaldämpningen (dvs energiförlusten) är försumbar vid längderna som denna rapport behandlar. Man kan då
approximera εr med följande formel:

Vvåg =
1

√
εrε0µrµ0

⇒ εr =
1

V 2
våg · ε0µrµ0

= 2, 247

Detta värde visas sig vara mycket nära den för polyeten eller polypropen.

2.2 Pulsreflexion vid missanpassad last
De tre följande experiment utfördes för att kunna analysera pulsreflexioner vid olika typer av resisitiva och
reaktiva lastimpedanser.

2.2.1 Beräkning av Z0 vid rent reell (resistiv) lastimpedans

I detta experiment var generatorimpedansen ZG anpassad till Z0 samtidigt som lastimpedansen ZL varierades.
Vid en godtycklig rent resistiv last RL 6= Z0 i denna konfiguration så uppstår en reflekterad vågkomponent

V −
0 vid lasten som är proportionell mot den den infallande vågen V +

0 . Den reflekterade vågen ’överlagras’ på den
infallande vågen för att ge en totall våg Vtot som är antingen större eller mindre än den orginala pulsvågen. Den
reflekterade vågkomponenten absorberas sedan av ZG. Det som avgör hur stor och vilket ’tecken’ den reflekterade
vågkomponenten har avgörs av relationen mellan Z0 och ZL, och benämnas reflektionskoefficienten, ΓL. ΓL kan
beräknas på följande vis:

ΓL =
V −
0

V +
0

(1)

I praktiken kan V −
0 , och därmed γ, bestämmas genom att mäta skillnaden mellan V +

0 och den reflekterade,
’superponerade’ vågen, V +

0 + V −
0 Om Z0 = ZL så är ΓL = 0 och V +

0 absorberas helt av lasten utan någon
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reflektion. Ledningens karakteristiska impedans Z0 kan sedan beräknas med formeln:

Z0 = −ZL(ΓL − 1)

(ΓL + 1)
(2)

ΓL och Z0 bestämdes vid flera olika värden på ZL och redovisas i tabell 2.

RL [Ω] ΓL Z0 [Ω]
10,2 -0,63 44,9
27,3 -0,31 51,9
47,2 -0,033 50,4
100,7 3,21 52,9
149,4 2,05 51,3

Tabell 2: Lastens reflexionskoefficient, ΓL, och koaxialkabelns karakteristiska impedans, Z0, bestämda utifrån
den kända reella lastimpedansen, RL.

2.2.2 Reflexioner vid capacitiv lastimpedans

Lasten byttes till en kondensator i storleksordningen 1 - 2,2nF och de resulterande reflexionerna observerades
vid ingången till ledningen och vid lasten själv. Den uppmätta tidsvarierande spänningen visas i figur 3.

Figur 3: De övre och undre kurvorna representerar spänningen vid lasten respektive generatorn. I kurvan för
generatorspänningen ser man tydligt hur pulsen plötsligt förändras på grund av ’superposition’ av den reflekterade
vågen vid 2τ . En större kapacitans ger en längre stigtid.

Utseendet på kurvan som uppstår beror på hur en kondensator laddas upp över tid vid en stegformad
spänning över den, och hur det påverkar spänningsreflektionen. Kondensatorns uppladdningen kan matematiskt
uttryckas:

u
(
1− e−

1
R0C t

)
(3)

där u är stegspänningen, R0 är kondensatorns ESR och 1
R0C

tillsammans är tidskonstanten.
Man kan intuitivt resonera att kondensatorn beter sig som en kortslutning när spänningspulsen först når

kondensatorn (bortsett från ESR) och laddningen ≈ 0, vilket då skulle medföra, precis som vid tidigare expe-
riment, ΓL ≈ −1 vilket skulle ge en total negativ reflektion och en Vtot = 0V vid lasten. På samma sätt kan
man resonera att en fulladdad kondensator beter sig som ett avbrott (bortsett från eventuella läckströmmar)
vilket då skulle ge en ΓL ≈ 1 och resultera i en spänningsdubblering vid lasten. Mellan dessa två tidsvarierande

Sida 4



John Croft, Andreas Johansson

tillstånd så reflekterar den kapacitiva lasten en spänning som är proportionell mot kondensatorns momentana
uppladdning uttryckt i ekvation (3).

Anledningen till att den reflekterade spänningen vid generatorn aldrig blir 0v i figur 3 är troligtvis på grund
av att sample-tiden på oscilloskopet som användes vid mätningarna inte är tillräckligt kort.

2.2.3 Reflexioner vid skarv av två koaxialledningar med misanpassade Z0

I detta experiment matades en spänningssteg in i en skarvkoppling av två missanpassade koaxialledningar varav
den från generatorn till skarven var 50ohm och den andra var okänd fast med en öppen ända. Oscilloskopet
mätte spänningsamlituden vid generatorn och vid skarven.

Eftersom andra ledningen inte är anpassad så förväntas reflexioner vid skarven men även vid ’lasten’ (av-
brottet) på andra ledningen, vilket ger flera reflektioner än tidigare som dessutom är svårare att tolka. Genom
att enbart titta på den första reflektionens spänningsskillnad, V −

0 , kan man dock beräkna Γskarv. Man kan
alltså betrakta hela den okända ledningen som en lastimpedans i sig för våra ändamål. Ekvation (2) kan därmed
skrivas om på följande sätt:

ZL = −Z0 · (ΓL + 1)

(ΓL − 1)
⇒ Z0,2 = −Z0 · (Γskarv + 1)

(Γskarv − 1)
= 78, 6Ω (4)

, där Z0,2 är den karakteristiska impedansen för en okända ledningen.
En mätning av utbredningsfarten på samma sätt som i sektion 1.3 visade ingen skillnad i detta fall.

2.3 Multipelreflexioner
Vid en missanpassning av ZG, Z0 och ZL så uppstår reflexioner varje gång vågen når ett ledningsände. Resultatet
blir oändligt många vågreflexioner som avtar i amplitud med varje ny reflexion och till slut gör att Vtot(x) når
ett stationärtillstånd. Detta fenomen kan även uttryckas matematiskt som en oändlig serie.

I detta experiment skarvades två ledningar med identisk längd och egenskaper samtidigt som en 100Ω
resistans kopplades i serie med ZG och skarvkabelns ända lämades öppen. Oscilloskop användes för att mäta
spänningen vid generatorn och skarven (mitten på den förlängda ledningen). En simulering av de spänningar
som resulterar finns i figur 4.

0.0µs 0.3µs 0.6µs 0.9µs 1.2µs 1.5µs 1.8µs 2.1µs 2.4µs 2.7µs 3.0µs
0.0V

0.2V

0.4V

0.6V

0.8V

1.0V

1.2V

1.4V

1.6V

1.8V

2.0V
V(n002) V(n003)

Figur 4: Det gröna strecket visar spänningen vid generatorn och det blå spänningen vid mitten på ledningen.
Man kan tydligt se hur spänningen växer stegvis (ty positiva reflektioner) men med avtagande amplitud, tills
spänningen når ett stationätillstånd. Obs! Detta är en simulering och enbart illustrativ i syfte.

ΓG och därmed ZG kan bestämmas utifrån de erhållna ’trappformade’ spänningskurvorna. Till skillnad från
2.2.1 så måste man här ta hänsyn till att vågen utbreder sig åt båda hållen flera gånger. ΓG kommer alltså att
vara beroende av en reflekterad våg från last till generator (för enkelhets skull kan den första, V −

0 , väljas) och
nästa reflekterade våg från generator till last V +

1 , som själv beror på V −
0 . Γ kan generellt uttryckas som kvoten

mellan den av impedansen reflekterade vågkomponent och den för impedansen infallande vågkomponent. I detta
fall:

ΓG =
V +
1

V −
0

(5)
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Eftersom ΓG och Z0 nu är kända så kan ZG beräknas:

ZG = −Z0 · (ΓG + 1)

(ΓG − 1)
(6)

ΓG och Z0 skulle i denna uppgift undersökas vid användningen av två olika utgångar på funktionsgeneratorn:
’50Ω’ och ’Sync’. Båda fallen gav dock identiska svar: ΓG ≈ 0, 50 och Z0 ≈ 150Ω. Funktionsgeneratorns inre
impedans är då 150Ω− 100Ω = 50Ω i båda fallen.

2.4 Anpassad generator, missanpassad last vid sinusformad spänningsmatning
I denna uppgift är generatorn och en 20m ledning anpassade medan ZL = 10Ω. Ledningen matas med en
sinusformad spänning. Detta ger, precis som i föregående uppgifter, en reflektion vid lasten vilket sedan absor-
beras av generatorimpedansen. Den totala spänningenamplituden Vtot(x) som uppstår i en viss position längs
ledningen efter 2τ (efter att vågen hunnit utbreda sig till lasten och tillbaks) får dock ett mönster som beror
på spänningens frekvens och ledningens längd (enklast uttryckt i våglängder λ). Detta mönster kallas för en
stående våg och är statisk även om den ursrpungliga spänningsvågen och dess reflektion inte är det.

För att närmare bestämma hur dessa stående vågor ser ut varierades insignalens frekvens samtidigt som
spänningsamplituden vid ledningens in- och utgång observerades på oscilloskopet. Ett max- och minpunkt för
spänningsamplituden på ingången togs fram och relevant data beräknades i tabell 3.

Ving.,max Ving.,min
f(MHz) 2,3 4,8
längd (λ) 0.23 0.48
Ving. 3,28 0,80
Vlast 0,63 0,60

Tabell 3: Amplituden vid ingången till ledningen samt vid lasten. Frekvensen bestämmer även ledningens längd
mätt i våglängder λ.

Ur tabellen syns att vid 2,3MHz är det en maxpunkt på ingången och en minpunkt vid lasten, samt att vid
4,8MHz är det två minpunkter vid ingång och last. En stående våg har dock en period på 1

2λ. Med detta kan
stående vågen ritas, en simulering har gjorts i figur 5 som visar det exakta mönstret längs ledningen.

Ståendevågförhållandet (SVF) kan också räknas ut med de uppmätta värden. SV F = Vmax
Vmin

= 3,28
0,6 = 5, 47.

Detta kan också bestämmas teoretiskt med följande formel:

SV F =
1 + |Γ|
1− |Γ|

⇒
1 + | − 2

3 |
1− | − 2

3 |
= 5 (7)

, vilket stämmer bra överens med det uppmätta värdet.
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Figur 5: Notera att den blå kurvan slutar vid 0,25λ eftersom ledningen i själva verket bara är 0,25λ lång vid den
frekvensen.
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