
Hand-In Assignment 2
October 24, 2017

John Croft
19930814-7959

1 Moore Diagram
The personal bit-pattern to be detected by the state-machine in this assignment is (1001101)2. This is interpreted
as MSB → LSB by convention, and since the RS/EIA-232 standard dictates that LSB be transmitted first, the
bit sequence will be in the ’reverse’ order (ie. first 1, then 0, then 1 etc...).

A moore machine’s outputs are defined by its current state while its inputs define the state-transitions. In
this case there is only one input and one output, the current bit being detected and a green indicator LED
respectively. The LED will remain LOW until a complete bit-sequence is detected whereupon it is set HIGH.

The state-machine should be able to handle the overlap of two correct sequences, although in this case the
only possible overlap is that of the ’1’s that bookend the sequence, drastically reducing the complexity. To
clarify, the only valid overlapping sequence is |101100|1|011001| with the shared ’1’ in the middle.

The final diagram with the behaviour described is shown below.

q0 = 0start q1 = 0 q2 = 0

q3 = 0

q4 = 0

q5 = 0

q6 = 0

q7 = 1

1

0

0

1

1

0

1

0

0

1

0

1

1

0
01

Page 1

Hand-In Assignment 2
October 24, 2017

John Croft
19930814-7959

2 VHDL Implementation
To implement the Moore-machine above, a CASE/IF structure was used to determine the current state and
subsequently transition state depending on the data input.

Clocking on an external signal (a pushbutton on the DE1 board) required additional circuitry in order
to detect a rising edge without using the FPGA’s internal rising_edge(CLOCK) command, which may cause
timing instabilities if used in this manner.

1 library ieee;
2 use ieee.STD_LOGIC_1164.all;
3

4 entity serial_pattern_match is
5 port (CLOCK_50 : in std_logic; -- 50MHz internal clock.
6 btn : in std_logic; -- Manual clock signal using external PUSHBUTTON's rising edge. Inverted LOGIC.
7 reset : in std_logic; -- RESET signal tied to external PUSHBUTTON. Inverted LOGIC.
8 data : in std_logic; -- Current DATA bit set using external switch.
9

10 LEDG7 : out std_logic; -- Indicates successful pattern detection when HIGH.
11 LEDR : out std_logic_vector(7 downto 0)); -- Indicates current STATE
12 end entity;
13

14 architecture rtl of serial_pattern_match is
15 type stateType is (U,Q7,Q6,Q5,Q4,Q3,Q2,Q1,Q0); -- 8 states are needed to implement the Moore-machine.
16 signal state : stateType;
17 signal prevBtn : std_logic; -- Used to detect rising edge on 'btn'.
18 -- Since we can't edge-trigger directly on a non-internal-clock signal,
19 -- we use a synchronous flip-flop to detect if a rising edge has occured since last internal-clock cycle.
20 begin
21 ---
22 -- Process: proc_moore_machine
23 -- Description: Moore-machine implementation of algorithm detecting a specific pattern in a data-stream.
24 -- Pattern is (in chronological order ->): 1011001.
25

26 -- Input(s) : CLOCK_50, btn, reset, data
27 -- Output(s) : LEDG7, LEDR
28 -- Internal Signals : state, prevBtn
29 ---
30 proc_moore_machine:process(CLOCK_50, reset)
31 begin
32 if reset = '0' then -- asynchronous reset.
33 state <= Q0; -- load inital state.
34 LEDR <= (others => '0'); -- set all indicator LEDs LOW.
35 LEDG7 <= '0';
36 elsif (prevBtn = '0' AND btn = '1') then -- if rising_edge(btn) then
37 case state is
38 when Q0 =>
39 LEDR <= "00000001";
40 if data = '1' then
41 state <= Q1;
42 LEDR <= "00000010";
43 else
44 -- stay in current state.
45 end if;
46 when Q1 =>
47 if data = '0' then
48 state <= Q2;
49 LEDR <= "00000100";
50 else
51 -- stay in current state.
52 end if;
53 when Q2 =>
54 if data = '1' then
55 state <= Q3;
56 LEDR <= "00001000";
57 else
58 state <= Q0;
59 end if;
60 when Q3 =>
61 if data = '1' then

Page 2

Hand-In Assignment 2
October 24, 2017

John Croft
19930814-7959

62 state <= Q4;
63 LEDR <= "00010000";
64 else
65 state <= Q2;
66 end if;
67 when Q4 =>
68 if data = '1' then
69 state <= Q1;
70 else
71 state <= Q5;
72 LEDR <= "00100000";
73 end if;
74 when Q5 =>
75 if data = '1' then
76 state <= Q1;
77 else
78 state <= Q6;
79 LEDR <= "01000000";
80 end if;
81 when Q6 =>
82 if data = '1' then
83 state <= Q7;
84 LEDR <= "10000000";
85 LEDG7 <= '1'; -- Transition to last state means full sequence detected!
86 else
87 state <= Q0;
88 end if;
89 when Q7 =>
90 if data = '1' then
91 state <= Q1;
92 LEDG7 <= '0';
93 LEDR <= "00000010";
94 else
95 state <= Q2;
96 LEDG7 <= '0';
97 LEDR <= "00000100";
98 end if;
99 when others => -- when 'U'

100 -- do nothing
101 end case;
102 end if;
103 end process;
104

105 ---
106 -- Process: proc_rising_edge_detect
107 -- Description: Saves last PUSHBUTTON state.
108 -- Allows detection of state change through comparison with current state.
109

110 -- Input(s) : btn
111 -- Internal Signals : prevBtn
112 ---
113 proc_rising_edge_detect:process(CLOCK_50)
114 begin
115 if rising_edge(CLOCK_50) then
116 prevBtn <= btn;
117 end if;
118 end process;
119 end architecture;

Page 3

Hand-In Assignment 2
October 24, 2017

John Croft
19930814-7959

3 VHDL Simulation
The above VHDL code was simulated and tested using the following input bitstream:

10010

2 overlapping patterns︷ ︸︸ ︷
1011001011001 10000111

1 pattern︷ ︸︸ ︷
1011001

where bits are read in from left to right.
The results of this can be seen in figure 1, which shows the various state transitions in the Moore-machine

as well as an indication of the three successful pattern matches on signal LEDG7.

Figure 1: VHDL code simulation in modelsim. Note that irrelevant signals have been omitted.

4 Pin Table for DE1

Page 4

