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FORORD

Detta kompendium &dr @mnat for studenter inom data- och elektroteknikprogrammet men
ocksa for ingenjorer med intresse for konstruktion av integrerade kretsar via ett
modernt, hardvarubeskrivande sprak. Kompendiet Kretskonstruktion med VHDL ir
strukturerat pa sadan vis att ldsaren kan studera materialet i en kontinuerlig f6ljd, fran
borjan till slut, utan att beh6va hoppa mellan kapitel och avsnitt. Pa detta vis erhalls en
gradvis kunskapsutveckling dir varje nytt kapitel bygger pa idéer, exempel och verktyg
som introduceras 1 kapitlen dessforinnan. Kompendiet forklarar grundliggande
utvecklingstekniker for logiska kretssystem, dess syntes samt hur de implementeras.
Fundamentala 10sningar illustreras genom exempel som ger ldsaren en létt
overskadlighet av systemens grundliggande byggblock samt hur dessa definieras i ett
hardvarubeskrivande sprak. Vi belyser dven konstruktionens vig fran syntax, syntes till
implementering i krets via ett modernt och kraftfullt CAD verktyg.

Malet &r att ge ldsaren en grundlidggande forstaelse i VHDL sprakets tillimpning i de
teknologier som anvinds vid hardvarukonstruktion av digitala elektroniksystem mha.
moderna CAD-verktyg samt hur dessa I6sningar har en praktisk betydelse i1 industrin.



1 INLEDNING

1.1 HISTORIA
Utvecklingen av VHDL paborjades redan 1981 av det amerikanska forsvars-

departementet som ett svar pa davarande livscykelkris for elektronisk hardvara.
Produktionskostnaden for hardvara nadde en kritisk punkt da tekniken bakom
utvecklingsprocessen blev snabbt foraldrad och funktioner for de komponenter som
utgjorde ett storre system hade vag dokumentation med en individuell
verifikationsprocess som  Oversvimmade marknaden med otaligt ~manga
simuleringssprak och verktyg. Behovet av ett standardiserat sprak med omfattande
beskrivnings och utvecklingsmojligheter var stort. Men detta var inte nog, krav stilldes
att detta nya sprak skulle bli funktionsmissigt teknologioberoende, som fungerade
likadant oavsett simulering eller konstruktionsmetodik. VHDL har sedan dess utvecklats
under kontroll av IEEE som lade grund for den forsta standardiserade versionen VHDL-
87. Men som all standard fran IEEE, genomgar spraket stindiga smaforindringar,
frimst influerat av anvindare 1 niringslivet, dirmed ledde detta till en reviderad version
VHDL-93 som numera dr den standard som stods av de flesta kommersiella
utvecklingsverktyg.

1.2 VAD AR VHDL?
VHDL ir ett hardvarubeskrivande sprak dér forkortningen VHDL kommer fran VHSIC

Hardware Description Language. Akronymen VHSIC star for Very High Speed
Integrated Circuit. Spraket kan beskriva ett beteende eller strukturell uppbyggnad av
elektroniska system och dr framst ként for sin anpassning inom beskrivning av digital
elektronikkonstruktion for ASIC- och FPGA-kretsar. VHDL idr som tidigare nimnt en
internationell standard som regleras av IEEE. En av huvudorsakerna till sprakets snabba
spridning inom hardvarudesign &r att spraket inte dr proprietirt (dvs spraket dgs inte av
nagon). VHDL ir ett hogniva-, teknologioberoende-, harvarubeskrivande- sprak, som
inte dr bundet till viss implementationsteknologi eller simulator som har tendensen att
begrinsa ingenjorens kreativitet. Tviartom ger detta sprak utvecklaren mojligheten att
angripa ett problem fran flera abstraktionsnivaer samt friheten att vilja varierande
tekniska utvecklingsmetoder samtidigt som man haller sig inom ramarna till ett enda
sprak. Da VHDL ér teknologioberoende kan en kod flyttas mellan olika kommersiella
utvecklingsverktyg utan att ndgon @ndring behover goras i koden. Stora delar av spraket
ar syntetiserbara dir funktioner bestaende av miljoner grindar kan implementeras i en
krets inom loppet av nagra minuter. VHDL mojliggér &dven ateranviandning
(instansiering) av fardiga komponenter vilket underldttar och snabbar upp en
utvecklingsprocess. Ur ett ekonomiskt perspektiv dr férdelarna manga och tack vare att
priserna sjunkit de senaste aren dr denna teknologi inte bara tillginglig for stora foretag,
men ocksa for mindre bolag som i huvudsak bedriver sin verksamhet inom

hardvarukonstruktion.



2 GRUNDLAGGANDE EGENSKAPER
2.1 SPRAKABSTRAKTIONER

VHDL kan anvéndas for att beskriva hardvara pd manga abstraktionsnivaer. Detta har
effekten att ett komplext systems detaljrikedom goms undan ju hogre abstraktionsniva
man har. Med hiénsyn till applikationerna av spraket for en FPGA/ASIC krets kan det
vara till hjdlp om man kan identifiera och forsta tre nivaer av hierarkin (abstraktionen).

Algoritm (funktionell nivd) bestar i huvudsak av instruktioner fér en uppgift som
exekveras sekventiellt. Algoritmen har oftast ingen uppgift om fordrojningar eller
klocka och anvinds mest vid simulering och inte syntes.

RTL (Register Transfer Level) dr den niva dar man oftast beskriver sina komponenter
(t.ex. synkrona, asynkrona nit, register, operatorer). P& RTL-nivan definieras kretsens
beteende som signaler mellan register (t.ex. D vippa) och logiska operatorer samt hur
dessa verkar pa signalen.

Grindnivdn beskrivs oftast som ett nitverk av grindar (grindnit) eller boolesk algebra.

I dagsldget anvinds RTL-nivan for de flesta beskrivningar. Grindnivan 4r inte sa vanlig
och ldampar sig ej for storre, komplexa system. Vi strivar efter att beskriva hardvaran
mera efter vad denna gor och inte hur funktionen utfors. Den funktionella
sprakabstraktionen dr idag inte kompatibel med dagens syntesverktyg. Men i framtiden
ser man en dndring av abstraktionsnivaers anviandning. Utveckling av syntesverktygen
gar mot hogre abstraktionsnivaer och kommer att leda till att dagens norm (RTL)
utvecklas mot en algoritmisk beskrivning.

I Figur 2.1 illustreras ett forenklat utvecklingsflodesdiagram som kan vara anvédndbart
vid konstruktion av digitala system.
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Figur 2.1 Flodesdiagram vid systemutveckling. Det &r inte alltid VHDL - kodningen
utan verifikationsprocessen som dr den mest krivande delen av systemutvecklingen.

2.2  KOMPONENTBESKRIVNING

Komponenter dr ett grundldggande begrepp i VHDL, de dr de delar som ett system
byggs upp av. Dessa komponenter har den viktiga egenskap att de kan ateranvéndas,
genom att skapa komponentbibliotek didr dessa sparas for att didrefter mojliggora
instansiering i andra konstruktioner. Notera att en komponent kan bestd av flera andra
komponenter som t.ex. CPU, styrkretsar mm.

Samarbetet mellan komponenter i ett storre system kan vara svart att beskriva pa
beteendeniva i ett hognivasprak. Komponenterna i sig kan vara nog komplicerade och
hur dessa skall samarbeta dr sprakméssigt dnnu svarare att entydigt beskriva. Det &r hér



strukturella beskrivningen i VHDL kommer till anvdndning. Strukturbeskrivning
(Komponentinstansiering) &r liktydigt med att koppla samman komponenter.

Varje komponent som beskrivs i VHDL &r uppdelad i tva huvudbestandsdelar. En
entitet (eng. entity) deklaration som representerar ett yttre grinssnitt mellan
komponentens omgivning och dess portar. Den andra delen &r arkitekturen (eng.
architecture) som representerar komponentens interna beskrivning dvs. dess beteende
eller struktur.

ain
VHDL
cut
bin KOMPONENT
ain
cut
bin

Figur 2.3 En komponent beskriven i VHDL har en entity (yttre granssnitt) och
architecture (inre struktur/beteende).

Antligen ir det dags att skriva VHDL - kod. Pa foljande sida beskrivs syntaxen for en
entity foljt av tva exempel pa enkla grindar for att ge en inblick i sprakets strukturella
uppbyggnad. Som vi vet dr syntaxen i ett programmeringssprak valdigt viktig. Minsta
teckenfel i texten medfor att koden ej kan kompileras.

En entitet dvs kretsens grianssnitt mot omvirlden beskrivs enligt féljande:

entity <komponent_identifierare> is
Port( <signal_identifierare>: [mode] {data_typ};
<signal_identifierare>: [mode] {data_typ});

end <komponent_identifierare>;




Studerar vi syntaxen till entity, sa mirker man genast att vissa ord som
indentifierare, mode och data_typ dyker upp i texten mer 4n en gang. Om
vi borjar fran den forsta raden och jobbar oss nedat, sa talar den om att entity
anknyts till ett namn (=identifierare). Varje komponent har ett eget namn som
t.ex: counter, adder, mux osv. Entitetens in och ut signaler kommunicerar med
omvirlden via portar, som man naturligtvis finner pa rad tva inom parenteserna till ordet
Port. Hir bér varje signal pa ett distinkt namn (clk, reset, puch_button) f6ljt av vilken
riktning signalen har i forhallande till komponenten och slutligen vilka virden denna
signal kan anta. Kommandot end 1 sista raden markerar ett avslut/begrinsning av
enheten.

Indentifierare
Identifierare anvinds for att namnge saker 1 en VHDL-modell. Det édr en god vana att
anvinda sig av namn som antyder syftet med objektet i fraga. Dock finns det nagra
regler som styr over hur indentifierare kan skrivas:

e Kan endast besta av bokstdver (’a’ — ’z’ gemener och versaler), decimala siffror

(’0’-’9’) och understreck (’_’);
e Maste borja med en bokstav;
e Kan inte avslutas med understreck;

e Kan inte inkludera tva efterfoljande understreck;

Nagra exempel pa giltiga identifierarnamn ér:
A Y1l counter tryck_knapp generera_clk_puls

Exempel pa otillatna identifierar namn:

varde —— innehdller ett otillédtet tecken
8bit_adderare -- bdrjar inte med en bokstav
_Ain —-— bdrjar med ett understreck

Aut __ —— avslutas med ett understreck
reset__knapp - tva efterfdljande understreck
Mode

Mode anger riktningen pa data som passerar genom modulen. Dessa ér foljande:
in —— signalen gar enbart in till komponenten som
—— drivs av ndgon annan komponent. Skrivs pa hdger

—— sida om en tilldelning: r <= c¢ OR inport;

out —— signalen gar enbart ut fran komponenten.
—— Utsignalens varde kan ej lasas 1 komponenten.
—-— Skrivs pa vanster sida om tilldelningsoperatorn:
—-— outport <= a AND b;



buffer —-- signalen gar enbart wut frdn komponenten, men
—-— dess varde ar lasbart i komponenten.
—— kan skrivas pd bada sidor om tilldelningen:
—— Dbuffer_port <= a AND b;
—— r <= buffer_port OR bj;

inout —-- signalen kan ga& i bada riktningar. Dvs. signalen
—— kan lésas eller skrivas av komponenten. Anvands

—— vid bidirektionella bussar.

data_typ

Indikerar vilken typ av data objektet innehaller. Det finns manga datatyper som har
support i VHDL men inte manga ar syntetiserbara. Vi ndmner bara ett par av dessa som
vi kommer att arbeta med:

bit —— antar varde 1’ eller '0';

boolean —— 'true’ eller ’'false’;

integer -— kan anta varden mellan  -2147483648 till
2147483647

std_logic -- &r den typ vi mest kommer anvdnda da& denna

-— kan anta foéljande varden:

'U' - Uninitialized, 'X'" - Forcing Unknown,

'0' - Forcing O, 'l' - Forcing 1,

'Z' - High Impedance, 'W' - Weak Unknown

'L' - Weak O 'H' - Weak '1'

'-' — Don't care * 0, 1 och Z ar syntetiserbara

Observera att spraket inte skiljer mellan stora och sma bokstiver, dirmed motsvarar
klocka och KLOCKA samma identifierare. Men vid anvindning av understreck blir det
signifikant da t.ex. c1k_40Hz och c1k40Hz indikerar tva helt skilda identifierare.

Tva efterfoljande bindestreck ’--” markerar resterande rad som kommentar (ignoreras av
syntesverktyg).



EXEMPEL

Foljande koder beskriver en tva ingangars AND och OR grind:

LIBRARY ieee; Anrop av bibliotek (inbyggda
USE ieee.std_logic_1164.all; funktioner).
entity AND_GRIND is Entitydeklaration. Hur modulens in
Port (a: in STD_LOGIC; resp. utgangar forhaller sig till
b : in STD_LOGIC; omgivningen.
c : out STD_LOGIC);
end AND_GRIND;
architecture struct of AND_GRIND is Architecturedeklaration. Har
forklaras komponentens
begin funktion.

c <= a AND b;
end struct;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity OR_GATE is __— daatyp
Port (a: in STD_LOGIC;

b : in STD_LOGIC;
c : out STD_LOGIC);

end OR_GATE; mode

. (=signalens riktning)
architecture struct of OR_GATE

begin
c <= a OR b; ¢ signaltilldelning

end struct; logisk operator

Samtliga grundliggande logiska operatorer (fran digitalteknikens vérld) &r
fordefinierade i VHDL, dvs: NOT, AND, OR, NAND, NOR, XOR och XNOR.

Innan man skriver sin VHDL kod &r det en god vana att alltid ta med ett vildefinierat
filhuvud. Ett filhuvud har ingen inverkan pa en komponents syntes och implementering,
men dr ddremot viktig for konstruktéren, da denna innehaller betydelsefull information
om komponenten i fraga. Nedan visas ett exempel pa bade filhuvud och VHDL - kod
for en NOR grind.
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—— Company: Company X \

—-— Engineer: Alexander Scott Crayvenn

—-— Create Date: 19:38:20 03/30/2009

—— Design Name: NOR.vhd

—— Module Name: nor - structure

—— Project Name: Exempel

—— Target Devices: Cyclone IT >’Fﬂmnmd
—— Tool versions: Quartus II, ModelSim PE 6.5
—— Description: Synthesizable model for

—= an nor gate

—-— Errors: None

—— Additional Comments: y

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity NOR_GRIND is
Port (a: in STD_LOGIC;
b : in STD_LOGIC;
C : out STD_LOGIC);
end NOR_GRIND;

architecture structure of NOR_GRIND is
signal temp: STD_LOGIC;
begin
temp <= a OR Db;
c <= not temp;
end structure;

Notera. I denna l6sning skapas en intern signal temp som forst tilldelas OR virdet av
insignalerna for att dédrefter invertera signalen som tilldelas c (=utsignalen).

Men som nidmndes tidigare sa #r operatorn NOR redan definierad i VHDL, sa ett
alternativt sitt att skriva ar helt enkelt: ¢ <= a NOR b;

11



2.3 EXEKVERING

VHDL-kod kan antingen beskrivas som parallell (concurrent) eller sekventiell. Det &r
viktigt att kunna sirskilja dessa tva begrepp for att bittre forsta de sammanhang i vilka
de verkar samt hur de beror kodens exekvering. Likt hardvara & VHDL parallell i sin
natur (se figur 2.3). Endast instruktioner som placeras i processer eller funktioner &r
sekventiella. I ett typiskt programmeringssprak som C, C++, exekveras instruktionerna
i en specifik foljd, som bestims av instruktionernas ordning i Kkallfilen, lika sa i
processer i VHDL. Men dven om exekveringen sker sekventiellt inom dessa processer,
sa exekveras kodblocken som en helhet, parallellt med andra processer och funktioner. I
en VHDL arkitektur finns ingen specificerad ordning for varje instruktion, ddrmed

faststills ordningen pa exekvering av de hiandelser som inverkar pa en viss signal.

architecture identifierare_rtl of identifierare is

U

DATA
MODUL

g

ARBETSMINNE

| Deklaration av signaler | 9 Reg A
begin

Parallell sats
Cin
Parallell sats “

=

DATA DATA
ur IN

Process 3

end identifierare_rtl; KONTROLLENKET, > ( e )

Figur 2.3 Visar en enkel datavig med tillhérande komponenter. I verklig hardvara kors
dessa komponenter parallellt med andra moduler i kretsen, diarfor maste VHDL kunna
beskriva denna parallellitet. Den vinstra sidan av bilden forklarar hur en architecture av
en modul kan vara uppbyggd da denna innehaller ett flertal sammanlénkade
komponenter. De signaler som deklareras anvinds for kommunikation mellan dessa
komponenter och dvriga processer 1 koden. Notera att inom processerna sker
exekveringen sekventiellt, men processen som en helhet exekveras parallellt med dvriga
parallella satser.
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3 PARALLELL VHDL

I detta kapitel kommer vi endast berora parallell (concurrent) kod, dvs. vi kommer att
studera de instruktioner som finns utanfor procedurer, processer eller funktioner. Dessa
beskrivs med hjilp av:

WHEN-, WITH-, GENERATE- statements samt Operatorer.

3.1 SIGNALTILLDELNING

En viktig del av VHDL-syntaxen dr signaltilldelningsoperatorn. En signaltilldelning
beskriver hur datavirdet overfors fran en signal, pa hoger sida, till en signal pa den
vianstra sidan om operatorn ’<=’. Den foOrsta signaltilldelningen 1 exemplet
NOR_GRIND (s.12) talar om att data som kommer fran insignalerna a och b flyter
igenom en OR grind som faststéller virdet pa signalen temp (till vinster om operatorn).
Tilldelningen i raden efter ger utsignalen c det inverterade virdet av signalen temp.

Man kan se signaler som ledningar som har till uppgift att sammanbinda flera
komponenter med varandra eller som verkar inom en komponent mellan
sammansdttningar av register mm. En signaldeklaration dr nodvindig for att skapa en
signal. Denna skrivs efter architecture men fore forsta begin instruktionen (mer om
detta sedan). En typisk signaldeklaration kan se ut pa féljande vis:

signal resultat: STD_LOGIC_VECTOR (8 downto 0);

Ovanstaende rad kan forklaras enligt foljande:

Att en signal deklareras syns genom att raden borjar med det reserverade ordet signal
(i blatt). Denna signal (ledning) skall ha ett namn, sa vi valde resultat. Forutom
namnet skall signalens datatyp anges (vad for vdrden denna kan anta). Det ar tydligt att
denna signal dr en 9 bitars vektor av typen std_logic. Bit 8 till vinster om downto
markerar den mest signifikanta biten och da drar man slutsatsen att bit O till hoger
representerar den minst signifikanta biten i vektorn.

3.2 INTERNA SIGNALER

A B b e
I
B - /’f e
7 OR —GA‘ e Ut—
—| “\\ //
——=CD
D > F
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library IEEE
use IEEE.STD LOGIC 11l64.all;

Entity AOI is
port (A, B, C, D : in STD LOGIC;
Ut : out STD LOGIC);
End AOQI;

architecture rtl of AOI is

signal AB, CD, G : STD LOGIC;
begin

AB <= A and B after 3 ns;

CD <= C and D after 3 ns;

G <= AB or CD after 3 ns;

Ut <= not G after 1 ns;
Enc st Ly

Arkitekturen till kretsen ovan har tre signaler med namnen: AB, CD och G av datatypen
STD_LOGIC. Signaler kan ses som portar da dessa ldses och tilldelas pa samma vis.
Signaltilldelningarna innanfor ’architecture’ &dr parallella satser (eng. concurrent) som
exekveras varje gang en signal pa hoger sida om tilldelningsoperatorn @ndrar vérde.
Dirutav har ordningen pa de parallella tilldelningarna ingen betydelse for dess
exekvering da potentiellt tva eller flera tilldelningar kan exekveras inom samma
tidsintervall.

For varje signaltilldelning finns en ingaende fordrojning. Uttrycket pa hoger sida
utvirderas varje gang en virdedndring sker som leder till att vinstra sidan om operatorn
uppdateras efter en viss fordrojning. En VHDL-kod med fordrojningar (ovan) gar att
kompilera men dessa utelimnas vid syntes. De dr ddremot virdefulla vid simulering.

3.3 OPERATORER I PARALLELL KOD

Anvindning av operatorer (NOT, AND, OR, -, + ...) dr det mest elementira sittet att
skapa parallell VHDL kod. Dessa operatorer kan anvindas for att skapa kombinatoriska
kretsar av alla slag. Dock kommer det visa sig att mer komplexa kretsar beskrivs
enklare via sekventiell kodning @ven om kretsen i sig inte innehaller sekventiell logik.

For att fa en bittre forstaelse av detta kommer det i exemplet som foljer pa nésta sida
beskrivas en viljare (MUX) genom att endast anvinda logiska operatorer.

14
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Figur 3.2.1 En 4 till 1 (4:1) véljare (mux)

Figuren ovan visar en 4 ingangars multiplexer med en bit per ingang. Utgangen skall
vara lika med den ingang som viljs av signalerna sO och sl. En implementering av

denna krets via logiska operatorer kan goras enligt foljande exempel:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity MUX is

Port ( a_in : in STD_LOGIC;
b_in : in STD_LOGIC;
c_in : in STD_LOGIC;
d_in : in STD_LOGIC;
sO, sl : in STD_LOGIC;
y_ut : out STD_LOGIC );

end MUX;

architecture Structure of MUX is

begin

(a_in AND NOT s1 AND NOT s0) OR
(b_in AND NOT sl AND s0) OR
(c_in AND sl AND NOT s0O) OR
(d_in AND sl1 AND sO0);

end Structure;

y_ut <=

3.4 WHEN/WITH STATEMENT

Som né@mndes i borjan av kapitel 3 &r WHEN och WITH tva grundldggande parallella
satser i VHDL. I exemplet som foljer visas 16sningen till foregdende exempel (mux)
genom att beskriva komponentens beteende just med dessa tva satser.

15



-------------------------- Med WHEN Sats -

architecture behavioral of MUX is

signal sel : std_logic_vector(l downto 0);

begin
sel <= sl & sO0;

y_ut <= a_in when sel = “00” else
b_in when sel = “01” else
c_in when sel = “10"” else
d_in;

end behavioral;

__________________________ Med WITH Sats

architecture behavioral of MUX is

signal sel : std_logic_vector (1l downto 0);

begin

sel <= sl & sO0;

WITH sel SELECT
y_ut <= a_in when “00”,
b_in when “017,
c_in when “10",

d_in when others;

end behavioral;



3.5 RELATIONSOPERATORER

Likt andra programmeringssprak har VHDL relationsoperatorer som man kan ha nytta
av i manga processer.

Operationssymbol Beskrivning
= Lika med
/= Skilt ifrén
< Mindre &an
> Stdrre an
<= Mindre eller lika med
>= Storre eller lika med

Observera! Blanda ej ihop <=’ relationsoperatorn med signaltilldelningsoperatorn, da de

skrivs pa samma sditt.

3.6 SHIFT OPERATORER

Shift operatorer kan vil komma till hands da man med en rad kod kan beskriva ett
skiftregister. Dessa operatorer ér:

Operator Beskrivning

sl skift at vénster (eng. shift left logical)

srl logisk skift at hoger (eng. shift right logical)

sla aritmetisk skift vinster (eng. shift left arithmetic)
sra aritmetisk skift hoger (eng. shift right arithmetic)
rol rotera vanster (eng. rotate left)

ror rotera hoger (eng. rotate right)

For bittre forstaelse visas exempel for varje operator. Lat oss anta att vi har signalen A
som tilldelas vektorn ”10110101”.

A sll = ”11010100”" —-- logisk skift 2 steg &t véanster, resten fylls
-— med nollor.

A srl = ”00101101" —-- samma som ovan fast med logisk skift hoger.

A sla = ”10101111" —- aritmetisk skift wvanster 3 steg,
—— resterande bitpositioner fylls med vardet av
—— den hogra biten i strangen.

A sra = ”11101101" —— aritmetisk skift hoger 2 steg.

A rol = ”01011011"” -- rotera vanster 4 bitar.

A ror = ”10110110" —-—- rotera hoger 3 bitar.
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4 SEKVENTIELL VHDL

Som vi ndmnde i det foregaende kapitlet & VHDL kod parallell i sin natur. Processer
var didremot de delar av koden som exekveras sekventiellt. Emellertid dr dessa block
parallella med andra utsagor utanfor processen. En viktig aspekt ar att sekventiell kod &r
inte enbart begrinsad till sekventiell logik, utan mojliggdér d@ven uppbyggnad av
kombinatoriska kretsar. I detta kapitel kommer vi reda ut hur processer kan anvindas
for att beskriva komponenter.

4.1 PROCESS

En process ar en sekventiell sektion i VHDL kodning. Den tillkdnnages genom
forekomsten av IF, CASE eller LOOP satser. En process skall anges under architecture
efter forsta begin. I processens sensitivitetslista ingar de signaler som skall paverka
processens exekvering. Varje gang en signal i sensitivitetslistan berors (dndrar virde)
startar processen. Syntaxen for en process visas nedan:

[process_namn:] process (sensitivitetslista)
<variabel namn :data_typ {:= initial_varde;}
begin

<sekventiella satser>

end process [process_namn];

Om variabler anvidnds skall dessa anges i processens deklarationsdel (mellan process
och begin). Initialvdrdet for variabeln &ar ej syntetiserbart och anvidnds endast vid
simulering. Anvéndning av process_namn ér valfritt men rekommenderas da det

fortydligar kodens syfte och ldasbarhet.

En process blir aktiv da
signal(er) i sensitivitylist eller
i wait-statement andrar varde

En process blir inaktiv / avvaktar
nar exekveringssekvensen nar
wait-statement alt. end process

Exempel pa aktivering av processer:
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process(x, y, z)
begin

Ut <= (x and y) or z;
end process;

process
begin

Ut <= (x and y) or z;
wait on x, vy, =z
end process;

4.2 IF STATEMENT

En if statement &r en sekventiell sats som exekverar andra sekvens-satser da ett villkor
uppfylls. En if statement kan efterféljas av en else del som exekveras da villkoret /
pastaendet under if #r falskt. Varje if statement skall avslutas med en korresponderande
end if. Observera att end if dr tva separata ord — att skriva endif dr ett vanligt
forekommande fel!

EXEMPEL

Ett if-statement syntetiseras genom skapandet av en multiplexer for de signaler och
variabel som tilldelas if satsen. Select signalen till varje multiplexer drivs mha
tillstandet av if satsens logiska utfall och dess dataingangar bestims av uttrycket pa
hoger sida om tilldelningsoperatorn (se figur med tillhérande VHDL-kod nedan).

0
— Ao MUX |—F— Ut
MUX —M—«% :
—B— 1
| —s2—
(TD —s3—

19



process (S1, S2, S3, A, B)
variable V : STD LOGIC;
begin
if S1 = '0' then
Vi= A;
else
V:i= B;
end if;

if S2 = 1" and S3 = ’1' then
V:= not V;
Cinvel, alit s

F <= V;
end process;

4.3 VARIABLER kontra SIGNALER

En variabel i VHDL ir en tempordr minnesallokering som deklareras och anvéndas
innanfor en process, - till skillnad fran signaler kan variabler ej anvindas for
kommunikation mellan processer. Den mest patagliga skillnaden dr dock att en
signaltilldelning alltid kommer med en fordrojning, medan variabeltilldelningen 4r
omedelbar. P4 detta sitt kan signaler ha en kommande vagfront av viarden och hiandelser
som komma skall.

process (A, B, C)
variable V : STD LOGIC;

begin
V := A and B;
Wi 0= W foue (63

UT <= not V;

end process;

I koden ovan, allokerar variabeldeklarationen (variable V : STD_LOGIC;) en
minnesplats for variabeln V av typen STD_LOGIC. Variabeltilldelningen (V =)
skriver in ett nytt virde pa den reserverade platsen och gor detta virde omedelbart
tillgédnglig for nistfoljande sekventiella satser.

I vissa fall kan variabler anvéndas istéllet for signaler medan i andra fall dr det inte att
rekommendera. For att anvinda variabler och signaler pa ett korrekt sitt skall man halla
foljande punkter i minnet:
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e Variabler deklareras och anvindas i en process (Observera att en variabel kan
endast anvindas 1 den process den deklareras 1). Olikt signaler kan variabler ej
anviandas for kommunikation mellan processer.

e Variabler kan inte anvindas i en sensitivitetslista, ty dr det ej mojligt att aktivera
en process vid variabeluppdatering.

e En variabeltilldelning saknar fordrojningar och #dr didrmed omedelbar, till
skillnad fran signaler som alltid har en *'medfodd’ intern fordrojning.

—B— AND —UT—»
C
\
1] 3]
UT <= (A xor B) and C;
signal TEMP: STD_ LOGIC;:
process (A, B)
> begin
TEMP <= A xor B;
precess (WA, B, CH) end process;
variable TEMP: STD_ LOGIC;
begin process (TEMP, C)
TEMP := A xor B; begin
U <= TEMP and C; UT <= TEMP and C;
end process; endSproeessy

De tre olika kodsnuttarna beskriver samma logiska krets ovan. Den forsta koden
beskriver en signaltilldelning ddr parentes anvidnds for att bestimma
ordningen/prioriteringen pa uttryckets exekvering. I VHDL koden som beskrivs i ruta 2,
deklareras variabeln 'TEMP’ for mellanlagring av vérdet. I det tredje alternativet
anvinds en signal for mellanlagring. Konsekvensen av detta kriver tva processer i
koden.
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EXEMPEL

Nu nér vi har gatt igenom parallell och sekventiell vhdl kodning dr det hog tid for ett
exempel, dir 16sning dr mojlig med bada metoder. Fragan #dr om dessa tva skrivsitt
leder till samma implementerad hardvara.

Skriv en VHDL - kod (entity och architecture) till nedanstaende sanningstabell:
¢ Entity namn: exempel
e Architecture namn: rtl
e Insignaler: X0, X1
e Utsignal: Y

Signalerna dr av typen std_logic.

X0 | X1 Y
0 0 1
0 1 0
1 0 1
1 1 1

For ej angivna tillstand skall Y ha vérdet 0.

Losning 1

library ieee;
use ieee.std logic 1164.all;

entity exempel is
Eor= o (BECORE AN TR S TR O GTE);
XL ¢ in STD LOGIC;
¥ : out &1D LOCIC):
end exempel;

architecture rtl of exempel is
begin
process (X0, X1)
subtype select type is std logic vector (1 downto 0);
begin
case select type B X0 SE X1} Als
i WO [ RILEW (| WAL =5 N = VALY g
when others => Y <= '0"';
end case;
end process;
end rtl;
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Lésning 2

library ieee;
tse icee.std logie 1164 “all:

entity exempel is
Port ( X0 : in STD LOGIC;
X1 : in STD_LOGIC;
Y : out STD LOGIC);
end exempel;
architecture rtl of exempel is

signal X value : STD LOGIC VECTOR(1l downto 0);

begin
X value <= (X0 & X1);

Y <= /1" when X value = 700" or ”10" or “11" else
IO'I’.

end rtl;

En viktig tumregel for en konstruktor &dr att kdnna till hardvaran som skapas av

motsvarande VHDL kod. Losning 1 och Losning 2 kommer inte att resultera i samma

hardvara. Man kan se tydligt att Losning 2 kommer skapa en MUX (when statement)

medan i Losning 1 bygger pa en process som inte dr beroende av en klocka ddr case

satsen kommer resultera i att minneselement jimfors innan tilldelning till utsignalen.

Den forsta koden &r opraktisk, dels for att konstruktoren ej vet vad koden skapar

(syntesen beror ocksa i detta fall av vilket verktyg som anvénds) samt att denna tar upp

mer utrymme i FPGA’n.
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5 SYNKRON och ASYNKRON kodning

I digitalteknikens grunder har vi lért oss att synkrona processer koordineras i en tidsaxel
(ar beroende av en klocka). Medan det motsatta giller for asynkrona nit.

Vid kodning av synkrona processer, dr det en god vana att ta med en asynkron reset.
Skillnaden mellan synkron och asynkron reset visas 1 kodexemplen nedan:

Asynkron reset

process (RST, CLK)
begin
if (RST='1') then -- hogaktiv reset
counter <= ( others => '0' );

elsif rising edge (CLK) then
counter <= counter + '1l' ;

end if;
end process;

Synkron reset

process (CLK)
begin
if rising edge (CLK) then
if RST='1' Then -- aktiv hég reset

counter <= ( others => '0' ):
else
counter <= counter + 1;
end if; ——- Reset
end if; -- CLK

end process;

Notera att asynkron reset beskrivs fore klockan (CLK) i if-satsen medan vid synkron
reset skrivs denna efter klockan. Forklaringen dr enkel. Som vi vet sedan kapitel 4,
exekveras en if-sats sekventiellt. Detta betyder att pastaendet som star forst i if-satsen
har en storre prioritering. Notera dven att vid en synkron reset sa finns inte RST-
signalen med 1 processens sensitivitetslista.

Andledningen till att vi vill anvinda asynkron reset dr att minneselementen i FPGA

kretsen dr utrustade med asynkron reset, dirmed dr det “gratis” att anvinda asynkron
reset.
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6 GENERICS

Oversatt till svenska betyder ‘generic’ allmin, som ir ett reserverat ord i VHDL och

anvidnds vid specifikation av allminna, statiska parametrar som med modifikation kan

anpassas for olika applikationer. Syftet med generics dr att géra koden mer flexibel,

sarskilt vid forekomsten av databussar. Denna deklareras under komponentens entity

dir den ses som en global parameter. Syntaxen for en generic-deklaration visas nedan:

GENERIC

([namn] : data typ :=

[vardel]) ;

library IEEE
use IEEE.STD LOGIC_ 1

Entity Comp is
Generic (n: INTEGER
port ( DATA A

le4.all;

= 4]}
in STD LOGIC VECTOR (n-1 downto 0);

DATA B in STD LOGIC VECTOR (n-1 downto 0);
L TH out STD LOGIC;
EQ out STD LOGIC;
GR TH out STD LOGIC);
End Comp;
architecture behv of Comp is
begin
process (DATA A, DATA B)
begin
if (DATA A < DATA B) then
L TH <= fl';
EQ <= 0"';
GR TH <= '0';
elsif (DATA A = DATA B) then
LTH <= *"0";
EQ <=L
GR TH <= '0"';
else
L TH <= #0':
EQ <=0
GR TH <= ’1';
end if;
end process;
end behv;

I exempelkoden ovan anvinds GENERIC for att specificera parametern 'n’ av typen

INTEGER vars virde anges till 4, dvs. var dn i koden (entity eller architecture)

parametern 'n’ star angiven, sa kommer dess virde att forknippas med 4.

25



7 KOMPONENT DEKLARATION/INSTANSIERING

Figuren nedan visar komponenten 'MUX’ som i sin tur bestar av andra
subkomponenter. Koden idr strukturellt uppbyggd pa en hogre abstraktionsniva.
Komponentdeklarationerna (NOT och AOI) i koden skall ha samma motsvarighet som
dess entitet med avseende pa namn, portar och datatyp. I arkitekturen STRUCTURE
gors instansiering av de tva subkomponenterna INV och AOI. Komponentnamn efter
“component’ dr referenser till entiteter som &dr definierade utanfor MUX. Portnamnen i
komponentdeklarationen anvinds for identifiering av portar under ’port map’
(=namnassociation). Notera att bade INV samt AOI komponenten har portar med
samma namn. Detta &r fullt tillatet i VHDL.

SEL > SEL_i

DATA_A >

AOl —F— ol UT—»

DATA_B »

library IEEE
use IEEE.STD LOGIC 1164.all;

Entity MUX is
port ( SEL : in STD LOGIC;
DATA A : in STD LOGIC;
DATA B : in STD LOGIC;
uT : out STD LOGIC);
End MUX;

architecture structure of MUX is
component INV
port(A : in STD_LOGIC;
F : out STD_LOGIC );
end component;

component AOI
poxt (A BN CTDE: T A E TDST,0GTC
Ut : out STD LOGIC );
end component;

signal SEL i, F : STD_LOGIC;
begin
inst 1: INV
Port map ( A => SEL,
F => SEL i );

inst 2: AOT

Port map ( A => SEL i,
B => DATA A&,
Cc => SEL,
D => DATA B,
Ut => F );

inst 3: INV
Port map ( A => F,
F => Ut );

End structure;
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Port map kan antingen beskrivas genom namnassociation eller positionsassociering.
Med namnassociation anges komponentens portnamn och de signaler de ansluts till,
medan vid positionsassociering dr det ordningsfoljden av signalerna i port map som
bestimmer vilken port de ansluts till.

For enkelhets skull visas ett exempel nedan som klargor skillnaden.

—DATA_A—{ A

KOMPONENT C —SEL—»

— DATA B—»| B

Component KOMPONENT
Port ( A : in STD LOGIC;
BRI S DT O ENE
C : out STD LOGIC );
End component;

Signal DATA A, DATA B, SEL : STD LOGIC;

Namn association

Kl: KOMPONENT port map (A => DATA A, B =>DATA B, C =>SEL);

Position associering

K1: KOMPONENT port map (DATA A, DATA B, SEL);

7.1 DIREKT INSTANSIERING

Med direkt instasiering slipper man krangel med komponentdeklarationer i koden. Dock
har denna metod viss nackdel. Entiteten som instansieras skall dessforinnan redan vara
skriven och kompilerad, samt att ens design inte dr lika flexibel. Om man ténker sig
figuren pa nista sida (kretskortanalogin), sa motsvarar denna metod en direkt 16dning av
komponenten pa kretskortet vilket forsvarar ett eventuellt byte av komponenten i fraga.
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I exemplet som foljer visas en VHDL kod dér direkt instansiering anvénds for att
beskriva var tidigare kinda komponent, multiplexern.

library IEEE
use IEEE.STD _LOGIC_ll64.all;

Entity MUX is

port ( SEL : in STD_LOGIC;
DATA A : in STD_LOGIC;
DATA B : in STD_LOGIC;
UT : out STD LOGIC);
End MUX;

architecture STRUCTURE of MUX is
signal SEL_i, F : STD_LOGIC;
begin

Gl: entity WORK.INV(rtl) port map (A=> SEL, F=> SEL i);

G2: entity WORK.AOI(rtl) port map (A=> SEL_i, B=> DATA A,
C=> SEL, D=> DATA B,
Ut=> F);

G3: entity WORK.INV(rtl) port map (A=> F, Ut=> UT):;

End STRUCTURE;

INSTANSIERING

KOMPONENT
#1
KOMPONENT
#2

Att ldra sig nya definitioner och ord i ett nytt sprak kan vara forvirrande da man har
svart att associera dessa med nagot verkligt. Men vi har turen pa var sida for VHDL
beskriver just nagot verkligt dvs. hardvara. Pa bilden ovan tar vi hjilp av kretskort
analogin som illustrerar vad man i sjidlva verket menar med VHDL entitet, port,
komponent, signal och instansiering.

28



8 TILLSTANDSMASKINER (eng. FSM = Finite State Machine)

8.1 MEALY /MOORE

En tillstandsmaskin #r en vildigt anviandbar abstraktion for konstruktion av digitala
kretsar. Som det engelska namnet antyder #r tillstindsmaskinen digital logik med ett
andligt antal fasta tillstand. En FSM anvénder virdet av dess ingangar och aktuella
tillstand for att bestimma virdet pa dess utgangar samt nistfoljande tillstand. I detta
hifte tar vi endast upp synkrona FSM dvs. dir tillstandet @ndras pa en aktiv klockflank.

Sjdlva hardvaran (arkitekturen) av en tillstandsmaskin bestar av ett tillstandsregister,
kombinatorisk logik for att bestimma nista tillstind samt kombinatorisk logik for
utsignalerna (se bild nedan).

En tillstandsmaskin kan i huvudsak beskrivas pa tva olika sitt, dopta efter dess grundare
Moore och Mealy.

e Utsignalerna av en Moore maskin &r endast beroende av det aktuella tillstand
som maskinen befinner sig i. Detta leder till att utsignalerna @ndrar virde
endast nér tillstindsmaskinen byter tillstand.

e Utsignalerna av en Mealy maskin dr dels beroende av de aktuella virden pa
ingangarna och dels det aktuella tillstandet. Pa sa vis kan en &ndring pa
inportarna leda till en dndring i utsignalerna utan att invénta nésta tillstand.

TILLSTANDSMASKIN

Moore maskinens
utgangar beror endast
pa aktuellt tillstand

LOGIK for
NASTA TILLSTAND

LOGIK fér

Utsignaler-»
UTSIGNALER

TILLSTAND
REGISTER

Insignalers

—CLK—>
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reset

EXEMPEL .

En SR-vippa beskriven mha en tillstandsmaskin

198
reset

-
set

Nedan visas en grundldggande mall som beskriver en tillstandsmaskin i VHDL.

ARCHITECTURE Arc_FSM OF FSM IS
TYPE StTyp IS (S0, S1, S2, S3);
SIGNAL NState, State: StTyp;

BEGIN
——————— Synkron Process ------------
Synk_proc:PROCESS(clk_50, Reset)
BEGIN
IF Reset='0' THEN
state <= S0;
ELSIF rising_edge(clk) THEN
state <= NState;
END IF; -- CLK
END PROCESS Synk_proc;
--- Main Process ----------
PROCESS (state,....)
BEGIN
port/signal <= vérde; -- Defoult
CASE state IS

port/signal <= varde; -- Moore output
IF cond THEN
port/signal <= varde; -- Mealy output
NState<=S1;
ELSE
port/signal <= varde; -- Mealy output
NState<=S2;
END IF;

WHEN S2 =>
WHEN S3 =>

WHEN OTHERS =>
NState<=S1;
END CASE;
END PROCESS;
END Arc_FSM;




9 TESTBANKAR

VHDL mojliggor inte bara beskrivning av hardvara och digitala system utan dven
mojligheten att simulera dessa via testbankar som genererar in stimuli till designen och
analysera resultatet. Denna mangsidighet gor att en kod kan ersitta dyra oscilloskop,
signalgeneratorer och specialbyggda komponentinterface. En annan aspekt av dess
mangsidighet dr da en testbank skrivs som en .vhd fil kan denna flyttas mellan CAD
verktyg. Figur (. ) illustrerar en generell uppbyggnad av en testbénk.

TE3T3.0,1.€

TA——>

=
Z
> w
STIMULI 1.8 é% T UT
GENERATOR =g -
Q
o5

_—

ENTITET
MUX
=
_'

w
m
-

Figur ( . ). Testbdanken genererar insignaler till komponenten som befinner sig under
testlage (eng. uut = unit under test). For att manuellt bekréfta kretsens funktionalitet
behovs ett verktyg som ModelSim (waveform editor). Om man inte har lust att se pa ett
diagram kan en testbidnk skrivas sa att den sjidlv mirker av fel i utsignalen och
rapporterar detta till konstruktoren via ett felmeddelande.
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10 MODELSIM

ModelSim ir ett véldigt anvindbart verktyg for kompilering och simulering av VHDL
kodade komponenter. Denna mjukvara finns tillginglig for gratis nedladdning under
lanken http://www.model.com/downloads/default.asp med namnet ModelSim PE

Student Edition vilket dr en nagot begrinsad version men fullt tillricklig for vara
konstruktioner.

10.1 START AV NYTT PROJEKT

Vi antar att ldsaren dr bekant med PC och en Windows miljo, dédrav hoppar vi 6ver alla
onddiga grunder och gar rakt pa sak.

Add Transcript Tools Layout Window Help
Y “ el [ B SEQH|| BT e it < 2 ¥ ;H YR 1 @ f‘“ oyout fabeaign vl

<o Desion Loaded>

Bilden ovan visar hur ModelSim kan se ut vid uppstart

Det forsta som bor goras om man vill skapa en VHDL komponent i ModelSim ér att
starta ett nytt projekt. Men innan man paborjar med detta dr det rekommenderat att
skapa en ny mapp dir projektet kommer sparas i, da programmet ej gor detta at en. Man
skapar ett nytt projekt under File menyn, genom att vilja: File => New => Project.

M Create Project % ]

I det nya fonstret som Oppnas (till vénster)

Project Name

| | || anger man projektnamnet och dess plats (den

Praject Location ' || nyskapade mappen). Under ’Default Library
|C:.n"l{c:deltech_pe_edu_6.Sax‘examples Browse...

Name’ anges namnet pa den under mapp dér

Default Library Mame
|w-: rk

all kompilerad kod kommer att hamna. Det

rekommenderas att lata dessa instillningar
Copy Settings From -

|ch_pe_e:1u_6 .5a/modelsim.ini Browse... vara ordrda. Ndr man ar fardlg tI'YCkCI' man
% Copy Library Mappings { Reference Library Mappinas

givetvis pa ’OK’. Detta 6ppnar ett nytt
o | _cancel || | fonster (se nista sida).
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— rddi ; | 52 |
M Add items to the Project oo G
Click on the icon to add items of that type:-
[l ]
Create Mew File Add Existing File — T N
M Create Project File &
- File Mame
ﬂ i | Browse. ..
Create Simulation Create New Folder Add file as type- —— e
_ | oo | Top Level hd
Close oK Cancel
L "y A A

I detta nya fonster (vinster) kan man skapa nya filer eller ldgga till filer i projektet. Nar
man viljer att skapa en ny fil (hdger) kan man vilja filtyp under *Add file as type’ sa
filnamnet far en korrekt dndelse. Efter ’OK’, 6ppnas en ny flik med namnet *Projekt’ i
Workspace fonstret i det 6vre vinstra hornet innehéallande den nya filen. Dubbelklicka
pa den nyskapade filen och ett editorfonster Gppnas till hoger (se bild nedan).

WL [ e B[ OERA| LT wema] 1w 2 < T x» ]| XOX B B p]] ot et =1

K] | -] Colsers/ASCIDocments Test desgn n WL flestestL v #ax
[mname. ststulype [ordeimadiied I Lne |
il ? WO 0 oSmABRTSIN 1

[Protect  Test [ <40 Design Loaded>

Nista steg dr att skriva VHDL kod. Notera att editorn fargsidtter VHDL kommandon,
datatyper och ovriga reserverade ord for enklare avldsning. Genom att hogerklicka pa
editor fonstret och vilja ’Show Language Templates’ kan man ldgga till enkla
mallar/kodkonstruktioner till designen genom att dubbelklicka pa den valda mallen.

_ Cifusers/asc/bo DL /Test/testl. Hdl x|
Language Templates ne | !
X New Desion
Create Testbench
B[ Language Construc
W\ Library Detinit
E] Enticy architecture name;
A -
6P| Package
B—C] Configuration
(D] Declarations
B8] statements
EHZ Stimulus Generatc

architecture
architecture name of entity name is

s
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10.2 KOMPILERING AV KOD

Innan simulering av komponenten kan ske maste denna kompileras. Detta kan goras via
menyn "Compile’ eller genom att hogerklicka pa vhdl filen i projektmappen (har man
fler filer som skall kompileras under ett projekt kan detta goras genom att vilja
’Compile All’). Om kompileringen gar helt felfritt visas inga felmeddelanden (beroende
pa vilken version man kor, kan det dven visas ett meddelande i form av: Compile of
fil_namn was succesful). Om diremot ett/flera fel forekommer vid
kompileringen visas detta med rod text 1 *Transcript’ fonstret (se bild nedan).

F l Transcript

# Reading C:/Modeltech pe_edu 6.5a/tcl/vsim/pref.tcl
# Loading project test_counter
Compile of counter.vhd failed with 1 errora.

ModelSim =

Dubbelklickar man pa den roda texten, oppnas ett nytt fonster som ger mer detaljerad
information (skrivet i rott) om vilken rad samt de syntax fel som skall rittas till.
Dubbelklickar man pa forklaringen sa markeras motsvarande rad och textavsnitt i koden
(text editorn) som skall rittas till.

10.3 SIMULERING

Efter felfri kompilering dr det dags for simulering av komponenten. Vilj Simulate =>
Start Simulation. Ett nytt fonster Oppnas (nedan) och man viljer den entitet som skall
simuleras. Dessa hittas under work mappen (tryck pa ’+’ tecknet till vinster for att visa
alla entiteter samt dess arkitektur).

- 1
M Start Simulation |£|
Design ] WHDL ] Verilog ] Libraries ] SDF ] Others ] ﬁﬂ
'1Name |Type |Paﬂ1 | | S
:.—@ work Library C:/Users/ASC/Documents/Test desian ...
+HE] counter Entity C: Users/ASC /DocumentsTest design ...

gl foatfixiib Library SMODEL_TECH/. . /floatfixib

gl mtiAvm Library SMODEL_TECH/.. favm

19—M mtQvm Library SMODEL_TECH/..fovm-2.0.1

), mtiPA Library SMODEL_TECH/.. /pa_lib

ﬂ—M mtUPF Library SMODEL_TECH/.. /upf_lib

el sv_std Library SMODEL_TECH/.. /sv_std

#rh, vitalzo00 Libwrary $MODEL_TECH/.. jvital2000 _._.J

An . .. e e e I

A 2

Design Unit{s) Resolution

| default ﬂ
Optimization

I~ Enable optimization Optimization Options...
L v

34



Nér man valt sin entitet for simulering visas ett annat fonster med namnet *Objects’. Har
visas alla de portar och signaler som tillhor design hierarkin. For att fa en anviandning av
dessa skall de flyttas over till Wave editorn, dédr de kan studeras grafiskt. Markera de
signaler och portar av intresse, hogerklicka och vilj ’Add => To Wave => Selected
Signals’, varav ett nytt wave fonster Oppnas med de valda signalerna. Genom att
hogerklicka pa signalerna kan man &@ndra bla. visningsldge fran binér till decimal form,
fargsitta mm.

| Q Wave o [ H A %
Messages

Joounter jdk u
Jcounter fen u
feounterfreset U
fcounter fdata LUUUUUUULUUUUL,
feounterfresult 0000000000000000

i) 0ns E i l:::_.'_:_ .:::::-::: ::::-::i-:___-_:::: t i
Cursor 1 ons [0 s ]
i3 K5 [ [ |

Innan simulering startas 4r samtliga portar och signaler odefinierade.
Simuleringskommandon skrivs 1 *Transcript’ fonstret déir signaler tilldelas ett virde

genom: force signal_namn varde. Ex. force signal_a 1010.

Man kan dven ange en tid for signaltilldelningen:

force signal_a 0 0, 1 100ns, 0 200ns

Kommandot ovan talar om att signal_a sitts till virdet O nér tiden dr 0, den far virdet 1
vid tiden 100ns och vérdet 0 igen vid tiden 200ns.

Repeat kommandot kan vara anviandbar vid skapande av en klocksignal, se exempel:
force signal_a 0 0, 1 50ns -repeat 100ns
Kommandot ovan skapar en symmetrisk klocksignal med perioden 100ns.

Force kommandot kor inte sjdlva simuleringen, utan sitter endast vérden till signaler

och portar. For att kora igang simuleringen skriver man enligt foljande:
run [<simuleringstid>]
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10.4 .DO filer

Att skapa in stimuli till sin design enligt metoden ovan dr mer lampligt for sma kretsar,
men vid storre system kan detta bli en trottsam process. Istdllet for aterupprepande
force” kommandon, skapas en testbink som genererar ldmpliga insignaler till
komponenten. Hela simuleringsprocessen automatiseras genom skapandet av en .do fil
(kan skapas i windows anteckningar) som bygger pa samma enkla mall som exemplet

nedan visar:

# Close existing ModelSim simulation

quit -sim

# Create libraries

if {[file exist work] ==0} {exec vlib work}

# Compile top level files
vcom —-93 —explicit -work work "../Source/Vhdl/alu.vhd"
vcom —-93 —-explicit -work work "../Source/TB/alu_tb.vhd"

# load simulation

vsim -t lps work.alu_tb

# Set waveform display

do alu_wave.do

# Run simulation

run 600 us

Vi forklarar .do filen ovan rad for rad. Samtliga rader som borjar med ett '# tecken ses
som en kommentar och ignoreras vis exekvering. Det allra forsta kommandot i filen
stanger alla tidigare simuleringar, om sadana finns, innan den aktuella simuleringen
paborjas. Nista del i koden undersoker om en arbetskatalog (work) finns till hands dér
de kompilerade filerna ldggs. Om sadan saknas, sa skapas ett.

Nu kommer vi till sjélva filkompileringen. Observera att ordningen pa kompileringen
spelar stor roll da denna exekveras sekventiellt. I kort sa star det att filen alu.vhd skall
kompileras foljt av dess motsvarande testbdnk alu_tb.vhd. Dessa filer kompileras via
vhdl standard -93, och finns i work-mappen med beskriven sokvidg. Nista steg dr att
paborja simuleringen. Hir anges den minsta diskreta tid pa tidsaxeln (i vart fall 1
picosekund) samt den fil som anropas i work mappen. For att fa fram den resulterande
grafen sa 6ppnas wave fonstret via do kommandot. Till sist anger vi simuleringstiden.
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11 VHDL KOMPONENTER

Tri State Buffer ‘

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

entity tristate is
Port( DATA IN : in STD LOGIC_ VECTOR (
EN : in STD LOGIC;
DATA UT : out STD LOGIC VECTOR (

end tristate;

architecture behavior of tristate is
begin

process (DATA_IN, EN)
begin
if EN='1' then
DATA UT <= DATA IN;
else
DATA UT <= (others =>'2');
end if;
end process;

end behavior;

downto

downto

);

)5

2:4 Avkodare

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

entity avkodare is

end avkodare;

architecture behv of avkodare is

begin
process (I)
begin
case I is

when "00" => O <= "0001";
when "01" => O <= "0010";
when "10" => O <= "0100";
when UM =>SaE<=nTi0 000

when others => 0 <= "XXXX";
end case;
end process;

end behv;

PO (ST - a1 STD_LOGIC_VECTOR (1 downto 0);
O : out STD LOGIC VECTOR(3 downto 0));
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Heladderare

library IEEE;

use IEEE.STD LOGIC_1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity heladder is

Poxt ( a ST STD LOGIC;
b : in STD LOGIC;
cim @ ain STD_LOGIC;
cut : out STD LOGIC;
S : out STD LOGIC);

end heladder;
architecture Structure of heladder is
begin
S <= a XOR b XOR cin;
cut <= (a AND b) OR (a AND cin) OR
(b AND cin);

end Structure;

n bitars adderare

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC_UNSIGNED.ALL;

entity n bit add is

Generic (n: integer :=8);
Port( A, B: in STD LOGIC_ VECTOR( downto
Calim, £ Al STD_LOGIC;
S : out STD LOGIC VECTOR ( downto

CUt : out STD_ LOGIC );
end n bit add;

architecture behavioural of n bit add is

signal total: STD LOGIC VECTOR (n downto 0);
signal carry: STD LOGIC VECTOR (n downto 0);
begin

carry <= (0=>Cin, others=>'0");

total <= ('0'& B) + ('0'& B) + carry:

5 <= total ( downto ) ;

@0 <= total (n) ;
end behavioural;

)

i
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D latch

library IEEE ;
use IEEE.STD LOGIC 1164.ALL;

entity D latch is

Port( DATA IN : im STD LOGIC;
EN : in STD LOGIC;
DATA UT : out STD_LOGIC);

end D latch;

architecture behv of D latch is

begin

process (DATA IN, EN)

begin

if (EN='1") then
DATA UT <= DATA IN;
end if;

end process;
end behv;
D flip-flop

library IEEE ;
use IEEE.STD LOGIC 1164.ALL;

entity d ff is

Port( DATA IN : in STD LOGIC;
CLK : 4in STD LOGIC;
DATA UT : out STD LOGIC );
end d ff;

architecture behav of d ff is
begin
process (DATA IN, CLK)
begin

if (CLK=''' and CLK'event) then

DATA UT <= DATA IN;
end if;
end process;
end behav;
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Raknare med parallell laddning |

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity counter is

Port (LD : in STD LOGIC;
RST : in STD LOGIC;
CLE ainsup Ene:
DATA IN : in STD LOGIC_VECTOR (
uT : out STD LOGIC VECTOR (

end counter;

architecture beh count of counter is

signal result: STD LOGIC VECTOR( downto
(others => '0');
begin
process (CLK, RST)
begin
if RST='1' then
result <= (others =>'0");
elsif (CLK'event and CLK ='1l"') then
if LD='1' then
result <= DATA IN;
else
result <= result + 'l';
end if;
end if;

end process;

UL <= result;
end beh count;

downto
downto

) &
)) ¢
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12 OVRIGT
12.1 MANIPULATION AV KLOCKFREKVENS

I detta avsnitt kommer vi visa hur man anvénder sig av en ridknare for att minska en
klocka till 6nskad frekvens. Vi kan tdnka oss att vi har en klockingang pa 10Hz som vi
vill fa ner till 1Hz, enl. bild nedan:

1 2

|
|
|
S s R
|
|
|
|
|
|

Onskad frekvens

Wy einlininininiginigint

| I I ] | | 1 | I I
| I | [ I | | | | |
| | | [ I I I | | |

Raknare

Detta gors med tva enkla steg:

e For att bestimma den nya frekvensen
Aktuell frekvens
Onskad frekvens

= grdnsvdrde for rdknaren. Om riknaren nar detta griansvirde,

nollstills denna.

e Att bestimma ’duty cycle’ (= den tidsintervall inom vilket systemet/klockan &r i
aktivt 1age). Vi sitter duty cycle till 50%, vilket motsvarar en “fyrkantspuls”.

Det berdknade gransvardet
2

110:ZZ = 10 = X”A” (grinsvirde for riknaren)

Vi stoppar in vara viarden och far:

50% duty cycle blir da: = = 5.

For att vidare fortydliga detta visas ett vhdl exempel pa nista sida.
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signal CLK 2 : STD LOGIC;
signal counter : STD LOGIC VECTOR( downto U);

architecture rtl of slow clock is
Begin

process (RST,CLK_24MHz)

begin
if (RST=''') then
CLE 2 <= '0';
counter <= ( others => '0' );
elsif rising edge (CLK_24MHz) then

counter <= counter + '1'

Duty cycle:

if counter < X"5B8D80" then
GLE 2 ==
else
CLK 2 <= '0' ;
end if;
if counter = X"B71B00" then
counter <= ( others => '0' );
end if;

Aktuell frekvens

Onskad frekvens

B71B00
2

= 5B8D80

end if;
end process;

Innan vi skriver var architecture sa maste tva signaler skapas. Den ena doper vi till
CLK_2 vilket kommer motsvara var langsammare klocksignal och den andra signalen
ar for riknaren (Observera att denna #dr en 24 bitars vektor). Sa, varfor sitter vi var
raknare till 24 bitar. Jo, vi anvinder oss av en 24MHz klocka och 6nskar en frekvens pa
2Hz. Om vi stoppar in dessa vérden i formeln pa foregaende sida far vi ett HEX virde
av "B71B00”. Vi vet sedan digitalteknikens grunder att varje HEX virde motsvarar 4
bitar, ddrmed 4x6 = 24 bitar. Nu nir detta dr avklarat tittar vi ndrmare pa processen i
koden. Da detta ir en klockberoende process, skriver vi en asynkron reset (RST), detta i
fall vart system/klocka laser sig sa kan en omstart goras. Vid nista kodsektion talas det
om att riknaren 6kar med ’1° pa varje positiv klockflank. Direfter skall duty cycle
sittas. Vi har valt att skapa en fyrkantspuls (se formel pa foéregaende sida) dvs.
B71B00 / 2 = 5B8D80 och da riknaren har ett mindre virde sitts var nya klocka
(CLK_2) till 1, om annat till 0. Om ridknaren nar upp till gransvdardet "B71B00”
nollstélls denna. Det dr viktigt att nollstélla rdknaren, annars kommer denna rikna upp
till "FFFFFF”.

Om duty cycle skall vara 50% kan vi gora en enklare kod genom att invertera signalen
CLK_2 (CLK_2<=not CLK_2;) varje gang riknaren nar halva periodtiden dvs 5B8D80
i vart fall. Pa sa sitt behovs enbart ett HEX-virde att hantera om frekvensen skall

andras.
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12.2 RESERVERADE NYCKELORD I VHDL

Det finns ett stort antal reserverade identifierare i VHDL som ej kan anvdndas som

egendefinierade namn. Dessa listas nedan:

abs

access
after

alias

all

and
architecture
array
assert
attribute
begin
block

body
buffer

bus

case
component
configuration
constant
disconnect

downto

else

elsif

end
entity
exit

file

for
function
generate
generic
group
guarded
if
impure
in
inertial
inout

is

label
library
linkage
literal

loop

map
mod

nand

new

next

nor

not

null

of

on

open

or

others

out
package
port
postponed
procedure
process
protected

pure

range
record
register
reject
rem
report
return
rol

ror
select
severity
signal
shared
sla

sl

sra

srl

subtype

then

to
transport
type
unaffected
units
until

use
variable
wait
when
while
with
xnor

Xor
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12.3 GENERELL STRUKTUR FOR MAPP HIERARKIN

(Test Bench)

Denna struktur skall foljas vid laborationerna.

(Component)
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