
1

KRETSKONSTRUKTION MED VHDL

Kurskompendium

ALEXANDER CRAYVENN
SHAWN FARINAM

Projektarbete

Högskoleingenjörsprogrammet för elektroteknik

CHALMERS TEKNISKA HÖGSKOLA
Handledare: Manne Stenberg
Insti tutionen för signaler och system

Göteborg 2010

2

INNEHÅLLSFÖRTECKNING

1 INLEDNING 3
1.1 HISTORIA 3
1.2 VAD ÄR VHDL? 3

2 GRUNDLÄGGANDE EGENSKAPER 4
2.1 SPRÅKABSTRAKTIONER 4
2.2 KOMPONENTBESKRIVNING 5
2.3 EXEKVERING 11

3 PARALLELL VHDL 12
3.1 SIGNALTILLDELNING 12
3.2 INTERNA SIGNALER 12
3.3 OPERATORER I PARALLELL KOD 13
3.4 WHEN / WITH STATEMENT 14
3.5 RELATIONSOPERATORER 17
3.6 SHIFT OPERATORER 17

4 SEKVENTIELL VHDL 17
4.1 PROCESS 17
4.2 IF STATEMENT 18
4.3 VARIABLER kontra SIGNALER 19

5 SYNKRON och ASYNKRON kodning 23

6 GENERICS 24

7 KOMPONENT DEKLARATION/INSTANSIERING 25
7.1 DIREKT INSTANSIERING 26

8 TILLSTÅNDSMASKINER 28
8.1 MEALY / MOORE 28

9 TESTBÄNKAR 30

10 MODELSIM 31
10.1 START AV NYTT PROJEKT 31
10.2 KOMPILERING AV KOD 33
10.3 SIMULERING 33
10.4 .DO filer 35

11 VHDL KOMPONENTER 36

12 ÖVRIGT 40
12.1 MANIPULATION AV KLOCKFREKVENS 40
12.2 RESERVERADE NYCKELORD I VHDL 42
12.3 GENERELL STRUKTUR FÖR MAPP HIERARKIN 43

3

FÖRORD

Detta kompendium är ämnat för studenter inom data- och elektroteknikprogrammet men

också för ingenjörer med intresse för konstruktion av integrerade kretsar via ett

modernt, hårdvarubeskrivande språk. Kompendiet Kretskonstruktion med VHDL är

strukturerat på sådan vis att läsaren kan studera materialet i en kontinuerlig följd, från

början till slut, utan att behöva hoppa mellan kapitel och avsnitt. På detta vis erhålls en

gradvis kunskapsutveckling där varje nytt kapitel bygger på idéer, exempel och verktyg

som introduceras i kapitlen dessförinnan. Kompendiet förklarar grundläggande

utvecklingstekniker för logiska kretssystem, dess syntes samt hur de implementeras.

Fundamentala lösningar illustreras genom exempel som ger läsaren en lätt

överskådlighet av systemens grundläggande byggblock samt hur dessa definieras i ett

hårdvarubeskrivande språk. Vi belyser även konstruktionens väg från syntax, syntes till

implementering i krets via ett modernt och kraftfullt CAD verktyg.

Målet är att ge läsaren en grundläggande förståelse i VHDL språkets tillämpning i de

teknologier som används vid hårdvarukonstruktion av digitala elektroniksystem mha.

moderna CAD-verktyg samt hur dessa lösningar har en praktisk betydelse i industrin.

4

1 INLEDNING

1.1 HISTORIA
Utvecklingen av VHDL påbörjades redan 1981 av det amerikanska försvars-

departementet som ett svar på dåvarande livscykelkris för elektronisk hårdvara.

Produktionskostnaden för hårdvara nådde en kritisk punkt då tekniken bakom

utvecklingsprocessen blev snabbt föråldrad och funktioner för de komponenter som

utgjorde ett större system hade vag dokumentation med en individuell

verifikationsprocess som översvämmade marknaden med otaligt många

simuleringsspråk och verktyg. Behovet av ett standardiserat språk med omfattande

beskrivnings och utvecklingsmöjligheter var stort. Men detta var inte nog, krav ställdes

att detta nya språk skulle bli funktionsmässigt teknologioberoende, som fungerade

likadant oavsett simulering eller konstruktionsmetodik. VHDL har sedan dess utvecklats

under kontroll av IEEE som lade grund för den första standardiserade versionen VHDL-

87. Men som all standard från IEEE, genomgår språket ständiga småförändringar,

främst influerat av användare i näringslivet, därmed ledde detta till en reviderad version

VHDL-93 som numera är den standard som stöds av de flesta kommersiella

utvecklingsverktyg.

1.2 VAD ÄR VHDL?
VHDL är ett hårdvarubeskrivande språk där förkortningen VHDL kommer från VHSIC

Hardware Description Language. Akronymen VHSIC står för Very High Speed

Integrated Circuit. Språket kan beskriva ett beteende eller strukturell uppbyggnad av

elektroniska system och är främst känt för sin anpassning inom beskrivning av digital

elektronikkonstruktion för ASIC- och FPGA-kretsar. VHDL är som tidigare nämnt en

internationell standard som regleras av IEEE. En av huvudorsakerna till språkets snabba

spridning inom hårdvarudesign är att språket inte är proprietärt (dvs språket ägs inte av

någon). VHDL är ett högnivå-, teknologioberoende-, hårvarubeskrivande- språk, som

inte är bundet till viss implementationsteknologi eller simulator som har tendensen att

begränsa ingenjörens kreativitet. Tvärtom ger detta språk utvecklaren möjligheten att

angripa ett problem från flera abstraktionsnivåer samt friheten att välja varierande

tekniska utvecklingsmetoder samtidigt som man håller sig inom ramarna till ett enda

språk. Då VHDL är teknologioberoende kan en kod flyttas mellan olika kommersiella

utvecklingsverktyg utan att någon ändring behöver göras i koden. Stora delar av språket

är syntetiserbara där funktioner bestående av miljoner grindar kan implementeras i en

krets inom loppet av några minuter. VHDL möjliggör även återanvändning

(instansiering) av färdiga komponenter vilket underlättar och snabbar upp en

utvecklingsprocess. Ur ett ekonomiskt perspektiv är fördelarna många och tack vare att

priserna sjunkit de senaste åren är denna teknologi inte bara tillgänglig för stora företag,

men också för mindre bolag som i huvudsak bedriver sin verksamhet inom

hårdvarukonstruktion.

5

2 GRUNDLÄGGANDE EGENSKAPER

2.1 SPRÅKABSTRAKTIONER

VHDL kan användas för att beskriva hårdvara på många abstraktionsnivåer. Detta har

effekten att ett komplext systems detaljrikedom göms undan ju högre abstraktionsnivå

man har. Med hänsyn till applikationerna av språket för en FPGA/ASIC krets kan det

vara till hjälp om man kan identifiera och förstå tre nivåer av hierarkin (abstraktionen).

Algoritm (funktionell nivå) består i huvudsak av instruktioner för en uppgift som

exekveras sekventiellt. Algoritmen har oftast ingen uppgift om fördröjningar eller

klocka och används mest vid simulering och inte syntes.

RTL (Register Transfer Level) är den nivå där man oftast beskriver sina komponenter

(t.ex. synkrona, asynkrona nät, register, operatorer). På RTL-nivån definieras kretsens

beteende som signaler mellan register (t.ex. D vippa) och logiska operatorer samt hur

dessa verkar på signalen.

Grindnivån beskrivs oftast som ett nätverk av grindar (grindnät) eller boolesk algebra.

I dagsläget används RTL-nivån för de flesta beskrivningar. Grindnivån är inte så vanlig

och lämpar sig ej för större, komplexa system. Vi strävar efter att beskriva hårdvaran

mera efter vad denna gör och inte hur funktionen utförs. Den funktionella

språkabstraktionen är idag inte kompatibel med dagens syntesverktyg. Men i framtiden

ser man en ändring av abstraktionsnivåers användning. Utveckling av syntesverktygen

går mot högre abstraktionsnivåer och kommer att leda till att dagens norm (RTL)

utvecklas mot en algoritmisk beskrivning.

I Figur 2.1 illustreras ett förenklat utvecklingsflödesdiagram som kan vara användbart

vid konstruktion av digitala system.

6

Figur 2.1 Flödesdiagram vid systemutveckling. Det är inte alltid VHDL - kodningen

utan verifikationsprocessen som är den mest krävande delen av systemutvecklingen.

2.2 KOMPONENTBESKRIVNING

Komponenter är ett grundläggande begrepp i VHDL, de är de delar som ett system

byggs upp av. Dessa komponenter har den viktiga egenskap att de kan återanvändas,

genom att skapa komponentbibliotek där dessa sparas för att därefter möjliggöra

instansiering i andra konstruktioner. Notera att en komponent kan bestå av flera andra

komponenter som t.ex. CPU, styrkretsar mm.

Samarbetet mellan komponenter i ett större system kan vara svårt att beskriva på

beteendenivå i ett högnivåspråk. Komponenterna i sig kan vara nog komplicerade och

hur dessa skall samarbeta är språkmässigt ännu svårare att entydigt beskriva. Det är här

7

strukturella beskrivningen i VHDL kommer till användning. Strukturbeskrivning

(Komponentinstansiering) är liktydigt med att koppla samman komponenter.

Varje komponent som beskrivs i VHDL är uppdelad i två huvudbeståndsdelar. En

entitet (eng. entity) deklaration som representerar ett yttre gränssnitt mellan

komponentens omgivning och dess portar. Den andra delen är arkitekturen (eng.

architecture) som representerar komponentens interna beskrivning dvs. dess beteende

eller struktur.

Figur 2.3 En komponent beskriven i VHDL har en entity (yttre gränssnitt) och

architecture (inre struktur/beteende).

Äntligen är det dags att skriva VHDL - kod. På följande sida beskrivs syntaxen för en

entity följt av två exempel på enkla grindar för att ge en inblick i språkets strukturella

uppbyggnad. Som vi vet är syntaxen i ett programmeringsspråk väldigt viktig. Minsta

teckenfel i texten medför att koden ej kan kompileras.

En entitet dvs kretsens gränssnitt mot omvärlden beskrivs enligt följande:

entity <komponent_identifierare> is

Port(<signal_identifierare>: [mode] {data_typ};

 <signal_identifierare>: [mode] {data_typ});

end <komponent_identifierare>;

8

Studerar vi syntaxen till entity, så märker man genast att vissa ord som

indentifierare, mode och data_typ dyker upp i texten mer än en gång. Om

vi börjar från den första raden och jobbar oss nedåt, så talar den om att entity

anknyts till ett namn (=identifierare). Varje komponent har ett eget namn som

t.ex: counter, adder, mux osv. Entitetens in och ut signaler kommunicerar med

omvärlden via portar, som man naturligtvis finner på rad två inom parenteserna till ordet

Port. Här bär varje signal på ett distinkt namn (clk, reset, puch_button) följt av vilken

riktning signalen har i förhållande till komponenten och slutligen vilka värden denna

signal kan anta. Kommandot end i sista raden markerar ett avslut/begränsning av

enheten.

Indentifierare

Identifierare används för att namnge saker i en VHDL-modell. Det är en god vana att

använda sig av namn som antyder syftet med objektet i fråga. Dock finns det några

regler som styr över hur indentifierare kan skrivas:

• Kan endast bestå av bokstäver (’a’ – ’z’ gemener och versaler), decimala siffror

(’0’-’9’) och understreck (’_’);

• Måste börja med en bokstav;

• Kan inte avslutas med understreck;

• Kan inte inkludera två efterföljande understreck;

Några exempel på giltiga identifierarnamn är:
A Y1 counter tryck_knapp generera_clk_puls

Exempel på otillåtna identifierar namn:
värde –- innehåller ett otillåtet tecken

8bit_adderare –- börjar inte med en bokstav

_Ain –- börjar med ett understreck

Aut_ -- avslutas med ett understreck

reset__knapp -- två efterföljande understreck

Mode

Mode anger riktningen på data som passerar genom modulen. Dessa är följande:
in -- signalen går enbart in till komponenten som

-- drivs av någon annan komponent. Skrivs på höger

-- sida om en tilldelning: r <= c OR inport;

out -- signalen går enbart ut från komponenten.

-- Utsignalens värde kan ej läsas i komponenten.

-- Skrivs på vänster sida om tilldelningsoperatorn:

-- outport <= a AND b;

9

buffer -- signalen går enbart ut från komponenten, men

-- dess värde är läsbart i komponenten.

 -- kan skrivas på båda sidor om tilldelningen:

 -- buffer_port <= a AND b;

 -- r <= buffer_port OR b;

inout -- signalen kan gå i båda riktningar. Dvs. signalen

-- kan läsas eller skrivas av komponenten. Används

-- vid bidirektionella bussar.

data_typ

Indikerar vilken typ av data objektet innehåller. Det finns många datatyper som har

support i VHDL men inte många är syntetiserbara. Vi nämner bara ett par av dessa som

vi kommer att arbeta med:
bit -- antar värde ’1’ eller ’0’;

boolean -- ’true’ eller ’false’;

integer -- kan anta värden mellan -2147483648 till

 2147483647

std_logic -- är den typ vi mest kommer använda då denna

-- kan anta följande värden:

'U' – Uninitialized, 'X' – Forcing Unknown,

'0' – Forcing 0, '1' - Forcing 1,

'Z' - High Impedance, 'W' - Weak Unknown

'L' - Weak 0 'H' - Weak '1'

'-' - Don't care * 0, 1 och Z är syntetiserbara

Observera att språket inte skiljer mellan stora och små bokstäver, därmed motsvarar

klocka och KLOCKA samma identifierare. Men vid användning av understreck blir det

signifikant då t.ex. clk_40Hz och clk40Hz indikerar två helt skilda identifierare.

Två efterföljande bindestreck ’--’ markerar resterande rad som kommentar (ignoreras av

syntesverktyg).

10

EXEMPEL

Följande koder beskriver en två ingångars AND och OR grind:

LIBRARY ieee; Anrop av bibliotek (inbyggda
USE ieee.std_logic_1164.all; funktioner).

entity AND_GRIND is Entitydeklaration. Hur modulens in

Port (a : in STD_LOGIC; resp. utgångar förhåller sig till
b : in STD_LOGIC; omgivningen.
c : out STD_LOGIC);

end AND_GRIND;

architecture struct of AND_GRIND is Architecturedeklaration. Här

förklaras komponentens
begin funktion.
 c <= a AND b;

end struct;

LIBRARY ieee;

USE ieee.std_logic_1164.all;

entity OR_GATE is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

c : out STD_LOGIC);

end OR_GATE;

architecture struct of OR_GATE is

begin

 c <= a OR b; signaltilldelning

end struct;

Samtliga grundläggande logiska operatorer (från digitalteknikens värld) är

fördefinierade i VHDL, dvs: NOT, AND, OR, NAND, NOR, XOR och XNOR.

Innan man skriver sin VHDL kod är det en god vana att alltid ta med ett väldefinierat

filhuvud. Ett filhuvud har ingen inverkan på en komponents syntes och implementering,

men är däremot viktig för konstruktören, då denna innehåller betydelsefull information

om komponenten i fråga. Nedan visas ett exempel på både filhuvud och VHDL - kod

för en NOR grind.

mode
(=signalens riktning)

data typ

logisk operator

11

--

-- Company: Company X

-- Engineer: Alexander Scott Crayvenn

-- Create Date: 19:38:20 03/30/2009

-- Design Name: NOR.vhd

-- Module Name: nor - structure

-- Project Name: Exempel

-- Target Devices: Cyclone II Filhuvud

-- Tool versions: Quartus II, ModelSim PE 6.5

-- Description: Synthesizable model for

-- an nor gate

-- Errors: None

-- Additional Comments:

--

LIBRARY ieee;

USE ieee.std_logic_1164.all;

entity NOR_GRIND is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

c : out STD_LOGIC);

end NOR_GRIND;

architecture structure of NOR_GRIND is

signal temp: STD_LOGIC;

begin

 temp <= a OR b;

 c <= not temp;

end structure;

Notera. I denna lösning skapas en intern signal temp som först tilldelas OR värdet av

insignalerna för att därefter invertera signalen som tilldelas c (=utsignalen).

Men som nämndes tidigare så är operatorn NOR redan definierad i VHDL, så ett

alternativt sätt att skriva är helt enkelt: c <= a NOR b;

12

2.3 EXEKVERING

VHDL-kod kan antingen beskrivas som parallell (concurrent) eller sekventiell. Det är

viktigt att kunna särskilja dessa två begrepp för att bättre förstå de sammanhang i vilka

de verkar samt hur de berör kodens exekvering. Likt hårdvara är VHDL parallell i sin

natur (se figur 2.3). Endast instruktioner som placeras i processer eller funktioner är

sekventiella. I ett typiskt programmeringsspråk som C, C++, exekveras instruktionerna

i en specifik följd, som bestäms av instruktionernas ordning i källfilen, lika så i

processer i VHDL. Men även om exekveringen sker sekventiellt inom dessa processer,

så exekveras kodblocken som en helhet, parallellt med andra processer och funktioner. I

en VHDL arkitektur finns ingen specificerad ordning för varje instruktion, därmed

fastställs ordningen på exekvering av de händelser som inverkar på en viss signal.

Figur 2.3 Visar en enkel dataväg med tillhörande komponenter. I verklig hårdvara körs

dessa komponenter parallellt med andra moduler i kretsen, därför måste VHDL kunna

beskriva denna parallellitet. Den vänstra sidan av bilden förklarar hur en architecture av

en modul kan vara uppbyggd då denna innehåller ett flertal sammanlänkade

komponenter. De signaler som deklareras används för kommunikation mellan dessa

komponenter och övriga processer i koden. Notera att inom processerna sker

exekveringen sekventiellt, men processen som en helhet exekveras parallellt med övriga

parallella satser.

13

3 PARALLELL VHDL

I detta kapitel kommer vi endast beröra parallell (concurrent) kod, dvs. vi kommer att

studera de instruktioner som finns utanför procedurer, processer eller funktioner. Dessa

beskrivs med hjälp av:

WHEN-, WITH-, GENERATE- statements samt Operatorer.

3.1 SIGNALTILLDELNING

En viktig del av VHDL-syntaxen är signaltilldelningsoperatorn. En signaltilldelning

beskriver hur datavärdet överförs från en signal, på höger sida, till en signal på den

vänstra sidan om operatorn ’<=’. Den första signaltilldelningen i exemplet

NOR_GRIND (s.12) talar om att data som kommer från insignalerna a och b flyter

igenom en OR grind som fastställer värdet på signalen temp (till vänster om operatorn).

Tilldelningen i raden efter ger utsignalen c det inverterade värdet av signalen temp.

Man kan se signaler som ledningar som har till uppgift att sammanbinda flera

komponenter med varandra eller som verkar inom en komponent mellan

sammansättningar av register mm. En signaldeklaration är nödvändig för att skapa en

signal. Denna skrivs efter architecture men före första begin instruktionen (mer om

detta sedan). En typisk signaldeklaration kan se ut på följande vis:

signal resultat: STD_LOGIC_VECTOR (8 downto 0);

Ovanstående rad kan förklaras enligt följande:

Att en signal deklareras syns genom att raden börjar med det reserverade ordet signal

(i blått). Denna signal (ledning) skall ha ett namn, så vi valde resultat. Förutom

namnet skall signalens datatyp anges (vad för värden denna kan anta). Det är tydligt att

denna signal är en 9 bitars vektor av typen std_logic. Bit 8 till vänster om downto

markerar den mest signifikanta biten och då drar man slutsatsen att bit 0 till höger

representerar den minst signifikanta biten i vektorn.

3.2 INTERNA SIGNALER

14

Arkitekturen till kretsen ovan har tre signaler med namnen: AB, CD och G av datatypen

STD_LOGIC. Signaler kan ses som portar då dessa läses och tilldelas på samma vis.

Signaltilldelningarna innanför ’architecture’ är parallella satser (eng. concurrent) som

exekveras varje gång en signal på höger sida om tilldelningsoperatorn ändrar värde.

Därutav har ordningen på de parallella tilldelningarna ingen betydelse för dess

exekvering då potentiellt två eller flera tilldelningar kan exekveras inom samma

tidsintervall.

För varje signaltilldelning finns en ingående fördröjning. Uttrycket på höger sida

utvärderas varje gång en värdeändring sker som leder till att vänstra sidan om operatorn

uppdateras efter en viss fördröjning. En VHDL-kod med fördröjningar (ovan) går att

kompilera men dessa utelämnas vid syntes. De är däremot värdefulla vid simulering.

3.3 OPERATORER I PARALLELL KOD

Användning av operatorer (NOT, AND, OR, -, + …) är det mest elementära sättet att

skapa parallell VHDL kod. Dessa operatorer kan användas för att skapa kombinatoriska

kretsar av alla slag. Dock kommer det visa sig att mer komplexa kretsar beskrivs

enklare via sekventiell kodning även om kretsen i sig inte innehåller sekventiell logik.

För att få en bättre förståelse av detta kommer det i exemplet som följer på nästa sida

beskrivas en väljare (MUX) genom att endast använda logiska operatorer.

15

Figur 3.2.1 En 4 till 1 (4:1) väljare (mux)

Figuren ovan visar en 4 ingångars multiplexer med en bit per ingång. Utgången skall

vara lika med den ingång som väljs av signalerna s0 och s1. En implementering av

denna krets via logiska operatorer kan göras enligt följande exempel:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity MUX is

 Port (a_in : in STD_LOGIC;

 b_in : in STD_LOGIC;

 c_in : in STD_LOGIC;

 d_in : in STD_LOGIC;

 s0, s1 : in STD_LOGIC;

y_ut : out STD_LOGIC);

end MUX;

architecture Structure of MUX is

begin

 y_ut <= (a_in AND NOT s1 AND NOT s0) OR

 (b_in AND NOT s1 AND s0) OR

 (c_in AND s1 AND NOT s0) OR

 (d_in AND s1 AND s0);

end Structure;

3.4 WHEN / WITH STATEMENT

Som nämndes i början av kapitel 3 är WHEN och WITH två grundläggande parallella

satser i VHDL. I exemplet som följer visas lösningen till föregående exempel (mux)

genom att beskriva komponentens beteende just med dessa två satser.

16

-------------------------- Med WHEN Sats --------------------------

architecture behavioral of MUX is

signal sel : std_logic_vector(1 downto 0);

begin

sel <= s1 & s0;

y_ut <= a_in when sel = “00” else

 b_in when sel = “01” else

 c_in when sel = “10” else

 d_in;

end behavioral;

-------------------------- Med WITH Sats --------------------------

architecture behavioral of MUX is

signal sel : std_logic_vector(1 downto 0);

begin

sel <= s1 & s0;

 WITH sel SELECT

y_ut <= a_in when “00”,

 b_in when “01”,

 c_in when “10”,

 d_in when others;

end behavioral;

17

3.5 RELATIONSOPERATORER

Likt andra programmeringsspråk har VHDL relationsoperatorer som man kan ha nytta

av i många processer.

Operationssymbol Beskrivning

= Lika med

/= Skilt ifrån

< Mindre än

> Större än

<= Mindre eller lika med

>= Större eller lika med

Observera! Blanda ej ihop ’<=’ relationsoperatorn med signaltilldelningsoperatorn, då de

skrivs på samma sätt.

3.6 SHIFT OPERATORER

Shift operatorer kan väl komma till hands då man med en rad kod kan beskriva ett

skiftregister. Dessa operatorer är:

Operator Beskrivning

sll skift åt vänster (eng. shift left logical)

srl logisk skift åt höger (eng. shift right logical)

sla aritmetisk skift vänster (eng. shift left arithmetic)

sra aritmetisk skift höger (eng. shift right arithmetic)

rol rotera vänster (eng. rotate left)

ror rotera höger (eng. rotate right)

För bättre förståelse visas exempel för varje operator. Låt oss anta att vi har signalen A

som tilldelas vektorn ”10110101”.

A sll 2 = ”11010100” -- logisk skift 2 steg åt vänster, resten fylls

-- med nollor.

A srl 2 = ”00101101” –- samma som ovan fast med logisk skift höger.

A sla 3 = ”10101111” -- aritmetisk skift vänster 3 steg,

 -- resterande bitpositioner fylls med värdet av

-- den högra biten i strängen.

A sra 2 = ”11101101” -- aritmetisk skift höger 2 steg.

A rol 4 = ”01011011” –- rotera vänster 4 bitar.

A ror 3 = ”10110110” –- rotera höger 3 bitar.

18

4 SEKVENTIELL VHDL

Som vi nämnde i det föregående kapitlet är VHDL kod parallell i sin natur. Processer

var däremot de delar av koden som exekveras sekventiellt. Emellertid är dessa block

parallella med andra utsagor utanför processen. En viktig aspekt är att sekventiell kod är

inte enbart begränsad till sekventiell logik, utan möjliggör även uppbyggnad av

kombinatoriska kretsar. I detta kapitel kommer vi reda ut hur processer kan användas

för att beskriva komponenter.

4.1 PROCESS

En process är en sekventiell sektion i VHDL kodning. Den tillkännages genom

förekomsten av IF, CASE eller LOOP satser. En process skall anges under architecture

efter första begin. I processens sensitivitetslista ingår de signaler som skall påverka

processens exekvering. Varje gång en signal i sensitivitetslistan berörs (ändrar värde)

startar processen. Syntaxen för en process visas nedan:

[process_namn:] process (sensitivitetslista)
<variabel namn :data_typ {:= initial_värde;}
begin
<sekventiella satser>
end process [process_namn];

Om variabler används skall dessa anges i processens deklarationsdel (mellan process

och begin). Initialvärdet för variabeln är ej syntetiserbart och används endast vid

simulering. Användning av process_namn är valfritt men rekommenderas då det

förtydligar kodens syfte och läsbarhet.

Exempel på aktivering av processer:

19

process(x, y, z)

begin

Ut <= (x and y) or z;

end process;

--

process

begin

Ut <= (x and y) or z;

wait on x, y, z

end process;

--

4.2 IF STATEMENT

En if statement är en sekventiell sats som exekverar andra sekvens-satser då ett villkor

uppfylls. En if statement kan efterföljas av en else del som exekveras då villkoret /

påståendet under if är falskt. Varje if statement skall avslutas med en korresponderande

end if. Observera att end if är två separata ord – att skriva endif är ett vanligt

förekommande fel!

EXEMPEL

Ett if-statement syntetiseras genom skapandet av en multiplexer för de signaler och

variabel som tilldelas if satsen. Select signalen till varje multiplexer drivs mha

tillståndet av if satsens logiska utfall och dess dataingångar bestäms av uttrycket på

höger sida om tilldelningsoperatorn (se figur med tillhörande VHDL-kod nedan).

20

4.3 VARIABLER kontra SIGNALER

En variabel i VHDL är en temporär minnesallokering som deklareras och användas

innanför en process, - till skillnad från signaler kan variabler ej användas för

kommunikation mellan processer. Den mest påtagliga skillnaden är dock att en

signaltilldelning alltid kommer med en fördröjning, medan variabeltilldelningen är

omedelbar. På detta sätt kan signaler ha en kommande vågfront av värden och händelser

som komma skall.

I koden ovan, allokerar variabeldeklarationen (variable V : STD_LOGIC;) en

minnesplats för variabeln V av typen STD_LOGIC. Variabeltilldelningen (V :=)

skriver in ett nytt värde på den reserverade platsen och gör detta värde omedelbart

tillgänglig för nästföljande sekventiella satser.

I vissa fall kan variabler användas istället för signaler medan i andra fall är det inte att

rekommendera. För att använda variabler och signaler på ett korrekt sätt skall man hålla

följande punkter i minnet:

21

• Variabler deklareras och användas i en process (Observera att en variabel kan

endast användas i den process den deklareras i). Olikt signaler kan variabler ej

användas för kommunikation mellan processer.

• Variabler kan inte användas i en sensitivitetslista, ty är det ej möjligt att aktivera

en process vid variabeluppdatering.

• En variabeltilldelning saknar fördröjningar och är därmed omedelbar, till

skillnad från signaler som alltid har en ’medfödd’ intern fördröjning.

De tre olika kodsnuttarna beskriver samma logiska krets ovan. Den första koden

beskriver en signaltilldelning där parentes används för att bestämma

ordningen/prioriteringen på uttryckets exekvering. I VHDL koden som beskrivs i ruta 2,

deklareras variabeln ’TEMP’ för mellanlagring av värdet. I det tredje alternativet

används en signal för mellanlagring. Konsekvensen av detta kräver två processer i

koden.

22

EXEMPEL

Nu när vi har gått igenom parallell och sekventiell vhdl kodning är det hög tid för ett

exempel, där lösning är möjlig med båda metoder. Frågan är om dessa två skrivsätt

leder till samma implementerad hårdvara.

Skriv en VHDL – kod (entity och architecture) till nedanstående sanningstabell:

• Entity namn: exempel

• Architecture namn: rtl

• Insignaler: X0, X1

• Utsignal: Y

Signalerna är av typen std_logic.

X0 X1 Y
0 0 1
0 1 0
1 0 1
1 1 1

För ej angivna tillstånd skall Y ha värdet 0.

23

En viktig tumregel för en konstruktör är att känna till hårdvaran som skapas av

motsvarande VHDL kod. Lösning 1 och Lösning 2 kommer inte att resultera i samma

hårdvara. Man kan se tydligt att Lösning 2 kommer skapa en MUX (when statement)

medan i Lösning 1 bygger på en process som inte är beroende av en klocka där case

satsen kommer resultera i att minneselement jämförs innan tilldelning till utsignalen.

Den första koden är opraktisk, dels för att konstruktören ej vet vad koden skapar

(syntesen beror också i detta fall av vilket verktyg som används) samt att denna tar upp

mer utrymme i FPGA’n.

24

5 SYNKRON och ASYNKRON kodning

I digitalteknikens grunder har vi lärt oss att synkrona processer koordineras i en tidsaxel
(är beroende av en klocka). Medan det motsatta gäller för asynkrona nät.

Vid kodning av synkrona processer, är det en god vana att ta med en asynkron reset.
Skillnaden mellan synkron och asynkron reset visas i kodexemplen nedan:

Notera att asynkron reset beskrivs före klockan (CLK) i if-satsen medan vid synkron

reset skrivs denna efter klockan. Förklaringen är enkel. Som vi vet sedan kapitel 4,

exekveras en if-sats sekventiellt. Detta betyder att påståendet som står först i if-satsen

har en större prioritering. Notera även att vid en synkron reset så finns inte RST-

signalen med i processens sensitivitetslista.

Andledningen till att vi vill använda asynkron reset är att minneselementen i FPGA

kretsen är utrustade med asynkron reset, därmed är det ”gratis” att använda asynkron

reset.

25

6 GENERICS

Översatt till svenska betyder ‘generic’ allmän, som är ett reserverat ord i VHDL och

används vid specifikation av allmänna, statiska parametrar som med modifikation kan

anpassas för olika applikationer. Syftet med generics är att göra koden mer flexibel,

särskilt vid förekomsten av databussar. Denna deklareras under komponentens entity

där den ses som en global parameter. Syntaxen för en generic-deklaration visas nedan:

I exempelkoden ovan används GENERIC för att specificera parametern ’n’ av typen

INTEGER vars värde anges till 4, dvs. var än i koden (entity eller architecture)

parametern ’n’ står angiven, så kommer dess värde att förknippas med 4.

26

7 KOMPONENT DEKLARATION/INSTANSIERING

Figuren nedan visar komponenten ’MUX’ som i sin tur består av andra

subkomponenter. Koden är strukturellt uppbyggd på en högre abstraktionsnivå.

Komponentdeklarationerna (NOT och AOI) i koden skall ha samma motsvarighet som

dess entitet med avseende på namn, portar och datatyp. I arkitekturen STRUCTURE

görs instansiering av de två subkomponenterna INV och AOI. Komponentnamn efter

’component’ är referenser till entiteter som är definierade utanför MUX. Portnamnen i

komponentdeklarationen används för identifiering av portar under ’port map’

(=namnassociation). Notera att både INV samt AOI komponenten har portar med

samma namn. Detta är fullt tillåtet i VHDL.

27

Port map kan antingen beskrivas genom namnassociation eller positionsassociering.

Med namnassociation anges komponentens portnamn och de signaler de ansluts till,

medan vid positionsassociering är det ordningsföljden av signalerna i port map som

bestämmer vilken port de ansluts till.

För enkelhets skull visas ett exempel nedan som klargör skillnaden.

7.1 DIREKT INSTANSIERING

Med direkt instasiering slipper man krångel med komponentdeklarationer i koden. Dock

har denna metod viss nackdel. Entiteten som instansieras skall dessförinnan redan vara

skriven och kompilerad, samt att ens design inte är lika flexibel. Om man tänker sig

figuren på nästa sida (kretskortanalogin), så motsvarar denna metod en direkt lödning av

komponenten på kretskortet vilket försvårar ett eventuellt byte av komponenten i fråga.

28

I exemplet som följer visas en VHDL kod där direkt instansiering används för att

beskriva vår tidigare kända komponent, multiplexern.

Att lära sig nya definitioner och ord i ett nytt språk kan vara förvirrande då man har

svårt att associera dessa med något verkligt. Men vi har turen på vår sida för VHDL

beskriver just något verkligt dvs. hårdvara. På bilden ovan tar vi hjälp av kretskort

analogin som illustrerar vad man i själva verket menar med VHDL entitet, port,

komponent, signal och instansiering.

29

8 TILLSTÅNDSMASKINER (eng. FSM = Finite State Machine)

8.1 MEALY / MOORE

En tillståndsmaskin är en väldigt användbar abstraktion för konstruktion av digitala

kretsar. Som det engelska namnet antyder är tillståndsmaskinen digital logik med ett

ändligt antal fasta tillstånd. En FSM använder värdet av dess ingångar och aktuella

tillstånd för att bestämma värdet på dess utgångar samt nästföljande tillstånd. I detta

häfte tar vi endast upp synkrona FSM dvs. där tillståndet ändras på en aktiv klockflank.

Själva hårdvaran (arkitekturen) av en tillståndsmaskin består av ett tillståndsregister,

kombinatorisk logik för att bestämma nästa tillstånd samt kombinatorisk logik för

utsignalerna (se bild nedan).

En tillståndsmaskin kan i huvudsak beskrivas på två olika sätt, döpta efter dess grundare

Moore och Mealy.

• Utsignalerna av en Moore maskin är endast beroende av det aktuella tillstånd

som maskinen befinner sig i. Detta leder till att utsignalerna ändrar värde
endast när tillståndsmaskinen byter tillstånd.

• Utsignalerna av en Mealy maskin är dels beroende av de aktuella värden på

ingångarna och dels det aktuella tillståndet. På så vis kan en ändring på
inportarna leda till en ändring i utsignalerna utan att invänta nästa tillstånd.

30

EXEMPEL

En SR-vippa beskriven mha en tillståndsmaskin

Nedan visas en grundläggande mall som beskriver en tillståndsmaskin i VHDL.

ARCHITECTURE Arc_FSM OF FSM IS
 TYPE StTyp IS (S0, S1, S2, S3);
 SIGNAL NState, State: StTyp;

BEGIN
------- Synkron Process ------------
Synk_proc:PROCESS(clk_50, Reset)
 BEGIN
 IF Reset='0' THEN
 state <= S0;
 ELSIF rising_edge(clk) THEN
 state <= NState;
 END IF; -- CLK
 END PROCESS Synk_proc;
--- Main Process ----------
 PROCESS (state,....)
 BEGIN
 port/signal <= värde; -- Defoult
 CASE state IS

 WHEN s0 =>
 port/signal <= värde; -- Moore output
 IF cond THEN
 port/signal <= värde; -- Mealy output
 NState<=S1;
 ELSE
 port/signal <= värde; -- Mealy output
 NState<=S2;
 END IF;

 WHEN S1 =>
 . . .
 WHEN S2 =>
 . . .
 WHEN S3 =>
 . . .
 WHEN OTHERS =>
 NState<=S1;
 END CASE;
 END PROCESS;
END Arc_FSM;

31

9 TESTBÄNKAR

VHDL möjliggör inte bara beskrivning av hårdvara och digitala system utan även

möjligheten att simulera dessa via testbänkar som genererar in stimuli till designen och

analysera resultatet. Denna mångsidighet gör att en kod kan ersätta dyra oscilloskop,

signalgeneratorer och specialbyggda komponentinterface. En annan aspekt av dess

mångsidighet är då en testbänk skrivs som en .vhd fil kan denna flyttas mellan CAD

verktyg. Figur (.) illustrerar en generell uppbyggnad av en testbänk.

Figur (.). Testbänken genererar insignaler till komponenten som befinner sig under

testläge (eng. uut = unit under test). För att manuellt bekräfta kretsens funktionalitet

behövs ett verktyg som ModelSim (waveform editor). Om man inte har lust att se på ett

diagram kan en testbänk skrivas så att den själv märker av fel i utsignalen och

rapporterar detta till konstruktören via ett felmeddelande.

32

10 MODELSIM

ModelSim är ett väldigt användbart verktyg för kompilering och simulering av VHDL

kodade komponenter. Denna mjukvara finns tillgänglig för gratis nedladdning under

länken http://www.model.com/downloads/default.asp med namnet ModelSim PE

Student Edition vilket är en något begränsad version men fullt tillräcklig för våra

konstruktioner.

10.1 START AV NYTT PROJEKT

Vi antar att läsaren är bekant med PC och en Windows miljö, därav hoppar vi över alla

onödiga grunder och går rakt på sak.

Bilden ovan visar hur ModelSim kan se ut vid uppstart

Det första som bör göras om man vill skapa en VHDL komponent i ModelSim är att

starta ett nytt projekt. Men innan man påbörjar med detta är det rekommenderat att

skapa en ny mapp där projektet kommer sparas i, då programmet ej gör detta åt en. Man

skapar ett nytt projekt under File menyn, genom att välja: File => New => Project.

I det nya fönstret som öppnas (till vänster)

 anger man projektnamnet och dess plats (den

nyskapade mappen). Under ’Default Library

Name’ anges namnet på den under mapp där

all kompilerad kod kommer att hamna. Det

rekommenderas att låta dessa inställningar

vara orörda. När man är färdig trycker man

givetvis på ’OK’. Detta öppnar ett nytt

fönster (se nästa sida).

33

I detta nya fönster (vänster) kan man skapa nya filer eller lägga till filer i projektet. När

man väljer att skapa en ny fil (höger) kan man välja filtyp under ’Add file as type’ så

filnamnet får en korrekt ändelse. Efter ’OK’, öppnas en ny flik med namnet ’Projekt’ i

Workspace fönstret i det övre vänstra hörnet innehållande den nya filen. Dubbelklicka

på den nyskapade filen och ett editorfönster öppnas till höger (se bild nedan).

Nästa steg är att skriva VHDL kod. Notera att editorn färgsätter VHDL kommandon,

datatyper och övriga reserverade ord för enklare avläsning. Genom att högerklicka på

editor fönstret och välja ’Show Language Templates’ kan man lägga till enkla

mallar/kodkonstruktioner till designen genom att dubbelklicka på den valda mallen.

34

10.2 KOMPILERING AV KOD

Innan simulering av komponenten kan ske måste denna kompileras. Detta kan göras via

menyn ’Compile’ eller genom att högerklicka på vhdl filen i projektmappen (har man

fler filer som skall kompileras under ett projekt kan detta göras genom att välja

’Compile All’). Om kompileringen går helt felfritt visas inga felmeddelanden (beroende

på vilken version man kör, kan det även visas ett meddelande i form av: Compile of

fil_namn was succesful). Om däremot ett/flera fel förekommer vid

kompileringen visas detta med röd text i ’Transcript’ fönstret (se bild nedan).

Dubbelklickar man på den röda texten, öppnas ett nytt fönster som ger mer detaljerad

information (skrivet i rött) om vilken rad samt de syntax fel som skall rättas till.

Dubbelklickar man på förklaringen så markeras motsvarande rad och textavsnitt i koden

(text editorn) som skall rättas till.

10.3 SIMULERING

Efter felfri kompilering är det dags for simulering av komponenten. Välj Simulate =>
Start Simulation. Ett nytt fönster öppnas (nedan) och man väljer den entitet som skall
simuleras. Dessa hittas under work mappen (tryck på ’+’ tecknet till vänster för att visa
alla entiteter samt dess arkitektur).

35

När man valt sin entitet för simulering visas ett annat fönster med namnet ’Objects’. Här

visas alla de portar och signaler som tillhör design hierarkin. För att få en användning av

dessa skall de flyttas över till Wave editorn, där de kan studeras grafiskt. Markera de

signaler och portar av intresse, högerklicka och välj ’Add => To Wave => Selected
Signals’, varav ett nytt wave fönster öppnas med de valda signalerna. Genom att

högerklicka på signalerna kan man ändra bla. visningsläge från binär till decimal form,

färgsätta mm.

Innan simulering startas är samtliga portar och signaler odefinierade.

Simuleringskommandon skrivs i ’Transcript’ fönstret där signaler tilldelas ett värde

genom: force signal_namn värde. Ex. force signal_a 1010.

Man kan även ange en tid för signaltilldelningen:
force signal_a 0 0, 1 100ns, 0 200ns

Kommandot ovan talar om att signal_a sätts till värdet 0 när tiden är 0, den får värdet 1

vid tiden 100ns och värdet 0 igen vid tiden 200ns.

Repeat kommandot kan vara användbar vid skapande av en klocksignal, se exempel:
force signal_a 0 0, 1 50ns –repeat 100ns

Kommandot ovan skapar en symmetrisk klocksignal med perioden 100ns.

Force kommandot kör inte själva simuleringen, utan sätter endast värden till signaler
och portar. För att köra igång simuleringen skriver man enligt följande:
run [<simuleringstid>]

36

10.4 .DO filer

Att skapa in stimuli till sin design enligt metoden ovan är mer lämpligt för små kretsar,

men vid större system kan detta bli en tröttsam process. Istället för återupprepande

’force’ kommandon, skapas en testbänk som genererar lämpliga insignaler till

komponenten. Hela simuleringsprocessen automatiseras genom skapandet av en .do fil

(kan skapas i windows anteckningar) som bygger på samma enkla mall som exemplet

nedan visar:

Close existing ModelSim simulation

quit -sim

Create libraries

 if {[file exist work] ==0} {exec vlib work}

Compile top level files

vcom -93 -explicit -work work "../Source/Vhdl/alu.vhd"

vcom -93 -explicit -work work "../Source/TB/alu_tb.vhd"

load simulation

vsim -t 1ps work.alu_tb

Set waveform display

do alu_wave.do

Run simulation

run 600 us

Vi förklarar .do filen ovan rad för rad. Samtliga rader som börjar med ett ’#’ tecken ses

som en kommentar och ignoreras vis exekvering. Det allra första kommandot i filen

stänger alla tidigare simuleringar, om sådana finns, innan den aktuella simuleringen

påbörjas. Nästa del i koden undersöker om en arbetskatalog (work) finns till hands där

de kompilerade filerna läggs. Om sådan saknas, så skapas ett.

Nu kommer vi till själva filkompileringen. Observera att ordningen på kompileringen

spelar stor roll då denna exekveras sekventiellt. I kort så står det att filen alu.vhd skall

kompileras följt av dess motsvarande testbänk alu_tb.vhd. Dessa filer kompileras via

vhdl standard -93, och finns i work-mappen med beskriven sökväg. Nästa steg är att

påbörja simuleringen. Här anges den minsta diskreta tid på tidsaxeln (i vårt fall 1

picosekund) samt den fil som anropas i work mappen. För att få fram den resulterande

grafen så öppnas wave fönstret via do kommandot. Till sist anger vi simuleringstiden.

37

11 VHDL KOMPONENTER

38

39

40

41

12 ÖVRIGT

12.1 MANIPULATION AV KLOCKFREKVENS

I detta avsnitt kommer vi visa hur man använder sig av en räknare för att minska en

klocka till önskad frekvens. Vi kan tänka oss att vi har en klockingång på 10Hz som vi

vill få ner till 1Hz, enl. bild nedan:

 Detta görs med två enkla steg:

• För att bestämma den nya frekvensen
�������	�	��
���

Ö�����	�	��
���
 = gränsvärde	 för	 räknaren. Om räknaren når detta gränsvärde,

nollställs denna.

• Att bestämma ’duty cycle’ (= den tidsintervall inom vilket systemet/klockan är i

aktivt läge). Vi sätter duty cycle till 50%, vilket motsvarar en ”fyrkantspuls”.
���	��	ä�����	�	ä��
ä	���

Vi stoppar in våra värden och får:
!"#$

!#$
= 10 = X”A” (gränsvärde för räknaren)

50% duty cycle blir då:
!"

= 5.

För att vidare förtydliga detta visas ett vhdl exempel på nästa sida.

42

Innan vi skriver vår architecture så måste två signaler skapas. Den ena döper vi till

CLK_2 vilket kommer motsvara vår långsammare klocksignal och den andra signalen

är för räknaren (Observera att denna är en 24 bitars vektor). Så, varför sätter vi vår

räknare till 24 bitar. Jo, vi använder oss av en 24MHz klocka och önskar en frekvens på

2Hz. Om vi stoppar in dessa värden i formeln på föregående sida får vi ett HEX värde

av ”B71B00”. Vi vet sedan digitalteknikens grunder att varje HEX värde motsvarar 4

bitar, därmed 4x6 = 24 bitar. Nu när detta är avklarat tittar vi närmare på processen i

koden. Då detta är en klockberoende process, skriver vi en asynkron reset (RST), detta i

fall vårt system/klocka låser sig så kan en omstart göras. Vid nästa kodsektion talas det

om att räknaren ökar med ’1’ på varje positiv klockflank. Därefter skall duty cycle

sättas. Vi har valt att skapa en fyrkantspuls (se formel på föregående sida) dvs.

B71B00 / 2 = 5B8D80 och då räknaren har ett mindre värde sätts vår nya klocka

(CLK_2) till 1, om annat till 0. Om räknaren når upp till gränsvärdet ”B71B00”

nollställs denna. Det är viktigt att nollställa räknaren, annars kommer denna räkna upp

till ”FFFFFF”.

Om duty cycle skall vara 50% kan vi göra en enklare kod genom att invertera signalen

CLK_2 (CLK_2<= not CLK_2;) varje gång räknaren når halva periodtiden dvs 5B8D80

i vårt fall. På så sätt behövs enbart ett HEX-värde att hantera om frekvensen skall

ändras.

()*+,--	./,)0,12

Ö12)34	./,)0,12
571500

2
= 558:80

Duty cycle:

43

12.2 RESERVERADE NYCKELORD I VHDL

Det finns ett stort antal reserverade identifierare i VHDL som ej kan användas som

egendefinierade namn. Dessa listas nedan:

abs else map range then

access elsif mod record to

after end nand register transport

alias entity new reject type

all exit next rem unaffected

and file nor report units

architecture for not return until

array function null rol use

assert generate of ror variable

attribute generic on select wait

begin group open severity when

block guarded or signal while

body if others shared with

buffer impure out sla xnor

bus in package sll xor

case inertial port sra

component inout postponed srl

configuration is procedure subtype

constant label process

disconnect library protected

downto linkage pure

 literal

 loop

44

12.3 GENERELL STRUKTUR FÖR MAPP HIERARKIN

Denna struktur skall följas vid laborationerna.

