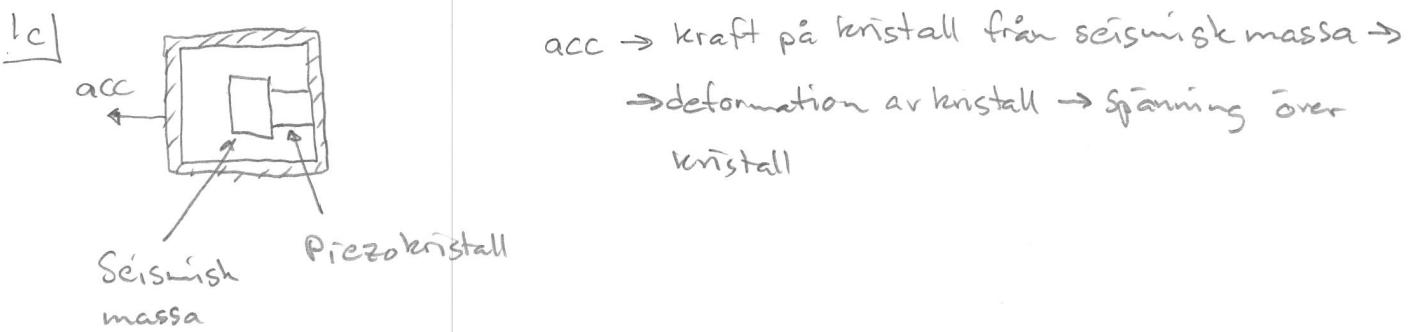


1a) Om girare \neq mätobjekt har olika temperaturutvidningskoeff så kan temperaturvariationer se ut som "verklig" föjning.

Reducering: $\begin{cases} 2 \text{ aktiva motverkande girare i halvbrygga.} \\ \text{Girare med samma temp. utv. koeff som mätobjekt} \end{cases}$

1b)

+ Billigare	- Olinjärare
+ Större girarkonstant	- Större tolerans



1d)

+ Brantare övergång från passband till spärband
+ Rippel i passband ⇒ Större förvängning av signal

1e)

Viktigast: Använd trinnade kablar.
Öka avstånd från starkälla till storoffer

2a) Samplingsteoremet: Välj $f_s > 2 \cdot f_{\max}$ där f_{\max} maxfrekvens i signal.

$$\underline{f_s > 2 \cdot 700 \text{ kHz} = 1,4 \text{ MHz}}$$

b)

$$U_{\min} = 4,5 - 4,5 = 0 \text{ V}$$

$$U_{\max} = 4,4 + 4,5 = 9 \text{ V}$$

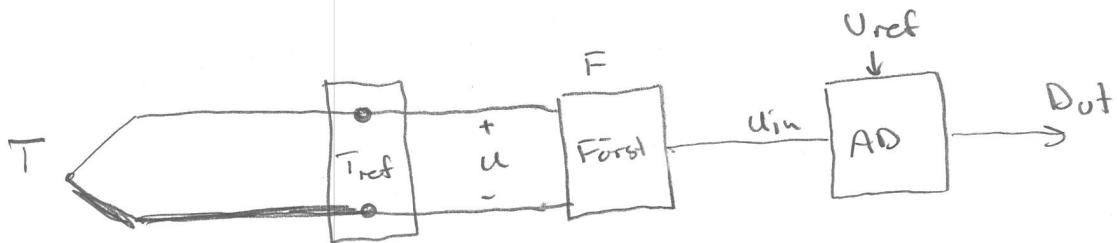
$$\Rightarrow U_{\text{ref}} \geq \underline{\underline{U_{\max} - U_{\min} = 9 \text{ V}}}$$

c) Från b) antag $U_{\text{ref}} = 10 \text{ V}$.

Ur uppgift: $\Delta U = 0,65 \text{ mV}$

$$\Delta U = \frac{U_{\text{ref}}}{2^n} \Rightarrow n = \frac{\ln \frac{U_{\text{ref}}}{\Delta U}}{\ln 2} = \frac{\ln \frac{10}{0,65 \cdot 10^{-3}}}{\ln 2} = 13,9 \quad \underline{\underline{\text{Välj } n = 14}}$$

3)



$$V_{ref} = 5V \quad n = 8 \quad F = 100 \quad D_{ut} = 23 \quad T_{ref} = 25^\circ C$$

$$\Delta U = \frac{V_{ref}}{2^n} = \frac{5}{2^8} = 19,53 \text{ mV}$$

$$u_{in} = D_{ut} \cdot \Delta U \pm \frac{\Delta U}{2} = 449,2 \pm 9,8 \text{ mV} \quad 439,4 \text{ mV} \leq u_{in} \leq 459,0 \text{ mV}$$

$$\underline{u} = \frac{u_{in}}{F} \Rightarrow \underline{4,394 \text{ mV} \leq u \leq 4,590 \text{ mV}}$$

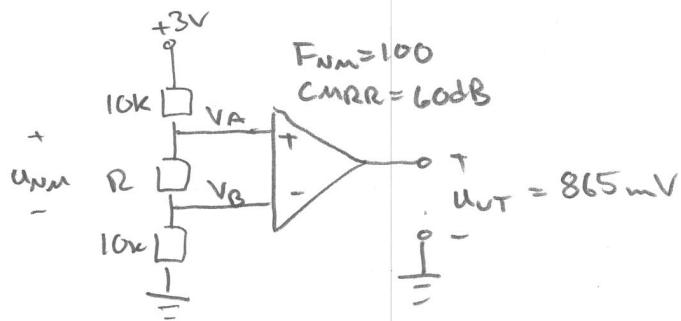
$$V_r \text{ tabell } E_{AB}(T_{ref} \rightarrow 0^\circ) = E_{AB}(25^\circ C \rightarrow 0^\circ) = 0,992 \text{ mV}$$

$$V_r \text{ FS } \underline{E_{AD}(T \rightarrow 0^\circ) = u + E_{AB}(T_{ref} \rightarrow 0^\circ) = u + 0,992 \text{ mV}}$$

$$\therefore \underline{5,386 \text{ mV} \leq E_{AD}(T \rightarrow 0^\circ) \leq 5,582 \text{ mV}}$$

$$V_r \text{ tabell } \underline{123^\circ C \leq T \leq 127^\circ C}$$

4)



$$u_{CM} = \frac{V_A + V_B}{2} = 1,5 \text{ V}$$

$$CMRR_{dB} = 20 \log \frac{F_{NM}}{F_{CM}} \Rightarrow F_{CM} = \frac{F_{NM}}{10^{\frac{CMRR}{20}}} = \frac{100}{10^{\frac{60}{20}}} = 0,1$$

$$u_{UTCM} = F_{CM} \cdot u_{CM} = 0,1 \cdot 1,5 = 0,15 \text{ V}$$

$$u_{UTNM} = u_{UT} - u_{UTCM} = 0,865 - 0,15 = 0,715 \text{ V}$$

$$u_{NM} = V_A - V_B = \frac{u_{UTNM}}{F_{NM}} = \frac{0,715}{100} = 7,15 \text{ mV}$$

$$u_{NM} = \frac{R}{R+20000} \cdot 3 \text{ V} \Rightarrow R = \frac{20000 \cdot u_{NM}}{3,0 - u_{NM}} = \frac{20000 \cdot 7,15 \cdot 10^{-3}}{3,0 - 7,15 \cdot 10^{-3}} = 47,78 \Omega$$

$$Pt-100 \quad R = 100 + 0,385 \cdot T \Rightarrow T = \frac{R - 100}{0,385} = \frac{47,78 - 100}{0,385} = -136 \text{ }^{\circ}\text{C}$$

5] $x(t) = 6 + 3 \cos(500\pi t - 70^\circ) + \sin(1000\pi t + 50^\circ) - 4 \cos(3000\pi t)$

$f_0 = 0$	$f_1 = 250\text{Hz}$	$f_2 = 500\text{Hz}$	$f_4 = 1500\text{Hz}$
$A_0 = 6$	$A_1 = 3$	$A_3 = 1$	$A_4 = 4$

$$f_s = 5 \text{ kHz}$$

$$N = 40$$

$$\Delta f = \frac{f_s}{N} = \frac{5000}{40} = 125 \text{ Hz}$$

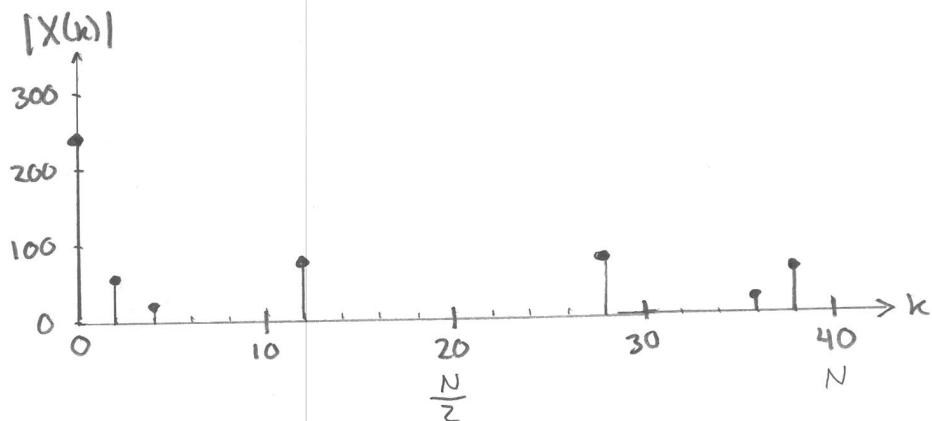
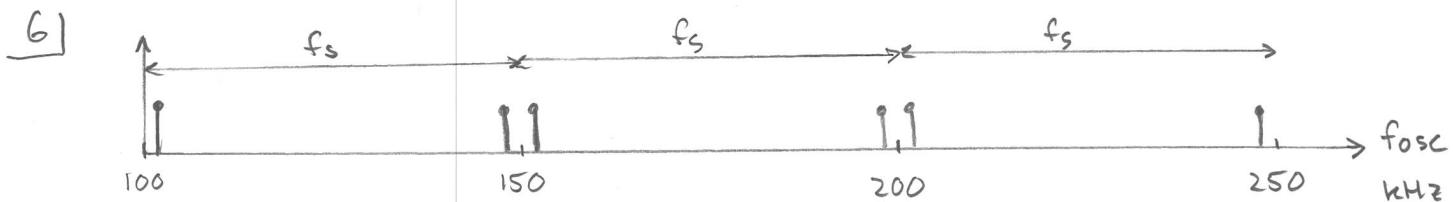
$$f = k \cdot \Delta f \Rightarrow k = \frac{f}{\Delta f} = \frac{f}{125 \text{ Hz}}$$

$$|x(0)| = N A_0 = 40 \cdot 6 = 240$$

$$k \neq 0 \quad |x(k)| = N \frac{A_k}{2} = 20 \cdot A_k$$

f (Hz)	A	k	$ x(k) $
0	6	0	240
250	3	2	60
500	1	4	20
1500	4	12	80

Symmetri $|x(N-k)| = |x(k)|$



Virkning har skett. $f = m \cdot f_s \pm f_i$, viks ner till f_i , m heltal

Ur spektrum ovan fås $\underline{f_s = 50 \text{ kHz}}$

- Exercise 7:

- “CONF:FRES” configures the multimeter for 4-wire resistance measurements.
- The command “READ” triggers a measurement from the multimeter.
- Wiring an error cluster through the GPIB blocks ensures that they are executed in the right order; it also allows one to track the error messages.

- Exercise 8:

- A *formula node*, which compute the value of the resistance as a function of the temperature; and two *while loops*: the outermost makes sure that the program runs until the *stop* button is pressed; the innermost one makes sure that the resistance is recomputed every time the *ok button* is pressed. There are also the following blocks: a *greater than zero* block, which verifies with the input is larger than 0; A *select* block, which assigns two different values to the constant *c* according to whether the temperature is above or below 0.

- If $T \geq 0$

$$R = 100 \times [1 + 0.0039083 \times T - 5.775 \times 10^{-7} \times T^2].$$

If $T < 0$

$$R = 100 \times [1 + 0.0039083 \times T - 5.775 \times 10^{-7} \times T^2 - 4.183 \times 10^{-12} \times (T - 100) \times T^3].$$

- $0^\circ\text{C} \rightarrow 100 \Omega$; $100^\circ\text{C} \rightarrow 138.505 \Omega$
- $0^\circ\text{C} \rightarrow 100 \Omega$; $100^\circ\text{C} \rightarrow 100 \Omega$
- The output of the program is the same as in task d). However, the program keeps on recomputing the value of the resistance, which is not very efficient computationally.

- Exercise 9:

Output 1										Output3									
0	1	2	3	4	5	6	7	8	9	10	0	1	4	9	16	25	36	49	64
0	1	4	9	16	25	36	49	64	81	100	0	16	25	36	49	64	81	100	1000
0	1	8	27	64	125	216	343	512	729	1000	0	1	4	9	16	25	36	49	64
Output 2										Output3									
0	1	8	27	64	125	216	343	512	729	1000	0	1	4	9	16	25	36	49	64

- Exercise 10:

- $R = 109.0483 \Omega$
- $s(R) = 4.07 \times 10^{-2} \Omega$; hence, $u_A(R) = s(R)/\sqrt{7} = 1.54 \times 10^{-2} \Omega$
- The extreme points of the 95% confidence interval are $109.0483 \pm 2.57 \times 1.54 \times 10^{-2} = 109.0483 \pm 0.0395$. So the 95% confidence interval is $[109.0088, 109.0879]$.

d)

$$u_B(R) = \frac{1}{\sqrt{3}} \left(\frac{0.03}{100} 109.0483 + \frac{0.03}{100} 100 \right) = 3.62 \times 10^{-2} \Omega.$$

Hence,

$$u(R) = \sqrt{u_A^2(R) + u_B^2(R)} = 3.93 \times 10^{-2} \Omega.$$

e)

$$T = \frac{1}{\gamma} \left(\frac{R}{R_0} - 1 \right) = 23.50 \text{ } ^\circ\text{C}.$$

f) $u(\gamma) = 1.732 \times 10^{-5} \text{ } ^\circ\text{C}^{-1}$; $u(R_0) = 3.464 \times 10^{-2} \Omega$. Now we compute the sensitivity coefficients:

$$c_R = \frac{\partial T}{\partial R} = \frac{1}{\gamma R_0} = 2.5974 \text{ } ^\circ\text{C} \Omega^{-1}.$$

$$c_\gamma = \frac{\partial T}{\partial \gamma} = -\frac{1}{\gamma^2} \left(\frac{R}{R_0} - 1 \right) = -6.1045 \times 10^3 \text{ } ^\circ\text{C}^2.$$

$$c_{R_0} = \frac{\partial T}{\partial R_0} = -\frac{R}{\gamma R_0^2} = -2.8324 \text{ } ^\circ\text{C} \Omega^{-1}.$$

Finally,

$$u(T) = \sqrt{(c_R u(R))^2 + (c_\gamma u(\gamma))^2 + (c_{R_0} u(R_0))^2} = 0.18 \text{ } ^\circ\text{C}.$$