Filename="ch5.doc”

5. 0 VHDL OPERATORS

There are seven groups of predefined VHDL operators:

Binary logical operators: and or nand nor xor xnor
Relational operators. = /= < <= > >=

Shifts operators: dl srl lasrarol ror

Adding operators: + - & (concatenation)

Unary sign operators; + -

Multiplying operators: * / mod rem
Miscellaneous operators. not abs **

Nook~wdpE

The above classes are arranged in increasing priority when parentheses are not used.
Examplel: Priority of operators. Let A="110", B="111", C="011000", and D="111011"
(A & not B or Cror 2 and D) =“110010" ?

the operators are applied in the following order: not, &, ror, or, and, =

not B = ‘000" --bit-by-bit complement

A & not B =*110000" --concatenation

Cror 2="000110" --rotate right 2 places

(A & not B) or (Cror 2) =“110110 --bit-by-bit or

(A & not B or Cror 2) and D =“110010" --bit-by-bit and

[(A & not B or Cror 2and D) =“110010"]=TRUE --with parentheses the equality test is done last

Example 2: Shift operators. Let A =*“10010101" --arein [EEE.NUMERIC_BIT
orin|EEE.NUMERIC_STD

A dll 2="01010100" --shift left logical, filled with ‘0’

A srl 3="00010010" --shift right logical, filled with ‘O’

A da3="10101111" --shift left arithmetic, filled with right bit

A sra2 =%11100101" --shift right arithmetic, filled with left bit

A rol 3="10101100" --rotate left by 3

A ror 5="10101100" --rotate right by 5

Example 3: arithmetic operators.

If the left and right signed operands are of different lengths, the shortest operand will be sign-
extended before performing an arithmetic operation. For unsigned operands, the shortest operand will be
extended by filling in Os on the left.

signed: “01101" +“1011”
unsigned: “01101" +*1011"

“01101" +*“11011"
“01101" +*“01011”

“01000"
“11000"

TYPE SIGNED ISARRAY (NATURAL RANGE <>) OF STD_LOGIC;
TYPE UNSIGNED ISARRAY (NATURAL RANGE <>) OF STD_LOGIC;

When unsigned or signed addition is performed, the final carry is discarded, and overflow isignored. If a
carry is needed, an extrabit is appended to the leftmost bit.

Any overloaded binary operators perform binary operation with all argument of the same type. Vector
arguments may be unegual in size, the smaller one is sign-extended to the same size as the larger argument
before the operation is performed. For “+" operators,

FUNCTION “+” (argl, arg2 : STD_LOGIC) RETURN STD_LOGIC;

FUNCTION “+” (argl, arg2 : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;
FUNCTION “+” (argl, arg2 : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;
FUNCTION “+” (argl, arg2 : UNSIGNED) RETURN UNSIGNED;

FUNCTION “+” (argl, arg2 : SIGNED) RETURN SIGNED;

CONSTANT A: unsigned(3 DOWNTO 0):=“1101";
CONSTANT B: signed(3 DOWNTO 0):="1011";
VARIABLE SUMU: unsigned(4 DOWNTO 0);
VARIABLE SUMS: signed(4 DOWNTO 0);
VARIABLE OVERFLOW: boolean;

SUMU:=‘0" & A + unsigned' (“0101"); --result is“10010" sum=2, carry=1
SUMS:=B(3) & B + signed(*1101"); --result is“”11000" sum =8, carry=1

The algorithm for adding two numbers in sign-2’' s-complement representation gives an incorrect
result when an overflow occurs. This arises because an overflow of the number bits always changes the
sign of the result and gives an erroneous n-bit answer. Consider the following example. Two signed binary
numbers, 35 and 40, are stored in two 7-bit registers. The maximum capacity of the register is (2°~1)=63
and the minimum capacity is—2°=-64. Since the sum of the numbers is 75, it exceeds the capacity of the
register. Thisistrueif the numbers are both positive or both negative.

carries; 01 carries: 10

+35 0 100011 -35 1 011101
+40 0 101000 -40 1 011000
+75 1 001011 -75 0 110101

In either case, we see that the 7-bit result that should have been positive is negative, and vice versa.
Obviously, the binary answer isincorrect and the algorithm for adding binary numbers represented in 2's
complement as stated previously fails to give correct results when an overflow occurs. Note that if the carry
out of the sign-bit position is taken as the sign for the result, then the 8-bit answer so obtained will be
correct.

An overflow condition can be detected by observing the carry into the sign-bit position and the
carry out of the sign-bit position. If these two carries are not equal, an overflow condition is produced. This
is also detected if the sumin the sign-bit is different from the previous sum.

5.1 Two's Complement Integer Addition
It is assumed that the input vectors are in 2's complement format.

LIBRARY |EEE;
USE |IEEE.STD_LOGIC_1164ALL,;
USE |IEEE.STD_LOGIC_SIGNED.ALL;

O WNPE

ENTITY ovrflo_undrflo IS

6 PORT(a, b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
7 sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
8 under, over : OUT BIT);
9 END ovrflo_undrflo;

10

11 ARCHITECTURE arch_ovrflo_undrflo OF ovrflo_undrflo IS

12 BEGIN

13 add: PROCESS(a, b)

14 VARIABLE res: INTEGER,;

15 BEGIN

16 res:= CONV_INTEGER(a) + CONV_INTEGER(b); --(1)
17 IF (res>7) THEN

18 over<='1";

19 ELSE

20 over <="'0’;

21 END IF;

22 IF (res< -8) THEN

23 under <="'1";

24 ELSE

25 under <='0’;

26 END IF;

27 sum <= Conv_Std Logic_Vector(res,4); -(1)
28 END PROCESS add;

29 END arch_ovrflo_undrflo;
NOTE 1: CONV_INTEGER is|EEE.std_logic_signed

The above vhdl codeisimplemented as shown below:

=
— i = ™
DY) NNE == B
= m O [0 (i) L S 1 1] ()
FapD Fanm

HJiJl

c2)

over 3(3 under

Underflow occurs when adding two negative numbers, the result is positive number. This happens when
a(3)=b(3)=1, and no previous carry, c(2)=0. Overflow occurs when adding two positive number, the results
is anegative number. This happens when a(3)=b(3)=0, and with previous carry , ¢(2)=1.

5.2 Two’'s Complement Direct I nteger Addition

This example uses an abstract integer ports. The integer addition can be done directly without integer-to-bit
or bit-to-integer conversion. When using abstract port types, integer and user-defined enumerated ports are
converted by Autologic VHDL to bit_vectors of the appropriate size. Only standard library is needed for

this coding.

1 PACKAGE my _intgr IS

2 SUBTYPE my_int ISINTEGER RANGE -8TO 7;
3 END my_intgr;

4

5 LIBRARY |EEE;

6 USE IEEE.STD_LOGIC 1164ALL;

7 USE IEEE.STD _LOGIC ARITH.ALL;

8 USE WORK.my_intgr.ALL;

9

10 ENTITY ovrflo_undrflo IS

11 PORT(a, b: IN my_int;

12 sum: OUT my _int;

13 under, over : OUT BIT);

14 END ovrflo_undrflo;

15

16 ARCHITECTURE arch_ovrflo_undrflo OF ovrflo_undrflo IS
17 BEGIN

18 add: PROCESS(a, b)

19 VARIABLE res: INTEGER RANGE —-16 TO 15 :=0;
20 BEGIN

21 res:=a+b;

22 IF(res>7) THEN

23 over<='1;

24 ELSE

25 over <='0’;

26 END IF;

27 IF (res< -8) THEN

28 under <="'1";

29 ELSE

30 under <=‘0’;

31 END IF;

32 IF (over="0" AND under’'0')THEN sum <=res; END IF;
33 END PROCESS add;

34 END arch_ovrflo_undrflo;

The above implementation isidentical to theonein 5.1

5.3 Addition Using Procedure Call

A procedure is a subprogram that can modify its parameters (signals and/or variables) and return new
values for these parameters. A procedure is synthesized at each location it is called. Thisis analogousto a
component instantiation in place.

OCoO~NOOUTA,WNE

LIBRARY |EEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL,;

ENTITY add IS
PORT(a, b:IN STD_LOGIC VECTOR(0TO 3);
enable: IN BIT;
result: OUT STD_LOGIC VECTOR(0 TO 3);
carry: OUT STD_LOGIC);
END add;

ARCHITECTURE arch_add OF add IS
PROCEDURE add_with_carry (SIGNAL g: IN BOOLEAN;
SIGNAL a1, a2: IN STD_LOGIC_VECTOR(0TO 3);
SIGNAL result: OUT STD_LOGIC_VECTOR(0 TO 3);
SIGNAL carry: OUT STD_LOGIC) IS
VARIABLE temp: STD_LOGIC_VECTOR(0 TO 4);

BEGIN
IF (g) THEN
temp := (al(0)&al) + (a2(0)& a2);
carry <= temp(0);
result <=temp(1 TO 4);
END IF;
END add_with_carry;
BEGIN
blkl: BLOCK(enable=‘1")
BEGIN
add_with_carry(guard, a, b, result, carry);
END BLOCK blk1;
END arch_add;

5.4 Binary Counter

LIBRARY |EEE;
USE |IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL,;

ENTITY binctr IS

PORT(clk: IN STD_LOGIC; ¢ : INOUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END binctr;

ARCHITECTURE arch_binctr OF binctr IS

BEGIN

PROCESS(clk)
BEGIN
IF Ik’ EVENT AND clk='1' THEN
C<=c+“0001";
END IF;

END PROCESS;
END arch_binctr;

b——1p
DFF

c(3)
—
c(2)
(1) — b &
DFF

c(0y —| >3
cmj;

D QC_H]I
c(o] DFF

3 7

./

i)

o
g
|

clk o f——

5.4 Rotate 8-Bit Register by one

LIBRARY |EEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY rotate IS
PORT(clk, rst, Id : IN STD_L OGIC;
d:IN STD_LOGIC VECTOR(7 DOWNTO 0);
g: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END rotate;

ARCHITECTURE arch_rotatel OF rotate IS

SIGNAL gtmp : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN

PROCESS(clk, rst)

BEGIN

IFrst="1 THEN
qtmp <= “00000000";

ELSIF (clk = ‘1’ AND clk' EVENT) THEN
IF(Id="1") THEN

gtmp <=d;
ELSE
gtmp <=qtmp(6 DOWNTO 0) & qtmp(7);
END IF;
END IF;
END PROCESS;
q <= qtmp;

END arch_rotatel,
Seperating combinatorial and sequential circuit portion using procedure call

LIBRARY |EEE;
USE IEEE.STD_LOGIC_1164.ALL,;

PACKAGE mypackage IS
PROCEDURE reg8(SIGNAL clk, rst: IN STD_LOGIC;
SIGNAL d: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL g: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END mypackage;

PACKAGE BODY mypackage IS

PROCEDURE reg8(SIGNAL clk, rst: IN STD_LOGIC;
SIGNAL d: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL g: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)) IS
BEGIN
IFrst="1 THEN
g <= “00000000";
ELSIFclk ='1" AND clk EVENT THEN
q<=d,
END IF;
END reg8;
END mypackage;

LIBRARY |EEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE WORK.mypackage.ALL;
ENTITY rotate IS
PORT(clk, rst, Id : IN STD_LOGIC;

d:INSTD_LOGIC _VECTOR(7 DOWNTO 0);

g: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END rotate;

ARCHITECTURE arch_rotate2 OF rotate IS
SIGNAL dtmp, gtmp : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
dtmp <= d WHEN (Id="'1") ELSE qtmp(6 DOWNTO 0) & qtmp(7);
reg8(clk, rst, dtmp, gtmp);
q <= qtmp;
END arch_rotate2;

Both vhdl codes have the same implementation shown below:

di i)

o oo a7
]

73
T

q(E)

.

drfl

— d(E)

qrs)

|
N

1)

o)

gl

di)

D g—oD
]

i) >—@D.k 2

am
%IT
i

	Filename=¡±ch5.doc¡±
	5. 0 VHDL OPERATORS

