
SSY011 Elektriska system, ht 2017 F2 1/45 

Föreläsning 2
Grunderna i VHDL, ModelSim

Erik Agrell 2017-08-30

Innehåll:
1. Simulering och syntes
2. VHDLs byggstenar

3. Parallell VHDL
4. Sekventiell VHDL

Bilder av E. Agrell, A. Linde, A. Crayvenn, S. Farinam

SSY011 Elektriska system, ht 2017 F2 2/45 1. Simulering och syntes

Simulering
(mjukvara)

Syntes
(implementation 

i hårdvara)



SSY011 Elektriska system, ht 2017 F2 3/45 

1. Skapa projektmapp

2. Starta ModelSim

3. Create Project, ange namn och mapp

4. New file, ange namn (samma som entiteten)

5. Dubbelklicka på filnamnet

6. Skriv (eller kopiera) VHDL-kod, spara

7. Kompilera

8. Felmeddelande? Debugga!

9. Simulera

10. Markera rätt entitet, under "work"

11. Högerklicka signaler, Add Wave

12. Skriv kommandon: FORCE, RUN

Arbetsgång i ModelSim

SSY011 Elektriska system, ht 2017 F2 4/45 

Simuleringskommandon

Sätt x till 1 hela tiden:
force x 1

Sätt x först till 0, sedan till 1 efter 50 ns, till 0 igen efter 150ns, etc.:
force x 0 0ns, 1 50ns, 0 150ns, ...

Gör x periodisk med periodtiden 200ns (bra för klocksignaler):
force x ... –repeat 200ns

Simulera i 500ns:
run 500ns

(eller bara run 500 eftersom ns är default)

Radera kurvorna och börja om från 0ns vid nästa run (som annars
fortsätter föregående simulering):
restart -force



SSY011 Elektriska system, ht 2017 F2 5/45 

Licensproblem i ModelSim?

SSY011 Elektriska system, ht 2017 F2 6/45 

Orsaker och lösningar

Orsak 2: MentorGraphics tror att du
försöker köra två ModelSim på samma licens

Lösningar:
• Avsluta alla andra ModelSim med samma licens
• Om det inte hjälper: Stäng av internet (behövs t.ex. om

ModelSim nyligen kraschade)

Orsak 1: Giltig licens saknas

Lösning:
• Beställ en gratislicens i

samband med installationen
och lägg filen på rätt ställe



SSY011 Elektriska system, ht 2017 F2 7/45 

2. VHDLs byggstenar

• Entiteten beskriver 
kopplingen till omgivningen

• Arkitekturen beskriver 
funktionen

• Entiteter och arkitekturer har namn
(identifierare)

SSY011 Elektriska system, ht 2017 F2 8/45 

Vi återvänder till exemplet med och-grinden:

x
y f

VHDL-komponent

bibliotek

entitet

arkitektur

-- Simple AND gate
library ieee;
use ieee.std_logic_1164.all;

entity and_gate is port (
x,y: in std_logic;
f: out std_logic);

end entity;

architecture arch of and_gate is
begin

f <= (x and y);
end architecture;

kommentar



SSY011 Elektriska system, ht 2017 F2 9/45 

Namn i VHDL-kod

• Namn består av bokstäver, siffror och understreck. Måste börja med 
bokstav.

• Ingen skillnad mellan stora och små bokstäver

• Två bindestreck (--) betyder att resten av raden är kommentar

• Använd inte åäö, inte ens i kommentarer

• Inga mellanslag i filnamn eller sökvägar (path)

• Undvik mycket långa sökvägar

SSY011 Elektriska system, ht 2017 F2 10/45 

Bibliotek

Ger tillgång till inbyggda definitioner och funktioner

library ieee;
use ieee.std_logic_1164.all;



SSY011 Elektriska system, ht 2017 F2 11/45 

Entitet

Definierar gränssnittet: in- och utsignaler

entity and_gate is port (
x,y: in std_logic;
f: out std_logic);

end entity;

SSY011 Elektriska system, ht 2017 F2 12/45 

Entitetens syntax

• Riktning kan vara in, out eller buffer.

• Datatyp kan vara std_logic eller std_logic_vector (Även bit, boolean och
integer förekommer.) 

entity <komponentnamn> is port (
<signalnamn>: <riktning> <datatyp>;
...
<signalnamn>: <riktning> <datatyp>);

end entity;
Obs parentesens
placering!



SSY011 Elektriska system, ht 2017 F2 13/45 

in, out och buffer

• in är en ingång. Den kan inte tilldelas värden i arkitekturen.

• out är en utgång. Dess värde kan inte läsas i arkitekturen.

• buffer är en utgång som är kopplad till ett minneselement. 
Dess värde kan läsas i arkitekturen.

f <= (x and y)

out eller buffer in eller buffer

SSY011 Elektriska system, ht 2017 F2 14/45 

std_logic

Datatypen std_logic kan anta följande värden i simulering:

Bra att känna till att de finns – men vi behöver egentligen bara 0, 1 och U



SSY011 Elektriska system, ht 2017 F2 15/45 

Arkitektur

Beskriver den interna funktionen

architecture arch of and_gate is
begin
f <= (x and y);

end architecture;

SSY011 Elektriska system, ht 2017 F2 16/45 

Arkitekturens syntax

Samma som
entitetens namn

architecture <arkitekturnamn> of <komponentnamn> is

signal <signal_namn>: <datatyp>;
...

begin

...

end architecture;

Alla satser här exekveras samtidigt!
Ordningen spelar ingen roll.

Arkitekturnamnet är inte
viktigt – syns inte utåt



SSY011 Elektriska system, ht 2017 F2 17/45 

Filhuvud

SSY011 Elektriska system, ht 2017 F2 18/45 

Konventioner

• En filkatalog innehåller ett projekt

• Ett projekt kan innehålla flera VHDL-filer

• En VHDL-fil innehåller en entitet (en komponent)

• En VHDL-fil har samma namn som sin entitet



SSY011 Elektriska system, ht 2017 F2 19/45 

Olika sorters VHDL-kod

VHDL

Parallell VHDL Sekventiell VHDL

SynkronAsynkron

Sorterna kan kombineras i samma komponent

SSY011 Elektriska system, ht 2017 F2 20/45 

Kombination av parallell och sekventiell VHDL

• Alla satser och processer i architecture exekveras
samtidigt (parallellt)



SSY011 Elektriska system, ht 2017 F2 21/45 

3. Parallell VHDL

x
y f

Det tidigare AND-exemplet är parallell VHDL (ingen process):

library ieee;
use ieee.std_logic_1164.all;

entity and_gate is port (
x,y: in std_logic;
f: out std_logic);

end entity;

architecture arch of and_gate is
begin

f <= (x and y);
end architecture;

SSY011 Elektriska system, ht 2017 F2 22/45 

Exempel med interna signaler



SSY011 Elektriska system, ht 2017 F2 23/45 

library ieee;
use ieee.std_logic_1164.all;

entity AOI is port (
A,B,C,D: in std_logic;
Ut: out std_logic);

end entity;

architecture rtl of AOI is
signal AB,CD,G: std_logic;

begin
AB <= A and B;
CD <= C and D;
G <= AB or CD;
Ut <= not G;

end architecture;

Finns endast
inuti arkitekturen

Man kan
deklarera flera
signaler på
samma rad

Interna signaler

SSY011 Elektriska system, ht 2017 F2 24/45 

Två sätt att realisera en multiplexer



SSY011 Elektriska system, ht 2017 F2 25/45 

Bibliotek och entitet:

-- F2: multiplexer
library ieee;
use ieee.std_logic_1164.all;

entity mux is port (
a_in, b_in, c_in, d_in: in std_logic;
s0, s1: in std_logic;
y_ut: out std_logic);

end entity;

SSY011 Elektriska system, ht 2017 F2 26/45 

Signaltilldelning med tilldelningsoperatorn <= och logiska operatorer:

Metod 1: Grindnivå

architecture arch of mux is
begin

y_ut <= (a_in and not s1 and not s0) or
(b_in and not s1 and s0) or
(c_in and s1 and not s0) or
(d_in and s1 and s0);

end architecture;



SSY011 Elektriska system, ht 2017 F2 27/45 

• Enkla citattecken för bitar ('0', '1') och dubbla för vektorer ("0000").
OBS: Typografiska citattecken (’0’, “00”) funkar inte. Varning för att kopiera 
kod från ”smarta” ordbehandlare!

Vektorer

• En tilldelning kan gälla en hel vektor:

eller delar av den:

f <= "11111110"
f <= x"FE"

f(0) <= '1'
f(2 downto 0) <= "010"

• I stället för en lista av std_logic, är det bekvämt att använda vektorer
• Deklareras med std_logic_vector(... downto 0)➯ MSB först

SSY011 Elektriska system, ht 2017 F2 28/45 

Metod 2: WITH

architecture arch of mux is
signal s: std_logic_vector(1 downto 0);

begin
s <= s1 & s0;
with s select

y_ut <= a_in when "00",
b_in when "01",
c_in when "10",
d_in when "11";

end architecture;

with...select:
s jämförs med 
flera värden

Demo
Koden ovan innehåller 
ett vanligt fel. Vilket?

&: konkatenering



SSY011 Elektriska system, ht 2017 F2 29/45 

Rättad kod

architecture arch of mux is
signal s: std_logic_vector(1 downto 0);

begin
s <= s1 & s0;
with s select

y_ut <= a_in when "00",
b_in when "01",
c_in when "10",
d_in when others;

end architecture;

Vi använder others i stället för
"11" för att täcka alla alternativ

SSY011 Elektriska system, ht 2017 F2 30/45 

4. Sekventiell VHDL

• Inom varje process exekveras satserna sekventiellt



SSY011 Elektriska system, ht 2017 F2 31/45 

När exekveras en process?

• I syntes (hårdvara) är komponenterna påslagna hela
tiden och anpassar utsignaler efter insignaler

• I simulering är det omöjligt att exekvera hela tiden. Man 
vill exekvera en process när det behövs och inte annars.

⇒ Användaren behöver tala om för simulatorn
när det är dags att exekvera processen

SSY011 Elektriska system, ht 2017 F2 32/45 

• I processens sensitivitetslista ingår de signaler som 
skall påverka processens igångsättning vid simulering

• Sensitivitetslistan ignoreras vid syntes

Syntaxen för en process



SSY011 Elektriska system, ht 2017 F2 33/45 

Process och sensitivitetslista

En process simuleras då någon
signal i sensitivitetslistan
ändras

När signalerna i sensitivitetslistan är
oförändrade, simuleras inte processen. 

Utsignalerna ligger kvar oförändrade.

SSY011 Elektriska system, ht 2017 F2 34/45 

Två sekventiella sätt att realisera MUXen



SSY011 Elektriska system, ht 2017 F2 35/45 

Metod 3: IF

architecture arch of mux is
begin

process(a_in, b_in, c_in, d_in, s0, s1)
variable s: std_logic_vector(1 downto 0);

begin
s := s1 & s0;
if s = "00" then

y_ut <= a_in;
elsif s = "01" then

y_ut <= b_in;
elsif s = "10" then

y_ut <= c_in;
else

y_ut <= d_in;
end if;

end process;
end architecture;

Sensitivitetslista

Variabel

if-sats

Vi kan använda samma bibliotek och entitet som förut

SSY011 Elektriska system, ht 2017 F2 36/45 

if villkor then uttryck;
else if nytt villkor

then något annat;
else nytt uttryck;

end if;

• Varje if avslutas med end if

• else if kan sammanskrivas som elsif

• if-satser är sekventiella och får inte placeras i den parallella delen 
av VHDL-koden

Syntaxen för en if-sats



SSY011 Elektriska system, ht 2017 F2 37/45 

Signaler och variabler

Signaler

• deklareras i den parallella delen

• används både i parallella och
sekventiella delen

• tilldelas med <=

• i parallell kod: uppdateras hela
tiden

• i sekventiell kod: uppdateras först
då processen avslutas

• I hårdvara realiseras signaler som
ledningar

Variabler

• deklareras i den sekventiella delen
(process)

• används i den sekventiella delen

• tilldelas med :=

• uppdateras när den tilldelas värde

• existerar inte utanför processen

• I hårdvara realiseras variabler
som register

SSY011 Elektriska system, ht 2017 F2 38/45 

Metod 4: CASE

architecture arch of mux is
begin

process(a_in, b_in, c_in, d_in, s0, s1)
variable s: std_logic_vector(1 downto 0);

begin
s := s1 & s0;
case s is

when "00" =>
y_ut <= a_in;

when "01" =>
y_ut <= b_in;

when "10" =>
y_ut <= c_in;

when others =>
y_ut <= d_in;

end case;
end process;

end architecture;

case-sats



SSY011 Elektriska system, ht 2017 F2 39/45 

[Case label:]
CASE selectorSignal IS

WHEN value1 =>
sequential code;

WHEN value1 =>
sequential code;

[WHEN value2 =>
sequential code;]

[WHEN others =>
sequential code;]

END CASE [Case label];

case är den sekventiella motsvarigheten till with

Alla when-satser i samma case har samma prioritet

Syntaxen för en case-sats

Om when-satserna inte 
täcker alla möjliga värden för 
selectorSignal använder 
vi others

SSY011 Elektriska system, ht 2017 F2 40/45 

Exekvering i en process

• Inom varje process exekveras koden sekventiellt

• Endast den sista tilldelningen av varje signal i en process 
räknas

• Använd variabler i processer och tilldela motsvarande signal 
ett värde på slutet (”skuggvariabler”)



SSY011 Elektriska system, ht 2017 F2 41/45 

Exempel: NAND

architecture arch of nand_gate is
begin

process(x,y)
begin

f <= x and y;
f <= not f;

end process;
end architecture;

Vi vill invertera resultatet. Varför
fungerar inte detta?

Svar: f har här samma värde som när
processen startade – oavsett vad som
hände tidigare i processen!

SSY011 Elektriska system, ht 2017 F2 42/45 

architecture arch of nand_gate is
begin

process(x,y)
variable z: std_logic;
begin

z := x and y;
f <= not z;

end process;
end architecture;

Rättad kod

Signalen f tilldelas endast en gång. OK!

z är en variabel, ingen signal

Fast det finns minst två enklare sätt att realisera en NAND-grind



SSY011 Elektriska system, ht 2017 F2 43/45 

Koppla ihop utgångar?

• Man kopplar inte ihop utgångarna från två kretsar!

• Det gäller i VHDL också: två satser/processer får inte ha 
samma utsignaler.

Exempel: Om man bygger elektronik i hårdvara, är det OK att
kombinera kretsar så här?

IN UT UTIN

? ?

OK Fel

SSY011 Elektriska system, ht 2017 F2 44/45 

Sammanfattning
Parallell VHDL:

• I architecture, utanför processer

• All kod exekveras samtidigt, ordningen är oväsentlig

• Viktigast är att kunna tilldelningar (<=)

Sekventiell VHDL:

• Sker i processer

• Allt exekveras sekventiellt inom processer – om man 
använder variabler

• Alla processer exeveras samtidigt



SSY011 Elektriska system, ht 2017 F2 45/45 

Läs:

• Lab-PM: inledning och kapitel 1

• Kretskonstruktion med VHDL: avsnitt 1–3.4 och 10.1–10.3

Läs & lös

Lös:

• Simulera en XOR-grind i ModelSim genom att följa
arbetsgången på bild 3 och modifiera koden på bild 20.

• Inlämningsuppgift 1 (deadline 8 sept)

• Lab-förberedelseuppgift 1.1

Anmälan till labgrupper öppnar idag kl 13:00 i Pingpong


