
ModelSim® Command Reference Manual

Software Version 10.5c

© 1991-2016 Mentor Graphics Corporation

All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in
the license agreement provided with the software, except for provisions which are contrary to applicable
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210

Website: www.mentor.com

SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
Syntax and Conventions . 13

Documentation Conventions . 13
File and Directory Pathnames . 14
Design Object Names . 15

Object Name Syntax . 15
Tcl Syntax and Specification of Array Bits and Slices . 16
SystemVerilog Scope Resolution Operator . 17
Specifying Names . 18
Environment Variables and Pathnames . 20
Name Case Sensitivity . 20
Extended Identifiers . 20

Wildcard Characters . 21
Supported Commands. 21
Using the WildcardFilter Preference Variable . 22

Simulator Variables . 25
Simulation Time Units. 26
Optionsets . 26
Argument Files . 27
Command Shortcuts. 28
Command History Shortcuts . 29
Numbering Conventions . 30

VHDL Numbering Conventions . 30
Verilog Numbering Conventions . 31

GUI_expression_format. 32
Expression Typing . 32
Expression Syntax. 33
Signal and Subelement Naming Conventions . 39
Grouping and Precedence . 39
Concatenation of Signals or Subelements . 39
Record Field Members . 41
Searching for Binary Signal Values in the GUI . 41

Chapter 2
Commands . 43

abort . 63
add dataflow. 64
add list . 66
add memory . 71
add message . 73
add watch . 75
add wave . 77
ModelSim® Command Reference Manual, v10.5c 3

Table of Contents
add_cmdhelp . 84
alias . 86
archive load . 87
archive write . 88
batch_mode . 89
bd . 90
bookmark add wave . 92
bookmark delete wave . 94
bookmark goto wave . 95
bookmark list wave . 96
bp . 97
call . 103
cd . 108
change . 109
classinfo ancestry . 111
classinfo descriptive. 112
classinfo find . 114
classinfo implements . 116
classinfo instances . 118
classinfo interfaces. 121
classinfo isa . 123
classinfo report. 124
classinfo stats . 126
classinfo trace . 128
classinfo types . 130
configure . 132
dataset alias . 138
dataset clear . 139
dataset close . 141
dataset config . 142
dataset current . 144
dataset info . 145
dataset list . 146
dataset open . 147
dataset rename . 149
dataset restart . 150
dataset save . 151
dataset snapshot . 152
delete . 155
describe . 156
disablebp . 157
do . 158
drivers . 160
dumplog64 . 162
echo . 163
edit . 164
enablebp . 165
encoding. 166
environment . 167
4 ModelSim® Command Reference Manual, v10.5c

Table of Contents
examine . 168
exit . 175
find . 176
find connections . 181
find infiles . 182
find insource . 183
force . 185
formatTime . 191
gc configure . 192
gc run . 194
help. 195
history . 196
layout . 197
log . 199
lshift . 202
lsublist . 203
mem compare. 204
mem display . 205
mem list . 208
mem load . 209
mem save . 213
mem search . 216
modelsim . 219
noforce . 220
nolog . 221
notepad. 223
noview . 224
nowhen. 225
onbreak. 226
onElabError . 229
onerror . 230
onfinish . 232
pause . 233
precision. 234
printenv . 235
process report . 236
project . 237
pwd. 240
quietly . 241
quit . 242
radix . 243
radix define . 245
radix delete. 249
radix list . 250
radix names . 251
radix signal. 252
readers . 253
report . 254
restart . 256
ModelSim® Command Reference Manual, v10.5c 5

Table of Contents
resume . 258
run . 259
runStatus . 262
searchlog . 264
see . 267
setenv . 268
shift . 269
show . 270
simstats. 271
simstatslist . 273
stack down . 275
stack frame. 276
stack level . 277
stack tb . 278
stack up . 279
status . 280
step . 281
stop. 283
suppress . 284
tb . 286
Time . 287
transcript . 291
transcript file . 292
transcript path . 294
transcript sizelimit . 295
transcript wrapcolumn . 296
transcript wrapmode . 297
transcript wrapwscolumn. 298
tssi2mti. 299
ui_VVMode . 300
unsetenv . 302
vcd add . 303
vcd checkpoint . 305
vcd comment . 306
vcd dumpports . 307
vcd dumpportsall . 310
vcd dumpportsflush . 311
vcd dumpportslimit . 312
vcd dumpportsoff . 314
vcd dumpportson . 315
vcd file . 316
vcd files . 318
vcd flush. 321
vcd limit . 322
vcd off . 324
vcd on. 325
vcd2wlf . 326
vcom. 328
vdel. 345
6 ModelSim® Command Reference Manual, v10.5c

Table of Contents
vdir . 347
vencrypt . 350
verror . 354
vgencomp. 356
vhencrypt . 358
view . 361
virtual count . 364
virtual define . 365
virtual delete . 366
virtual describe. 367
virtual expand . 368
virtual function. 369
virtual hide . 372
virtual log . 373
virtual nohide . 375
virtual nolog . 376
virtual region . 378
virtual save . 379
virtual show . 380
virtual signal . 381
virtual type . 385
vlib . 387
vlog . 390
vmake. 413
vmap. 415
vsim . 417
vsim<info>. 451
vsim_break. 452
vsource . 453
wave . 454
wave create . 459
wave edit . 465
wave export . 469
wave import . 471
wave modify . 472
wave sort . 477
when. 478
where . 486
wlf2log . 487
wlf2vcd . 489
wlfman . 490
wlfrecover . 497
write format . 498
write list . 501
write preferences . 502
write report. 503
write timing . 506
write transcript . 508
write tssi . 509
ModelSim® Command Reference Manual, v10.5c 7

Table of Contents
write wave . 511

Index

End-User License Agreement
8 ModelSim® Command Reference Manual, v10.5c

List of Figures

Figure 2-1. drivers Command Results in Transcript . 160
Figure 2-2. find infiles Example . 182
Figure 2-3. find insource Example . 184
Figure 2-4. readers Command Results in Transcript . 253
ModelSim® Command Reference Manual, v10.5c 9

List of Figures
10 ModelSim® Command Reference Manual, v10.5c

List of Tables

Table 1-1. Conventions for Command Syntax . 13
Table 1-2. Examples of Object Names . 19
Table 1-3. Wildcard Characters in HDL Object Names . 22
Table 1-4. WildcardFilter Arguments . 24
Table 1-5. WildcardFilter Argument Groups . 25
Table 1-6. Keyboard Shortcuts for Command History . 29
Table 1-7. VHDL Number Conventions: Style 1 . 30
Table 1-8. VHDL Number Conventions: Style 2 . 30
Table 1-9. Verilog Number Conventions . 31
Table 1-10. Constants Supported for GUI Expressions . 33
Table 1-11. Array Constants Supported for GUI Expressions . 33
Table 1-12. Variables Supported for GUI Expressions . 34
Table 1-13. Array Variables Supported for GUI Expressions . 34
Table 1-14. Operators Supported for GUI Expressions . 35
Table 1-15. Precedence of GUI Expression Operators . 36
Table 1-16. Casting Conversions Supported for GUI Expressions 37
Table 1-17. VHDL Logic Values Used in GUI Search . 42
Table 1-18. Verilog Logic Values Used in GUI Search . 42
Table 2-1. Supported Commands . 43
Table 2-2. Message Viewer Categories . 73
Table 2-3. Radix flag Arguments to the Examine Command . 172
Table 2-4. runStatus Command States . 262
Table 2-5. runStatus -full Command Information . 262
Table 2-6. Warning Message Categories for vcom -nowarn . 338
Table 2-7. Design Unit Properties . 348
Table 2-8. Warning Message Categories for vlog -nowarn . 402
Table 2-9. Wave Window Commands for Cursor . 455
Table 2-10. Wave Window Commands for Expanded Time Display 455
Table 2-11. Wave Window Commands for Controlling Display . 456
Table 2-12. Wave Window Commands for Zooming . 456
ModelSim® Command Reference Manual, v10.5c 11

List of Tables
12 ModelSim® Command Reference Manual, v10.5c

ModelSim® Command Reference Manual, v10.5c 13

Chapter 1
Syntax and Conventions

This chapter describes the typographical conventions used in this manual to define ModelSim
command syntax.

Documentation Conventions
The following conventions are used to define ModelSim command syntax

Table 1-1. Conventions for Command Syntax

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a
user-defined argument; do not enter the brackets in
commands

[] square brackets generally indicate an optional item; if
the brackets surround several words, all must be entered
as a group; the brackets are not entered1

{ } braces indicate that the enclosed expression contains
one or more spaces yet should be treated as a single
argument, or that the expression contains square
brackets for an index; for either situation, the braces are
entered

… an ellipsis indicates items that may appear more than
once; the ellipsis itself does not appear in commands

| the vertical bar indicates a choice between items on
either side of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by the
number sign (#), which you can use to add comments to
DO files (macros)

ModelSim® Command Reference Manual, v10.5c14

Syntax and Conventions
File and Directory Pathnames

Note
Command examples do not show either the prompt at the beginning of a line nor the
<Enter> keystroke at the end of a line.

File and Directory Pathnames
Several ModelSim commands have arguments that specify file or directory locations
(pathnames). For example, the -y argument to the vlog command specifies the Verilog source
library directory to search for undefined modules.

Spaces in file pathnames must be escaped or the entire path must be enclosed in quotation
marks. For example:

vlog top.v -y C:/Documents\ and\ Settings/projects/dut

or

vlog top.v -y "C:/Documents and Settings/projects/dut"

1. One exception to this rule is when you are using Verilog syntax to designate an array
slice. For example:

add wave {vector1[4:0]}

The square brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

Syntax and Conventions
Design Object Names

ModelSim® Command Reference Manual, v10.5c 15

Design Object Names
Design objects are organized hierarchically, where various objects creates a new level in the
hierarchy.

• VHDL — component instantiation statement, block statement, and package

• Verilog — module instantiation, named fork, named begin, task and function

• SystemVerilog — class, package, program, and interface

Object Name Syntax
To specify object names in ModelSim, you use the following syntax:

[<dataset_name><datasetSeparator>][<pathSeparator>][<hierarchicalPath>]
<objectName>[<elementSelection>]

where

• dataset_name — The name mapped to the WLF file in which the object exists. The
currently active simulation is the “sim” dataset. Any loaded WLF file is referred to by
the logical name specified when the WLF file was loaded. Refer to the chapter
“Recording Simulation Results With Datasets” in the User’s Manual for more
information.

• datasetSeparator — The character used to terminate the dataset name. The default is
colon (:), although you can specify a different character (except for a backslash (\)) as
the dataset separator by using the DatasetSeparator variable in the modelsim.ini file.
This character must be different than the pathSeparator character.

• pathSeparator — The character used to separate hierarchical object names. Normally,
a backslash (\) is used for VHDL and a period (.) is used for Verilog, although you can
specify a different character (except for a backslash (\)) by using the PathSeparator
variable in the modelsim.ini file. This character must be different than the
datasetSeparator.

Neither (.) nor (/) can be used when referring to the contents of a SystemVerilog
package or class.

• hierarchicalPath — A set of hierarchical instance names separated by a path separator
and ending in a path separator prior to the objectName. For example, /top/proc/clk.

• objectName — The name of an object in a design.

• elementSelection — Some combination of the following:

o Array indexing — Single array elements are specified using either parentheses (())
or square brackets ([]) around a single number. You must also surround the object

ModelSim® Command Reference Manual, v10.5c16

Syntax and Conventions
Tcl Syntax and Specification of Array Bits and Slices

and specified array element with curly braces ({}). Refer to Tcl Syntax and
Specification of Array Bits and Slices for important information about using square
brackets and parentheses in ModelSim commands.

o Array slicing — Slices (or part-selects) of arrays are specified using either
parentheses (()) or square brackets ([]) around a range specification. A range is
two numbers separated by one of the following: " to ", " downto ", or a colon (:).
You must also surround the object and specified array slice with curly braces ({}).
Refer to Tcl Syntax and Specification of Array Bits and Slices for important
information about using square brackets and parentheses in ModelSim commands.

o Record field selection — A record field is specified using a period (.) followed by
the name of the field.

Tcl Syntax and Specification of Array Bits and
Slices

Because ModelSim is based on the Tcl scripting language, you must surround objects and
signals with braces ({}) when specifying array bits or slices with parentheses (()), spaces, or
square brackets ([]).

For example:

toggle add {data[3:0]}
toggle add {data(3 to 0)}
force {bus1[1]} 1

Further Details

Because ModelSim is based on Tcl, its commands follow Tcl syntax. One problem you may
encounter with ModelSim commands is the use of square brackets ([]), parentheses (()), or
spaces when specifying array bits and slices. As noted, square brackets specify slices of arrays
(for example, data[3:0]). However, in Tcl, square brackets signify command substitution.
Consider the following example:

set aluinputs [find -in alu/*]

ModelSim evaluates the find command first and then sets variable aluinputs to the result of the
find command. Obviously, you do not want this type of behavior when specifying an array slice,
so you would use brace escape characters, as follows:

add wave {/s/abc/data_in[10:1]}

You must also use the escape characters if using VHDL syntax with spaces:

add wave {/s/abc/data_in(10 downto 1)}

Syntax and Conventions
SystemVerilog Scope Resolution Operator

ModelSim® Command Reference Manual, v10.5c 17

For more information on Tcl syntax, refer to Tcl Command Syntax.

SystemVerilog Scope Resolution Operator
SystemVerilog offers the scope resolution operator, double colon (::), for accessing classes
within a package and static data within a class. The example below shows various methods of
using this operator as well as alternatives using standard hierarchical references.

Example 1-1. SystemVerilog Scope Resolution Operator Example

package myPackage;
class packet;

static int a[0:1] = {1, 2};
int b[0:1];
int c;

function new;
b[0] = 3;
b[1] = 4;
c = a[0];

endfunction
endclass

endpackage : myPackage

module top;
myPackage::packet my = new;
int myint = my.a[1];

endmodule

The following examples of the examine command access data from the class packet.

examine myPackage::packet::a
examine /top/my.a

Both of the above commands return the contents of the static array a within class packet.

examine myPackage::packet::a(0)
examine /top/my.a(0)

Both of the above commands return the contents of the first element of the static array a within
class packet.

examine /top/my.b

Return the contents of the instance-specific array b.

examine /top/my.b(0)

ModelSim® Command Reference Manual, v10.5c18

Syntax and Conventions
Specifying Names

Return the contents of the first element of the instance-specific array b.

When referring to the contents of a package or class, you cannot use the standard path
separators, a period (.) or a forward slash (/).

Specifying Names
ModelSim distinguishes between four "types" of object names: simple, relative, fully-rooted,
and absolute.

• Simple name — does not contain any hierarchy. It is simply the name of an object
(suchas clk or data[3:0]) in the current context.

• Relative name — does not start with a path separator and may or may not include a
dataset name or a hierarchical path (such as u1/data or view:clk). A relative name is
relative to the current context in the current or specified dataset.

• Fully-rooted name — starts with a path separator and includes a hierarchical path to an
object (e.g., /top/u1/clk).There is a special case of a fully-rooted name where the top-
level design unit name can be unspecified (such as /u1/clk). In this case, the first top-
level instance in the design is assumed.

• Absolute name — is an exactly specified hierarchical name containing a dataset name
and a fully rooted name (such as sim:/top/u1/clk).

The current dataset is used when accessing objects where a dataset name is not specified as part
of the name. The current dataset is determined by the dataset currently selected in the Structure
window or by the last dataset specified in an environment.

The current context in the current or specified dataset is used when accessing objects with
relative or simple names. The current context is either the current process, if any, or the current
instance if there is no current process, or the current process is not in the current instance. The
situation of the current process not being in the current instance can occur, for example, by
selecting a different instance in the Structure tab or by using the environment to set the current
context to a different instance.

The current context is also the activation level of an automatic task, function, or block. Different
levels of activation may be selected by using the Call Stack window, or by using the 'stack up' or
'stack down' commands.

Syntax and Conventions
Specifying Names

ModelSim® Command Reference Manual, v10.5c 19

For example, when you set a breakpoint on line 5 of the following code:

package p;
 int I;
 function automatic int factorial(int n);
 if(n==0)
 return 1;
 else
 return n * factorial(n - 1);
 endfunction : factorial
endpackage : p

module top;
 initial begin
 p::I=p::factorial(3);

 $display(p::I);
 $display(p::factorial(4));
 end
endmodule: top

When you issue the command:

examine n

the transcript returns:

0

However, when you issue the command:

stack up;examine n

the transcript returns:

1

Table 1-2 contains examples of various ways of specifying object names.

Table 1-2. Examples of Object Names

Object Name Description

clk specifies the object clk in the current context

/top/clk specifies the object clk in the top-level design unit.

/top/block1/u2/clk specifies the object clk, two levels down from the top-
level design unit

block1/u2/clk specifies the object clk, two levels down from the current
context

array_sig[4] specifies an index of an array object

ModelSim® Command Reference Manual, v10.5c20

Syntax and Conventions
Environment Variables and Pathnames

Environment Variables and Pathnames
You can substitute environment variables for pathnames in any argument that requires a
pathname.

For example:

vlog -v $lib_path/und1

Assuming you have defined $lib_path on your system, vlog will locate the source library file
und1 and search it for undefined modules. Refer to Environment Variables for more
information.

Name Case Sensitivity
Name case sensitivity is different for VHDL and Verilog. VHDL names are not case-sensitive
except for extended identifiers in VHDL 1076-1993 or later. In contrast, all Verilog names are
case-sensitive.

Names in ModelSim commands are case-sensitive when matched against case-sensitive
identifiers; otherwise, they are not case-sensitive.

Extended Identifiers
The following are supported formats for extended identifiers for any command that takes an
identifier.

{\ext ident!\ }
Note that trailing space before closing brace is required

\\ext\ ident\!\\
All non-alpha characters escaped

{array_sig(1 to
10)}

specifies a slice of an array object in VHDL; see Tcl
Syntax and Specification of Array Bits and Slices for
more information

{mysignal[31:0]} specifies a slice of an array object in Verilog; see Tcl
Syntax and Specification of Array Bits and Slices for
more information

record_sig.field specifies a field of a record

Table 1-2. Examples of Object Names (cont.)

Object Name Description

Syntax and Conventions
Wildcard Characters

ModelSim® Command Reference Manual, v10.5c 21

Wildcard Characters
You can use wildcard characters in HDL object names in many simulator commands.

Supported Commands
There are a number of commands that support wildcard characters.

The following is a partial list of the commands:

• add dataflow

• add list

• add memory

• add watch

• add wave

• describe

• dumpports

• examine

• find (see the Examples section in the find command for wildcard searches in foreach
loops to be applied with commands that do not accept wildcards.)

• log

• vcd add

When you execute any of these commands with a wildcard, the default behavior is to exclude
the following object types:

• VHDL shared variables in packages and design units, constants, generics, and
immediate assertions

• Verilog parameters, specparams, memories

• SystemVerilog multi-dimensional arrays and class objects

• Signals in cells

• Non-dynamic objects of a size equal to or greater than the level specified in the
WildcardSizeThreshold modelsim.ini variable if the variable has been enabled. Refer to
theWildcardSizeThreshold andWildcardSizeThresholdVerbose modelsim.ini variables
for more information.

You can alter these exclusions with the WildcardFilter preference variable. Refer to the section
“Using the WildcardFilter Preference Variable” for more information.

ModelSim® Command Reference Manual, v10.5c22

Syntax and Conventions
Using the WildcardFilter Preference Variable

Table 1-3 identifies these supported wildcard characters.

Note
A wildcard character does not match a path separator. For example, /dut/* will match /dut/
siga and /dut/clk. However, /dut* will not match either of those.

Using the WildcardFilter Preference Variable
The WildcardFilter preference variable controls which object types are excluded when
performing wildcard matches with simulator commands. The WildcardFilter preference
variable is a Tcl List and can be modified using Tcl commands.

The default object types are defined with the WildcardFilter modelsim.ini variable and load at
each invocation of the simulator. You can add both individual (Table 1-4) and group objects
(Table 1-5) to the current variable list, and you can remove individual objects from the current
list.

Determining the Current WildcardFilter Variable Settings

Enter one of the following commands:

set WildcardFilter

or

echo $WildcardFilter

which returns the list of currently set variables.

Changing the WildcardFilter Settings from the Command Line
Refer to the list of WildcardFilter arguments in Table 1-4 and Table 1-5 to determine what you
want to include in the wildcard matches.

Table 1-3. Wildcard Characters in HDL Object Names

Character Syntax Description

* matches any sequence of characters

? matches any single character

[] matches any one of the enclosed
characters; a hyphen can be used to
specify a range (for example, a-z, A-Z, 0-
9); can be used only with the find
command

Syntax and Conventions
Using the WildcardFilter Preference Variable

ModelSim® Command Reference Manual, v10.5c 23

• To define a new list of values enter the following command:

set WildcardFilter “<arg1 arg2 ...>”

Note that you must enclose the space-separated list of arguments in quotation marks.

• To add one or more values to the current list enter the following command:

lappend WildcardFilter <arg1 arg2 ...>

Note that you must not enclose the space-separated list of arguments in quotation marks.

• To remove a value from the filter use the set command with the Tcl lsearch command to
create the new list from the existing list. For example:

set WildcardFilter [lsearch -not -all -inline $WildcardFilter Endpoint]

Changing the WildcardFilter Settings back to the Default
Enter the following command:

set WildcardFilter default

Changing the WildcardFilter settings from the GUI
1. Choose Tools > Wildcard Filter from the main menu.

2. Select the individual Filters you want to exclude from wildcard searches (Table 1-4
describes each option), or select Composite Filters to activate related filters (Table 1-5
describes each composite option).

3. Click OK.

Refer to the Tcl man pages (Help>Tcl Man Pages) for more information about the lsearch and
set commands.

Changing the default WildcardFilter settings
1. Open the modelsim.ini file for editing (refer toMaking Changes to the modelsim.ini

File)

2. Select the individual Filters you want to exclude from wildcard searches (Table 1-4
describes each option), or select Composite Filters to activate related filters (Table 1-5
describes each composite option).

3. Edit the WildcardFilter variable

4. Save the modelsim.ini file to your working directory.

WildcardFilter Argument Descriptions
Table 1-4 provides a list of the WildcardFilter arguments.

ModelSim® Command Reference Manual, v10.5c24

Syntax and Conventions
Using the WildcardFilter Preference Variable

Table 1-5 provides a list of the group aliases of WildcardFilter arguments. You can set a group
value with the set command. The expanded list of values is returned.

Table 1-4. WildcardFilter Arguments

Argument Description

Alias VHDL Alias

CellInternal Signals in cells, where a cell is defined as 1) a module within a
‘celldefine 2) a Verilog module found with a library search
(using either vlog -v or vlog -y) and compiled with vlog +libcell
or 3) a module containing a specify block

Class Verilog class declaration

ClassReference SystemVerilog class reference

Compare Waveform comparison signal

Constant VHDL constant

Generic VHDL generic

ImmediateAssert VHDL immediate assertions

Integer VHDL integer

Memory Verilog memories

NamedEvent Verilog named event

Net Verilog net

Parameter Verilog parameter

Real Verilog real registers

Reg Verilog register

Signal VHDL signal

SpecParam Verilog specparam

Time Verilog time registers

Transaction Transaction stream and stream arrays

Variable VHDL shared variables in packages and design units.

VHDLFile VHDL files

VirtualExpr Virtual expression

VirtualSignal Virtual signal

Syntax and Conventions
Simulator Variables

ModelSim® Command Reference Manual, v10.5c 25

Simulator Variables
You can reference ModelSim variables in a simulator command by preceding the name of the
variable with the dollar sign ($) character.

Table 1-5. WildcardFilter Argument Groups

Group Argument Specific arguments included

AllVHDL Architecture, Block, Generate, Package, Foreign, Process,
Signal, Variable, Constant, Generic, Alias, Subprogram,
VHDLFile

AllVerilogVars Parameter, Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, ClassReference

AllVerilog Net, Parameter, Reg, Integer, Time, Real, SpecParam,
Memory, NamedEvent, Class, Cross, Covergroup,
Coverpoint, ClassReference

VirtualSignals VirtualSignal, VirtualExpr

AllHDLSignals Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, VirtualExpr, ClassReference

AllVariables Variable, Constant, Generic, Alias, Parameter, Reg,
Integer, Time, Real, SpecParam, Memory, NamedEvent,
ClassReference

AllHDLSignalsVars Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, VirtualExpr, ClassReference

AllSignals Signal, Net, Parameter, Reg, Integer, Time, Real,
SpecParam, Memory, NamedEvent, VirtualSignal,
VirtualExpr, Endpoint, ClassReference

AllSignalsVars Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, VirtualExpr, Endpoint,
ScVariable, ClassReference

AllConstants Constant, Generic, Parameter, SpecParam

Default Variable, Constant, Generic, Parameter, SpecParam,
Memory, Assertion, Cover, Endpoint, ScVariable,
CellInternal, ImmediateAssert VHDLFile

ModelSim® Command Reference Manual, v10.5c26

Syntax and Conventions
Simulation Time Units

ModelSim uses global variables for simulator state variables, simulator control variables,
simulator preference variables, and user-defined variables. Refer to modelsim.ini Variables in
the User’s Manual for more information on variables.

The report command returns a list of current settings for either the simulator state or simulator
control variables.

Simulation Time Units
You can specify the time unit for delays in all simulator commands that have time arguments.

For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always expressed
using the resolution units that are specified by the UserTimeUnit variable.

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Optionsets
By defining and calling optionsets, you can easily use and combine common command line
options.

The executable expands these optionsets and passes them to the tool as if they appeared directly
on the command line. The behavior is similar to the -f <file> option.

Defining an Optionset

Define your optionsets in the [DefineOptionset] section of the modelsim.ini file, where the
syntax is:

<optionset_name> = <command_arguments>

• <optionset_name> — a string that begins with a letter, and contains only letters,
numbers, or underscores. The name is case-insensitive.

• <command_arguments> — a list of arguments as you would specify them on the
command line. This list of arguments can:

o Refer to another <optionset_name>, enclosed in percent-signs (%).

Syntax and Conventions
Argument Files

ModelSim® Command Reference Manual, v10.5c 27

o Include shell environment variables, preceded by a dollar-sign ($). If you embed the
variable in a string, you must surround it with parentheses.

You can instruct the executable to return all the values of any optionsets as they are read with
the following entry in the [optionsets] section.

PRINT_OPTIONSET_VALUE = 1

Calling an Optionset
Call your defined optionsets with the -optionset argument to the commands: vlog, vcom and
vsim.

The syntax of -optionset is:

<command> -optionset <optionset_name>

Argument Files
You can load additional arguments into some commands by using argument files, which are
specified with the -f argument.

The following commands support the -f argument:

• vlog

• vcom

• vencrypt

• vmake

• vsim

The -f <filename> argument specifies a file that contains additional command line arguments.
The following conventions describe some syntax rules for argument files.

• Single Quotes (‘ ’) — Allows you to group arbitrary characters so that no character
substitution occurs within the quotes, such as environment variable expansion or
escaped characters.

+acc=rn+'\mymodule'

//does not treat the '\' as an escape character

• Quotation marks (“ ”) — Allows you to group arbitrary characters so that Tcl-style
backslash substitution and environment variable expansion is performed.

+acc=rn+"\\mymodule\\$VAR"

// escapes the path separators (\) and substitues

ModelSim® Command Reference Manual, v10.5c28

Syntax and Conventions
Command Shortcuts

// your value of '$VAR'

• Unquoted — The following are notes on what occurs when some information is not
quoted:

o Backslash substitution — Any unquoted backslash (\) will be treated as an escape
character.

+acc=rn\\mymodule

// the leading '\' is considered an escape character

o Environment variable expansion — Any unquoted environment variable, such as
$envname, will be expanded. You can also use curly braces ({ }) in your
environment variable, such as ${envname}.

+acc=rn\\$MODULE

// the leading '\' is considered an escape character and the

// variable $MODULE is expanded

• Newline Character — You can specify arguments on separate lines in the argument file
with a backslash (\), which is the line continuation character. You must use a space
before the backslash.

• Comments — Comments within the argument files follow these rules:

o All text in a line beginning with // to its end is treated as a comment.

o All text bracketed by /* … */ is treated as a comment.

o All text in a line beginning with # to its end is treated as a comment.

Command Shortcuts
The following shortcut techniques are available on the command line.

• You can abbreviate command syntax, but the minimum number of characters required to
run a command are those that make it unique. This means the addition of new
commands may prevent an older shortcut from working. For this reason, ModelSim does
not allow command name abbreviations in macro files. This minimizes your need to
update macro files as new commands are added.

• You can enter multiple commands on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

Syntax and Conventions
Command History Shortcuts

ModelSim® Command Reference Manual, v10.5c 29

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

Although it seems as if the simstats results should display in the Transcript window,
they do not because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts
You can review simulator command history or rerun previous commands by using keyboard
shortcuts at the ModelSim/VSIM prompt.

Table 1-6 contains a list of these shortcuts.

Table 1-6. Keyboard Shortcuts for Command History

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt
number (for example, for this prompt: VSIM 12>, n
=12)

!<string> shows a list of executed commands that start with
<string>; Use the up and down arrows to choose from
the list

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up arrow and down
arrow keys

scrolls through the command history

Ctrl-N (UNIX only) scroll to the next command

Ctrl-P (UNIX only scroll to the previous command

click on prompt left-click once on a previous ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)

ModelSim® Command Reference Manual, v10.5c30

Syntax and Conventions
Numbering Conventions

Numbering Conventions
Numbers in ModelSim can be expressed in either VHDL or Verilog style. You can use two
styles for VHDL numbers and one for Verilog.

VHDL Numbering Conventions
There are two types of VHDL number styles:

VHDL Style 1

[-] [radix #] value [#]

A hyphen (-) can also designate a "don’t care" element when you search for a signal value or
expression in the List or Wave window. If you want the ‘-’ to be read as a "don’t care" element,
rather than as a negative sign, be sure to enclose the number in quotation marks. For instance,
you would type "-0110--" as opposed to -0110--. If you do not include the quotation marks,
ModelSim will read the ‘-’ as a negative sign. For example:

16#FFca23#
2#11111110
-23749

VHDL Style 2
base "value"

Table 1-7. VHDL Number Conventions: Style 1

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is required
if a radix is used, the second is always optional

Table 1-8. VHDL Number Conventions: Style 2

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

"value" specifies digits in the appropriate base with optional underscore
separators; default is decimal; required

Syntax and Conventions
Verilog Numbering Conventions

ModelSim® Command Reference Manual, v10.5c 31

For example:

B"11111110"
X"FFca23"

Searching for VHDL Arrays in the Wave and List Windows
Searching for signal values in the Wave or List window may not work correctly for VHDL
arrays if the target value is in decimal notation. You may get an error that the value is of
incompatible type. Since VHDL does not have a radix indicator for decimal, the target value
may get misinterpreted as a scalar value. Prefixing the value with the Verilog notation 'd should
eliminate the problem, even if the signal is VHDL.

Verilog Numbering Conventions
Verilog numbers are expressed in the style:

[-] [size] [base] value

A hyphen (-) can also designate a "don’t care" element when you search for a signal value or
expression in the List or Wave windows. If you want the ‘-’ to be read as a "don’t care" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to 7'b-0110--. If you don’t include the double quotes,
ModelSim will read the ‘-’ as a negative sign. For example:

’b11111110 8’b11111110
’Hffca23 21’H1fca23
-23749

Table 1-9. Verilog Number Conventions

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D, hex: ‘h
or ‘H; optional

value specifies digits in the appropriate base with optional underscore separators;
default is decimal; required

ModelSim® Command Reference Manual, v10.5c32

Syntax and Conventions
GUI_expression_format

GUI_expression_format
The GUI_expression_format is an option of several simulator commands that operate within the
ModelSim GUI environment. The expressions help you locate and examine objects within the
List and Wave windows (expressions may also be used through the Edit > Search menu in both
windows). The commands that use the expression format are:

Expression Typing
GUI expressions are typed. The supported types consist of the following scalar and array types.

Scalar Types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration, and
signal state. Signal states are represented by the nine VHDL std_logic states: ’U’ ’X’ ’0’ ’1’ ’Z’
’W’ ’L’ ’H’ and ’-’.

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are ignored.
Conversion is done automatically when referencing Verilog nets or registers.

Array Types
The supported array types are signed and unsigned arrays of signal states. This would
correspond to the VHDL std_logic_array type. Verilog registers are automatically converted to
these array types. The array type can be treated as either UNSIGNED or SIGNED, as in the
IEEE std_logic_arith package. Normally, referencing a signal array causes it to be treated as
UNSIGNED by the expression evaluator; to cause it to be treated as SIGNED, use casting as
described below. Numeric operations supported on arrays are performed by the expression
evaluator via ModelSim’s built-in numeric_standard (and similar) package routines. The
expression evaluator selects the appropriate numeric routine based on SIGNED or UNSIGNED
properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals may be
used in the expression as long as some variable of that enumeration type is referenced in the
expression. This is useful for sub-expressions of the form:

(/memory/state == reading)

configure examine

searchlog

virtual function

virtual signal

.

Syntax and Conventions
Expression Syntax

ModelSim® Command Reference Manual, v10.5c 33

Expression Syntax
GUI expressions generally follow C-language syntax, with both VHDL-specific and Verilog-
specific conventions supported. These expressions are not parsed by the Tcl parser, and so do
not support general Tcl; parentheses should be used rather than braces. Procedure calls are not
supported.

A GUI expression can include the following elements: Tcl macros, constants, array constants,
variables, array variables, signal attributes, operators, and casting.

Tcl Macros

Macros are useful for pre-defined constants or for entire expressions that have been previously
saved. The substitution is done only once, when the expression is first parsed.

Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

Constants

Array Constants, Expressed in Any of the Following Formats

Table 1-10. Constants Supported for GUI Expressions

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][0-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’W’ ’L’ ’H’ ’-’ 1’b0 1’b1

Table 1-11. Array Constants Supported for GUI Expressions

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

ModelSim® Command Reference Manual, v10.5c34

Syntax and Conventions
Expression Syntax

Variables

Array variables

VHDL bitstring "(U|X|0|1|Z|W|L|H|-)*"
Example: "11010X11"

Verilog notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F, and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes the
ambiguity about the number of bits.)

Based notation 0x…, 0X…, 0o…, 0O…, 0b…, OB…
ModelSim automatically zero fills unspecified upper bits.

Table 1-12. Variables Supported for GUI Expressions

Variable Type

Name of a signal The name may be a simple name, a VHDL or Verilog style extended
identifier, or a VHDL or Verilog style path. The signal must be one of the
following types:
-- VHDL signal of type INTEGER, REAL, or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- Verilog net, Verilog register, Verilog integer, or Verilog real

NOW Returns the value of time at the current location in the WLF file as the
WLF file is being scanned (not the most recent simulation time).

Table 1-13. Array Variables Supported for GUI Expressions

Variable Type

Name of a signal -- VHDL signals of type bit_vector or std_logic_vector
-- Verilog register
-- Verilog net array

A subrange or index may be specified in either VHDL or Verilog syntax.
Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4), mysignal [4]

Table 1-11. Array Constants Supported for GUI Expressions (cont.)

Type Values

Syntax and Conventions
Expression Syntax

ModelSim® Command Reference Manual, v10.5c 35

Signal attributes

<name>’event
<name>’rising
<name>’falling
<name>’delayed()
<name>’hasX

The ’delayed attribute lets you assign a delay to a VHDL signal. To assign a delay to a signal in
Verilog, use “#” notation in a sub-expression (e.g., #-10 /top/signalA).

The hasX attribute lets you search for signals, nets, or registers that contains an X (unknown)
value.

See Examples of Expression Syntax below for further details on ’delayed and ’hasX.

Operators

Table 1-14. Operators Supported for GUI Expressions

Operator Description Kind

+ arithmetic add arithmetic

/ arithmetic divide arithmetic

mod/MOD arithmetic modulus arithmetic

* arithmetic multiply arithmetic

rem/REM arithmetic remainder arithmetic

- arithmetic subtract arithmetic

& concat arithmetic

<name>'delayed(<time>) delayed signal (<time>) attributes

<name>'falling Falling edge attributes

<name>'rising Rising edge attributes

<name>'event Value change attributes

<name>'hasX Value has an X attributes

and, AND bitwise and bitwise logical

nand, NAND bitwise nand bitwise logical

nor, NOR bitwise nor bitwise logical

or, OR bitwise or bitwise logical

xnor, XNOR bitwise xnor bitwise logical

ModelSim® Command Reference Manual, v10.5c36

Syntax and Conventions
Expression Syntax

xor, XOR bitwise xor bitwise logical

rol, ROL rotate left bitwise logical

ror, ROR rotate right bitwise logical

sla, SLA shift left arithmetic bitwise logical

sll, SLL shift left logical bitwise logical

sra, SRA shift right arithmetic bitwise logical

srl, SRL shift right logical bitwise logical

not, NOT, ~ unary bitwise inversion bitwise logical

&& boolean and boolean

! boolean not boolean

|| boolean or boolean

== equal boolean

=== exact equal1 boolean

!== exact not equal boolean

> greater than boolean

>= greater than or equal boolean

< less than boolean

<= less than or equal boolean

!=, /= not equal boolean

&<vector_expr> AND reduction reduction

|<vector_expr> OR reduction reduction

^<vector_expr> XOR reduction reduction

1. This operator is allowed to be compatible with other simulators.

Table 1-15. Precedence of GUI Expression Operators

Operator Kind

delayed(), 'falling, 'rising, 'event, 'hasX attributes

&, |, ^ unary

!, not, NOT, ~ boolean

Table 1-14. Operators Supported for GUI Expressions (cont.)

Operator Description Kind

Syntax and Conventions
Expression Syntax

ModelSim® Command Reference Manual, v10.5c 37

Note
Arithmetic operators use the std_logic_arith package.

Casting

/, mod, MOD, *, rem, REM arithmetic

nand, NAND, nor, NOR bitwise logical

and, AND bitwise logical

xor, XOR, xnor, XNOR bitwise logical

or, OR bitwise logical

+, - arithmetic

& concat

rol, ROL, ror, ROR, sla, SLA, sll, SLL, sra, SRA, srl, SRL bitwise logical

>, >=, <, <= boolean

==, ===, !==, !=, /= boolean

&& boolean

|| boolean

Table 1-16. Casting Conversions Supported for GUI Expressions

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer

(std_logic) convert to 9-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector

Table 1-15. Precedence of GUI Expression Operators (cont.)

Operator Kind

ModelSim® Command Reference Manual, v10.5c38

Syntax and Conventions
Expression Syntax

Examples of Expression Syntax

/top/bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz is equal
to hex ffae; otherwise is false.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal mystate is
the enumeration reading and signal /top/u3/addr is equal to the specified 32-bit hex constant;
otherwise is false.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals hex ac.

/top/signalA'delayed(10ns)

This expression returns /top/signalA delayed by 10 ns.

/top/signalA'delayed(10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signalA with /top/signalB.

virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

This evaluates /top/signalA at 10 simulation time steps before the current time, and takes the
logical AND of the result with the current value of /top/signalB. The '#' notation uses positive
numbers for looking into the future, and negative numbers for delay. This notation does not
support the use of time units.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk just
changed from low to high, and signal mode is enumeration writing.

Syntax and Conventions
Signal and Subelement Naming Conventions

ModelSim® Command Reference Manual, v10.5c 39

searchlog -expr {dbus'hasX} {0 ns} dbus

Searches for an ’X’ in dbus. This is equivalent to the expression: {dbus(0) == 'x' || dbus(1) ==
'x'} This makes it possible to search for X values without having to write a type specific
literal.

Signal and Subelement Naming Conventions
ModelSim supports naming conventions for VHDL and Verilog signal pathnames, VHDL array
indexing, Verilog bit selection, VHDL subrange specification, and Verilog part selection.

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

Grouping and Precedence
Operator precedence generally follows that of the C language, but liberal use of parentheses is
recommended.

Concatenation of Signals or Subelements
Elements in the concatenation that are arrays are expanded so that each element in the array
becomes a top-level element of the concatenation. But for elements in the concatenation that are
records, the entire record becomes one top-level element in the result.

To specify that the records be broken down so that their subelements become top-level elements
in the concatenation, use the concat_flatten directive. Currently, leaving full arrays as elements
in the result is not supported. (Please contact Mentor Graphics if you need that option.)

If the elements being concatenated are of incompatible base types, a VHDL-style record will be
created. The record object can be expanded in the Objects and Wave windows just like an array
of compatible type elements.

Concatenation Syntax for VHDL

<signalOrSliceName1> & <signalOrSliceName2> & ...

Concatenation Syntax for Verilog
&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }

ModelSim® Command Reference Manual, v10.5c40

Syntax and Conventions
Concatenation of Signals or Subelements

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition multipliers
are supported, as illustrated in the second line. The repetition element itself may be an arbitrary
concatenation subexpression.

Concatenation Directives
A concatenation directive (as illustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, ModelSim
will create the concatenation with a descending index range from (n-1) down to 0, where n is the
number of elements in the array.

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax

The concat_range directive completely specifies the index range.

(concat_ascending) <concatenationExpr>

The concat_ascending directive specifies that the index start at zero and increment upwards.

(concat_flatten) <concatenationExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat_noflatten) <concatenationExpr>

The concat_noflatten directive groups signals together without merging them into one big array.
The signals become elements of a record and retain their original names. When expanded, the
new signal looks just like a group of signals. The directive can be used hierarchically with no
limits on depth.

(concat_sort_wild_ascending) <concatenationExpr>

The concat_sort_wild_ascending directive gathers signals by name in ascending order (the
default is descending).

(concat_reverse) <concatenationExpr>

The concat_reverse directive reverses the bits of the concatenated signals.

Examples of Concatenation
&{ "mybusbasename*" }

Syntax and Conventions
Record Field Members

ModelSim® Command Reference Manual, v10.5c 41

Gathers all signals in the current context whose names begin with "mybusbasename", sorts
those names in descending order, and creates a bus with index range (n-1) downto 0, where n is
the number of matching signals found. (Note that it currently does not derive the index name
from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in descending
order.

(concat_ascending)&{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in descending order.

(concat_ascending)((concat_sort_wild_ascending)&{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending order.

(concat_reverse)(bus1 & bus2)

Specifies that the bits of bus1 and bus2 be reversed in the output virtual signal.

Record Field Members
Arbitrarily-nested arrays and records are supported, but operators will only operate on one field
at a time. That is, the expression {a == b} where a and b are records with multiple fields, is not
supported.

This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2) ...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Searching for Binary Signal Values in the GUI
When you use the GUI to search for signal values displayed in 4-state binary radix, you should
be aware of how ModelSim maps between binary radix and std_logic. The issue arises because
there is no “un-initialized” value in binary, while there is in std_logic. So, ModelSim relies on

ModelSim® Command Reference Manual, v10.5c42

Syntax and Conventions
Searching for Binary Signal Values in the GUI

mapping tables to determine whether a match occurs between the displayed binary signal value
and the underlying std_logic value.

This matching algorithm applies only to searching using the GUI. It does not apply to VHDL or
Verilog test benches.

For comparing VHDL std_logic/std_ulogic objects, ModelSim uses the table shown below. An
entry of “0” in the table is “no match”; an entry of “1” is a “match”; an entry of “2” is a match
only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that X will match
a U, and - will match anything.

For comparing Verilog net values, ModelSim uses the table shown below. An entry of “2” is a
match only if you set the Tcl variable “VLOG_X_MatchesAnything” to 1.

Table 1-17. VHDL Logic Values Used in GUI Search

Search
Entry

Matches as follows:

U X 0 1 Z W L H -

U 1 1 0 0 0 0 0 0 1

X 1 1 2 2 2 2 2 2 1

0 0 2 1 0 0 0 1 0 1

1 0 2 0 1 0 0 0 1 1

Z 0 2 0 0 1 0 0 0 1

W 0 2 0 0 0 1 0 0 1

L 0 2 1 0 0 0 1 0 1

H 0 2 0 1 0 0 0 1 1

- 1 1 1 1 1 1 1 1 1

Table 1-18. Verilog Logic Values Used in GUI Search

Search
Entry

Matches as follows:

0 1 Z X

0 1 0 0 2

1 0 1 0 2

Z 0 0 1 2

X 2 2 2 1

ModelSim® Command Reference Manual, v10.5c 43

Chapter 2
Commands

This chapter describes ModelSim commands that you can enter either on the command line of
the Main window or in a DO file. Some commands are automatically entered on the command
line when you use the graphical user interface.

Note that, in addition to the simulation commands listed in this chapter, you can also use the Tcl
commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl > Man Pages).

Table 2-1 provides a brief description of each ModelSim command and whether the command
is supported for use in batch simulation mode (vsim -batch), and/or command-line mode (vsim
-c). Refer to General Modes of Operation for more information about batch and command-line
simulation. For more information on command details, arguments, and examples, click the link
in the Command name column.

Table 2-1. Supported Commands

Command name Action -batch -c

abort This command halts the execution of a DO file
interrupted by a breakpoint or error.

Y Y

add dataflow This command adds the specified process, signal,
net, or register to the Dataflow window. Wildcards
are allowed.

N N

add list This command adds the following objects and
their values to the List window:

Y Y

add log also known as the log command; see “log” on
page 199

Y Y

add memory This command displays the contents and sets the
address and data radix of the specified memory in
the MDI frame of the Main window.

N N

add message This command is used within a DO file or script
and specifies a user defined runtime message that
is sent to the transcript and .wlffiles. Messages are
displayed in the Message Viewer window in the
GUI. Refer to “Message Viewer Window for
information.

Y Y

add watch This command adds signals and variables to the
Watch window in the Main window.

N N

ModelSim® Command Reference Manual, v10.5c44

Commands

add wave This command adds the following objects to the
Wave window:

Y Y

add_cmdhelp This command adds the specified command name,
description, and command arguments to the
command-line help. You can then access the
information using the help command.

N Y

alias This command displays or creates user-defined
aliases. Any arguments passed on invocation of
the alias will be passed through to the specified
commands.

Y N

archive load The archive load command allows you to load an
archived debug database (.dbar) file that was
previously created with the archive write
command. The archived file may include a
number of WLF files, design source files, and a
DBG file.

N N

archive write The archive write command allows you to create a
debug archive file, with the file extension .dbar,
that contains one or more WLF files, debug
information captured from the design library, an
optional connectivity debug database file, and
optional HDL source files. With this archived file,
you can perform post-simulation debugging in
different location from that which the original
simulation was run.

N N

batch_mode This command returns “1” if Questa SIM is
operating in batch mode, otherwise it returns “0.”
It is typically used as a condition in an if
statement.

Y Y

bd This command deletes a breakpoint. You can
delete multiple breakpoints by specifying separate
information groupings on the same command line.

Y Y

bookmark add wave This command creates a named reference to a
specific zoom range and scroll position in the
specified Wave window. Bookmarks are saved in
the wave format file and are restored when the
format file is read.

N N

bookmark delete wave This command deletes bookmarks from the
specified Wave window.

N N

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 45

bookmark goto wave This command zooms and scrolls a Wave window
using the specified bookmark.

N N

bookmark list wave This command displays a list of available
bookmarks in the Transcript window.

N N

bp This command sets either a file-line breakpoint or
returns a list of currently set breakpoints. It allows
enum names, as well as literal values, to be used in
condition expressions.

Y Y

call This command calls the following types of
functions/tasks.

Y Y

change This command modifies the value of a: VHDL
constant, generic, or variable;Verilog register or
variable; or C variable if running C Debug.

Y Y

classinfo ancestry This command returns class inheritance hierarchy
for a named class type.

Y Y

classinfo descriptive This command returns the descriptive class name
for the specified authoritative class name.

Y Y

classinfo find This command reports on the current state of a
specified class instance, whether it exists, has not
yet been created, or has been destroyed.

Y Y

classinfo implements This command displays a list of which classes
implement SystemVerilog interface classes. The
type of the class argument affect the contents of
this list.

Y Y

classinfo instances This command reports the list of existing class
instances of a specific class type. You can use this
to determine what class instances to log or
examine. It can also help in debugging problems
where class instances are not being cleaned up as
they should be resulting in excessive memory
usage.

Y Y

classinfo interfaces This command lists the interface class types that
match or do not match a specified pattern. Finds
all interface classes that match a regular
expression and determines the full path of
interface class types.

Y Y

classinfo isa This command returns to the transcript a list of all
classes extended from the specified class type.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c46

Commands

classinfo report This command prints detailed reports on class
instance usage. The command displays columns
for class type names and their current, peak and
total class instance counts. The columns may be
arranged, sorted, or eliminated using the command
arguments.

Y Y

classinfo stats This command prints statistics about the total
number of class types and total, peak, and current
class instance counts during the simulation.

Y Y

classinfo trace This command displays the active references to
the specified class instance. This is very useful in
debugging situations where class instances are not
being destroyed as expected because something in
the design is still referencing them. Finding those
references may lead to uncovering bugs in
managing these class references which often lead
to large memory savings.

Y Y

classinfo types This command lists the class types that match or
do not match a specified pattern. Finds all classes
that match a regular expression and determines the
full path of class types.

Y Y

configure The configure command invokes the List or Wave
widget configure command for the current default
List or Wave window.

N Y

dataset alias This command maps an alternate name (alias) to
an open dataset. A dataset can have any number of
aliases, but all dataset names and aliases must be
unique even when more than one dataset is open.
Aliases are not saved to the .wlf file and must be
remapped if the dataset is closed and then re-
opened.

N Y

dataset clear All event data is removed from the current
simulation WLF file, while retaining all currently
logged signals. Subsequent run commands will
continue to accumulate data in the WLF file.

N Y

dataset close This command closes an active dataset. To open a
dataset, use the dataset open command.

N Y

dataset config This command configures WLF parameters for an
open dataset and all aliases mapped to that dataset.

N Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 47

dataset current This command activates the specified dataset and
sets the GUI context to the last selected context of
the specified dataset. All context dependent GUI
data is updated and all context dependent CLI
commands start working with respect to the new
context.

N Y

dataset info This command reports a variety of information
about a dataset. Arguments to this command are
order dependent. Please read through the argument
descriptions for more information.

N Y

dataset list This command lists all active datasets. N Y

dataset open This command opens a WLF file (either the
currently running vsim.wlf or a saved WLF file)
and/or UCDB file (representing coverage data)
and assigns it the logical name that you specify.

N Y

dataset rename This command changes the name of a dataset to
the new name you specify. Arguments to this
command are order dependent. Follow the order
specified in the Syntax section.

N Y

dataset restart This command unloads the specified dataset or
currently active dataset and reloads the dataset
using the same dataset name. The contents of
Wave and other coverage windows are restored
for UCDB datasets after a reload.

N Y

dataset save This command writes data from the current
simulation to the specified file. This lets you save
simulation data while the simulation is still in
progress.

N Y

dataset snapshot This command saves data from the current WLF
file (vsim.wlf by default) at a specified interval. It
provides you with sequential or cumulative
"snapshots" of your simulation data.

N Y

delete This command removes objects from either the
List or Wave window. Arguments to this
command are order dependent.

N Y

describe This command displays information about
simulation objects and design regions in the
Transcript window.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c48

Commands

disablebp This command turns off breakpoints and when
commands. To turn on breakpoints or when
commands again, use the enablebp command.

Y Y

do This command executes the commands contained
in a DO file.

Y Y

drivers This command displays the names and strength of
all drivers of the specified object.

Y Y

dumplog64 This command dumps the contents of the specified
WLF file in a readable format to stdout. The WLF
file cannot be opened for writing in a simulation
when you use this command. This command
cannot be used in a DO file.

echo This command displays a specified message in the
Transcript window.

Y Y

edit This command invokes the editor specified by the
EDITOR environment variable. By default, the
specified filename will open in the Source
window.

N N

enablebp This command turns on breakpoints and when
commands that were previously disabled.

Y Y

encoding This command translates between the 16-bit
Unicode characters used in Tcl strings and a
named encoding, such as Shift-JIS.

Y Y

environment This command has two forms, environment and
env. It allows you to display or change the current
dataset and region/signal environment.

Y Y

examine This command has two forms, examine and exa. It
examines one or more objects and displays current
values (or the values at a specified previous time)
in the Transcript window.

Y Y

exit This command exits the simulator and the
ModelSim application.

Y Y

find This command locates objects by type and name.
Arguments to the command are grouped by object
type.

N Y

find connections This command returns the set of nets that are
electrically equivalent to a specified net. It is only
available during a live simulation.

N Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 49

find infiles This command searches for a string in the
specified file(s) and prints the results to the
Transcript window. The results are individually
hotlinked and will open the file and display the
location of the string.

Y Y

find insource This command searches for a string in the source
files for the current design and prints the results to
the Transcript window. The results are hotlinked
individually and will open the file and display the
location of the string. When you execute this
command in command-line mode from outside of
the GUI, the results are sent to stdout with no
hotlinks.

Y Y

force This command allows you to apply stimulus
interactively to VHDL signals, Verilog nets and
registers.

Y Y

formatTime This command provides global format control for
all time values displayed in the GUI. When
specified without arguments, this command
returns the current state of the three arguments.

Y Y

gc configure This command specifies when the System Verilog
garbage collector will run. The garbage collector
may be configured to run after a memory
threshold has been reached, after each simulation
run command completes, and/or after each
simulation step command. The default settings are
optimized to balance performance and memory
usage for either regular simulation or class
debugging (vsim -classdebug). Returns the current
settings when specified without arguments.

N Y

gc run This command runs the SystemVerilog garbage
collector.

N Y

help This command displays in the Transcript window
a brief description and syntax for the specified
command.

N Y

history This command lists the commands you have
executed during the current session. History is a
Tcl command. For more information, consult the
Tcl Man Pages (Help > Tcl Man Pages).

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c50

Commands

layout This command allows you to perform a number of
editing operations on custom GUI layouts, such as
loading, saving, maximizing, and deleting.

N N

log This command creates a wave log format (WLF)
file containing simulation data for all HDL objects
whose names match the provided specifications.
Objects that are displayed using the add list and
add wave commands are automatically recorded in
the WLF file. By default the file is named
vsim.wlf and stored in the current working
directory. You can change the default name using
the vsim -wlf option of the vsim command or by
setting the WLFFilename variable in the
modelsim.ini file.

Y Y

lshift This command takes a Tcl list as an argument and
shifts it in-place, one place to the left, eliminating
the left-most element.

Y Y

lsublist This command returns a sublist of the specified
Tcl list that matches the specified Tcl glob
pattern.Arguments to this command are order
dependent. Follow the order specified in the
Syntax section.

Y Y

mem compare This command compares a selected memory to a
reference memory or file. Must have the "diff"
utility installed and visible in your search path in
order to run this command. Arguments to this
command are order dependent. Please read
through the argument descriptions for more
information.

Y Y

mem display This command prints to the Transcript window the
memory contents of the specified instance. If the
given instance path contains only a single array
signal or variable, the signal or variable name need
not be specified.

Y Y

mem list This command displays a flattened list of all
memory instances in the current or specified
context after a design has been elaborated.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 51

mem load This command updates the simulation memory
contents of a specified instance. You can upload
contents either from a memory data file, a memory
pattern, or both. If both are specified, the pattern is
applied only to memory locations not contained in
the file.

Y Y

mem save This command saves the contents of a memory
instance to a file in any of the supported formats:
Verilog binary, Verilog hex, and MTI memory
pattern data.

Y Y

mem search This command finds and prints to the screen the
first occurring match of a specified memory
pattern in the specified memory instance.
Shorthand instance names are accepted.
Optionally, you can instruct the command to print
all occurrences. The search pattern can be one
word or a sequence of words.

Y Y

modelsim The modelsim command starts the ModelSim GUI
without prompting you to load a design.

? ?

noforce This command removes the effect of any active
force commands on the selected HDL objects. and
also causes the object’s value to be re-evaluated.

Y Y

nolog This command suspends writing of data to the
wave log format (WLF) file for the specified
signals.

Y Y

notepad This command opens a simple text editor. It may
be used to view and edit ASCII files or create new
files.

N N

noview This command closes a window in the ModelSim
GUI. To open a window, use the view command.

N N

nowhen This command deactivates selected when
commands.

Y Y

onbreak This command is used within a DO file and
specifies one or more scripts to be executed when
running a script that encounters a breakpoint in the
source code.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c52

Commands

onElabError This command specifies one or more commands
to be executed when an error is encountered
during the elaboration portion of a vsim command.
The command is used by placing it within a DO
file script. Use the onElabError command without
arguments to return to a prompt.

Y Y

onerror This command is used within a DO file script
before a run command; it specifies one or more
commands to be executed when a running script
encounters an error.

Y Y

onfinish This command controls simulator behavior when
encountering $finish or sc_stop() in the design
code. When you specify this command without an
argument, it returns the current setting.

Y Y

pause This command interrupts the execution of a macro
and allows you to perform interactive debugging
of a macro file. The command is placed within the
macro to be debugged.

Y Y

precision This command determines how real numbers
display in the graphic interface (e.g., Objects,
Wave, Locals, and List windows). It does not
affect the internal representation of a real number
and therefore precision values over 17 are not
allowed. Executing the precision command
without any arguments returns the current
precision setting.

Y Y

printenv This command prints to the Transcript window the
current names and values of all environment
variables. If variable names are given as
arguments, returns only the names and values of
the specified variables.

Y Y

process report This command creates a textual report of all
processes displayed in the Process Window.

Y Y

project This command is used to perform common
operations on projects.

N Y

pwd This Tcl command displays the current directory
path in the Transcript window.

Y Y

quietly This command turns off transcript echoing for the
specified command.

Y Y

quit This command exits the simulator. Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 53

radix This command specifies the default radix to be
used for the current simulation. Specifying the
command with no argument returns the current
radix setting.

Y Y

radix define This command is used to create or modify a user-
defined radix. A user definable radix is used to
map bit patterns to a set of enumeration labels or
setup a fixed or floating point radix. User-defined
radices are available for use in the most windows
and with the examine command.

Y Y

radix delete This command will remove the radix definition
from the named radix.

Y Y

radix list This command will return the complete definition
of a radix, if a name is given. If no name is given,
it will list all the defined radices.

Y Y

radix names This command returns a list of currently defined
radix names.

Y Y

radix signal This command sets or inspects radix values for the
specified signal in the Objects, Locals, Schematic,
and Wave windows.When no argument is used,
the radix signal command returns a list of all
signals with a radix.

Y Y

report This command displays information relevant to
the current simulation.

Y Y

restart This command reloads the design elements and
resets the simulation time to zero. Only design
elements that have changed are reloaded. (Note
that SDF files are always reread during a restart.)

Y Y

resume This command is used to resume execution of a
macro (DO) file after a pause command or a
breakpoint.

Y Y

run This command advances the simulation by the
specified number of timesteps.

Y Y

runStatus This command returns the current state of your
simulation to stdout after issuing a run or step
command.

Y Y

searchlog This command searches one or more of the
currently open logfiles for a specified condition.

N Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c54

Commands

see This command displays the specified number of
source file lines around the current execution line
and places a marker to indicate the current
execution line. If specified without arguments,
five lines will be displayed before and four lines
after.

Y Y

setenv This command changes or reports the current
value of an environment variable. The setting is
valid only for the current ModelSim session.
Arguments to this command are order dependent.
Please read the argument descriptions for more
information.

Y Y

shift This command shifts macro parameter values left
one place, so that the value of parameter \$2 is
assigned to parameter \$1, the value of parameter
\$3 is assigned to \$2, and so on. The previous
value of \$1 is discarded.

Y Y

show This command lists HDL objects and subregions
visible from the current environment.

Y Y

simstats This command returns performance-related
statistics about elaboration and simulation. The
statistics measure the simulation kernel process
(vsimk) for a single invocation of vsim. If you
invoke vsim a second time, or restart the
simulation, the current statistics are discarded and
new values are collected.

Y Y

simstatslist This command returns performance-related
statistics about elaboration and simulation. Use
this command in place of the simstats command to
produce the original statistics output format as a
list instead of on separate lines.

Y Y

stack down This command moves down the call stack. Y Y

stack frame This command selects the specified call frame. Y Y

stack level This command reports the current call frame
number.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 55

stack tb This command displays a stack trace for the
current process in the Transcript window. This
lists the sequence of HDL function calls that have
been entered to arrive at the current state for the
active process. The stack tb command is an alias
for the tb command.

Y Y

stack up This command moves up the call stack. Y Y

status This command lists summary information about
currently interrupted macros.

Y Y

step The step command is an alias for the run
command with the -step switch. Steps the
simulator to the next HDL.

Y Y

stop This command is used with the when command to
stop simulation in batch files. The stop command
has the same effect as hitting a breakpoint. The
stop command may be placed anywhere within the
body of the when command.

Y Y

suppress This command prevents one or more specified
messages from displaying. You cannot suppress
Fatal or Internal messages. The suppress
command used without arguments returns the
message numbers of all suppressed messages.

Y Y

tb This (traceback) command (traceback) displays a
stack trace for the current process in the Transcript
window. This lists the sequence of HDL function
calls that have been entered to arrive at the current
state for the active process.

Y Y

Time These commands allow you to perform
comparisons between, operations on, and
conversions of, time values.

Y Y

transcript This command controls echoing of commands
executed in a macro file. If no option is specified,
the current setting is reported.

Y1 Y

transcript file This command sets or queries the current
PrefMain(file) Tcl preference variable. You can
use this command to clear a transcript in batch
mode or to limit the size of a transcript file. It
offers an alternative to setting the PrefMain(file)
Tcl preference variable through the GUI.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c56

Commands

transcript path This command returns the full pathname to the
current transcript file.

Y Y

transcript sizelimit This command sets or queries the current
preference value for the transcript fileSizeLimit
value. If the size limit is reached, the transcript file
is saved and simulation continues.

Y Y

tssi2mti This command is used to convert a vector file in
TSSI Format into a sequence of force and run
commands.

N Y

unsetenv This command deletes an environment variable.
The deletion is not permanent – it is valid only for
the current ModelSim session.

Y Y

ui_VVMode This command specifies behavior when
encountering UI registration calls used by
verification packages, such as AVM or OVM.
Returns the current setting when specifies without
an argument.

Y Y

vcd add This command adds the specified objects to a
VCD file.

Y Y

vcd checkpoint This command dumps the current values of all
VCD variables to the specified VCD file. While
simulating, only value changes are dumped.
Related Verilog tasks: $dumpall, $fdumpall

Y Y

vcd comment This command inserts the specified comment in
the specified VCD file. Arguments to this
command are order dependent. Please read the
argument descriptions for more information.

Y Y

vcd dumpports This command creates a VCD file that includes
port driver data.

Y Y

vcd dumpportsall This command creates a checkpoint in the VCD
file which shows the value of all selected ports at
that time in the simulation, regardless of whether
the port values have changed since the last
timestep. Related Verilog task: $dumpportsall

Y Y

vcd dumpportsflush This command flushes the contents of the VCD
file buffer to the specified VCD file. Related
Verilog task: $dumpportsflush

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 57

vcd dumpportslimit This command specifies the maximum size of the
VCD file (by default, limited to available disk
space). When the size of the file exceeds the limit,
a comment is appended to the file and VCD
dumping is disabled.

Y Y

vcd dumpportsoff This command turns off VCD dumping and
records all dumped port values as x.

Y Y

vcd dumpportson This command turns on VCD dumping and
records the current values of all selected ports.
This command is typically used to resume
dumping after invoking vcd dumpportsoff.
Related Verilog task: $dumpportson

Y Y

vcd file This command specifies the filename and state
mapping for the VCD file created by a vcd add
command. The vcd file command is optional. If
used, it must be issued before any vcd add
commands.

Y Y

vcd files This command specifies filenames and state
mapping for VCD files created by the vcd add
command. The vcd files command is optional. If
used, it must be issued before any vcd add
commands.Related Verilog task: $fdumpfile

Y Y

vcd flush This command flushes the contents of the VCD
file buffer to the specified VCD file. This
command is useful if you want to create a
complete VCD file without ending your current
simulation. Related Verilog tasks: $dumpflush,
$fdumpflush

Y Y

vcd limit This command specifies the maximum size of a
VCD file (by default, limited to available disk
space).

Y Y

vcd off This command turns off VCD dumping to the
specified file and records all VCD variable values
as x. Related Verilog tasks: $dumpoff, $fdumpoff

Y Y

vcd on This command turns on VCD dumping to the
specified file and records the current values of all
VCD variables.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c58

Commands

vcd2wlf This command is a utility that translates a VCD
(Value Change Dump) file into a WLF file that
you can display in ModelSim using the vsim -view
argument. This command only works on VCD
files containing positive time values.

Y Y

vcom The vcom command compiles VHDL source code
into a specified working library (or to the work
library by default).

Y Y

vdel This command deletes a design unit from a
specified library. This command provides
additional information with the -help switch.

Y Y

vdir This command lists the contents of a design
library and checks the compatibility of a vendor
library. If vdir cannot read a vendor-supplied
library, the library may not be compatible with
ModelSim.

Y Y

vencrypt This command encrypts Verilog and
SystemVerilog code contained within encryption
envelopes. The code is not pre-processed before
encryption, so macros and other `directives are
unchanged. This allows IP vendors to deliver
encrypted IP with undefined macros and
`directives.

Y Y

verror This command prints a detailed description about
a message number. It may also point to additional
documentation related to the error. This command
provides additional information with the -help or -
h switch.

Y Y

vgencomp Once a Verilog module is compiled into a library,
you can use this command to write its equivalent
VHDL component declaration to standard output.

Y Y

vhencrypt This command encrypts VHDL code contained
within encryption envelopes. The code is not
compiled before encryption, so dependent
packages and design units do not have to exist
before encryption.

Y Y

view This command opens the specified window. If you
specify this command without arguments it returns
a list of all open windows in the current layout.

N N

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 59

virtual count This command reports the number of currently
defined virtuals that were not read in using a
macro file.

N Y

virtual define This command prints to the transcript the
definition of the virtual signals, functions, or
regions in the form of a command that can be used
to re-create the object.

N Y

virtual delete This command removes the matching virtuals. N Y

virtual describe This command prints to the transcript a complete
description of the data type of one or more virtual
signals. Similar to the existing describe command.

N Y

virtual expand This command prints to the transcript a list of all
the non-virtual objects contained in the specified
virtual signal(s). You can use this to create a list of
arguments for a command that does not accept or
understand virtual signals.

N Y

virtual function This command creates a new signal, known only
by the GUI (not the kernel), that consists of logical
operations on existing signals and simulation time,
as described in <expressionString>.

N Y

virtual hide This command causes the specified real or virtual
signals to not be displayed in the Objects window.
This is used when you want to replace an
expanded bus with a user-defined bus. You make
the signals reappear using the virtual nohide
command.

N Y

virtual log This command causes the simulation-mode
dependent signals of the specified virtual signals
to be logged by the kernel. If wildcard patterns are
used, it will also log any normal signals found,
unless the -only option is used. You unlog the
signals using the virtual nolog command.

N Y

virtual nohide This command reverses the effect of a virtual hide
command, causing the specified real or virtual
signals to reappear the Objects window.

N Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c60

Commands

virtual nolog This command reverses the effect of a virtual log
command. It causes the simulation-dependent
signals of the specified virtual signals to be
excluded ("unlogged") by the kernel. If wildcard
patterns are used, it will also unlog any normal
signals found, unless the -only option is used.

N Y

virtual region This command creates a new user-defined design
hierarchy region.

N Y

virtual save This command saves the definitions of virtuals to
a file named virtual.do in the current directory.

N Y

virtual show This command lists the full path names of all
explicitly defined virtuals.

N Y

virtual signal This command creates a new signal, known only
by the GUI (not the kernel), that consists of
concatenations of signals and subelements as
specified in <expressionString>.

N Y

virtual type This command creates a new enumerated type
known only by the GUI, not the kernel. Virtual
types are used to convert signal values to character
strings. The command works with signed integer
values up to 64 bits.

N Y

vlib This command creates a design library. You must
use vlib rather than operating system commands to
create a library directory or index file.

Y Y

vlog The vlog command compiles Verilog source code
and SystemVerilog extensions into a specified
working library (or to the work library by default).
Compressed SystemVerilog source files (those
compressed with zlib) are accepted.

Y Y

vmake The vmake utility allows you to use a MAKE
program to maintain individual libraries. You run
vmake on a compiled design library. This utility
operates on multiple source files per design unit; it
supports Verilog include files as well as Verilog
and VHDL PSL vunit files.

Y Y

vmap The vmap command defines a mapping between a
logical library name and a directory by modifying
the modelsim.ini file.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands

ModelSim® Command Reference Manual, v10.5c 61

vsim The vsim command invokes the VSIM simulator,
which you can use to view the results of a previous
simulation run (when invoked with the -view
switch)

Y Y

vsim<info> The vsim<info> commands return information
about the current vsim executable.

Y Y

vsim_break Stop (interrupt) the current simulation before it
runs to completion. To stop a simulation and then
resume it, use this command in conjunction with
run -continue.

Y Y

vsource This command specifies an alternative file to use
for the current source file. This command is used
when the current source file has been moved. The
alternative source mapping exists for the current
simulation only..

Y Y

wave A number of commands are available to
manipulate and report on the Wave window.

N N

wave sort This command sorts signals in the Wave window
by name or full path name.

N N

when This command instructs ModelSim to perform
actions when the specified conditions are met.

Y Y

where This command displays information about the
system environment. It is useful for debugging
problems where ModelSim cannot find the
required libraries or support files.

Y Y

wlf2log This command translates a ModelSim WLF file
(vsim.wlf) to a QuickSim II logfile. It reads the
vsim.wlf WLF file generated by the add list, add
wave, or log commands in the simulator and
converts it to the QuickSim II logfile format.

Y Y

wlf2vcd This command translates a ModelSim WLF file to
a standard VCD file. Complex data types that are
unsupported in the VCD standard (records,
memories, etc.) are not converted.

Y Y

wlfman This command allows you to get information
about and manipulate saved WLF files.

Y Y

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

ModelSim® Command Reference Manual, v10.5c62

Commands

wlfrecover This command attempts to "repair" WLF files that
are incomplete due to a crash or if the file was
copied prior to completion of the simulation. Use
this command if you receive a “bad magic
number” error message when opening a WLF file.
You can run the command from the VSIM> or
ModelSim> prompt or from a shell.

Y Y

write format This command records the names and display
options of the HDL objects currently being
displayed in the Analysis, List, Memory, Message
Viewer, Test Browser, and Wave windows.

N Y

write list This command records the contents of the List
window in a list output file.

N Y

write preferences This command saves the current GUI preference
settings to a Tcl preference file. Settings saved
include Wave, Objects, and Locals window
column widths; Wave, Objects, and Locals
window value justification; and Wave window
signal name width.

N Y

write report This command prints a summary of the design
being simulated including a list of all design units
(VHDL configurations, entities, and packages, and
Verilog modules) with the names of their source
files. The summary includes a list of all source
files used to compile the given design.

Y Y

write timing This command displays path delays and timing
check limits, unadjusted for delay net delays, for
the specified instance.

Y Y

write transcript This command writes the contents of the
Transcript window to the specified file. The
resulting file can then be modified to replay the
transcribed commands as a DO file (macro).

N Y

write tssi This command records the contents of the List
window in a "TSSI format" file.

Y Y

write wave This command records the contents of the Wave
window in PostScript format. The output file can
then be printed on a PostScript printer.

N N

1. transcript on | off only are supported.

Table 2-1. Supported Commands (cont.)

Command name Action -batch -c

Commands
abort

ModelSim® Command Reference Manual, v10.5c 63

abort
This command halts the execution of a DO file interrupted by a breakpoint or error.

When DO files are nested, you may choose to abort the last DO file script only, abort a specified
number of nesting levels, or abort all DO files. You can specify this command within a DO file
to return early.

Syntax

abort [<n> | all]

Arguments

• <n>

(optional) The number of nested DO file script levels to abort. Specified as an integer
greater than 0, where the default value is 1.

• all

(optional) Instructs the tool to abort all levels of nested DO files.

ModelSim® Command Reference Manual, v10.5c64

Commands
add dataflow

add dataflow
This command adds the specified process, signal, net, or register to the Dataflow window.
Wildcards are allowed.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

add dataflow <object> ... [-connect <source_net> <destination_net>]
{[-in] [-out] [-inout] | [-ports]} [-internal] [-nofilter] [-recursive]

Arguments

• <object> ...

(required unless specifying -connect) Specifies a process, signal, net, or register to add to
the Dataflow window. Wildcards are allowed. Multiple objects are specified as a space
separated list, Refer to the section “Wildcard Characters” on page 21 for wildcard usage as
it pertains to the add commands. Must be specified as the first argument to the add dataflow
command.

• -connect <source_net> <destination_net>

(optional) Computes and displays in the Dataflow window all paths between two nets.

<source_net> — The net that originates the path search.

<destination_net> — The net that terminates the path search.

• -in

(optional) Specifies to add ports of mode IN.

• -inout

(optional) Specifies to add ports of mode INOUT.

• -out

(optional) Specifies to add ports of mode OUT.

• -ports

(optional) Specifies to add all ports. This switch has the same effect as specifying -in, -out,
and -inout together.

• -internal

(optional) Specifies to add internal (non-port) objects.

• -nofilter

(optional) Specifies that the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

Commands
add dataflow

ModelSim® Command Reference Manual, v10.5c 65

The WildcardFilter Tcl preference variable identifies types to ignore when matching objects
with wildcard patterns.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

You can specify -r as an alias to this switch.

Examples

• Add all objects in the design to the dataflow window.

add dataflow -r /*

• Add all objects in the region to the dataflow window.

add dataflow *

Related Topics

Automatically Tracing All Paths Between Two Nets

Dataflow Window

ModelSim® Command Reference Manual, v10.5c66

Commands
add list

add list
This command adds objects and their values to the List window. Arguments to this command
are order-dependent. Please read the argument descriptions for more information.

Syntax

add list {<object> ... | <object_name> {sig ...}} [-allowconstants] [-depth <level>]
[-filter <f> | -nofilter <f>] {[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>]
[-nodelta] [-<radix_type> | -radix <type>]
[-radixenumnumeric | -radixenumsymbolic] [-recursive] [-trigger | -notrigger]
[-width <integer>]

Description

Use add list to display the following types of objects and their values in the List window:

• VHDL signals and variables

• Verilog nets and registers

• User-defined buses

If you do not specify a port mode, such as -in or -out, this command displays all objects in the
selected region with names matching the object name specification.

Refer to Wildcard Characters for wildcard usage as it pertains to the add commands.

Arguments

• <object> ...

(required when <object_name >{sig ...} is not specified.) Specifies the name of the object to
be listed. Multiple objects are entered as a space separated list. Wildcards are allowed. Refer
to the section “Wildcard Characters” for wildcard usage as it pertains to the add commands.
Must be specified as the first argument to the add list command.

Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.

You can add variables as long as they are preceded by the process name. For example:

add list myproc/int1

You must specify the <object> argument as the first argument to the add list command.

• <object_name> {sig ...}

(required when <object> is not specified) Creates a user-defined bus with the specified
object name containing the specified signals (sig) concatenated within the user-defined bus.
Arguments, must be enclosed in braces ({ }). Must be specified as the second argument to
the add list command.

Commands
add list

ModelSim® Command Reference Manual, v10.5c 67

sig — A space-separated list of signals, enclosed in braces ({}), that are included in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

For example:

add list {mybus {a b y}}

• -allowconstants

(optional) For use with wildcard searches. Specifies that constants matching the wildcard
search should be added to the List window.

This command does not add constants by default because they do not change.

• -depth <level>

(optional) Restricts a recursive search, as specified with -recursive, to a certain level of
hierarchy.

<level> — an integer greater than or equal to zero.

For example, if you specify -depth 1, the command descends only one level in the hierarchy.

• -filter <f> | -nofilter <f>

(optional) Allows a one-time modification of the WildcardFilter in the command
invocation. The add list command can take as many [-filter <f>] and [-nofilter <f>]
arguments as you would like to specify. Valid filters, <f>, are exactly the same set of words
that can be applied to the WildcardFilter. The filter(s) used during a command starts with
the WildcardFilter and then applies the user specified filters, if any. The -filter values are
added to the filter, the -nofilter values are removed from the filter. They are applied in the
order specified so conflicts are resolved with the last specified wins.

• -in

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include ports of mode IN if they match the object specification.

• -inout

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include ports of mode INOUT if they match the object specification.

• -out

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include ports of mode OUT if they match the object specification.

• -ports

(optional) For use with wildcard searches. Specifies that the scope of the search is to include
all ports. This switch has the same effect as specifying -in, -out, and -inout together.

ModelSim® Command Reference Manual, v10.5c68

Commands
add list

• -internal

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include internal objects (non-port objects) if they match the object specification. VHDL
variables are not selected.

• -label <name>

(optional) Specifies an alternative signal name to be displayed as a column heading in the
listing.

<name> — Specifies the label to be used at the top of the column. You must enclose
<name> in braces ({}) if it includes any spaces.

This alternative name is not valid in a force or examine command.

• -nodelta

(optional) Specifies that the delta column not be displayed when adding signals to the List
window. Identical to configure list -delta none.

• -<radix_type>

(optional) Specifies the radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, sfixed,
symbolic, ufixed, time, and default.

If no radix is specified for an enumerated type, the default radix is used. You can change the
default radix for the current simulation using the radix command. You can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

• -radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

This option overrides the global setting of the default radix (the DefaultRadix variable in the
modelsim.ini file) for the current simulation only.

• -radixenumnumeric

This option overrides the global setting of the default radix (the DefaultRadix variable in the
modelsim.ini file).

• -radixenumsymbolic

(optional) Reverses the action of -radixenumnumeric and sets the global setting of the
default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

Commands
add list

ModelSim® Command Reference Manual, v10.5c 69

• -recursive

(optional) For use with wildcard searches. Specifies that the scope of the search is to
descend recursively into subregions. If omitted, the search is limited to the selected region.
You can use the -depth argument to specify how far down the hierarchy to descend. You can
use "-r" as an alias to this switch.

• -trigger | -notrigger

(optional) Specifies whether objects should be updated in the List window when the objects
change value.

-trigger — (default) Update objects in the List Window when their values change.

-notrigger — Do not update objects in the List Window when their values change.

• -width <integer>

(optional) Formats the column width. The maximum width, when not specifying this
argument is 30,000 characters, which you can override with this switch.

integer — A positive integer specifying the column width in characters.

Examples

• List all objects in the design.

add list -r /*

• List all objects in the region.

add list *

• List all input ports in the region.

add list -in *

• Display a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list a -label sig /top/lower/sig {array_sig(9 to 23)}

• List clk, a, b, c, and d only when clk changes.

add list clk -notrigger a b c d

• Lists clk, a, b, c, and d every 100 ns.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

• Creates a user-defined bus named "mybus" consisting of three signals; the bus is
displayed in hex.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

• Lists the object vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

add list vec1 -hex vec2 -dec vec3 vec4

ModelSim® Command Reference Manual, v10.5c70

Commands
add list

Related Topics

add wave

Commands
add memory

ModelSim® Command Reference Manual, v10.5c 71

add memory
This command displays the contents and sets the address and data radix of the specified memory
in the MDI frame of the Main window.

Refer to “Wildcard Characters” for wildcard usage as it pertains to the add commands.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

add memory [-addressradix {decimal | hex}] [-dataradix <type>]
[-radixenumnumeric | -radixenumsymbolic] [-wordsperline <num>] <object_name> ...

Arguments

• -addressradix {decimal | hex}

(optional) Specifies the address radix for the memory display.

decimal — (default) Sets the radix to decimal. You can abbreviate this argument to "d".

hex — Sets the radix to hexadecimal. You can abbreviate this argument to "h".

• -dataradix <type>

(optional) Specifies the data radix for the memory display. If you do not specify this switch,
the command uses the global default radix.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

If you do not specify a radix for an enumerated type, the command uses the symbolic
representation.

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file. Changing the default radix does not change the radix of the currently
displayed memory. Use the add memory command to re-add the memory with the desired
radix, or change the display radix from the Memory window Properties dialog.

• -radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

• -radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -radixenumnumeric option.

ModelSim® Command Reference Manual, v10.5c72

Commands
add memory

• -wordsperline <num>

(optional) Specifies how many words are displayed on each line in the memory window. By
default, the information displayed will wrap depending on the width of the window.

num — Any positive integer

• <object_name> ...

(required) Specifies the hierarchical path of the memory to be displayed. Multiple memories
are specified as a space separated list. Must be specified as the final argument to the add
memory command.

Wildcard characters are allowed.

Note
The WildcardFilter Tcl preference variable identifies types to ignore when matching
objects with wildcard patterns.)

Related Topics

Memory List Window

Commands
add message

ModelSim® Command Reference Manual, v10.5c 73

add message
This command is used within a DO file or script and specifies a user-defined runtime message
that is sent to the transcript and .wlf files. Messages are displayed in the Message Viewer
window in the GUI. Refer to the GUI Reference Manual for more information on this window.

Syntax

add message <message_body> [-category <category>] [-efftime <time>] [-file <filename>]
[-id <id_number>] [-inline] [-line <linenumber>] [-noident] [-nolevel] [-objects <list>]
[-region region] [-severity {error | note | warning}]

Arguments

• <message_body>

(required) User specified message.

• -category <category>

(optional) Sets the category for the message in the Message Viewer window where the
default is USER. The Message Viewer window Category column recognizes the following
keywords:

• -efftime <time>

(optional) Specifies the simulation time when the message is saved to the log file. The time
specified is listed in the Message Viewer window Time column when the message is called.
Useful for placing messages at specific times in the simulation.

<time> — Specified as an integer or decimal number.

• -file <filename>

(optional) Displays a user specified string in the File Info column of the Message Viewer
window.

• -id <id_number>

(optional) Assigns an identification number to the message.

<id_number> — Any non-negative integer from 0 - 9999 where the default is 0. The
number specified is added to the base identification number of 80000.

Table 2-2. Message Viewer Categories

DISPLAY FLI PA

PLI SDF TCHK

VCD VITAL WLF

MISC USER <user-defined>

ModelSim® Command Reference Manual, v10.5c74

Commands
add message

• -inline

(optional) Causes the message to also be returned to the caller as the return value of the add
message command.

• -line <linenumber>

(optional) Displays the user specified number in File Info column of the Message Viewer
window.

• -noident

(optional) Prevents return of the ID number of the message.

• -nolevel

(optional) Prevents return of the severity level of the message.

• -objects <list>

(optional) List of related design items shown in the Objects column of the Message Viewer
window.

<list> — A space separated list enclosed in curly braces ({}) or quotation marks
(" ").

• -region region

(optional) Message is displayed in the Region column of the Message Viewer window.

• -severity {error | note | warning}

(optional) Sets the message severity level.

error — ModelSim cannot complete the operation.

note — (default) The message is informational.

warning — There may be a problem that will affect the accuracy of the results.

Examples

• Create a message numbered 80304.

add message -id 304 <message>

Related Topics

displaymsgmode

msgmode

Message Viewer Window

Commands
add watch

ModelSim® Command Reference Manual, v10.5c 75

add watch
This command adds signals and variables to the Watch window in the Main window.

Refer to “Wildcard Characters” for wildcard usage as it pertains to the add commands.

Arguments to this command are order-dependent. Please read the argument descriptions for
more information.

Syntax

add watch <object_name> ... [-radix <type>] [-radixenumnumeric | -radixenumsymbolic]

Arguments

• <object_name> ...

(required) Specifies the name of the object to be added. Multiple objects are entered as a
space-separated list. Must be specified as the first argument to the add watch command.

Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.) Wildcard
expansion is limited to 150 items. If you exceed this limit, a dialog box will ask you to
accept the limit or cancel the operation.

Variables must be preceded by the process name. For example,

add watch myproc/int1

• -radix <type>

(optional) Specifies a user-defined radix. If you do not specify this switch, the command
uses the global default radix.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

• -radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

• -radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -radixenumnumeric option.

Related Topics

Watch window

ModelSim® Command Reference Manual, v10.5c76

Commands
add watch

DefaultRadix

Commands
add wave

ModelSim® Command Reference Manual, v10.5c 77

add wave
This command adds objects to the Wave window. Arguments to this command are order-
dependent. Please read the argument descriptions for more information.

Syntax

add wave [-allowconstants] [-clampanalog {0 | 1}] [-color <standard_color_name>]
[-depth <level>] [[-divider [<divider_name> ...] [-expand <signal_name>]
[-filter <f> | -nofilter <f>] [-format <type> | -<format>]
[-group <group_name> [<sig_name1> ...]] [-height <pixels>]
{[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>][-max <real_num>]
[-min <real_num>][-noupdate]
[-numdynitem <int>] [-position <location>] [-queueends]
[-<radix_type> | -radix <type>] [-radixenumnumeric | -radixenumsymbolic] [-recursive]
[-startdynitem <int>] [-time] [<object_name> ...]
[{<object_name> {sig1 sig2 ...}}]

Description

Use add wave to display the following types of objects in the Wave window:

• VHDL signals and variables

• Verilog nets and registers

• SystemVerilog class objects

• Dividers and user-defined buses.

If no port mode is specified, this command will display all objects in the selected region with
names matching the object name specification.

Refer to “Wildcard Characters” on page 21 for wildcard usage as it pertains to the add
commands.

Arguments to this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

• -allowconstants

(optional) For use with wildcard searches. Specifies that constants matching the wildcard
search should be added to the Wave window.

By default, constants are ignored because they do not change.

ModelSim® Command Reference Manual, v10.5c78

Commands
add wave

• -clampanalog {0 | 1}

(optional) Clamps the display of an analog waveform to the values specified by -max and
-min. Specifying a value of 1 prevents the waveform from extending above the value
specified for -max or below the value specified for -min.

0 — not clamped

1 — (default) clamped

• -color <standard_color_name>

(optional) Specifies the color used to display a waveform.

<standard_color_name> — You can use either of the following:

standard X Window color name — enclose 2-word names in quotes ("), for example:

-color "light blue"

rgb value — for example:

-color #357f77

• -depth <level>

(optional) Restricts a recursive search, as specified with -recursive to a specified level of
hierarchy.

<level> — Any integer greater than or equal to zero. For example, if you specify
-depths 1, the command descends only one level in the hierarchy.

• -divider [<divider_name> ...]

(optional) Adds a divider to the Wave window. If you do not specify this argument, the
command inserts an unnamed divider.

<divider_name> ... — Specifies the name of the divider, which appears in the pathnames
column. Multiple objects entered as a space separated list.

When you specify more than one <divider_name> the command creates a divider for
each name.

You can begin a name with a space, but you must enclose the name within quotation
marks (") or braces ({ }) You cannot begin a name with a hyphen (-).

• -expand <signal_name>

(optional) Instructs the command to expand a compound signal immediately, but only one
level down.

<signal_name> — Specifies the name of the signal. This string can include wildcards.

• -filter <f> | -nofilter <f>

(optional) Allows a one-time modification of the WildcardFilter in the command
invocation. The add list command can take as many [-filter <f>] and [-nofilter <f>]
arguments as you would like to specify. Valid filters, <f>, are exactly the same set of words
that can be applied to the WildcardFilter. The filter(s) used during a command starts with

Commands
add wave

ModelSim® Command Reference Manual, v10.5c 79

the WildcardFilter and then applies the user specified filters, if any. The -filter values are
added to the filter, the -nofilter values are removed from the filter. They are applied in the
order specified so conflicts are resolved with the last specified wins.

• -format <type> | -<format>

(optional) Specifies the display format of the objects. Valid entries are:

The Y-axis range of analog signals is bounded by -max and -min switches.

• -group <group_name> [<sig_name1> ...]

(optional) Creates a wave group with the specified group_name.

<group_name> — Specifies the name of the group. You must enclose this argument in
quotation marks (") or braces ({ }) if it contains any spaces.

<sig_name> ... — Specifies the signals to add to the group. Multiple signals are entered
as a space separated list. This command creates an empty group if you do not specify
any signal names.

• -height <pixels>

(optional) Specifies the height of the waveform in pixels.

<pixels> — Any positive integer.

• -in

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include ports of mode IN if they match the object_name specification.

• -out

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include ports of mode OUT if they match the object_name specification.

-format <type> -<format> Display Format

-format literal -literal Literal waveforms are displayed
as a box containing the object
value.

-format logic -logic Logic signals may be U, X, 0, 1,
Z, W, L, H, or ‘-’.

-format analog-step -analog-step Analog-step changes to the new
time before plotting the new Y.

-format analog-interpolated -analog-interpolated Analog-interpolated draws a
diagonal line.

-format analog-backstep -analog-backstep Analog-backstep plots the new Y
before moving to the new time.

-format event -event Displays a mark at every
transition.

ModelSim® Command Reference Manual, v10.5c80

Commands
add wave

• -inout

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include ports of mode INOUT if they match the object_name specification.

• -ports

(optional) For use with wildcard searches. Specifies that the scope of the listing is to
include ports of modes IN, OUT, or INOUT.

• -internal

(optional) For use with wildcard searches. Specifies that the scope of the search is to
include internal objects (non-port objects) if they match the object_name specification.

• -label <name>

(optional) Specifies an alternative name for the signal being added. For example,

add wave -label c clock

adds the clock signal, labeled as "c".

This alternative name is not valid in a force or examine command.

• -max <real_num>

(optional) Specifies the maximum Y-axis data value to be displayed for an analog
waveform. Used in conjunction with the -min switch; the value you specify for -max must
be greater than the value you specify for -min.

<real_num> — Any integer that is greater than the value specified for -min.

• -min <real_num>

(optional) Specifies the minimum Y-axis data value to be displayed for an analog
waveform. Used in conjunction with the -max switch; the value you specify for -min must
be less than the value you specify for -max.

<real_num> — Any integer that is less than the value specified for -max.

For example, if you know the Y-axis data for a waveform varies between 0.0 and 5.0, you
could add the waveform with the following command:

add wave -analog -min 0 -max 5 -height 100 my_signal

Note
Although -offset and -scale are still supported, the -max and -min arguments provide
an easier way to define upper and lower limits of an analog waveform.

• -noupdate

(optional) Prevents the Wave window from updating when a series of add wave commands
are executed in series.

Commands
add wave

ModelSim® Command Reference Manual, v10.5c 81

• -numdynitem <int>

(optional) Specifies the number of child elements of a queue or dynamic array to display in
the Wave window. For example, if the value 3 is specified, then only three elements will be
displayed in the Wave window.

<int> — Any non-negative integer from 0 to the number of elements of the specified
queue or dynamic array.

• -position <location>

(optional) Specifies where the command adds the signals.

<location> — Can be any of the following:

top — Adds the signals to the beginning of the list of signals.

bottom | end — Adds the signals to the end of the list of signals.

before | above — Adds the signals to the location before the first selected signal in the
wave window.

after | below — Adds the signals to the location after the first selected signal in the
wave window.

<integer> — Adds the signals beginning at the specified point in the list of signals.

• -queueends

(optional) Adds a SystemVerilog queue to the Wave window and displays the first and last
elements of the queue.

<queue> — The relative or full path to a queue.

• -<radix_type>

(optional) Specifies the radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, sfixed,
symbolic, time, ufixed, and default.

If no radix is specified for an enumerated type, the default radix is used. You can change the
default radix for the current simulation using the radix command. You can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

• -radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

This option overrides the global setting of the default radix (the DefaultRadix variable in the
modelsim.ini file) for the current simulation only.

ModelSim® Command Reference Manual, v10.5c82

Commands
add wave

• -radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

• -radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -radixenumnumeric option.

• -recursive

(optional) For use with wildcard searches. Specifies that the scope of the search is to
descend recursively into subregions.

If you do not specify this switch, the search is limited to the selected region. You can use the
-depth argument to specify how far down the hierarchy to descend.

• -startdynitem <int>

(optional) Specifies the index of a queue or dynamic array from where the Wave window
starts displaying the data. For example, if a queue has 10 elements and -startdynitem 3 is
specified, the display starts from q[3].

<int> — Any non-negative integer where 0 is the default.

• -time

(optional) Use time as the radix for Verilog objects that are register-based types (register
vectors, time, int, and integer types).

• <object_name> ...

(required unless specifying {<object_name> {sig1 sig2 ...}) Specifies the names of objects
to be included in the Wave window. Must be specified as the final argument to the add wave
command. Wildcard characters are allowed. Multiple objects are entered as a space
separated list. Note that the WildcardFilter Tcl preference variable identifies types to ignore
when matching objects with wildcard patterns.

Variables may be added if preceded by the process name. For example,

add wave myproc/int1

• {<object_name> {sig1 sig2 ...}}

(required unless specifying <object_name>) Creates a user-defined bus with the specified
object name containing the specified signals (sig1 and so forth) concatenated within the
user-defined bus. Must be specified as the final argument to the add wave command.

sig — A space-separated list of signals, enclosed in braces ({ }), that are included in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

Note
You can also select Wave > Combine Signals (when the Wave window is selected)
to create a user-defined bus.

Commands
add wave

ModelSim® Command Reference Manual, v10.5c 83

Examples

• Display an object named out2. The object is specified as being a logic object presented
in gold.

add wave -logic -color gold out2

• Display a user-defined, hex formatted bus named address.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

• Add all wave objects in the region.

add wave *

• Add all wave input ports in the region.

add wave -in *

• Create a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic_vector (7 downto 1). The
bus is displayed in hex.

add wave -hex {mybus {scalar1 vector1 scalar2}}

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}

add wave {vector3[4:0]}

• Add the object vec1 to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave vec1 -hex vec2 -dec vec3 vec4

• Add a divider with the name "-Example-". Note that for this to work, the first hyphen of
the name must be preceded by a space.

add wave -divider " -Example- "

• Add an unnamed divider.

add wave -divider
add wave -divider ""
add wave -divider {}

Related Topics

add list

Wave Window

ModelSim® Command Reference Manual, v10.5c84

Commands
add_cmdhelp

add_cmdhelp
This command adds the specified command name, description, and command arguments to the
command-line help. You can then access the information using the help command.

To delete an entry, invoke the command with an empty command description and arguments.
See examples.

The arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

add_cmdhelp {<command_name>} {<command_description>} {<command_arguments>}

Arguments

• {<command_name>}

(required) Specifies the command name that will be entered as an argument to the help
command. Must be enclosed in braces ({ }). The command_name must not interfere with an
already existing command_name. Must be specified as the first argument to the
add_cmdhelp command.

• {<command_description>}

(required) Specifies a description of the command. Must be enclosed in braces ({ }). Must
be specified as the second argument to the add_cmdhelp command.

• {<command_arguments>}

(required) A space-separated list of arguments for the command. Must be enclosed in braces
({ }). If the command doesn’t have any arguments, enter {}. Must be specified as the third
argument to the add_cmdhelp command.

Examples

• Add a command named "date" with no arguments.

add_cmdhelp date {Displays date and time.} {}

Entering:

VSIM> help date

Returns:

Displays date and time.
Usage: date

• Add the change date command.

add_cmdhelp {change date} {Modify date or time.} {-time|-date <arg>}

Commands
add_cmdhelp

ModelSim® Command Reference Manual, v10.5c 85

Entering:

VSIM> help change date

Returns:

Modify data or time
Usage: change date -time|-date <arg>

• Deletes the change date command from the command-line help.

add_cmdhelp {change date} {} {}

ModelSim® Command Reference Manual, v10.5c86

Commands
alias

alias
This command displays or creates user-defined aliases. Any arguments passed on invocation of
the alias will be passed through to the specified commands.

Returns nothing. Existing commands (for example, run, env, and so forth) cannot be aliased.

Syntax

alias [<name> ["<cmds>"]]

Arguments

• <name>

(optional) Specifies the new procedure name to be used when invoking the commands.

• "<cmds>"

(optional) Specifies the command or commands to be evaluated when the alias is invoked.
Multiple commands are specified as a semicolon (;) separated list. You must enclose the
string in quotes (““).

Examples

• List all aliases currently defined.

alias

• List the alias definition for the specified name if one exists.

alias <name>

• Create a Tcl procedure, "myquit", that when executed, writes the contents of the List
window to the file mylist.save by invoking write list, and quits ModelSim by invoking
quit.

alias myquit "write list ./mylist.save; quit -f"

Commands
archive load

ModelSim® Command Reference Manual, v10.5c 87

archive load
The archive load command allows you to load an archived debug database (.dbar) file that was
previously created with the archive write command. The archived file may include a number of
WLF files, design source files, and a DBG file.

Syntax

archive load <archive_name> [-dbgDir <directory_name>] -wlf <wlf_file_name>

Arguments

• <archive_name>

(required) Specifies the name of the archived file to be opened for reading. A suggested
suffix is .dbar.

• -dbgDir <directory_name>

(optional) Specifies a location to extract files into. Files are extracted on-demand when
ModelSim needs them. If you do not specify this switch, the command extracts to the
current working directory.

• -wlf <wlf_file_name>

(required) Specifies the WLF files to open for analysis.

<wlf_file_name> — can be a single file or a list of files. A list of file names must be
enclosed in curly braces {}. The name of the wlf file must be exactly the same as that
specified in the archive write command, including the pathname, if provided.

Related Topics

archive write

ModelSim® Command Reference Manual, v10.5c88

Commands
archive write

archive write
The archive write command allows you to create a debug archive file, with the file extension
.dbar, that contains one or more WLF files, debug information captured from the design library,
an optional connectivity debug database file, and optional HDL source files. With this archived
file, you can perform post-simulation debugging in different location from that which the
original simulation was run.

Syntax

archive write <archive_name> -wlf <wlf_file_name> [-include_src] [-dbg <dbg_file_name>]

Arguments

• <archive_name>

(required) Specifies the name of the archive file to be created. A suggested suffix is .dbar.

• -wlf <wlf_file_name>

(required) Specifies the name of the WLF file to use for post-simulation analysis.

<wlf_file_name> — can be a single file or a list of files enclosed in curly braces {} if
you want to capture more than one WLF file in the archive.

• -include_src

(optional) Indicate if source files should be captured in the archive. This is off by default,
which means no source will be in the archive.

• -dbg <dbg_file_name>

(optional) Specifies the name of an existing debug database (.dbg) file to be included in the
archive.

Commands
batch_mode

ModelSim® Command Reference Manual, v10.5c 89

batch_mode
This command returns “1” if ModelSim is operating in batch mode, otherwise it returns “0.” It
is typically used as a condition in an if statement.

Syntax

batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that will work in
or out of batch mode, you can use the batch_mode command to determine which command to
use. For example:

if [batch_mode] {
log /*

} else {
add wave /*

}

Related Topics

General Modes of Operation

ModelSim® Command Reference Manual, v10.5c90

Commands
bd

bd
This command deletes a breakpoint. You can delete multiple breakpoints by specifying separate
information groupings on the same command line.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

bd {<filename> <line_number>}

bd {<id_number> | <label>} ...

Arguments

• <filename>

(required when not specifying <id_number> or <label>.) A string that specifies the name of
the source file in which the breakpoint is to be deleted. The filename must match the one
used previously to set the breakpoint, including whether you used a full pathname or a
relative name. Must be specified as the first argument to the bd command.

• <line_number>

(required) A string that specifies the line number of the breakpoint to be deleted.

• <id_number> | <label>

(required when not specifying <filename>.) Specifies the identification of breakpoints using
markers assigned by the bp command. Must be specified as the first argument to the bd
command.

<id_number — A string that specifies the identification number of the breakpoint to be
deleted. The identification number is set with the -id argument to the bp command.

<label> — A string that specifies the label of the breakpoint to be deleted. The label is
set with the -label switch to the bp command.

Examples

• Delete the breakpoint at line 127 in the source file named alu.vhd.

bd alu.vhd 127

• Delete the breakpoint with id# 5.

bd 5

• Delete the breakpoint with the label top_bp

bd top_bp

• Delete the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

bd 6 alu.vhd 234

Commands
bd

ModelSim® Command Reference Manual, v10.5c 91

Related Topics

bp

ModelSim® Command Reference Manual, v10.5c92

Commands
bookmark add wave

bookmark add wave
This command creates a named reference to a specific zoom range and scroll position in the
specified Wave window. Bookmarks are saved in the wave format file and are restored when
the format file is read.

You can also interactively add a bookmark through the GUI by selecting the
Wave > Bookmarks > Bookmarks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

bookmark add wave <label> [[<range_start> [<unit>]] [<range_end> [<unit>]] [<topindex>]]

Arguments

• <label>

(required) A string that specifies the name for the bookmark. Must be specified as the first
argument to the bookmark add wave command.

• <range_start> [<unit>]

(optional) Specifies the beginning point of the zoom range where the default starting point is
zero (0).

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

The complete grouping of <range_start> and <range_end> must also be enclosed in braces
({ }) or quotes (" "), for example:

{{100 ns} {10000 ns}}
{10000}

• <range_end> [<unit>]

(optional) Specifies the end point of the zoom range.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

• <topindex>

(optional) An integer that specifies the vertical scroll position of the window. You must
specify a zoom range to specify topindex. The number identifies which object the window
should be scrolled to. For example, specifying 20 means the Wave window will be scrolled
down to show the 20th object.

Commands
bookmark add wave

ModelSim® Command Reference Manual, v10.5c 93

Examples

• Add a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

bookmark add wave foo {{10 ns} {1000 ns}} 20

Related Topics

bookmark delete wave

bookmark goto wave

bookmark list wave

ModelSim® Command Reference Manual, v10.5c94

Commands
bookmark delete wave

bookmark delete wave
This command deletes bookmarks from the specified Wave window.

You can also interactively delete a bookmark through the GUI by selecting the
Wave > Bookmarks > Bookmarks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

bookmark delete wave {<label> | -all}

Arguments

• <label> | -all

(required) Controls which bookmarks to delete. Must be specified as the first argument to
the bookmark delete wave command.

<label> — Specifies the name of the bookmark to delete.

-all — Specifies that all bookmarks in the window be deleted.

Examples

• Delete the bookmark named "foo" from the current default Wave window.

bookmark delete wave foo

Related Topics

bookmark add wave

bookmark goto wave

bookmark list wave

Commands
bookmark goto wave

ModelSim® Command Reference Manual, v10.5c 95

bookmark goto wave
This command zooms and scrolls a Wave window using the specified bookmark.

You can also interactively navigate between bookmarks through the GUI by selecting the
Wave > Bookmarks > Bookmarks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

bookmark goto wave <label>

Arguments

• <label>

(required) Specifies the bookmark to go to. Must be specified as the first argument to the
bookmark goto wave command.

Related Topics

bookmark add wave

bookmark delete wave

bookmark list wave

ModelSim® Command Reference Manual, v10.5c96

Commands
bookmark list wave

bookmark list wave
This command displays a list of available bookmarks in the Transcript window.

Syntax

bookmark list wave

Arguments

none

Related Topics

bookmark add wave

bookmark delete wave

bookmark goto wave

Commands
bp

ModelSim® Command Reference Manual, v10.5c 97

bp
This command sets either a file-line breakpoint or returns a list of currently set breakpoints. It
allows enum names, as well as literal values, to be used in condition expressions.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

Setting an HDL breakpoint
bp {[<filename>] <line_number> | <filename>:<line_number> | in} [-ancestor] [-appendinst] [-

cond "<condition_expression>"]
[-disable] [-id <id_number> | -label "<label>"] [-inst <region> [-inst <region> ...]] [-uvm]
[<command>…]

Querying a breakpoint
bp [-query <filename> [<line_number>]]

Reporting all breakpoints

Note
If you specify this command with no arguments, it returns a list of all breakpoints in the
design containing information about each breakpoint. For example, the command “bp”

returns

bp top.vhd 70;# 2

Arguments

• <filename>

(optional) Specifies the name of the source file in which to set the breakpoint. If you do not
specify a filename, the command will use the source file of the current context.

• <line_number>

(required to set an HDL breakpoint) Specifies the line number where the breakpoint is to be
set.

• in

(required for task or function breakpoints) Supports the lookup of Verilog and
SystemVerilog task and function names as an alternative to file name and line numbers.
Places a breakpoint on the first executable line of the specified task or function. Does not
work for VHDL or SystemC.

• -ancestor

(optional) Stops the simulation only when any ancestor parent of the process matches the
given process-name.

ModelSim® Command Reference Manual, v10.5c98

Commands
bp

• -appendinst

(optional) When specifying multiple breakpoints with -inst, append each instance-path
condition to the earlier condition. This overrides the default behavior, in which each
condition overwrites the previous one.

• -disable

(optional) Sets the breakpoint to a disabled state. You can enable the breakpoint later using
the enablebp command. This command enables breakpoints by default.

• <command>…

(optional, must be specified as the final argument) Specifies one or more commands that are
to be executed at the breakpoint. You must separate multiple commands with semicolons (;)
or place them on multiple lines. Braces are required only if the string contains spaces.

Note
You can also specify this command string by choosing Tools > Breakpoints... from
the main menu and using the Modify Breakpoints dialog box.

Any commands that follow a run or step command are ignored. A run or step command
terminates the breakpoint sequence. This rule also applies if you use a DO file script within
the command string.

If many commands are needed after the breakpoint, you could place them in a DO file script.

• -cond "<condition_expression>"

(optional) Specifies one or more conditions that determine whether the breakpoint is hit.

"<condition_expression>" — A conditional expression that results in a true/false value.
You must enclose the condition expression within braces ({}) or quotation marks
(“ ”) when the expression makes use of spaces. Refer to the note below when setting
breakpoints in the GUI.

If the condition is true, the simulation stops at the breakpoint. If false, the simulation
bypasses the breakpoint. A condition cannot refer to a VHDL variable (only a signal).

The -cond switch re-parses expressions each time the breakpoint is hit. This allows
expressions with local references to work. Condition expressions referencing items outside
the context of the breakpoint must use absolute names. This is different from the behavior in
previous ModelSim versions where a relative signal name was resolved at the time the bp
command was issued, allowing the breakpoint to work even though the relative signal name
was inappropriate when the breakpoint was hit.

Note
You can also specify this expression by choosing Tools > Breakpoints... from the
main menu and entering the expression in the Breakpoint Condition field of the

Modify Breakpoints dialog box. Do not enclose the condition expression in quotation
marks
(“ ”) or braces ({}).

Commands
bp

ModelSim® Command Reference Manual, v10.5c 99

The condition expression can use the following operators:

The operands may be object names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1. The formal BNF syntax for an expression is:

condition ::= Name | { expression }
expression ::= expression AND relation

| expression OR relation
 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals (for example, Name = Name is not valid).

You can construct a breakpoint such that the simulation breaks when a SystemVerilog Class
is associated with a specific handle, or address:

bp <filename> <line_number> -cond "this==<class_handle>"
bp <filename> <line_number> -cond "this!=<class_handle>"

where you can obtain the class handle with the examine -handle command. The string "this"
is a literal that refers to the specific line_number.

You can construct a breakpoint such that the simulation breaks when a line number is of a
specific class type or extends the specified class type:

bp <filename> <line_number> -cond "this ISA <class_type_name>"

where class_type_name is the actual class name, not a variable.

• -id <id_number> | -label "<label>"

(optional) Attempts to assign an id number or label to the breakpoint. The command returns
an error if the id number you specify is already assigned.

-id <id_number> — Any positive integer that is not already assigned.

-label "<label>" — Associates a name or label with the specified breakpoint. Adds a
level of identification to the breakpoint. The label may contain special characters.

Operation Operator Syntax

equals ==, =

not equal !=, /=

AND &&, AND

OR ||, OR

ModelSim® Command Reference Manual, v10.5c100

Commands
bp

Quotation marks (" ") or braces ({ }) are required only if <label> contains spaces or
special characters.

Note
Id numbers for breakpoints are assigned from the same pool as those used for the
when command. So even if you have not specified a given id number for a

breakpoint, that number may still be used for a when command.

• -inst <region> [-inst <region> ...]

(optional) Sets an HDL breakpoint so it applies only to the specified instance.

To apply multiple instance-path conditions on a single breakpoint, specify -inst <region>
multiple times. By default, this overrides the previous breakpoint condition (you can use the
-appendinst argument to append conditions instead).

<region> — The full path to the instance specified.

Note
You can also specify this instance by choosing Tools > Breakpoints... from the
main menu and using the Modify Breakpoints dialog box.

• -query <filename> [<line_number>]

(optional) Returns information about the breakpoint(s) set in the specified file. The
information returned varies depending on the condition of the breakpoint(s) in the specified
file. Returns a complete list of all breakpoints and whether they are enabled or not when
specified without <line_number>. Returns nothing if <line_number> is not executable.

<filename> — The name of the file containing the breakpoint.

<line_number> — The line number where a breakpoint has been set.

The output contains six fields of information. For example:

bp -query top.vhd 70

Returns

1 1 top.vhd 70 2 1

o {1 | 0} — Indicates whether a breakpoint exists at the location.

0 — Breakpoint does not exit.

1 — Breakpoint exists.

o 1 — always reports a 1.

o <file_name>

o <line_number>

o <id_number>

Commands
bp

ModelSim® Command Reference Manual, v10.5c 101

o {1 | 0} — Indicates whether the breakpoint is enabled.

0 — Breakpoint is not enabled.

1 — Breakpoint is enabled.

• -uvm

Specifies UVM-style instance name(s) for setting source breakpoints on class instances in
the UVM hierarchy. Must be followed by the -inst <instance_name> option.

Examples

• List all existing breakpoints in the design, including the source file names, line numbers,
breakpoint id numbers, labels, and any commands that have been assigned to the
breakpoints.

bp

• Set a breakpoint in the source file alu.vhd at line 147.

bp alu.vhd 147

• Set a breakpoint at line 153 of the source file of the current context:

bp 153

• Execute the macro.do DO file when the breakpoint is hit.

bp alu.vhd 147 {do macro.do}

• Set a breakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of
variables var1 and var2 are examined. This breakpoint is initially disabled; it can be
enabled with the enablebp command.

bp -disable test.vhd 22 {echo [exa var1]; echo [exa var2]}

• Set a breakpoint so that the simulation pauses whenever clk=1 and prdy=0:

bp test.vhd 14 -cond {clk=1 AND prdy=0}

• Set a breakpoint with the label top_bp

bp top.vhd 14 -label top_bp

• Set a breakpoint for line 15 of a.vhd, but only for the instance a2:

bp a.vhd 15 -inst "/top/a2"

• Set multiple breakpoints in the source file test.vhd at line 14. The second instance will
overwrite the conditions of the first.

bp test.vhd 14 -inst /test/inst1 -inst /test/inst2

• Set multiple breakpoints at line 14. The second instance will append its conditions to the
first.

bp test.vhd 14 -inst /test/inst1 -inst /test/inst2 -appendinst

ModelSim® Command Reference Manual, v10.5c102

Commands
bp

• Set a breakpoint for a specific variable of a particular class type:

set x [examine -handle my_class_var]

bp top.sv 15 -cond {this == $x}

• Set a breakpoint on the first executable line of the function /uvm_pkg::set_config_int.

bp in /uvm_pkg::set_config_int

• List the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd

• List details about the breakpoint on line 48.

bp -query testadd.vhd 48

• List all executable lines in testadd.vhd between lines 2 and 59.

bp -query testadd.vhd 2 59

Related Topics

bd

Editing File-Line Breakpoints

Commands
call

ModelSim® Command Reference Manual, v10.5c 103

call
This command calls the following types of functions/tasks:

• SystemVerilog static functions and class functions directly from the vsim command line
in live simulation mode. Tasks are not supported.

• PLI and VPI system tasks and system functions.

Function return values are returned to the vsim shell as a Tcl string. If the function returns a
class reference, the class instance ID is returned.

Syntax

Note
Note the grouping of the following arguments, which indicates slightly different usage
depending on how you want the command to perform a search on a system task or function

name.

• <pathToFunction> <classInstancePath>
SystemVerilog static functions and class functions

• -usertf -builtin <systfName>
PLI and VPI system tasks and system functions (restricts the search for the task/function
name to either the user-added PLI/VPI routines or to the built-in routines):

call [-env <hierEnvPath>] [{<pathToFunction> [<classInstancePath>]}] [{-usertf | -builtin
<systfName>}] [<arg1> [<arg2>] …[<argN>]]

Arguments

• -env <hierEnvPath>

(optional) Hierarchical environment path, to be used as the starting scope for the object
name lookups. If present,must appear before actual function name.

• <pathToFunction>

(required when calling a System Verilog static or class function) The name of a function,
which you can qualify in any of the following ways:

o By specifying the path to the function declaration, through the structural hierarchy,
or declaration hierarchy. Hierarchical paths must be specified as a full path to a
function or a function that exists relative to the current context (as shown in the
Structure window, or returned by the environment command).

o By specifying a class instance hierarchical path.

o By specifying a class instance id string.

ModelSim® Command Reference Manual, v10.5c104

Commands
call

• <classInstancePath>

(optional) Must be specified if the function path is a declaration path and the function is a
non-static class function. Conversely, the class instance path name must not be specified if
the given function path is a class instance variable reference or a class instance name in the
format @<class_type>@nnn. This is because the class instance information can be
extracted from the pathname itself.

• -builtin

(optional) Search only built-in system functions or task names. (The $ is understood to be a
prefix.)

• -usertf

(optional) Search only user-defined system functions or task names. (The $ is understood to
be a prefix.)

• <systfName>

(required when calling a system task or function) The system task or function to be
executed. You can specify the sysfName according to the following syntax rules:

o \$<systfName> (for example, \$display or \$mytask)

o With –usertf or –builtin flags (as the case may be).
(for example, –usertf mytask or –builtin display)

o <systfName> (for example, display or mytask) In this case SystemVerilog static
functions and class functions will be searched first and then the PLI/VPI system
tasks/functions, for a match.

• <arg1> [<arg2>] …[<argN>]

(optional) All arguments required by the function are specified in a space-separated list in
declaration order. If a function has default arguments, the arguments may be omitted from
the command line provided that the arguments occur at the end of the declaration list.
Function input arguments can be constant values including integers, enumerated values, and
strings. A string containing spaces or special characters must be enclosed in quotation marks
(" ") or braces ({ }) or Tcl will try to interpret the string. For example: "my string" or {my
string}. Arguments can also be design objects. Class references can be arguments, specified
by either their design instance path or class instance id string. If a function has type inout,
out, or ref arguments, suitable user design objects must be passed in as arguments. Any
passed in argument will first be tested to determine if it is an appropriate constant value. If it
is not, then the argument will be tested to determine if it is a design object. Consequently,
where there is ambiguity between a constant string and the name of a design object, the
constant will be given precedence. If in this case the design object is desired, the full
hierarchical path to the object can be supplied to differentiate it from the constant string.

Commands
call

ModelSim® Command Reference Manual, v10.5c 105

Examples

Calling a System Verilog Static of Class Function
• Call using a static declaration path, where the function sf_voidstring() is a static class

function that accepts a string:

call sim:/user_pkg::myfcns::sf_voidstring first_string

• Call using a class instance path to specify the function, where the function f_intint() of
the class type /utop/tmyfcns accepts an integer:

call /utop/tmyfcns.f_intint 37

• Call using a class instance path to specify the function, and pass in a class instance (/
utop/tmyfcns is a class handle):

call /utop/tmyfcns.f_voidclasscolor /utop/tmyfcns

• Call using a class instance path, and pass in a class instance as an argument using a class
instance id string

call /utop/tmyfcns.f_voidclasscolor @myType@3

• Call using a class instance id string to specify the function:

call @myType@543.get_full_name

• Call using a declaration path, where the function is non-static so a class instance must
also be supplied. The member function f_voidstring() accepts a string:

call sim:/user_pkg::myfcns::f_voidstring /my/class/instance "some string"

• Call using a class instance id string to specify the function where the function returns a
string:

call @uvm_sequencer__3@3.get_full_name

Returns:

test.e2_a.sequencer

• Call using a relative class hierarchical name to specify the function where the function
returns a class handle:

call moduleX.who_am_i

Returns:

@myClassX@4

Calling a System Task
• Call $display with literal values:

call \$display {"%0s"} {"Hello from TCL!"}

ModelSim® Command Reference Manual, v10.5c106

Commands
call

Returns:

Hello from TCL!

call –builtin display {"%0d"} 'd2999

Returns:

2999

call –usertf display {"%0d"} 'd3999

Returns:

** Error: Expected user-defined system task $display not found in
the context(/top2).

• Call $display with literal values:

call \$display {"top2.i=%0d top2.r=%0b"} top2/i top2/r

Returns:

top2.i=5 top2.r=110

Calling a System Function

In the following examples $pow is a user defined function that raises the 1st argument to the

power of the 2nd (for example, $pow(a, b) => ab)

• Call $pow with literal values:

call \$pow 2 1

Returns:

2

call \$pow 3 2

Returns:

9

call \$pow [call \$pow 2 1] [call \$pow 3 2]

Returns:

512

• Call $pow with variable values:

call –env /top/u1 display r1

Returns:

7

Commands
call

ModelSim® Command Reference Manual, v10.5c 107

call –env /top/u2 display r2

Returns:

2

call pow /top/u1/r1 /top/u2/r2

Returns:

49

ModelSim® Command Reference Manual, v10.5c108

Commands
cd

cd
This command changes the ModelSim local directory to the specified directory.

This command cannot be executed while a simulation is in progress. Also, executing a cd
command will close the current project.

Syntax

cd [<dir>]

Arguments

• <dir>

(optional) Specifies a full or relative directory path for ModelSim to use as the local
directory. If you do not specify a directory, the command changes to your home directory.

Commands
change

ModelSim® Command Reference Manual, v10.5c 109

change
This command modifies the value of a: VHDL constant, generic, or variable; Verilog register or
variable

Syntax

change <variable> <value>

Description

For VHDL constants, The change command may not affect any and all uses of deferred (or
other) constants. Refer to the following technote for more information:

http://supportnet.mentor.com/portal?do=reference.technote&id=MG588185

Arguments

• <variable>

(required) A string that specifies the name of an object. The name can be a full hierarchical
name or a relative name, where a relative name is relative to the current environment.

Wildcards are not permitted.

The following sections list supported objects:

o VHDL

• Scalar variable, constant, or generics of all types except FILE.

Generates a warning when changing a VHDL constant or generic. You can
suppress this warning by setting the TCL variable WarnConstantChange to 0 or
in the [vsim] section of the modelsim.ini file.

• Scalar subelement of composite variable, constant, and generic of all types
except FILE.

• One-dimensional array of enumerated character types, including slices.

• Access type. An access type pointer can be set to "null"; the value that an access
type points to can be changed as specified above.

o Verilog

• Parameter.

• Register or memory.

• Integer, real, realtime, time, and local variables in tasks and functions.

• Subelements of register, integer, real, realtime, and time multi-dimensional
arrays (all dimensions must be specified).

http://supportnet.mentor.com/portal?do=reference.technote&id=MG588185

ModelSim® Command Reference Manual, v10.5c110

Commands
change

• Bit-selects and part-selects of the above except for objects whose basic type is
real.

The name can be a full hierarchical name or a relative name. A relative name is relative to
the current environment. Wildcards cannot be used.

• <value>

(required) Defines a value for <variable>. The specified value must be appropriate for the
type of the variable. You must place <value> within quotation marks (“”). If the string
contains spaces, the quoted string must be placed inside curly braces ({ }).

Note
The initial type of <variable> determines the type of value that it can be given. For
example, if <variable> is initially equal to 3.14 then only real values can be set on it.

Also note that changing the value of a parameter or generic will not modify any design
elements that depended on the parameter or generic during elaboration (for example,
sizes of arrays).

Examples

• Change the value of the variable count to the hexadecimal value FFFF.

change count 16#FFFF

• Change the value of the element of rega that is specified by the index (for example, 16).

change {rega[16]} 0

• Change the value of the set of elements of foo that is specified by the slice (for example,
20:22).

change {foo[20:22]} 011

• Set the Verilog register file_name to "test2.txt". Note that the quote marks are escaped
with ’\’.

change file_name \"test2.txt\"

• Set the time value of the mytimegeneric variable to 500 ps. The time value is enclosed
by curly braces because of the space between the value and the units.

change mytimegeneric {“500 ps”}

Commands
classinfo ancestry

ModelSim® Command Reference Manual, v10.5c 111

classinfo ancestry
This command returns class inheritance hierarchy for a named class type.

Syntax

classinfo ancestry [-dataset <name>] [-n] [-o <outfile>] [-tcl] <class_type>

Arguments

• <class_type>

(required) Name of the class type or the full path to the class type.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -n

(optional) Returns class type names only. Does not include the path unless required to
resolve name ambiguity.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Related Topics

ClassDebug

classinfo descriptive

classinfo find

classinfo instances

classinfo isa

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5c112

Commands
classinfo descriptive

classinfo descriptive
This command returns the descriptive class name for the specified authoritative class name.

Syntax

classinfo descriptive [-dataset <name>] [-exact | -glob | -regexp] [-tcl] [-o <outfile>]
<class_type>

Arguments

• <class_type>

(required) Treats <class_type> as a glob-style expression and returns all matches to the
transcript. Wildcard characters asterisk (*) and question mark (?) are permitted.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -exact

(optional) Returns results that match <class_type> exactly.

• -glob

(optional, default) Treats <class_type> as a glob-style expression. Wildcard characters
asterisk (*) and question mark (?) are permitted.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -regexp

(optional) Treats <class_name> as a regular expression.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Related Topics

ClassDebug

Logging Class Types and Class Instances

Working with Class Types

Analyzing Class Types

classinfo ancestry

classinfo find

Commands
classinfo descriptive

ModelSim® Command Reference Manual, v10.5c 113

classinfo instances

classinfo isa

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5c114

Commands
classinfo find

classinfo find
This command reports on the current state of a specified class instance, whether it exists, has not
yet been created, or has been destroyed.

Syntax

classinfo find [-dataset <name>] [-tcl] [-o <outfile>] <class_instance_identifier>

Arguments

• <class_instance_identifier>

(required) Class instance identifier of the specific class instance to find.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Examples

• Find the class instance @mem_item@87

VSIM> classinfo find @mem_item@87

Returns:

@mem_item@87 has been destroyed

• Find the class instance @mem_item@200

VSIM> classinfo find @mem_item@200

Returns:

@mem_item@200 not yet created

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

classinfo instances

Commands
classinfo find

ModelSim® Command Reference Manual, v10.5c 115

classinfo isa

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5c116

Commands
classinfo implements

classinfo implements
This command displays a list of which classes implement SystemVerilog interface classes. The
type of the class argument affects the contents of this list.

Syntax

classinfo implements [-dataset <name>] [-tcl] [-o <outfile>] <class_type>

Arguments

• <class_type>

(required) Name of the SystemVerilog class that you want to use to generate the output
listing. The type of this class determines the type of classes listed, as follows:

o If <class_type> is not an interface class, the output indicates which interface classes
that class implements.

o If <class_type> is an interface class, the output indicates which classes implement
that interface class.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Examples

The following module defines classes labeled A, B, C1, C2, M, N, X, Y:

module test8;
 interface class M; endclass
 interface class N; endclass
 interface class X extends M, N; endclass
 interface class Y extends M; endclass
 class A implements M; endclass
 class B extends A implements X; endclass
 class C1 extends B implements Y; endclass
 class C2 extends B; endclass
endmodule

• Use interface class M as argument:

vsim> classinfo implements M

Commands
classinfo implements

ModelSim® Command Reference Manual, v10.5c 117

Output list:

/test8/A implements /test8/M
/test8/B implements /test8/M
/test8/C1 implements /test8/M
/test8/C2 implements /test8/M

• Use class A as argument:

vsim> classinfo implements A

Output list:

/test8/A implements /test8/M

• Use class B as argument to access extended classes defined in test8:

vsim> classinfo implements B

Output list:

/test8/B implements /test8/M
/test8/B implements /test8/N
/test8/B implements /test8/X

Related Topics

ClassDebug

classinfo descriptive

classinfo find

classinfo instances

classinfo interfaces

classinfo isa

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5c118

Commands
classinfo instances

classinfo instances
This command reports the list of existing class instances of a specific class type. You can use
this to determine what class instances to log or examine. It can also help in debugging problems
where class instances are not being cleaned up as they should be, resulting in excessive memory
usage.

Syntax

classinfo instances [-dataset <name>] [-tcl] [-verbose] [-o <outfile>] <class_type>

Arguments

• <class_type>

(required) Name of the class type or the full path of the class type. If this is an interface
class, the output lists all instances that implement that interface class.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -tcl

(optional) Returns a tcl list instead of formatted output.

• -verbose

(optional) Includes the classname in the output along with the instance name.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

Examples

• List the current instances for the class type mem_item.

vsim> classinfo instances mem_item

Returns:

@mem_item@140
@mem_item@139
@mem_item@138
@mem_item@80
@mem_item@76
@mem_item@72
@mem_item@68
@mem_item@64

Commands
classinfo instances

ModelSim® Command Reference Manual, v10.5c 119

• The following module defines classes labeled A, B, C1, C2, M, N, X, Y:

module test8;
 interface class M; endclass
 interface class N; endclass
 interface class X extends M, N; endclass
 interface class Y extends M; endclass
 class A implements M; endclass
 class B extends A implements X; endclass
 class C1 extends B implements Y; endclass
 class C2 extends B; endclass
endmodule

The following commands show the difference between using and omitting the -verbose
argument.

vsim> classinfo instances -verbose M

Returns:

@A@1 /test8/A
@B@1 /test8/B

vsim> classinfo instances -verbose A

Returns:

@A@1 /test8/A

vsim> classinfo instances M

Returns:

@A@1
@B@1

vsim> classinfo instances A

Returns:

@A@1

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

classinfo find

classinfo implements

classinfo interfaces

classinfo isa

classinfo report

ModelSim® Command Reference Manual, v10.5c120

Commands
classinfo instances

classinfo stats

classinfo trace

classinfo types

Commands
classinfo interfaces

ModelSim® Command Reference Manual, v10.5c 121

classinfo interfaces
This command lists the interface class types that match or do not match a specified pattern.
Finds all interface classes that match a regular expression and determines the full path of
interface class types.

Syntax

classinfo interfaces [-dataset <name>] [-tcl] [-o <outfile>] [<class_type>]

Arguments

• <class_type>

(optional) Name of the interface class type or the full path to the interface class type. If
omitted, all interface classes are listed.

• -dataset <name>

(optional) Specifies an open dataset to search for interface class information. The default is
to search the currently active dataset.

<name> — The name of an open dataset.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Examples

The following module defines classes labeled A, B, C1, C2, M, N, X, Y:

module test8;
 interface class M; endclass
 interface class N; endclass
 interface class X extends M, N; endclass
 interface class Y extends M; endclass
 class A implements M; endclass
 class B extends A implements X; endclass
 class C1 extends B implements Y; endclass
 class C2 extends B; endclass
endmodule

• Use with no argument, which will return the names of all interface classes:

vsim> classinfo interfaces

ModelSim® Command Reference Manual, v10.5c122

Commands
classinfo interfaces

Output list:

/test8/M
/test8/N
/test8/X
/test8/Y

Related Topics

ClassDebug

classinfo descriptive

classinfo find

classinfo implements

classinfo instances

classinfo isa

classinfo report

classinfo stats

classinfo trace

classinfo types

Commands
classinfo isa

ModelSim® Command Reference Manual, v10.5c 123

classinfo isa
This command returns to the transcript a list of all classes extended from the specified class
type.

Syntax

classinfo isa [-dataset <name>] [-n] [-o <outfile>] [-tcl] <class_type>

Arguments

• <class_type>

(required) Name of the class type or the full path of the class type.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -n

(optional) Returns class names only. Does not include the path unless required to resolve
name ambiguity.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

classinfo find

classinfo instances

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5c124

Commands
classinfo report

classinfo report
This command prints detailed reports on class instance usage. The command displays columns
for class type names and their current, peak and total class instance counts. The columns may be
arranged, sorted, or eliminated using the command arguments.

Syntax

classinfo report [-c [fntpc]] [-dataset <name>] [-m <maxout>] [-o <outfile>]
[-sort [a | d] [f | n | t | p | c]] [-tcl] [-z]

Arguments

• -c [fntpc]

(optional) Display the report columns in the specified order in a report. The default is to
display all columns in the following order: Full Path, Class Name, Total, Peak, Current. You
can specify one or more columns in any order.

f — The Full Path column displays the full relative path name.

n — The Class Name column displays the name of the class instance.

t — The Total column displays the total number of instances of the named class.

p — The Peak column displays the maximum number of instances of the named class
that existed simultaneously at any time in the simulation.

c — The Current column displays the current number of instances of the named class.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -m <maxout>

(optional) Display the specified number of lines of the report.

<maxout> — Any non-negative integer.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -sort [a | d] [f | n | t | p | c]

(optional) Specifies whether the report information is sorted in ascending or descending
order and which column to sort by. Only one column can be specified for sorting.

a — Sort the entries in ascending order.

d — Sort the entries in descending order.

f — Sort by the Full Path column

Commands
classinfo report

ModelSim® Command Reference Manual, v10.5c 125

n— Sort by the Class Name column

t — Sort by the Total column

p — Sort by the Peak column

c — Sort by the Current column

• -tcl

(optional) Returns a tcl list instead of formatted output.

• -z

(optional) Remove all items from the report with a total instance count of zero.

Examples

• Create a report of all class instances in descending order in the Total column. Print the
Class Names, Total, Peak, and Current columns. List only the first six lines of that
report.

vsim> classinfo report -s dt -c ntpc -m 6

Returns:

Class Name Total Peak Current
uvm_pool__11 318 315 315
uvm_event 286 55 52
uvm_callback_iter__1 273 3 2
uvm_queue__3 197 13 10
uvm_object_string_pool__1 175 60 58
mem_item 140 25 23

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

classinfo find

classinfo instances

classinfo isa

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5c126

Commands
classinfo stats

classinfo stats
This command prints statistics about the total number of class types and total, peak, and current
class instance counts during the simulation.

Syntax

classinfo stats [-dataset <name>] [-tcl] [-o <outfile>]

Arguments

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Examples

• Display the current number of class types, the maximum number, peak number and
current number of all class instances.

vsim> classinfo stats

Returns:

class type count 451
class instance count (total) 2070
class instance count (peak) 1075
class instance count (current) 1058

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

classinfo find

classinfo instances

classinfo isa

classinfo report

classinfo trace

Commands
classinfo stats

ModelSim® Command Reference Manual, v10.5c 127

classinfo types

ModelSim® Command Reference Manual, v10.5c128

Commands
classinfo trace

classinfo trace
This command displays the active references to the specified class instance. This is very useful
in debugging situations where class instances are not being destroyed as expected because
something in the design is still referencing them. Finding those references may lead to
uncovering bugs in managing these class references which often lead to large memory savings.

Syntax

classinfo trace [-dataset <name>] [-m <maxout>] [-tcl] [-o <outfile>] <class_instance_name>

Arguments

• <class_instance_name>

(required) Name of the class item in the following format @<name>@#.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -m <maxout>

(optional) Display the specified number of lines of the report.

<maxout> — Any non-negative integer.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -tcl

(optional) Returns a tcl list instead of formatted output.

Examples

• Report the active references to @mem_item@200

VSIM> classinfo trace @uvm_resource__14@2

Returns:

#{uvm_pkg::uvm_resources.rtab["mem_interface"].queue[15]}
#{uvm_pkg::uvm_config_db::uvm_config_db__12::m_rsc[@uvm_root@1].
pool["uvm_test_topmem_interface"]}

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

Commands
classinfo trace

ModelSim® Command Reference Manual, v10.5c 129

classinfo find

classinfo instances

classinfo isa

classinfo report

classinfo stats

classinfo types

ModelSim® Command Reference Manual, v10.5c130

Commands
classinfo types

classinfo types
This command lists the class types that match or do not match a specified pattern. Finds all
classes that match a regular expression and determines the full path of class types.

Syntax

classinfo types [-dataset <name>] [-exact | -glob | -regexp] [-n] [-o <outfile>] [-tcl] [-x]
<pattern>

Arguments

• <pattern>

(required) A standard TCL glob expression used as a search string.

• -dataset <name>

(optional) Specifies an open dataset to search for class information. The default is to search
the currently active dataset.

<name> — The name of an open dataset.

• -exact

(optional) Returns results that match <pattern> exactly.

• -glob

(optional) Returns glob styles matches for <pattern>.

• -n

(optional) Returns class names only. Does not include the path unless required to resolve
name ambiguity.

• -o <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

• -regexp

(optional) Returns regular expressions that match <pattern>.

• -tcl

(optional) Returns a tcl list instead of formatted output.

• -x

(optional) Display classes that do not match the pattern.

Examples

• List the full path of the class types that do not match the pattern *uvm*.

vsim> classinfo types -x *uvm*

Commands
classinfo types

ModelSim® Command Reference Manual, v10.5c 131

Returns:

/environment_pkg::test_predictor
/environment_pkg::threaded_scoreboard
/mem_agent_pkg::mem_agent
/mem_agent_pkg::mem_config
/mem_agent_pkg::mem_driver

Related Topics

ClassDebug

classinfo ancestry

classinfo descriptive

classinfo find

classinfo implements

classinfo instances

classinfo interfaces

classinfo isa

classinfo report

classinfo stats

classinfo trace

ModelSim® Command Reference Manual, v10.5c132

Commands
configure

configure
The configure command invokes the List or Wave widget configure command for the current
default List or Wave window. Some arguments to this command are order-dependent. Please
read through the arguments for further information.

Syntax

Base Command Usage
configure list | wave [<option> <value>]

List Window Arguments
[-delta [all | collapse | events | none]] [-gateduration [<duration_open>]]

[-gateexpr [<expression>]] [-usegating [off | on]] [-strobeperiod [<period>[<unit>]]]
[-strobestart [<start_time>[<unit>]]] [-usesignaltriggers [0 | 1]] [-usestrobe [0 | 1]]

Wave Window Arguments
[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]] [-gridauto [off | on]]

[-gridcolor [<color>]][-griddelta [<pixels>]] [-gridoffset [<time>[<unit>]]]
[-gridperiod [<time>[<unit>]]] [-namecolwidth [<width>]] [-rowmargin [<pixels>]]
[-signalnamewidth [<value>]] [-timecolor [<color>]] [-timeline [0 | 1]]
[-timelineunits [fs | ps | ns | us | ms | sec | min | hr]] [-valuecolwidth [<width>]]
[-vectorcolor [<color>]] [-waveselectcolor [<color>]] [-waveselectenable [0 | 1]]

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that
attribute

• with one or more option-value pairs it changes the values of the specified attributes to
the new values

The returned information has five fields for each attribute: the command-line switch, the Tk
widget resource name, the Tk class name, the default value, and the current value.

Arguments

• list | wave

(required) Controls the widget to configure. Must be specified as the first argument to the
configure command.

list — Specifies the List widget.

wave — Specifies the Wave widget.

• <option> <value>

-bg <color> — (optional) Specifies the window background color.

Commands
configure

ModelSim® Command Reference Manual, v10.5c 133

-fg <color> — (optional) Specifies the window foreground color.

-selectbackground <color> — (optional) Specifies the window background color when
selected.

-selectforeground <color> — (optional) Specifies the window foreground color when
selected.

-font — (optional) Specifies the font used in the widget.

-height <pixels> — (optional) Specifies the height in pixels of each row. .

Arguments, List window only
• -delta [all | collapse | events | none]

(optional) Specifies how information is displayed in the delta column. To use -delta,
-usesignaltriggers must be set to 1 (on).

all — Displays a new line for each time step on which objects change.

collapse — Displays the final value for each time step.

events — Displays an "event" column rather than a "delta" column and sorts List
window data by event.

none — Turns off the display of the delta column.

• -gateduration [<duration_open>]

(optional) Extends gating beyond the back edge (the last list row in which the expression
evaluates to true). The duration for gating to remain open beyond when -gateexpr (below)
becomes false, expressed in x number of timescale units. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

<duration_open> — Any non-negative integer where the default is 0 (values are not
displayed).

• -gateexpr [<expression>]

(optional) Specifies the expression for trigger gating. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would normally
have displayed a row of data.

<expression> — An expression.

• -usegating [off | on]

(optional) Enables triggers to be gated on or off by an overriding expression. (Use the
-gatexpr argument to specify the expression.) Refer to “Using Gating Expressions to
Control Triggering” for additional information on using gating with triggers.

off — (default) Triggers are gated off (a value of 0).

on — Triggers are gated on (a value of 1).

ModelSim® Command Reference Manual, v10.5c134

Commands
configure

• -strobeperiod [<period>[<unit>]]

(optional) Specifies the period of the list strobe.

<period> — Any non-negative integer.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

• -strobestart [<start_time>[<unit>]]

(optional) Specifies the start time of the list strobe.

<start_time> — Any non-negative integer.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

• -usesignaltriggers [0 | 1]

(optional) Specifies whether or not signals are to be used as triggers.

0 — Signals are not used as triggers

1 — Signals are used as triggers

• -usestrobe [0 | 1]

(optional) Specifies whether or not a strobe is used as a trigger.

0 — Strobe is not used to trigger.

1 — Strobe is used to trigger.

Arguments, Wave window only
• -childrowmargin [<pixels>]

(optional) Specifies the distance in pixels between child signals. Related Tcl variable is
PrefWave(childRowMargin).

<pixels> — Any non-negative integer where the default is 2.

• -cursorlockcolor [<color>]

(optional) Specifies the color of a locked cursor. Related Tcl variable is
PrefWave(cursorLockColor).

<color> — Any Tcl color where the default is red.

• -gridauto [off | on]

(optional) Controls the grid period when in simulation time mode.

off — (default) user-specified grid period is used.

on — grid period is determined by the major tick marks in the time line.

Commands
configure

ModelSim® Command Reference Manual, v10.5c 135

• -gridcolor [<color>]

(optional) Specifies the background grid color. Related Tcl variable is
PrefWave(gridColor).

<color> — Any color where the default is grey50.

• -griddelta [<pixels>]

(optional) Specifies the closest (in pixels) two grid lines can be drawn before intermediate
lines will be removed. Related Tcl variable is PrefWave(gridDelta).

<pixels> — Any non-negative integer where the default is 40.

• -gridoffset [<time>[<unit>]]

(optional) Specifies the time (in user time units) of the first grid line. Related Tcl variable is
PrefWave(gridOffset).

<time> — Any non-negative integer where the default is 0.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

• -gridperiod [<time>[<unit>]]

(optional) Specifies the time (in user time units) between subsequent grid lines. Related Tcl
variable is PrefWave(gridPeriod).

<time> — Any non-negative integer where the default is 1.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

• -namecolwidth [<width>]

(optional) Specifies the width of the name column in pixels. Related Tcl variable is
PrefWave(nameColWidth).

<width> — Any non-negative integer where the default is 150.

• -rowmargin [<pixels>]

(optional) Specifies the distance between top-level signals in pixels. Related Tcl variable is
PrefWave(rowMargin).

<pixels> — Any non-negative integer where the default is 4.

• -signalnamewidth [<value>]

(optional) Controls the number of hierarchical regions displayed as part of a signal name
shown in the pathname pane. Related Tcl variable is PrefWave(SignalNameWidth). Can
also be set with the WaveSignalNameWidth variable in the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5c136

Commands
configure

<value> — Any non-negative integer where the default is 0 (display the full path. For
example,1 displays only the leaf path element, 2 displays the last two path elements,
and so on.

• -timecolor [<color>]

(optional) Specifies the time axis color. Related Tcl variable is PrefWave(timeColor).

<color> — Any color where the default is green.

• -timeline [0 | 1]

(optional) Specifies whether the horizontal axis displays simulation time or grid period
count. Related Tcl variable is PrefWave(timeline).

0 — (default) Simulation time is displayed.

1 — Grid period count is displayed.

• -timelineunits [fs | ps | ns | us | ms | sec | min | hr]

(optional) Specifies units for timeline display. Does not affect the currently-defined
simulation time.

fs — femtosecond (10-15 seconds)

ps — picosecond (10-12 seconds)

ns — nanosecond (10-9 seconds) (default)

us — microsecond (10-6 seconds)

ms — millisecond (10-3 seconds)

sec — second

min — minute (60 seconds)

hr — hour (3600 seconds)

• -valuecolwidth [<width>]

(optional) Specifies the width of the value column, in pixels. Related Tcl variable is
PrefWave(valueColWidth).

<width> — Any non-negative integer where the default is 100.

• -vectorcolor [<color>]

(optional) Specifies the vector waveform color. Default is #b3ffb3. Related Tcl variable is
PrefWave(vectorColor).

<color> — Any color where the default is #b3ffb3.

• -waveselectcolor [<color>]

(optional) Specifies the background highlight color of a selected waveform. Related Tcl
variable is PrefWave(waveSelectColor).

<color> — Any color where the default is grey30.

Commands
configure

ModelSim® Command Reference Manual, v10.5c 137

• -waveselectenable [0 | 1]

(optional) Specifies whether the waveform background highlights when an object is
selected. Related Tcl variable is PrefWave(waveSelectEnabled).

0 — (default) Highlighting is disabled.

1 — Highlighting is enabled.

There are more options than are listed here. See the output of a configure list or configure
wave command for all options.

Examples

• Display the current value of the strobeperiod attribute.

config list -strobeperiod

• Set the period of the list strobe and turns it on.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

• Set the wave vector color to blue.

config wave -vectorcolor blue

• Set the display in the current Wave window to show only the leaf path of each signal.

config wave -signalnamewidth 1

Related Topics

Setting GUI Preferences

ModelSim® Command Reference Manual, v10.5c138

Commands
dataset alias

dataset alias
This command maps an alternate name (alias) to an open dataset. A dataset can have any
number of aliases, but all dataset names and aliases must be unique even when more than one
dataset is open. Aliases are not saved to the .wlf file and must be remapped if the dataset is
closed and then re-opened.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

dataset alias <dataset_name> [<alias_name>]

Arguments

• <dataset_name>

(required) Specifies a dataset name or currently assigned dataset alias. Must be specified as
the first argument to the dataset alias command. Returns a list of all aliases mapped to the
specified dataset file when specified without <alias_name>.

• <alias_name>

(optional) Specifies string to assign to the dataset as an alias. Wildcard characters are
permitted.

Examples

Assign the alias name “bar” to the dataset named “gold.”

dataset alias gold bar

Related Topics

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

Commands
dataset clear

ModelSim® Command Reference Manual, v10.5c 139

dataset clear
All event data is removed from the current simulation WLF file, while retaining all currently
logged signals. Subsequent run commands will continue to accumulate data in the WLF file.

Note
Thiscommand applies only to WLF-based simulation datasets.

Syntax

dataset clear

Description

If you run this command when no design is loaded, then the error: “Dataset not found:sim” is
returned. If you run the command when a design is loaded, then the “sim:” dataset is cleared,
regardless of which dataset is currently set. Clearing the dataset will clear any open Wave
window based on the “sim:” dataset.

Arguments

None

Examples

Clear data in the WLF file from time 0ns to 100000ns, then log data into the WLF file from time
100000ns to 200000ns.

add wave *
run 100000ns
dataset clear
run 100000ns

Related Topics

dataset alias

dataset close

dataset config

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

ModelSim® Command Reference Manual, v10.5c140

Commands
dataset clear

log

Recording Simulation Results With Datasets

Commands
dataset close

ModelSim® Command Reference Manual, v10.5c 141

dataset close
This command closes an active dataset. To open a dataset, use the dataset open command.

Syntax

dataset close {<dataset_name> | -all}

Arguments

• <dataset_name> | -all

(required) Closes active dataset(s).

<dataset_name> — Specifies the name of the dataset or alias you wish to close.

-all — Closes all open datasets and the simulation.

Related Topics

dataset alias

dataset clear

dataset config

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

ModelSim® Command Reference Manual, v10.5c142

Commands
dataset config

dataset config
This command configures WLF parameters for an open dataset and all aliases mapped to that
dataset. Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

dataset config <dataset_name> [-wlfcachesize [<n>]] [-wlfdeleteonquit [0 | 1]] [-wlfopt [0 | 1]]

Arguments

• <dataset_name>

(required) Specifies a open dataset or dataset alias you wish to configure. Must be specified
as the first argument to the dataset config command.

• -wlfcachesize [<n>]

(optional) Sets the size, in megabytes, of the WLF reader cache. Does not affect the WLF
write cache.

<n> — Any non-negative integer, in MB where the default is 256.

If you do not specify a value for <n>, this switch returns the size, in megabytes, of the WLF
reader cache.

• -wlfdeleteonquit [0 | 1]

(optional) Deletes the WLF file automatically when the simulation exits. Valid for the
current simulation dataset only.

0 — Disabled (default)

1 — Enabled

If you do not specify an argument, this switch returns the current setting for the switch.

• -wlfopt [0 | 1]

(optional) Optimizes the display of waveforms in the Wave window.

0 — Disabled

1 — Enabled (default)

If you do not specify an argument, this switch returns the current setting for the switch.

Examples

Set the size of the WLF reader cache for the dataset “gold” to 512 MB.

dataset config gold -wlfcachesize 512

Related Topics

dataset alias

dataset clear

Commands
dataset config

ModelSim® Command Reference Manual, v10.5c 143

dataset close

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

WLF File Parameter Overview

ModelSim® Command Reference Manual, v10.5c144

Commands
dataset current

dataset current
This command activates the specified dataset and sets the GUI context to the last selected
context of the specified dataset. All context dependent GUI data is updated and all context
dependent CLI commands start working with respect to the new context.

Syntax

dataset current [<dataset_name>]

Arguments

• <dataset_name>

(optional) Specifies the dataset name or dataset alias you want to activate. If no dataset
name or alias is specified, the command returns the name of the currently active dataset.

Related Topics

dataset alias

dataset clear

dataset close

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

WLF File Parameter Overview

Commands
dataset info

ModelSim® Command Reference Manual, v10.5c 145

dataset info
This command reports a variety of information about a dataset. Arguments to this command are
order dependent. Please read through the argument descriptions for more information.

Syntax

dataset info {name | file | exists} <dataset_name>

Arguments

• {name | file | exists}

(required) Identifies what type of information you want reported.

Only one option per command is allowed. The current options include:

name — Returns the name of the dataset. Useful for identifying the real dataset name of
an alias.

file — Returns the name of the file associated with the dataset.

exists — Returns "1" if the dataset is currently open, "0" if it does not.

Must be specified as the first argument to the dataset info command.

• <dataset_name>

(optional) Specifies the name of the dataset or alias for which you want information. If you
do not specify a dataset name, ModelSim uses the dataset of the current environment.

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

environment

ModelSim® Command Reference Manual, v10.5c146

Commands
dataset list

dataset list
This command lists all active datasets.

Syntax

dataset list [-long]

Arguments

• -long

(optional) Lists the dataset name followed by the .wlf file to which the dataset name is
mapped.

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

Commands
dataset open

ModelSim® Command Reference Manual, v10.5c 147

dataset open

This command opens a WLF file (either the currently running vsim.wlf or a saved WLF file) and
assigns it the logical name that you specify.

Syntax

dataset open <file_name> [<dataset_name>]

Description

The file can be the existing WLF file for a currently running simulation. To close a dataset, use
the dataset close command.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments

• <file_name>

(required) Specifies the file to open as a view-mode dataset. Must be specified as the first
argument to the dataset open command. Specify vsim.wlf to open the currently running WLF
file.

• <dataset_name>

(optional) Specifies a name for the open dataset. This is a name that will identify the dataset
in the current session. By default the dataset prefix will be the name of the specified file.

Examples

Open the dataset file last.wlf and assign it the name test.

dataset open last.wlf test

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset rename

dataset restart

dataset save

ModelSim® Command Reference Manual, v10.5c148

Commands
dataset open

dataset snapshot

Commands
dataset rename

ModelSim® Command Reference Manual, v10.5c 149

dataset rename
This command changes the name of a dataset to the new name you specify. Arguments to this
command are order dependent. Follow the order specified in the Syntax section.

Syntax

dataset rename <dataset_name> <new_dataset_name>

Arguments

• <dataset_name>

Specifies the existing name of the dataset.

• <new_dataset_name>

Specifies the new name for the dataset.

Examples

Rename the dataset file "test" to "test2".

dataset rename test test2

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset open

dataset restart

dataset save

dataset snapshot

ModelSim® Command Reference Manual, v10.5c150

Commands
dataset restart

dataset restart
This command unloads the specified dataset or currently active dataset and reloads the dataset
using the same dataset name.

Syntax

dataset restart [<file_name>]

Arguments

• <file_name>

(optional) Specifies the file to open as a dataset. If <filename> is not specified, the currently
active dataset is restarted.

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset open

dataset rename

dataset save

dataset snapshot

Commands
dataset save

ModelSim® Command Reference Manual, v10.5c 151

dataset save
This command writes data from the current simulation to the specified file. This lets you save
simulation data while the simulation is still in progress.

Syntax

dataset save <dataset_name> <file_name>

Description

Arguments to this command are order dependent. Follow the order specified in the Syntax
section.

Arguments

• <dataset_name>

(required) Specifies the name of the dataset you want to save.

• <file_name>

(required) Specifies the name of the file to save.

Examples

Save all current log data in the sim dataset to the file gold.wlf.

dataset save sim gold.wlf

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset snapshot

ModelSim® Command Reference Manual, v10.5c152

Commands
dataset snapshot

dataset snapshot
This command saves data from the current WLF file (vsim.wlf by default) at a specified interval.
It provides you with sequential or cumulative "snapshots" of your simulation data.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

dataset snapshot [-dir <directory>] [-disable] [-enable] [-file <file_name>]
[-filemode {overwrite | increment}] [-mode {cumulative | sequential}] [-report] [-reset]
{-size <file_size> | -time <n> [<unit>]}

Arguments

• -dir <directory>

(optional) Specifies a directory into which the files should be saved. Either absolute or
relative paths may be used. Default is to save to the current working directory.

• -disable

(optional) Turns snapshotting off. All dataset snapshot settings from the current simulation
are stored in memory. All other options are ignored after you specify -disable.

• -enable

(optional) Turns snapshotting on. Restores dataset snapshot settings from memory or from a
saved dataset. (default)

• -file <file_name>

(optional) Specifies the name of the file to save snapshot data.

<file_name> — A specified file name where the default is vsim_snapshot.wlf. The suffix
.wlf will be appended to specified filename and, possibly, an incrementing suffix.

When the duration of the simulation run is not a multiple of the interval specified by -size or
-time, the incomplete portion is saved in the file vsim.wlf.

• -filemode {overwrite | increment}

(optional) Specifies whether to overwrite the snapshot file each time a snapshot occurs.

overwrite — (default)

increment — A new file is created for each snapshot. An incrementing suffix (1 to n) is
added to each new file (for example, vsim_snapshot_1.wlf).

• -mode {cumulative | sequential}

(optional) Specifies whether to keep all data from the time signals are first logged.

cumulative — (default)

sequential — The current WLF file is cleared every time a snapshot is taken.

Commands
dataset snapshot

ModelSim® Command Reference Manual, v10.5c 153

• -report

(optional) Lists current snapshot settings in the Transcript window. All other options are
ignored if you specify -report.

• -reset

(optional) Resets values back to defaults. The behavior is to reset to the default, then apply
the remainder of the arguments on the command line. See examples below. If specified by
itself without any other arguments, -reset disables dataset snapshot and resets the values.

• -size <file_size>

(Required if -time is not specified.) Specifies that a snapshot occurs based on WLF file size.
Must be specified as the final argument to the dataset snapshot command.

<file_size> — Size of WLF file in MB.

• -time <n> [<unit>]

(Required if -size is not specified.) Specifies that a snapshot occurs based on simulation
time. Must be specified as the final argument to the dataset snapshot command.

<n> — Any positive integer.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within braces ({}).

Examples

• Create the file vsim_snapshot_<n>.wlf that is written to every time the current WLF file
reaches a multiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10

• Similar to the previous example, but in this case the current WLF file is cleared every
time it reaches 10 MB.

dataset snapshot -size 10 -mode sequential

• Assuming simulator time units are ps, this command saves a file called gold_<n>.wlf
every 1000000 ps. If you run the simulation for 3000000 ps, three files are saved:
gold_1.wlf with data from 0 to 1000000 ps, gold_2.wlf with data from 1000000 to
2000000, and gold_3.wlf with data from 2000000 to 3000000.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential
-filemode increment

Because this example sets the time interval to 1000000 ps, if you run the simulation for
3500000 ps, a file containing the data from 3000000 to 3500000 ps is saved as vsim.wlf
(default).

• Enable snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

ModelSim® Command Reference Manual, v10.5c154

Commands
dataset snapshot

dataset snapshot -reset -time 10000

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

Commands
delete

ModelSim® Command Reference Manual, v10.5c 155

delete
This command removes objects from either the List or Wave window. Arguments to this
command are order dependent.

Syntax

delete list [-window <wname>] <object_name>...

delete wave [-window <wname>] <object_name>...

Arguments

• list

Specifies the target is a list window.

• wave

Specifies the target is a wave window.

• -window <wname>

(optional) Specifies the name of the List or Wave window to target for the delete command.
(The view command allows you to create more than one List or Wave window.) If no
window is specified, the default window is used; the default window is determined by the
most recent invocation of the view command and has “ -Default” appended to the name.

• <object_name>...

(required) Specifies the name of an object. Must match an object name used in an add list or
add wave command. Multiple object names are specified as a space separated list. Wildcard
characters are allowed. Must be specified as the final argument to the delete list and delete
wave commands.

Examples

• Remove the object vec2 from the list2 window.

delete list -window list2 vec2

• Remove all objects beginning with the string /test from the Wave window.

delete wave /test*

ModelSim® Command Reference Manual, v10.5c156

Commands
describe

describe
This command displays information about simulation objects and design regions in the
Transcript window.

Syntax

describe <name>...

Description

This command displays information about the following types of simulation objects and design
regions in the Transcript window:

• VHDL — signals, variables, constants, and FILE objects.

• Verilog — nets and registers

• Design region

VHDL signals, Verilog nets and registers, can be specified as hierarchical names.

Arguments

• <name>...

(required) The name of an HDL object for which you want a description.

Multiple object names are specified as a space separated list. Wildcard characters are
allowed. HDL object names can be relative or full hierarchical names.

Examples

• Print the types of the three specified signals.

describe clk prw prdy

• Return information about /textio/INPUT.

describe /textio/INPUT

produces:

File of
Unconstrained Array of
VHDL standard type CHARACTER

Commands
disablebp

ModelSim® Command Reference Manual, v10.5c 157

disablebp
This command turns off breakpoints and when commands. To turn on breakpoints or when
commands again, use the enablebp command.

Syntax

disablebp [<id#> | <label>]

Arguments

• <id#>

(optional) Specifies the ID number of a breakpoint or when statement to disable.

• <label>

(optional) Specifies the label name of a breakpoint or when statement to disable.

If you do not specify either of these arguments, all breakpoints and when statements are
disabled.

Use the bp command with no arguments to find labels and ID numbers for all breakpoints in
the current simulation. Use the when command with no arguments to find labels and ID
numbers of all when statements in the current simulation.

Note
Id numbers for breakpoints and when statements are assigned from the same pool.
Even if you have not specified a given id number for a breakpoint, that number may

still be used for a when command.

Related Topics

enablebp

onbreak

ModelSim® Command Reference Manual, v10.5c158

Commands
do

do
This command executes the commands contained in a DO file.

Syntax

do <filename> [<parameter_value>...]

Description

A DO file can have any name and extension. An error encountered during the execution of a DO
file script causes its execution to be interrupted, unless an onerror command or the
OnErrorDefaultAction Tcl variable is specified with the resume command. The onbreak
command is used to take action with source code breakpoint cases.

Arguments to this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

• <filename>

(required) Specifies the name of the DO file to be executed. The name can be a pathname or
a relative file name. Pathnames are relative to the current working directory. Must be
specified as the first argument to the do command.

If the do command is executed from another DO file, pathnames are relative to the directory
of the calling DO file. This allows groups of DO files to be stored in a separate sub-
directory.

• <parameter_value>...

(optional) Specifies values that are to be passed to the corresponding parameters $1 through
$9 in the DO file. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (for example, specify fewer parameter values
than the number of parameters actually used in the file), you must use the argc simulator
state variable in the DO file script. Refer to “Simulator State Variables” and “Making Script
Parameters Optional”.

Note
While there is no limit on the number of parameters that can be passed to macros,
only nine values are visible at one time. Use the shift command to see the other

parameters.

Examples

• Execute the file macros/stimulus and pass the parameter value 100 to $1 in the DO file.

do macros/stimulus 100

Where the DO file testfile contains the line

Commands
do

ModelSim® Command Reference Manual, v10.5c 159

bp $1 $2

place a breakpoint in the source file named design.vhd at line 127.

do testfile design.vhd 127

Related Topics

Tcl and DO Files

General Modes of Operation

Using a Startup File

DOPATH

Saving a Transcript File as a DO File

ModelSim® Command Reference Manual, v10.5c160

Commands
drivers

drivers
This command displays the names and strength of all drivers of the specified object.

Syntax

drivers <object_name> [-source]

Description

The driver list is expressed relative to the top-most design signal/net connected to the specified
object. If the object is a record or array, each sub-element is displayed individually.

The output from the drivers command, which is displayed in the Transcript window as a
hypertext link, allowing you to right-click to open a drop-down menu and quickly add signals to
various windows. It includes a "View Declaration" item to open the source definition of the
signal.

Figure 2-1. drivers Command Results in Transcript

Arguments

• <object_name>

(required) Specifies the name of the signal or net whose drivers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

• -source

(optional) Returns the source file name and line number for each driver of the specified
signal or net. If the source location cannot be determined, the value n/a is returned for that
driver.

Examples
drivers /top/dut/pkt_cnt(4)

Drivers for /top/dut/pkt_cnt(4):
St0 : Net /top/dut/pkt_cnt[4]
St0 : Driver /top/dut/pkt_counter/#IMPLICIT-WIRE(cnt_out)#6

Commands
drivers

ModelSim® Command Reference Manual, v10.5c 161

In some cases, the output may supply a strength value similar to 630 or 52x, which indicates an
ambiguous Verilog strength.

ModelSim® Command Reference Manual, v10.5c162

Commands
dumplog64

dumplog64
This command dumps the contents of the specified WLF file in a readable format to stdout. The
WLF file cannot be opened for writing in a simulation when you use this command. This
command cannot be used in a DO file.

Syntax

dumplog64 <filename>

Arguments

• <filename>

(required) The name of the WLF file to be read.

Commands
echo

ModelSim® Command Reference Manual, v10.5c 163

echo
This command displays a specified message in the Transcript window.

Syntax

echo [<text_string>]

Arguments

• <text_string>

(required) Specifies the message text to be displayed. If the text string is surrounded by
quotation marks, blank spaces are displayed as entered. If quotation marks are omitted, two
or more adjacent blank spaces are compressed into one space.

Examples

• If the current time is 1000 ns, this command:

echo “The time is $now ns.”

returns the message:

The time is 1000 ns.

• If the quotes are omitted:

echo The time is $now ns.

all blank spaces of two or more are compressed into one space.

The time is $now ns.”

• echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command returns:

The hex value of counter is 15.

ModelSim® Command Reference Manual, v10.5c164

Commands
edit

edit
This command invokes the editor specified by the EDITOR environment variable. By default,
the specified filename will open in the Source window.

Syntax

edit [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the file to edit. If the <filename> argument is omitted, the
editor opens the current source file. If you specify a non-existent filename, it will open a
new file. Either absolute or relative paths may be used.

Related Topics

notepad

EDITOR

Commands
enablebp

ModelSim® Command Reference Manual, v10.5c 165

enablebp
This command turns on breakpoints and when commands that were previously disabled.

Syntax

enablebp [<id#> | <label>]

Arguments

• <id#>

(optional) Specifies a breakpoint ID number or when statement to enable.

• <label>

(optional) Specifies the label name of a breakpoint or when statement to enable.

If you do not specify either of these arguments, all breakpoints are enabled.

Use the bp command with no arguments to find labels and ID numbers for all breakpoints in
the current simulation. Use the when command with no arguments to find labels and ID
numbers of all when statements in the current simulation.

Related Topics

disablebp

onbreak

ModelSim® Command Reference Manual, v10.5c166

Commands
encoding

encoding
These related commands translatebetween the 16-bit Unicode characters used in Tcl strings and
a named encoding, such as Shift-JIS.

Syntax

encoding convertfrom <encoding_name> <string>

encoding convertto <encoding_name> <string>

encoding names

encoding system <encoding_name>

Description

The following encoding commands work with the encoding of your character representations in
the GUI.

• encoding convertfrom — Converts a string from the named encoding to Unicode.

• encoding convertto — Converts a string to the named encoding from Unicode.

• encoding names — Returns a list of all valid encoding names (takes no arguments).

• encoding system — Changes the current system encoding to a named encoding. If a new
encoding is omitted the command returns the current system encoding. The system
encoding is used whenever Tcl passes strings to system calls.

Arguments

• string

Specifies a string to be converted.

• encoding_name

The name of the encoding to use.

Commands
environment

ModelSim® Command Reference Manual, v10.5c 167

environment
This command has two forms, environment and env. It allows you to display or change the
current dataset and region/signal environment.

Syntax

environment [-dataset | -nodataset] [<pathname> | -forward | -back]

Arguments

• -dataset

(optional) Displays the specified environment pathname with a dataset prefix. Dataset
prefixes are displayed by default.

• -nodataset

(optional) Displays the specified environment pathname without a dataset prefix.

• <pathname>

(optional) Specifies a new pathname for the region/signal environment.

If omitted the command causes the pathname of the current region/signal environment to be
displayed.

• -forward

(optional) Displays the next environment in your history of visited environments.

• -back

(optional) Displays the previous environment in your history of visited environments.

Examples

• Display the pathname of the current region/signal environment.

env

• Change to another dataset but retain the currently selected context.

env test:

• Change all unlocked windows to the context "test:/top/foo".

env test:/top/foo

• Move down two levels in the design hierarchy.

env blk1/u2

• Move to the top level of the design hierarchy.

env /

Related Topics

Setting your Context by Navigating Source Files

ModelSim® Command Reference Manual, v10.5c168

Commands
examine

examine
This command has two forms, examine and exa. It examines one or more objects and displays
current values (or the values at a specified previous time) in the Transcript window.

Syntax

examine <name>… [-delta <delta>] [-env <path>] [-event <time>] [-handle] {[-in] [-out]
[-inout] | [-ports]} [-internal] [-maxlen <integer>] [-expr <expression>] [-name]
[-<radix_type>] [-radix [<radix_type>][,<radix_flag>][,...]]
[-radixenumnumeric | -radixenumsymbolic] [-showbase] [-time <time>] [-value]

Description

It can also compute the value of an expression of one or more objects.

The following objects can be examined:

• VHDL — signals, shared variables, process variables, constants, generics, and FILE
objects

• Verilog — nets, registers, parameters, and variables

To display a previous value, specify the desired time using the -time option.

To compute an expression, use the -expr option. The -expr and the -time options may be used
together.

Virtual signals and functions may also be examined within the GUI (actual signals are examined
in the kernel).

The following rules are used by the examine command to locate an HDL object:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

• If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

Commands
examine

ModelSim® Command Reference Manual, v10.5c 169

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name
and inside of a slice specification.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* will not match either of those.

If no radix is specified with the examine command, the default radix and radix flags are used.

• Set the default radix with the radix command or by editing the DefaultRadix variable in
the modelsim.ini file.

• Set the default radix flags value with the radix command or by editing the
DefaultRadixFlags variable in the modelsim.ini file.

• Specifying examine -<radix_type> returns the value of the object in the specified radix
and default radix flags value.

• Specifying examine -radix <radix_type> returns the value of the object in the specified
radix.

• Specifying examine -radix [<radix_type>][, [<radix_flag>] returns the value of the
object in the specified radix and radix flags.

• Specifying examine -radix <radix_flag>[,<radix_flag>] returns the value of the object in
the default radix and specified radix flags.

For example, assume a default of hexadecimal + showbase:

examine d

16'h0009

examine -binary d

16'b0000000000001001

examine -radix binary d

0000000000001001

examine -radix binary,showbase d

16'b0000000000001001

examine -radix hex,enumsymbolic nxt_state

send5

examine -radix hex,enumnumeric nxt_state

0000000d

Refer to Design Object Names for more information on specifying names.

ModelSim® Command Reference Manual, v10.5c170

Commands
examine

Arguments

• <name>…

(required except when specifying -expr.) Specifies the name of any HDL object.

All object types are allowed, except those of the type file. Multiple names and wildcards are
accepted. Spaces, square brackets, and extended identifiers require braces; see examples
below for more details. To examine a VHDL variable you can add a process label to the
name. For example, (make certain to use two underscore characters):

exa line__36/i

• -delta <delta>

(optional) Specifies a simulation cycle at the specified time step from which to fetch the
value, where the default is to use the last delta of the time step. You must log the objects to
be examined using the add list, add wave, or log command for the examine command to be
able return a value for a requested delta.

<delta> — Any non-negative integer.

• -env <path>

(optional) Specifies a path in which to look for an object name.

<path> — The specified path to a object.

• -event <time>

(optional) Specifies a simulation cycle at the specified event time from which to fetch the
value. The event <time> refers to the event time relative to events for all signals in the
objects dataset at the specified time. You must log the objects to be examined using the add
list, add wave, or log command for the examine command to be able return a value for a
requested event.

• -expr <expression>

(optional) Specifies an expression to be examined. You must log the expression using the
add list, add wave, or log command for the examine command to return a value for a
specified expression. The expression is evaluated at the current time simulation. If you also
specify the -time argument, the expression will be evaluated at the specified time. It is not
necessary to specify <name> when using this argument. See GUI_expression_format for the
format of the expression.

<expression> — Specifies an expression enclosed in braces ({}).

• -handle

(optional) Returns the memory address of the specified <name>. You can use this value as a
tag when analyzing the simulation. This value also appears as the title of a box in the Watch
window. This option will not return any value if you are in -view mode.

• -in

(optional) Specifies that <name> include ports of mode IN.

Commands
examine

ModelSim® Command Reference Manual, v10.5c 171

• -out

(optional) Specifies that <name> include ports of mode OUT.

• -inout

(optional) Specifies that <name> include ports of mode INOUT.

• -internal

(optional) Specifies that <name> include internal (non-port) signals.

• -maxlen <integer>

(optional) Specifies the maximum number of characters in the output of the command.

<integer> — Any non-negative integer where 0 is unlimited.

• -ports

(optional) Specifies that <name> include all ports. Has the same effect as specifying -in,
-inout, and -out together.

• -name

(optional) Displays object name(s) and value(s). Related switch is -value.

• -<radix_type>

(optional) Specifies the radix type for the objects that follow in the command. Retains the
current flag value for the objects that follow in the command. Valid entries (or any unique
abbreviations) are: ascii, binary, decimal, fpoint, hexadecimal, octal, sfixed, symbolic, time,
ufixed, unsigned, and default.

This option overrides the global setting of the default radix (the DefaultRadix variable in the
modelsim.ini file).

• -radix [<radix_type>][,<radix_flag>][,...]

(optional) Specifies the radix and/or the radix flags to be used by the examine command.
The -radix <radix_type> switch can be used in place of examine -<radix_type>.

<radix_type> — (required unless specifying <radix_flag>) Specifies a radix and clears
the radix flags for the objects that follow in the command. Valid values are: ascii,
binary, decimal, fpoint, hexadecimal, octal, sfixed, symbolic, time, ufixed, unsigned,
default, and user- defined radix names (refer to the radix define command).

<radix_flag> — (optional) Sets one or more radix flags on the objects that follow in the
command. Multiple flags specified as a comma separated list. Must follow
-<radix_type> when the two are specified together.

ModelSim® Command Reference Manual, v10.5c172

Commands
examine

Valid radix flags:

For example, instead of simply displaying a vector value of “31”, a value of “16’h31” may
be displayed to show that the vector is 16 bits wide, with a hexadecimal radix.

This option overrides the global default settings for the radix and the radix flag (the
DefaultRadix and the DefaultRadixFlags in the modelsim.ini file).

• -radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

• -radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog and enums as symbols by
reversing the action of the -radixenumnumeric option.

• -showbase

(optional) Display the number of bits of the vector and the radix used (binary = b, decimal =
d, hexadecimal = h, ASCII = a, and time = t).

For example, instead of simply displaying a vector value of “31”, a value of “16'h31” may
be displayed to show that the vector is 16 bits wide, with a hexadecimal radix.

• -time <time>

(optional) Specifies the time value between 0 and $now for which to examine the objects.

Table 2-3. Radix flag Arguments to the Examine Command

Argument Description

enumeric enumeric — Displays Verilog as numbers (formatted by the
current radix). This overrides the default behavior of always
showing enums symbolically.

enumsymbolic enumsymbolic — Restores the default behavior of displaying
Verilog enums as symbols by reversing the action of the -
radixenumnumeric option.

showbase showbase — Displays the number of bits of the vector and the
radix used, where:

d decimal

b binary

h hexadecimal

a ASCII

t time

Commands
examine

ModelSim® Command Reference Manual, v10.5c 173

<time> — A non negative integer where the default unit is the current time unit. If the
<time> field uses a unit other than the current unit, the value and unit must be placed
in braces. For example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

If an expression is specified it will be evaluated at that time. The objects to be examined
must be logged via the add list, add wave, or log command in order for the examine
command to be able to return a value for a requested time.

• -value

(default) Returns value(s) as a curly-braces separated Tcl list. Use to toggle off a previous
use of -name.

Examples

• Return the value of /top/bus1.

examine /top/bus1

• Return the value of the subelement of rega that is specified by the index (16). Note that
you must use braces when examining subelements.examine

{rega[16]}

• Return information about /textio/OUTPUT

examine /textio/OUTPUT

returns the following:

{STD_OUTPUT {stdout NOTPIPE} WRITE_MODE N/A}

The output is a Tcl list with up to four elements. There are three scenarios of results:

o If the file has not been elaborated, the result will be the following one-element list:

{“NOT ELABORATED”}

o If the file is closed, the result will be the following one-element list.

{“CLOSED”}

o In all other cases, the result will be a four-element list, following the format:

{<file_path> { <descriptor> PIPE | NOTPIPE } <file_mode>
<file_position>}

where,

• <file_path> — references either the FILE declaration or corresponding
file_open() call

ModelSim® Command Reference Manual, v10.5c174

Commands
examine

• <descriptor> — one of the following:

o N — operating system file descriptor resource number.

o stdin — identifying the file as stdin.

o stdout — identifying the file as stdout.

o <file_mode> — identifying the file mode, of which the file was opened, as de-
fined in std.standard package; either READ_MODE, WRITE_MODE, or AP-
PEND_MODE.

o <file_position> — value in bytes. For stdin or stdout files, the value will be
“N/A”.

• Return the value of the contiguous subelements of foo specified by the slice (i.e., 20:22).
Note the use of braces.

examine {foo[20:22]}

• Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}'.

examine {/top/\My extended id\ }

• In this example, the -expr option specifies a signal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

examine -time {3450 us} -expr {/top/bus and $bit_mask}

• Using the ${fifo} syntax limits the variable to the simple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotation marks (“ “) are needed
when spaces are involved; by using quotation marks instead of braces, the Tcl
interpreter will expand variables before calling the command.

examine -time $t -name $fifo "${fifo}(1 to 3)" ${fifo}(1)

• Because -time is not specified, this expression will be evaluated at the current
simulation time. Note the signal attribute and array constant specified in the expression.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Commands like find and examine return their results as a Tcl list (just a blank-separated
list of strings). You can do things like:

foreach sig [find sig ABC*] {echo "Signal $sig is [exa $sig]" …}

if {[examine -bin signal_12] == “11101111XXXZ”} {…}

examine -hex [find *]

Related Topics

DefaultRadix

Commands
exit

ModelSim® Command Reference Manual, v10.5c 175

exit
This command exits the simulator and the ModelSim application.

Syntax

exit [-force] [-code <integer>]

Description

If you want to stop the simulation using a when command, use a stop command within your
when statement, do not use an exit command or a quit command. The stop command acts like a
breakpoint at the time it is evaluated.

Arguments

• -force

(optional) Quits without asking for confirmation. If this argument is omitted, ModelSim
asks you for confirmation before exiting. You can also use -f as an alias for this switch.

• -code <integer>

(optional) Quits the simulation and issues an exit code.

<integer> — This is the value of the exit code. You should not specify an exit code that
already exists in the tool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. You can also specify a variable in place of <integer>.

You should always print a message before executing the exit -code command to explicitly
state the reason for exiting.

Examples

You can use exit -code to instruct a vmake command to exit when it encounters an assertion
error. The onbreak command can specify commands to be executed upon an assert failure of
sufficient severity, after which the simulator can be made to return an exit status. This is shown
in the following example:

set broken 0
onbreak {
 set broken 88
 resume
}
run -all
if { $broken } {
 puts "failure -- exit status $broken"
 exit -code $broken} else {
 puts "success"
}
quit -f

The resume command gives control back to the commands following the run -all to handle the
condition appropriately.

ModelSim® Command Reference Manual, v10.5c176

Commands
find

find
This command locates objects by type and name. Arguments to the command are grouped by
object type.

Syntax

find nets | signals <object_name> … [-internal] [-nofilter] {[-in] [-inout] [-out] | [-ports]}
[-recursive]

find instances | blocks {<object_name> … | -bydu <design_unit> | -file <file_name>}
[-arch] [-recursive] [-nodu]

find virtuals <object_name> … [-kind <kind>] [-unsaved] [-recursive]

find classes [<class_name>]

find objects [-class <class_name>] [-isa <class_name>] [<object_name>]

Description

The following rules are used by the find command to locate an object:

• If the name does not include a dataset name, then the current dataset is used.

• If the name does not start with a path separator, then the current context is used.

• If the name is a path separator followed by a name that is not the name of a top-level
design unit, then the first top-level design unit in the design is used.

• For a relative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

• If no objects of the specified name can be found in the specified context, then an upward
search is done to look for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

• The wildcards '*' and '?' can be used at any level of a name except in the dataset name
and inside of a slice specification. Square bracket ([]) wildcards can also be used.

• A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* will not match either of those.

• Because square brackets are wildcards in the find command, only parentheses (()) can be
used to index or slice arrays.

• The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

Commands
find

ModelSim® Command Reference Manual, v10.5c 177

See Design Object Names for more information on specifying names.

Arguments

Arguments to the command are grouped by object type.

Arguments for nets and signals
When searching for nets and signals, the find command returns the full pathname of all nets,
signals, registers, variables, and named events that match the name specification.

• <object_name> …

(required) Specifies the net or signal for which you want to search. Multiple nets and signals
and wildcard characters are allowed. Wildcards cannot be used inside of a slice
specification. Spaces, square brackets, and extended identifiers require special syntax; see
the examples below for more details.

• -in

(optional) Specifies that the scope of the search is to include ports of mode IN.

• -inout

(optional) Specifies that the scope of the search is to include ports of mode INOUT.

• -internal

(optional) Specifies that the scope of the search is to include internal (non-port) objects.

• -nofilter

(optional) Specifies that the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

• -out

(optional) Specifies that the scope of the search is to include ports of mode OUT.

• -ports

(optional) Specifies that the scope of the search is to include all ports. Has the same effect as
specifying -in, -out, and -inout together.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

Arguments for instances and blocks
When searching for instances, the find command returns the primary design unit name.

• -arch

Used with “instances” only: Lists the corresponding architecture name along with the entity
name for any VHDL design unit names returned by the find command.

• -bydu <design_unit>

Searches for a design unit. Mutually exclusive with -file and <object_name>.

ModelSim® Command Reference Manual, v10.5c178

Commands
find

<design_unit> — Name of a single design unit to search for. This argument matches the
pattern specified by primary <design_unit> of the instance only. Library and
Secondary names are not supported.

• -file <file_name>

Writes a complete list of the instances in a design to a file. Mutually exclusive with -bydu
and <object_name>.

<file_name> — A string specifying the name for a file.

• <object_name> …

Specifies the name of an instance or block for which you want to search. Multiple instances
and wildcard characters are allowed. Mutually exclusive with -file and -bydu.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

• -nodu

(optional) Removes the "du" string from the names of design units found with -bydu
argument.

Arguments for virtuals
When searching for virtuals, all optional arguments must be specified before any object names.

• <object_name> …

(required) Specifies the virtual object for which you want to search. Multiple virtuals and
wildcard characters are allowed.

• -kind <kind>

(optional) Specifies the kind of virtual object for which you want to search.

<kind> — A virtual object of one of the following kinds:

• designs

• explicits

• functions

• implicits

• signals.

• -unsaved

Specifies that ModelSim find only virtuals that have not been saved to a format file.

Arguments for classes
• <class_name>

(optional) Specifies the incrTcl class for which you want to search. Wildcard characters are
allowed. The options for class_name include nets, objects, signals, and virtuals. If you do

Commands
find

ModelSim® Command Reference Manual, v10.5c 179

not specify a class name, the command returns all classes in the current namespace context.
See incrTcl commands in the Tcl Man Pages (Help > Tcl Man Pages) for more information.

Arguments for objects
• -class <class_name>

(optional) Restricts the search to objects whose most-specific class is class_name.

• -isa <class_name>

(optional) Restricts the search to those objects that have class_name anywhere in their
heritage.

• <object_name>

(optional) Specifies the incrTcl object for which you want to search. Wildcard characters are
allowed. If you do not specify an object name, the command returns all objects in the current
namespace context. See incrTcl commands in the Tcl Man Pages (Help > Tcl Man Pages)
for more information.

Examples

• Find all signals in the entire design.

find signals -r /*

• Find all instances in the entire design and save the list in the file instancelist.txt.

find instances -file instancelist.txt -r /*

• Find all input signals in region /top that begin with the letters "xy".

find nets -in /top/xy*

• Find all signals in the design hierarchy at or below the region <current_context>/u1/u2
whose names begin with "cl".

find signals -r u1/u2/cl*

• Find a signal named s1. Note that you must enclose the object in braces because of the
square bracket wildcard characters.

find signals {s[1]}

• Find signals s1, s2, or s3.

find signals {s[123]}

• Find the element of signal s that is indexed by the value 1. Note that the find command
uses parentheses (()), not square brackets ([]), to specify a subelement index.

find signals s(1)

• Find a 4-bit array named data. Note that you must use braces ({}) due to the spaces in
the array slice specification.

find signals {/top/data(3 downto 0)}

ModelSim® Command Reference Manual, v10.5c180

Commands
find

• Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '}'.

find signals {/top/\My extended id\ }

• If /dut/core/pclk exists, prints the message "pclk does exist" in the transcript. This would
typically be run in a Tcl script.

if {[find signals /dut/core/pclk] != ""} {
echo "pclk does exist"

• Find instances based on their names using wildcards. Send search results to a text file
that lists instance names, including the hierarchy path, on separate lines.

Search for all instances with u1 in path
set pattern_match "*u1*" ;
Get the list of instance paths
set inst_list [find instances -r *] ;
Initialize an empty list to strip off the architecture names
set ilist [list] ;
foreach inst $inst_list {

 set ipath [lindex $inst 0]
 if {[string match $pattern_match $ipath]} {
 lappend ilist $ipath

 }
}
At this point, ilist contains the list of instances only--
no architecture names
#
Begin sorting list
set ilist [lsort -dictionary $ilist]
Open a file to write out the list
set fhandle [open "instancelist.txt" w]
foreach inst $ilist {
 # Print instance path, one per line
 puts $fhandle $inst
}

Close the file, done.
close $fhandle ;

Commands
find connections

ModelSim® Command Reference Manual, v10.5c 181

find connections
This command returns the set of nets that are electrically equivalent to a specified net. It is only
available during a live simulation.

Syntax

find connections <net>

Arguments

• <net>

(required) A net in the design. Returns a list of nets connected to the specified net.

Examples
find connections /top/p/strb

returns:

Connected nets for strb
output : /top/p/strb
internal : /top/pstrb
input : /top/c/pstrb

ModelSim® Command Reference Manual, v10.5c182

Commands
find infiles

find infiles
This command searches for a string in the specified file(s) and prints the results to the Transcript
window. The results are individually hotlinked and will open the file and display the location of
the string.

Syntax

find infiles <string_pattern> <file>...

Description

When you run this command in command-line mode from outside of the GUI, the results are
sent to stdout with no hotlinks.

Arguments to this command are order-dependent. Follow the order specified in the Syntax
section.

Arguments

• <string_pattern>

(required) The string you are searching for. You can use Tcl regular expression wildcards to
further restrict the search capability.

• <file>...

(required) The file(s) to search. You can use Tcl regular expression wildcards to further
restrict the search capability.

Examples

Figure 2-2 shows a screen capture containing a few examples of the find infiles command and
the results.

Figure 2-2. find infiles Example

Commands
find insource

ModelSim® Command Reference Manual, v10.5c 183

find insource
This command searches for a string in the source files for the current design and prints the
results to the Transcript window. The results are hotlinked individually and will open the file
and display the location of the string. When you execute this command in command-line mode
from outside of the GUI, the results are sent to stdout with no hotlinks.

Syntax

find insource <pattern> [-exact | -glob | -regexp] [-inline] [-nocase]

Arguments

• <pattern>

(required) The string you are searching for. You can use regular expression wildcards to
further restrict the search. You must enclose <pattern> in quotation marks (“ ”) if it includes
spaces. You must specify the <pattern> at the end of the command line; any switches
specified after <pattern> will not be registered.

• -exact | -glob | -regexp

(optional) Defines the style of regular expression used in the <pattern>

-exact — Indicates that no characters have special meaning, thus disabling wildcard
features.

-glob — (default) Allows glob-style wildcard characters. For more information refer to
the Tcl documentation:

Help > Tcl Man Pages

Select “Tcl Commands”, then “string”, then “string match”

-regexp — Allows Tcl regular expressions. For more information refer to the Tcl
documentation:

Help > Tcl Man Pages

Select “Tcl Commands”, then “re_syntax”.

• -inline

(optional) Returns the matches in the form of a Tcl list, which disables the hotlink feature
but allows for easier post-processing.

• -nocase

(optional) Treats <pattern> as case-insensitive.

Examples

• Figure 2-3 shows a couple of examples of the find insource command and the results.

ModelSim® Command Reference Manual, v10.5c184

Commands
find insource

Figure 2-3. find insource Example

• Searching for two keywords with whitespace between them:

find insource -regexp {top_dut\s+dut}

returns:

top.sv:20: top_dut dut (

• Searching for string starting with 'dut' and ending with 'o':

find insource -regexp {dut.*o}

returns:

top.sv:17: DUT_io dut_io(.clock(tb_clk), .reset(tb_reset));

• Searching for string irrespective of case:

find insource -regexp -nocase {DUT}

returns:

test.sv:10: virtual DUT_io dut_io;
test.sv:27: this.dut_io = dut_io;

Related Topics

DISABLE_ELAB_DEBUG

Commands
force

ModelSim® Command Reference Manual, v10.5c 185

force
This command allows you to apply stimulus interactively to VHDL signals, Verilog nets and
registers.

Syntax

Forcing values, driver type, repetition time or stop time on an object
force {<object_name> <value> [[@]<time_info>][, <value> [@]<time_info>]...

[-deposit | -drive | -freeze] [-cancel [@]<time_info>] [-repeat [@]<time_info>]

Reporting all force commands
If you specify this command without arguments, it returns a list of the most recently applied

force commands and a list of forces coming from the Signal Spy signal_force() and
$signal_force() calls from within VHDL, Verilog.

For example, after entering:

force -freeze /top/p/addr 0 100, 1 150 -r 200 -cancel 2000

the times specified are relative to the current simulation time, in this case 2820 ns

Entering:

force

Returns:

force -freeze /top/p/addr 0 {@2920 ns} , 1 {@2970 ns}
-repeat {@3020 ns} -cancel {@4820 ns}

Note
When you run the force command, the simulator translates the relative time you specify into
absolute time.

Description

It is possible to create a complex sequence of stimuli when the force command is included in a
DO file.

There are a number of constraints on what you can and cannot force.

You can force:

• VHDL signals or parts of signals.

• Verilog nets and registers, bit-selects, part-selects, and field-selects. Refer to “Force and
Release Statements in Verilog” for more information.

• “Virtual Signals” if the number of bits corresponds to the signal value.

• An alias of a VHDL signal.

ModelSim® Command Reference Manual, v10.5c186

Commands
force

• An input port that is mapped at a higher level in VHDL and mixed models.

You cannot force:

• Virtual functions.

• VHDL variables. Refer to the change command for information on working with VHDL
variables.

• An input port that has a conversion function on the input or on the path up the network
mapped from the input.

This command provides additional information with the -help switch.

Arguments to this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

• <object_name>

(required when forcing a value change) Specifies the name of the HDL object to be forced.
A wildcard is permitted only if it matches one object. Refer to Design Object Names and Tcl
Syntax and Specification of Array Bits and Slices for the full syntax of an object name. The
object name must specify a scalar type or a one-dimensional array of character enumeration.
You may also specify a record sub-element, an indexed array, or a sliced array, as long as
the type is one of the above. Must be specified as the first argument to the force command.

• <value>

(required when forcing a value change) Specifies the value to which the object is to be
forced. The specified value must be appropriate for the type. Must be specified as the second
argument to the force command.

A one-dimensional array of character enumeration can be forced as a sequence of character
literals or as a based number with a radix of 2, 8, 10 or 16. For example, the following
values are equivalent for a signal of type bit_vector (0 to 3):

Description VHDL Value Verilog Value

character literal sequence F F

binary radix 2#1111 'b1111

octal radix 8#17 'o17

decimal radix 10#15 'd15

hexadecimal radix 16#F 'hF

Commands
force

ModelSim® Command Reference Manual, v10.5c 187

Note
For based numbers in VHDL, ModelSim translates each 1 or 0 to the appropriate
value for the number’s enumerated type. The translation is controlled by the

translation table in the pref.tcl file. If ModelSim cannot find a translation for 0 or 1, it
uses the left bound of the signal type (type’left) for that value.

You can create a sequence of forced values on an object by specifying <value>
[@]<time_info> in a comma/space separated list.

For example:

force /top/p/addr 1 100ns, 0 200ns, 1 250ns

• -cancel [@]<time_info>

(optional) Cancels the force command at the time specified by <time_info>.

where:

<time_info> is [@]<time_value>[<time_unit>]

Refer to [@]<time_info> for more information about specifying time values.

• -drive

(optional) Attaches a driver to the object and drives the specified <value> until the object is
forced again or until it is unforced with the noforce command.

This option is illegal for unresolved signals.

• -deposit

(optional) Sets the object to the specified <value>. The <value> remains until the object is
forced again, there is a subsequent driver transaction, or it is unforced with a noforce
command. When used for registers, it behaves like the change command.

Note
If the -freeze, -drive, or -deposit options are not used, then -freeze is the default for
unresolved objects, and -drive is the default for resolved objects. If you prefer -

freeze as the default for resolved and unresolved VHDL signals, change the
DefaultForceKind variable in the modelsim.ini file.

• -freeze

(optional) Freezes the object at the specified <value> until it is forced again or until it is
unforced with the noforce command.

Note
If you prefer -freeze as the default for resolved and unresolved VHDL signals,
change the DefaultForceKind variable in the modelsim.ini file.

• -repeat [@]<time_info>

(optional) Repeats a series of forced values and times at the time specified.

ModelSim® Command Reference Manual, v10.5c188

Commands
force

where:

<time_info> is [@]<time_value>[<time_unit>]

Refer to [@]<time_info> for more information about specifying time values.

You must specify at least two <value> <time_info> pairs on the forced object before
specifying -repeat, for example:

force top/dut/p 1 0, 0 100 -repeat 200 -cancel 1000

A repeating force command will force a value before other non-repeating force commands
that occur in the same time step.

• [@]<time_info>

(optional) Specifies the relative or absolute simulation time at which the <value> is to be
applied.

where:

<time_info> is [@]<time_value>[<time_unit>]

@ — A prefix applied to <time_value> to specify an absolute time. By default, the
specified time units are assumed to be relative to the current time unless the value is
preceded by the character "at" (@). Omit the "at" (@) character to specify relative
time. For example:

-cancel {520 ns} \\ Relative Time

-cancel {@ 520 ns} \\ Absolute Time

<time_value> — The time (either relative or absolute) to apply to <value>. Any non-
negative integer. A value of zero cancels the force at the end of the current time
period.

<time_unit> — An optional suffix specifying a time unit where the default is to use the
current simulator time by omitting <time_unit>. Valid time units are: fs. ps, ns, us,
ms, sec, min, and hr.

<time_value> and <time_unit> can be formatted in any of the following ways:

10ns

10 ns

{10 ns}

“10 ns”

Commands
force

ModelSim® Command Reference Manual, v10.5c 189

Note
If you specify a sequence of forces and use braces ({}) surrounding a <time_value>
and <time_unit> pair, you must place a space in front of the comma (,) separating

the two value/time pairs. For example:

force foo 1 {10 ns} , 0 {20 ns}

Examples

• Reporting all recently applied force commands

If you specify this command with no arguments, it returns a list of all forced objects and the
changes applied. For example, after executing:

force -freeze /top/p/addr 0 100, 1 150 -r 200 -cancel 2000

where the times specified are relative to the current simulation time, in this case 2820 ns.

Entering:

force

returns:

force -freeze /top/p/addr 0 {@2920 ns} , 1 {@2970 ns}
-repeat {@3020 ns} -cancel {@4820 ns}

Note
Executing the force command translates the relative time you specified into absolute time.

• Force input1 to 0 at the current simulator time.

force input1 0

• Force the fourth element of the array bus1 to 1 at the current simulator time.

force bus1(4) 1

• Force bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 2#01XZ 100 ns

• Force bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force bus1 16#f @200

• Force input1 to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. Repeat this cycle every 100 time units after the
current simulation time, If the current simulation time is 100 ns, the next transition is to
1 at 110 ns and 0 at 120 ns, this pattern to start repeating at 200 ns.

ModelSim® Command Reference Manual, v10.5c190

Commands
force

force input1 1 10, 0 20 -r 100

• Similar to the previous example, but also specifies the time units.

force input1 1 10 ns, 0 20 ns -r 100 ns

• Force signal s to alternate between values 1 and 0 every 100 time units until 1000 time
units have occurred, starting from time Now. Cancellation occurs at the last simulation
delta cycle of a time unit.

force s 1 0, 0 100 -repeat 200 -cancel 1000

So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

• Force siga to decimal value 85 whenever the value on the signal is 1.

when {/mydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}

• Force one bit of a record containing an array.

force struct1.bus1(4) 1

• Force a slice of an array.

force {bus1[2:5]} 'hF

Related Topics

DefaultForceKind

Force and Release Statements in Verilog

Force Command Defaults

noforce

Virtual Signals

Commands
formatTime

ModelSim® Command Reference Manual, v10.5c 191

formatTime
This command provides global format control for all time values displayed in the GUI. When
specified without arguments, this command returns the current state of the three arguments.

Syntax

formatTime [[+|-]commas] [[+|-]nodefunits] [[+|-]bestunits]

Arguments

• [+|-]commas

(optional) Insert commas into the time value.

+ prefix — On

- prefix — Off. (default)

• [+|-]nodefunits

(optional) Do not include default unit in the time.

+ prefix — On

- prefix — Off. (default)

• [+|-]bestunits

(optional) Use the largest unit value possible.

+ prefix — On

- prefix — Off. (default)

Examples

• Display commas in time values.

formatTime +commas

Instead of displaying 6458131 ps, the GUI will display 6,458,131 ps.

• Use largest unit value possible.

formatTime +bestunits

Displays 8 us instead of 8,000 ns.

ModelSim® Command Reference Manual, v10.5c192

Commands
gc configure

gc configure
Prerequisite:

Before using this command, do one of the following:

• Regular simulation — Simulate with the vsim command, but omit the -classdebug
argument.

• Interactive class debugging — Simulate with the vsim -classdebug command.

This command specifies when the System Verilog garbage collector will run. The garbage
collector may be configured to run after a memory threshold has been reached, after each
simulation run command completes, and/or after each simulation step command. The default
settings are optimized to balance performance and memory usage for either regular simulation
or class debugging (vsim -classdebug). Returns the current settings when specified without
arguments.

Syntax

gc config [-onrun 0 | 1] [-onstep 0 | 1] [-threshold <n>]

Arguments

• -onrun 0 | 1

(optional) Enables/disables garbage collector execution after each simulation run command
completes.

0 — Off, default for regular simulation

1 — On, default for interactive class debugging

• -onstep 0 | 1

(optional) Enables or disables garbage collector execution after each step when stepping
through your simulation.

0 — Off, default for both regular simulation and interactive class debugging.

1 — On

• -threshold <n>

(optional) Sets the maximum amount of memory in megabytes allocated for storage of class
objects before the garbage collector runs.

<n> — Any positive integer where <n> is the number of megabytes.

Regular simulation default =100 megabytes

Interactive class debugging default = 5 megabytes

Related Topics

SystemVerilog Class Debugging

Class Instance Garbage Collection

Commands
gc configure

ModelSim® Command Reference Manual, v10.5c 193

GCThreshold

GCThresholdClassDebug

ModelSim® Command Reference Manual, v10.5c194

Commands
gc run

gc run
This command runs the SystemVerilog garbage collector.

Syntax

gc run

Arguments

None

Related Topics

gc configure

SystemVerilog Class Debugging

Class Instance Garbage Collection

GCThreshold

GCThresholdClassDebug

Commands
help

ModelSim® Command Reference Manual, v10.5c 195

help
This command displays in the Transcript window a brief description and syntax for the
specified command.

Syntax

help [<command> | <topic>]

Arguments

• <command>

(optional) Specifies the command for which you want help. The entry is case and space
sensitive.

• <topic>

(optional) Specifies a topic for which you want help. The entry is case and space sensitive.
Specify one of the following six topics:

Topic Description

commands Lists all available commands and
topics

debugging Lists debugging commands

execution Lists commands that control
execution of your simulation.

Tcl Lists all available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all available incrTCL
commands

ModelSim® Command Reference Manual, v10.5c196

Commands
history

history
This command lists the commands you have executed during the current session. History is a
Tcl command. For more information, consult the Tcl Man Pages (Help > Tcl Man Pages).

Syntax

history [clear] [keep <value>]

Arguments

• clear

(optional) Clears the history buffer.

• keep <value>

(optional) Specifies the number of executed commands to keep in the history buffer.

<value> — Any positive integer where the default is 50.

Commands
layout

ModelSim® Command Reference Manual, v10.5c 197

layout
This command allows you to perform a number of editing operations on custom GUI layouts,
such as loading, saving, maximizing, and deleting.

Syntax

layout active

layout current

layout delete <name>

layout load <name>

layout names

layout normal

layout maximized

layout restoretype <window>

layout save <name>

layout showsuppresstypes

layout suppresstype <window>

layout togglezoom

layout zoomactive

layout zoomwindow <window>

Description

The command options include:

• layout active – returns the current active window

• layout current – lists the current layout

• layout delete – removes the current layout from the Registry (Windows)

• layout load – opens the specified layout

• layout names – lists all known layouts

• layout normal – minimizes the current maximized window

• layout maximized – return a 1 if the current layout is maximized, or a 0 if minimized

• layout restoretype — removes the list of window type(s) that will not be restored when a
new layout is loaded.

• layout save – saves the current layout to the specified name

ModelSim® Command Reference Manual, v10.5c198

Commands
layout

• layout showsuppresstypes — lists the window types that will not be restored when a new
layout is loaded.

• layout suppresstype — adds the specified window type(s) to the list of types that will not
be restored when a layout is reloaded.

• layout togglezoom – toggles the current zoom state of the active window (from
minimized to maximized or maximized to minimized)

• layout zoomactive – maximizes the current active window

• layout zoomwindow – maximizes the specified window

Arguments

• <name>

(required) Specifies the name of the layout.

• <window>

(required) The window specification can be any format accepted by the view command. The
window can be specified by its type (such as wave, list, objects), by the windowobj name
(such as main_pane.wave, .main_pain.library), or by the tab name (such as wave1, list3)

Related Topics

Simulator GUI Layout Customization

Configuring Default Windows for Restored Layouts

Commands
log

ModelSim® Command Reference Manual, v10.5c 199

log
This command creates a wave log format (WLF) file containing simulation data for all HDL
objects whose names match the provided specifications. Objects that are displayed using the
add list and add wave commands are automatically recorded in the WLF file. By default the file
is named vsim.wlf and stored in the current working directory. You can change the default name
using the vsim -wlf option of the vsim command or by setting the WLFFilename variable in the
modelsim.ini file.

Syntax

log [-howmany] [-filter <f> | -nofilter <f>]
{[-in] [-inout] [-out] | [-ports]} [-internal]
[-recursive [-depth <level>]] <object_name> …

log -flush [<object>]

Description

If no port mode is specified, the WLF file contains data for all objects in the selected region
whose names match the object name specification.

The WLF file contains a record of all data generated for the list and wave windows during a
simulation run. Reloading the WLF file restores all objects and waveforms and their complete
history from the start of the logged simulation run. See dataset open for more information.

For all transaction streams created through the SCV or Verilog APIs, logging is enabled by
default. A transaction is logged to the WLF file if logging is enabled at the beginning of a
simulation run when the design calls ::begin_transaction() or $begin_transaction. The effective
start time of the transaction (the time passed by the design as a parameter to ::begin_transaction)
is irrelevant. For example, a stream could have logging disabled between T1 and T2 and still
record a transaction in that period, through retroactive logging after time T2. A transaction is
always either entirely logged or entirely ignored.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Note
The log command is also known as the "add log" command.

Arguments

• -depth <level>

(optional) Restricts a recursive search (specified with the -recursive argument) to a certain
level of hierarchy.

<level> — Any non-negative integer. For example, if you specify -depth 1, the
command descends only one level in the hierarchy.

ModelSim® Command Reference Manual, v10.5c200

Commands
log

• -filter <f> | -nofilter <f>

(optional) Allows a one-time modification of the WildcardFilter in the command
invocation. The add list command can take as many [-filter <f>] and [-nofilter <f>]
arguments as you would like to specify. Valid filters, <f>, are exactly the same set of words
that can be applied to the WildcardFilter. The filter(s) used during a command starts with
the WildcardFilter and then applies the user specified filters, if any. The -filter values are
added to the filter, the -nofilter values are removed from the filter. They are applied in the
order specified so conflicts are resolved with the last specified wins.

• -flush [<object>]

(optional) Forced the WLF file to write all buffered region and event data to the WLF file.
By default, the region and event data is buffered and periodically written to the file, as
appropriate. If <object> is specified, that object is first logged and then the file is flushed.

• -howmany

(optional) Returns an integer indicating the number of signals found.

• -in

(optional) Specifies that the WLF file is to include data for ports of mode IN whose names
match the specification.

• -inout

(optional) Specifies that the WLF file is to include data for ports of mode INOUT whose
names match the specification.

• -internal

(optional) Specifies that the WLF file is to include data for internal (non-port) objects whose
names match the specification.

• -out

(optional) Specifies that the WLF file is to include data for ports of mode OUT whose
names match the specification.

• -ports

(optional) Specifies that the scope of the search is to include all ports, IN, INOUT, and
OUT.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region. You can use the -depth argument to
specify how far down the hierarchy to descend.

• <object_name>

(required) Specifies the object name that you want to log. Must be specified as the final
argument to the log command. Multiple object names are specified as a space separated list.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.

Commands
log

ModelSim® Command Reference Manual, v10.5c 201

By default, wildcard card logging does not log the internals of cells. Refer to the +libcell |
+nolibcell argument of the vlog command for more information.

Examples

• Log all objects in the design.

log -r /*

• Log all output ports in the current design unit.

log -out *

Related Topics

dataset alias

dataset clear

dataset close

dataset config

dataset info

dataset list

dataset open

dataset restart

dataset rename

dataset save

dataset snapshot

nolog

Recording Simulation Results With Datasets

WLFFilename

ModelSim® Command Reference Manual, v10.5c202

Commands
lshift

lshift
This command takes a Tcl list as an argument and shifts it in-place, one place to the left,
eliminating the left-most element.

Syntax

lshift <list> [<amount>]

Description

The number of shift places may also be specified. Returns nothing.

Arguments to this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

• <list>

(required) Specifies the Tcl list to target with lshift. Must be specified as the first argument
to the lshift command.

• <amount>

(optional) Specifies the number of places to shift where the default is 1.

Examples
proc myfunc args {

throws away the first two arguments
lshift args 2
...
}

Commands
lsublist

ModelSim® Command Reference Manual, v10.5c 203

lsublist
This command returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern.Arguments to this command are order dependent. Follow the order specified in the
Syntax section.

Syntax

lsublist <list> <pattern>

Arguments

• <list>

(required) Specifies the Tcl list to target with lsublist.

• <pattern>

(required) Specifies the pattern to match within the <list> using Tcl glob-style matching.

Examples

• In the example below, variable ‘t’ returns "structure signals source".

set window_names "structure signals variables process source wave list"

set t [lsublist $window_names s*]

ModelSim® Command Reference Manual, v10.5c204

Commands
mem compare

mem compare
This command compares a selected memory to a reference memory or file. Must have the "diff"
utility installed and visible in your search path in order to run this command. Arguments to this
command are order dependent. Please read through the argument descriptions for more
information.

Syntax

mem compare {[-mem <ref_mem>] | [-file <ref_file>]} [actual_mem]

Arguments

• -mem <ref_mem>

(optional) Specifies a reference memory to be compared with actual_mem.

<ref_mem> — A memory record.

• -file <ref_file>

(optional) Specifies a reference file to be compared with actual_mem.

<ref_file> — A saved memory file.

• actual_mem

(required) Specifies the name of the memory to be compared against the reference data.
Must be specified as the final argument to the mem compare command.

Commands
mem display

ModelSim® Command Reference Manual, v10.5c 205

mem display
This command prints to the Transcript window the memory contents of the specified instance. If
the given instance path contains only a single array signal or variable, the signal or variable
name need not be specified.

Syntax

mem display [-addressradix [d | h]] [-compress] [-dataradix <radix_type>]
[-endaddress <end>][-format [bin | hex | mti]] [-noaddress] [-startaddress <st>]
[-wordsperline <n>] [<path>]

Description

You can redirect the output of the mem display command into a file for later use with the mem
load command. The output file can also be read by the Verilog $readmem system tasks if the
memory module is a Verilog module and Verilog memory format (hex or binary) is specified.

Address radix, data radix, and address range for the output can also be specified, as well as
special output formats.

By default, identical data lines are printed. To replace identical lines with a single line
containing the asterisk character, you can enable compression with the -compress argument.

Note
The format settings are stored at the top of this file as a pseudo comment so that subsequent
mem load commands can correctly interpret the data. Do not edit this data when

manipulating a saved file.

Arguments to this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

• -addressradix [d | h]

(optional) Specifies the address radix for the default (MTI) formatted files.

d — Decimal radix. (default if -format is specified as mti.)

h — Hex radix.

• -compress

(optional) Specifies that identical lines not be printed. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during a mem load operation.

• -dataradix <radix_type>

(optional) Specifies the data radix for the default (MTI) formatted files. If unspecified, the
global default radix is used.

ModelSim® Command Reference Manual, v10.5c206

Commands
mem display

<radix_type> A specified radix type. Valid entries (or any unique abbreviations) are:
binary, decimal, unsigned, octal, hex, symbolic, and default. If no radix is specified
for an enumerated type, the symbolic representation is used.

You can change the default radix type for the current simulation using the radix command or
make the default radix permanent by editing the DefaultRadix variable in the modelsim.ini
file.

• -endaddress <end>

(optional) Specifies the end address for a range of addresses to be displayed.

<end> — Any valid address in the memory. If unspecified, the default is the end of the
memory.

• -format [bin | hex | mti]

(optional) Specifies the output format of the contents.

bin— Specifies a binary output.

hex— Specifies a hex output.

mti — MTI format. (default).

• -noaddress

(optional) Specifies that addresses not be printed.

• -startaddress <st>

(optional) Specifies the start address for a range of addresses to be displayed.

<st> — Any valid address in the memory. If unspecified, the default is the start of the
memory.

• -wordsperline <n>

(optional) Specifies how many words are to be printed on each line.

<n> — Any positive integer where the default is an 80 column display width.

• <path>

(required) Specifies the full path to the memory instance. The default is the current context,
as shown in the Structure window. Indexes can be specified. Must be specified as the final
argument to the mem display command.

Examples

• This command displays the memory contents of instance /top/c/mru_mem, addresses 5
to 10:

mem display -startaddress 5 -endaddress 10 /top/c/mru_mem

• returns:

5: 110 110 110 110 110 000

Commands
mem display

ModelSim® Command Reference Manual, v10.5c 207

• Display the memory contents of the same instance to the screen in hex format, as
follows:

mem display -format hex -startaddress 5 -endaddress 10 /top/c/mru_mem

• returns:

5: 6 6 6 6 6 0

Related Topics

mem load

ModelSim® Command Reference Manual, v10.5c208

Commands
mem list

mem list
This command displays a flattened list of all memory instances in the current or specified
context after a design has been elaborated.

Syntax

mem list [-r] [<path>]

Description

Each instance line is prefixed by "VHDL:" or "Verilog:", depending on the type of model.

Returns the signal/variable name, address range, depth, and width of the memory.

Arguments

• -r

(optional) Recursively descends into sub-modules when listing memories.

• <path>

(optional) The hierarchical path to the location the search should start where the default is
the current context, as shown in the Structure window.

Examples

• Recursively list all memories at the top level of the design.

mem list -r /

Returns:

Verilog: /top/m/mem[0:255](256d x 16w)

• Recursively list all memories in /top2/uut.

mem list /top2/uut -r

Returns:

Verilog: /top2/uut/mem[0:255] x 16w

Commands
mem load

ModelSim® Command Reference Manual, v10.5c 209

mem load
This command updates the simulation memory contents of a specified instance. You can upload
contents either from a memory data file, a memory pattern, or both. If both are specified, the
pattern is applied only to memory locations not contained in the file.

Syntax

mem load {-infile <infile> | -filldata <data_word> [-infile <infile>]} [-endaddress <end>]
[-fillradix <radix_type>] [-filltype {dec | inc | rand | value}] [-format [bin | hex | mti]]
[<path>] [-skip <Nwords>] [-startaddress <st>] [-truncate]

Description

A relocatable memory file is one that has been saved without address information. You can load
a relocatable memory file into the instance of a memory core by specifying an address range on
the mem load command line. If no address range (starting and ending address) is specified, the
memory is loaded starting at the first location.

The order in which the data is placed into the memory depends on the format specified by the
-format option. If you choose bin or hex format, the memory is filled low to high, to be
compatible with $readmem commands. This is in contrast to the default MTI format, which fills
the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word width in a file is wider
than the word width of the memory, the leftmost bits (msb) in the data words are ignored. To
allow wide words use the -truncate option which will ignore the msb bits that exceed the
memory word size. If the word width in the file is less than the width of the memory, and the
leftmost digit of the file data is not ’X’, then the leftmost bits are zero filled. Otherwise, they are
X-filled.

The type of data required for the -filldata argument is dependent on the -filltype specified: a
fixed value, or one that governs an incrementing, decrementing, or random sequence.

• For fixed pattern values, the fill pattern is repeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

• For incrementing or decrementing patterns, each memory word is treated as an unsigned
quantity, and each successive memory location is filled in with a value one higher or
lower than the previous value. The initial value must be specified.

• For a random pattern, a random data sequence will be generated to fill in the memory
values. The data type in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequence is
identical.

ModelSim® Command Reference Manual, v10.5c210

Commands
mem load

The interpretation of the pattern data is performed according to the default system radix setting.
However, this can be overridden with a standard Verilog-style ‘<radix_char><data>
specification.

Arguments

• -infile <infile>

(required unless the -filldata argument is used) Updates memory data from the specified file.

<infile> — The name of a memory file.

• -endaddress <end>

(optional) Specifies the end address for a range of addresses to be loaded.

<end> — Specified as any valid address in the memory.

• -filltype {dec | inc | rand | value}

(optional, use with the -filldata argument) Fills in memory addresses in an algorithmic
pattern starting with the data word specified in -filldata. If a fill pattern is used without a file
option, the entire memory or specified address range is filled with the specified pattern. If
both are specified, the pattern is applied only to memory locations not contained in the file.

dec — Decrement each succeeding memory word by one digit.

inc — Increment each succeeding memory word by one digit.

rand — Randomly generate each succeeding memory word starting with the word
specified by -filldata as the seed.

value — Value (default) Substitute each memory word in the range with the value
specified in -filldata.

• -filldata <data_word>

(required unless -infile is used) Specifies a data word used to fill memory addresses in the
pattern specified by -filltype.

<data_word> — Specifies a data word. Must be in the same format as specified by the
-fillradix switch.

• -fillradix <radix_type>

(optional, use with -filldata) Specifies radix of the data specified by the -filldata switch.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, symbolic, and default.

• -format [bin | hex | mti]

(optional, use with -infile) Specifies the format of the file to be loaded.

bin — Specifies binary data format.

hex — Specifies hex format.

mti — MTI format. (default).

Commands
mem load

ModelSim® Command Reference Manual, v10.5c 211

Specifies the format of the file to be loaded. The bin and hex values are the standard Verilog
hex and binary memory pattern file formats. These can be used with Verilog memories, and
with VHDL memories composed of std_logic types.

In the MTI memory data file format, internal file address and data radix settings are stored
within the file itself. Thus, there is no need to specify these settings on the mem load
command line. If a format specified on the command line and the format signature stored
internally within the file do not agree, the file cannot be loaded.

• <path>

(optional) The hierarchical path to the memory instance. If the memory instance name is
unique, shorthand instance names can be used. The default is the current context, as shown
in the Structure window.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.

• -skip <Nwords>

(optional) Specifies the number of words to be skipped between each fill pattern value. Used
with -filltype and -filldata.

<Nwords> — Specified as an unsigned integer.

• -startaddress <st>

(optional) Specifies the start address for a range of addresses to be loaded.

<st> — Any valid address in the memory.

• -truncate

(optional) Ignores any most significant bits (msb) in a memory word which exceed the
memory word size. By default, when memory word size is exceeded, an error results.

Examples

• Load the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1‘b0.

mem load -infile vals.mem -format bin -filltype value -filldata 1'b0 /top/m/mem

When you enter the mem display command on memory addresses 0 through 12, you see
the following:

mem display -startaddress 0 -endaddress 12 /top/m/mem
0: 0000000000000000 0000000000000001 0000000000000010
0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110
0000000000000111
8: 0000000000001000 0000000000001001 0000000000000000
0000000000000000
12: 0000000000000000

ModelSim® Command Reference Manual, v10.5c212

Commands
mem load

• Load the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16'Hbeef.

mem load -infile vals.mem -format hex -st 0 -end 12 -filltype value -filldata 16'Hbeef
/top/m/mru_mem

• Load memory instance /top/mem2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

mem load -filltype value -filldata "16'hab 16'hcd" /top/mem2 -skip 3

• Load memory instance /top/mem with zeros (0).

mem load -filldata 0 /top/mem

• Truncate the msb bits that exceed the maximum word size (specified in HDL code).

mem load -format h -truncate -infile data_files/data.out /top/m_reg_inc/mem

Related Topics

mem save

Commands
mem save

ModelSim® Command Reference Manual, v10.5c 213

mem save
This command saves the contents of a memory instance to a file in any of the supported formats:
Verilog binary, Verilog hex, and MTI memory pattern data.

Syntax

mem save -outfile <filename> [-addressradix {dec | hex}] [-dataradix <radix_type>]
[-format {bin | hex | mti}] [-compress | -noaddress] [<path>]
[-startaddress <st> -endaddress <end>] [-wordsperline <Nwords>]

Description

This command works identically to the mem display command, except that its output is written
to a file rather than a display.

The order in which the data is placed into the saved file depends on the format specified by the
-format argument. If you choose bin or hex format, the file is populated from low to high, to be
compatible with $readmem commands. This is in contrast to the default mti format, which
populates the file according to the memory declaration, from left index to right index.

You can use the mem save command to generate relocatable memory data files. The -noaddress
option omits the address information from the memory data file. You can later load the
generated memory data file using the memory load command.

Arguments

• -outfile <filename>

(required) Specifies that the memory contents are to be stored in a file.

<filename> — The name of the file where the specified memory contents are to be
stored.

• -addressradix {dec | hex}

(optional) Specifies the address radix for the default mti formatted files.

dec — Decimal (default).

hex — Hexadecimal.

• -compress

(optional) Specifies that only unique lines are printed, identical lines are not printed.
Mutually exclusive with the -noaddress switch.

• -dataradix <radix_type>

(optional) Specifies the data radix for the default mti formatted files.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, and symbolic.

ModelSim® Command Reference Manual, v10.5c214

Commands
mem save

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

• -endaddress <end>

(optional) Specifies the end address for a range of addresses to be saved.

<end> — Any valid address in the memory.

• -format {bin | hex | mti}

(optional) Specifies the format of the output file.

bin— Binary data format.

hex— Hexadecimal format.

mti — MTI format. (default).

The bin and hex values are the standard Verilog hex and binary memory pattern file formats.
These can be used with Verilog memories, and with VHDL memories composed of
std_logic types.

In the MTI memory data file format, internal file address and data radix settings are stored
within the file itself.

• -noaddress

(optional) Prevents addresses from being printed. Mutually exclusive with the -compress
switch.

• <path>

(optional) The hierarchical path to the location of the memory instance. The default is the
current context, as shown in the Structure window.

• -startaddress <st>

(optional) Specifies the start address for a range of addresses to be saved.

<st> — Any valid address in the memory.

• -wordsperline <Nwords>

(optional) Specifies how many memory values are to be printed on each line.

<Nwords> — Any unsigned integer where the default assumes an 80 character display
width.

Examples

• Save the memory contents of the instance /top/m/mem(0:10) to memfile, written in the
mti radix.

mem save -format mti -outfile memfile -start 0 -end 10 /top/m/mem

Commands
mem save

ModelSim® Command Reference Manual, v10.5c 215

The contents of memfile are as follows:

// memory data file (do not edit the following line - required for
mem load use)
// format=mti addressradix=d dataradix=s version = 1.0
0: 0000000000000000 0000000000000001 0000000000000010
0000000000000011
4: 0000000000000100 0000000000000101 0000000000000110
0000000000000111
8: 0000000000001000 0000000000001001 xxxxxxxxxxxxxxxx

Related Topics

mem display

mem load

ModelSim® Command Reference Manual, v10.5c216

Commands
mem search

mem search
This command finds and prints to the screen the first occurring match of a specified memory
pattern in the specified memory instance. Shorthand instance names are accepted. Optionally,
you can instruct the command to print all occurrences. The search pattern can be one word or a
sequence of words.

Syntax

mem search {-glob <word> [<word>…] | -regexp <word> [<word>…]}
[-addressradix {dec | hex}] [-dataradix <radix_type>] [-all] [-replace <word> [<word>…]]
[-startaddress <address>] [-endaddress <address>] [<path>]

Arguments

• -glob <word> [<word>…]

(required unless using -regexp) Specifies the value of the pattern, accepting glob pattern
syntax for the search.

<word> — Any word pattern. Multiple word patterns are specified as a space separated
list. Wildcards are accepted in the pattern.

This argument and -regexp are mutually exclusive arguments.

• -regexp <word> [<word>…]

(required unless using -glob) Specifies the value of the pattern, accepting regular expression
syntax for the search.

<word> — Any word pattern. Wildcards are accepted in the pattern. Multiple word
patterns are specified as a space separated list.

This argument and -glob are mutually exclusive arguments.

• -addressradix {dec | hex}

(optional) Specifies the radix for the address being displayed.

dec — Decimal (default).

hex — Hexadecimal.

• -all

(optional) Searches the specified memory range and returns all matching occurrences to the
transcript. By default only the first matching occurrence is printed.

• -dataradix <radix_type>

(optional) Specifies the radix for the memory data being displayed.

<radix_type> — Can be specified as symbolic, binary, octal, decimal, unsigned, or hex. By
default the radix displayed is the system default.

Commands
mem search

ModelSim® Command Reference Manual, v10.5c 217

You can change the default radix for the current simulation using the radix command. You
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

• -endaddress <address>

(optional) Specifies the end address for a range of addresses to search.

<address> — Any valid address in the memory.

• <path>

(optional) Specifies the hierarchical path to the location of the memory instance. The default
is the current context, as shown in the Structure window.

• -replace <word> [<word>…]

(optional) Replaces the found patterns with a designated pattern.

<word> — A word pattern Multiple word patterns are accepted, separated by a single
space. No wildcards are allowed in the replaced pattern.

• -startaddress <address>

(optional) Specifies the start address for a range of addresses to search.

<address> — Any valid address in the memory.

Examples

• Search for and print to the screen all occurrences of the pattern 16‘Hbeef in /uut/u0/
mem3:

mem search -glob 16‘Hbeef -dataradix hex /uut/u0/mem3

returns:

#7845: beef
#7846: beef
#100223: beef

• Search for and print only the first occurrence of 16‘Hbeef in the address range
7845:150000, replacing it with 16‘Hcafe in /uut/u1/mem3:

mem search -glob 16‘Hbeef -d hex -replace 16‘Hcafe -st 7846 -end 150000
/uut/u1/mem3

returns:

#7846: cafe

• Replace all occurrences of 16‘Hbeef with 16‘Habe in /uut/u1/mem3:

mem search -glob 16‘Hbeef -r 16‘Habe -addressadix hex -all /uut/u1/mem3

ModelSim® Command Reference Manual, v10.5c218

Commands
mem search

returns:

#1ea5: 2750
#1ea6: 2750
#1877f: 2750

• Search for and print the first occurrence any pattern ending in f:

mem search -glob "*f"

• Search for and print the first occurrence of this multiple word pattern:

mem search -glob "abe cafe" /uut/u1/mem3

• Search for patterns "0000 0000" or "0001 0000" in m/mem:

mem search -data hex -regexp {000[0|1] 0{4}} m/mem -all

• Search for a pattern that has any number of 0s followed by any number of 1s as a
memory location, and which has a memory location containing digits as the value:

mem search -regexp {^0+1+$ \d+} m/mem -all

• Search for any initialized location in a VHDL memory:

mem search -regexp {[^U]} -all <vhdl_memory>

Commands
modelsim

ModelSim® Command Reference Manual, v10.5c 219

modelsim
The modelsim command starts the ModelSim GUI without prompting you to load a design.

Syntax

modelsim [-do <macrofile>] [<license_option>] [-nosplash]

Description

This command is valid only for Windows platforms and may be invoked in one of three ways:

• from the DOS prompt

• from a ModelSim shortcut

• from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the properties of that
shortcut. (As expected, arguments also work on the DOS command line.)

You can invoke the simulator from either the ModelSim> prompt after the GUI starts or from a
DO file called by modelsim.

Arguments

• -do <macrofile>

(optional) Executes a DO file when modelsim is invoked.

<macrofile> — The name of a DO file

Note
In addition to the script called by this argument, if a DO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command is

invoked.

• <license_option>

(optional) Restricts the search of the license manager.

• -nosplash

(optional) Disables the splash screen.

Related Topics

do

Using a Startup File

ModelSim® Command Reference Manual, v10.5c220

Commands
noforce

noforce
This command removes the effect of any active force commands on the selected HDL objects.
and also causes the object’s value to be re-evaluated.

Syntax

noforce <object_name> …

Arguments

• <object_name>

(required) Specifies the name of an object. Must match an object name used in a previous
force command. Multiple object names may be specified as a space separated list. Wildcard
characters are allowed.

Related Topics

force

Commands
nolog

ModelSim® Command Reference Manual, v10.5c 221

nolog
This command suspends writing of data to the wave log format (WLF) file for the specified
signals.

Syntax

nolog [-all] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out] [-ports] [-recursive]
[-reset] [<object_name>…]

Description

A flag is written into the WLF file for each signal turned off, and the GUI displays "-No Data-"
for the signal(s) until logging (for the signal(s)) is turned back on. Logging can be turned back
on by issuing another log command or by doing a nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files created
when using the nolog command cannot be read by older versions of the simulator.

Transactions written in SCV or Verilog are logged automatically, and can be removed with the
nolog command. A transaction is logged into the .wlf file if logging is enabled (in other words,
if no nolog command has disabled it) for that stream at the time when the transaction was
begun. An entire span of a transaction is either logged or not logged, regardless of the begin and
end times specified for that transaction.

Arguments

• -all

(optional) Turns off logging for all signals currently logged.

• -depth <level>

(optional) Restricts a recursive search (specified with the -recursive argument) to a certain
level of hierarchy.

<level> — An integer greater than or equal to zero. For example, if you specify -depth 1,
the command descends only one level in the hierarchy.

• -howmany

(optional) Returns an integer indicating the number of signals found.

• -in

(optional) Turns off logging only for ports of mode IN whose names match the
specification.

• -inout

(optional) Turns off logging only for ports of mode INOUT whose names match the
specification.

ModelSim® Command Reference Manual, v10.5c222

Commands
nolog

• -internal

(optional) Turns off logging only for internal (non-port) objects whose names match the
specification.

• -out

(optional) Turns off logging only for ports of mode OUT whose names match the
specification.

• -ports

(optional) Specifies that the scope of the search is to include all ports.

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region. You can use the -depth argument to
specify how many levels of the hierarchy to descend.

• -reset

(optional) Turns logging back on for all unlogged signals.

• <object_name>…

(optional) Specifies the object name which you want to unlog. Multiple object names may
be specified as a space separated list. Wildcard characters are allowed.

Examples

• Unlog all objects in the design.

nolog -r /*

• Turn logging back on for all unlogged signals.

nolog -reset

Related Topics

log

Commands
notepad

ModelSim® Command Reference Manual, v10.5c 223

notepad
This command opens a simple text editor. It may be used to view and edit ASCII files or create
new files.

Syntax

notepad [<filename>] [-r | -edit]

Description

This mode can be changed from the Notepad Edit menu.

Returns nothing.

Arguments

• <filename>

(optional) Name of the file to be displayed.

• -r

(optional) Specifies read-only mode.

• -edit

(optional) Specifies editing mode. Will not save changes to an existing file that has the
Read-only attribute turned on. (default)

ModelSim® Command Reference Manual, v10.5c224

Commands
noview

noview
This command closes a window in the ModelSim GUI. To open a window, use the view
command.

Syntax

noview <window_name>…

Arguments

• <window_name>…

(required) Specifies the window(s) to close. Multiple window types may be specified in a
space separated list. Wildcards permitted. At least one type (or wildcard) is required.

Refer to the view command for a complete list of possible arguments.

You can also close Source windows using the tab or file name.

Examples

• Close the Wave window named "wave1".

noview wave1

• Close all List windows.

noview List

Commands
nowhen

ModelSim® Command Reference Manual, v10.5c 225

nowhen
This command deactivates selected when commands.

Syntax

nowhen [<label>]

Arguments

• <label>

(optional) Specifies an individual when command. Wildcards may be used to select more
than one when command.

Examples

• Deactivate the when command labeled 99.

nowhen 99

• Deactivate all when commands.

nowhen *

ModelSim® Command Reference Manual, v10.5c226

Commands
onbreak

onbreak
This command is used within a DO file and specifies one or more scripts to be executed when
running a script that encounters a breakpoint in the source code.

Syntax

onbreak <script>; <script>...

Description

The onbreak setting will affect any run commands that follow the onbreak statement until
another onbreak command is issued. If a DO file is executed from within the script, the DO file
script will inherit the onbreak setting specified prior to execution unless and until another
onbreak command is given, in which case, that onbreak setting will be in effect until the DO file
script completes at which point execution will return to the calling script and the calling script’s
onbreak setting is restored. For more information, refer to Breakpoint Flow Control in Nested
DO files. The script must be followed by a run command to take effect.

Default behavior when there is no onbreak setting in effect is defined by the
OnBreakDefaultAction Tcl variable. If the OnBreakDefaultAction variable is not defined, the
simulator default is to resume execution.

Use an empty string to change the onbreak command back to the default behavior:

onbreak ""

In this case, the script will resume after a breakpoint occurs (after any associated bp command
string is executed).

If you specify this command in a DO file with an empty script (" "), the default behavior is to
resume execution of the DO file. The onbreak command with no argument will return the
current user specified script or empty if the default onbreak is in effect.

Arguments

• <script>

(optional) Any command or script can be used as an argument to onbreak. If you want to use
more than one command or script, use a semicolon to separate them or place them on
multiple lines and enclose the entire script in braces ({}) or quotation marks (“ ”). You must
use the onbreak command before a run, run -continue, or step command. If a run or step
command is issued within an onbreak script, the script will return immediately and any
following commands will not be executed. It is an error to execute any commands within an
onbreak command string following any of the run commands. This restriction applies to any
macros or Tcl procedures used in the onbreak command string.

Commands
onbreak

ModelSim® Command Reference Manual, v10.5c 227

Examples

• Examine the value of the HDL object data when a breakpoint is encountered. Then
continue the run command.

onbreak {exa data ; cont}

• Resume execution of the DO file on encountering a breakpoint.

onbreak resume

• This set of commands test for assertions. Assertions are treated as breakpoints if the
severity level is greater than or equal to the current BreakOnAssertion variable setting
(refer to modelsim.ini Variables). By default a severity level of failure or above causes a
breakpoint; a severity level of error or below does not.

set broken 0
onbreak {
 lassign [runStatus -full] status fullstat
 if {$status eq "error"} {
 # Unexpected error, report info and force an error exit
 echo "Error: $fullstat"
 set broken 1
 resume
 } elseif {$status eq "break"} {
 # If this is a user break, then
 # issue a prompt to give interactive
 # control to the user
 if {[string match "user_*" $fullstat]} {
 pause
 } else {
 # Assertion or other break condition
 set broken 2
 resume
 }
 } else {
 resume
 }
}
run -all
if {$broken == 1} {
 # Unexpected condition. Exit with bad status.
 echo "failure"
 quit -force -code 3
} elseif {$broken == 2} {
 # Assertion or other break condition
 echo "error"
 quit -force -code 1
} else {
 echo "success!"
}
quit -force

Related Topics

do

ModelSim® Command Reference Manual, v10.5c228

Commands
onbreak

onerror

Useful Commands for Handling Breakpoints and Errors

DO Files

Commands
onElabError

ModelSim® Command Reference Manual, v10.5c 229

onElabError
This command specifies one or more commands to be executed when an error is encountered
during the elaboration portion of a vsim command. The command is used by placing it within a
DO file script. Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError {[<command> [; <command>] …]}

Arguments

• <command>

(optional) Any command can be used as an argument to onElabError. If you want to use
more than one command, use a semicolon to separate the commands, or place them on
multiple lines. The entire command string must be placed in braces ({}).

Related Topics

do

ModelSim® Command Reference Manual, v10.5c230

Commands
onerror

onerror
This command is used within a DO file script before a run command; it specifies one or more
commands to be executed when a running script encounters an error.

Syntax

onerror {[<command> [; <command>] …]}

Description

Using the onerror command without arguments will return the current onerror command string.
Use an empty string (onerror ““) to change the onerror command back to its default behavior.
Use onerror with a resume command to allow an error message to be printed without halting the
execution of the DO file.

When your onerror command is successful, the DO file script will continue normally, unless
your command instructs the simulator to quit. For example:

onerror{quit -f}

or

onerror {break}

However, if your onerror command is not successful, the simulator will quit. For example:

onerrror {add wave b}

when you do not have a signal named b.

The onerror command is executed when a Tcl command (such as break) encounters an error in
the DO file that contains the onerror command (note that a run command does not necessarily
need to be in process). Conversely, OnErrorDefaultAction will run even if the DO file does not
contain a local onerror command. This can be useful when you run a series of DO files from one
script, and you want the same behavior across all DO files.

Arguments

• <command>

(optional) Any command can be used as an argument to onerror. If you want to use more
than one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in braces ({}).

Examples

• Force the simulator to quit if an error is encountered while the DO file is running.

onerror {quit -f}

Commands
onerror

ModelSim® Command Reference Manual, v10.5c 231

Related Topics

do

onbreak

Useful Commands for Handling Breakpoints and Errors

DO Files

ModelSim® Command Reference Manual, v10.5c232

Commands
onfinish

onfinish
This command controls simulator behavior when encountering $finish or sc_stop() in the design
code. When you specify this command without an argument, it returns the current setting.

Syntax

onfinish [ask | exit | final | stop | default]

Arguments

• ask

(optional) In batch mode, the simulation will exit; in GUI mode, the user is prompted for
action.

• exit

(optional) The simulation exits without asking for any confirmation.

• final

(optional) The simulation executes all finish blocks before exiting.

• stop

(optional) The simulation ends but remains loaded in memory, allowing for easier post-
simulation tasks.

• default

(optional) Uses the current setting for the OnFinish variable in the modelsim.ini file.

Related Topics

OnFinish

Commands
pause

ModelSim® Command Reference Manual, v10.5c 233

pause
This command interrupts the execution of a macro and allows you to perform interactive
debugging of a macro file. Insert this command within the macro to be debugged.

Syntax

pause

Description

When a macro is interrupted during execution, the macro returns the prompt:

VSIM(paused)>

This “pause” prompt notifies you that a macro has been interrupted.

When a macro is paused, you can invoke another macro. If the second macro is interrupted, you
can continue invoking macros up to a nesting level of 50 macros.

The status command lists summary information about all interrupted macros.

Use the resume command to resume execution of the macro. Use the abort command to stop
execution of some or all of the macros.

Arguments

None.

Related Topics

resume

run

status

ModelSim® Command Reference Manual, v10.5c234

Commands
precision

precision
This command determines how real numbers display in the graphic interface (such as the
Objects, Wave, Locals, and List windows). It does not affect the internal representation of a real
number and therefore precision values over 17 are not allowed. Executing the precision
command without any arguments returns the current precision setting.

Syntax

precision [<digits>[#]]

Arguments

• <digits>[#]

(optional) Specifies the number of digits to display where the default is 6.

— A suffix that forces the display of trailing zeros. See examples for more details.

Examples

• Results in 4 digits of precision.

precision 4

For example:

1.234 or 6543

• Results in 8 digits of precision including trailing zeros.

precision 8#

For example:

1.2345600 or 6543.2100

• Results in 8 digits of precision but doesn’t print trailing zeros.

precision 8

For example:

1.23456 or 6543.21

Commands
printenv

ModelSim® Command Reference Manual, v10.5c 235

printenv
This command prints to the Transcript window the current names and values of all environment
variables. If variable names are given as arguments, returns only the names and values of the
specified variables.

Syntax

printenv [<var>…]

Arguments

• <var>…

(optional) Specifies the name(s) of the environment variable(s) to print.

Examples

• Print all environment variable names and their current values.

printenv

Returns:

CC = gcc
DISPLAY = srl:0.0
…

• Print the specified environment variables:

printenv USER HOME

Returns:

USER = vince
HOME = /scratch/srl/vince

ModelSim® Command Reference Manual, v10.5c236

Commands
process report

process report
This command creates a textual report of all processes displayed in the Process Window.

Syntax

process report [-file <filename>] [-append]

Arguments

• -file <filename>

(optional) Creates an external file where raw process data will be saved. If -file is not
specified, then the output is redirected to stdout.

<filename> — A user-specified name for the file.

• -append

(optional) Specifies that process data is to be appended to the current process report file. If
this option is not used, the process data will overwrite the existing process report file.

Commands
project

ModelSim® Command Reference Manual, v10.5c 237

project
Prerequisites:

Some arguments to this command require a project to be opened with either the project new or
project open command. Some arguments must be used outside of a simulation session. Refer
to the argument descriptions for more information.

This command is used to perform common operations on projects.

Syntax

project [addfile <filename> [<file_type>] [<folder_name>]] | [addfolder <foldername>
[<folder_parent>]] | [calculateorder] | [close] | [compileall [-n]] | [compileorder] |
[compileoutofdate [-n]] | [delete <filename>] | [filenames] | [env] | [history] | [new
<home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [0 | 1]] | [open <project>] |
[removefile <filename>]

Arguments

• addfile <filename> [<file_type>] [<folder_name>]

(optional) Adds the specified file to the current project. Requires a project to be open.

<filename> — (required) The name of an existing file.

<file_type> — (optional) The HDL file type of the file being added. For example do for
a .do file.

<folder_name> — (optional) Places the file in an existing folder created with project
addfolder command. If no folder name is specified the file will be placed in the top
level folder.

• addfolder <foldername> [<folder_parent>]

(optional) Creates a project folder within the project. Requires a project to be open.

<foldername> — (required) Any string.

<folder_parent> — (optional) Places <foldername> in an existing parent folder. If
<folder_parent> is unspecified, <foldername> is placed at the top level.

• calculateorder

(optional) Determines the compile order for the project by compiling each file, then moving
any compiles that fail to the end of the list. This is repeated until there are no more compile
errors.

• close

(optional) Closes the current project.

• compileall [-n]

(optional) Compiles all files in the project using the defined compile order.

-n — (optional) Returns a list of the compile commands this command would execute,
without actually executing the compiles.

ModelSim® Command Reference Manual, v10.5c238

Commands
project

• compileorder

(optional) Returns the current compile order list.

• compileoutofdate [-n]

(optional) Compiles all files that have a newer date/time stamp than the last time the file was
compiled.

-n — Returns a list of the compile commands this command would execute, without
actually executing the compiles.

• delete <filename>

(optional) Deletes a project file.

<filename> — Any .mpf file.

• filenames

Returns the absolute pathnames of all files contained in the currently open project.

• env

(optional) Returns the current project file and path.

• history

(optional) Lists a history of manipulated projects. Must be used outside of a simulation
session.

• new <home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [0 | 1]

(optional) Creates a new project under a specified home directory with a specified name and
optionally a default library. The name of the work library will default to "work" unless
specified. A new project cannot be created while a project is currently open or a simulation
is in progress.

<home_dir> — The path to the new project directory within the current working
directory.

<proj_name> — Specifies a name for the new project. The file will be saved as an .mpf
file

<defaultlibrary> — Specifies a name for the default library.

<intialini> — An optional modelsim.ini file can be specified as a seed for the project file
by using the initialini option. If initialini is an empty string, then ModelSim uses the
current modelsim.ini file when creating the project. You must specify a default library
if you want to specify initialini.

0 — (default) Copies all library mappings from the specified <initialini> file into the
new project.

1 — Copies library mappings referenced in an "others" clause in the initial .ini file.

Commands
project

ModelSim® Command Reference Manual, v10.5c 239

• open <project>

(optional) Closes any currently opened project and opens a specified project file (must be a
valid .mpf file), making it the current project. Changes the current working directory to the
project's directory. Must be used outside of a simulation session.

• removefile <filename>

(optional) Removes the specified file from the current project.

Examples

• Make /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

project open /user/george/design/test3/test3.mpf

• Execute current project library build scripts.

project compileall

ModelSim® Command Reference Manual, v10.5c240

Commands
pwd

pwd
This Tcl command displays the current directory path in the Transcript window.

Syntax

pwd

Arguments

None

Commands
quietly

ModelSim® Command Reference Manual, v10.5c 241

quietly
This command turns off transcript echoing for the specified command.

Syntax

quietly <command>

Arguments

• <command>

(required) Specifies the command for which to disable transcript echoing. Any results
normally echoed by the specified command will not be written to the Transcript window. To
disable echoing for all commands use the transcript command with the -quietly option.

Related Topics

transcript

ModelSim® Command Reference Manual, v10.5c242

Commands
quit

quit
This command exits the simulator.

Syntax

quit [-f | -force] [-sim] [-code <integer>]

Description

If you want to stop the simulation using a when command, you must use a stop command within
your when statement, you must not use an exit or a quit command. The stop command acts like
a breakpoint at the time it is evaluated.

Arguments

• -f | -force

(optional) Quits without asking for confirmation. If omitted, ModelSim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

• -sim

(optional) Unloads the current design in the simulator without exiting ModelSim. All files
opened by the simulation will be closed including the WLF file (vsim.wlf).

• -code <integer>

(optional) Quits the simulation and issues an exit code.

<integer> — This is the value of the exit code. You should not specify an exit code that
already exists in ModelSim. Refer to the section "Exit Codes" in the User’s Manual
for a list of existing exit codes. You can also specify a variable in place of <integer>.

You should always print a message before running the quit -code command to explicitly
state the reason for exiting.

Examples

Refer to the Examples section of the exit command for an example of using the -code argument.
The quit and exit commands behave similarly in this regard.

Commands
radix

ModelSim® Command Reference Manual, v10.5c 243

radix
This command specifies the default radix to be used for the current simulation. Specifying the
command with no argument returns the current radix setting.

Syntax

radix [-binary | -octal | -decimal | -hexadecimal | -unsigned | -ascii | -time]
[-enumnumeric | -enumsymbolic | -showbase | -symbolic]

Description

The command can be used at any time.

The specified radix is used for all commands (force, examine, change, etc.) as well as for
displayed values in the Objects, Locals, Dataflow, List, and Wave windows, as well as the
Source window in the source annotation view.

Alternate methods for changing the default radix:

• In the modelsim.ini file, edit the DefaultRadix variable.

• Choose Simulate > Runtime Options from the main menu, click the Defaults tab,
make your selection in the Default Radix box.

Numeric radix other than symbolic are defined to translate bits to a 4 state representation as part
of the numeric conversion. Groups of bits are then converted to a number in the correct radix, or
to 'x' or 'z' if the value is not numeric (that is, contains only '0's and '1's). There is no 'U' in the 4
state representation, nor 'W' or '-'. All of the odd values are converted to 'x'.

Alternatives to changing the default radix for the simulation session include:

• use examine <name> -<radix_type> to transcript the current value of <name> using the
specified radix

• use radix signal to set a signal-specific radix

Arguments

You can abbreviate the following arguments to any length. For example, -dec is equivalent to
-decimal.

• -ascii

(optional) Display a Verilog object as a string equivalent using 8-bit character encoding.

• -binary

(optional) Displays values in binary format.

ModelSim® Command Reference Manual, v10.5c244

Commands
radix

• -enumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

• -enumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -enumnumeric option.

• -decimal

(optional) Displays values in decimal format. You can specify -signed as an alias for this
argument.

• -hexadecimal

(optional) Displays values in hexadecimal format.

• -octal

(optional) Displays values in octal format.

• -time

(optional) Displays values of time for register-based types in Verilog.

• -showbase

(optional) Display the number of bits of the vector and the radix used (binary = b, decimal =
d, hexidecimal = h, ASCII = a, and time = t)

For example, instead of simply displaying a vector value of “31”, a value of “16’h31” may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

• -symbolic

(optional) Displays values in a form closest to their natural form.

• -unsigned

(optional) Displays values in unsigned decimal format.

Related Topics

User-Defined Radices

radix define

radix delete

radix names

radix list

radix signal

Commands
radix define

ModelSim® Command Reference Manual, v10.5c 245

radix define
This command is used to create or modify a user-defined radix. A user definable radix is used to
map bit patterns to a set of enumeration labels or setup a fixed or floating point radix. User-
defined radixes are available for use in most windows and with the examine command.

Syntax

User Custom Radix
radix define <name> <definition_body> [-color <value>]

Fixed or Floating Point Number Radix
radix define <name> [[-fixed [-signed] | -float] -fraction <n>] [-base <base>] [-precision <p>]

Arguments

• <name>

(required) User-specified name for the radix.

• <definition_body>

(required for custom radix) A list of number pattern, label pairs. The definition body has the
form:

{
<numeric-value> <enum-label> [-color <color>],
<numeric-value> <enum-label>
-default <radix_type>
-defaultcolor <color>

}

A <numeric-value> is any legitimate HDL integer numeric literal. To be more specific:

<integer>
<base>#<value># --- <base> is 2, 8, 10, or 16
<base>"value" --- <base> is B, O, or X
<size>'<base><value> --- <size> is an integer,

<base> is b, d, o, or h.

The question mark (?) wildcard character may be specified for bits or characters of the
value. For example:

radix define bus-state {
6'b01??00 "Write" -color orange,
6'b10??00 "Read" -color green

}

In this example, the first pattern will match "010000", "010100", "011000", and "011100".
In case of overlaps, the first matching pattern is used, going from top to bottom.

The comma (,) in the definition body is optional. The <enum-label> is any arbitrary string. It
should surrounded by quotation marks (""), especially if it contains spaces.

The -default entry is optional. If present, it defines the radix to use if a match is not found for
a given value. The -default entry can appear anywhere in the list, it does not have to be at the

ModelSim® Command Reference Manual, v10.5c246

Commands
radix define

end. The optional -color argument in the definition body will set the color for the specific
value when the value is displayed in the Wave window.

Refer to the Verilog and VHDL Language Reference Manuals for exact definitions of these
numeric literals.

• -base <base>

(optional for fixed and floating point radixes) Specifies the base for a fixed or floating point
radix.

<base> — Any valid radix type: binary, ascii, unsigned, decimal, octal, hex, symbolic,
time, and default.

• -color <value>

(optional for custom radixes) Designates a color for the waveform and text in the Wave
window.

<value> — The color value may be a color name or its hex value (see example below).

• -fixed

(required for fixed point radix) Specifies a fixed number radix.

• -float

(required for floating point radix) Specifies a floating point number radix.

• -fraction <n>

(required for fixed and floating point radixes) Specifies the location of the decimal point in a
vector.

<n> — Any integer between 3 and the full bit value of the vector. For example, if you
specify -fraction 3 for the eight bit vector “10001001”, the decimal is placed two bits
away from the least significant bit on the right so the vector becomes “10001.001”.

• -precision <p>

(optional for fixed and floating point radixes) Specifies now many numbers after the
decimal point or significant digits of a floating point or fixed number in symbolic format.

<p> — A number, less than or equal to 17, and optional format specification taking the
form “<width>[efg],” for example 3g, 4f, or 6.

• -signed

(optional for fixed point radix) Treats fixed numbers as signed where the most significant bit
is the sign bit. The default is an unsigned number.

Examples

• The radix define command used to create a radix called “States,” which will display
state values in the List, Watch, and Wave windows instead of numeric values.

Commands
radix define

ModelSim® Command Reference Manual, v10.5c 247

radix define States {
11'b00000000001 "IDLE",
11'b00000000010 "CTRL",
11'b00000000100 "WT_WD_1",
11'b00000001000 "WT_WD_2",
 11'b00000010000 "WT_BLK_1",
 11'b00000100000 "WT_BLK_2",
11'b00001000000 "WT_BLK_3",
11'b00010000000 "WT_BLK_4",
11'b00100000000 "WT_BLK_5",
11'b01000000000 "RD_WD_1",
11'b10000000000 "RD_WD_2",
11'bzzzzzzzzzzzz "UNCONNECTED",
11'bxxxxxxxxxxx "ERROR",
-default hex

}

Note
The ‘z’ and ‘x’ values must be lower case.

• The following example illustrates how to specify the radix color:

radix define States {
11'b00000000001 "IDLE" -color yellow,
11'b00000000010 "CTRL" -color #ffee00,
11'b00000000100 "WT_WD_1" -color orange,
11'b00000001000 "WT_WD_2" -color orange,
11'b00000010000 "WT_BLK_1",
11'b00000100000 "WT_BLK_2",
11'b00001000000 "WT_BLK_3",
11'b00010000000 "WT_BLK_4",
11'b00100000000 "WT_BLK_5",
11'b01000000000 "RD_WD_1" -color green,
11'b10000000000 "RD_WD_2" -color green,
-default hex
-defaultcolor white

}

If a pattern/label pair does not specify a color, the normal wave window colors will be
used. If the value of the waveform does not match any pattern, then the -default radix
and -defaultcolor will be used.

• Create a fixed point radix named fx5 and apply that radix to the signal checksf.

Entering

VSIM> radix define fx5 -fixed -fraction 3 -base decimal -signed

returns

#fx5

Entering

VSIM> radix signal checksf

returns

ModelSim® Command Reference Manual, v10.5c248

Commands
radix define

#fx5

Entering

VSIM> examine -name cecksf

returns

#/test_fixed/basictest/checksf -15.8750

Related Topics

User-Defined Radices

precision

radix

radix delete

radix names

radix list

radix signal

Commands
radix delete

ModelSim® Command Reference Manual, v10.5c 249

radix delete
This command will remove the radix definition from the named radix.

Syntax

radix delete <name>

Arguments

• <name>

(required) Removes the radix definition from the named radix.

Related Topics

User-Defined Radices

radix

radix define

radix list

radix names

radix signal

ModelSim® Command Reference Manual, v10.5c250

Commands
radix list

radix list
This command will return the complete definition of a radix, if a name is given. If no name is
given, it will list all the defined radixes.

Syntax

radix list [<name>]

Arguments

• <name>

(optional) Returns the complete definition of the named radix.

Related Topics

User-Defined Radices

radix

radix define

radix delete

radix names

radix signal

Commands
radix names

ModelSim® Command Reference Manual, v10.5c 251

radix names
This command returns a list of currently defined radix names.

Syntax

radix names

Arguments

None

Related Topics

User-Defined Radices

radix

radix define

radix delete

radix list

radix signal

ModelSim® Command Reference Manual, v10.5c252

Commands
radix signal

radix signal
This command sets or inspects radix values for the specified signal in the Objects, Locals,
Schematic, and Wave windows.When no argument is used, the radix signal command returns a
list of all signals with a radix.

Note
The intent is for this command to be used for a small number of signals. If the majority of
signals in a design are to use a particular radix value, then set that value as the default radix

with the radix command, and use the radix signal command for the rest.

Syntax

radix signal [<signal_name> [<radix_value>]] [-showbase]

Arguments

• <signal_name>

(optional) Name of the signal for which the radix will be set (if <radix_value> is specified)
or inspected.

• <radix_value>

(optional) Value of the radix to be set for the specified signal. Use empty quotation marks
("") to unset the radix for the specified signal.

• -showbase

(optional) Display the number of bits of the vector and the radix used (binary = b, decimal =
d, hexidecimal = h, ASCII = a, and time = t).

For example, instead of simply displaying a vector value of “31”, a value of “16'h31” may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

Related Topics

User-Defined Radices

radix

radix define

radix list

radix delete

Commands
readers

ModelSim® Command Reference Manual, v10.5c 253

readers
This command displays the names of all readers of the specified object.

Syntax

readers <object_name> [-source]

Description

The reader list is expressed relative to the top-most design signal/net connected to the specified
object.

The output from the readers command, which is displayed in the Transcript window as a
hypertext link, allows you to right-click to open a drop-down menu and to quickly add signals to
various windows. It includes a "View Declaration" item to open the source definition of the
signal.

Figure 2-4. readers Command Results in Transcript

Arguments

• <object_name>

(required) Specifies the name of the signal or net whose readers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

• -source

(optional) Returns the source file name and line number for each driver of the specified
signal or net. If the source location cannot be determined, the value n/a is returned for that
driver.

ModelSim® Command Reference Manual, v10.5c254

Commands
report

report
This command displays information relevant to the current simulation.

Note
Viewing preference variables: preference variables have more to do with the way things
look (but not entirely) rather than controlling the simulator. You can view preference

variables from the Preferences dialog box. Select Tools > Edit Preferences (Main window).

Syntax

report files

report where [ini] [pwd] [transcript] [wlf] [project]

report simulator control

report simulator state

Arguments

• files

Returns a list of all source files used in the loaded design. This information is also available
in the Specified Path column of the Files window.

• where [ini] [pwd] [transcript] [wlf] [project]

Returns a list of configuration files where the arguments limit the list to those files specified.
If specified without arguments, returns a list of all configuration files in the current
simulation.

ini — (optional) Returns the location of the modesim.ini file.

pwd — (optional) Returns the current working directory.

transcript — (optional) Returns the location for saving the transcript file.

wlf — (optional) Returns the current location for saving the .wlf file.

project — (optional) Returns the current location of the project file.

• simulator control

Displays the current values for all simulator control variables.

• simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

• Display configuration file information

report where

Commands
report

ModelSim® Command Reference Manual, v10.5c 255

Returns:

INI {modelsim.ini}
PWD ./Testcases/
Transcript transcript
WLF vsim.wlf
Project {}

• Display all simulator control variables.

report simulator control

Returns:

UserTimeUnit = ns
RunLength =
IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0
IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0
IgnoreSVAInfo= 0
IgnoreSVAWarning = 0
IgnoreSVAError = 0
IgnoreSVAFatal = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 1
WLFFilename = vsim.wlf
WLFTimeLimit = 0
WLFSizeLimit = 0

• Display all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

report simulator state

Returns:

now = 0.0
delta = 0
library = work
entity = type_clocks
architecture = full
resolution = 1ns

Related Topics

modelsim.ini Variables

Setting GUI Preferences

ModelSim® Command Reference Manual, v10.5c256

Commands
restart

restart
This command reloads the design elements and resets the simulation time to zero. Only design
elements that have changed are reloaded. (Note that SDF files are always reread during a
restart.)

Syntax

restart [-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Description

• If no design is loaded, the restart command produces a message to that effect and takes
no further action.

• If a simulation is loaded, the restart command restarts the simulation.

• If multiple datasets are open, including a simulation, the environment is changed to the
simulation context and the simulation is restarted.

Shared libraries are handled as follows during a restart:

• Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless vsim -keeploaded is used).

• Shared libraries loaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless vsim -keeploaded is used).

• Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for a foreign architecture.

You can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. Refer to “Restart Command Defaults”.

To handle restarts with Verilog PLI applications, you need to define a Verilog user-defined task
or function, and register a misctf class of callback.

Refer to “Verilog Interfaces to C” for more information on the Verilog HDL interfaces.

Arguments

• -force

(optional) Specifies that the simulation will be restarted without requiring confirmation in a
popup window.

• -nobreakpoint

(optional) Specifies that all breakpoints will be removed when the simulation is restarted
where the default is for all breakpoints to be reinstalled after the simulation is restarted.

Commands
restart

ModelSim® Command Reference Manual, v10.5c 257

• -nolist

(optional) Specifies that the current List window environment will not be maintained after
the simulation is restarted where the default is for all currently listed HDL objects and their
formats to be maintained.

• -nolog

(optional) Specifies that the current logging environment will not be maintained after the
simulation is restarted where the default is for all currently logged objects to continue to be
logged.

• -nowave

(optional) Specifies that the current Wave window environment will not be maintained after
the simulation is restarted where the default is for all objects displayed in the Wave window
to remain in the window with the same format.

ModelSim® Command Reference Manual, v10.5c258

Commands
resume

resume
This command is used to resume execution of a macro (DO) file after a pause command or a
breakpoint.

Syntax

resume

Description

This command may be input manually or placed in an onbreak command string. (Placing a
resume command in a bp command string does not have this effect.) The resume command can
also be used in an onerror command string to allow an error message to be printed without
halting the execution of the macro file.

Arguments

None

Related Topics

pause

Useful Commands for Handling Breakpoints and Errors

Commands
run

ModelSim® Command Reference Manual, v10.5c 259

run
This command advances the simulation by the specified number of timesteps.

Syntax

run {[<timesteps>[<time_units>]] | -all | -continue | -init | -next } |
{-step [-current] [<n>] [-out] [-over [<n>]] [-this]}

Description

You can control any return values after the run operation completes with the following
preference variables:

• noRunTimeMsg — Set this variable to 0 to display simulation time and delta
information or set it to 1 to disable the display of this information.

• noRunStatusMsg — Set this variable to 0 to display run status information or set it to 1
to disable the display of this information.

The following is an example that shows a series of run commands and how the output changes
with the preference variable settings:

VSIM 1> run 105
VSIM 2> set PrefMain(noRunTimeMsg) 0
0

VSIM 3> run 112
Time: @217 ns 0

VSIM 4> set PrefMain(noRunStatusMsg) 0
0

VSIM 5> run 100
Time: @317 ns 0
Status: ready end

VSIM 6> set PrefMain(noRunTimeMsg) 1
1

VSIM 7> run 50
Status: ready end

VSIM 8> set PrefMain(noRunStatusMsg) 1
1

VSIM 9> run 55

VSIM 10>

Arguments

• No arguments

Runs the simulation for the default time (100 ns).

ModelSim® Command Reference Manual, v10.5c260

Commands
run

You can change the default <timesteps> and <time_units> in the GUI with the Run Length
toolbar box in the Simulate toolbar or from the modelsim.ini file: RunLength and
UserTimeUnit variables.

• <timesteps>[<time_units>]

(optional) Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified as absolute by preceding the value with the character @.

<time_units> — Any valid time unit: fs, ps, ns, us, ms, or sec where the default is to use
the current time unit.

• -all

(optional) Causes the simulator to run the current simulation forever, or until it hits a
breakpoint or specified break event.

• -continue

(optional) Continues the last simulation run after a run -step, run -step -over command or a
breakpoint. A run -continue command may be input manually or used as the last command
in a bp command string.

• -final

(optional) Instructs the simulator to run all final blocks then exit the simulation.

• -init

(optional) Initializes non-trivial static SystemVerilog variables before beginning the
simulation, for example, expressions involving other variables and function calls,. This
could be useful for when you want to initialize values before executing any force, examine,
or bp commands.

You cannot use run -init after any other run commands or if you have specified vsim -runinit
on the command line because all variables would have been initialized by that point.

• -next

(optional) Causes the simulator to run to the next event time.

• -step

(optional) Steps the simulator to the next HDL.

Current values of local HDL variables may be observed at this time using the Locals
window. You can specify the following arguments when you use -step:

-current

(optional) Instructs the simulation to step into an instance, process, or thread and stay
in the current thread. Prevents stepping into a different thread.

<n>

(optional) Moves the simulator <n> steps ahead. Moves the debugger <n> lines ahead
when you are using C Debug. Specified as a positive integer value.

-out

Commands
run

ModelSim® Command Reference Manual, v10.5c 261

(optional) Instructs the simulation to step out of the current function or procedure and
return to the caller.

-over

(optional) Directs ModelSim to run VHDL procedures and functions, Verilog tasks
and functions but to treat them as simple statements instead of entering and tracing
them line by line.

You can use the -over argument to skip over a VHDL procedures or functions,
Verilog task or functions.

When a wait statement or end of process is encountered, time advances to the next
scheduled activity. ModelSim then updates the Process and Source windows to reflect
the next activity.

-this "this==<class_handle>"

(optional) Instructs the simulation to step into a method of a SystemVerilog class
when “this” refers to the specified class handle. To obtain the handle of the class, use
the examine -handle command.

<class_handle> — Specifies a SystemVerilog class. Note that you must use
quotation marks (" ") with this argument.

Examples

• Advance the simulator 1000 timesteps.

run 1000

• Advance the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run 10.4 ms

• Advance the simulator to timestep 8000.

run @8000

• Advance the simulator into the instance /top/p.

run -step -current /top/p

Related Topics

Simulate Toolbar

step

ModelSim® Command Reference Manual, v10.5c262

Commands
runStatus

runStatus
This command returns the current state of your simulation to stdout after issuing a run or step
command.

Syntax

runStatus [-full]

Arguments

• -full

(optional) Appends additional information to the output of the runStatus command.

Return Values

Table 2-4 (runStatus Command States) and Table 2-5 (runStatus -full Command Information)
show outputs of the runStatus command.

Table 2-4. runStatus Command States

State Description

ready The design is loaded and is ready to run.

break The simulation stopped before completing the requested run.

error The simulation stopped due to an error condition.

loading The simulation is currently elaborating.

nodesign There is no design loaded.

checkpoint A checkpoint is being created, do not interrupt this process.

cready The design is loaded and is ready to run in C debug mode.

initializing The user interface initialization is in progress.

Table 2-5. runStatus -full Command Information

-full Information Description

bkpt stopped at breakpoint

bkpt_builtin stopped at breakpoint on builtin process

end reached end of requested run

fatal_error encountered fatal error (such as, divide by 0)

iteration_limit iteration limit reached, possible feedback loop

silent_halt mti_BreakSilent() called,

Commands
runStatus

ModelSim® Command Reference Manual, v10.5c 263

step run -step completed

step_builtin run -step completed on builtin process

step_wait_suspend run -step completed, time advanced.

user_break run interrupted do to break-key or ^C (SIGINT)

user_halt mti_Break() called.

user_stop stop or finish requested from stop command, etc.

gate_oscillation Verilog gate iteration limit reached.

simulation_stop pli stop_simulation() called.

Table 2-5. runStatus -full Command Information (cont.)

-full Information Description

ModelSim® Command Reference Manual, v10.5c264

Commands
searchlog

searchlog
This command searches one or more of the currently open logfiles for a specified condition.

Syntax

searchlog [-command <cmd>] [-count <n>] [-deltas] [-endtime <time> [<unit>]] [-env <path>]
[-event <time>] [-expr {<expr>}] [-reverse] [-rising | -falling | -anyedge]
[-startDelta <num>] [-value <string>] <startTime> [<unit>] <pattern>

Description

It can be used to search for rising or falling edges, for signals equal to a specified value, or for
when a generalized expression becomes true.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

If at least one match is found, it returns the time (and, optionally, delta) at which the last match
occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is specified, the delta of
the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are found, but less
than the number requested, it is not considered an error condition, and the time of the farthest
match is returned, with the count of the matches found.

Arguments

• -command <cmd>

(optional) Specifies a Tcl command that will be called for each event on the specified signal.

<cmd> — A Tcl command that receives four arguments and returns one of three values:
"continue", "stop", or "" (empty).

The command will be passed four arguments: the reason for the call, the time of the event,
the delta for the event, and the value. The reason value will be one of WLF_STARTLOG,
WLF_ENDLOG, WLF_EVENT, or WLF_WAKEUP. The function is expected to return
"continue", "stop", or "" (empty). If "continue" or "" (empty) is returned, the search
continues, making additional callbacks as necessary. If "stop" is returned, the search stops
and control is returned to the caller of the searchlog command.

Only searching for a single signal is supported.

• -count <n>

(optional) Specifies to search for the nth occurrence of the match condition.

Commands
searchlog

ModelSim® Command Reference Manual, v10.5c 265

<n> — Any positive integer.

• -deltas

(optional) Indicates to test for a match on simulation delta cycles. Otherwise, matches are
only tested for at the end of each simulation time step.

• -endtime <time> [<unit>]

(optional) Specifies the simulation time at which to end the search. By default no end time is
specified. Must be specified after -reverse when searching backwards.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and
<unit> within curly braces ({}).

For -reverse searches the specified end time must be earlier than the specified <startTime>.
For -reverse searches the default <endTime> is 0.

• -env <path>

(optional) Specifies a path to a design region. Wildcards not allowed.

• -event <time>

(optional) Indicates to test for a match on a simulation event. Otherwise, matches are only
tested for at the end of each simulation time step.

• -expr {<expr>}

(optional) Specifies a search for a general expression of signal values and simulation time.
searchlog will search until the expression evaluates to true.

{<expr>} — An expression that evaluates to a boolean true. See
“GUI_expression_format” on page 32 for the format of the expression.

• -reverse

(optional) Specifies to search backwards in time from <startTime>. You can limit the time
span for the reverse search by including the -endtime <time> argument.

• -rising

(optional) Specifies a search for rising edge on a scalar signal. This option is ignored for
compound signals.

• -falling

(optional) Specifies a search for falling edge on a scalar signal. This option is ignored for
compound signals.

• -anyedge

(optional) Specifies a search for a rising or falling edge on a scalar signal. This option is
ignored for compound signals. (default)

ModelSim® Command Reference Manual, v10.5c266

Commands
searchlog

• -startDelta <num>

(optional) Indicates a simulation delta cycle on which to start.

<num> — Any positive integer.

• -value <string>

(optional) Specifies a match of a single scalar or compound signal against a specified string.

<string> — Specifies a string to be matched.

• <startTime> [<unit>]

(required) Specifies the simulation time at which to start the search. The time is specified as
an integer or decimal number. Must be placed immediately before the <pattern> argument.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and
<unit> within curly braces ({}).

• <pattern>

(Required unless the -expr argument is used.) Specifies one or more signal names or
wildcard patterns of signal names to search on. Must be specified as the final argument to
the searchlog command.

Commands
see

ModelSim® Command Reference Manual, v10.5c 267

see
This command displays the specified number of source file lines around the current execution
line and places a marker to indicate the current execution line. If specified without arguments,
five lines will be displayed before and four lines after.

Syntax

see [<n> | <pre> <post>]

Arguments

• <n>

(optional) Designates the number of lines to display before and after the current execution
line.

• <pre>

(optional) Designates the number of lines to display before the current execution line.

• <post>

(optional) Designates the number of lines to display after the current execution line.

Examples

• Display 2 lines before and 5lines after the current execution line.

see 2 5

92 :
93 : if (verbose) $display("Read/Write test done");
->94 : $stop(1);
95 : end
96 : end
97 :
98 : or2 i1 (
99 : .y(t_set),

ModelSim® Command Reference Manual, v10.5c268

Commands
setenv

setenv
This command changes or reports the current value of an environment variable. The setting is
valid only for the current ModelSim session. Arguments to this command are order dependent.
Please read the argument descriptions for more information.

Syntax

setenv <varname> [<value>]

Arguments

• <varname>

(required) The name of the environment variable you wish to set or check. Must be specified
as the first argument to the setenv command.

• <value>

(optional) The new value for <varname>. If you do not specify a value, ModelSim reports
the variable’s current value.

Related Topics

unsetenv

printenv

Commands
shift

ModelSim® Command Reference Manual, v10.5c 269

shift
This command shifts macro parameter values left one place, so that the value of parameter \$2 is
assigned to parameter \$1, the value of parameter \$3 is assigned to \$2, and so on. The previous
value of \$1 is discarded.

Syntax

shift

Description

The shift command and macro parameters are used in macro files. If a macro file requires more
than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc simulator state variable.
Refer to “Simulator State Variables” for more information.

For a macro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named, the
value of the tenth parameter becomes the value of $9 and can be accessed from within the macro
file.

Arguments

None

ModelSim® Command Reference Manual, v10.5c270

Commands
show

show
This command lists HDL objects and subregions visible from the current environment.

Syntax

show [-all] [<pathname>]

Description

The objects listed include:

• VHDL — signals, processes, constants, variables, and instances.

• Verilog — nets, registers, tasks, functions, instances, variables, and memories.

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show form of the command instead.

Arguments

• -all

(optional) Displays all names at and below the specified path recursively.

• <pathname>

(optional) Specifies the pathname of the environment for which you want the objects and
subregions to be listed; if omitted, the current environment is assumed.

Examples

• List the names of all the objects and subregion environments visible in the current
environment.

show

• List the names of all the objects and subregions visible in the environment named /uut.

show /uut

• List the names of all the objects and subregions visible in the environment named
sub_region which is directly visible in the current environment.

show sub_region

• List the names of all the objects and subregions visible in all top-level environments.

show -all /

Commands
simstats

ModelSim® Command Reference Manual, v10.5c 271

simstats
This command returns performance-related statistics about elaboration and simulation with the
data for each statistic on a separate line. The statistics measure the simulation kernel process
(vsimk) for a single invocation of vsim. If you invoke vsim a second time, or restart the
simulation, the current statistics are discarded and new values are collected.

Syntax

simstats [elabcpu | elabmemory | elabtime | license | logcpu | logtime | simcpu | simmemory |
simtime | tclcmdcpu | tclcmdtime | totalcpu | totaltime | verbose] [kb]

Description

If executed without arguments, the command returns a list of statistics and their related units on
separate lines. For example:

Memory Statistics
mem: size after elab (VSZ) 88.89 Mb
mem: size during sim (VSZ) 97.17 Mb
Elaboration Time
elab: wall time 0.41 s
elab: cpu time 0.23 s
Simulation Time
sim: wall time 1.18 s
sim: cpu time 0.66 s
Tcl Command Time
cmd: wall time 356.39 s
cmd: cpu time 0.80 s
Total Time
total: wall time 357.98 s
total: cpu time 1.68 s

You can use the simstatslist command to provide this output as a continuous display (without
line breaks).

All statistics are measured at the time you invoke simstats. See the arguments below for
descriptions of each statistic.

Units for time values are in seconds. Units for memory values are auto-scaled.

Note
Different operating systems report these numbers differently.

Arguments

• elabcpu

(optional) Returns cpu time consumed by vsim elaboration.

• elabmemory

(optional) Returns memory consumed during vsim elaboration.

ModelSim® Command Reference Manual, v10.5c272

Commands
simstats

• elabtime

(optional) Returns wall clock time consumed by vsim elaboration.

• kb

(optional) Returns statistics in kilobyte units with no auto-scaling.

• license

(optional) Returns a ‘License Statistics’ section that includes license statistics for checkout
time and checked-out license feature names.

• logcpu

(optional) Returns cpu time consumed by WLF logging.

• logtime

(optional) Returns wall clock time consumed by WLF logging.

• simcpu

(optional) Returns cumulative cpu time consumed by all run commands

• simmemory

(optional) Returns memory consumed during the whole simulation, including the
elaboration memory.

• simtime

(optional) Returns cumulative wall clock time consumed by all run commands.

• tclcmdcpu

(optional) Returns cpu time consumed by all TCL commands, excluding run commands.

• tclcmdtime

(optional) Returns wall clock time consumed by all TCL commands, excluding run
commands.

• totalcpu

(optional) Returns total cpu time consumed by vsim command.

• totaltime

(optional) Returns total wall clock time consumed by vsim command.

• verbose

(optional) Displays verbose performance statistics, including an ‘elab’ report for checked-
out license feature names.

Commands
simstatslist

ModelSim® Command Reference Manual, v10.5c 273

simstatslist
This command returns performance-related statistics about elaboration and simulation as a
continuous list (without line breaks).

Syntax

simstatslist [elabcpu | elabmemory | elabtime | logcpu | logtime | simcpu | simmemory | simtime
| tclcmdcpu | tclcmdtime | totalcpu | totaltime]

Description

Use this command in place of the simstats command to display the original statistics in a
continuous format (without line breaks). For example:

{{elab memory} 105348} {{sim memory} 171492} {{elab time} 0.410009}
{{elab cpu time} 0.234002} {{sim time} 1.18003} {{sim cpu time} 0.655204}
{{tclcmd time} 411.601} {{tclcmd cpu time} 0.795605}
{{total time} 413.191} {{total cpu time} 1.68481}

All statistics are measured at the time you invoke simstatslist. See the arguments below for
descriptions of each statistic.

Units for time values are in seconds. Units for memory values are in kilobytes.

Note
Different operating systems report these numbers differently.

Arguments

• elabcpu

(optional) Returns cpu time consumed by vsim elaboration.

• elabmemory

(optional) Returns memory consumed during vsim elaboration.

• elabtime

(optional) Returns wall clock time consumed by vsim elaboration.

• logcpu

(optional) Returns cpu time consumed by WLF logging.

• logtime

(optional) Returns wall clock time consumed by WLF logging.

• simcpu

(optional) Returns cumulative cpu time consumed by all run commands

ModelSim® Command Reference Manual, v10.5c274

Commands
simstatslist

• simmemory

(optional) Returns memory consumed during the whole simulation, including the
elaboration memory.

• simtime

(optional) Returns cumulative wall clock time consumed by all run commands.

• tclcmdcpu

(optional) Returns cpu time consumed by all TCL commands, excluding run commands.

• tclcmdtime

(optional) Returns wall clock time consumed by all TCL commands, excluding run
commands.

• totalcpu

(optional) Returns total cpu time consumed by vsim command.

• totaltime

(optional) Returns total wall clock time consumed by vsim command

Commands
stack down

ModelSim® Command Reference Manual, v10.5c 275

stack down
This command moves down the call stack.

Syntax

stack down [n]

Description

If invoked without arguments, the command moves down the call stack by 1 level. The Locals
window displays local variables at the level.

Arguments

• n

(optional) Moves down the call stack by n levels. The default value is 1 level.

Related Topics

stack frame

stack level

stack tb

stack up

ModelSim® Command Reference Manual, v10.5c276

Commands
stack frame

stack frame
This command selects the specified call frame.

Syntax

stack frame n

Arguments

• <n>

Selects call frame number n. The currently executing frame is zero (also called the
innermost) frame, frame one is the frame that called the innermost, and so on. The highest
numbered frame is that of main.

Related Topics

stack down

stack level

stack tb

stack up

Commands
stack level

ModelSim® Command Reference Manual, v10.5c 277

stack level
This command reports the current call frame number.

Syntax

stack level

Arguments

None

Related Topics

stack down

stack frame

stack tb

stack up

ModelSim® Command Reference Manual, v10.5c278

Commands
stack tb

stack tb
This command displays a stack trace for the current process in the Transcript window. This lists
the sequence of HDL function calls that have been entered to arrive at the current state for the
active process. The tb command is an alias for the stack tb command.

Syntax

tb

Description

None

Arguments

None

Commands
stack up

ModelSim® Command Reference Manual, v10.5c 279

stack up
This command moves up the call stack.

Syntax

stack up [n]

Description

If invoked without arguments, the command moves up the call stack by 1 level. The Locals
window displays local variables at the level.

Arguments

• n

(optional) Moves up the call stack by n levels. The default value is 1 level.

Related Topics

stack down

stack frame

stack level

stack tb

ModelSim® Command Reference Manual, v10.5c280

Commands
status

status
This command lists summary information about currently interrupted macros.

Syntax

status [file | line]

Description

If invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak or onerror commands that have been defined for each interrupted macro.

Arguments

• file

(optional) Reports the file pathname of the current macro.

• line

(optional) Reports the line number of the current macro.

Examples

The transcript below contains examples of resume, and status commands.

VSIM(paused)> status
Macro resume_test.do at line 3 (Current macro)
command executing: "pause"
is Interrupted
ONBREAK commands: "resume"
Macro startup.do at line 34
command executing: "run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: "resume"
VSIM(paused)> resume
Resuming execution of macro resume_test.do at line 4

Related Topics

pause

resume

Commands
step

ModelSim® Command Reference Manual, v10.5c 281

step
The step command is an alias for the run command with the -step switch. Steps the simulator to
the next HDL.

Syntax

step [-current] [<n>] [-out] [-over [<n>]] [-this "this==<class_handle>"]

Description

Current values of local HDL variables may be observed at this time using the Locals window.

You can control any return values after the step operation completes with the following
preference variables:

• noRunTimeMsg — Set this variable to 0 to display simulation time and delta
information or set it to 1 to disable the display of this information.

• noRunStatusMsg — Set this variable to 0 to display run status information or set it to 1
to disable the display of this information.

The following is an example that shows a series of run commands (the step command behaves
similarly) and how the output changes with the preference variable settings:

VSIM 1> run 105
VSIM 2> set PrefMain(noRunTimeMsg) 0
0

VSIM 3> run 112
Time: @217 ns 0

VSIM 4> set PrefMain(noRunStatusMsg) 0
0

VSIM 5> run 100
Time: @317 ns 0
Status: ready end

VSIM 6> set PrefMain(noRunTimeMsg) 1
1

VSIM 7> run 50
Status: ready end

VSIM 8> set PrefMain(noRunStatusMsg) 1
1

VSIM 9> run 55

VSIM 10>

ModelSim® Command Reference Manual, v10.5c282

Commands
step

Arguments

• -current

(optional) Instructs the simulation to step into an instance, process, or thread and stay in the
current thread. Prevents stepping into a different thread.

• <n>

Moves the simulator <n> steps ahead. Specified as a positive integer value.

• -out

(optional) Instructs the simulation to step out of the current function or procedure and return
to the caller.

• -over

(optional) Directs ModelSim to run VHDL procedures and functions, Verilog tasks and
functions but to treat them as simple statements instead of entering and tracing them line by
line.

You can use the -over argument to skip over a VHDL procedure or function, Verilog task or
function.

When a wait statement or end of process is encountered, time advances to the next
scheduled activity. ModelSim then updates the Process and Source windows to reflect the
next activity.

• -this "this==<class_handle>"

(optional) Instructs the simulation to step into a method of a SystemVerilog class when
“this” refers to the specified class handle. To obtain the handle of the class, use the examine
-handle command.

<class_handle> — Specifies a SystemVerilog class. Note that you must use quotation
marks (" ") with this argument.

Related Topics

run

Stepping Through Your Design

Commands
stop

ModelSim® Command Reference Manual, v10.5c 283

stop
This command is used with the when command to stop simulation in batch files. The stop
command has the same effect as hitting a breakpoint. The stop command may be placed
anywhere within the body of the when command.

Syntax

stop [-sync]

Description

Use run -continue to continue the simulation run, or the resume command to continue macro
execution. If you want macro execution to resume automatically, put the resume command at
the top of your macro file:

onbreak {resume}

Note
If you want to stop the simulation using a when command, you must use a stop command
within your when statement. DO NOT use an exit command or a quit command. The stop

command acts like a breakpoint at the time it is evaluated.

Arguments

• -sync

(optional) Stops the currently running simulation at the next time step.

Related Topics

resume

run

ModelSim® Command Reference Manual, v10.5c284

Commands
suppress

suppress
This command prevents one or more specified messages from displaying. You cannot suppress
Fatal or Internal messages. The suppress command used without arguments returns the message
numbers of all suppressed messages.

Note
To use the suppress command, you must have a design loaded in ModelSim. Otherwise,
ModelSim will display an error message without running the command.

Syntax

suppress [-clear <msg_number>[,<msg_number>,...]] [<msg_number>[,<msg_number>,...]]
[<code_string>[, <code_string>,...]]

Description

Edit the suppress variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

Arguments

• -clear <msg_number>[,<msg_number>,...]

(optional) Clears suppression of one or more messages identified by message number.

<msg_number> — A number identifying the message. Multiple message numbers are
specified as a comma separated list.

• <msg_number>[,<msg_number>,...]

(optional) A number identifying the message to be suppressed. Multiple message numbers
are specified as a comma separated list.

• <code_string>[, <code_string>,...]

(optional) A string identifier of the message to be suppressed. Disables warning messages in
the category specified by <code_string>. Warnings that can be disabled include the
<code_string> name in square brackets in the warning message.

Examples

• Return the message numbers of all suppressed messages:

suppress

• Suppress messages by message number:

suppress 8241,8242,8243,8446,8447

• Suppress messages by numbers and code categories:

suppress 8241,TFMPC,CNNODP,8446,8447

Commands
suppress

ModelSim® Command Reference Manual, v10.5c 285

• Clear message suppression for the designated messages:

suppress -clear 8241,8242

ModelSim® Command Reference Manual, v10.5c286

Commands
tb

tb
This (traceback) command displays a stack trace for the current process in the Transcript
window. It lists the sequence of HDL function calls that have been entered to arrive at the
current state for the active process. The tb command is an alias for the stack tb command.

Syntax

tb

Description

None

Arguments

None

Commands
Time

ModelSim® Command Reference Manual, v10.5c 287

Time
The string “Time” is used as the suffix for a collection of related commands that allow you to
perform comparisons between, operations on, and conversions of, time values for simulation.
Arguments for each command are order-dependent, as shown in the Syntax section below.

Syntax

eqTime <time1>[unit] <time2>[unit]

Returns a 1 (true) or 0 (false) if <time1> and <time2> are equal.

neqTime <time1>[unit] <time2>[unit]

Returns a 1 (true) or 0 (false) if <time1> and <time2> are not equal.

ltTime <time1>[unit] <time2>[unit]

Returns a 1 (true) or 0 (false) if <time1> is less than <time2>.

gtTime <time1>[unit] <time2>[unit]

Returns a 1 (true) or 0 (false) if <time1> is greater than <time2>.

lteTime <time1>[unit] <time2>[unit]

Returns a 1 (true) or 0 (false) if <time1> is less than or equal to <time2>.

gteTime <time1>[unit] <time2>[unit]

Returns a 1 (true) or 0 (false) if <time1> is greater than or equal to <time2>.

addTime <time1>[unit] <time2>[unit]

Returns the sum of adding <time1> to <time2>

subTime <time1>[unit] <time2>[unit]

Returns the value of subtracting <time2> from <time1>

mulTime <time1>[unit] <integer>

Returns the value of multiplying <time1> by an <integer>

divTime <time1>[unit] <time2>[unit]

Returns an integer, that is the value of dividing <time1> by <time2>.
Specifying 0 for <time2> results in an error.

intToTime <high_32bit_int> <low_32bit_int>

Returns a 64-bit time value based on two 32-bit parts of a 64-bit integer.
This command is useful when you’ve performed an integer calculation
that results in a 64-bit value and need to convert it to a time unit.

scaleTime <time1>[unit] <scale_factor>

Returns a time value scaled by a real number and truncated to the
current time resolution.

ModelSim® Command Reference Manual, v10.5c288

Commands
Time

RealToTime <real>

Returns a time value equivalent to the specified real number and truncated to the
current time resolution.

validTime <time>

Returns a 1 (true) or 0 (false) if the given string is a valid time for use with any
of these Time calculations.

formatTime {+ | -} commas | {+ | -}nodefunit | {+ | -}bestunits

Sets display properties for time values.

Description

When [unit] is left unspecified, each of these commands assumes the current simulation time
unit, as specified by the Resolution variable in the modelsim.ini file or by using the vsim -t
command. For most commands, units of time (such as ns, us, ps) can be specified independently
for each <time[1 | 2]>. See the description of each command and examples for more
information.

Arguments

• <time1>[unit]

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are:

fs — femtosecond (10-15 seconds)

ps — picosecond (10-12 seconds)

ns — nanosecond (10-9 seconds)

us — microsecond (10-6 seconds)

ms — millisecond (10-3 seconds)

sec — second

min — minute (60 seconds)

hr — hour (3600 seconds)

Note that if you put a space between the values, you must enclose the argument in braces
({ }) or quotation marks (" ").

• <high_32bit_int> | <low_32bit_int>

<high_32bit_int> — The "high" part of the 64-bit integer.

<low_32bit_int> — The "low" part of the 64-bit integer.

Commands
Time

ModelSim® Command Reference Manual, v10.5c 289

• <scale_factor> — a real number to be used as scaling factor. Common values can include:

0.25, 0.5, 1.5, 2, 10, 100

• {+ | -} commas — controls whether commas are displayed in time values.

+commas — time values include commas

-commas — time values do not include commas

• {+ | -}nodefunit — controls whether time values display time units

+nodefunit — time values do not include time units and will be in current time
resolution

-nodefunit — time values may include time units

• {+ | -}bestunits — controls whether time values display the largest possible time unit.
For example, 8 us instead of 8,000 ns.

+bestunits — time values display the largest possible time unit

-bestunits — time values display the default time unit

Examples

• Entering the command:

>ltTime 100ns 1ms

Returns:

1

• Entering the command:

>addTime {1545 ns} {455 ns}

Returns:

2 us

• Entering the command:

>gteTime "1000 ns" "1 us"

Returns:

1

• Entering the command:

>divTime 1us 10ns

Returns:

100

ModelSim® Command Reference Manual, v10.5c290

Commands
Time

• Entering the command:

>formatTime +bestunit

Returns:

-commas -nodefunit +bestunits

• Entering the command:

>scaleTime 3ms 1000

Returns:

3 sec

• Entering the command:

>RealToTime 1.345e04

Returns:

13450 ns

Commands
transcript

ModelSim® Command Reference Manual, v10.5c 291

transcript
This command controls echoing of commands executed in a macro file. If no option is specified,
the current setting is reported.

Syntax

transcript [on | off | -q | quietly]

Arguments

• on

(optional) Specifies that commands in a macro file will be echoed to the Transcript window
as they are executed.

• off

(optional) Specifies that commands in a macro file will not be echoed to the Transcript
window as they are executed.

• -q

(optional) Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful
in a Tcl conditional expression.

• quietly

(optional) Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command.

Examples

• Commands within a macro file will be echoed to the Transcript window as they are
executed.

transcript on

• If issued immediately after the previous example, the command:

transcript

returns

Macro transcripting is turned ON.

Related Topics

Transcript Window

ModelSim® Command Reference Manual, v10.5c292

Commands
transcript file

transcript file
This command sets or queries the current PrefMain(file) Tcl preference variable. You can use
this command to clear a transcript in batch mode or to limit the size of a transcript file. It offers
an alternative to setting the PrefMain(file) Tcl preference variable through the GUI.

Syntax

transcript file [<filename>]

Arguments

• <filename>

(optional) Specifies a name for the transcript file. Wildcard characters are allowed, and
“stdout” or “stderr” are valid file names. If you specify a new file, the existing transcript file
is closed and a new transcript file opened. If you specify an empty string (""), the existing
file is closed and no new file is opened. If you don’t specify this argument, the current
filename is returned.

Note
You can prevent overwriting older transcript files by including a pound sign (#) in
<filename> when <filename> is a repeated string. The simulator replaces the pound

character (#) with the next available sequence number when saving a new transcript file.

Examples

• Close the current transcript file and stops writing data to the file. This is a method for
reducing the size of your transcript.

transcript file ""

• Close the current transcript file named trans1.txt and open a new transcript file,
incrementing the file name by 1.

transcript file trans#.txt

Closes trans1.txt and opens trans2.txt.

• This series of commands results in the transcript containing only data from the second
millisecond of the simulation. The first transcript file command closes the transcript so
no data is being written to it. The second transcript file command opens a new transcript
and records data from 1 ms to 2 ms.

transcript file ""
run 1 ms
transcript file transcript
run 1 ms

Related Topics

Creating a Transcript File

Commands
transcript file

ModelSim® Command Reference Manual, v10.5c 293

Setting GUI Preferences

Transcript Window

transcript path

transcript sizelimit

ModelSim® Command Reference Manual, v10.5c294

Commands
transcript path

transcript path
This command returns the full pathname to the current transcript file.

Syntax

transcript path

Arguments

None

Related Topics

Creating a Transcript File

Setting GUI Preferences

Transcript Window

transcript file

Commands
transcript sizelimit

ModelSim® Command Reference Manual, v10.5c 295

transcript sizelimit
This command sets or queries the current preference value for the transcript fileSizeLimit value.
If the size limit is reached, the transcript file is saved and simulation continues.

Syntax

transcript sizelimit [<size>]

Arguments

• <size>

(optional) Specifies the size, in KB, of the transcript file where the default is 0 or unlimited.
The actual file size may be larger by as much as one buffer size (usually about 4k),
depending on the operating system default buffer size and the size of the messages written to
the transcript.

Note
You can set the size of the transcript file with the $PrefMain (fileSizeLimit) Tcl
variable in the Preferences dialog. Refer to “Setting GUI Preferences” for more

information.

Related Topics

Creating a Transcript File

Setting GUI Preferences

Transcript Window

transcript file

ModelSim® Command Reference Manual, v10.5c296

Commands
transcript wrapcolumn

transcript wrapcolumn
This command defines the column width when wrapping output lines in the transcript file.

Syntax

transcript wrapcolumn <integer>

Arguments

• <integer>

An integer that defines the width, in characters, before forcing a line break. The default
value is 30000.

Description

This column is somewhat soft; the wrap will occur at the first white-space character after
reaching the transcript wrapwscolumn value or at exactly the column width if no white-space is
found.

Commands
transcript wrapmode

ModelSim® Command Reference Manual, v10.5c 297

transcript wrapmode
This command controls wrapping of output lines in the transcript file.

Syntax

transcript wrapmode [0 | 1 | 2]

Arguments

• 0

(default) Disables wrapping.

• 1

Enables wrapping, based on the value of the transcript wrapcolumn command, which
defaults to 30,000 characters.

• 2

Enables wrapping and adds a continuation character (\) at the end of every wrapped line,
except for the last.

ModelSim® Command Reference Manual, v10.5c298

Commands
transcript wrapwscolumn

transcript wrapwscolumn
This variable defines the column width when wrapping output lines in the transcript file.

Usage

transcript wrapwscolumn <integer>

Arguments

• <integer>

An integer that specifies that the wrap will occur at the first white-space character after
reaching the specified number of characters. If there is no white-space, the wrap will occur
at the transcript wrapcolumn value. The default value is 27000.

Commands
tssi2mti

ModelSim® Command Reference Manual, v10.5c 299

tssi2mti
This command is used to convert a vector file in TSSI Format into a sequence of force and run
commands.

Syntax

tssi2mti <signal_definition_file> [<sef_vector_file>]

Description

The stimulus is written to the standard output.

The source code for tssi2mti is provided in the examples directory as:

<install_dir>/examples/tssi2mti/tssi2mti.c

Arguments

• <signal_definition_file>

(required) Specifies the name of the TSSI signal definition file describing the format and
content of the vectors.

• <sef_vector_file>

(optional) Specifies the name of the file containing vectors to be converted. If none is
specified, standard input is used.

Examples

• The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def trigger.sef > trigger.do

• This example is the same as the previous one, but uses the standard input instead.

tssi2mti trigger.def < trigger.sef > trigger.do

Related Topics

run

ModelSim® Command Reference Manual, v10.5c300

Commands
ui_VVMode

ui_VVMode
This command specifies behavior when encountering UI registration calls used by verification
packages, such as AVM or OVM. Returns the current setting when specifies without an
argument.

Syntax

ui_VVMode [full | logclass | logobj | nolog | off]

Description

UI registration calls, Verilog system tasks specific to this product, are typically included in
verification packages such as AVM and OVM so that key information about the packages is
available when debugging the simulation. The UI registration calls include:

• $ui_VVInstallInst() — Defines a region in the context tree, which will appear in the
Structure window.

• $ui_VVInstallObj() — Adds an object to the defined parent, which will appear in the
Objects window when the parent instance is selected in the Structure window.

• $ui_VVInstallPort() — Adds a port that is an object that connects to another component,
which will appear in the Objects window when the parent instance is selected in the
Structure window.

• $ui_VVSetFilter() — Specifies which class properties should not be shown in the GUI.

• $ui_VVSetAllow() — Specifies which class properties should be retained that were
filtered out with $ui_VVSetFilter.

Arguments

• full

(optional) Enables the context registration of the UI registration call and automatically logs
both the class type and the registered object to the WLF file.

• logclass

(optional) Enables the context registration of the UI registration call and automatically logs
the class type of the registered object to the WLF file.

• logobj

(optional) Enables the context registration of the UI registration call and automatically logs
the registered object to the WLF file

• nolog

(optional) Enables the context registration of the UI registration call, but does not
automatically log the registration to the WLF file. (default)

Commands
ui_VVMode

ModelSim® Command Reference Manual, v10.5c 301

• off

(optional) Disables context registration and automatic logging when encountering UI
registration calls.

ModelSim® Command Reference Manual, v10.5c302

Commands
unsetenv

unsetenv
This command deletes an environment variable. The deletion is not permanent – it is valid only
for the current ModelSim session.

Syntax

unsetenv <varname>

Arguments

• <varname>

(required) The name of the environment variable you wish to delete.

Related Topics

setenv

printenv

Commands
vcd add

ModelSim® Command Reference Manual, v10.5c 303

vcd add
This command adds the specified objects to a VCD file.

Syntax

vcd add [-dumpports] [-file <filename>] [[-in] [-out] [-inout] | [-ports]] [-internal]
[-r | -r -optcells] <object_name> ...

Description

The allowed objects are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored). The command works with
mixed HDL designs.

All vcd add commands must be executed at the same simulation time. The specified objects are
added to the VCD header and their subsequent value changes are recorded in the specified VCD
file. By default all port driver changes and internal variable changes are captured in the file. You
can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

• -dumpports

(optional) Specifies port driver changes to be added to an extended VCD file. When the vcd
dumpports command cannot specify all port driver changes that will appear within the VCD
file, multiple vcd add -dumpports commands can be used to specify additional port driver
changes.

• -file <filename>

(optional) Specifies the name of the VCD file. This option should be used only when you
have created multiple VCD files using the vcd files command.

<filename> — A .vcd file.

• -in

(optional) Includes only port driver changes from ports of mode IN.

• -out

(optional) Includes only port driver changes from ports of mode OUT.

• -inout

(optional) Includes only port driver changes from ports of mode INOUT.

ModelSim® Command Reference Manual, v10.5c304

Commands
vcd add

• -ports

(optional) Includes only port driver changes. Excludes internal variable or signal changes.

• -internal

(optional) Includes only internal variable or signal changes. Excludes port driver changes.

• -r | -r -optcells

(optional) Specifies that signal and port selection occurs recursively into subregions. If
omitted, included signals and ports are limited to the current region. When -r is used with
-optcells, it allows Verilog optimized cell ports to be visible when using wildcards. By
default, Verilog optimized cell ports are not selected even if they match the specified
wildcard pattern.

• <object_name> ...

(required) Specifies the Verilog or VHDL object or objects to add to the VCD file. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted. Must be
specified as the final argument to the vcd add command.

Related Topics

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

Commands
vcd checkpoint

ModelSim® Command Reference Manual, v10.5c 305

vcd checkpoint
This command dumps the current values of all VCD variables to the specified VCD file. While
simulating, only value changes are dumped. Related Verilog tasks: $dumpall, $fdumpall

Syntax

vcd checkpoint [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Related Topics

vcd add

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c306

Commands
vcd comment

vcd comment
This command inserts the specified comment in the specified VCD file. Arguments to this
command are order dependent. Please read the argument descriptions for more information.

Syntax

vcd comment <comment string> [<filename>]

Arguments

• <comment string>

(required) Comment to be included in the VCD file. Must be enclosed by double quotation
marks or curly braces. Must be specified as the first argument to the vcd comment
command.

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Related Topics

vcd add

vcd checkpoint

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

Commands
vcd dumpports

ModelSim® Command Reference Manual, v10.5c 307

vcd dumpports
This command creates a VCD file that includes port driver data.

Syntax

vcd dumpports [-compress] [-direction] [-file <filename>] [-force_direction] [-in] [-out] [-inout]
[-no_strength_range] [-unique] [-vcdstim] <object_name> ...

Description

By default all port driver changes are captured in the file. You can filter the output using
arguments detailed below. Related Verilog task: $dumpports

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

• -compress

(optional) Produces a compressed VCD file. ModelSim uses the gzip compression
algorithm. It is not necessary to specify -compress if you specify a .gz extension with the
-file <filename> argument

• -direction

(optional) Includes driver direction data in the VCD file.

• -file <filename>

(optional) Creates a VCD file. Defaults to the current working directory and the filename
dumpports.vcd. Multiple filenames can be opened during a single simulation.

<filename> — Specifies a filename. When specified with a .gz extension, the file is
compressed.

• -force_direction

(optional) Causes vcd dumpports to use the specified port direction (instead of driver
location) to determine whether the value being dumped is input or output. This argument
overrides the default use of the location of drivers on the net to determine port direction (this
is because Verilog port direction is not enforced by the language or by ModelSim).

• -in

(optional) Includes ports of mode IN.

• -out

(optional) Includes ports of mode OUT.

• -inout

(optional) Includes ports of mode INOUT.

ModelSim® Command Reference Manual, v10.5c308

Commands
vcd dumpports

• -no_strength_range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the IEEE 1364 specification. Refer to Resolving Values for additional
information.

• -unique

(optional) Generates unique VCD variable names for ports even if those ports are connected
to the same collapsed net.

• -vcdstim

(optional) Ensures that port name order in the VCD file matches the declaration order in the
instance module or entity declaration. Refer to Port Order Issues for further information.

• <object_name> ...

(required) Specifies one or more HDL objects to add to the VCD file. You can specify
multiple objects by separating names with spaces. Wildcards are accepted. Must be
specified as the final argument to the vcd dumpports command.

Examples

• Create a VCD file named counter.vcd of all IN ports in the region /test_design/dut/.

vcd dumpports -in -file counter.vcd /test_design/dut/*

• These two commands resimulate a design from a VCD file. Refer to Simulating with
Input Values from a VCD File for further details.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

• This series of commands creates VCD files for the instances proc and cache and then re-
simulates the design using the VCD files in place of the instance source files. Refer to
Replacing Instances with Output Values from a VCD File for more information.

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
run 1000

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

Commands
vcd dumpports

ModelSim® Command Reference Manual, v10.5c 309

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c310

Commands
vcd dumpportsall

vcd dumpportsall
This command creates a checkpoint in the VCD file which shows the value of all selected ports
at that time in the simulation, regardless of whether the port values have changed since the last
timestep. Related Verilog task: $dumpportsall

Syntax

vcd dumpportsall [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

Commands
vcd dumpportsflush

ModelSim® Command Reference Manual, v10.5c 311

vcd dumpportsflush
This command flushes the contents of the VCD file buffer to the specified VCD file. Related
Verilog task: $dumpportsflush

Syntax

vcd dumpportsflush [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c312

Commands
vcd dumpportslimit

vcd dumpportslimit
This command specifies the maximum size of the VCD file (by default, limited to available disk
space). When the size of the file exceeds the limit, a comment is appended to the file and VCD
dumping is disabled.

Syntax

vcd dumpportslimit <dumplimit> [<filename>]

Description

Related Verilog task: $dumpportslimit

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

• <dumplimit>

(required) Specifies the maximum VCD file size in bytes. Must be specified as the first
argument to the vcd dumpportslimit command.

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

Commands
vcd dumpportslimit

ModelSim® Command Reference Manual, v10.5c 313

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c314

Commands
vcd dumpportsoff

vcd dumpportsoff
This command turns off VCD dumping and records all dumped port values as x.

Syntax

vcd dumpportsoff [<filename>]

Description

Related Verilog task: $dumpportsoff

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

Commands
vcd dumpportson

ModelSim® Command Reference Manual, v10.5c 315

vcd dumpportson
This command turns on VCD dumping and records the current values of all selected ports. This
command is typically used to resume dumping after invoking vcd dumpportsoff. Related
Verilog task: $dumpportson

Syntax

vcd dumpportson [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c316

Commands
vcd file

vcd file
This command specifies the filename and state mapping for the VCD file created by a vcd add
command. The vcd file command is optional. If used, it must be issued before any vcd add
commands.

Syntax

vcd file [-dumpports] [-direction] [<filename>] [-map <mapping pairs>] [-no_strength_range]
[-nomap] [-unique]

Description

Related Verilog task: $dumpfile

Arguments

• -dumpports

(optional) Capture detailed port driver data for Verilog ports and VHDL std_logic ports.
This option works only on ports, and any subsequent vcd add command will accept only
qualifying ports (silently ignoring all other specified objects).

• -direction

(optional) Includes driver direction data in the VCD file.

• <filename>

(optional) Specifies the name of the VCD file that is created where the default is dump.vcd.

• -map <mapping pairs>

(optional) Overrides the default mappings. Affects only VHDL signals of type std_logic.

<mapping pairs> — Specified as a list of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. The Tcl convention for command
strings that include spaces is to enclose them in quotation marks (" "). For example, to
map L and H to z:

vcd file -map "L z H z"

• -no_strength_range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the IEEE 1364 specification. Refer to Resolving Values for additional
information.

• -nomap

(optional) Affects only VHDL signals of type std_logic. It specifies that the values recorded
in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-. This option
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

Commands
vcd file

ModelSim® Command Reference Manual, v10.5c 317

• -unique

(optional) Generates unique VCD variable names for ports even if those ports are connected
to the same collapsed net.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd files

vcd flush

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z

ModelSim® Command Reference Manual, v10.5c318

Commands
vcd files

vcd files
This command specifies filenames and state mapping for VCD files created by the vcd add
command. The vcd files command is optional. If used, it must be issued before any vcd add
commands.Related Verilog task: $fdumpfile

Syntax

vcd files [-compress] [-direction] <filename> [-map <mapping pairs>] [-no_strength_range]
[-nomap] [-unique]

Arguments

• -compress

(optional) Produces a compressed VCD file. ModelSim uses the gzip compression
algorithm. If you specify a .gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

• -direction

(optional) Includes driver direction data in the VCD file.

• <filename>

(required) Specifies the name of a VCD file to create. Multiple files can be opened during a
single simulation; however, you can create only one file at a time. If you want to create
multiple files, invoke vcd files multiple times.

• -map <mapping pairs>

(optional) Overrides the default mappings. Affects only VHDL signals of type std_logic.

<mapping pairs> — Specified as a list of character pairs. The first character in a pair
must be one of the std_logic characters UX01ZWLH- and the second character is the
character you wish to be recorded in the VCD file. The Tcl convention for command
strings that include spaces is to enclose them in quotation marks (" "). For example, to
map L and H to z:

vcd file -map "L z H z"

• -no_strength_range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the IEEE 1364 specification. Refer to “Resolving Values” for additional
information.

• -nomap

(optional) Affects only VHDL signals of type std_logic. It specifies that the values recorded
in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-. This option
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

Commands
vcd files

ModelSim® Command Reference Manual, v10.5c 319

• -unique

(optional) Generates unique VCD variable names for ports even if those ports are connected
to the same collapsed net.

Examples

The following example shows how to "mask" outputs from a VCD file until a certain time after
the start of the simulation. The example uses two vcd files commands and the vcd on and vcd
off commands to accomplish this task.

vcd files in_inout.vcd
vcd files output.vcd
vcd add -in -inout -file in_inout.vcd /*
vcd add -out -file output.vcd /*
vcd off output.vcd
run 1us
vcd on output.vcd
run -all

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd flush

vcd limit

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z

ModelSim® Command Reference Manual, v10.5c320

Commands
vcd files

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

Commands
vcd flush

ModelSim® Command Reference Manual, v10.5c 321

vcd flush
This command flushes the contents of the VCD file buffer to the specified VCD file. This
command is useful if you want to create a complete VCD file without ending your current
simulation. Related Verilog tasks: $dumpflush, $fdumpflush

Syntax

vcd flush [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd limit

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c322

Commands
vcd limit

vcd limit
This command specifies the maximum size of a VCD file (by default, limited to available disk
space).

Syntax

vcd limit <filesize> [<filename>]

Description

When the size of the file exceeds the limit, a comment is appended to the file and VCD dumping
is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

• <filesize>

(Required) Specifies the maximum VCD file size, in bytes. The numerical value of
<filesize> can only be a whole number. Must be specified as the first argument to the vcd
limit command.

You can specify a unit of Kb, Mb, or Gb with the numerical value (units are case
insensitive). Do not insert a space between the numerical value and the unit (for example,
400Mb, not 400 Mb).

• <filename>

(Optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Examples

• Specify a maximum VCD file size of 6 gigabytes and a VCD file named
my_vcd_file.vcd.

vcd limit 6gb my_vcd_file.vcd

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

Commands
vcd limit

ModelSim® Command Reference Manual, v10.5c 323

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd off

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c324

Commands
vcd off

vcd off
This command turns off VCD dumping to the specified file and records all VCD variable values
as x. Related Verilog tasks: $dumpoff, $fdumpoff

Syntax

vcd off [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd on

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

Commands
vcd on

ModelSim® Command Reference Manual, v10.5c 325

vcd on
This command turns on VCD dumping to the specified file and records the current values of all
VCD variables.

Syntax

vcd on [<filename>]

Description

By default, vcd on is automatically performed at the end of the simulation time that the vcd add
command performed.

Related Verilog tasks: $dumpon, $fdumpon

Arguments

• <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the vcd file command or dump.vcd if vcd file was not invoked.

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c326

Commands
vcd2wlf

vcd2wlf
This command is a utility that translates a VCD (Value Change Dump) file into a WLF file that
you can display in ModelSim using the vsim -view argument. This command only works on
VCD files containing positive time values.

Syntax

vcd2wlf [-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>] [-nocase]
{<vcd filename> | – } <wlf filename>

Description

The vcd2wlf command functions as simple one-pass converter. If you are defining a bus in a
VCD file, you must specify all bus bits before the next $scope or $upscope statement appears in
the file. The best way to ensure that bits get converted together as a bus is to declare them on
consecutive lines.

For example:

Line 21 : $var wire 1 $ in [2] $end
Line 22 : $var wire 1 $u in [1] $end
Line 23 : $var wire 1 # in [0] $end

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

• -splitio

(optional) Specifies that extended VCD port values are to be split into their corresponding
input and output components by creating two signals instead of just one in the resulting .wlf
file. By default the new input-component signal keeps the same name as the original port
name while the output-component name is the original name with "__o" appended to it.

• -splitio_in_ext <extension>

(optional) Adds an extension to input-component signal names created by using -splitio.

<extension> — Specifies a string.

• -splitio_out_ext <extension>

(optional) Adds an extension to output-component signal names created by using -splitio.

<extension> — Specifies a string.

• -nocase

(optional) Converts all alphabetic identifiers to lowercase.

Commands
vcd2wlf

ModelSim® Command Reference Manual, v10.5c 327

• {<vcd filename> | – }

(required) Specifies the name of the VCD file, or standard input (-), you want to translate
into a WLF file. Must be specified immediately preceding the <wlf filename> argument to
the vcd2wlf command.

• <wlf filename>

(required) Specifies the name of the output WLF file. Must be specified as the final
argument to the vcd2wlf command.

Examples

• Concatenate my.vcd file and pipe standard input to vcd2wlf and save output to my.wlf
file.

cat my.vcd | vcd2wlf - my.wlf

• Redirect input from the file my.vcd file to vcd2wlf and save the output to my.wlf file.

vcd2wlf - my.wlf <my.vcd

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

vcd dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

vcd dumpportson

vcd file

vcd files

vcd flush

vcd limit

vcd off

vcd on

DumpportsCollapse

Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5c328

Commands
vcom

vcom
The vcom command compiles VHDL source code into a specified working library (or to the
work library by default).

Syntax

vcom [options] <filename> [<filename> ...]

[options]:

 [-87 | -93 | -2002 | -2008]

[-addpragmaprefix <prefix>] [-allowProtectedBeforeBody] [-amsstd | -noamsstd]

[-bindAtCompile] [-bindAtLoad]

[-check_synthesis] [-nocreatelib]

[-defercheck] [-deferSubpgmCheck | -noDeferSubpgmCheck]

[-error <msg_number>[,<msg_number>,…]] [-explicit]

[(-F | -file | -f) <filename>] [-fatal <msg_number>[,<msg_number>,…]]
[-force_refresh <primary> [<secondary>]]
[-fsmimplicittrans | -nofsmimplicittrans] [-fsmresettrans | -nofsmresettrans] [-fsmsingle | -
nofsmsingle]
[-fsmverbose [b | t | w]]

[-gen_xml <design_unit> <filename>]

[-ignoredefaultbinding] [-ignorepragmaprefix <prefix>] [ignoreStandardRealVector]
[-ignorevitalerrors] [-initoutcompositeparam | -noinitoutcompositeparam]

[-just abcep]

[-logfile <filename> | -l <filename>] [-line <number>] [-lint] [-lower]
[-lrmconfigvis]

[-mixedsvvh [b | l | r][i]] [-modelsimini <path/modelsim.ini>]
[-msglimit [all, | none,] [-|+]<msg_number>[,[-|+]<msg_number>,…]]
[-msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
|+]<msgNumber>...]]

[-no1164] [-noaccel <package_name>] [-nocasestaticerror] [-nocheck]
 [-nocreatelib] [-nodbgsym] [-nofprangecheck]
[-noFunctionInline] [-noindexcheck] [-nologo] [-nonstddriverinit]
[-noothersstaticerror] [-note <msg_number> [,<msg_number>, …]] [-novitalcheck] [-
nowarn <category_number>]

[-oldconfigvis] [-optionset <optionset_name>]
[-outf <filename>]

[-pedanticerrors] [-performdefaultbinding] [-preserve] [-[w]prof=<filename>]
[-proftick=<integer>]

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 329

[-quiet]

[-rangecheck | -norangecheck] [-refresh <primary> [<secondary>]]

[-s] [-separateConfigLibrary] [-showsubprograms | -noshowsubprograms] [-skip abcep] [-
skipsynthoffregion] [-smartdbgsym] [-source]
[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]]
[-suppress <msg_number>[,<msg_number>,…]]

[-version] [-vitalmemorycheck] [-vmake]

[-warning <msg_number>[,<msg_number>,…]] [-warning error] [-work <library_name>]

Description

You can invoke vcom either from within ModelSim or from the command prompt of your
operating system. You can invoke this command during simulation.

Compiled libraries are dependent on the major version of ModelSim. When moving between
major versions, you must refresh compiled libraries using the -refresh argument to vcom. This is
not required for minor versions (letter releases).

All arguments to the vcom command are case-sensitive. For example, -WORK and -work are
not equivalent.

This command provides additional information with the -help or -h switch.

Arguments

• -87 | -93 | -2002 | -2008

(optional) Specifies which LRM-specific compiler to use. You can also control this
behavior with the VHDL93 variable in the modelsim.ini file. Refer to “Differences Between
Versions of VHDL” for more information.

-87 — Enables support for VHDL 1076-1987.

-93 — Enables support for VHDL 1076-1993.

-2002 — Enables support for VHDL 1076-2002. (default)

-2008 — Enables support for VHDL 1076-2008.

• -addpragmaprefix <prefix>

(optional) Enables recognition of pragmas with a user specified prefix. If this argument is
not specified, pragmas are treated as comments.

All regular synthesis pragmas are honored.

<prefix> — Specifies a user defined string where the default is no sting, indicated by
quotation marks.

You may also set this with the AddPragmaPrefix variable in the vcom section of the
modelsim.ini file.

ModelSim® Command Reference Manual, v10.5c330

Commands
vcom

• -allowProtectedBeforeBody

(optional) Allows a variable of a protected type to be created prior to declaring the body.

• -amsstd | -noamsstd

(optional) Specifies whether vcom adds the declaration of REAL_VECTOR to the
STANDARD package. This is useful for designers using VHDL-AMS to test digital parts of
their model.

-amsstd — REAL_VECTOR is included in STANDARD.

-noamsstd — REAL_VECTOR is not included in STANDARD (default).

You can also control this with the AmsStandard variable or the MGC_AMS_HOME
environment variable.

• -bindAtCompile

(optional) Forces ModelSim to perform default binding at compile time rather than at load
time. Refer to “Default Binding” for more information. You can change the permanent
default by editing the BindAtCompile variable in the modelsim.ini.

• -bindAtLoad

(optional) Forces ModelSim to perform default binding at load time rather than at compile
time. (Default)

• -check_synthesis

(optional) Turns on limited synthesis rule compliance checking. Specifically, it checks to
see that signals read by a process are in the sensitivity list. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis variable in the modelsim.ini
file to set a permanent default.

• -defercheck

(optional) Defers index checks until run time.

• -deferSubpgmCheck

(optional) Forces the compiler to report array indexing and length errors as warnings
(instead of as errors) when encountered within subprograms. Subprograms with indexing
and length errors that are invoked during simulation cause the simulator to report errors,
which can potentially slow down simulation because of additional checking.

• -error <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "error." Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

<msg_number> — A number identifying the message. Multiple message numbers are
specified as a comma separated list.

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 331

• -explicit

(optional) Directs the compiler to resolve ambiguous function overloading by favoring the
explicit function definition over the implicit function definition. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools choose
explicit operators over implicit operators. Using this switch makes ModelSim compatible
with common industry practice.

• (-F | -file | -f) <filename>

(optional) -f, -file and -F: each specifies an argument file with more command-line
arguments, allowing complex argument strings to be reused without retyping. Nesting of -F,
-f and -file commands is allowed. Allows gzipped input files.

With -F only: relative file names and paths within the arguments file <filename> are
prefixed with the path of the arguments file when lookup with relative path fails. Refer to
the section “Argument Files” on page 27for more information.

• -fatal <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "fatal." Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

<msg_number> — A number identifying the message. Multiple message numbers are
specified as a comma separated list.

• -force_refresh <primary> [<secondary>]

(optional) Forces the refresh of all specified design units. By default, the work library is
updated; use -work <library_name>, in conjunction with -force_refresh, to update a
different library (for example, vcom -work <your_lib_name> -force_refresh).

<primary> [<secondary>] — Specifies the entity, package, configuration, or module to
be deleted.

• If <primary> is an entity — only that entity, no related architectures, is
refreshed.

• If <primary> is a package — the only legal value of <secondary> is “body”, and
only the package is refreshed.

• If you specify both <primary> and <secondary> — Only the <secondary>
architecture is updated, not the entity.

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/
dware_61e_beta.dwpackages because /home/users/questasim/../
synopsys.attributes has changed.

ModelSim® Command Reference Manual, v10.5c332

Commands
vcom

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checks is to
recompile the source code, if it is available.

You cannot specify the <filename> argument when specifying this argument.

• -fsmimplicittrans | -nofsmimplicittrans

(optional) Toggles recognition of implied same state transitions, which is off by default
(-nofsmimplicittrans).

• -fsmresettrans | -nofsmresettrans

(optional) Toggles recognition of synchronous or asynchronous reset transitions, and is on
by default (-fsmresettrans).

• -fsmsingle | -nofsmsingle

(optional) Toggles the recognition of VHDL FSMs where the current state variable of type
std_logic, bit, boolean, or single-bit std_logic_vector/bit_vector and Verilog single-bit
FSMs.

• -fsmverbose [b | t | w]

(optional) Provides information about FSMs detected, including state reachability analysis.

b — displays only basic information.

t — displays a transition table in addition to the basic information.

w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

** Note: (vcom-1947) FSM RECOGNITION INFO
Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
Current State Variable : s_state : ../fpu/rtl/vhdl/serial_mul.vhd(76)
Clock : clk_i
Reset States are: { waiting , busy }
State Set is : { busy , waiting }
Transition table is

busy => waiting Line : (114 => 114)
busy => busy Line : (111 => 111)
waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

When you do not specify this switch, you will receive a message similar to:

** Note: (vcom-143) Detected '1' FSM/s in design unit
'serial_mul.rtl'.

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 333

• -gen_xml <design_unit> <filename>

(optional) Produces an XML-tagged file containing the interface definition of the specified
entity.

<design_unit> — The name of an entity or design unit in the Work library. Wildcards
and multiple design unit names are not allowed.

<filename> — A user-specified name for the file.

For example:

This option requires a two-step process where you must:

1) compile <filename> into a library with vcom (without -gen_xml) then

2) execute vcom with the -gen_xml switch.

vlib work
vcom counter.vhd
vcom -gen_xml counter counter.xml

• -ignoredefaultbinding

(optional) Instructs the compiler not to generate a default binding during compilation. You
must explicitly bind all components in the design through either configuration specifications
or configurations. If an explicit binding is not fully specified, defaults for the architecture,
port maps, and generic maps will be used as needed. Refer to Default Binding for more
information. Edit the RequireConfigForAllDefaultBinding modelsim.ini variable to set a
permanent default.

• -ignorepragmaprefix <prefix>

(optional) Directs vcom to ignore pragmas with the specified prefixname. All affected
pragmas will be treated as regular comments. Edit the IgnorePragmaPrefix modelsim.ini
variable to set a permanent default.

<prefix> — Specifies a user defined string.

• ignoreStandardRealVector

(optional) Instructs ModelSim to ignore the REAL_VECTOR declaration in package
STANDARD when compiling with vcom -2008. Edit the ignoreStandardRealVector
modelsim.ini variable to set a permanent default. For more information refer to the
REAL_VECTOR section in Help > Technotes > vhdl2008migration.

• -ignorevitalerrors

(optional) Directs the compiler to ignore VITAL compliance errors. The compiler still
reports that VITAL errors exist, but it will not stop the compilation. You should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

• -initoutcompositeparam

(optional) Causes initialization of subprogram parameters for array and record types when
the subprogram is executed in designs compiled with LRM 1076-2002 and earlier. This

ModelSim® Command Reference Manual, v10.5c334

Commands
vcom

argument forces the output parameters to their default initial (“left”) values when entering a
subprogram. By default, -initoutcompositeparam is enabled for designs compiled with vcom
-2008 and later. You can also enable this by setting the InitiOutCompositeParam variable to
1 in the modelsim.ini file.

• -noinitoutcompositeparam

(optional) Disables initialization of subprogram parameters for array and record types when
the subprogram is executed in designs compiled with LRM 1076-2002 and earlier. By
default, designs compiled with LRM 1076-2008 and later do not initialize subprogram
parameters for array and record types when the subprogram is executed. You can also
disable initialization of subprogram parameters for array and record types by setting the
InitiOutCompositeParam variable to 2 in the modelsim.ini file.

• -just abcep

(optional) Directs the compiler to include only the following:

a — architectures

b — bodies

c — configurations

e — entities

p — packages

Any combination in any order can be used, but you must specify at least one choice if you
use this switch.

• -logfile <filename> | -l <filename>

(optional) Generates a log file of the compile.

-logfile <filename> — Saves transcript data to <filename>. Can be abbreviated to
-l <filename>. Overrides the default transcript file creation set with the TranscriptFile
or BatchTranscriptFile modelsim.ini variables. You can also specify “stdout” or
“stderr” for <filename>.

• -line <number>

(optional) Starts the compiler on the specified line in the VHDL source file. By default, the
compiler starts at the beginning of the file.

<number> —

• -lint

(optional) Performs additional static checks on case statement rules and enables warning
messages for the following situations:

o The result of the built-in concatenation operator ("&") is the actual for a subprogram
formal parameter of an unconstrained array type.

o If you specify the -BindAtCompile switch with vcom, the entity to which a
component instantiation is bound has a port that is not on the component, and for
which there is no error otherwise.

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 335

o A direct recursive subprogram call.

o In cases involving class SIGNAL formal parameters, as described in the IEEE
Standard VHDL Language Reference Manual entitled "Signal parameters". This
check only applies to designs compiled using -87. If you compile using -93, it would
be flagged as a warning or error, even without the -lint argument. Can also be
enabled using the Show_Lint variable in the modelsim.ini file.

• -lower

(optional) Forces vcom to convert uppercase letters in object identifiers to lowercase. You
can also enable this by setting the PreserveCase variable to 0 in the modelsim.ini file.

• -lrmconfigvis

(optional, default) Forces vcom to use visibility rules that comply with the Language
Reference Manual when processing VHDL configurations. Refer to vcom -oldconfigvis or
the oldVHDLConfigurationVisibility variable in the modelsim.ini file for more information.

• -mixedsvvh [b | l | r][i]

(optional) Facilitates using VHDL packages at the SystemVerilog-VHDL boundary of a
mixed-language design. When you compile a VHDL package with -mixedsvvh, the package
can be included in a SystemVerilog design as if it were defined in SystemVerilog itself.

Executing -mixedsvvh without arguments compiles VHDL vectors in the following ways:

o VHDL bit_vectors are treated as SystemVerilog bit vectors.

o VHDL std_logic_vectors, std_ulogic_vectors, and vl_logic_vectors are treated as
SystemVerilog logic vectors.

b — treats all scalars and vectors in the package as SystemVerilog bit type

l — treats all scalars and vectors in the package as SystemVerilog logic type

r — treats all scalars and vectors in the package as SystemVerilog reg type

i — ignores the range specified with VHDL integer types. Can be specified together
with b, l, or r, spaces are not allowed between arguments.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODELSIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the file itself. On Windows systems the path separator should be a
forward slash (/).

• -msglimit [all, | none,] [-|+]<msg_number>[,[-|+]<msg_number>,…]

(optional) Limits the number of iterations of the specified message(s) to the default message
limit count of five, then suppresses all new instances. Refer to Suppression of Warning
Messages for more information.

all — Limits all messages to the default count except specified msgNumber(s).

ModelSim® Command Reference Manual, v10.5c336

Commands
vcom

none — Limits only the specified msgNumber(s) to the default count.

[-|+] — The ‘-’ argument is used only with “all” to specify exclusion of specified
msgNumber(s). The ‘+’ argument is used only with “none” to specify inclusion of
specific message IDs. If neither is used, the command works the same way.

Note
The ‘-’ argument can only be used with the “all” argument and the ‘+’ argument can
only be used with the “none” argument. Otherwise incorrect results may appear.

<msg_number>[,<msg_number>,…] — Specifies the message number(s) to limit to
five iterations. Multiple messages are specified as a comma-separated list.

For example, the following limits all messages to the default count except msgNumber1 and
msgNumber2.

vsim -msglimit all, <msgNumber1>, <msgNumber2>

While the following, limits only msgNumber1 and msgNumber2 to the default count.

vsim -msglimit none, <msgNumber1>, <msgNumber2>

• -msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
|+]<msgNumber>...]

(optional) Limits the reporting of listed messages to user-defined limit_value. Overrides the
MsgLimitCount variable in the modelsim.ini file.

• -no1164

(optional) Causes the source files to be compiled without taking advantage of the built-in
version of the IEEE std_logic_1164 package. This will typically result in longer simulation
times for VHDL programs that use variables and signals of type std_logic.

• -noaccel <package_name>

(optional) Turns off acceleration of the specified package in the source code using that
package.

<package_name> — A VHDL package name.

• -nocasestaticerror

(optional) Suppresses case statement static warnings. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions which
are globally static are allowed. This switch prevents the compiler from warning on such
expressions. If the -pedanticerrors switch is specified, this switch is ignored.

• -nocheck

(optional) Disables index and range checks. You can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 337

• -nocreatelib

(optional) Stops automatic creation of missing work libraries and reverts back to 10.3x and
earlier version behavior. Overrides the CreateLib modelsim.ini variable.

• -nodbgsym

(optional) Disables the generation of the symbols debugging database in the compiled
library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

You should only specify this switch if you know that anyone using the library will not
require this information for design analysis purposes.

• -noDeferSubpgmCheck

(optional) Causes range and length violations detected within subprograms to be reported as
errors (instead of as warnings). As an alternative to using this argument, you can set the
NoDeferSubpgmCheck variable in the modelsim.ini file to a value of 1.

• -nofprangecheck

(optional) Disables range checks on floating type values only.

• -noFunctionInline

(optional) Turns off VHDL subprogram inlining for design units using a local copy of a
VHDL package. This may be needed in case the local package has the same name as an MTI
supplied package.

• -noindexcheck

(optional) Disables checking on indexing expressions to determine whether indexes are
within declared array bounds.

• -nologo

(optional) Disables display of the startup banner.

• -nonstddriverinit

(optional) Forces ModelSim to match pre-5.7c behavior in initializing drivers in a particular
case. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly initialized
drivers if the port did not have an explicit initialization value and the actual signal connected
to the port had explicit initial values. Depending on a number of factors, ModelSim could
incorrectly use the actual signal's initial value when initializing lower level drivers. Note
that the argument does not cause all lower-level drivers to use the actual signal's initial
value. It does this only in the specific cases where older versions used the actual signal's
initial value.

ModelSim® Command Reference Manual, v10.5c338

Commands
vcom

• -noothersstaticerror

(optional) Disables warnings that result from array aggregates with multiple choices having
"others" clauses that are not locally static. If -pedanticerrors is specified, this switch is
ignored.

• -norangecheck

(optional) Disables run time range checking. In some designs, this results in a 2X speed
increase. Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. If you run a simulation with range checking disabled, any scalar values that are
out of range are indicated by showing the value in the following format: ?(N) where N is the
current value.

• -note <msg_number> [,<msg_number>, …]

(optional) Changes the severity level of the specified message(s) to "note. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

<msg_number> — A number identifying the message. Multiple message numbers are
specified as a comma separated list.

• -novitalcheck

(optional) Disables Vital level 1 and Vital level 0 checks defined in section 4 of the Vital-95
Spec (IEEE Std 1076.4-1995).

• -nowarn <category_number>

(optional) Selectively disables a category of warning messages. Warnings may be disabled
for all compiles via the Main window Compile > Compile Options menu command or the
modelsim.ini file (Refer to modelsim.ini Variables).

<category_number> — Specifies one or more numbers corresponding to the categories
in Table 2-6. Multiple message categories are specified as a comma separated list.

Table 2-6. Warning Message Categories for vcom -nowarn

Category
number

Description

1 unbound component

2 process without a wait statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

6 VITAL compliance checks (“VitalChecks” also works)

7 VITAL optimization messages

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 339

Multiple message categories are specified as a comma separated list.

• -oldconfigvis

(optional) Forces vcom to process visibility of VHDL component configurations consistent
with prior releases. Default behavior is to comply with Language Reference Manual
visibility rules. Refer to vcom -lrmconfigvis or the modelsim.ini variable
OldVHDLConfigurationVisibility for more information.

• -optionset <optionset_name>

(optional) Calls an optionset as defined in the modelsim.ini file. Refer to the section
“Optionsets” on page 26for more information.

• -outf <filename>

(optional) Specifies a file to which the final list of options is saved, after recursively
expanding all -f, -file and -F files.

• -pedanticerrors

(optional) Forces display of an error message (rather than a warning) on a variety of
conditions. Refer to “Enforcing Strict 1076 Compliance” for a complete list of these
conditions. This argument overrides -nocasestaticerror and -noothersstaticerror (refer
above).

You can also view a complete list of errors by executing the command:

verror -kind vcom -pedanticerrors

• -performdefaultbinding

(optional) Enables default binding when it has been disabled via the
RequireConfigForAllDefaultBinding option in the modelsim.ini file.

• -preserve

(optional) Forces vcom to preserve the case of letters in object identifiers. Can also be
enabled by setting the PreserveCase variable to 1 in the modelsim.ini file.

• -[w]prof=<filename>

(optional; -prof and -wprof are mutually exclusive) Enables CPU (-prof) or WALL (-wprof)
time based profiling and saves the profile data to <filename>. Output from these arguments
is used by Customer Support for debugging purposes.

8 lint checks

9 signal value dependency at elaboration

10 VHDL-1993 constructs in VHDL-1987 code

14 locally static error deferred until simulation run

Table 2-6. Warning Message Categories for vcom -nowarn (cont.)

Category
number

Description

ModelSim® Command Reference Manual, v10.5c340

Commands
vcom

• -proftick=<integer>

(optional) Sets the time interval between the profile data collections. Default = 10.

• -quiet

(optional) Disables ‘Loading’ messages.

• -rangecheck

(default) Enables run time range checking. Range checking can be disabled using the
-norangecheck argument.

• -refresh <primary> [<secondary>]

(optional) Regenerates a library image. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vcom -work
<your_lib_name> -refresh).

<primary> [<secondary>] — Specifies the entity, package, configuration, or module to
be deleted.

• If <primary> is an entity — only that entity, no related architectures, is
refreshed.

• If <primary> is a package — the only legal value of <secondary> is “body”, and
only the package is refreshed.

• If you specify both <primary> and <secondary> — Only the <secondary>
architecture is updated, not the entity.

If a dependency checking error occurs which prevents the refresh, use the vcom
-force_refresh argument. Refer to the vcom Examples for more information. You may use a
specific design name with -refresh to regenerate a library image for that design, but you may
not use a file name.

You cannot specify the <filename> argument when specifying this argument.

• -s

(optional) Instructs the compiler not to load the standard package. This argument should
only be used if you are compiling the standard package itself.

• -separateConfigLibrary

Allows the declaration of a VHDL configuration to occur in a different library than the
entity being configured. Strict conformance to the VHDL standard (LRM) requires that they
be in the same library.

• -showsubprograms | -noshowsubprograms

(optional) Toggles viewing VHDL subprogram scopes on the command line and in GUI
windows, for example, the Structure window. The default is not to show subprogram
scopes.

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 341

• -skip abcep

(optional) Directs the compiler to skip all:

a — architectures

b — bodies

c — configurations

e — entities

p — packages

Any combination in any order can be used, but one choice is required if you use this switch.

• -skipsynthoffregion

(optional) Ignore all constructs within synthesis_off or translate_off pragma regions.

• -smartdbgsym

(optional) Reduces the size of design libraries by minimizing the amount of debugging
symbol files generated at compile time.

Edit the SmartDbgSym variable in the modelsim.ini file to set a permanent default.

• -source

(optional) Displays the associated line of source code before each error message that is
generated during compilation. By default, only the error message is displayed.

• -stats [=[+ | -]<feature>[,[+ | -]<mode>]]

(optional) Controls display of compiler statistics sent to a logfile, stdout, or the transcript.
Specifying -stats without options sets the default features (cmd, msg, and time).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. You can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disables the feature. You can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the settings
in the Stats modelsim.ini variable.

Features

all — Display all statistics features (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

perf — Display time and memory performance statistics.

ModelSim® Command Reference Manual, v10.5c342

Commands
vcom

time — (default) Display Start, End, and Elapsed times.

Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vcom -stats=cmd+verbose,perf+list. To add or subtract a mode
globally for all features, specify the modes in a comma-separated list, for example,
vcom -stats=time,perf,list,-verbose. You cannot specify global and feature specific
modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.

list — Display statistics in a Tcl list format when available.

verbose — Display verbose statistics information when available.

Note
You can disable all -stats features by specifying vcom -quiet.

• -suppress <msg_number>[,<msg_number>,…]

(optional) Prevents the specified message(s) from displaying. The <msg_number> is the
number preceding the message you wish to suppress. You cannot suppress Fatal or Internal
messages. Edit the suppress variable in the modelsim.ini file to set a permanent default.
Refer to “Message Severity Level” for more information.

<msg_number> — A number identifying the message. Multiple message numbers are
specified as a comma separated list.

• -version

(optional) Returns the version of the compiler as used by the licensing tools.

• -vitalmemorycheck

(optional) Enables VITAL level 1 checks.

• -vmake

(optional) Generates a complete record of all command line data and files accessed during
the compile of a design. This data is then used by the vmake command to generate a
comprehensive makefile for recompiling the design library. By default, vcom stores compile
data needed for the -refresh switch and ignores compile data not needed for -refresh. The
-vmake switch forces inclusion of all file dependencies and command line data accessed
during a compile, whether they contribute data to the initial compile or not. Executing this
switch can increase compile time in addition to increasing the accuracy of the compile. refer
to the vmake command for more information.

• -warning <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

Commands
vcom

ModelSim® Command Reference Manual, v10.5c 343

<msg_number> — A number identifying the message. Multiple message numbers are
specified as a comma separated list.

• -warning error

(optional) Reports all warnings as errors.

• -work <library_name>

(optional) Maps a library to the logical library work. By default, the compiled design units
are added to the work library. The specified pathname overrides the pathname specified for
work in the project file.

<library_name> — A logical name or pathname of a library.

• <filename>

(required, except for when you specify -refresh or -force_refresh) Specifies the name of a
file containing the VHDL source to be compiled. One filename is required; multiple
filenames can be entered separated by spaces.Wildcards may be used, for example, *.vhd.

If you don’t specify a filename, and you are using the GUI, a dialog box pops up allowing
you to select the options and enter a filename.

Examples

• Compile the VHDL source code contained in the file example.vhd.

vcom example.vhd

• ModelSim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom -87 o_units1.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

• When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -noaccel numeric_std example.vhd

• Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration data types in VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there is an implicit one. This implicit declaration
can be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

vcom -explicit example.vhd

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

ARITHMETIC."="(left, right)

ModelSim® Command Reference Manual, v10.5c344

Commands
vcom

• The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim (4.6 and
later only).

vcom -work mylib -refresh

• Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vcom -stats=time,-cmd,msg

• The first -stats option is ignored. The none option disables all modelsim.ini settings and
then enables the perf option.

vcom -stats=time,cmd,msg -stats=none,perf

Commands
vdel

ModelSim® Command Reference Manual, v10.5c 345

vdel
This command deletes a design unit from a specified library. This command provides additional
information with the -help switch.

Syntax

vdel [-lib <library_path>] [-modelsimini <path/modelsim.ini>] [-verbose]
{-all | <primary> [<arch_name>]| -obj {<object_info>}] | -dpiobj [<object_info>] }

Arguments

• -all

(optional) Deletes an entire library.

Caution
You cannot recover libraries once deleted. You are not prompted for confirmation.

• -dpiobj [<object_info>]

(optional) Delete auto-compiled DPI object files.

<object_info> — Specifies the type of object to remove, as reported by the output of the
vdir -obj command. This will take the form of either:

<compiler> — a string identifying the compiler, such as gcc-3.3.1.

<platform> — a string identifying the platform.

<platform-compiler> — a string identifying a compiler/platform pair, such as
linux_gcc-3.2.3.

all — Specifies that all objects should be removed, as reported by the output of the
vdir -obj command.

• -lib <library_path>

(optional) Specifies location of the library that holds the design unit to be deleted. By
default, the design unit is deleted from the work library.

<library_path> — A logical name or pathname of the library.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODELSIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the file itself. On Windows systems the path separator should be a
forward slash (/).

• -obj {<object_info>}

(optional) removes directories containing DPI object files.

ModelSim® Command Reference Manual, v10.5c346

Commands
vdel

<object_info> — Specifies the type of directory to remove, as reported by the output of
the vdir -obj command. This will take the form of either:

<compiler> — a string identifying the compiler, such as gcc-3.3.1.

<platform> — a string identifying the platform.

<platform-compiler> — a string identifying a compiler/platform pair, such as
linux_gcc-3.2.3.

all — Specifies that all directories should be removed, as reported by the output of
the vdir -obj command.

• <primary> [<arch_name>]

(required unless -all is used) Specifies the entity, package, configuration, or module to be
deleted.

<arch_name> — Specifies the name of an architecture to be deleted. If omitted, all of
the architectures for the specified entity are deleted. Invalid for a configuration or a
package.

• -verbose

(optional) Displays progress messages.

Examples

• Delete the work library.

vdel -all

• Delete the synopsys library.

vdel -lib synopsys -all

• Delete the entity named xor and all its architectures from the work library.

vdel xor

• Delete the architecture named behavior of the entity xor from the work library.

vdel xor behavior

• Delete the package named base from the work library.

vdel base

Commands
vdir

ModelSim® Command Reference Manual, v10.5c 347

vdir
This command lists the contents of a design library and checks the compatibility of a vendor
library. If vdir cannot read a vendor-supplied library, the library may not be compatible with
ModelSim.

Syntax

vdir [-l | [-prop <prop>]] [-r] [-all | [-lib <library_name>]] [<design_unit>]
[-modelsimini <path/modelsim.ini>]

Description

This command provides additional information with the -help switch.

Arguments

• -all

(optional) Lists the contents of all libraries listed in the Library section of the active
modelsim.ini file. Refer to modelsim.ini Variables for more information.

• <design_unit>

(optional) Indicates the design unit to search for within the specified library. If the design
unit is a VHDL entity, its architectures are listed. By default all entities, configurations,
modules, packages, and optimized design units in the specified library are listed.

• -l

(optional) Prints the version of vcom/vlog with which each design unit was compiled, plus
any compilation options used. Also prints the object-code version number that indicates
which versions of vcom/vlog and ModelSim are compatible.

• -lib <library_name>

(optional) Specifies the logical name or the pathname of a library to be listed. By default, the
contents of the work library are listed.

<library_name> — A logical name or pathname of a library.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODELSIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the file itself. On Windows systems the path separator should be a
forward slash (/).

• -prop <prop>

(optional) Reports on a specified design unit property.

<prop> — Specifies a Design Unit Property, as listed in Table 2-7. If you do not specify
a value for <prop>, an error message is displayed.

ModelSim® Command Reference Manual, v10.5c348

Commands
vdir

• -r

(optional) Prints architecture information for each entity in the output.

Examples

• List the architectures associated with the module named and2 that reside in the default
library work.

vdir -l and2

Table 2-7. Design Unit Properties

Value of <prop> Description

archcfg configuration for arch

body needs a body

cmpltime compilation time

default default options

dir source directory

dpnd depends on

entcfg configuration for entity

fulloptions Full compile options

inline module inlined

lock lock/unlock status

lrm language standard

mtime source modified time

name short name

opcode opcode format

options compile options

pdu preoptimized design unit

root optimized Verilog design root

src source file

top top level model

ver version string

vlogv Verilog version

Commands
vdir

ModelSim® Command Reference Manual, v10.5c 349

Library vendor : Model Technology
Maximum unnamed designs : 3
MODULE and2
Verilog version: <XO@d;_mSdz@12Fz9b]_Z3
Version string: 3EdggZ>V3z51fE;>K[51?2
Source directory: C:\examples\dataflow_verilog
Source modified time: Tue Apr 28 22:48:56 2009
HDL source file: gates.v
Source file: gates.v
Start location: gates.v:18
Opcode format: 10.1a; VLOG SE Object version 51
Optimized Verilog design root: 1
VHDL language standard: 1
Compile options: -L mtiAvm -L mtiOvm -L mtiUvm -L mtiUPF
Debug Symbol file exists

ModelSim® Command Reference Manual, v10.5c350

Commands
vencrypt

vencrypt
This command encrypts Verilog and SystemVerilog code contained within encryption
envelopes. The code is not pre-processed before encryption, so macros and other `directives are
unchanged. This allows IP vendors to deliver encrypted IP with undefined macros and
`directives.

Syntax

vencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>]
[-hea <filename>] [-logfile <filename> | -l <filename>] [-o <filename>] [-p <prefix>]
[-quiet] [[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]]

Description

Upon execution of this command, the filename extension will be changed to .vp for Verilog files
(.v files) and .svp for SystemVerilog files (.sv files).

If the vencrypt utility processes the file (or files) and does not find any encryption directives it
reprocesses the file using the following default encryption:

`pragma protect data_method = "aes128-cbc"
`pragma protect key_keyowner = "MTI"
‘pragma protect key_keyname = "MGC-DVT-MTI"
‘pragma protect key_method = "rsa"
`pragma protect key_block encoding = (enctype = "base64")
`pragma protect begin

The vencrypt command must be followed by a compile command – such as vlog – for the
design to be compiled.

This command provides additional information with the -help or -hel switch.

Arguments

• <filename>

(required) Specifies the name of the Verilog source code file to encrypt. One filename is
required. Multiple filenames can be entered separated by spaces. Wildcards can be used.
Default encryption pragmas will be used, as described above, if no encryption directives are
found during processing.

• -d <dirname>

(optional) Specifies where to save encrypted Verilog files. If no directory is specified,
current working directory will be used.

<dirname> — Specifies the directory to contain the encrypted Verilog or SystemVerilog
files. The original file extension (.v for Verilog and .sv for SystemVerilog) will be
preserved.

Commands
vencrypt

ModelSim® Command Reference Manual, v10.5c 351

• -e <extension>

(optional) Specifies a filename extension.

<extension> — Any alpha-numeric string.

• -f <filename>

(optional) Specifies a file with more command line arguments. Allows complex arguments
to be reused without retyping. Nesting of -f options is allowed.

Refer to the section “Argument Files” on page 27 for more information.

<filename> — Specifies the name of a file containing command line arguments.

• -hea <filename>

(optional) Concatenates header information into all design files listed with <filename>.
Allows the user to pass a large number of files to the vencrypt utility that do not contain the
`pragma protect or `protect information about how to encrypt the file. Saves the user from
editing hundreds of files to add in the same `pragma protect to every file.

<filename> — Specifies an existing file.

• -logfile <filename> | -l <filename>

(optional) Redirects log output to the file designated by <filename>.

<filename> — Specifies a file for saving output.

• -o <filename>

(optional) Combines all encrypted output into a single file.

<filename> — Specifies a file for saving output.

• -p <prefix>

(optional) Prepends file names with a prefix.

<prefix> — Any alpha-numeric string.

• -quiet

(optional) Disables encryption messages.

• -stats [=[+ | -]<feature>[,[+ | -]<mode>]

(optional) Controls display of statistics sent to a logfile, stdout, or the transcript. Specifying
-stats without options sets the default features (cmd and msg).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. You can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disables the feature. You can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the default
settings "cmd,msg".

ModelSim® Command Reference Manual, v10.5c352

Commands
vencrypt

Features

all — Display all statistics features (cmd, msg, perf). Mutually exclusive with none
option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

perf — Display time and memory performance statistics.

time — Display Start, End, and Elapsed times. Has no effect and is ignored.

Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vencrypt -stats=cmd+verbose,perf+list. To add or subtract a
mode globally for all features, specify the modes in a comma-separated list, for
example, vencrypt -stats=time,perf,list,-verbose. You cannot specify global and
feature specific modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.

list — Display statistics in a Tcl list format when available.

verbose — Display verbose statistics information when available.

Note
vencrypt -quiet disables all default or user-specified -stats features.

Examples

• Insert header information into all design files listed.

vencrypt -h encrypt_head top.v cache.v gates.v memory.v

The encrypt_head file may look like the following:

`pragma protect data_method = "aes128-cbc"
`pragma protect author = "IP Provider"
`pragma protect key_keyowner = "MTI", key_method = "rsa"
`pragma protect key_keyname = "MGC-DVT-MTI"
`pragma protect begin

There is no `pragma protect end expression in the header file, just the header block that
starts the encryption. The `pragma protect end expression is implied by the end of the
file. For more detailed examples, refer to "Protecting Your Source Code" in the User’s
Manual.

• Enable the display of message count summary. Echoing of the command line is
disabled.

Commands
vencrypt

ModelSim® Command Reference Manual, v10.5c 353

vencrypt -stats=msg,-cmd,

• The first -stats option is ignored. The none option disables all default settings and then
enables the perf option.

vencrypt -stats=msg,cmd -stats=none,perf

Related Topics

Protecting Your Source Code

vhencrypt

ModelSim® Command Reference Manual, v10.5c354

Commands
verror

verror
Returns a detailed description about a message number or a list of messages related to a
specified portion of the product.

Syntax

verror [-fmt | -full] <msgNum> ...

verror [-fmt | -full] [-kind <tool>] -all

verror [-kind <tool>] {-pedanticerrors | -permissive | -suppressibleerrors}

Arguments

• -fmt | -full

(optional) Specifies the type and amount of information to return.

-fmt

Returns the format string used in the message.

-full

Returns the format string and complete text associated with the message.

• [-kind <tool>] -all

(required when not specifying <msgNum>) Returns information about all messages
associated with a specified tool, where <tool> can be one of the following:

• [-kind <tool>] {-pedanticerrors | -permissive | -suppressibleerrors}

(optional) Specifies filtering for messages according to either or both of the following:

<tool>

Any of the values allowed for the -kind argument.

-pedanticerrors

Display messages that are reported as errors due to adhering to a more strict
interpretation of the LRM.

aid hm_entity mc2com qverilog

sccom scgenmod sdfcomp sm_entity

vcd2wlf vcom vcovkill vdel

vdir vencrypt vgencomp vish

vlib vlog vmake vmap

vopt vsim wlf wlf2log

wlfman wlfrecover

Commands
verror

ModelSim® Command Reference Manual, v10.5c 355

-permissive

Display messages reported as warnings that would be displayed as errors if you use
vsim -pedanticerrors.

-suppressibleerrors

Display messages that you can suppress from the command line or modelsim.ini file.

• <msgNum>

(required when not specifying -all) Specifies the message number(s) you would like more
information about. You can find the message number in messages of the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsg>

You can specify <msgNum> any number of times for one verror command in a space-
separated list.

Optionally, you can specify the toolname prior to the message number, similar to how it
appears in an error message. For example:

verror vsim-5003

Examples

• If you receive the following message in the transcript:

** Error (vsim-3061) foo.v(22): Too many Verilog port connections.

and you would like more information about this message, you would type:

verror 3061

and receive the following output:

Message # 3061:
Too many Verilog ports were specified in a mixed VHDL/Verilog
instantiation. Verify that the correct VHDL/Verilog connection is
being made and that the number of ports matches.
[DOC: ModelSim User's Manual - Mixed VHDL and Verilog Designs
Chapter]

ModelSim® Command Reference Manual, v10.5c356

Commands
vgencomp

vgencomp
Once a Verilog module is compiled into a library, you can use this command to write its
equivalent VHDL component declaration to standard output.

Syntax

vgencomp [-lib <library_name>] [-b] [-bool] [-modelsimini <path/modelsim.ini>] [-s] [-v] [-
work <name>] <module_name>

Description

Optional switches allow you to generate bit or vl_logic port types; std_logic port types are
generated by default.

This command provides additional information with the -help switch.

Arguments

• -lib <library_name>

(optional) Specifies the working library where the default is to use the work library.

<library_name> — Specifies the path and name of the working library.

• -b

(optional) Causes vgencomp to generate bit port types.

• -bool

(optional) Causes vgencomp to generate boolean port types.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODELSIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the file itself. On Windows systems the path separator should be a
forward slash (/).

• -s

(optional) Used for the explicit declaration of default std_logic port types.

• -v

(optional) Causes vgencomp to generate vl_logic port types.

• -work <name>

(optional) Specifies the name of the work library, where the default is the library containing
the module.

• <module_name>

(required) Specifies the name of the Verilog module to be accessed.

Commands
vgencomp

ModelSim® Command Reference Manual, v10.5c 357

Examples

• This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

and writes the following to stdout:

component top
generic(

width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector

);
end component;

ModelSim® Command Reference Manual, v10.5c358

Commands
vhencrypt

vhencrypt
This command encrypts VHDL code contained within encryption envelopes. The code is not
compiled before encryption, so dependent packages and design units do not have to exist before
encryption.

Syntax

vhencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>]
[-hea <filename>] [-logfile <filename> | -l <filename>] [-o <filename>] [-p <prefix>]
[-quiet] [-stats [=[+ | -]<feature>[,[+ | -]<mode>]]

Description

Upon execution of this command, the .vhd filename extension is changed to .vhdp and the .vhdl
filename extension is changed to .vhdlp.

If the vhencrypt utility does not find any encryption directives, no output file is produced.

The vhencrypt command must be followed by a compile command – such as vcom – for the
design to be compiled.

This command provides additional information with the -help or -hel switch.

Arguments

• <filename>

(required) Specifies the name of the VHDL source code file to encrypt. One filename is
required. Multiple filenames can be entered separated by spaces. Wildcards can be used.

• -d <dirname>

(optional) Specifies where to save encrypted VHDL files. If no directory is specified, the
current working directory will be used.

<dirname> — Specifies the directory to contain the encrypted VHDL files. The original
file extension (.vhd or .vhdl) will be preserved.

• -e <extension>

(optional) Specifies a filename extension to be applied to the encrypted file.

<extension> — Any alpha-numeric string.

• -f <filename>

(optional) Specifies a file with more command line arguments. Allows complex arguments
to be reused without retyping. Nesting of -f options is allowed.

Refer to the section “Argument Files” on page 27 for more information.

<filename> — Specifies the name of a file containing command line arguments.

Commands
vhencrypt

ModelSim® Command Reference Manual, v10.5c 359

• -hea <filename>

(optional) Concatenates header information into all design files listed with <filename>.
Allows the user to pass a large number of files to the vhencrypt utility that do not contain the
encryption information (between the `protect and `protect end directives) about how to
encrypt the file. Saves the user from editing hundreds of files to add the same encryption
information into every file.

<filename> — Specifies an existing file.

• -logfile <filename> | -l <filename>

(optional) Redirects log output to the file designated by <filename>.

<filename> — Specifies a file for saving output.

• -o <filename>

(optional) Combines all encrypted output into a single file.

<filename> — Specifies a file for saving output.

• -p <prefix>

(optional) Prepends encrypted file names with a prefix.

<prefix> — Any alpha-numeric string.

• -quiet

(optional) Disables encryption messages.

• -stats [=[+ | -]<feature>[,[+ | -]<mode>]

(optional) Controls display of statistics sent to a logfile, stdout, or the transcript. Specifying
-stats without options sets the default features (cmd and msg).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. You can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disables the feature. You can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the default
settings "cmd,msg".

Features

all — Display all statistics features (cmd, msg, perf). Mutually exclusive with none
option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

ModelSim® Command Reference Manual, v10.5c360

Commands
vhencrypt

perf — Display time and memory performance statistics.

time — Display Start, End, and Elapsed times. Has no effect and is ignored.

Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vhencrypt -stats=cmd+verbose,perf+list. To add or subtract a
mode globally for all features, specify the modes in a comma-separated list, for
example, vhencrypt -stats=time,perf,list,-verbose. You cannot specify global and
feature specific modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.

list — Display statistics in a Tcl list format when available.

verbose — Display verbose statistics information when available.

Note
vhencrypt -quiet disables all default or user-specified -stats features.

Examples

• Enable the display of message count summary. Echoing of the command line is
disabled.

vhencrypt -stats=msg,-cmd,

• The first -stats option is ignored. The none option disables all default settings and then
enables the perf option.

vhencrypt -stats=msg,cmd -stats=none,perf

Related Topics

Protecting Your Source Code

vencrypt

Commands
view

ModelSim® Command Reference Manual, v10.5c 361

view
This command opens the specified window. If you specify this command without arguments, it
returns a list of all open windows in the current layout.

Syntax

view <window_type>…[-aliases][-names] [-title {New Window Title}]
[-undock {[-icon] [-height <n>] [-width <n>] [-x <n>] [-y <n>]} | -dock]

Description

To remove a window, use the noview command.

The view command with one or more options and no window names specified applies the
options to the currently open windows. Refer to examples for additional details.

Arguments

• <window_type>…

(required) Specifies the window type to view. You do not need to type the full type name
(see the examples below); implicit wildcards are accepted; multiple window types are
accepted. Available window types are:

Not all windows are available with all variants of ModelSim and Questa SIM

• -aliases

(optional) Returns a list of <window_type> aliases.

• -height <n>

(optional) Specifies the window height in pixels. Can only be used with the -undock switch.

assertions atv browser calltree

canalysis capacity classgraph classtree

covergroups dataflow details duranked

exclusions fcovers files fsmlist

fsmview instance library list

locals memdata memory msgviewer

objects process profiledetails project

ranked runmgr schematic source

stackview structural structure tracker

transaction transcript uvmdetails watch

wave

ModelSim® Command Reference Manual, v10.5c362

Commands
view

<n> — Any non-negative integer.

• -icon

(optional) Toggles the view between window and icon. Can only be used with the -undock
switch.

• -names

(optional) Returns a list of valid <window_type> arguments.

• -title {New Window Title}

(optional) Specifies the window title of the designated window.

{New Window Title} — Any string. Curly braces are needed for a string containing
spaces. Double quotes (" ") can be used in place of braces, for example "New
Window Title."

• -dock

(optional) Docks the specified standalone window into the Main window.

• -undock

(optional) Opens the specified window as a standalone window, undocked from the Main
window.

• -width <n>

(optional) Specifies the window width in pixels. Can only be used with the -undock switch.

<n> — Any non-negative integer.

• -x <n>

(optional) Specifies the window upper-left-hand x-coordinate in pixels. Can only be used
with the -undock switch.

<n> — Any non-negative integer.

• -y <n>

(optional) Specifies the window upper-left-hand y-coordinate in pixels. Can only be used
with the -undock switch.

<n> — Any non-negative integer.

Examples

• Undock the Wave window from the Main window and makes it a standalone window.

view -undock wave

• Display an undocked Processes window in the upper left-hand corner of the monitor
with a window size of 300 pixels, square.

view process -undock -x 0 -y 0 -width 300 -height 300

• Display the Watch and Wave windows.

Commands
view

ModelSim® Command Reference Manual, v10.5c 363

view w

• Display the Objects and Processes windows.

view ob pr

• Open a new Wave window with My Wave Window as its title.

view -title {My Wave Window} wave

ModelSim® Command Reference Manual, v10.5c364

Commands
virtual count

virtual count
This command reports the number of currently defined virtuals that were not read in using a
macro file.

Syntax

virtual count [-kind {implicits | explicits}] [-unsaved]

Arguments

• -kind {implicits | explicits}

(optional) Reports only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -unsaved

(optional) Reports the count of only those virtuals that have not been saved to a macro file.

Related Topics

virtual define

virtual save

virtual show

Virtual Objects

Commands
virtual define

ModelSim® Command Reference Manual, v10.5c 365

virtual define
This command prints to the transcript the definition of the virtual signals, functions, or regions
in the form of a command that can be used to re-create the object.

Syntax

virtual define [-kind {implicits | explicits}] <pathname>

Arguments

• -kind {implicits | explicits}

(optional) Transcripts only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• <pathname>

(required) Specifies the path to the virtual(s) for which you want definitions, where
wildcards are allowed.

Examples

• Show the definitions of all the virtuals you have explicitly created.

virtual define -kind explicits *

Related Topics

virtual describe

virtual show

Virtual Objects

ModelSim® Command Reference Manual, v10.5c366

Commands
virtual delete

virtual delete
This command removes the matching virtuals.

Syntax

virtual delete [-kind {implicits | explicits}] <pathname>

Arguments

• -kind {implicits | explicits}

(optional) Removes only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• <pathname>

(required) Specifies the path to the virtual(s) you want to delete, where wildcards are
allowed.

Examples

• Delete all of the virtuals you have explicitly created.

virtual delete -kind explicits *

Related Topics

virtual signal

virtual function

Virtual Objects

Commands
virtual describe

ModelSim® Command Reference Manual, v10.5c 367

virtual describe
This command prints to the transcript a complete description of the data type of one or more
virtual signals. Similar to the existing describe command.

Syntax

virtual describe [-kind {implicits | explicits}] <pathname>

Arguments

• -kind {implicits | explicits}

(optional) Transcripts only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• <pathname>

(required) Specifies the path to the virtual(s) for which you want descriptions, where
wildcards are allowed.

Examples

• Describe the data type of all virtuals you have explicitly created.

virtual describe -kind explicits *

Related Topics

virtual define

virtual show

Virtual Objects

ModelSim® Command Reference Manual, v10.5c368

Commands
virtual expand

virtual expand
This command prints to the transcript a list of all the non-virtual objects contained in the
specified virtual signal(s). You can use this to create a list of arguments for a command that
does not accept or understand virtual signals.

Syntax

virtual expand [-base] <pathname> ...

Arguments

• -base

(optional) Outputs the root signal parent in place of a subelement. For example:

vcd add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vcd add signala signalb signalc

• <pathname>

(required) Specifies the path to the signals and virtual signals to expand, where wildcards
are allowed and you can specify any number of paths.

Examples

• Add the elements of a virtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand …"), then the result substituted into the surrounding
command.

vcd add [virtual expand myVirtualSignal]

Therefore, if myVirtualSignal is a concatenation of signala, signalb.rec1 and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is enclosed in curly braces, because it contains spaces.

Related Topics

virtual signal

Virtual Objects

Commands
virtual function

ModelSim® Command Reference Manual, v10.5c 369

virtual function
This command creates a new signal, known only by the GUI (not the kernel), that consists of
logical operations on existing signals and simulation time, as described in <expressionString>.

Syntax

virtual function [-env <path>] [-install <path>] [-delay <time> <unit>] {<expressionString>}
<name>

Description

It cannot handle bit selects and slices of Verilog registers. Please see “Syntax and Conventions”
on page 13 for more details on syntax.

If the virtual function references more than a single scalar signal, it will display as an
expandable object in the Wave and Objects windows. The children correspond to the inputs of
the virtual function. This allows the function to be "expanded" in the Wave window to see the
values of each of the input waveforms, which could be useful when using virtual functions to
compare two signal values.

Virtual functions can also be used to gate the List window display.

Note
The virtual function and virtual signal commands are interchangeable. The product will
keep track of whether you’ve created a signal or a function with the commands and maintain

them appropriately. We document both commands because the virtual save, virtual describe,
and virtual define commands will reference your virtual objects using the correct command.

Arguments

Arguments for virtual function are the same as those for virtual signal, except for the contents of
the expression string.

• -env <path>

(optional) Specifies a hierarchical context for the signal names in <expressionString> so
they don't all have to be full paths.

<path> — Specifies a relative path to the signal(s).

• -install <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions.

<path> — Specifies a relative path to the signal(s). On Windows systems the path
separator should be a forward slash (/).

ModelSim® Command Reference Manual, v10.5c370

Commands
virtual function

• -delay <time> <unit>

(optional) Specifies a value by which the virtual function will be delayed. You can use
negative values to look forward in time. Refer to the examples below for more details.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. You must enclose <time> and <unit> within curly braces
({}).

• {<expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
“GUI_expression_format” on page 32.

• <name>

(required) The name you define for the virtual signal.

Case is ignored unless installed in a Verilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
(" ") or with curly braces ({ }).

Examples

• Create a signal /chip/section1/clk_n that is the inverse of /chip/section1/clk.

virtual function { not /chip/section1/clk } clk_n

• Create a std_logic_vector equivalent of a Verilog register rega and installs it as /chip/
rega_slv.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega } rega_slv

• Create a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is equal to
hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

• Create a signal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff is installed
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being compared.

virtual function { gate:/chip/siga XOR rtl:/chip/siga } siga_diff

• Create a virtual signal consisting of the logical "AND" function of /top/signalA with
/top/signalB, and delays it by 10 ns.

Commands
virtual function

ModelSim® Command Reference Manual, v10.5c 371

virtual function -delay {10 ns} {/top/signalA AND /top/signalB} myDelayAandB

• Create a one-bit signal outbus_diff which is non-zero during times when any bit of /chip/
outbus in the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction" operator, which takes the logical OR of all the
bits of the vector argument.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff

Commands fully compatible with virtual functions

Commands not compatible with virtual functions

Related Topics

virtual count

virtual define

virtual delete

virtual describe

virtual expand

virtual hide

virtual log

Virtual Objects

virtual nohide

virtual nolog

virtual region

virtual save

virtual show

virtual signal

virtual type

add log and log delete describe

examine find restart

searchlog show

drivers force noforce

vcd add when

ModelSim® Command Reference Manual, v10.5c372

Commands
virtual hide

virtual hide
This command causes the specified real or virtual signals to not be displayed in the Objects
window. This is used when you want to replace an expanded bus with a user-defined bus. You
make the signals reappear using the virtual nohide command.

Syntax

virtual hide {{[-kind {implicits | explicits}] | [-region <path>]} <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Hides only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for the signal names.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be a forward slash (/).

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to hide, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics

virtual nohide

Virtual Objects

Commands
virtual log

ModelSim® Command Reference Manual, v10.5c 373

virtual log
This command causes the simulation-mode dependent signals of the specified virtual signals to
be logged by the kernel. If wildcard patterns are used, it will also log any normal signals found,
unless the -only option is used. You unlog the signals using the virtual nolog command.

Syntax

virtual log {[-kind {implicits | explicits}] | [-region <path>]} [-recursive] [-only] [-in] [-out]
[-inout] [-internal] [-ports] <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Logs only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for signals to log.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be a forward slash (/).

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

• -only

(optional) Specify that only virtual signals (as opposed to all signals) found by a <pattern>
containing a wildcard should be logged.

• -in

(optional) Specifies that the kernel log data for ports of mode IN whose names match the
specification.

• -out

(optional) Specifies that the kernel log data for ports of mode OUT whose names match the
specification.

• -inout

(optional) Specifies that the kernel log data for ports of mode INOUT whose names match
the specification.

ModelSim® Command Reference Manual, v10.5c374

Commands
virtual log

• -internal

(optional) Specifies that the kernel log data for internal (non-port) objects whose names
match the specification.

• -ports

(optional) Specifies that the kernel log data for all ports.

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to log, where you can specify any number of names or wildcard patterns.

Related Topics

Virtual Objects

virtual nolog

Commands
virtual nohide

ModelSim® Command Reference Manual, v10.5c 375

virtual nohide
This command reverses the effect of a virtual hide command, causing the specified real or
virtual signals to reappear the Objects window.

Syntax

virtual nohide {[-kind {implicits | explicits}] | [-region <path>]} <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Unhides only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for the signal names.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be a forward slash (/).

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to hide, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics

virtual hide

Virtual Objects

ModelSim® Command Reference Manual, v10.5c376

Commands
virtual nolog

virtual nolog
This command reverses the effect of a virtual log command. It causes the simulation-dependent
signals of the specified virtual signals to be excluded ("unlogged") by the kernel. If wildcard
patterns are used, it will also unlog any normal signals found, unless the -only option is used.

Syntax

virtual nolog {[-kind {implicits | explicits}] | [-region <path>]} [-recursive] [-only] [-in] [-out]
[-inout] [-internal] [-ports] <pattern>

Arguments

• -kind {implicits | explicits}

(optional) Excludes only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -region <path>

(optional) Specifies a region of design space in which to look for signals to unlog.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be a forward slash (/).

• -recursive

(optional) Specifies that the scope of the search is to descend recursively into subregions. If
omitted, the search is limited to the selected region.

• -only

(optional) Specify that only virtual signals (as opposed to all signals) found by a <pattern>
containing a wildcard should be unlogged.

• -in

(optional) Specifies that the kernel exclude data for ports of mode IN whose names match
the specification.

• -out

(optional) Specifies that the kernel exclude data for ports of mode OUT whose names match
the specification.

• -inout

(optional) Specifies that the kernel exclude data for ports of mode INOUT whose names
match the specification.

Commands
virtual nolog

ModelSim® Command Reference Manual, v10.5c 377

• -internal

(optional) Specifies that the kernel exclude data for internal (non-port) objects whose names
match the specification.

• -ports

(optional) Specifies that the kernel exclude data for all ports.

• <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to unlog, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics

virtual log

Virtual Objects

ModelSim® Command Reference Manual, v10.5c378

Commands
virtual region

virtual region
This command creates a new user-defined design hierarchy region.

Note
Virtual regions cannot be used in the when command.

Syntax

virtual region <parentPath> <regionName>

Arguments

• <parentPath>

(required) The full path to the region that will become the parent of the new region.

• <regionName>

(required) The name you want for the new region.

Related Topics

virtual function

virtual signal

Virtual Objects

Commands
virtual save

ModelSim® Command Reference Manual, v10.5c 379

virtual save
This command saves the definitions of virtuals to a file named virtual.do in the current
directory.

Syntax

virtual save [-kind {implicits | explicits}] [-append] [<filename>]

Arguments

• -kind {implicits | explicits}

(optional) Saves only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

• -append

(optional) Specifies to save only virtuals that are not already saved or weren’t read in from a
macro file. These unsaved virtuals are then appended to the specified or default file.

• <filename>

(optional) The name of the file containing the definitions. If you don’t specify <filename>,
the default virtual filename (virtuals.do) will be used. You can specify a different default in
the pref.tcl file.

Related Topics

virtual count

Virtual Objects

ModelSim® Command Reference Manual, v10.5c380

Commands
virtual show

virtual show
This command lists the full path names of all explicitly defined virtuals.

Syntax

virtual show [-kind {implicits | explicits}]

Arguments

• -kind {implicits | explicits}

(optional) Lists only a subset of virtuals.

implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.

Related Topics

virtual define

virtual describe

Virtual Objects

Commands
virtual signal

ModelSim® Command Reference Manual, v10.5c 381

virtual signal
This command creates a new signal, known only by the GUI (not the kernel), that consists of
concatenations of signals and subelements as specified in <expressionString>.

Syntax

virtual signal [-env <path>] [-install <path>] [-delay <time> <unit>] {<expressionString>}
<name>

Description

It cannot handle bit selects and slices of Verilog registers. Please see “Concatenation of Signals
or Subelements” on page 39 for more details on syntax.

Note
The virtual function and virtual signal commands are interchangeable. The product will
keep track of whether you’ve created a signal or a function with the commands and maintain

them appropriately. We document both commands because the virtual save, virtual describe,
and virtual define commands will reference your virtual objects using the correct command.

Arguments

• -env <path>

(optional) Specifies a hierarchical context for the signal names in <expressionString> so
they don't all have to be full paths.

<path> — Specifies a relative path to the signal(s). On Windows systems the path
separator should be a forward slash (/).

• -install <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Signals.

<path> — Specifies a relative path to the signal(s). On Windows systems the path
separator should be a forward slash (/).

• -delay <time> <unit>

(optional) Specifies a value by which the virtual function will be delayed. You can use
negative values to look forward in time. Refer to the examples below for more details.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,

ModelSim® Command Reference Manual, v10.5c382

Commands
virtual signal

ns, us, ms, sec, min, and hr. You must enclose <time> and <unit> within curly braces
({}).

• {<expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
“GUI_expression_format” on page 32.

• <name>

(required) The name you define for the virtual signal.

Case is ignored unless installed in a Verilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
(" ") or with curly braces ({ }).

Examples

• Reconstruct a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii are all scalars of the same type.

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_04 & a_03 & a_02 &
a_01 & a_00) } a

• Reconstruct a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -env sim:chip.alu
{ (concat_range [4:0])&{a_04, a_03, a_02, a_01, a_00} } a

• Create a signal sim:/testbench/stuff which is a record type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of
type integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-
defined enumeration.

virtual signal -install sim:/testbench
{ /chipa/alu/a(19 downto 13) & /chipa/decode/inst & /chipa/mode } stuff

• Create a virtual signal that is the same as /top/signalA except it is delayed by 10 ps.

virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

• Create a three-bit signal, chip.address_mode, as an alias to the specified bits.

virtual signal { chip.instruction[23:21] } address_mode

• Concatenate signals a, b, and c with the literal constant ‘000’.

virtual signal {a & b & c & 3'b000} myextendedbus

• Add three missing bits to the bus num, creates a virtual signal fullbus, and then adds that
signal to the Wave window.

Commands
virtual signal

ModelSim® Command Reference Manual, v10.5c 383

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

• Reconstruct a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (for example, num28, num27,
and so on) represented by the … in the syntax above.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" } fullbus
add wave -unsigned fullbus

• Create a two-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).
Alternatively, if bold does not equal bnew, the second bit is false (0). Each
subexpression is evaluated independently.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

• Create signal newbus that is a concatenation of bus1 (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming bus1 has indices running 7 downto 0, the result will be
newbus[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4:7].
See “Concatenation of Signals or Subelements” on page 39 for further details.

virtual signal {(concat_reverse)(bus1 & bus2[7:4])} newbus

Commands fully compatible with virtual signals

Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

Related Topics

virtual count

virtual describe

virtual log

virtual region

add list add log or log add wave

delete describe examine

find force and noforce restart

searchlog show

drivers vcd add

• when

ModelSim® Command Reference Manual, v10.5c384

Commands
virtual signal

virtual function

virtual define

virtual expand

virtual nohide

virtual save

virtual type

virtual delete

virtual hide

virtual nolog

virtual show

Virtual Objects

Commands
virtual type

ModelSim® Command Reference Manual, v10.5c 385

virtual type
This command creates a new enumerated type known only by the GUI, not the kernel. Virtual
types are used to convert signal values to character strings. The command works with signed
integer values up to 64 bits.

Syntax

virtual type -delete <name> | {<list_of_strings>} <name>

Description

Virtual types cannot be used in the when command.

Note
If you are using SystemVerilog, you can also convert signal values to character strings using
associative arrays in your code. See the SystemVerilog LRM for more information.

Arguments

• -delete <name>

(Required if not defining a type.) Deletes a previously defined virtual type.

<name> — The name you gave the virtual type when you originally defined it. .

• {<list_of_strings>}

(Required if -delete is not used.) A list of values and their associated character strings.
Values can be expressed in decimal or based notation and can include "don’t-cares" (see
examples below). Three kinds of based notation are supported: Verilog, VHDL, and C-
language styles. The values are interpreted without regard to the size of the bus to be
mapped. Bus widths up to 64 bits are supported.

If the string contains spaces the string must be enclosed in quotation marks (“ ”) If they
contain special characters square brackets, curly braces, backslashes…), they need to be
quoted within curly braces.

See the examples below for further syntax.

• <name>

(Required if -delete is not used.) The user-defined name of the virtual type. Case is not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs to
be quoted with double quotes (" ") or with curly braces ({ }).

Examples

• Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "state1" when mysignal == 1, "state2" when mysignal == 2, and so on.

ModelSim® Command Reference Manual, v10.5c386

Commands
virtual type

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

• Use sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.

virtual type {{0 NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus
add wave myConvertedBus

• Delete the virtual type "mystateType".

virtual type -delete mystateType

• Create a virtual type that includes "don’t-cares" (the ‘-’ character).

virtual type {{0x01-- add}{0x02-- sub}{default bad}} mydecodetype

• Create a virtual type using a mask for "don’t-cares." The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

virtual type {{0x0100 0xff add}{0x0200 0xff sub}{default bad}} mydecodetype

Related Topics

virtual function

Virtual Objects

Commands
vlib

ModelSim® Command Reference Manual, v10.5c 387

vlib
This command creates a design library. You must use vlib rather than operating system
commands to create a library directory or index file.

Syntax

vlib -help

vlib [-short | -dos | -long | -unix] [-dirpath <pathname>] [-format { 1 | 3 | 4 }]
[-type {directory | archive | flat}]
[{-lock | -unlock} <design_unit>] [-locklib | -unlocklib] [-compress | -nocompress]
<library_name>

Description

If the specified library already exists as a valid ModelSim library, the vlib command will exit
with a warning message without touching the library.

This command provides additional information with the -help switch.

Arguments

• -compress | -nocompress

(optional) Defines whether some compiled results are stored in the library in a compressed
form.

-compress — Compression occurs, producing smaller libraries. However, this can slow
down your subsequent executions of the vopt command.

-nocompress — (default) No compression is made on the libraries.

• -dirpath <pathname>

(optional) Specifies the location of a working directory to be stored in the library in order to
override the current working directory. This allows you hide the directory path information.

Caution
Use of this argument is not recommended.

For example, if you use -dirpath to override the working directory information, then the
ModelSim user interface will not be able to find the source files if the end user selects
something in the design and asks to see the declaration.

• -dos

(optional) Specifies that subdirectories in a library have names that are compatible with
DOS. Not recommended if you use the vmake utility.

On by default for ModelSim PE.

ModelSim® Command Reference Manual, v10.5c388

Commands
vlib

• -format { 1 | 3 | 4 }

(optional) Prepares a library for conversion to be compatible with a previous release, by
altering the _info file.

1 — allows you to convert a library to be compatible with the 6.2 series and earlier.

3 — allows you to convert a library to be compatible with the 6.3 series and newer.

4 — allows you to convert a library to be compatible with the 10.2 series and newer.

The usage flow is:

\\1) Using a current release of the simulator, run:
vlib -format 1 current_lib
vcom -refresh -work current_lib

\\ to prepare current_lib for conversion back to a 6.2 release
\\
\\2) Using a 6.2 release of the simulator, run:

vcom -refresh -work current_lib
\\ to refresh current_lib for use with the previous release

• -long

(optional) Interchangeable with the -unix argument.

• {-lock | -unlock} <design_unit>

(optional) Locks an existing design unit so it cannot be recompiled or refreshed. The
-unlock switch reverses this action. File permissions are not affected by these switches.

• -locklib | -unlocklib

(optional) Locks a complete library so that compilation cannot target the library and the
library cannot be refreshed. The -unlocklib switch reverses this action. File permissions are
not affected by these switches.

• -short

(optional) Interchangeable with the -dos argument.

• -type {directory | archive | flat}

(optional) Specifies the type of library you want to create.

directory — directory-based, legacy library. Use this option when working in a flow
requiring the vmake command.

archive — archive library (replaces vlib -archive option).

flat — (default) condensed library without design unit directories.

• -unix

(optional) Specifies that subdirectories in a library may have long file names that are NOT
compatible with DOS.

• <library_name>

(required) Specifies the pathname of the library to be created.

Commands
vlib

ModelSim® Command Reference Manual, v10.5c 389

Examples

• Create the design library design. You can define a logical name for the library using the
vmap command or by adding a line to the library section of the modelsim.ini file that is
located in the same directory.

vlib design

• Create the design library uut and specifies that any design units compiled into the library
are created as archives.

vlib -type archive uut

ModelSim® Command Reference Manual, v10.5c390

Commands
vlog

vlog
The vlog command compiles Verilog source code and SystemVerilog extensions into a
specified working library (or to the work library by default). Compressed SystemVerilog source
files (those compressed with zlib) are accepted.

Syntax

vlog [options] <filename> [<filename> ...]

[options]:

 [-93]

 [-addpragmaprefix <prefix>]
[-compat] [-compile_uselibs[=<directory_name>]] [-convertallparams] [-cuname
<package_name>] [-cuautoname=[file | du]]

[+define+<macro_name>[=<macro_text>]] [-deglitchalways | -nodeglitchalways]
[+delay_mode_distributed] [+delay_mode_path] [+delay_mode_unit]
[+delay_mode_zero] [-dirpath <pathname>] [-dpiforceheader] [-dpiheader <filename>]

[-E <filename>] [-Edebug <filename>] [-enumfirstinit] [-Epretty <filename>]
[-error <msg_number>[,<msg_number>,…]]

[(-F | -file | -f) <filename>] [-force_refresh <design_unit>]
[-fsmimplicittrans | -nofsmimplicittrans] [-fsmresettrans | -nofsmresettrans] [-fsmsingle | -
nofsmsingle]
[-fsmverbose[b | t | w]] [-fsmxassign | -nofsmxassign]

[-gen_xml <design_unit> <filename>]

[-hazards]

[-ignorepragmaprefix <prefix>] [+incdir+<directory>] [-incr | -noincr]
[-isymfile] [+iterevaluation]

[+libcell | +nolibcell] [+libext+<suffix>]
[-libmap <pathname>] [-libverbose=libmap] [-libmap_verbose] [+librescan] [-line
<number>]
[-lint]
[-logfile <filename> | -l <filename>] [-lrmclassinit]

[+maxdelays] [+mindelays] [-mixedansiports] [-mixedsvvh [b | s | v]]
[-mfcu[=macro] | -sfcu] [-modelsimini <path/modelsim.ini>]
[-msglimit [all, | none,] [-|+]<msg_number>[,[-|+]<msg_number>,…]]
[-msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
|+]<msgNumber>...]]

[-nocreatelib] [-nodbgsym]
[-noForceUnsignedToVhdlInteger] [-nologo] [-nooverrideundef] [+nospecify]
[-note <msg_number>[,<msg_number>,…]] [+notimingchecks]

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 391

[-novtblfixup] [+nowarn<CODE>] [-nowarn <category_number>]

[-optionset <optionset_name>] [-outf <filename>] [-override_precision]
[-override_timescale[=]|[]<time_unit> / <time_precision>] [-O0]

[-pedanticerrors] [-permissive] [-permit_defunct_sv] [-printinfilenames[=<filename>]]

[-quiet]

[-R [<simargs>]] [-refresh]

[-s] [-sfcu] [-skipprotected] [-skipprotectedmodule]
[-skipsynthoffregion] [-smartdbgsym] [-source]
[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]
[-suppress <msg_number>[,<msg_number>,…]] [-sv]
[-svext=[+|-]<extension>[,[+|-]<extension>]…[sceq]]
[-svfilesuffix=<extension>[,<extension>...] <filename>]
[-svinputport=net | var | relaxed] [-svpkgcasesens]
[-sv05compat] [-sv09compat] [-sv12compat]

[-timescale[=]|[]<time_units>/<time_precision>] [+typdelays]

[-u]

[-v <library_file>] [-version] [-vlog01compat] [-vlog95compat] [-vmake]

[-warning <msg_number>[,<msg_number>,…]] [-warning error] [-warnrbw]
[-work <library_name>] [-writetoplevels <fileName>]

[-y <library_directory>]

Description

The vlog command may be invoked from within ModelSim or from the operating system
command prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -refresh argument to vlog. This is not true for minor
versions (letter releases).

All arguments to the vlog command are case sensitive: -WORK and -work are not equivalent.

SystemVerilog requires that the default behavior of the vlog command is to treat each Verilog
design file listed on the command line as a separate compilation unit. To treat multiple files
listed within a single command line as a single compilation unit, use either the vlog -mfcu
argument or the MultiFileCompilationUnit modelsim.ini file variable.

This command provides additional information with the -help switch.

ModelSim® Command Reference Manual, v10.5c392

Commands
vlog

Arguments

• -93

(optional) Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993
extended identifiers to preserve case in Verilog identifiers that contain uppercase letters.

• -addpragmaprefix <prefix>

(optional) Enables recognition of pragmas with a user specified prefix. If this argument is
not specified, pragmas are treated as comments.

All regular synthesis pragmas are honored.

<prefix> — Specifies a user defined string where the default is no string, indicated by
quotation marks (““).

You may also set this with the AddPragmaPrefix variable in the vlog section of the
modelsim.ini file.

• -compat

(optional) Disables optimizations that result in different event ordering than Verilog-XL.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs” for additional information.

• -compile_uselibs[=<directory_name>]

(optional) Locates source files specified in a `uselib directive (Refer to “Verilog-XL uselib
Compiler Directive”), compiles those files into automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. If a directory_name is
not specified, ModelSim uses the name specified in the MTI_USELIB_DIR environment
variable. If that variable is not set, ModelSim creates the directory mti_uselibs in the current
working directory.

• -convertallparams

(optional) Enables converting parameters not defined in ANSI style to VHDL generics of
type std_logic_vector, bit_vector, std_logic, vl_logic, vl_logic_vector, and bit.

• -cuname <package_name>

(optional) Used only in conjunction with -mfcu. The -cuname argument names the
compilation unit (package_name) being created by vlog. The named compilation unit can
then be specified on the vsim command line, along with the <top> design unit. The purpose
of doing so is to force elaboration of specified compilation unit package, thereby forcing
elaboration of a necessary ‘bind’ statement within that compilation unit that would
otherwise not be elaborated. An example of the necessary commands is:

vlog -cuname pkg_name -mfcu file1.sv file2.sv
vsim top pkg_name

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 393

You need to do this only in cases where you have a ‘bind’ statement in a module that might
otherwise not be elaborated, because no module in the design depends on that compilation
unit. In other words, if a module that depends on that compilation unit exists, you don’t need
to force the elaboration, for it occurs automatically. Also, if you are using qverilog to
compile and simulate the design, this binding issue is handled properly automatically.

• -cuautoname=[file | du]

(optional) Specifies the method for naming $unit library entries.

file — (default) Base the name on first file in on the command line.

du — Base the name on the first design unit following items found in the $unit scope.
This option is useful for cases where you have multiple vlog command lines that
specify the same file as the first entry.

• +define+<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

`define <macro_name> <macro_text>

Optionally, you can specify more than one macro with a single +define. For example:

vlog +define+one=r1+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the `define
compiler directive. It will also override all `undef directives in the RTL code — i.e., `undef
for that macro will be ignored. Use the -nooverrideundef option for backward compatibility
with previous operation. If a macro is defined using +define command line option and the
-nooverrideundef option is used, the `undef will be honored for that macro.

• -deglitchalways | -nodeglitchalways

Controls the behavior related to zero-delay oscillations among always_comb and always
@* combinatorial logic blocks, as well as regular always blocks, that produce glitches on
the variables they write.

-deglitchalways — (default) Reduces the incidents of zero delay oscillations among the
affected blocks.

-nodeglitchalways — Disables the functionality. A side effect of this behavior is that
time zero races involving the glitch-producing always blocks may resolve in a
different order.

• +delay_mode_distributed

(optional) Disables path delays in favor of distributed delays. Refer to “Delay Modes” for
details.

• +delay_mode_path

(optional) Sets distributed delays to zero in favor of using path delays.

ModelSim® Command Reference Manual, v10.5c394

Commands
vlog

• +delay_mode_unit

(optional) Sets path delays to zero and non-zero distributed delays to one time unit.

• +delay_mode_zero

(optional) Sets path delays and distributed delays to zero.

• -dirpath <pathname>

(optional) Specifies the location of a working directory to be stored in the library in order to
override the current working directory. This allows you hide the directory path information.

Caution
Use of this argument is not recommended.

For example, if you use -dirpath to override the working directory information, then the
ModelSim user interface will not be able to find the source files if the end user selects
something in the design and asks to see the declaration.

• -dpiforceheader

(optional) Forces the generation of a DPI header file even if it will be empty of function
prototypes.

• -dpiheader <filename>

(optional) Generates a header file that may then be included in C source code for DPI import
functions. Refer to “DPI Use Flow” for additional information.

• -E <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred
and copies that text to an output file. This includes text read from source files specified by
using the -v or -y argument.

<filename> — Specifies a name for the debugging output file. Wildcards are not
allowed.

Generally, preprocessing consists of the following compiler directives: `ifdef, `else, `elsif,
`endif, `ifndef, `define, `undef, `include.

The `line directive attempts to preserve line numbers, file names, and level in the output file
(per the 1800-2009 LRM). White space is usually preserved, but sometimes it may be
deleted or added to the output file.

• -Edebug <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred
and copies that text to a debugging output file.

<filename> — Specifies a name for the debugging output file. Wildcards are not
allowed.

Generally, preprocessing consists of the following compiler directives: `ifdef, `else, `elsif,
`endif, `ifndef, `define, `undef, `include. The file is a concatenation of source files with

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 395

`include expanded. The file can be compiled and then used to find errors in the original
source files. The `line directive attempts to preserve line numbers and file names in the
output file. White space is usually preserved, but sometimes it may be deleted or added to
the output file.

• -enumfirstinit

(optional) Initializes enum variables in SystemVerilog using the leftmost value as the
default. You must also use the argument with the vsim command in order to implement this
initialization behavior. Specify the EnumBaseInit variable as 0 in the modelsim.ini file to set
this as a permanent default.

• -Epretty <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred,
performs some formatting for better readability, and copies that text to an output file,
<filename>.

• -error <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "error." Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

• (-F | -file | -f) <filename>

(optional) -f, -file and -F: each specifies an argument file with more command-line
arguments, allowing complex argument strings to be reused without retyping. Nesting of -F,
-f and -file commands is allowed. Allows gzipped input files.

With -F only: relative file names and paths within the arguments file <filename> are
prefixed with the path of the arguments file when lookup with relative path fails. Refer to
the section "“Argument Files” on page 27" for more information.

• -force_refresh <design_unit>

(optional) Forces the refresh of all specified design units. By default, the work library is
updated; use -work <library_name>, in conjunction with -force_refresh, to update a
different library (for example, vlog -work <your_lib_name> -force_refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/
dware_61e_beta.dwpackages because /home/users/questasim/../
synopsys.attributes has changed.

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checks is to
recompile the source code, if it is available.

ModelSim® Command Reference Manual, v10.5c396

Commands
vlog

• -fsmimplicittrans | -nofsmimplicittrans

(optional) Toggles recognition of implied same state transitions. This setting is off by
default.

• -fsmresettrans | -nofsmresettrans

(optional) Toggles recognition of synchronous or asynchronous reset transitions.

This setting is on by default.

• -fsmsingle | -nofsmsingle

(optional) Toggles the recognition of VHDL FSMs where the current state variable of type
std_logic, bit, boolean, or single-bit std_logic_vector/bit_vector and Verilog single-bit
FSMs. This setting is off by default.

• -fsmverbose[b | t | w]

(optional) Provides information about FSMs detected, including state reachability analysis.

b — displays only basic information.

t — displays a transition table in addition to the basic information.

w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

** Note: (vlog-1947) FSM RECOGNITION INFO
:# Fsm detected in : ../fpu/rtl/vhdl/serial_mul.vhd
:# Current State Variable : s_state : ../fpu/rtl/vhdl/serial_mul.vhd(76)
:# Clock : clk_i
Reset States are: { waiting , busy }
State Set is : { busy , waiting }
Transition table is

busy => waiting Line : (114 => 114)
busy => busy Line : (111 => 111)
waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

When you do not specify this switch, you will receive a message similar to:

** Note: (vlog-143) Detected '1' FSM/s in design unit
'serial_mul.rtl'.

• -fsmxassign | -nofsmxassign

(optional) Toggles recognition of finite state machines (FSMs) containing X assignment.
This option is used to detect FSMs if current state variable or next state variable has been
assigned "X" value in a "case" statement. FSMs containing X-assign are otherwise not
detectable. This setting is on by default.

• -gen_xml <design_unit> <filename>

(optional) Produces an XML-tagged file containing the interface definition of the specified
module. This option requires a two-step process where you must 1) compile <filename> into

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 397

a library with vlog (without -gen_xml) then 2) execute vlog with the -gen_xml switch, for
example:

vlib work
vlog counter.v
vlog -gen_xml counter counter.xml

• -hazards

(optional) Detects event order hazards involving simultaneous reading and writing of the
same register in concurrently executing processes. You must also specify this argument
when you simulate the design with vsim. Refer to “Hazard Detection” for more details.

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

• -ignorepragmaprefix <prefix>

(optional) Directs vlog to ignore pragmas with the specified prefixname. All affected
pragmas will be treated as regular comments. Edit the IgnorePragmaPrefix modelsim.ini
variable to set a permanent default.

<prefix> — Specifies a user defined string.

• +incdir+<directory>

(optional) Specifies directories to search for files included with ̀ include compiler directives.
By default, the current directory is searched first and then the directories specified by the
+incdir options in the order they appear on the command line. You may specify multiple
+incdir options as well as multiple directories separated by "+" in a single +incdir option.

• -incr

(optional) Performs an incremental compilation. Compiles only code that has changed. For
example, if you change only one module in a file containing several modules, only the
changed module will be recompiled. Note however that if the compile options change, all
modules are recompiled, regardless of whether you use vlog -incr or not.

• -isymfile

Generates a complete list of all imported tasks and functions (TFs). Used with DPI to
determine all imported TFs that are expected by ModelSim.

• +iterevaluation

(default) Enable an iterative evaluation mechanism on optimized gate-level cells with
feedback loops.

• -logfile <filename> | -l <filename>

(optional) Generates a log file of the compile.

-logfile <filename> — Saves transcript data to <filename>. Can be abbreviated to -l
<filename>. Overrides the default transcript file creation set with the TranscriptFile

ModelSim® Command Reference Manual, v10.5c398

Commands
vlog

or BatchTranscriptFile modelsim.ini variables. You can also specify “stdout” or
“stderr” for <filename>.

• +libcell | +nolibcell

+libcell — (optional) Treats all modules found and compiled by source library search as
though they contained a ‘celldefine compiler directive, thus marking them as cells
(refer to the -v and -y arguments of vlog, which enable source library search). Using
the +libcell argument matches historical behavior of Verilog-XL with respect to
source library search.

+nolibcell — (default) Disables treating all modules found and compiled by source
library search as though they contained a ‘celldefine compiler directive. That is, this
argument restores the default library search behavior if you have changed it using the
+libcell | +nolibcell argument.

Note
log

• +libext+<suffix>

(optional) Works in conjunction with the -y option. Specifies file extensions for the files in a
source library directory. By default, the compiler searches for files without extensions. If
you specify the +libext argument, then the compiler will search for a file with the suffix
appended to an unresolved name. You may specify only one +libext option, but it may
contain multiple suffixes separated by the plus character (+). The extensions are tried in the
order you specify them with the +libext argument.

• -libmap <pathname>

(optional) Specifies a Verilog 2001 library map file. You can omit this argument by placing
the library map file as the first option on the vlog invocation (for example, vlog top.map
top.v top_cfg.v). You can use the vlog -mfcu argument to compile macros for all files in a
given testbench. Any macros already defined before the -libmap argument appears are still
defined for use by the -libmap files.

• -libverbose=libmap

(optional)

Displays library map pattern matching information during compilation. Use this argument
to troubleshoot problems with matching filename patterns in a library map file.
For example, when a resolved module has a choice between two libraries, you want to know
which one it selected (confirming that your config file worked).

• -libmap_verbose

(optional) Displays library map pattern matching information during compilation.

Note
This argument is being deprecated—you should use the -libverbose=libmap
argument instead. However, -libmap_verbose will continue to be supported

indefinitely for compatibility reasons, so it is safe to use until further notice.

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 399

• +librescan

(optional) Scans libraries in command-line order for all unresolved modules.

• -line <number>

(optional) Starts the compiler on the specified line in the Verilog source file. By default, the
compiler starts at the beginning of the file.

• -lint

(optional) Issues warnings on the following lint-style static checks:

o when Module ports are NULL.

o when assigning to an input port.

o when referencing undeclared variables/nets in an instantiation.

This switch generates additional array bounds-checking code, which can slow down
simulation, to check for the following:

o index warnings for dynamic arrays

o when an index for a Verilog unpacked variable array reference is out of bounds.

The warnings are reported as WARNING[8]. You can also enable this option using the
Show_Lint variable in the modelsim.ini file.

• -lrmclassinit

Changes initialization behavior to match the SystemVerilog specification (per IEEE Std
1800-2007) where all superclass properties will be initialized before any subclass
properties.

• +maxdelays

(optional) Selects maximum delays from the "min:typ:max" expressions. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

• +mindelays

(optional) Selects minimum delays from the "min:typ:max" expressions. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

v — treats all scalars/vectors in the package as VHDL vl_logic/vl_logic_vector

• -mfcu[=macro]

(optional) Instructs the compiler to treat all files within a compilation command line as a
single compilation unit. The default behavior is to treat each file listed in a command as a
separate compilation unit, per the SystemVerilog standard. Prior versions concatenated the
contents of the multiple files into a single compilation unit by default. When specified, the
=macro modifier enables the visibility of macro definitions across different files.

ModelSim® Command Reference Manual, v10.5c400

Commands
vlog

All global declarations present in both compile file and library files specified with the -v
argument will be lumped together in a single $unit scope.

You can use -mfcu to compile macros for all files in a given testbench. Any macros already
defined before the -libmap argument appears are still defined for use by the -libmap files.

You can also enable this option (without the =macro functionality) using the
MultiFileCompilationUnit variable in the modelsim.ini file.

• -mixedansiports

Use this switch only when your design files contain a combination of ANSI and non-ANSI
port declarations and task/function declarations. For example:

module top (input reg [7:0] a,
output b);

reg [7:0] b;
endmodule

• -mixedsvvh [b | s | v]

(optional) Facilitates using SystemVerilog packages at the SystemVerilog-VHDL boundary
of a mixed-language design. When you compile a SystemVerilog package with -mixedsvvh,
the package can be included in a VHDL design as if it were defined in VHDL itself.

b — treats all scalars/vectors in the package as VHDL bit/bit_vector

s — treats all scalars/vectors in the package as VHDL std_logic/std_logic_vector

• -modelsimini <path/modelsim.ini>

Loads an alternate initialization file that replaces the current initialization file. Overrides the
file path specified in the MODELSIM environment variable. Specifies either an absolute or
relative path to the initialization file, including the file itself. On Windows systems the path
separator should be a forward slash (/).

• -msglimit [all, | none,] [-|+]<msg_number>[,[-|+]<msg_number>,…]

(optional) Limits the number of iterations of the specified message(s) to the default message
limit count of five, then suppresses all new instances. Refer to Suppression of Warning
Messages for more information.

all — Limits all messages to the default count except specified msgNumber(s).

none — Limits only the specified msgNumber(s) to the default count.

[-|+] — The ‘-’ argument is used only with “all” to specify exclusion of specified
msgNumber(s). The ‘+’ argument is used only with “none” to specify inclusion of
specific message IDs. If neither is used, the command works the same way.

Note
The ‘-’ argument can only be used with the “all” argument and the ‘+’ argument can
only be used with the “none” argument. Otherwise incorrect results may appear.

<msg_number>[,<msg_number>,…] — Specifies the message number(s) to limit to
five iterations. Multiple messages are specified as a comma-separated list.

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 401

For example, the following limits all messages to the default count except msgNumber1 and
msgNumber2.

vsim -msglimit all, <msgNumber1>, <msgNumber2>

While the following, limits only msgNumber1 and msgNumber2 to the default count.

vsim -msglimit none, <msgNumber1>, <msgNumber2>

• -msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
|+]<msgNumber>...]

(optional) Limits the reporting of listed messages to user-defined limit_value. Overrides the
MsgLimitCount variable in the modelsim.ini file.

• -nocreatelib

(optional) Stops automatic creation of missing work libraries and reverts back to 10.3x and
earlier version behavior. Overrides the CreateLib modelsim.ini variable.

• -nodbgsym

Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

You should only specify this switch if you know that anyone using the library will not
require this information for design analysis purposes.

• -noForceUnsignedToVhdlInteger

Prevents untyped Verilog parameters in mixed-language designs that are initialized with
unsigned values between 2*31-1 and 2*32 from being converted to a VHDL generic. By
default, untyped Verilog parameters that are initialized with unsigned values between 2*3 -1
and 2*32 are converted to VHDL INTEGER generics. Because VHDL INTEGER
parameters are signed numbers, the Verilog values 2*31 -1 to 2*32 are converted to
negative VHDL values in the range from -2*31 to -1 (the 2's complement value).

• -noincr

(optional) Disables incremental compilation previously turned on with -incr argument.
Default.

• -nologo

(optional) Disables the startup banner.

• -nooverrideundef

(optional) Prevents `undefs from being overridden by macros defined using the +define
command line option. If a macro is defined using +define command line option, and -
nooverrideundef is also passed as a compile option, the `undef will be honored for that
macro.

ModelSim® Command Reference Manual, v10.5c402

Commands
vlog

• +nospecify

(optional) Disables specify path delays and timing checks.

• -note <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "note." Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

• +notimingchecks

(optional) Removes all timing check entries from the design as it is parsed.

• -novtblfixup

Causes virtual method calls in SystemVerilog class constructors to behave as they would in
normal class methods, which prevents the type of a this reference from changing during
construction.

This overrides default behavior, where the type of a this reference is treated as if it is a
handle to the type of the active new() method while a constructor is executing (which
implies that virtual method calls resolve will not execute methods of an uninitialized class
type).

• +nowarn<CODE>

(optional) Disables warning messages in the category specified by <CODE>. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.

• -nowarn <category_number>

(optional) Prevents the specified message(s) from displaying. The <msg_number> is the
number preceding the message you wish to suppress. Multiple -nowarn switches are
allowed. Warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to modelsim.ini
Variables).

The warning message categories are described in the following table:

Table 2-8. Warning Message Categories for vlog -nowarn

Category
number

Description

12 non-LRM compliance in order to match Cadence behavior

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 403

• -optionset <optionset_name>

(optional) Calls an optionset as defined in the modelsim.ini file. Refer to the section
“Optionsets” for more information.

• -outf <filename>

(optional) Specifies a file to which the final list of options is saved, after recursively
expanding all -f, -file and -F files.

• -override_precision

(optional) Used with the -timescale argument, this argument overrides the precision of
`timescale specified in the source code.

• -override_timescale[=]|[]<time_unit> / <time_precision>

(optional) Specifies a timescale for all compiled design units. This timescale overrides all
‘timescale directives and all declarations of timeunit and timeprecision. An equal sign (=) or
whitespace is accepted between option and arguments.

time_unit — unit of measurement for times and delays. This specification consists of
one of three integers (1, 10, or 100) representing order of magnitude and one of six
character strings representing units of measurement:

{1 | 10 | 100} {s | ms | us | ns | ps | fs}

For example, 10 ns.

time_precision — unit of measurement for rounding delay values before being used in
simulation. Allowable values are the same as for time_unit.

• -O0

(optional) Lower the optimization to a minimum with -O0 (capital oh zero). Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out.

• -pedanticerrors

(optional) Enforces strict compliance of the IEEE Std 1800-2005. The following are some
of the cases:

o Using "new” for queues is not legal. When strict compliance is not enforced, use of
"new" creates a queue of the specified size where all elements are initialized to the
default value of the queue element type.

o Using underscore character (_) in sized, based literals is not legal. When you specify
this argument, an error will occur for literals such as 2'b_01.

o Omitting the grave accent mark (`) preceding the left brace ({) when writing
structure literals is not legal. When you specify this argument, an error will occur for
literals written without that mark.

o Inserting the grave accent mark to precede quotation marks (`") that enclose string
literals is not legal—only string literals within quotation marks (") are allowed.

ModelSim® Command Reference Manual, v10.5c404

Commands
vlog

When you specify this argument, an error will occur for string literals using that
mark.

o Using class extern method prototypes with lifetime (automatic/static) designations
produces a compliance error (instead of a warning).

o Using “cover bool@clk” as a PSL statement.

o Using an unsized constant in a concatenation if it is the leftmost value in the list.

o Calling a virtual function in the constructor of the same class.

o Using integers to define macro names.

This argument also produces a report of mismatched ‘else directives.

You can produce a complete list by executing the command:

verror -kind vlog -pedanticerrors

• -permissive

(optional) Allows messages in the LRM group of error messages to be downgraded to a
warning. Allows reserved keywords 'config' and 'instance' to be used outside of unit and
configuration scopes. Also allows named port connections on bit-select and part-select
ports, though only when multiple bit-select or part-select ports of same name are not present
in the port list.

You can produce a complete list by executing the command:

verror -kind vlog -permissive

• -permit_defunct_sv

(optional) Allows using a selected set of constructs no longer supported by the
SystemVerilog standard. Currently, the set supports only the use of the keyword “char.”
This argument allows use of the keyword “char” to be interpreted as the SystemVerilog
“byte” type.

• -printinfilenames[=<filename>]

Prints the path names of all source files opened (including “include” files) during the
compile. Specifies whether each file is a Verilog or SystemVerilog file. To write these path
names to a text file in the current directory, add =<filename> to this argument. If you use
this argument again with the same filename, you overwrite the contents of the previous
version of the file.

• -quiet

(optional) Disables 'Loading' messages.

• -R [<simargs>]

Instructs the compiler to invoke vsim after compiling the design. The compiler
automatically determines which top-level modules are to be simulated.

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 405

When using -R option, the log files for vlog and vsim need to be specified separately. The
file specified before -R will capture the output of the vlog compiler and the one provided
after -R will capture the vsim output.

For example, in the following vlog command, "log1.txt" will contain the vlog output and
"log2.txt" will contain the vsim output.

vlog -l log1.txt top.sv -R -c -do "run -all;quit" -l
log2.txt

The -R option is not a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It is
not recommended that you regularly use this option because you will incur the unnecessary
overhead of compiling your design for each simulation run. Mainly, it is provided to ease
the transition to ModelSim.

• -refresh

(optional) Regenerates a library image. By default, the work library is updated. To update a
different library, use -work <library_name> with -refresh (for example, vlog -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vlog -force_refresh argument. See vlog examples for more information. You
may use a specific design name with -refresh to regenerate a library image for that design,
but you may not use a file name.

• -s

(optional) Instructs the compiler not to load the standard package. This argument should
only be used when you are compiling the sv_std package.

• -sfcu

Instructs the compiler to treat all files within a compilation command line as a separate
compilation units. This is the default behavior and is the inverse of the behavior of -
mfcu[=macro].

A local $unit scope will be created for a library file passed through -v argument if this file
has global declarations.

This switch will override the MultiFileCompilationUnit variable if it is set to "1" in the
modelsim.ini file.

• -skipprotected

(optional) Ignores any ‘protected/‘endprotected region contained in a module.

• -skipprotectedmodule

(optional) Prevents adding any module containing a ‘protected/‘endprotected region to the
library.

• -skipsynthoffregion

(optional) Ignore all constructs within synthesis_off or translate_off pragma regions.

ModelSim® Command Reference Manual, v10.5c406

Commands
vlog

• -smartdbgsym

(optional) Reduces the size of design libraries by minimizing the amount of debugging
symbol files generated at compile time.

Edit the SmartDbgSym variable in the modelsim.ini file to set a permanent default.

• -source

(optional) Displays the associated line of source code before each error message that is
generated during compilation. By default, only the error message is displayed.

• -stats [=[+ | -]<feature>[,[+ | -]<mode>]

(optional) Controls display of compiler statistics sent to a logfile, stdout, or the transcript.
Specifying -stats without options sets the default features (cmd, msg, and time).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. You can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disables the feature. You can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the settings
in the Stats modelsim.ini variable.

Features

all — Display all statistics features (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

perf — Display time and memory performance statistics.

time — (default) Display Start, End, and Elapsed times.

Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vlog -stats=cmd+verbose,perf+list. To add or subtract a mode
globally for all features, specify the modes in a comma-separated list, for example,
vlog -stats=time,perf,list,-verbose. You cannot specify global and feature specific
modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.

list — Display statistics in a Tcl list format when available.

verbose — Display verbose statistics information when available.

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 407

Note
vlog -quiet disables all default or user-specified -stats features.

• -suppress <msg_number>[,<msg_number>,…]

(optional) Prevents the specified message(s) from displaying. The <msg_number> is the
number preceding the message you wish to suppress. You cannot suppress Fatal or Internal
messages. Edit the suppress variable in the modelsim.ini file to set a permanent default.
Refer to “Message Severity Level” for more information.

• -sv

(optional) Enables SystemVerilog features and keywords. By default ModelSim follows the
IEEE Std 1364-2001 and ignores SystemVerilog keywords. If a source file has a ".sv"
extension, ModelSim will automatically parse SystemVerilog keywords.

• -svext=[+|-]<extension>[,[+|-]<extension>]…[sceq]

(optional) Enables SystemVerilog language extensions through a comma-separated list of
arguments.

[+ | -] — controls activation of the extension. Remember that arguments on the
command line control the precedence; any settings to this switch will override your
settings of the SvExtensions modelsim.ini variable.

+ — activates the extension.

- — deactivates the extension.

If you do not specify either a “+” or “-”, the command assumes you are activating the
specified extension.

<extension> —

Note
Multiple extensions are specivlog -svext=+feci,-uslt,paefied as a comma-separated
list. For example:

vlog -svext=+feci,-uslt,pae

acum — Specifies that the get(), try_get(), peek(), and try_peek() methods on an
untyped mailbox will return successfully if the argument passed is assignment-
compatible with the entry in the mailbox. The LRM-compliant behavior is to return
successfully only if the argument and entry are of equivalent types.

arif — Allow the use of refs in fork-join_any or fork-join_none blocks inside tasks.

atpi — Use type names as port identifiers. Disabled when compiling with
-pedanticerrors.

ared — Allows use of array reduction methods on multi-dimensional unpacked
arrays, without the need of using a 'with' clause. A multi-dimensional unpacked array
will be treated as if it had a single dimension [0:total_number_of_elements-1].

ModelSim® Command Reference Manual, v10.5c408

Commands
vlog

catx — Allow an assignment of a single unsized constant in a concat to be treated as
an assignment of 'default:val'.

daoa — Allows the passing a dynamic array as the actual argument of DPI open array
output port. Without this option, a runtime error, similar to the following, is
generated, which is compliant with LRM requirement.

** Fatal: (vsim-2211) A dynamic array cannot be passed as an
argument to the DPI import function 'impcall' because the formal 'o'
is an unsized output.
Time: 0 ns Iteration: 0 Process: /top/#INITIAL#56 File:
dynarray.sv
Fatal error in Module dynarray_sv_unit at dynarray.sv line 2

defervda — SV variables having an initializer in the declaration will trigger top-
blocking always blocks at time zero.

ddup — (Drive Default Unconnected Port) Reverts behavior to where explicit named
unconnected ports are driven by the default value of the port.

evdactor — enables early variable declaration assignments during class construction.
The default behavior is to perform all superclass initialization before initializing any
fields in a subclass.

evis — Supports the expansion of environment variables within curly braces ({})
within `include string literals and in `include path names. For example, if MYPATH
exists in the environment then it will be expanded in the following:

`include "$MYPATH/inc.svh"

feci — Treat constant expressions in a foreach loop variable index as constant.

fin0 — Treats $finish() system call as $finish(0), which results in no diagnostic
information being printed.

ias — Iterate on always @* evaluations until inputs settle. Typically, an always @*
block is not sensitive to events generated by executing the block itself. This argument
increases the sensitivity of the block so that it will re-trigger if any input has changed
since the last iteration of the always block.

idcl — Allows passing of import DPI call locations as implicit scopes.

iddp — Ignore the DPI task disable protocol check.

ncref — A ref argument in the new operator of a covergroup will not be treated as a
constant, unless specified.

pae — Automatically export all symbols imported and referenced in a package.

sccts — Process string concatenations converting the result to string type.

spsl — (default) Search for packages in source libraries specified with -y and +libext.

stop0 — Treats $stop and $stop() as $stop(0), which results in no diagnostic
information being printed.

substr1 — Allows one argument in the builtin function substr. A second argument
will be treated as the end of the string.

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 409

This extension runs a top-blocking always @* at time zero, as is done for an
always_comb.

udm0 — Expands any undefined macro with the text “1'b0”.

uslt — (default) Promote unused design units found in source library files specified
with the -y option to top-level design units.

vmctor — Allows virtual method calls in class constructor. The default is to treat
them as non-virtual during construction.

sceq

Allow string comparison with SystemVerilog case equality operator (===).

• -svfilesuffix=<extension>[,<extension>...] <filename>

Allows specification of filename extensions for SystemVerilog files. Overrides the
SVFileSuffixes variable in the modelsim.ini file for specified <filename>.

• -svinputport=net | var | relaxed

(optional) Used in conjunction with -sv to determine the default data type assigned to an
input port declaration.

net — declares the port to be a net. This value enforces strict compliance to the Verilog
LRM (IEEE Std 1364-2005), where the port declaration defaults to wire.

var — declares the port to be a variable. This value enforces behavior from previous
releases, where the port declaration defaults to variable.

relaxed — (default) declares the port to be a net only if the type is a 4-state scalar or
4-state single dimensional vector. Otherwise, the port is declared a variable.

• -svpkgcasesens

(optional) Requires case-sensitive matching between SystemVerilog package import
statements and package names.

• -sv05compat

Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of IEEE Std 1800-2005.

• -sv09compat

Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of IEEE Std 1800-2009.

• -sv12compat

Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of IEEE Std 1800-2012.

• -timescale[=]|[]<time_units>/<time_precision>

(optional) Specifies the default timescale for all design unit types (modules, interfaces,
programs, packages, checkers, and so forth) not having an explicit timescale directive in
effect during compilation.

ModelSim® Command Reference Manual, v10.5c410

Commands
vlog

The format of the -timescale argument is the same as that of the `timescale directive. An
equal sign (=) or whitespace is accepted between option and arguments in which case
<time_units / <time_precision must be enclosed in quotation marks ("). The format for
<time_units> and <time_precision> is <n><units>. The value of <n> must be 1, 10, or 100.
The value of <units> must be fs, ps, ns, us, ms, or s. In addition, the <time_precision> must
be smaller than or equal to the <time_units>. Refer to “Simulator Resolution Limit
(Verilog)” for more information.

• +typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

• -u

(optional) Converts regular Verilog identifiers to uppercase. Allows case insensitivity for
module names.

• -v <library_file>

(optional) Specifies a source library file containing module and UDP definitions. Refer to
“Verilog-XL Compatible Compiler Arguments” for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet defined.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed. See additional discussion in the examples.

• -version

(optional) Returns the version of the compiler as used by the licensing tools.

• -vlog01compat

(default) Ensures compatibility with rules of IEEE Std 1364-2001.

• -vlog95compat

(optional) Disables Verilog 2001 keywords, which ensures that code that was valid
according to the 1364-1995 spec can still be compiled. By default ModelSim follows the
rules of IEEE Std 1364-2001. Some requirements in 1364-2001 conflict with requirements
in 1364-1995. Edit the vlog95compat variable in the modelsim.ini file to set a permanent
default.

• -vmake

Generates a complete record of all command line data and files accessed during the compile
of a design. This data is then used by the vmake command to generate a comprehensive
makefile for recompiling the design library. By default, vcom stores compile data needed
for the -refresh switch and ignores compile data not needed for -refresh. The -vmake switch
forces inclusion of all file dependencies and command line data accessed during a compile,
whether they contribute data to the initial compile or not. Executing this switch can increase
compile time in addition to increasing the accuracy of the compile. See the vmake command
for more information.

Commands
vlog

ModelSim® Command Reference Manual, v10.5c 411

• -warning <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

• -warning error

(optional) Reports all warnings as errors.

• -warnrbw

(optional) Displays a warning when a variable is read before written in an always @* block.

• -work <library_name>

(optional) Specifies a logical name or pathname of a library that is to be mapped to the
logical library work. By default, the compiled design units are added to the work library.
The specified pathname overrides the pathname specified for work in the project file.

• -writetoplevels <fileName>

(optional) Records the names of all top level module names in a specified file. Also records
any compilation unit name specified with -cuname. May only be specified when compiling
the top level modules.

<fileName> — Required. Specifies the name of the file where module names are to be
recorded.

• -y <library_directory>

(optional) Specifies a source library directory containing definitions for modules, packages,
interfaces, and user-defined primitives (UDPs). Usually, this is a directory of source files
that you want to scan if the compiled versions do not already exist in a library. Refer to
“Verilog-XL Compatible Compiler Arguments” for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet defined.
Files within this directory are compiled only if the file names match the names of previously
unresolved references. Multiple -y options are allowed. You will need to specify a file suffix
by using -y in conjunction with the +libext+<suffix> option. See additional discussion in the
examples.

Note
Any -y arguments that follow a -refresh argument on a vlog command line are
ignored. Any -y arguments that come before the -refresh argument on a vlog

command line are processed.

• <filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

ModelSim® Command Reference Manual, v10.5c412

Commands
vlog

Examples

• Compile the Verilog source code contained in the file example.vlg.

vlog example.vlg

• After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v -v und1

• After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim.

• If your library contains VHDL design units, be sure to regenerate the library with the
vcom command using the -refresh option as well. Refer to “Regenerating Your Design
Libraries” for more information.

vlog -work mylib -refresh

• The -incr option determines whether or not the module source or compile options have
changed as module1.v is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match
exactly.

vlog module1.v -u -O0 -incr

• The -timescale option specifies the default timescale for module1.v, which did not have
an explicit timescale directive in effect during compilation. Quotes (" ") are necessary
because the argument contains white spaces.

vlog module1.v -timescale "1 ns / 1 ps"

• Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vlog -stats=time,-cmd,msg

• The first -stats option is ignored. The none option disables all default settings and then
enables the perf option.

vlog -stats=time,cmd,msg -stats=none,perf

Commands
vmake

ModelSim® Command Reference Manual, v10.5c 413

vmake
Requirement: This command does not work with the default format of the output from the vlib

command, therefore you must add the -type directory argument to the vlib command line.

The vmake utility allows you to use a MAKE program to maintain individual libraries. You run
vmake on a compiled design library. This utility operates on multiple source files per design
unit; it supports Verilog include files as well as Verilog and VHDL PSL vunit files.

Note
If a design is spread across multiple libraries, then each library must have its own makefile
and you must build each one separately.

Syntax

vmake [-du <design_unit_name> ...] [-f <filename>] [-fullsrcpath] [-ignore] [<library_name>]
[-modelsimini <path/modelsim.ini>]

Description

By default, the output of vmake is sent to stdout—however, you can send the output to a
makefile by using the shell redirect operator (>) along with the name of the file. You can then
run the makefile with a version of MAKE (not supplied with ModelSim) to reconstruct the
library. This command must be invoked from either the system prompt.

A MAKE program is included with Microsoft Visual C/C++, as well as many other program
development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. You run vmake only once; then you can simply run MAKE to
rebuild your design. If you add new design units or delete old ones, you should re-run vmake to
generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.

This command provides additional information with the -help switch.

Arguments

• -du <design_unit_name>

(optional) Specifies that a vmake file will be generated only for the specified design unit.
You can specify this argument any number of times for a single vmake command.

• -f <filename>

(optional) Specifies a file to read command line arguments from.

Refer to the section "“Argument Files” on page 27" for more information

ModelSim® Command Reference Manual, v10.5c414

Commands
vmake

• -fullsrcpath

(optional) Produces complete source file paths within generated makefiles. By default,
source file paths are relative to the directory in which compilations originally occurred. Use
this argument to copy and evaluate generated makefiles within directories that are different
from where compilations originally occurred.

• -ignore

(optional) Omits a make rule for the named primary design unit and its secondary design
units.

• <library_name>

(optional) Specifies the library name; if none is specified, then work is assumed.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified by the MODELSIM environment variable. Specifies either
an absolute or relative path to the initialization file, including the file itself. On Windows
systems, the path separator should be a forward slash (/).

Examples

• To produce a makefile for the work library:

vmake >mylib.mak

• To run vmake on libraries other than work:

vmake mylib >mylib.mak

• To rebuild mylib, specify its makefile when you run MAKE:

make -f mylib.mak

• To use vmake and MAKE on your work library:

C:\MIXEDHDL> vmake >makefile

• To edit an HDL source file within the work library:

C:\MIXEDHDL> make

Your design gets recompiled for you. You can change the design again and re-run
MAKE to recompile additional changes.

• To run vmake on libraries other than work:

C:\MIXEDHDL> vmake mylib >mylib.mak

• To rebuild mylib, specify its makefile when you run MAKE:

C:\MIXEDHDL> make -f mylib.mak

Commands
vmap

ModelSim® Command Reference Manual, v10.5c 415

vmap
The vmap command defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file.

Syntax

vmap [-c | -del <logical_name> ... | <logical_name> [<path>]]
[-modelsimini <path/modelsim.ini>]

Description

With no arguments, vmap reads the appropriate modelsim.ini file(s) and prints to the transcript
the current logical library to physical directory mappings.

This command provides additional information with the -help switch.

Arguments

• -c

(optional) Copies the default modelsim.ini file from the ModelSim installation directory to
the current directory.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsim.ini.

• -del <logical_name> ...

(optional) Deletes the mapping specified by <logical_name> from the current project file.
You can specify multiple logical name arguments to the -del switch to delete multiple
library mappings.

• <logical_name> [<path>]

(optional) Maps a logical library name to the specified physical library.

If you do not specify <path> the command returns the current mapping for <logical_name>.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODELSIM environment variable. Specifies either
an absolute or relative path to the initialization file, including the file itself. On Windows
systems the path separator should be a forward slash (/).

Examples

• Map two logical libraries to the physical library “work”:

vlib work

vmap library1 work

vmap library2 work

ModelSim® Command Reference Manual, v10.5c416

Commands
vmap

• Display information about the logical library “library1”:

vmap library1

• Delete the logical library mappings:

vmap -del library1 library2

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 417

vsim
The vsim command invokes the VSIM simulator, which you can use to view the results of a
previous simulation run (when invoked with the -view argument)

Syntax

This section lists all arguments of the vsim command in alphabetical order.

The Arguments section groups the argument descriptions into the following categories:

Note
Argument Groups

• All languages

• VHDL Arguments

• Verilog Arguments

• Object Arguments

vsim [options]

[options]:

[-accessobjdebug | -noaccessobjdebug] [+alt_path_delays] [-assertfile <filename>]

[-batch] [+bitblast[=[iopath | tcheck]]]

[-c] [-capacity[=line]] [-checkvifacedrivers] [-classdebug | -noclassdebug] [-colormap new]

[-default_radix <radix>] [-defaultstdlogicinittoz] [+delayed_timing_checks] [-display
<display_spec>]
[-displaymsgmode both | tran | wlf] [-do “<command_string>” | <do_file_name>]
[-donotcollapsepartiallydriven] [-dpiforceheader] [-dpiheader] [-dpilib <libname>]
[-dpioutoftheblue 0 | 1 | 2] [+dumpports+collapse | +dumpports+nocollapse]
[+dumpports+direction] [+dumpports+no_strength_range] [+dumpports+unique]

[-error <msg_number>[,<msg_number>,…]]
[-enumfirstinit]

[-f <filename>] [-fatal <msg_number>[,<msg_number>,…]] [-fsmdebug]

[-g <Name>=<Value> …] [-G<Name>=<Value> …] [-gblso <shared_obj>[,<shared_obj>]]
[-gconrun | -nogconrun] [-gconstep | -nogconstep] [-gcthreshold <n>]
[-geometry <geometry_spec>] [-gui]

[-hazards] [-help]

[-i] [-ignoreinilibs] [+initregNBA | +noinitregNBA]
[-installcolormap]

ModelSim® Command Reference Manual, v10.5c418

Commands
vsim

[-keeploaded] [-keeploadedrestart] [-keepstdout]

[-logfile <filename> | -l <filename> | -nolog] [-L <library_name> …]
[-lib <libname>] [<library_name>.<design_unit>]
 [-Ldir <pathname> [<pathname> ...]]
[-Lf <library_name> …]

[-modelsimini <path/modelsim.ini>]
[-msgfile <filename>] [-msglimit [all, | none,] <msgNumber>[, <msgNumber>,…]]
[-msglimitcount <limit_value> -msglimit [all, | none,] <msgNumber>[, <msgNumber>...]]
[-msgmode both | tran | wlf]
[-multisource_delay min | max | latest] [+multisource_int_delays]

[-name <name>] [-noappendclose] [+no_autodtc] [-noautoldlibpath] [-nodpiexports]
[+no_cancelled_e_msg] [+no_glitch_msg] [+no_neg_tchk] [+no_notifier] [+no_path_edge]
[+no_pulse_msg] [-no_risefall_delaynets]
[+no_show_cancelled_e] [+no_tchk_msg] [-nocollapse] [-nocapacity] [-nocompress]
[-nofileshare] [-noimmedca] [-noglitch][+nosdferror] [+nosdfwarn] [+nospecify] [-
nostdout]
[-note <msg_number>[,<msg_number>,…]] [+notifier_ondetect] [+notimingchecks |
+ntcnotchks] [-novhdlvariablelogging] [+nowarnBSOB] [+nowarn<CODE | number>]
[-nowiremodelforce] [+ntc_warn] [+ntcnotchks]

[-oldvhdlforgennames] [-onfinish ask | stop | exit | final] [-optionset <optionset_name>]

[-pduignore[=<instpath>]] [-pedanticerrors] [-permissive]
[-permit_unmatched_virtual_intf] [-pli "<object list>"]
 [+<plusarg>] [-postsimdataflow]
[-printsimstats[=[<val>][v]]] [+pulse_e/<percent>] [+pulse_e_style_ondetect]
[+pulse_e_style_onevent] [+pulse_r/<percent>] [+pulse_int_e/<percent>]
[+pulse_int_r/<percent>]

[-quiet]

[-runinit]

[+sdf_iopath_to_prim_ok] [+sdf_nocheck_celltype]
[-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>]

[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [-sdfreport=<filename>]
[+sdf_report_unannotated_insts] [+sdf_verbose] [-showlibsearchpath] [-stackcheck] [-
std_input <filename>] [-std_output <filename>] [+show_cancelled_e]
[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]
[-strictvital] [-suppress <msg_number>[,<msg_number>,…]] [-sv_lib <shared_obj>]
[-sv_liblist <filename>] [-sv_root <dirname>] [-sync]
[-syncio | -nosyncio]

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 419

[-t [<multiplier>]<time_unit>] [-tab <tabfile>] [-tag <string>] [-title <title>]
[-trace_foreign <int>] [+transport_int_delays]
[+transport_path_delays]

[-undefsyms={<args>}] [-uvmcontrol={<args>}]

[-v2k_int_delays][-vcdstim [<instance>=]<filename>]
[-version] [-vhdlmergepdupackage] [-vhdlseparatepdupackage]
[-vhdlvariablelogging] [-view [<alias_name>=]<WLF_filename>]
[-visual <visual>][-vital2.2b]

[-warning <msg_number>[,<msg_number>,…]] [-warning error] [-wlf <file_name>]
[-wlfcachesize <n>] [-wlfcollapsedelta] [-wlfcollapsetime] [-nowlfcollapse]
[-wlfcompress] [-nowlfcompress] [-wlfdeleteonquit] [-nowlfdeleteonquit]
[-wlflock] [-nowlflock] [-nowlfopt] [-wlfsimcachesize <n>]
[-wlfslim <size>] [-wlftlim <duration>] [-work <pathname>] [-wrealdefaultzero]

Description

You can simulate a VHDL configuration or an entity/architecture pair, a Verilog module or
configuration.

If you specify a VHDL configuration, it is invalid to specify an architecture. During elaboration,
ModelSim determines if the source has been modified since the last compile.

You can use this command in batch mode from the Windows command prompt. Refer to “Batch
Mode” for more information on the VSIM batch mode.

To manually interrupt design loading, use the Break key or press <Ctrl-C> from a shell.

You can invoke vsim from a command prompt or in the Transcript window of the Main
window. You can also invoke it from the GUI by selecting Simulate > Start Simulation.

Package names may be used at the command line and will be treated as top-level design units.

All arguments to the vsim command are case-sensitive; for example, -g and -G are not
equivalent.

Arguments

All languages
• -assertfile <filename>

(optional) Designates an alternative file for recording VHDL assertion messages.

An alternate file may also be specified by the AssertFile modelsim.ini variable. By default,
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file. Refer to “Creating a Transcript File” for more information.

ModelSim® Command Reference Manual, v10.5c420

Commands
vsim

• -batch

(optional) Runs scripted batch simulations via the -do argument to vsim. Must be specified
from a Windows command prompt or a UNIX terminal. The simulator returns an error if
-batch is used with the -c, the -gui, or the -i argument to vsim. You can edit the BatchMode
modelsim.ini variable to automatically run in batch mode when none of -c, -gui, or -i are
used.

By default, vsim -batch prevents automatic creation of a transcript file by disabling the
TranscriptFile modelsim.ini variable and sending transcript data to stdout. You can create a
transcript file by specifying the -logfile <filename> argument to vsim or by uncommenting
the BatchTranscriptFile modelsim.ini variable. You can also disable sending transcript data
to stdout by specifying vsim -nostdout however, you must then save transcript data to a file.
Refer to “Batch Mode” for more information about saving transcript data.

• +bitblast[=[iopath | tcheck]]

(optional) Enables bit-blasting of specify block iopaths and timing checks (tchecks) with
wide atomic ports. Without the optional qualifiers, this argument operates on both specify
paths and tchecks. The qualifiers work as follows:

+bitblast=iopath — bit-blasts only specify paths with wide ports.

+bitblast=tcheck — bit-blasts only tchecks with wide ports.

This argument is intended for use with applications employing SDF annotation.

• -c

(optional) Specifies that the simulator is to be run in command-line mode. Refer to “General
Modes of Operation” for more information.

• -capacity[=line]

(optional) Enables the fine-grain analysis display of memory capacity. (The default is a
coarse-grain analysis display.) The “=line” option allows the point of allocation to be
generated along with the point of declaration.

• -colormap new

(optional) Specifies that the window should have a new private colormap instead of using
the default colormap for the screen.

• -default_radix <radix>

(optional) Sets the default radix for the simulation and overrides the DefaultRadix
preference variable. <radix> may be any of the following: ascii, binary, decimal,
hexadecimal, octal, symbolic, unsigned.

• -defaultstdlogicinittoz

(optional) Sets the default VHDL initialization of std_logic to "Z" (high impedance) for
ports of type OUT and INOUT. IEEE Std 1076-1987 VHDL Language Reference Manual
(LRM) compliant behavior is for std_logic to initialize to "U" (uninitialized) which is
incompatible with the behavior expected by synthesis and hardware.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 421

• -display <display_spec>

(optional) Specifies the name of the display to use. Does not apply to Windows platforms.

For example:

-display :0

• -displaymsgmode both | tran | wlf

(optional) Controls the transcription of $display system task messages to the transcript and/
or the Message Viewer. Refer to the section "Message Viewer Window" in the User’s
Manual for more information and the displaymsgmode .ini file variable.

both — outputs messages to both the transcript and the WLF file.

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer. Default behavior.

wlf — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

The display system tasks displayed with this functionality include: $display, $strobe,
$monitor, $write as well as the analogous file I/O tasks that write to STDOUT, such as
$fwrite or $fdisplay.

• -do “<command_string>” | <do_file_name>

(optional) Instructs vsim to use the command(s) specified by <command_string> or the DO
file named by <do_file_name> rather than the startup file specified in the .ini file, if any.
Multiple commands can be specified as a semi-colon (;) separated list. You can also specify
multiple instances of -do “<command_string>” on the same command line. The commands
are joined together in the order specified.

For example:

vsim -do "force clk 0 0, 1 10 -r 20" top -wlf top.wlf /

-do "testfile.do" -do "run -all"

will turn into the following script:

"force clk 0 0, 1 10 -r 20; do testfile.do; run -all"

You can include nested vsim-do operations. A vsim command do-file that contains another
vsim command with its own do-file executes the nested do-file.

• -donotcollapsepartiallydriven

(optional) Prevents the collapse of partially driven and undriven output ports during
optimization. Prevents incorrect values that can occur when collapsed.

• +dumpports+collapse | +dumpports+nocollapse

(optional) Determines whether vectors (VCD id entries) in dumpports output are collapsed
or not. The default behavior is collapsed, and can be changed by setting the
DumpportsCollapse variable in the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5c422

Commands
vsim

• +dumpports+direction

(optional) Modifies the format of extended VCD files to contain direction information.

• +dumpports+no_strength_range

(optional) Ignores strength ranges when resolving driver values for an extended VCD file.
This argument is an extension to the IEEE 1364 specification. Refer to “Resolving Values”
for additional information.

• +dumpports+unique

(optional) Generates unique VCD variable names for ports in a VCD file even if those ports
are connected to the same collapsed net.

• -enumfirstinit

(optional) Initializes enum variables in SystemVerilog using the leftmost value as the
default. You must also use the argument with the vlog command in order to implement this
initialization behavior. Specify the EnumBaseInit variable as 0 in the modelsim.ini file to set
this as a permanent default.

• -error <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "error.” Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

• -f <filename>

(optional) Specifies a file with more vsim command arguments. Allows complex argument
strings to be reused without retyping.

Refer to the section "“Argument Files” on page 27" for more information.

• -fatal <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "fatal." Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

• -fsmdebug

(optional) Enables visualization of FSMs in the GUI. You must specify this argument to
view FSM information the GUI.

• -g <Name>=<Value> …

(optional) Assigns a value to all specified VHDL generics and Verilog parameters that have
not received explicit values in generic maps, instantiations, or from defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values).

Multiple -g options are allowed, one for each generic/parameter, specified as a space
separated list.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 423

<Name> — Name of a generic/parameter, exactly as it appears in the VHDL source (case is
ignored) or Verilog source. Name may be prefixed with a relative or absolute hierarchical
path to select generics in an instance-specific manner. For example, specifying -g/top/u1/
tpd=20ns on the command line would affect only the tpd generic on the /top/u1 instance,
assigning it a value of 20ns. Specifying -gu1/tpd=20ns affects the tpd generic on all
instances named u1. Specifying-gtpd=20ns affects all generics named tpd.

<Value> — Specifies an appropriate value for the declared data type of a VHDL generic or
any legal value for a Verilog parameter. Make sure the value you specify for a VHDL
generic is appropriate for VHDL declared data types. Integers are treated as signed values.
For example, -gp=-10 overwrites the parameter p with the signed value of -10.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks (" ") must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command
from a shell, add single quotes (' ') around the string. For example:

-gstrgen='"This is a string"'

If working within the ModelSim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

You can also enclose the value escaped quotes (\"), for example:

-gstrgen=\"This is a string\"

• -G<Name>=<Value> …

(optional) Same as -g (see above) except that it will also override generics/parameters that
received explicit values in generic maps, instantiations, or from defparams.

This argument is the only way for you to alter the generic/parameter, such as its length,
(other than its value) after the design has been loaded.

<Name> — Name of a generic/parameter, exactly as it appears in the VHDL source (case is
ignored) or Verilog source. Name may be prefixed with a relative or absolute hierarchical
path to select generics in an instance-specific manner. For example, specifying -G/top/u1/
tpd=20ns on the command line would affect only the tpd generic on the /top/u1 instance,

ModelSim® Command Reference Manual, v10.5c424

Commands
vsim

assigning it a value of 20ns. Specifying -Gu1/tpd=20ns affects the tpd generic on all
instances named u1. Specifying -Gtpd=20ns affects all generics named tpd.

<Value> — Specifies an appropriate value for the declared data type of a VHDL generic or
any legal value for a Verilog parameter. Make sure the value you specify for a VHDL
generic is appropriate for VHDL declared data types. Integers are treated as signed values.
For example, -Gp=-10 overwrites the parameter p with the signed value of -10.

• -gblso <shared_obj>[,<shared_obj>]

(optional) Open the specified shared object(s) with global symbol visibility. Essentially all
data and functions are exported from the specified shared object and are available to be
referenced and used by other shared objects. If you specify multiple, comma-separated,
shared objects, they will be merged internally and then loaded as a single shared object. You
can also specify this argument with the GlobalSharedObjectsList variable in the
modelsim.ini file.

• -geometry <geometry_spec>

(optional) Specifies the size and location of the main window. Where <geometry_spec> is
of the form:

WxH+X+Y

• -gui

(optional) Starts the ModelSim GUI without loading a design and redirects the standard
output (stdout) to the GUI Transcript window.

• -help

(optional) Sends the arguments and syntax for vsim to the transcript.

• -i

(optional) Specifies that the simulator be run in interactive mode.

• +initregNBA | +noinitregNBA

(optional) Controls whether +initreg settings applied to registers of sequential UDPs should
be non-blocking. This is useful when continuous assignments overwrite register
initialization.

+initregNBA — (default) enables this functionality.

+noinitregNBA — disables this functionality.

• -installcolormap

(optional) For UNIX only. Causes vsim to use its own colormap so as not to hog all the
colors on the display. This is similar to the -install argument on Netscape.

• -keeploaded

(optional) Prevents the simulator from unloading/reloading any HDL interface shared
libraries when it restarts or loads a new design. The shared libraries will remain loaded at

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 425

their current positions. User application code in the shared libraries must reset its internal
state during a restart in order for this to work effectively.

• -keeploadedrestart

(optional) Prevents the simulator from unloading/reloading any HDL interface shared
libraries during a restart. The shared libraries will remain loaded at their current positions.
User application code in the shared libraries must reset its internal state during a restart in
order for this to work effectively.

We recommend using this option if you’ll be doing warm restores after a restart and the user
application code has set callbacks in the simulator. Otherwise, the callback function pointers
might not be valid if the shared library is loaded into a new position.

• -keepstdout

(optional) For use with foreign programs. Instructs the simulator to not redirect the stdout
stream to the Main window.

• -logfile <filename> | -l <filename> | -nolog

(optional) Controls saving of transcript data during batch and regular simulations.

-logfile <filename> — Saves transcript data to <filename>. Can be abbreviated to -l
<filename>. Overrides the default transcript file creation set with the TranscriptFile
or BatchTranscriptFile modelsim.ini variables. You can also specify “stdout” or
“stderr” for <filename>.

-nolog — Disables transcript file creation. Overrides the TranscriptFile or
BatchTranscriptFile variables set in the modelsim.ini file.

Refer to “Batch Mode” for more information about saving transcript data.

• -L <library_name> …

(optional) Specifies the library to search for top level design units instantiated from Verilog
and for VHDL default component binding. Prints a list of all visible top level libraries if a
top level design unit cannot be found. Refer to “Library Usage” for more information. If
multiple libraries are specified, each must be preceded by the -L option. Libraries are
searched in the order in which they appear on the command line.

• -Ldir <pathname> [<pathname> ...]

(optional) Passes one or more container folders for libraries specified by either vsim -L or
vsim -Lf. Once you specify a container folder (pathname), the libraries contained in this
folder can be directly referenced using their logical names. When you specify multiple
values for pathname, ModelSim searches in the order in which these paths are specified on
the command line.

Note
The current working directory ($cwd) is always searched before any pathnames you
specify for -Ldir. That is, ModelSim searches as if there was an implicit vsim -Ldir .

specified first on the command line.

ModelSim® Command Reference Manual, v10.5c426

Commands
vsim

• -Lf <library_name> …

(optional) Same as -L but libraries are searched before `uselib directives. Refer to “Library
Usage” for more information.

• -lib <libname>

(optional) Specifies the default working library where vsim will look for the design unit(s).
Default is "work".

• -libverbose[=prlib]

(optional) Enables verbose messaging about library search and resolution operations. The
“=prlib” option will print out the -L or -Lf option that was used to locate each design unit
loaded by vsim. This information is printed to the right of the existing “Loading design unit
xyz. . .” messages.

Libraries containing top design units that are not explicitly present in the set of -L/-Lf
options are implicitly promoted to searchable libraries at the end of the library search order.
They will appear as -Ltop in the output of the -libverbose option. To stop creation of -Ltop
libraries, use the -noltop argument of vsim.

• -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODELSIM environment variable. Specifies either
an absolute or relative path to the initialization file, including the file itself. On Windows
systems the path separator should be a forward slash (/).

• -msgfile <filename>

(optional) Designates an alternative file for recording error messages. An alternate file may
also be specified by theErrorFile modelsim.ini variable. By default, error messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file (refer to
“Creating a Transcript File”).

• -msglimit [all, | none,] <msgNumber>[, <msgNumber>,…]

(optional) Limits the number of iterations of the specified message(s) to five (the default
count) then suppresses all new instances. Refer to “Suppression of Warning Messages” for
more information.

all — Limits all messages to the default count except the specified msgNumber(s).

none — Limits only the specified msgNumber(s) to the default count.

<msgNumber>[,<msgNumber>,…] — Specifies the message number(s) to limit to five
iterations. Multiple messages are specified as a comma-separated list.

For example:

vsim -msglimit all, <msgID1>, <msgID2>

Limits all messages to the default count except msgID1 and msgID2.

vsim -msglimit none, <msgID1>, <msgID2>

Limits only msgID1 and msgID2 to the default count.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 427

• -msglimitcount <limit_value> -msglimit [all, | none,] <msgNumber>[, <msgNumber>...]

(optional) Limits the reporting of listed messages to user-defined limit_value. Overrides the
MsgLimitCount variable in the modelsim.ini file.

• -msgmode both | tran | wlf

(optional) Specifies the location(s) for the simulator to output elaboration and runtime
messages.

both — outputs messages to both the transcript and the WLF file.

tran — (default) outputs messages only to the transcript, therefore they are not available
in the Message Viewer.

wlf — outputs messages only to the WLF file/Message Viewer windows, therefore they
are not available in the transcript.

Refer to the section "Message Viewer Window" in the User’s Manual for more information.

• -multisource_delay min | max | latest

(optional) Controls the handling of multiple PORT or INTERCONNECT constructs that
terminate at the same port. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest of
the values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource_int_delays argument.

• +multisource_int_delays

(optional) Enables multisource interconnect delay with pulse handling and transport delay
behavior. Works for both Verilog and VITAL cells.

Use this argument when you have interconnect data in your SDF file and you want the delay
on each interconnect path modeled independently. Pulse handling is configured using the
+pulse_int_e and +pulse_int_r arguments (described below).

The +multisource_int_delays argument cannot be used if you compiled using the -novital
argument to vcom. The -novital argument instructs vcom to implement VITAL functionality
using VHDL code instead of accelerated code, and multisource interconnect delays cannot
be implemented purely within VHDL.

• -name <name>

(optional) Specifies the application name used by the interpreter for send commands. This
does not affect the title of the window.

• -noautoldlibpath

(optional) Disables the default internal setting of LD_LIBRARY_PATH, enabling you to
set it yourself. Use this argument to make sure that LD_LIBRARY_PATH is not set
automatically while you are using the GUI,

• -nocapacity

(optional) Disables the display of both coarse-grain and fine-grain analysis of memory
capacity.

ModelSim® Command Reference Manual, v10.5c428

Commands
vsim

• -nocompress

(optional) Causes VSIM to create uncompressed checkpoint files. This option may also be
specified with the CheckpointCompressMode variable in the modelsim.ini file.

• -noimmedca

(optional) Causes Verilog event ordering to occur without enforced prioritization—
continuous assignments and primitives are not run before other normal priority processes
scheduled in the same iteration. Use this argument to prevent the default event ordering
where continuous assignments and primitives are run with “immediate priority.” You may
also set even ordering with the ImmediateContinuousAssign variable in the modelsim.ini
file.

• +no_notifier

(optional) Disables the toggling of the notifier register argument of all timing check system
tasks. By default, the notifier is toggled when there is a timing check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
in both Verilog and VITAL for the entire design.

• +nospecify

(optional) Disables specify path delays and timing checks in Verilog.

• -nostdout

(optional) Directs all output to the transcript only when in command line and batch mode.
Prevents duplication of I/O between the shell and the transcript file. Has no affect on
interactive GUI mode. Refer to “Batch Mode” for information about batch mode usage.

• +no_tchk_msg

(optional) Disables error messages generated when timing checks are violated. For Verilog,
it disables messages issued by timing check system tasks. For VITAL, it overrides the
MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing check
violations.

• -note <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "note." Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

• +notifier_ondetect

(optional) Causes timing check notifier toggle generated X output values to be scheduled
with zero delay.

• +notimingchecks | +ntcnotchks

(optional) Disables Verilog timing checks. (This option sets the generic TimingChecksOn to
FALSE for all VHDL Vital models with the Vital_level0 or Vital_level1 attribute. Generics
with the name TimingChecksOn on non-VITAL models are unaffected.) By default, Verilog

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 429

timing check system tasks ($setup, $hold,…) in specify blocks are enabled. For VITAL, the
timing check default is controlled by the ASIC or FPGA vendor, but most default to
enabled.

Additionally, +ntcnotchks maintains the delay net delays necessitated by negative timing
check limits. For this reason when using +ntcnotchks it is necessary to SDF annotate all
timing check values.

• -nowiremodelforce

(optional) Restores the force command to previous usage (prior to version 10.0b) where an
input port cannot be forced directly if it is mapped at a higher level in VHDL and mixed
models. Signals must be forced at the top of the hierarchy connected to the input port.

• -optionset <optionset_name>

(optional) Calls an optionset as defined in the modelsim.ini file. Refer to the section
““Optionsets” on page 26” in the Reference Manual for more information.

• -pduignore[=<instpath>]

Ignore Preoptimized Design Unit (black-box). If <instpath> is not specified, all PDUs found
in compiled libraries will be ignored. Otherwise, the PDU specified by <instpath> will be
ignored. You can specify this argument multiple times using different values of <instpath>.
Equivalent to the deprecated -ignore_bbox argument.

• -permissive

(optional) Allows messages in the LRM group of error messages to be downgraded to a
warning.

You can produce a complete list of error messages by entering the following command:

verror -kind vsim -permissive

• -postsimdataflow

(optional) Makes Dataflow window available for post simulation debug operations. By
default, the Dataflow window is not available for post-sim debug.

• -printsimstats[=[<val>][v]]

(optional) Prints the output of the simstats command to the transcript at the end of
simulation before exiting. <val> is 0 - disables simstats, 1(default) - prints stats at the end of
simulation,2 - prints out stats at the end of each run command and simulation. v- prints out
verbose statistics, including the checkout time.

Each performance statistic is printed with its related units on a separate line. Edit the
PrintSimStats variable in the modelsim.ini file to set the simulation to print the simstats data
by default.

The command vsim -printsimstats=v is equivalent to vsim -stats=perf+verbose. The
command vsim -printsimstats=2v is equivalent to vsim -stats=perf+verbose+eor.

ModelSim® Command Reference Manual, v10.5c430

Commands
vsim

• +pulse_int_e/<percent>

(optional) Controls how pulses are propagated through interconnect delays, where
<percent> is a number between 0 and 100 that specifies the error limit as a percentage of the
interconnect delay. Used in conjunction with +multisource_int_delays (see above). This
option works for both Verilog and VITAL cells, though the destination of the interconnect
must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_int_r/<percent>
below) propagates to the output as an X. If the rejection limit is not specified, then it defaults
to the error limit. For example, consider an interconnect delay of 10 along with a
+pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. This results in the propagation of pulses greater than or equal to 8, while all other
pulses are filtered.

• +pulse_int_r/<percent>

(optional) Controls how pulses are propagated through interconnect delays, where
<percent> is a number between 0 and 100 that specifies the rejection limit as a percentage of
the interconnect delay. This option works for both Verilog and VITAL cells, though the
destination of the interconnect must be a Verilog cell. The source may be VITAL or
Verilog.

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_e then it defaults to the rejection limit.

• -quiet

(optional) Disable 'Loading' messages during batch-mode simulation.

• -runinit

(optional) Initializes non-trivial static SystemVerilog variables, for example expressions
involving other variables and function calls, before displaying the simulation prompt.

• +sdf_iopath_to_prim_ok

(optional) Prevents vsim from issuing an error when it cannot locate specify path delays to
annotate. If you specify this argument, IOPATH statements are annotated to the primitive
driving the destination port if a corresponding specify path is not found. Refer to “SDF to
Verilog Construct Matching” for additional information.

• -sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=]<sdf_filename>

(optional) Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay
Format file) with minimum, typical, or maximum timing. Can also specify instances under
VHDL generates as the SDF back-annotation point.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, all maximum values in the SDF file are scaled to 150% of their
original value.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 431

<instance>= — specifies a specific instance for the associated SDF file. Use this when
not performing backannotation at the top level.

<sdf_filename> — specifies the file containing the SDF information.

• -sdfmaxerrors <n>

(optional) Controls the number of Verilog SDF missing instance messages to be generated
before terminating vsim. <n> is the maximum number of missing instance error messages to
be emitted. The default number is 5.

• -sdfnoerror

(optional) Errors issued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to warnings so
that the simulation can continue.

• -sdfnowarn

(optional) Disables warnings from the SDF reader. Refer to “VHDL Simulation” for an
additional discussion of SDF.

• -sdfreport=<filename>

(optional) Produces a report at the location of <filename> containing information about
unannotated and partially-annotated specify path objects, specifically path delays and
timing checks. Refer to the section “Reporting Unannotated Specify Path Objects” in the
User’s Manual for more information.

• +sdf_report_unannotated_insts

(optional) Enables error messages for any un-annotated Verilog instances with specify
blocks or VHDL instances with VITAL timing generics that are under regions of SDF
annotation.

• +sdf_verbose

(optional) Turns on the verbose mode during SDF annotation. The Transcript window
provides detailed warnings and summaries of the current annotation as well as information
including the module name, source file name, and line number. When the
+multisource_int_delays argument is also specified, the +sdf_verbose argument causes the
output from the write timing command to contain more detail.

• -stackcheck

(optional) Enables runtime stack usage sanity checking. This argument causes vsim to add
additional instrumentation at runtime to monitor the system stack usage. If the usage
exceeds the reserved stack limit, vsim will report a fatal error. An uncaught stack overflow
will lead to a potentially mysterious and random downstream crash.

• -stats [=[+ | -]<feature>[,[+ | -]<mode>]

(optional) Controls display of statistics sent to a logfile, stdout, or the transcript. Specifying
-stats without options sets the default features (cmd, msg, and time).

ModelSim® Command Reference Manual, v10.5c432

Commands
vsim

Multiple features and modes for each instance of -stats are specified as a comma separated
list. You can specify -stats multiple times on the command line, but only the last instance
takes effect.

You can specify -printsimstats and -stats on the same command line, however -stats will
always override -printsimstats regardless of the order in which the options are specified.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disables the feature. You can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this argument will add or subtract features and modes from the
default settings "cmd,msg,time".

Features

all — Display all statistics features (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

perf — Display time and memory performance statistics.

time — (default) Display Start, End, and Elapsed times.

Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vcover dump -stats=cmd+verbose,perf+list. To add or subtract a
mode globally for all features, specify the modes in a comma-separated list, for
example, vcover dump -stats=time,perf,list,-verbose. You cannot specify global and
feature specific modes together.

eor — Print performance statistics at the end of each run command. Valid for use only
with perf feature (-stats=perf+eor); it is invalid with other features.

kb — Print statistics in kilobyte units with no auto-scaling.

list — Display statistics in a Tcl list format when available.

verbose — Display verbose statistics information when available.

Note
By default, vsim prints the command line with the '-f filename' option. Prior to
10.3c, behavior was to print the command line with expanded arguments from '-f

filename'. To enable the previous behavior, specify -stats=cmd+verbose.

Refer to Tool Statistics Messages for more information.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 433

• -suppress <msg_number>[,<msg_number>,…]

(optional) Prevents the specified message(s) from displaying. You cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Message Severity Level” for more information.

• -sync

(optional) Executes all X server commands synchronously, so that errors are reported
immediately. Does not apply to Windows platforms.

• -syncio | -nosyncio

(optional) Controls buffering of text output to console and logfile. Both options are no-ops
when vsim -batch is in effect.

-syncio — (default) I/O is synchronous with simulation activity, always up-to-date.

-nosyncio — Disables I/O synchronization. This allows vsim to run faster by buffering
(delaying) output.

• -t [<multiplier>]<time_unit>

(optional) Specifies the simulator time resolution. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100.

Note that there is no space between the multiplier and the unit (for example, 10fs, not 10 fs).

If you omit the -t argument, the default simulator time resolution depends on design type:

o In a VHDL design—the value specified for the Resolution variable in modelsim.ini
is used.

o In a Verilog design with ‘timescale directives—the minimum specified time
precision of all directives is used.

o In a Verilog design with no ‘timescale directives—the value specified for the
Resolution variable in the modelsim.ini file is used.

o In a mixed design with VHDL on top—the value specified for the Resolution
variable in the modelsim.ini file is used.

o In a mixed design with Verilog on top—

• for Verilog modules not under a VHDL instance: the minimum value specified
for their ‘timescale directives is used.

• for Verilog modules under a VHDL instance: all their ‘timescale directives are
ignored (the minimum value for ‘timescale directives in all modules not under a
VHDL instance is used).

ModelSim® Command Reference Manual, v10.5c434

Commands
vsim

If there are no ‘timescale directives in the design, the value specified for the Resolution
variable in modelsim.ini is used.

Tip
After you have started a simulation, you can view the current simulator resolution by
using the report command as follows: report simulator state

• -tab <tabfile>

(optional) Specifies the location of a Synopsys VCS “tab” file (.tab), which the simulator
uses to automate the registration of PLI functions in the design.

<tabfile> — The location of a .tab file contains information about PLI functions. The
tool expects the .tab file to be based on Synopsys VCS version 7.2 syntax. Because
the format for this file is non-standard, changes to the format are outside of the
control of Mentor Graphics.

• -tag <string>

(optional) Specifies a string tag to append to foreign trace filenames. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.

• -title <title>

(optional) Specifies the title to appear for the ModelSim Main window. If omitted the
current ModelSim version is the window title. Useful when running multiple simultaneous
simulations. Text strings with spaces must be in quotes (for example, "my title").

• -trace_foreign <int>

(optional) Creates two kinds of foreign interface traces: a log of what functions were called,
with the value of the arguments, and the results returned; and a set of C-language files to
replay what the foreign interface side did.

The purpose of the logfile is to aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility is to send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it is impractical to send the PLI/VPI
code.

• -undefsyms={<args>}

(optional) Manages the undefined symbols in the shared libraries currently being loaded into
the simulator. You can also manage undefined symbols with the UndefSyms modelsim.ini
variable.

{<args>}

You must specify at least one argument.

on — Enables automatic generation of stub definitions for undefined symbols and
permits loading of the shared libraries despite the undefined symbols.

off — (default) Disables loading of undefined symbols. Undefined symbols trigger an
immediate shared library loading failure.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 435

verbose — Permits loading to the shared libraries despite the undefined symbols and
reports the undefined symbols for each shared library.

• -uvmcontrol={<args>}

(optional) Controls UVM-Aware debug features. These features work with either a standard
Accelera-released open source toolkit or the pre-compiled UVM library package in
ModelSim.

{<args>}

You must specify at least one argument. You can enable or disable some arguments by
prefixing the argument with a dash (-). Refer to the argument descriptions for more
information.

all — Enables all UVM-Aware functionality and debug options except disable and
verbose. You must specify verbose separately.

certe — Enables the integration of the elaborated design in the Certe tool. Disables Certe
features when specified as -certe.

disable — Prevents the UVM-Aware debug package from being loaded. Changes the
results of randomized values in the simulator.

msglog — Enables messages logged in UVM to be integrated into the Message Viewer.
You must also enable wlf message logging by specifying tran or wlf with vsim
-msgmode. Disables message logging when specified as -msglog

none — Turns off all UVM-Aware debug features. Useful when multiple -uvmcontrol
options are specified in a separate script, makefile or alias and you want to be sure all
UVM debug features are turned off.

reseed — Disables behavior of UVM simulation, where if you reseed the simulation, the
random sequences generated by UVM will change.

struct — (default) Enables UVM component instances to appear in the Structure
window. UVM instances appear under “uvm_root” in the Structure window. Disables
Structure window support when specified as -struct.

trlog — Enables or disables UVM transaction logging. Logs UVM transactions for
viewing in the Wave window. Disables transaction logging when specified as -trlog.

verbose — Sends UVM debug package information to the transcript. Does not affect
functionality. Must be specified separately.

Arguments may be specified as multiple instances of -uvmcontrol. Multiple arguments are
specified as a comma separated list without spaces. For example,

vsim -uvmcontrol=all,-trlog

enables all UVM features except UVM transaction logging. Where arguments are in
conflict, the last argument will override earlier arguments and a warning is issued.

You can also control UVM-Aware debugging with theUVMControl modelsim.ini variable.

ModelSim® Command Reference Manual, v10.5c436

Commands
vsim

• -vcdstim [<instance>=]<filename>

(optional) Specifies a VCD file from which to re-simulate the design. The VCD file must
have been created in a previous ModelSim simulation, which was executed with the
+dumpports+nocollapse option, then using the vcd dumpports command. Refer to “Using
Extended VCD as Stimulus” for more information.

• -version

(optional) Returns the version of the simulator as used by the licensing tools.

• -view [<alias_name>=]<WLF_filename>

(optional) Specifies a wave log format (WLF) file for vsim to read. Allows you to use vsim
to view the results from an open simulation (vsim.wlf) or an earlier saved simulation. The
Structure, Objects, Wave, and List windows can be opened to look at the results stored in
the WLF file (other ModelSim windows will not show any information when you are
viewing a dataset).

<alias_name> — Specifies an alias for <WLF_file_name> where the default is to use
the prefix of the WLF_filename. Wildcard characters are allowed.

<WLF_file_name> — Specifies the pathname of a saved WLF file.

See additional discussion in the Examples.

• -visual <visual>

(optional) Specifies the visual to use for the window. Does not apply to Windows platforms.

Where <visual> may be:

<class> <depth> — One of the following:

{directcolor | grayscale | greyscale | pseudocolor | staticcolor | staticgray | staticgrey |
truecolor}

followed by:

<depth> — Specifies how many bits per pixel are needed for the visual.

default — Instructs the tool to use the default visual for the screen

<number> — Specifies a visual X identifier.

best <depth> — Instructs the tool to choose the best possible visual for the specified
<depth>, where:

<depth> — Specifies how many bits per pixel are needed for the visual.

• -warning <msg_number>[,<msg_number>,…]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

• -warning error

(optional) Reports all warnings as errors.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 437

• -wlf <file_name>

(optional) Specifies the name of the wave log format (WLF) file to create. The default file
name is vsim.wlf. This option may also be specified with the WLFFilename variable in the
modelsim.ini file.

• -wlfcachesize <n>

(optional) Specifies the size in megabytes of the WLF reader cache. By default the cache
size is set to zero. WLF reader caching caches blocks of the WLF file to reduce redundant
file I/O. This should have significant benefit in slow network environments. This option
may also be specified with the WLFCacheSize variable in the modelsim.ini file.

• -wlfcollapsedelta

(default) Instructs ModelSim to record values in the WLF file only at the end of each
simulator delta step. Any sub-delta values are ignored. May dramatically reduce WLF file
size. This option may also be specified with the WLFCollapseMode variable in the
modelsim.ini file.

• -wlfcollapsetime

(optional) Instructs ModelSim to record values in the WLF file only at the end of each
simulator time step. Any delta or sub-delta values are ignored. May dramatically reduce
WLF file size. This option may also be specified with the WLFCollapseMode variable in
the modelsim.ini file.

• -nowlfcollapse

(optional) Instructs ModelSim to preserve all events for each logged signal and their event
order to the WLF file. May result in relatively larger WLF files. This option may also be
specified with the WLFCollapseMode variable in the modelsim.ini file.

• -wlfcompress

(default) Creates compressed WLF files. Use -nowlfcompress to turn off compression. This
option may also be specified with the WLFCompress variable in the modelsim.ini file.

• -nowlfcompress

(optional) Causes vsim to create uncompressed WLF files. WLF files are compressed by
default in order to reduce file size. This may slow simulation speed by one to two percent.
You may want to disable compression to speed up simulation or if you are experiencing
problems with faulty data in the resulting WLF file. This option may also be specified with
the WLFCompress variable in the modelsim.ini file.

• -wlfdeleteonquit

(optional) Deletes the current simulation WLF file (vsim.wlf) automatically when the
simulator exits. This option may also be specified with the WLFDeleteOnQuit variable in
the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5c438

Commands
vsim

• -nowlfdeleteonquit

(default) Preserves the current simulation WLF file (vsim.wlf) when the simulator exits.
This option may also be specified with the WLFDeleteOnQuit variable in the modelsim.ini
file.

• -wlflock

(optional) Locks a WLF file. An invocation of ModelSim will not overwrite a WLF file that
is being written by a different invocation.

• -nowlflock

(optional) Disables WLF file locking. This will prevent vsim from checking whether a WLF
file is locked prior to opening it as well as preventing vsim from attempting to lock a WLF
once it has been opened.

• -nowlfopt

(optional) Disables optimization of waveform display in the Wave window. This option
may also be specified with the WLFOptimize variable in the modelsim.ini file.

• -wlfsimcachesize <n>

(optional) Specifies the size in megabytes of the WLF reader cache for the current
simulation dataset only. By default the cache size is set to zero. This makes it easier to set
different sizes for the WLF reader cache used during simulation and those used during post-
simulation debug. WLF reader caching caches blocks of the WLF file to reduce redundant
file I/O. If neither the -wlfsimcachesize argument nor the WLFSimCacheSize modelsim.ini
variable are specified, the -wlfcachesize argument or the WLFCacheSize modelsim.ini
variable settings will be used.

• -wlfslim <size>

(optional) Specifies a size restriction for the event portion of the WLF file.

size — an integer, in megabytes, where the default is 0, which implies an unlimited size.

Note
Note that a WLF file contains event, header, and symbol portions. The size
restriction is placed on the event portion only. Consequently, the resulting file will

be larger than the specified size.

If used in conjunction with -wlftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit variable in the modelsim.ini file.
(See Limiting the WLF File Size.)

• -wlftlim <duration>

(optional) Specifies the duration of simulation time for WLF file recording. The default is
infinite time (0). The <duration> is an integer of simulation time at the current resolution;
you can optionally specify the resolution if you place curly braces around the specification.
For example,

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 439

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at most the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit variable in the modelsim.ini file.

The -wlfslim and -wlftlim arguments were designed to help users limit WLF file sizes for
long or heavily logged simulations. When small values are used for these arguments, the
values may be overridden by the internal granularity limits of the WLF file format. (See
Limiting the WLF File Size.)

VHDL Arguments
• -absentisempty

(optional) Causes VHDL files opened for read that target non-existent files to be treated as
empty, rather than ModelSim issuing fatal error messages.

• -accessobjdebug

(optional) Enables logging of VHDL access type variables—both the variable value and any
access object that the variable points to during the simulation. Further, it changes the default
form of display-only names (such as [10001]) to a different form that you can use as input to
any command that expects an object name.

By default, logging is turned off. This means that while access variables themselves can be
logged and displayed in the ModelSim display windows, any access objects that they point
to will not be logged.

Overrides the setting forthe AccessObjDebug variable in the modelsim.ini file.

• -noaccessobjdebug

(optional) Disables logging of VHDL access type variables, which is the default setting.
This means that while access variables themselves can be logged and displayed in the
ModelSim display windows, any access objects that they point to will not be logged.

Overrides the setting forthe AccessObjDebug variable in the modelsim.ini file.

• -nocollapse

(optional) Disables the optimization of internal port map connections.

• -nofileshare

(optional) Turns off file descriptor sharing. By default ModelSim shares a file descriptor for
all VHDL files opened for write or append that have identical names.

ModelSim® Command Reference Manual, v10.5c440

Commands
vsim

• -noglitch

(optional) Disables VITAL glitch generation.

Refer to “VHDL Simulation” for additional discussion of VITAL.

• +no_glitch_msg

(optional) Disable VITAL glitch error messages.

• -novhdlvariablelogging

(optional) This argument turns off the ability to log recursively or add process variables to
the Wave or List windows. Refer to -vhdlvariable logging and VhdlVariableLogging
modelsim.ini variable for more information.

• -std_input <filename>

(optional) Specifies the file to use for the VHDL TextIO STD_INPUT file.

• -std_output <filename>

(optional) Specifies the file to use for the VHDL TextIO STD_OUTPUT file.

• -strictvital

(optional) Specifies to exactly match the VITAL package ordering for messages and delta
cycles. Useful for eliminating delta cycle differences caused by optimizations not addressed
in the VITAL LRM. Using this argument negatively impacts simulator performance.

• +transport_int_delays

(optional) Selects transport mode with pulse control for single-source nets (one interconnect
path). By default interconnect delays operate in inertial mode (pulses smaller than the delay
are filtered). In transport mode, narrow pulses are propagated through interconnect delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

• +transport_path_delays

(optional) Selects transport mode for path delays. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

• -vhdlmergepdupackage

(optional) Turns off sharing of one package between two PDUs. Each PDU will have a
separate copy of the package. This option may also be specified with the
VhdlSeparatePduPackage variable in the modelsim.ini file.

• -vhdlseparatepdupackage

(optional, default) Turns on sharing of packages between two or more PDUs.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 441

• -vhdlvariablelogging

(optional) This argument makes it possible for process variables to be logged recursively or
added to the Wave and List windows (process variables can still be logged or added to the
Wave and List windows explicitly with or without this argument).

You can disable this argument with -novhdlvariablelogging. Refer to -vhdlvariable logging
and VhdlVariableLogging modelsim.ini variable for more information.

Note
Logging process variables inherently decreases simulation performance because of
their nature. It is recommended that they not be logged or added to the Wave and

List windows. However, if debugging does require logging them, then you can use this
argument to minimize the performance decrease.

• -vital2.2b

(optional) Selects SDF mapping for VITAL 2.2b (default is VITAL 2000).

Verilog Arguments
• +alt_path_delays

(optional) Configures path delays to operate in inertial mode by default. In inertial mode, a
pending output transition is canceled when a new output transition is scheduled. The result
is that an output may have no more than one pending transition at a time, and that pulses
narrower than the delay are filtered. The delay is selected based on the transition from the
canceled pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on a transition from the current output
value rather than the canceled pending value of the net. This option has no effect in transport
mode (see +pulse_e/<percent> and +pulse_r/<percent>).

• -checkvifacedrivers

(optional) Turns off/on checks for multiple-driver analysis in assignments made through
virtual interfaces.

• -classdebug | -noclassdebug

(optional) Enables/disables visibility into class instances, and includes SystemVerilog
queues, dynamic arrays, and associative arrays for class and UVM debugging. You can also
enable visibility into class instances by setting the ClassDebug modelsim.ini variable to 1.
Refer to the classinfo find command for more information.

• +delayed_timing_checks

(optional) Causes timing checks to be performed on the delayed versions of input ports
(used when there are negative timing check limits). By default, ModelSim automatically
detects and applies +delayed_timing_checks to cells with negative timing checks. To turn
off this feature, specify +no_autodtc with vsim.

ModelSim® Command Reference Manual, v10.5c442

Commands
vsim

• -dpiforceheader

(optional) Forces the generation of a DPI header file even if it will be empty of function
prototypes.

• -dpiheader

(optional) Generates a header file that may then be included in C source code for DPI import
functions. Simulation quits after header file is generated. Refer to “DPI Use Flow” for
additional information.

• -dpilib <libname>

(optional) Specifies the design library name that contains DPI exports and automatically
compiled object files. If the -dpilib argument is not set, vsim loads export symbols from all
libraries accessible via vsim options -L, -Lf, and -lib. Multiple occurrences of -dpilib are
supported.

• -dpioutoftheblue 0 | 1 | 2

(optional) Instructs vsim to allow DPI out-of-the-blue calls from C functions. The C
functions must not be declared as import tasks or functions.

0 — Support for DPI out-of-the-blue calls is disabled.

1 — Support for DPI out-of-the-blue calls is enabled, but debugging support is not
available.

• -gconrun | -nogconrun

(optional) Enables/disables garbage collector execution after each simulation run command
completes.

• -gconstep | -nogconstep

(optional) Enables/disables garbage collector execution after each step when stepping
through your simulation.

• -gcthreshold <n>

(optional) Sets the maximum amount of memory in megabytes allocated for storage of class
objects before the garbage collector runs to delete unreferenced objects.

<n> — Any positive integer where <n> is the number of megabytes. The default size is
100 megabytes.

Related modelsim.ini file variables are GCThreshold andGCThresholdClassDebug.

• -hazards

(optional) Enables event order hazard checking in Verilog modules (Verilog only). You
must also specify this argument when you compile your design with vlog. Refer to “Hazard
Detection” for more details.

Note
Using -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 443

• -ignoreinilibs

(optional) Ignore the libraries specified in the LibrarySearchPath variable in the vsim
section of the modelsim.ini file.

• -noappendclose

(optional) Simulator will not immediately close files opened in APPEND mode. Designed
to override the AppendClose modelsim.ini variable when it is set to one (On). Subsequent
calls to file_open in APPEND mode will therefore not require operating system interaction,
resulting in faster performance.

• +no_autodtc

(optional) Turns off auto-detection of optimized cells with negative timing checks and auto-
application of +delayed_timing_checks to those cells.

• +no_cancelled_e_msg

(optional) Disables negative pulse warning messages. By default vsim issues a warning and
then filters negative pulses on specify path delays. You can drive an X for a negative pulse
using +show_cancelled_e.

• +no_neg_tchk

(optional) Disables negative timing check limits by setting them to zero. By default negative
timing check limits are enabled. This is just the opposite of Verilog-XL, where negative
timing check limits are disabled by default, and they are enabled with the +neg_tchk option.

• +no_notifier

(optional) Disables the toggling of the notifier register argument of all timing check system
tasks. By default, the notifier is toggled when there is a timing check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
on timing violations for the entire design.

• +no_path_edge

(optional) Causes ModelSim to ignore the input edge specified in a path delay. The result of
this argument is that all edges on the input are considered when selecting the output delay.
Verilog-XL always ignores the input edges on path delays.

• +no_pulse_msg

(optional) Disables the warning message for specify path pulse errors. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection limit
and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error results in
a warning message, and the pulse is propagated as an X. The +no_pulse_msg option
disables the warning message, but the X is still propagated.

• -no_risefall_delaynets

(optional) Disables the default rise/fall delay net delay negative timing check algorithm.
This argument is provided to return ModelSim to older behavior where violation regions
must overlap in order to find a delay net solution. Beginning with Release 6.0, you do not

ModelSim® Command Reference Manual, v10.5c444

Commands
vsim

need to use this argument because ModelSim uses separate rise/fall delays, so violation
regions need not overlap for a delay solution to be found.

• +no_show_cancelled_e

(optional) Filters negative pulses on specify path delays so they do not show on the output.
Default. Use +show_cancelled_e to drive a pulse error state.

• +no_tchk_msg

(optional) Disables error messages issued by timing check system tasks when timing check
violations occur. Notifier registers are still toggled and may result in the propagation of Xs
for timing check violations.

• -nodpiexports

(optional) Instructs ModelSim to not generate C wrapper code for DPI export task and
function routines found at elaboration time. More specifically, the command does not
generate the exportwrapper.so shared object file.

For a description on when you should use this argument, refer to the section “Deprecated
Legacy DPI Flows” in the User’s Manual.

• +nosdferror

(optional) Errors issued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to warnings so
that the simulation can continue.

• +nosdfwarn

(optional) Disables warnings from the SDF annotator.

• +nospecify

(optional) Disables specify path delays and timing checks.

• +nowarnBSOB

(optional) Disables run-time warning messages for bit-selects in initial blocks that are out of
bounds.

• +nowarn<CODE | number>

(optional) Disables warning messages in the category specified by a warning code or
number. Warnings that can be disabled include the code name in square brackets in the
warning message. For example:

** Warning: (vsim-3017) test.v(2): [TFMPC] - Too few port
connections. Expected <m>, found <n>.

The warning code for this example is TFMPC, and the warning number is 3017. Therefore,
this warning message can be disabled with +nowarnTFMPC or +nowarn3017.

• +ntc_warn

(optional) Enables warning messages from the negative timing constraint algorithm. By
default, these warnings are disabled.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 445

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of the
negative limits to zero and recalculates the delays. This process is repeated until a solution is
found. A warning message is issued for each negative limit set to zero.

• +ntcnotchks

(optional) Instructs vsim to not simulate timing checks but still consider negative timing
check limits for the calculation of delayed input delays.

• -oldvhdlforgennames

(optional) Enables the use of a previous style of naming in VHDL for … generate statement
iteration names in the design hierarchy. The previous style is controlled by the value of the
GenerateFormat value. The default behavior is to use the current style names, which is
described in “Naming Behavior of VHDL For Generate Blocks” This argument duplicates
the function of the OldVhdlForGenNames variable in modelsim.ini and will override the
setting of that variable if it specifies the current style.

• -onfinish ask | stop | exit | final

(optional) Customizes the simulator shutdown behavior when it encounters $finish in the
design:

o ask —

• In batch mode, the simulation exits.

• In GUI mode, a dialog box pops up and asks for user confirmation on whether to
quit the simulation.

o stop — stops simulation and leaves the simulation kernel running

o exit — exits out of the simulation without a prompt

o final — executes all final blocks then exits the simulation

By default, the simulator exits in batch mode; prompts you in GUI mode. Edit the OnFinish
variable in the modelsim.ini file to set the default operation of $finish.

• -pedanticerrors

(optional) Forces display of an error message (rather than a warning) on a variety of
conditions.

You can view a complete list of errors by executing the command:

verror -kind vsim -pedanticerrors

• -permit_unmatched_virtual_intf

(optional) Permits vsim to elaborate designs containing virtual interface declarations for
which no actual interface instances exist that are compatible with that declaration. Such
virtual interface declarations are considerted "unmatched" since there is no matching or

ModelSim® Command Reference Manual, v10.5c446

Commands
vsim

compatible interface instance. By default, unmatched virtual interfaces prevent vsim from
elaborating the design. For further information on this design situation, see "Unmatched
Virtual Interface Declarations".

• -pli "<object list>"

(optional) Loads a comma- or space-separated list of PLI shared objects. The list must be
quoted if it contains more than one object. This is an alternative to specifying PLI objects in
the Veriuser entry in the modelsim.ini file, refer to modelsim.ini Variables. You can use
environment variables as part of the path.

• +<plusarg>

(optional) Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). All plusarg argument values can be overridden in -restore mode and
will take effect when simulation resumes after restoring the design.

• +pulse_e/<percent>

(optional) Controls how pulses are propagated through specify path delays, where
<percent> is a number between 0 and 100 that specifies the error limit as a percentage of the
path delay.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
propagates to the output as an X. If the rejection limit is not specified, then it defaults to the
error limit. For example, consider a path delay of 10 along with a +pulse_e/80 option. The
error limit is 80% of 10 and the rejection limit defaults to 80% of 10. This results in the
propagation of pulses greater than or equal to 8, while all other pulses are filtered. Note that
you can force specify path delays to operate in transport mode by using the +pulse_e/0
option.

• +pulse_e_style_ondetect

(optional) Selects the "on detect" style of propagating pulse errors (see +pulse_e). A pulse
error propagates to the output as an X, and the "on detect" style is to schedule the X
immediately, as soon as it has been detected that a pulse error has occurred. "on event" style
is the default for propagating pulse errors (see +pulse_e_style_onevent).

• +pulse_e_style_onevent

(optional) Selects the "on event" style of propagating pulse errors (see +pulse_e). Default. A
pulse error propagates to the output as an X, and the "on event" style is to schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it had
propagated through normally.

• +pulse_r/<percent>

(optional) Controls how pulses are propagated through specify path delays, where
<percent> is a number between 0 and 100 that specifies the rejection limit as a percentage of
the path delay.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 447

A pulse less than the rejection limit is suppressed from propagating to the output. If the error
limit is not specified by +pulse_e then it defaults to the rejection limit.

• +sdf_nocheck_celltype

(optional) Disables the error check a for mismatch between the CELLTYPE name in the
SDF file and the module or primitive name for the CELL instance. It is an error if the names
do not match.

• +show_cancelled_e

(optional) Drives a pulse error state (’X’) for the duration of a negative pulse on a specify
path delay. By default ModelSim filters negative pulses.

• -showlibsearchpath

(optional) Returns to the transcript all libraries that will be searched for precompiled
modules.

• -sv_lib <shared_obj>

(required for use with DPI import libraries) Specifies the name of the DPI shared object with
no extension. Refer to “DPI Use Flow” for additional information.

• -sv_liblist <filename>

(optional) Specifies the name of a bootstrap file containing names of DPI shared objects
(libraries) to be loaded. Refer to “DPI File Loading” for format information.

• -sv_root <dirname>

(optional) Specifies the directory name to be used as the prefix for DPI shared object
lookups.

• +transport_int_delays

(optional) Selects transport mode with pulse control for single-source nets (one interconnect
path). By default interconnect delays operate in inertial mode (pulses smaller than the delay
are filtered). In transport mode, narrow pulses are propagated through interconnect delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

• +transport_path_delays

(optional) Selects transport mode for path delays. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

• -v2k_int_delays

(optional) Causes interconnect delays to be visible at the load module port per the IEEE
1364-2001 spec. By default ModelSim annotates INTERCONNECT delays in a manner
compatible with Verilog-XL. If you have $sdf_annotate() calls in your design that are not
getting executed, add the Verilog task $sdf_done() after your last $sdf_annotate() to remove

ModelSim® Command Reference Manual, v10.5c448

Commands
vsim

any zero-delay MIPDs that may have been created. May be used in tandem with the
+multisource_int_delays argument (see above).

• -work <pathname>

(optional) When using a 2-step flow, this argument overrides the library in which vsim
writes the optimized design generated by the internally invoked vopt command.

• -wrealdefaultzero

(optional) For nets declared as wreal, sets the default value for an undriven wreal net to zero
(0).

Object Arguments
The object arguments may be a [<library_name>].<design_unit>, an .mpf file, a .wlf file, or a
text file. Multiple design units may be specified for Verilog modules and mixed VHDL/Verilog
configurations.

• <library_name>.<design_unit>

(optional) Specifies a library and associated design unit; multiple library/design unit
specifications can be made. If no library is specified, the work library is used. You cannot
use the wildcard character (*) for this argument. Environment variables can be used.
<design_unit> may be one of the following:

• <MPF_file_name>

(optional) Opens the specified project.

• <WLF_file_name>

(optional) Opens the specified dataset. When you open a WLF file using the following
command:

vsim test.wlf

<configuration> Specifies the VHDL configuration to simulate.

<module> … (optional) Specifies the name of one or more top-
level Verilog modules to be simulated.

<entity> [(<architecture>)] (optional) Specifies the name of the top-level
VHDL entity to be simulated. The entity may have
an architecture optionally specified; if omitted the
last architecture compiled for the specified entity
is simulated. An entity is not valid if a
configuration is specified.1

1. Most UNIX shells require arguments containing () to be single-quoted to prevent special
parsing by the shell. See the examples below.

Commands
vsim

ModelSim® Command Reference Manual, v10.5c 449

The default behavior is to not automatically load any signals into the Wave window. You
can change this behavior, such that the Wave window contains all signals in the design, by
setting the preference PrefWave(OpenLogAutoAddWave) to 1 (true).

• <text_file_name>

(optional) Opens the specified text file in a Source window.

Examples

• Invoke vsim on the entity cpu and assigns values to the generic parameters edge and
VCC.

vsim -gedge=’"low high"’ -gVCC=4.75 cpu

If working within the ModelSim GUI, you would enter the command as follows:

vsim {-gedge="low high"} -gVCC=4.75 cpu

Instruct ModelSim to view the results of a previous simulation run stored in the WLF
file sim2.wlf. The simulation is displayed as a dataset named test. Use the -wlf argument
to specify the name of the WLF file to create if you plan to create many files for later
viewing.

vsim -view test=sim2.wlf

For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

Annotate instance /top/u1 using the minimum timing from the SDF file myasic.sdf.

vsim -sdfmin /top/u1=myasic.sdf

Use multiple arguments to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

• This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.

vsim ’mylib.top(only)’ gatelib.cache_set

• Invoke vsim on test_counter and run the simulation until a break event, then quit when it
encounters a $finish task.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

• Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vsim -stats=time,-cmd,msg

• The first -stats option is ignored. The none option disables all modelsim.ini settings and
then enables the perf option.

ModelSim® Command Reference Manual, v10.5c450

Commands
vsim

vsim -stats=time,cmd,msg -stats=none,perf

Commands
vsim<info>

ModelSim® Command Reference Manual, v10.5c 451

vsim<info>
Series of commands that return information about the current vsim executable.

Syntax

vsimAuth
Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsimDate
Returns the date the executable was built, such as "Apr 10 2000".

vsimId
Returns the identifying string, such as "ModelSim 6.1".

vsimVersion
Returns the version as used by the licensing tools, such as "1999.04".

vsimVersionString
Returns the full vsim version string. You can obtain this same information using the
-version argument of the vsim command.

Arguments

none

ModelSim® Command Reference Manual, v10.5c452

Commands
vsim_break

vsim_break
Stop (interrupt) the current simulation before it runs to completion. To stop a simulation and
then resume it, use this command in conjunction with run -continue.

Syntax

vsim_break

Arguments

None.

Examples

• Interrupt a simulation, then restart it from the point of interruption.

vsim_break
run -continue

Commands
vsource

ModelSim® Command Reference Manual, v10.5c 453

vsource
This command specifies an alternative file to use for the current source file. This command is
used when the current source file has been moved. The alternative source mapping exists for the
current simulation only.

Syntax

vsource [<filename>]

Arguments

• <filename>

(optional) Specifies a relative or full pathname. If filename is omitted, the source file for the
current design context is displayed.

Examples
vsource design.vhd
vsource /old/design.vhd

ModelSim® Command Reference Manual, v10.5c454

Commands
wave

wave
A collection of related commands that manipulate and report on the Wave window.

Syntax

wave cursor active [-window <win>] [<cursor-num>]

wave cursor add [-window <win>] [-time <time>] [-name <name>] [-lock <0 |1>]

wave cursor configure [<cursor-num>] [-window <win>] [<option> [<value>]]

wave cursor delete [-window <win>] [<cursor-num>]

wave cursor see [-window <win>] [-at <percent>] [<cursor-num>]

wave cursor time [-window <win>] [-time <time>] [<cursor-num>]

wave collapse all [-window <win>]

wave collapse cursor [-window <win>] [<cursor-num>]

wave collapse range [-window <win>] <start-time> <end-time>

wave expand all [-window <win>]

wave expand cursor [-window <win>] [<cursor-num>]

wave expand mode [-window <win>] [off | deltas | events]

wave expand range [-window <win>] <start-time> <end-time>

wave interrupt [-window <win>]

wave refresh [-window <win>]

wave seetime [-window <win>] [-at <percent>] -time <time>

wave zoom in [-window <win>] [<factor>]

wave zoom out [-window <win>] [<factor>]

wave zoom full [-window <win>]

wave zoom last [-window <win>]

wave zoom range [-window <win>] [<start-time> <end-time>]

Commands
wave

ModelSim® Command Reference Manual, v10.5c 455

Description

The following tables summarize the available options for manipulating cursors, for zooming,
and for adjusting the wave display view in the Wave window:

Table 2-9. Wave Window Commands for Cursor

Cursor Commands Description

wave cursor active Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave cursor add Adds a new cursor at specified time and returns the number of
the newly added cursor

wave cursor configure Sets or reports values for the specified cursor

wave cursor delete Deletes the specified cursor or, if no cursor is specified, the
active cursor

wave cursor see Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display – 0% is the left edge, 100% is the right edge.

wave cursor time Moves or reports the time of the specified cursor or, if no
cursor is specified, the time of the active cursor

Table 2-10. Wave Window Commands for Expanded Time Display

Display view Commands Description

wave expand mode Selects the expanded time display mode: Delta Time, Event
Time, or off.

wave expand all Expands simulation time into delta time steps if Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over the full range of the simulation
from time 0 to the current time.

wave expand cursor Expands simulation time into delta time steps if Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) at the simulation time of the active
cursor.

wave expand range Expands simulation time into delta time steps if Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over a time range specified by a start
time and an end time.

ModelSim® Command Reference Manual, v10.5c456

Commands
wave

Arguments

• -at <percent>

(optional) Positions the display such that the time or cursor is the specified <percent> from
the left edge of the wave display.

wave collapse all Collapses simulation time over the full range of the simulation
from time 0 to the current time.

wave collapse cursor Collapses simulation time at the time of the active cursor.

wave collapse range Collapses simulation time over a specific simulation time
range.

Table 2-11. Wave Window Commands for Controlling Display

Display view Commands Description

wave interrupt Immediately stops wave window drawing

wave refresh Cleans wave display and redraws waves

wave cursor see Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display – 0% is the left edge, 100% is the right edge.

wave seetime Positions the wave display such that the specified time appears
at the specified percent from the left edge of the display – 0% is
the left edge, 100% is the right edge.

Table 2-12. Wave Window Commands for Zooming

Zooming Commands Description

wave zoom in Zoom in the wave display by the specified factor. The default
factor is 2.0.

wave zoom out Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoom full Zoom the wave display to show the full simulation time.

wave zoom last Return to last zoom range.

wave zoom range Sets left and right edge of wave display to the specified start
time and end time. If times are not specified, reports left and
right edge times.

Table 2-10. Wave Window Commands for Expanded Time Display (cont.)

Display view Commands Description

Commands
wave

ModelSim® Command Reference Manual, v10.5c 457

<percent> — Any non-negative number where the default is 50. 0 is the left edge of the
Wave window and 100 is the right edge.

• <cursor-num>

(optional) Specifies a cursor number. If not specified, the active cursor is used.

• <factor>

(optional) A number that specifies how much you want to zoom into or out of the wave
display. Default value is 2.0.

• -lock <0 |1>

(optional) Specify the lock state of the cursor.

0 — (default) Unlocked

1 — Locked

• -name <name>

(optional) Specify the name of the cursor.

<name> — Any string where the default is "Cursor <n>" where <n> is the cursor
number.

• off | deltas | events

(optional) Specifies the expanded time display mode for the Wave window. Default is off.

• <option> [<value>]

(optional) Specify a value for the designated option. Currently supported options are -name,
-time, and -lock. If no option is specified, current value of all options are reported.

• <start-time> <end-time>

(optional) start-time and end-time are times that specify an expand, collapse, or zoom range.
If neither number is specified, the command returns the current range.

• -time <time>

(optional) Specifies a cursor time.

<time> — Any positive integer.

• -window <win>

(optional) All commands default to the active Wave window unless this argument is used to
specify a different Wave window.

<win> — Specifies the name of a Wave window other than the current active window.

Examples

• Either of these commands creates a zoom range with a start time of 20 ns and an end
time of 100 ns.

wave zoom range 20ns 100ns
wave zoom range 20 100

ModelSim® Command Reference Manual, v10.5c458

Commands
wave

• Return the name of cursor 2:

wave cursor configure 2 -name

• Name cursor 2, "reference cursor" and return that name with:

wave cursor configure 2 -name {reference cursor}

• Return the values of all wave cursor configure options for cursor 2:

wave cursor configure 2

Commands
wave create

ModelSim® Command Reference Manual, v10.5c 459

wave create
This command generates a waveform known only to the GUI. You can then modify the
waveform interactively or with the wave edit command and use the results to drive simulation.

Syntax

All waveforms
wave create [-driver {freeze | deposit | driver | expectedoutput}] [-initialvalue <value>]

[-language {vhdl | verilog}] [-portmode {input | output | inout | internal}] [-range <msb
lsb>]
[-starttime {<time><unit>}] [-endtime {<time><unit>}] <object_name>

Clock patterns
wave create -pattern clock [-dutycycle <value>] [-period {<time><unit>}] <object_name>

Constant patterns
wave create -pattern constant [-initialvalue <value>] [-value <value>] <object_name>

Random patterns
wave create -pattern random [-initialvalue <value>] [-period {<time><unit>}]

[-random_type {normal | uniform | poisson | exponential}] [-seed <value>] <object_name>

Repeater patterns
wave create -pattern repeater [-initialvalue <value>] [-period {<time><unit>}]

[-repeat {forever | never | <n>}] [-sequence {<val1>} <val2> …]

Counter patterns
wave create -pattern counter [-direction {up | down | upthendown | downthenup}]

[-initialvalue <value>] [-period {<time><unit>}] [-repeat {forever | never | <n>}]
[-startvalue <value>] [-endvalue <value>] [-step <value>]
[-type {binary | gray | johnson | onehot | range | zerohot}] <object_name>

No pattern
wave create -pattern none <object_name>

Description

Refer to “Generating Stimulus with Waveform Editor” for more information.

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information. d

The following table summarizes the available waveform pattern options:

Command Description

wave create -pattern clock Generates a clock waveform. Recommended that you
specify an initial value, duty cycle, and clock period for the
waveform.

ModelSim® Command Reference Manual, v10.5c460

Commands
wave create

Arguments

• -pattern clock | constant | random | repeater | counter | none

(required) Specifies the waveform pattern. Refer to “Accessing the Create Pattern Wizard”
for a description of the pattern types.

clock — Specifies a clock pattern.

constant — Specifies a constant pattern.

random — Specifies a random pattern.

repeater — Specifies a repeating pattern.

counter — Specifies a counting pattern.

none — Specifies a blank pattern.

• -direction {up | down | upthendown | downthenup}

(optional, recommended when specifying -pattern counter) The direction in which the
counter will increment or decrement.

up — (default) Increment only.

down — Decrement only.

upthendown — Increment then decrement.

downthenup — Decrement then increment.

• -driver {freeze | deposit | driver | expectedoutput}

(optional) Specifies that the signal is a driver of the specified type. Applies to waveforms
created with -portmode inout or -portmode internal.

wave create -pattern constant Generates a waveform with a constant value. It is suggested
that you specify a value.

wave create -pattern random Generates a random waveform based upon a seed value.
Specify the type (normal or uniform), an initial value, and a
seed value. If you don't specify a seed value, Questa uses a
default value of 5.

wave create -pattern repeater Generates a waveform that repeats. Specify an initial value
and pattern that repeats. You can also specify how many
times the pattern repeats.

wave create -pattern counter Generates a waveform from a counting pattern. Specify
start and end values, repeat, step count, time period, and
type (Binary, Gray, Johnson, OneHot, Range, and
ZeroHot).

wave create -pattern none Creates a placeholder for a waveform. Specify an object
name.

Command Description

Commands
wave create

ModelSim® Command Reference Manual, v10.5c 461

• -dutycycle <value>

(optional, recommended for -pattern clock) Specifies the duty cycle of the clock. Expressed
as a percentage of the period that the clock is high.

<value> — Any integer from 0 to 100 where the default is 50.

• -endtime {<time><unit>}

(optional) The simulation time where the waveform will stop. If omitted, the waveform
stops at 1000 simulation time units.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -endvalue <value>

(optional, recommended when specifying -pattern counter) The end value for the counter.
This option applies to patterns specifying -type Range only. All other counter patterns start
from 0 and go to the maximum value for that particular signal (for example, for a 3-bit
signal, the start value will be 000 and the end value will be 111).

<value> — Value must be appropriate for the type of waveform you are creating.

• -initialvalue <value>

(optional) The initial value for the waveform. Not applicable to counter patterns.

<value> — Value must be appropriate for the type of waveform you are creating.

• -language {vhdl | verilog}

(optional) Controls which language is used for the created wave.

vhdl — (default) Specifies the VHDL language.

verilog — Specifies the Verilog language.

• -period {<time><unit>}

(optional, recommended for all patterns except -constant) Specifies the period of the signal.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -portmode {input | output | inout | internal}

(optional) The port type for the waveform. Useful for creating signals prior to loading a
design.

in — Ports of type IN. You can also specify “input” as an alias for in.

ModelSim® Command Reference Manual, v10.5c462

Commands
wave create

out — Ports of type OUT. You can also specify “output” as an alias for out.

inout — Ports of type INOUT.

internal — (default) Ports of type INTERNAL.

• -random_type {normal | uniform | poisson | exponential}

(optional, recommended when specifying -pattern random) Specifies the type of algorithm
used to generate a random waveform pattern.

normal — Normal or Gaussian distribution of waveform events.

uniform — (default) Uniform distribution of waveform events.

poisson — Poisson distribution of waveform events.

exponential — Exponential distribution of waveform events.

• -range <msb lsb>

(optional) Identifies bit significance in a counter pattern.

msb lsb — Most significant bit and least significant bit. Both must be specified.

• -repeat {forever | never | <n>}

(optional, recommended when specifying -pattern repeater or -pattern counter) Controls
duration of pattern repetition.

forever — Repeat the pattern for as long as the simulation runs.

never — Never repeat the pattern during simulation.

<n> — Repeat the pattern <n> number of times where <n> is any positive integer.

• -seed <value>

(optional, recommended when specifying -pattern random) Specifies a seed value for a
randomly generated waveform.

<value> — Any non-negative integer where the default is 5.

• -sequence {<val1>} <val2> …

(optional, recommended when specifying pattern -repeater) The set of values that you want
repeated.

<val1> — Value must be appropriate for the type of waveform you are creating.
Multiple values are entered as a space separated list and enclosed in curly braces ({}).

• -starttime {<time><unit>}

(optional) The simulation time at which the waveform should start. If omitted, the waveform
starts at 0 simulation time units.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

Commands
wave create

ModelSim® Command Reference Manual, v10.5c 463

• -startvalue <value>

(required when specifying -pattern counter) The initial value of the counter. This option
applies to patterns specifying -type Range only. All other counter patterns start from 0 and
go to the maximum value for that particular signal (e.g., for a 3-bit signal, the start value will
be 000 and the end value will be 111).

<value> — Value must be appropriate for the type of waveform you are creating.

• -step <value>

(optional, recommended when specifying -pattern counter) The step by which the counter is
incremented/decremented.

<value> — Value must be appropriate for the type of waveform you are creating.

• -type {binary | gray | johnson | onehot | range | zerohot}

(optional) Specifies a counter format.

binary — Specifies a binary counter.

gray — Specifies a binary counter where two successive values differ in only one bit.
Also known as a reflected binary counter.

johnson — Specifies a twisted ring or Johnson counter.

onehot — Specifies a shift counter where only one bit at a time is set to “on” (1).

range — (default) Specifies a binary counter where the values range between -startvalue
and -endvalue

zerohot — Specifies a shift counter where only one bit at a time is set to “off” (0).

• -value <value>

(optional, recommended when specifying -pattern constant) Specifies a value for the
constant pattern.

<value> — Value must be appropriate for the type of waveform you are creating.

• <object_name>

(required) User specified name for the waveform. Must be the final argument.

Examples

• Create a clock signal with the following default values:

wave create -pattern clock -period 100 -dutycycle 50 -starttime 0 -endtime 1000
-initialvalue 0 /counter/clk

• Create a constant 8-bit signal vector from 0 to 1000 ns with a value of 1111 and a drive
type of freeze.

wave create -driver freeze -pattern constant -value 1111 -range 7 0 -starttime 0ns
-endtime 1000ns sim:/andm/v_cont2

ModelSim® Command Reference Manual, v10.5c464

Commands
wave create

Related Topics

wave edit

wave modify

Generating Stimulus with Waveform Editor

Accessing the Create Pattern Wizard

Commands
wave edit

ModelSim® Command Reference Manual, v10.5c 465

wave edit
This command modifies waveforms created with the wave create command.

Syntax

wave edit {cut | copy | paste | invert | mirror} -end {<time><unit>} -start {<time><unit>}
<object_name>

wave edit insert_pulse [-duration {<time><unit>}] -start {<time><unit>} <object_name>

wave edit delete -time {<time><unit>} <object_name>

wave edit stretch | move {-backward {<time><unit>} | -forward {<time><unit>}}
-time {<time><unit>} <object_name>

wave edit change_value -end {<time><unit>} -start {<time><unit>} <value> <object_name>

wave edit extend -extend to | by -time {<time><unit>}

wave edit driveType -driver freeze | deposit | driver | expectedoutput -end {<time><unit>}
-start {<time><unit>}

wave edit undo <number>

wave edit redo <number>

Description

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

The following table summarizes the available editing options:

Command Description

wave edit cut Cut part of a waveform to the clipboard

wave edit copy Copy part of a waveform to the clipboard

wave edit paste Paste the waveform from the clipboard

wave edit invert Vertically flip part of a waveform

wave edit mirror Mirror part of a waveform

wave edit insert_pulse Insert a new edge on a waveform; doesn’t affect waveform duration

wave edit delete Delete an edge from a waveform; doesn’t affect waveform duration

wave edit stretch Move an edge by stretching the waveform

wave edit move Move an edge without moving other edges

wave edit change_value Change the value of part of a waveform

wave edit extend Extend all waves

ModelSim® Command Reference Manual, v10.5c466

Commands
wave edit

Arguments

• -backward {<time><unit>}

(required if -forward <time> isn’t specified) The amount to stretch or move the edge
backwards in simulation time.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• cut | copy | paste | invert | mirror

(required) Specifies the type of edit to perform.

cut — Deletes the specified portion of the waveform.

copy — Saves a copy of the specified portion of the waveform.

paste — Inserts the contents of the clipboard into the specified portion of the waveform.

invert — Flips the specified portion of the waveform vertically.

mirror — Flips the specified portion of the waveform horizontally.

• -driver freeze | deposit | driver | expectedoutput

(required) Specifies the type of driver to which you want the specified section of the
waveform changed. Applies to signals of type inout or internal.

• -duration {<time><unit>}

(optional) The length of the pulse.

<time> — Specified as an integer or decimal number where the default is 10 time units.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -end {<time><unit>}

(required unless specifying paste) The end of the section of waveform to perform the editing
operation upon, denoted by a simulation time.

<time> — Specified as an integer or decimal number.

wave edit driveType Change the driver type

wave edit undo Undo an edit

wave edit redo Redo a previously undone edit

Command Description

Commands
wave edit

ModelSim® Command Reference Manual, v10.5c 467

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -extend to | by

(required) Specifies the format for extending waves.

to — Extends the wave to the time specified by -time <time>.

by — Extends the wave by the amount of time specified by -time <time>.

• -forward {<time><unit>}

(required if -backward <time> is not specified) The amount to stretch or move the edge
forwards in simulation time.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• <number>

(optional) The number of editing operations to undo or redo. If omitted, only one editing
operation is undone or redone.

• <object_name>

(required) The pathname of the waveform to edit. Must be specified as the last argument to
wave edit.

• -start {<time><unit>}

(required) The beginning of the section of waveform to perform the editing operation upon,
denoted by a simulation time.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -time {<time><unit>}

(required) The amount of time to extend or stretch waves.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim® Command Reference Manual, v10.5c468

Commands
wave edit

• <value>

(required) The new value. Must match the type of the <object_name>.

Related Topics

wave create

Generating Stimulus with Waveform Editor

Commands
wave export

ModelSim® Command Reference Manual, v10.5c 469

wave export
This command creates a stimulus file from waveforms created with the wave create command.

Syntax

wave export -designunit <name> -starttime {<time><unit>} -endtime {<time><unit>} -file
<filename> {-format force | vcd | vhdl | verilog}

Arguments

• -designunit <name>

(required) Specifies a design unit for which you want to export created waves. If omitted,
the command exports waves from the active design unit.

<name> — Specifies a design unit in the simulation.

• -endtime {<time><unit>}

(required) The simulation time at which you want to stop exporting.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -file <filename>

(required) The filename for the saved export file.

<name> — Any user specified string.

• -format force | vcd | vhdl | verilog

(required) The format of the saved stimulus file. The format options include:

force — A Tcl script that recreates the waveforms. The file should be sourced when
reloading the simulation.

vcd — An extended VCD file. Load using the -vcdstim argument to vsim.

vhdl — A VHDL test bench. Compile and load the file as your top-level design unit.

verilog — A Verilog test bench. Compile and load the file as your top-level design unit.

• -starttime {<time><unit>}

(required) The simulation time at which you want to start exporting.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim® Command Reference Manual, v10.5c470

Commands
wave export

Related Topics

wave create

wave import

Generating Stimulus with Waveform Editor

Commands
wave import

ModelSim® Command Reference Manual, v10.5c 471

wave import
This command imports an extended VCD file that was created with the wave export command.
It cannot read extended VCD file created by software other than ModelSim. Use this command
to apply a VCD file as stimulus to the current simulation.

Syntax

wave import <VCD_file>

Arguments

• <VCD_file>

(required) The name of the extended VCD file to import.

Related Topics

wave create

wave export

Generating Stimulus with Waveform Editor

ModelSim® Command Reference Manual, v10.5c472

Commands
wave modify

wave modify
This command modifies waveform parameters set by a previous wave create command.

Syntax

All waveforms
wave modify [-driver freeze | deposit | driver | expectedoutput] [-endtime {<time><unit>}]

[-initialvalue <value>] [-portmode {input | output | inout | internal}] [-range <msb lsb>]
[-starttime {<time><unit>}] <wave_name>

Clock patterns only
wave modify -pattern clock -period <value> -dutycycle <value> <wave_name>

Constant patterns only
wave modify -pattern constant [-driver freeze | deposit | driver | expectedoutput]

[-language {vhdl | verilog}] [-value <value>] <wave_name>

Counter patterns only
wave modify -pattern counter -period <value> -repeat forever | <n> | never -startvalue <value> -

step <value> [-direction {up | down | upthendown | downthenup}]
[-endvalue <value>] [-type {binary | gray | johnson | onehot | range | zerohot}]
<wave_name>

Random patterns only
wave modify -pattern random -period <value>

-random_type exponential | normal | poisson | uniform [-seed <value>] <wave_name>

Repeater patterns only
wave modify -pattern repeater -period <value> -repeat forever | <n> | never

-sequence {val1 val2 val3 …} <wave_name>

No pattern
wave create -pattern none <wave_name>

Description

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

The following table summarizes the available wave modification options:

Command Description

wave modify -pattern clock Generates a clock waveform. Specify an initial value, duty
cycle, and clock period for the waveform.

wave modify -pattern constant Generates a waveform with a constant value. Specify a
value.

Commands
wave modify

ModelSim® Command Reference Manual, v10.5c 473

Arguments

• -direction {up | down | upthendown | downthenup}

(optional, recommended when specifying -pattern counter) The direction in which the
counter will increment or decrement.

up — (default) Increment only.

down — Decrement only.

upthendown — Increment then decrement.

downthenup — Decrement then increment.

• -driver freeze | deposit | driver | expectedoutput

(optional) Specifies that the signal is a driver of the specified type. Applies to signals of type
inout or internal.

• -dutycycle <value>

(required) The duty cycle of the clock, expressed as a percentage of the period that the clock
is high.

<value> — Any integer from 0 to 100 where the default is 50.

• -endtime {<time><unit>}

(optional) The simulation time that the waveform should stop. If omitted, the waveform
stops at 1000 simulation time units.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

wave modify -pattern counter Generates a waveform from a counting pattern. Specify
start and end values, repeat, step count, time period, and
type (Binary, Gray, Johnson, OneHot, Range, and
ZeroHot).

wave modify -pattern random Generates a random waveform based upon a seed value.
Specify the type (normal or uniform), an initial value, and a
seed value. If you don't specify a seed value, Questa uses a
default value of 5.

wave modify -pattern repeater Generates a waveform that repeats. Specify an initial value
and pattern that repeats. You can also specify how many
times the pattern repeats.

wave modify -pattern none Creates a placeholder for a waveform. Specify an object
name.

Command Description

ModelSim® Command Reference Manual, v10.5c474

Commands
wave modify

• -endvalue <value>

(optional) The ending value of the counter. This option applies to Range counter patterns
only. All other counter patterns start from 0 and go to the max value for that particular signal
(for example, for a 3-bit signal, the start value will be 000 and end value will be 111).

<value> — Any positive integer.

• -initialvalue <value>

(optional) The initial value for the waveform. Value must be appropriate for the type of
waveform you are creating. Not applicable to counter patterns.

<value> — Any positive integer.

• -language {vhdl | verilog}

(optional) Controls which language is used for modifying the wave.

vhdl — (default) Specifies the VHDL language.

verilog — Specifies the Verilog language.

• -period <value>

(required) The period of the signal.

• -portmode {input | output | inout | internal}

(optional) The port type for the waveform.

in — Ports of type IN. You can also specify “input” as an alias for in.

out — Ports of type OUT. You can also specify “output” as an alias for out.

inout — Ports of type INOUT.

internal — (default) Ports of type INTERNAL.

• -random_type exponential | normal | poisson | uniform

(required) Specifies a random pattern to generate.

exponential — Exponential distribution of waveform events.

normal — Normal or Gaussian distribution of waveform events.

poisson — Poisson distribution of waveform events.

uniform — (default) Uniform distribution of waveform events.

• -range <msb lsb>

(optional) Identifies bit significance in a counter pattern.

msb lsb — Most significant bit and least significant bit. Both must be specified.

• -repeat forever | <n> | never

(required) Controls duration of pattern repetition.

forever — Repeat the pattern for as long as the simulation runs.

<n> — Repeat the pattern <n> number of times where <n> is any positive integer.

Commands
wave modify

ModelSim® Command Reference Manual, v10.5c 475

never — Never repeat the pattern during simulation.

• -seed <value>

(optional) Specifies a seed value for a randomly generated waveform.

<value> — Any non-negative integer where the default is 5.

• -sequence {val1 val2 val3 …}

(required) The set of values that you want repeated.

<val1> — Value must be appropriate for the type of waveform you are creating.
Multiple values are entered as a space separated list and enclosed in curly braces ({}).

• -starttime {<time><unit>}

(optional) The simulation time that the waveform should start. If omitted, the waveform
starts at 0 simulation time units.

<time> — Specified as an integer or decimal number.

<unit> — (optional) A suffix specifying a unit of time where the default is to specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

• -startvalue <value>

(required when specifying -pattern counter) The initial value of the counter. This option
applies to patterns specifying -type Range only. All other counter patterns start from 0 and
go to the maximum value for that particular signal (e.g., for a 3-bit signal, the start value will
be 000 and the end value will be 111).

<value> — Value must be appropriate for the type of waveform you are creating.

• -step <value>

(required) The step by which the counter is incremented/decremented.

<value> — Value must be appropriate for the type of waveform you are creating.

• -type {binary | gray | johnson | onehot | range | zerohot}

(optional) Specifies a counter format.

binary — Specifies a binary counter.

gray — Specifies a binary counter where two successive values differ in only one bit.
Also known as a reflected binary counter.

johnson — Specifies a twisted ring or Johnson counter.

onehot — Specifies a shift counter where only one bit at a time is set to “on” (1).

range — (default) Specifies a binary counter where the values range between -startvalue
and -endvalue

zerohot — Specifies a shift counter where only one bit at a time is set to “off” (0).

ModelSim® Command Reference Manual, v10.5c476

Commands
wave modify

• -value <value>

(optional, recommended when specifying -pattern constant) Specifies a value for the
constant pattern.

<value> — Value must be appropriate for the type of waveform you are creating.

• <wave_name>

(required) The name of an existing waveform created with the wave create command.

Related Topics

wave create

Generating Stimulus with Waveform Editor

Accessing the Create Pattern Wizard

Commands
wave sort

ModelSim® Command Reference Manual, v10.5c 477

wave sort
This command sorts signals in the Wave window by name or full path name.

Syntax

wave sort {ascending | descending | fa | fd}

Arguments

• ascending | descending | fa | fd

(required) Sort signals in one of the following orders.

ascending — Sort in ascending order by signal name.

descending — Sort in descending order by signal name.

fa — Sort in ascending order by the full path name.

fd — Sort in descending order by full path name.

Examples
wave sort ascending

ModelSim® Command Reference Manual, v10.5c478

Commands
when

when
This command instructs ModelSim to perform actions when specified conditions are met.

Syntax

when [[-fast] [-id <id#>] [-label <label>] [-repeat] {<when_condition_expression>}
{<command>}]

Description

Use this command to control ModelSim activity for one or more specified conditions.

For example, you can use the command to break on a signal value or at a specific simulator
time. Use the nowhen command to deactivate when commands.

The when command uses a when_condition_expression to determine whether or not to perform
the action. Conditions can include VHDL signals and Verilog nets and registers. The
when_condition_expression uses a simple restricted language (that is not related to Tcl), which
permits only four operators and operands that may be either HDL object names, signame'event,
or constants. ModelSim evaluates the condition every time any object in the condition changes,
hence the restrictions.

Here are some additional points to keep in mind about the when command:

• The when command creates the equivalent of a VHDL process or a Verilog always
block. It does not work like a looping construct you might find in other languages such
as C.

• Virtual signals, functions, regions, types, and so forth, cannot be used in the when
command. Neither can simulator state variables other than $now.

• With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Embedded Commands Allowed with the -fast Argument

You can use any Tcl command as a <command>, along with any of the following vsim
commands:

• bp, bd

• change

• disablebp, enablebp

• echo

• examine

• force, noforce

Commands
when

ModelSim® Command Reference Manual, v10.5c 479

• log, nolog

• stop

• when, nowhen

Embedded Commands Not Allowed with the -fast Argument

• Any do commands

• Any Tk commands or widgets

• References to U/I state variables or tcl variables

• Virtual signals, functions, or types

Using Global Tcl Variables with the -fast Argument

Embedded commands that use global Tcl variables for passing a state between the when
command and the user interface need to declare the state using the Tcl uivar command. For
example, the variable i below is visible in the GUI. From the command prompt, you can display
it (by entering echo $i) or modify it (for example, by entering set i 25).

set i 10
when -fast {clk == '0'} {

uivar i
set i [expr {$i - 1}]
if {$i <= 0} {

force reset 1 0, 0 250
}

}
when -fast {reset == '0'} {

uivar i
set i 10

}

Additional Restrictions on the -fast Argument

Accessing channels (such as files, pipes, sockets) that were opened outside of the embedded
command will not work. For example:

set fp [open mylog.txt w]
when -fast {bus} {

puts $fp "bus change: [examine bus]"
}

The channel that $fp refers to is not available in the simulator, only in the user interface. Even
using the uivar command does not work here because the value of $fp has no meaning in the
context of the -fast argument.

ModelSim® Command Reference Manual, v10.5c480

Commands
when

The following method of rewriting this example opens the channel, writes to it, then closes it
within the when command:

when -fast {bus} {
set fp [open mylog.txt a]
puts $fp "bus change: [examine bus]"
close $fp

}

The following example is a little more sophisticated method of doing the same thing:

when -fast {$now == 0ns} {
set fp [open mylog.txt w]

}
when -fast {bus} {

puts $fp "bus change: [examine bus]"
}
when -fast {$now == 1000ns} {

close $fp
}

The general principle is that any embedded command done using the -fast argument is global to
all other commands used with the -fast argument. Here, {$now == 0ns} is a way to define Tcl
processes that the -fast commands can use. These processes have the same restrictions that
when bodies have, but the advantage is again speed as a proc will tend to execute faster than
code in the when body itself.

It is recommended not to use virtual signals and expressions.

Arguments

• -fast

(optional) Causes the embedded <command> to execute within the simulation kernel, which
provides faster execution and reduces impact on simulation runtime performance.
Limitations on using the -fast argument are described above (in “Embedded Commands Not
Allowed with the -fast Argument”). Disallowed commands still work, but they slow down
the simulation.

• -label <label>

(optional) Used to identify individual when commands.

<label> — Associates a name or label with the specified when command. Adds a level
of identification to the when command. The label may contain special characters.
Quotation marks (" ") or braces ({ }) are required only if <label> contains spaces or
special characters.

• -id <id#>

(optional) Attempts to assign this id number to the when command.

Commands
when

ModelSim® Command Reference Manual, v10.5c 481

<id#> — Any positive integer that is not already assigned. If the id number you specify
is already used, ModelSim will return an error.

Note
Id numbers for when commands are assigned from the same pool as those used for
the bp command. So even if you have not specified a given id number for a when

command, that number may still be used for a breakpoint.

• -repeat

(Limited to “when” breakpoint expressions involving “$now”). Instructs the command to
reestablish the breakpoint when triggered so that it will fire again for the next time period.
Without this argument, expressions using $now only trigger once.

• {<when_condition_expression>}

(required if a command is specified) Specifies the conditions to be met for the specified
<command> to be executed. The condition is evaluated in the simulator kernel and can be
an object name, in which case the curly braces can be omitted. The command will be
executed when the object changes value. The condition can be an expression with these
operators:

The operands may be object names, signame'event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

 Name Operator

equals ==, =

not equal !=, /=

greater than >

less than <

greater than or equal >=

less than or equal <=

AND &&, AND

OR ||, OR

ModelSim® Command Reference Manual, v10.5c482

Commands
when

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals, i.e., Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly braces
({}) with double quotes (""). This works like a macro substitution where the Tcl variables
are evaluated once and the result is then evaluated as the when condition. Condition
expressions are evaluated in the vsim kernel, which knows nothing about Tcl variables.
That's why the condition expression must be evaluated in the GUI before it is sent to the
vsim kernel. See below for an example of using a Tcl variable.

The ">", "<", ">=", and "<=" operators are the standard ones for vector types, not the
overloaded operators in the std_logic_1164 package. This may cause unexpected results
when comparing objects that contain values other than 1 and 0. ModelSim does a lexical
comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true
H000 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

• {<command>}

(required if a when expression is specified) The command(s) for this argument are evaluated
by the Tcl interpreter within the ModelSim GUI. Any ModelSim or Tcl command or series
of commands are valid with one exception—the run command cannot be used with the when
command. The command sequence usually contains a stop command that sets a flag to
break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

Note
If you want to stop the simulation using a when command, you must use a stop
command within your when statement. DO NOT use an exit command or a quit

command. The stop command acts like a breakpoint at the time it is evaluated.

Examples

• The when command below instructs the simulator to display the value of object c in
binary format when there is a clock event, the clock is 1, and the value of b is 01100111.
Finally, the command tells ModelSim to stop.

when -label when1 {clk'event and clk=’1’ and b = "01100111"} {

echo "Signal c is [exa -bin c]"

stop
}

Commands
when

ModelSim® Command Reference Manual, v10.5c 483

• The when command below echoes the simulator time when slice [3:1] of wire [15:0]
count matches the hexadecimal value 7, and simulation time is between 70 and 111
nanoseconds.

when {$now > 70ns and count(3:1) == 3'h7 && $now < 111ns} {

echo "count(3:1) matched 3'h7 at time " $now
}

• The commands below show an example of using a Tcl variable within a when
command. Note that the curly braces ({}) have been replaced with double quotes ("").

set clkb_path /tb/ps/dprb_0/udprb/ucar_reg/uint_ram/clkb;

when -label when1 "$clkb_path'event and $clkb_path ='1'" {

echo "Detected Clk edge at path $clkb_path"

}

• The when command below is labeled a and will cause ModelSim to echo the message “b
changed” whenever the value of the object b changes.

when -label a b {echo "b changed"}

• The multi-line when command below does not use a label and has two conditions. When
the conditions are met, ModelSim runs an echo command and a stop command.

when {b = 1
 and c /= 0 } {
 echo "b is 1 and c is not 0"
 stop

}

• In the example below, for the declaration "wire [15:0] a;", the when command will
activate when the selected bits match a 7:

when {a(3:1) = 3'h7} {echo "matched at time " $now}

• In the example below, we want to sample the values of the address and data bus on the
first falling edge of clk after sstrb has gone high.

ModelSim® Command Reference Manual, v10.5c484

Commands
when

::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1'
when -label checkStrobe {/top/sstrb == '1'} {

Our state Zero condition has been met, move to state One
set ::strobe One
}

This signal breakpoint fires each time clk goes to '0'
when {/top/clk == '0'} {

if {$::strobe eq "One"} {
Our state One condition has been met
Sample the busses
echo Sample paddr=[examine -hex /top/paddr] :: sdata=[examine

-hex
/top/sdata]
reset our state variable until next rising edge of sstrb

(back to
state Zero)
set ::strobe Zero

}
}

Ending the simulation with the stop command
Batch mode simulations are often structured as "run until condition X is true," rather than "run
for X time" simulations. The multi-line when command (shown below) sets a done condition,
and ModelSim runs an echo command and a stop command when the condition is reached.

The simulation will not stop (even if a quit -f command is used) unless you enter a stop
command. To exit the simulation and quit ModelSim, use an approach like the following:

onbreak {resume}
when {/done_condition == ’1’} {

echo "End condition reached"
if [batch_mode] {

set DoneConditionReached 1
stop

}
}
run 1000 us
if {$DoneConditionReached == 1} {

quit -f
}

Commands
when

ModelSim® Command Reference Manual, v10.5c 485

This example stops 100ns after a signal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a_100] == ""} {

when -label a_100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop

}
}

}

Time-based breakpoints
You can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750 ns} {stop}

You can also use:

when {errorFlag = '1' OR $now = 2 ms} {stop}

This example adds 2 ms to the simulation time at which the when statement is first evaluated,
then stops. The white space between the value and time unit is required for the time unit to be
understood by the simulator.

You can also use variables, as shown in the following example:

set time 1000

when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the ‘$’ escaped. This prevents Tcl from expanding the variable, because if
it did, you would get:

when "0 = 1000" stop

ModelSim® Command Reference Manual, v10.5c486

Commands
where

where
This command displays information about the system environment. It is useful for debugging
problems where ModelSim cannot find the required libraries or support files.

Syntax

where

Description

The command displays two results on consecutive lines:

• current directory

This is the current directory that ModelSim was invoked from, or that was specified on
the ModelSim command line.

• current project file

This is the .mpf file ModelSim is using. All library mappings are taken from here when a
project is open. If the design is not loaded through a project, this line displays the
modelsim.ini file in the current directory.

Arguments

None.

Examples

• Design is loaded through a project:

VSIM> where

Returns:

Current directory is: D:\Client
Project is: D:/Client/monproj.mpf

• Design is loaded with no project (indicates the modelsim.ini file is under the mydesign
directory):

VSIM> where

Returns:

Current directory is: C:\Client\testcase\mydesign
Project is: modelsim.ini

Commands
wlf2log

ModelSim® Command Reference Manual, v10.5c 487

wlf2log
This command translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile. It reads the
vsim.wlf WLF file generated by the add list, add wave, or log commands in the simulator and
converts it to the QuickSim II logfile format.

Note
This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlf2log <wlffile> [-bits] [-fullname] [-help] [-inout] [-input] [-internal] [-l <instance_path>]
[-lower] [-o <outfile>] [-output] [-quiet]

Arguments

• <wlffile>

(required) Specifies the ModelSim WLF file that you are converting.

• -bits

(optional) Forces vector nets to be split into 1-bit wide nets in the log file.

• -fullname

(optional) Shows the full hierarchical pathname when displaying signal names.

• -help

(optional) Displays a list of command options with a brief description for each.

• -inout

(optional) Lists only the inout ports. This may be combined with the -input, -output, or
-internal switches.

• -input

(optional) Lists only the input ports. This may be combined with the -output, -inout, or
-internal switches.

• -internal

(optional) Lists only the internal signals. This may be combined with the -input, -output, or -
inout switches.

• -l <instance_path>

(optional) Lists the signals at or below an HDL instance path within the design hierarchy.

<instance_path> — Specifies an HDL instance path.

ModelSim® Command Reference Manual, v10.5c488

Commands
wlf2log

• -lower

(optional) Shows all logged signals in the hierarchy. When invoked without the -lower
switch, only the top-level signals are displayed.

• -o <outfile>

(optional) Directs the output to be written to a file where the default destination for the
logfile is standard out.

<outfile> — A user specified filename.

• -output

(optional) Lists only the output ports. This may be combined with the -input, -inout, or
-internal switches.

• -quiet

(optional) Disables error message reporting.

Commands
wlf2vcd

ModelSim® Command Reference Manual, v10.5c 489

wlf2vcd
This command translates a ModelSim WLF file to a standard VCD file. Complex data types that
are unsupported in the VCD standard (records, memories, etc.) are not converted.

Note
This command should be invoked only after you have stopped the simulation using quit -
sim or dataset close sim.

Syntax

wlf2vcd <wlffile> [-help] [-o <outfile>] [-quiet]

Arguments

• <wlffile>

(required) Specifies the ModelSim WLF file that you are converting.

• -help

(optional) Displays a list of command options with a brief description for each.

• -o <outfile>

(optional) Specifies a filename for the output where the default destination for the VCD
output is stdout.

<outfile> — A user specified filename.

• -quiet

(optional) Disables warning messages that are produced when an unsupported type (for
example, records) is encountered in the WLF file.

ModelSim® Command Reference Manual, v10.5c490

Commands
wlfman

wlfman
This is a collection of related commands you can use to get information about saved WLF files
and perform various actions on them.

Syntax

wlfman info <source_wlffile> [-v]

wlfman items <source_wlffile> [-n] [-v]

wlfman filter -o <out_wlffile> <source_wlffile> [-begin <time>] [-end <time>]
[-collapsedelta | -collapsetime | -nocollapse] [-compress | -nocompress]
[-f <object_list_file>] [-index | -noindex] [-r <object>] [-nowarn <number>] [-opt | -noopt]
[-s <symbol>] [-t <resolution>]

wlfman profile <source_wlffile> [-rank] [-top <number>]

wlfman merge -o <out_wlffile> [<wlffile1> <wlffile2> ...] [-compress | -nocompress]
[-index | -noindex] [-opt | -noopt]

wlfman monitor [-f | -i <intervalTime> | -p <endTime>] [-q | -v] <source_wlffile>

wlfman optimize -o <out_wlffile> <source_wlffile> [-compress | -nocompress]
[-index | -noindex] [-opt | -noopt]

Description

The following wlfman commands perform different functions on saved WLF files:

• wlfman info returns file information, resolution, versions, and so forth about the source
WLF file.

• wlfman items generates a list of HDL objects (i.e., signals) and/or transaction streams
from the source WLF file and outputs it to stdout. When redirected to a file, the output is
called an object_list_file, and it can be read in by wlfman filter. Comments start with a
'#' and continue to the end of the line. Wildcards are legal in the leaf portion of the name.
Here is an example:

/top/foo # signal foo
/top/u1/* # all signals under u1
/top/u1 # same as line above
-r /top/u2 # recursively, all signals under u2
/top/stream1 # transaction stream stream1

object_list_files — The object_list_file is a list of objects and/or transaction streams, one per
line. Transaction object lists can include a stream name, stream array name, or sub stream, all
with a full path. Transaction objects recorded in the object_list_file:

Full path of a stream array — Logs and records all of the individual streams in the specified
stream array, the sub-streams of each stream, and the phase sub-streams recursively for each

Commands
wlfman

ModelSim® Command Reference Manual, v10.5c 491

sub-stream including the attributes of the transactions present in the sub-streams and phase sub-
streams. For example:

/top/<stream_array> # stream array full path (ex: /top/stream_array)

Full path of a stream object — Logs and records all of the sub-streams and recursively records
all phase sub-streams for each specified sub-stream including the attributes of the transactions
present in the sub-streams and phase sub-streams. For example:

/top/<stream_object> # individual stream full path (ex: /top/stream)

Sub-streams — Logs and records all of the attributes of the specified sub-stream. Other sub-
streams of the main stream are not logged. Phase sub-streams cannot be individually logged.
For example:

/top/<stream_object> # individual stream full path (ex: /top/stream)

/top/<stream_object>.<sub-stream> # sub-stream full path

(ex: /top/stream.s0)

Note
You can produce these files from scratch but be careful with syntax. It is recommended that
you use wlfman items as it always creates a legal object_list_file.

• wlfman filter reads in a WLF file and, optionally, an object_list_file, and writes a new
WLF file containing filtered information from those sources. You determine the filtered
information with the arguments you specify.

• wlfman monitor returns the current state of a WLF file to the transcript. Each time the
state is monitored, a line of information is output. The state of the WLF file can be
monitored at regular intervals, indicating the changes over time. For example:

wlfman monitor visim.wlf
File Sim
State Time
closed 14000

• wlfman profile generates a report of the estimated percentage of file space that each
signal is taking in the specified WLF file. This command can identify signals that
account for a large percentage of the WLF file size (such as a logged memory that uses a
zero-delay integer loop to initialize the memory). You may be able to drastically reduce
WLF file size by not logging those signals.

When the WLF file contains transaction streams and/or stream arrays, wlfman profile
generates an additional report of estimated file space used for each transaction as a
percentage of total file size. You may be able to drastically reduce WLF file size by not
logging some transactions or streams.

ModelSim® Command Reference Manual, v10.5c492

Commands
wlfman

The stated size of a transaction is equal to the size of the transaction without any user
attributes plus the sum of the sizes of every attribute in that transaction. Also, an
assumption is made that every transaction will have its attributes recorded if one of the
transactions in a sub-stream has that attribute. If the object is a stream array, the sum of
the sizes of all the streams is presented in which case the sizes of the individual elements
are not presented.

• wlfman mergecombines two WLF files with different signals or transaction objects into
one WLF file. It does not combine wlf files containing the same signals at different
runtime ranges (for example, mixedhdl_0ns_100ns.wlf & mixedhdl_100ns_200ns.wlf).
When merging two WLF files containing the same transaction streams, the first stream’s
data is recorded, the second stream isignored, and a warning is issued that a horizontal
merge is not supported.

• wlfman optimize copies the data from the WLF file to the output WLF file, adding or
replacing the indexing and optimization information.

The different command are intended to be used together. For example, you might run wlfman
profile and identify a signal or transaction stream that accounts for 50% of the WLF file size. If
you do not actually need that object, you can then run wlfman filter to remove it from the WLF
file.

Arguments

• -o <out_wlffile>

(required) Specifies the name of the output WLF file. The output WLF file will contain all
objects specified by the preceding arguments. Output WLF files are always written in the
latest WLF version regardless of the source WLF file version.

• <source_wlffile>

(required) Specifies the WLF file from which you want information.

• <wlffile1> <wlffile2> ...

(required) Specifies the WLF files whose objects you want to copy into one WLF file.
Specified as a space separated list.

• -begin <time>

(optional) Specifies the simulation time at which to start reading information from the
source WLF file where the default is to include the entire length of time recorded in
<source_wlffile>. If a transaction on a particular stream started prior to the time specified,
then that transaction is ignored.

<time> —

• -collapsedelta | -collapsetime | -nocollapse

(optional) Controls preservation of events in the resulting WLF file. The data preserved
depends on how events were recorded in the input WLF file. Specifying a finer granularity
of preservation than the input WLF file will have no additional affect.

Commands
wlfman

ModelSim® Command Reference Manual, v10.5c 493

-collapsedelta — (default) Preserves only the values at the end of a delta.

-collapsetime — Preserves only the values at the end of a time step.

-nocollapse — Preserves all events.

• -compress | -nocompress

(optional) Controls compression of the output WLF file.

-compress — Enables compression. (default)

-nocompress — Disables compression.

• -end <time>

(optional) Specifies the simulation time at which filtering of <source_wlffile> is stopped
and no further data is logged.

• -f

(optional) Repeat status update every 10 seconds of real time unless an alternate time
interval is specified with -i <intervalTime>.

• -f <object_list_file>

(optional) Specifies an object_list_file created by wlfman items or by the user to include in
<out_wlffile>.

For user created object list files, the object list can include stream name, stream array name,
or sub stream with a full path. All

• -i <intervalTime>

(optional) Specifies the time delay before the next status update where the default is 10
seconds of real time if not specified.

<intervalTime> — Any positive integer.

• -index | -noindex

(optional) Controls indexing when writing the output WLF file. Indexing makes viewing
wave data faster, however performance during optimization will be slower because indexing
and optimization require significant memory and CPU resources. Disabling indexing makes
viewing wave data slower unless the display is near the start of the WLF file. Disabling
indexing also disables optimization of the WLF file but may provide a significant
performance boost when archiving WLF files. Indexing and optimization information can
be added back to the file using the wlfman optimize command.

-index — Enables indexing. (default)

-noindex — Disables indexing and optimization.

• -n

(optional) Lists regions only (no signals).

• -nowarn <number>

(optional) Selectively disables a category of warning messages.

ModelSim® Command Reference Manual, v10.5c494

Commands
wlfman

1 — Disables "Skipping unsupported object" warning message.

• -opt | -noopt

(optional) Controls optimization of the output WLF file.

-opt — Enables WLF file optimization. (default)

-noopt — Disables WLF file optimization.

• -p <endTime>

(optional) Specifies the simulation time at which wlfman will stop monitoring the WLF file.

<endTime> — Any positive integer.

• -q

(optional) Suppress normal status messages while monitoring.

• -r <object>

(optional) Specifies an object (region) to recursively include in the output. If <object> is a
signal, the output would be the same as using -s.

• -rank

(optional) Sorts the wlfman profile report by percentage of the total file space used by each
signal.

• -s <symbol>

(optional) Specifies an object to include in the output. By default all objects are included.

• -t <resolution>

(optional) Specifies the time resolution of the new WLF file. By default the resolution is the
same as the source WLF file.

• -top <number>

(optional) Filters the wlfman profile report so that only the top <number> signals in terms of
file space percentage are displayed.

• -v

(optional) Produces verbose output that lists the object type next to each object.

Examples

• Specifying the command:

wlfman profile -rank top_vh.wlf

Commands
wlfman

ModelSim® Command Reference Manual, v10.5c 495

returns:

#Repeated ID #'s mean those signals share the same
#space in the wlf file.
#
ID Transitions File % Name
#----- ----------- ------ ------------------------------------
 1 2192 33 % /top_vh/pdata
 1 /top_vh/processor/data
 1 /top_vh/cache/pdata
 1 /top_vh/cache/gen__0/s/data
 1 /top_vh/cache/gen__1/s/data
 1 /top_vh/cache/gen__2/s/data
 1 /top_vh/cache/gen__3/s/data
 2 1224 18 % /top_vh/ptrans
 3 1216 18 % /top_vh/sdata
 3 /top_vh/cache/sdata
 3 /top_vh/memory/data
 4 675 10 % /top_vh/strans
 5 423 6 % /top_vh/cache/gen__3/s/data_out
 6 135 3 % /top_vh/paddr.
.
.
.

• Specifying the command:

wlfman profile -top 3 trans.wlf

returns:

#The following table lists the number of transitions and approximate
#wlf file space consumed (prior to compression) for each signal
#logged in the wlf file.
#Repeated ID #'s mean those signals share the same
#space in the wlf file.

ID Transitions File % Name
----- ----------- ------ -------------------------------
1 1001 11 % /top/t3
2 1001 11 % /top/t1
3 1 0 % /top/s2
#The following table lists the number of transactions and
#approximate wlf file space consumed (prior to compression) for each
#stream or stream array logged in the wlf file.

ID Transactions File % Name
----- ----------- ------ -------------------------------
1 3000 61 % /top/stream2
1 1000 17 % /top/stream1

• Specifying the command:

wlfman monitor -f -p 100000000 vsim.wlf

ModelSim® Command Reference Manual, v10.5c496

Commands
wlfman

Returns:

Setting end time to 100000000, measuring progress %
File File Percent
State Time Complete
open 7239185 7.2%
open 7691785 7.7%
open 8144385 8.1%
open 8596625 8.6%

Related Topics

Recording Simulation Results With Datasets

WLF File Parameter Overview

Commands
wlfrecover

ModelSim® Command Reference Manual, v10.5c 497

wlfrecover
This command attempts to "repair" WLF files that are incomplete due to a crash or if the file
was copied prior to completion of the simulation. Use this command if you receive a “bad
magic number” error message when opening a WLF file. You can run the command from the
VSIM> or ModelSim> prompt or from a shell.

Syntax

wlfrecover <filename> [-force] [-q]

Arguments

• <filename>

(required) Specifies the WLF file to repair.

• -force

(optional) Disregards file locking and attempts to repair the file.

• -q

(optional) Hides all messages unless there is an error while repairing the file.

Related Topics

Saving a Simulation to a WLF File

ModelSim® Command Reference Manual, v10.5c498

Commands
write format

write format
This command records the names and display options of the HDL objects currently being
displayed in the Analysis, List, Memory, Message Viewer, Test Browser, and Wave windows.

Syntax

write format {<window_type>} <filename>

write format restart [<option option1 …>] <filename>

Description

The file created is primarily a list of add list or add wave commands, though a few other
commands are included (refer to "Output" below).

This file may be invoked with the do command to recreate the window format on a subsequent
simulation run (refer to restart below.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments

• <window_type>

(required unless specifying restart) Specifies that the contents of the designated window are
recorded in the file specified by <filename>.

breakpoints — Records file line and signal breakpoints.

list — Records objects of the List window.

memory — Records objects of the Memory window.

msgviewer — Records objects of the Message Viewer window.

watch — Records objects of the Watch window.

wave — Records objects of the Wave window.

restart — Records objects of all windows and breakpoints in the .do file.

• restart

(required) Creates a .do file that recreates all debug windows, all file/line breakpoints, and
all signal breakpoints created using the when command. If the ShutdownFile modelsim.ini
variable is set to this .do filename, it will call the write format restart command upon exit.

When you load a format file, ModelSim verifies the existence of the datasets required by
that file. ModelSim displays an error message if the requisite datasets do not all exist. To
force the execution of the format file even if all datasets are not present, use the -force
switch with your do command. For example:

VSIM> do format.do -force

Commands
write format

ModelSim® Command Reference Manual, v10.5c 499

Note
Note that using the -force switch when datasets are not present will result in error
messages for signals referencing the nonexistent datasets. Also, -force is recognized

by the format file not the do command.

• <option option1 …>

(optional) Excludes a specific type of information from write format restart .do file.

-nobreak — Do not record breakpoints.

-nolastnow — Do not report last now value.

-nolist — Do not record the List window format.

-nomemory — Do not record Memory window views.

-nosource — Do not record source files.

-novsim — Do not record the vsim command.

-nowave — Do not record the Wave window format.

• <filename>

(required) Specifies the name of the output file where the data is to be written. You must
specify the .do extension.

Examples

• Save the current data in the List window in a file named alu_list.do.

write format list alu_list.do

• Save the current data in the Wave window in a file named alu_wave.do.

write format wave alu_wave.do

ModelSim® Command Reference Manual, v10.5c500

Commands
write format

• An example of a saved Wave window format file:

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
TreeUpdate [SetDefaultTree]
quietly WaveActivateNextPane
add wave -noupdate -format Logic /cntr_struct/p1
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {0 ns}
WaveRestoreZoom {0 ns} {1 us}
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -signalnamewidth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window. The TreeUpdate command then refreshes all five waveforms. The second
WaveActivateNextPane command creates a second pane which contains three
signals.The WaveRestoreCursors command restores any cursors you set during the
original simulation, and the WaveRestoreZoom command restores the Zoom range you
set. These four commands are used only in saved Wave format files; therefore, they are
not documented elsewhere.

Commands
write list

ModelSim® Command Reference Manual, v10.5c 501

write list
This command records the contents of the List window in a list output file.

Syntax

write list [-events] <filename>

Description

This file contains simulation data for all HDL objects displayed in the List window: VHDL
signals and variables and Verilog nets and registers.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments

• -events

(optional) Specifies to write print-on-change format where the default is tabular format.

• <filename>

(required) Specifies the name of the output file where the data is to be written.

Examples

• Save the current data in the List window in a file named alu.lst.

write list alu.lst

Related Topics

write tssi

ModelSim® Command Reference Manual, v10.5c502

Commands
write preferences

write preferences
This command saves the current GUI preference settings to a Tcl preference file. Settings saved
include Wave, Objects, and Locals window column widths; Wave, Objects, and Locals window
value justification; and Wave window signal name width.

Syntax

write preferences <preference file name>

Arguments

• <preference file name>

(required) Specifies the name for the preference file. If the file is named modelsim.tcl,
ModelSim will read the file each time vsim is invoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
environment variable.

You can modify variables by editing the preference file with the ModelSim notepad:

notepad <preference file name>

Commands
write report

ModelSim® Command Reference Manual, v10.5c 503

write report
This command prints a summary of the design being simulated including a list of all design
units (VHDL configurations, entities, and packages, and Verilog modules) with the names of
their source files. The summary includes a list of all source files used to compile the given
design.

Syntax

write report [-capacity [-l | -s] [-line] [-qdas | -vmem]] |
[-l | -s] | [-tcl] | [<filename>]

Description

The Simulation Report contains the following information:

• Design Simulated — directory path of the design’s top-level module

• Number of signals/nets in the design

• Number of processes in the design

• Simulator Parameters, including:

• Current directory

• Project file directory

• Simulation time resolution

• List of design units used, including:

• Module name

• Architecture, if applicable

• Library directory

• Source file

• Timescale

• Occurrences

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments

• -capacity

(optional) Reports data on memory usage of various types of SystemVerilog constructs in
the design. Collects memory usage data for dynamic objects.

ModelSim collects memory usage data for dynamic objects.

ModelSim® Command Reference Manual, v10.5c504

Commands
write report

Must be specified first when specifying -qdas.

To display memory data for all object types, specify -capacity -l.

• <filename>

(optional) Specifies the name of the output file where the data is to be written. If <filename>
is omitted, the report is written to the Transcript window.

• -l

(optional) Generates more detailed information about the design, including a list of sparse
memories or the memory capacity for all object types. You must precede this argument with
-capacity when specifying a capacity report.

• -line

(optional) Generates point of allocation (line) based report. If -line is not used, the report
will be generated based on declaration. Vsim must be run with -capacity=line to print a
point of allocation (line) based report.

• -qdas

(optional) Reports memory usage data for queues, dynamic arrays, associative arrays, and
strings (each is provided in its own section in the report). You must precede this argument
with -capacity when specifying a capacity report.

• -s

(optional) Generates a short list of design information. You must precede this argument with
-capacity when specifying a capacity report.

• -tcl

(optional) Generates a Tcl list of design unit information. This argument cannot be used
with a filename.

• -vmem

(optional) When specified with capacity, -vmem reports usage data for Verilog memories.

Examples

• Save information about the current design in a file named alu_rpt.txt.

write report alu_rpt.txt

• Create a Simulation Report for the current simulation

write report -l

Commands
write report

ModelSim® Command Reference Manual, v10.5c 505

returns:

SIMULATION REPORT Generated on Mon Aug 10 12:56:15 2009

Design simulated: <directory>\work.top(fast)
Number of signals/nets in design: 89
Number of processes in design: 74

Simulator Parameters:

Current directory: <directory>\
Project file: <directory>\win32/../modelsim.ini
Simulation time resolution: 1ns

List of Design units used:

Module: top
Architecture: fast
Library: <directory>\work
Source File: top.v
Timescale: 1ns / 1ns
Occurrences: 1

Module: proc
Architecture: fast
Library: <directory>\work
Source File: proc.v
Timescale: 1ns / 1ns
Occurrences: 1

...

ModelSim® Command Reference Manual, v10.5c506

Commands
write timing

write timing
This command displays path delays and timing check limits, unadjusted for delay net delays, for
the specified instance.

Syntax

write timing [-recursive] [-file <filename>] [<instance_name1>…<instance_nameN>]
[-simvalues]

Description

When the write timing command reports interconnect delays on a Verilog module instance you
will see either MIPDs (Module Input Port Delays) or MITDs (Module Transport Port Delays)
reported. If you specify either the +multisource_int_delays or the +transport_int_delays
argument with the vsim command, INTERCONNECT delays will be reported as MITDs.
Otherwise they will be reported as MIPDs. An MIPD report may look like the following:

/top/u1: [mymod:src/5/test.v(18)]
MIPD(s):
Port clk_in: (6, 6, 6)

An MITD report may look like the following:

/top/u1: [mymod:src/5/test.v(18)]
MITDs to port clk_in:
From port /top/p/y = (6)

When the +multisource_int_delays argument is specified without +sdf_verbose on the vsim
command line, “write timing" does not report the individual bits of vector source ports of SDF
INTERCONNECT delays.

For example, assume the SDF file contains the following two INTERCONNECT statements:

(INTERCONNECT p/y[0] n/bus_in[0] (3))
(INTERCONNECT p/y[1] n/bus_in[1] (4))

The corresponding "write timing" output looks like this:

MITDs to port bus_in[0]:
From port /tb12/p/y = (3)
MITDs to port bus_in[1]:
From port /tb12/p/y = (4)

Notice that the specific bits of the source port are not reported.

Commands
write timing

ModelSim® Command Reference Manual, v10.5c 507

When "+sdf_verbose" is added to the vsim command line the "write timing" output becomes:

MITDs to port bus_in[0]:
From port /tb12/p/y[0] = (3)
MITDs to port bus_in[1]:
From port /tb12/p/y[1] = (4)

Notice that the specific bits of the source port are now reported.

Arguments

• -file <filename>

(optional) Specifies the name of the output file where the data is to be written. If the -file
argument is omitted, timing information is written to the Transcript window.

<filename> — Any valid filename. May include special characters and numbers.

• <instance_name1>…<instance_nameN>

(required) The name(s) of the instance(s) for which timing information will be written. If
<instance_name> is omitted, the command returns nothing.

• -recursive

(optional) Generates timing information for the specified instance and all instances
underneath it in the design hierarchy.

• -simvalues

(optional) Displays optimization-adjusted values for delay net delays.

Examples

• Write timing about /top/u1 and all instances underneath it in the hierarchy to the file
timing.txt.

write timing -r -f timing.txt /top/u1

• Write timing information about the designated instances to the Transcript window.

write timing /top/u1 /top/u2 /top/u3 /top/u8

ModelSim® Command Reference Manual, v10.5c508

Commands
write transcript

write transcript
This command writes the contents of the Transcript window to the specified file. The resulting
file can then be modified to replay the transcribed commands as a DO file (macro).

Note
The command cannot be used in batch mode. In batch mode use the standard Transcript file
or redirect stdout.

Syntax

write transcript [<filename>]

Arguments

• <filename>

(optional) Specifies the name of the output file where the data is to be written. If the
<filename> is omitted, the transcript is written to a file named transcript.

Related Topics

Saving a Transcript File as a DO file

Commands
write tssi

ModelSim® Command Reference Manual, v10.5c 509

write tssi
This command records the contents of the List window in a "TSSI format" file.

Syntax

write tssi <filename>

Description

The file contains simulation data for all HDL objects displayed in the List window that can be
converted to TSSI format (VHDL signals and Verilog nets). A signal definition file is also
generated.

The List window needs to be using symbolic radix in order for write tssi to produce useful
output.

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the same
file name with the extension .def (e.g., listfile.def). The values in the listfile are produced in the
same order that they appear in the List window. The directionality is determined from the port
type if the object is a port, otherwise it is assumed to be bidirectional (mode INOUT).

Objects that can be converted to SEF are VHDL enumerations with 255 or fewer elements and
Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration values
defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF values
according to the table below. Other values are converted to a question mark (?) and cause an
error message. Though the write tssi command was developed for use with std_ulogic, any
signal which uses only the values defined for std_ulogic (including the VHDL standard type bit)
will be converted.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0

1 U H 1

Z Z T F

W N X ?

L D L 0

H U H 1

- N X ?

ModelSim® Command Reference Manual, v10.5c510

Commands
write tssi

Bidirectional logic values are not converted because only the resolved value is available. The
TSSI TDS ASCII In Converter and ASCII Out Converter can be used to resolve the
directionality of the signal and to determine the proper forcing or expected value on the port.
Lowercase values x, z, w, l, and h are converted to the same values as the corresponding
capitalized values. Any other values will cause an error message to be generated the first time
an invalid value is detected on a signal, and the value will be converted to a question mark (?).

Note
The TDS ASCII In Converter and ASCII Out Converter are part of the TDS software.
ModelSim outputs a vector file, and TSSI tools determine whether the bidirectional signals

are driving or not.

Arguments

• <filename>

(required) Specifies the name of the output file where the data is to be written.

Commands
write wave

ModelSim® Command Reference Manual, v10.5c 511

write wave
This command records the contents of the Wave window in PostScript format. The output file
can then be printed on a PostScript printer.

Syntax

write wave <filename> [-end <time>] [-landscape] [-height <real_num>]
[-margin <real_num>] [-perpage <time>] [-portrait][-start <time>] [-width <real_num>]

Arguments

• <filename>

(required) Specifies the name of the PostScript (.ps) output file.

• -end <time>

(optional) The simulation time at which the record will end.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

• -height <real_num>

(optional) Specifies the paper height in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
11.0.

• -landscape

(optional) Use landscape (horizontal) orientation. (default)

• -margin <real_num>

(optional) Specifies the margin in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
0.5.

• -perpage <time>

(optional) Specifies the time width per page of output.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

• -portrait

(optional) Use portrait (vertical) orientation where the default is landscape (horizontal).

• -start <time>

(optional) Specifies the start time to be written.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

ModelSim® Command Reference Manual, v10.5c512

Commands
write wave

• -width <real_num>

(optional) Specifies the paper width in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
8.5.

Examples

• Save the current data in the Wave window in a file named alu.ps.

write wave alu.ps

• Write two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

write wave -start 600ns -end 800ns -perpage 100ns top.ps

To make the job of creating a PostScript waveform output file easier, use the File >
Print Postscript menu selection in the Wave window.

Index
Index

— Symbols —
’delayed, 35
’hasX, 35
’hasX, hasX, 35
+define+, 393
+delay_mode_distributed, 393
+delay_mode_path, 393
+delay_mode_unit, 394
+delay_mode_zero, 394
+incdir+, 397
+maxdelays, 399
+mindelays, 399
+nowarn, 402
+typdelays, 410

— A —
abort command, 63
absolute time, using @, 26
add dataflow command, 64
add list command, 66
add log command, 199
add memory command, 71
add message command, 73
add watch command, 75
add wave command, 77
add_cmdhelp command, 84
addTime command, 288
alias command, 86
analog

signal formatting, 79
annotating interconnect delays,

v2k_int_delays, 447
archive load command, 87
archive write command, 88
arra ys

slices, 16
arrays

indexes, 15
arrays, VHDL, searching for, 30

assertions
testing for with onbreak command, 229

attributes, of signals, using in expressions, 33
automatic saving of coverage, 419

— B —
batch_mode command, 89
batch-mode simulations

halting, 485
bd (breakpoint delete) command, 90
binary radix, mapping to std_logic values, 41
bookmark add wave command, 92
bookmark delete wave command, 94
bookmark goto wave command, 95
bookmark list wave command, 96
bp (breakpoint) command, 97
break

on signal value, 478
breakpoints

conditional, 478
continuing simulation after, 260
deleting, 90
listing, 97
setting, 97
signal breakpoints (when statements), 478
time-based

in when statements, 485
busses

user-defined, 82

— C —
call command, 103
case choice, must be locally static, 336
case sensitivity

VHDL vs. Verilog, 20
cd (change directory) command, 108
change command, 109
-check_synthesis argument, 330
class instance garbage collector, 192, 194
class member selection, syntax, 16
513ModelSim® Command Reference Manual, v10.5c

class objects, viewing, 114, 116, 118, 121, 124,
126, 128, 130

classinfo command, 114, 116, 118, 121, 124,
126, 128, 130

co mmands
virtual define, 365

Color
radix, 246

example, 247
combining signals, busses, 82
commands

abort, 63
add dataflow, 64
add list, 66
add memory, 71
add message, 73
add wave, 77
add_cmdhelp, 84
alias, 86
archive load, 87
archive write, 88
batch_mode, 89
bd (breakpoint delete), 90
bookmark add wave, 92
bookmark delete wave, 94
bookmark goto wave, 95
bookmark list wave, 96
bp (breakpoint), 97
call, 103
cd (change directory), 108
change, 109
classinfo, 114, 116, 118, 121, 124, 126,

128, 130
configure, 132
dataset close, 141
dataset current, 144
dataset info, 145
dataset list, 146
dataset open, 147
dataset rename, 149
dataset save, 151
delete, 155
describe, 156
disablebp, 157
do, 158

drivers, 160
dumplog64, 162
echo, 163
edit, 164
enablebp, 165
encoding, 166
environment, 167
examine, 168
exit, 175
find, 177
find connections, 181
find infiles, 182
find insource, 183
force, 185
gc configure, 192
gc run, 194
help, 195
history, 196
layout, 197
log, 199
lshift, 202
lsublist, 203
mem compare, 204
mem display, 205
mem list, 208
mem load, 209
mem save, 213
mem search, 216
modelsim, 219
nolog, 221
notepad, 223
noview, 224
nowhen, 225
onbreak, 226
onElabError, 229
onerror, 230
onfinish, 232
pause, 233
printenv, 234, 235
process report, 236
pwd, 240
quietly, 241
quit, 242
radix, 243
radix define, 245
514 ModelSim® Command Reference Manual, v10.5c

radix list, 250
radix name, 251
readers, 253
report, 254
restart, 256
resume, 258
run, 259
runStatus, 262
searchlog, 264
see, 267
setenv, 268
shift, 269
show, 270
simstats, 271
simstatslist, 273
stack down, 275
stack frame, 276
stack level, 277
stack up, 279
status, 280
stop, 283
suppress, 284
Time, 288
transcript, 291
transcript file, 292
transcript path, 294
transcript sizelimit, 295
TreeUpdate, 501
tssi2mti, 299
unsetenv, 302
variables referenced in, 26
vcd add, 303
vcd checkpoint, 305
vcd comment, 306
vcd dumpports, 307
vcd dumpportsall, 310
vcd dumpportsflush, 311
vcd dumpportslimit, 312
vcd dumpportsoff, 314
vcd dumpportson, 315
vcd file, 316
vcd files, 318
vcd flush, 321
vcd limit, 322
vcd off, 324

vcd on, 325
vcom, 329
vdel, 345
vencrypt, 350
verror, 354
vgencomp, 356
vhencrypt, 358
virtual count, 364
virtual delete, 366
virtual describe, 367
virtual expand, 368
virtual function, 369
virtual hide, 372
virtual log, 373
virtual nohide, 375
virtual nolog, 376
virtual region, 378
virtual save, 379
virtual show, 380
virtual signal, 381
vlib, 387
vlog, 391
vmake, 413
vmap, 415
vsimVersion, 451
vsource, 453
wave, 455
wave create, 459
wave edit, 465
wave export, 469
wave import, 471
wave modify, 472
wave sort, 477
WaveActivateNextPane, 501
WaveRestoreCursors, 501
WaveRestoreZoom, 501
when, 478
where, 486
wlf2log, 487
wlf2vcd, 489
wlfman, 490
wlfrecover, 497
write format, 498
write list, 501
write preferences, 502
515ModelSim® Command Reference Manual, v10.5c

write report, 503
write timing, 506
write transcript, 508
write tssi, 509
write wave, 511

commands formatTime, 191
comment characters in VSIM commands, 14
compiling

range checking in VHDL, 340
Verilog, 391
VHDL, 329

selected design units (-just eapbc), 334
standard package (-s), 340

VHDL-2008
REAL_VECTOR, 333

compressing files
VCD files, 307, 318

concatenation
directives, 40
of signals, 39

conditional breakpoints, 478
configurations, simulating, 419
configure command, 132
constants

in case statements, 336
values of, displaying, 156, 168

conversion
radix, 243

coverage, automatic s ave, 419
coverstore, auto-saved coverage, 419

— D —
dataset close command, 141
dataset current command, 144
dataset info command, 145
dataset list command, 146
dataset open command, 147
dataset rename command, 149
dataset save command, 151
datasets

environment command, specifying with,
167

de sign loading, interr upting, 419
declarations, hiding implicit with explicit, 343
delay

interconnect, 427

delete command, 155
deltas

collapsing in WLF files, 437
dependency errors, 395
describe command, 156
design units

report of units simulated, 503
Verilog

adding to a library, 391
directories

mapping libraries, 415
disablebp command, 157
dividers

adding from command line, 78
divTime ccommand, 288
do command, 158
DO file

executing, 158
DO files, 158

breakpoints, executing at, 98
forcing signals, nets, or registers, 185
parameters

passing, 158
relative directories, 158
shifting parameter values, 269

-dpiheader, vlog, 394, 442
drivers command, 160
dump files, viewing in the simulator, 326
dumplog64 command, 162

— E —
echo command, 163
edit command, 164
enablebp command, 165
encoding command, 166
environment command, 167
environment variables

reading into Verilog code, 393
specifying UNIX editor, 164
state of, 235
using in pathnames, 20

environment, displaying or changing
pathname, 167

eqTime command, 288
errors

getting details about messages, 354
516 ModelSim® Command Reference Manual, v10.5c

onerror command, 230
SDF, disabling, 431

event order
changing in Verilog, 392

examine command, 168
exit command, 175
extended identifiers, 20

— F —
file compression

VCD files, 307, 318
find command, 177
find connections command, 181
find infiles command, 182
find insource command, 183
fixed point radix, 245
floating point radix, 245
force

remove wire model, 429
force command, 185
format file

List window, 498
Wave window, 498

formatTime command, 191, 288

— G —
gc configure command, 192
gc run command, 194
generics

assigning or overriding values with -g and -
G, 422

examining generic values, 168
limitation on assigning composite types,

423
glitches

disabling generation
from command line, 440

global visibility
PLI/FLI shared objects, 424

gotolingk modelsim_user
DPI File Loading, 447

gteTime command, 288
gtTime command, 288
GUI_expression_format, 32

syntax, 33

— H —
hazards

-hazards argument to vlog, 397
-hazards argument to vsim, 442

help command, 195
history

of commands
shortcuts for reuse, 29

history command, 196

— I —
implicit operator, hiding with vcom -explicit,

343
interconnect de lays, 427
interconnect delays

annotating per Verilog 2001, 447
internal signals, adding to a VCD file, 304
interruptin g design loading, 419
intToTime command, 288

— K —
keywords

enabling SystemVerilog keywords, 407

— L —
layout command, 197
LD_LIBRARY_PATH, disabling default

internal setting of, 427
libraries

design libraries, creating, 387
refreshing library images, 405
Verilog, 425

lint-style checks, 399
List window

adding items to, 66
loading designs, interrupti ng, 419
log command, 199
log file

log command, 199
nolog command, 221
QuickSim II format, 487
redirecting wi th -l, 425
redirecting with -l, 426
virtual log command, 373
virtual nolog command, 376

ls hift command, 202
517ModelSim® Command Reference Manual, v10.5c

lsublist command, 203
lteTime command, 288
ltTime command, 288

— M —
mc_scan_plusargs, PLI routine, 446
mem compare command, 204
mem display command, 205
mem list command, 208
mem load command, 209
mem save command, 213
mem search command, 216
memory window

add memory command, 71
adding items to, 71

memory, comparing contents, 204
memory, displaying contents, 205
memory, listing, 208
memory, loading contents, 209
memory, saving contents, 213
memory, searching for patterns, 216
messages

echoing, 163
getting more information, 354
loading, disabling with -quiet, 404
loading, disbling with -quiet, 340

-mfcu, 399
modelsim command, 219
mulTime command, 288
multi-source interconnect de lays, 427

— N —
name case sensitivity, VHDL vs. Verilog, 20
negative pulses

driv ing an error state, 447
neqTime command, 288
nets

drivers of, displaying, 160
readers of, displaying, 253
stimulus, 185
values of

examining, 168
-no_risefall_delaynets, 443
nolog command, 221
notepad command, 223
noview command, 224

nowhen command, 225

— O —
object_list_file, WLF files, 490
onbreak command, 226
onElabError command, 229
onerror command, 230
onfinish command, 232
optimizations

disabling for VHDL designs, 339
optimizing wlf files, 492

order of events
changing in Verilog, 392

— P —
parameters

using with DO files, 158
pathnames

in VSIM commands, 15
spaces in, 14

pause command, 233
PLI

loading shared objects with global symbol
visibility, 424

preference variables
WildcardFilter, 22

printenv command, 234, 235
process report command, 236
projects

override mapping for work directory with
vcom, 343

override mapping for work directory with
vlog, 411

propagation, preventing X propagation, 428
pulse error state, 447
pwd command, 240

— Q —
QuickSim II logfile format, 487
quietly command, 241
quit command, 242

— R —
Radix

color, 246
example, 247

radix
518 ModelSim® Command Reference Manual, v10.5c

display values in debug windows, 243
of signals being examined, 68, 81, 171
user defined, 245

radix command, 243
Radix define command

setting rad ix color, 247
setting radix color, 246

radix define command, 245
fixed point radix, 245
floating point radix, 245

radix list command, 250
radix name command, 251
range checking

disabling, 338
enabling, 340

readers command, 253
RealToTime command, 288
record field selection, syntax, 16
refresh, dependency check errors, 395
refreshing library images, 405
report command, 254
reporting

processes in the Process Window, 236
variable settings, 26

resolution
specifying with -t a rgument, 433

restart command, 256
resume command, 258
run command, 259
runStatus command, 262

— S —
scaleTime command, 288
scope resolution operator, 17
scope, setting region environment, 167
SDF

annotation verbose mode, 431
controlling missing instance messages, 431
errors on loading, disabling, 431
warning messages, disabling, 431

search libraries, 425
searching

binary signal values in the GUI, 41
List window

signal values, transitions, and names,
32

VHDL arrays, 30
searchlog command, 264
see command, 267
setenv command, 268
shared objects

loading with global symbol visibility, 424
shift command, 269
shortcuts

command history, 29
command line caveat, 28

show command, 270
signals

alternative names in the Wave window (-
label), 80

attributes of, using in expressions, 33
breakpoints, 478
combining into a user-defined bus, 82
drivers of, displaying, 160
environment of, displaying, 167
force time, specifying, 188
log file, creating, 199
pathnames in VSIM commands, 15
radix

specifying for examine, 68, 81, 171
readers of, displaying, 253
stimulus, 185
values of

examining, 168
simstats command, 271
simstatslist command, 273
simulating

delays, specifying time units for, 26
design unit, specifying, 419
saving simulations, 199, 437
stopping simulation in batch mode, 485

simulations
saving results, 151

Simulator commands, 63
simulator resolution

vsim -t argument, 433
simulator version, 436, 451
simultaneous events in Verilog

changing order, 392
spaces in pathnames, 14
sparse memories
519ModelSim® Command Reference Manual, v10.5c

listing with write report, 504
specify path delays, 447
stack down command, 275
stack frame command, 276
stack level command, 277
stack up command, 279
startup

alternate to startup.do (vsim -do), 421
status command, 280
Std_logic

mapping to binary radix, 41
stop command, 283
subTime command, 288
suppress command, 284
synthesis

rule compliance checking, 330
SystemC

class and structure member naming syntax,
16

SystemVerilog
enabling with -sv arg ument, 407
multiple files in a compilation unit, 399
scope resolution, 17

SystemVerilog classes
call command, 103

— T —
Tcl

history shortcuts, 29
variable

in when commands, 482
TFMPC

disabling warning, 444
time

absolute, using@, 26
simulation time units, 26

time collapsing, 437
Time commands, 288
time resolution

setting
with vsim command, 433

time, time units, simulation time, 26
timescale directive warning

disabling, 444
timing

disabling checks, 402

disabling checks for entire design, 428
title, Main window, changing, 434
transcript

redirecting with -l, 425, 426
transcript command, 291
transcript file command, 292
transcript path command, 294
transcript sizelimit command, 295
TreeUpdate command, 501
TSCALE, disabling warning, 444
TSSI, 509
tssi2mti command, 299

— U —
-u, 410
undeclared nets, reporting an error, 399
unsetenv command, 302
user-defined bus, 82
User-defined radix, 245

— V —
-v, 410
v2k_int_delays, 447
validTime command, 288
values

describe HDL items, 156
examine HDL item values, 168

variable settings report, 26
variables

describing, 156
referencing in commands, 26
value of

changing from command line, 109
examining, 168

vcd add command, 303
vcd checkpoint command, 305
vcd comment command, 306
vcd dumpports command, 307
vcd dumpportsall command, 310
vcd dumpportsflush command, 311
vcd dumpportslimit command, 312
vcd dumpportsoff command, 314
vcd dumpportson command, 315
vcd file command, 316
VCD files

adding items to the file, 303
520 ModelSim® Command Reference Manual, v10.5c

capturing port driver data, 307
converting to WLF files, 326
creating, 303
dumping variable values, 305
flushing the buffer contents, 321
generating from WLF files, 489
inserting comments, 306
internal signals, adding, 304
specifying maximum file size, 322
specifying name of, 318
specifying the file name, 316
state mapping, 316, 318
turn off VCD dumping, 324
turn on VCD dumping, 325
viewing files from another tool, 326

vcd files command, 318
vcd flush command, 321
vcd limit command, 322
vcd off command, 324
vcd on command, 325
vcd2wlf command, 326
vcom command, 329
vdel command, 345
vector elements, initializing, 109
vencrypt command, 350
Verilog

capturing port driver data with -dumpports,
316

verror command, 354
version

obtaining with vsim command, 436
obtaining with vsimcommands, 451

vgencomp command, 356
VHDL

arrays
searching for, 30

binding, ignore default, 333
field naming syntax, 16

VHDL-2008
package STANDARD

REAL_VECTOR, 333
vhencrypt command, 358
viewing

waveforms, 437
virtual count commands, 364

virtual define command, 365
virtual delete command, 366
virtual describe command, 367
virtual expand commands, 368
virtual fun ction command, 369
virtual hide command, 372
virtual log command, 373
virtual nohide command, 375
virtual nolog command, 376
virtual region command, 378
virtual save command, 379
virtual show command, 380
virtual signal command, 381
vlib command, 387
vlog

multiple file compilation, 399
vlog command, 391
vmake command, 413
vmap command, 415
vsim

disabling internal setting of
LD_LIBRARY_PATH, 427

— W —
warnings

SDF, disabling, 431
suppressing VCOM warning messages,

338, 402
suppressing VLOG warning messages, 402
suppressing VSIM warning messages, 444

watch window
add watch command, 75

watching signal values, 75
wave commands, 455
wave create command, 459
wave cursor commands, 455
wave edit command, 465
wave export command, 469
wave import command, 471
wave log format (WLF) file, 437

of binary signal values, 199
wave modify command, 472
wave sort command, 477
Wave window

adding items to, 77
WaveActivateNextPane command, 501
521ModelSim® Command Reference Manual, v10.5c

waveform editor
creating waves, 459
editing commands, 465
importing vcd stimulus file, 471
modifying existing waves, 472
saving waves, 469

waveform logfile
log command, 199

waveforms
saving and viewing, 199

WaveRestoreCursors command, 501
WaveRestoreZoom command, 501
when command, 478
when statement

time-based breakpoints, 485
where command, 486
wildcard characters

for pattern matching in simulator
commands, 21

WildcardFilter Preference Variable, 22
windows

List window
output file, 501
saving the format of, 498

Wave window
path elements, changing, 135

WLF files
collapsing deltas, 437
collapsing time steps, 437
converting to VCD, 489
creating from VCD, 326
indexing, 492
limiting size, 438
log command, 199
merging, 492
optimizing, 492
repairing, 497
saving, 151
specifying name, 437
wlfman command, 490

wlf2log command, 487
wlf2vcd command, 489
wlfman command, 490
wlfrecover command, 497
write format command, 498

write list command, 501
write preferences command, 502
write report command, 503
write timing command, 506
write transcript command, 508
write tssi command, 509
write wave command, 511

— X —
X propagation

disabling for entire design, 428

— Y —
-y, 411

— Z —
zoom

wave window
returning current range, 456
522 ModelSim® Command Reference Manual, v10.5c

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the corresponding
quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by Customer and an authorized
representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties’ entire understanding
relating to the subject matter and supersede all prior or contemporaneous agreements. If Customer does not agree to these
terms and conditions, promptly return or, in the case of Software received electronically, certify destruction of Software and all
accompanying items within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and Mentor
Graphics accepts purchase orders pursuant to this Agreement (each an “Order”), each Order will constitute a contract between
Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this Agreement,
any applicable addenda and the applicable quotation, whether or not those documents are referenced on the Order. Any
additional or conflicting terms and conditions appearing on an Order or presented in any electronic portal or automated order
management system, whether or not required to be electronically accepted, will not be effective unless agreed in writing and
physically signed by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such invoice.
Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half percent per month
or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight, insurance, customs duties, taxes
or other similar charges, which Mentor Graphics will state separately in the applicable invoice. Unless timely provided with a
valid certificate of exemption or other evidence that items are not taxable, Mentor Graphics will invoice Customer for all
applicable taxes including, but not limited to, VAT, GST, sales tax, consumption tax and service tax. Customer will make all
payments free and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments by
Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third party to place purchase orders and/or
make payments on Customer’s behalf, Customer shall be liable for payment under Orders placed by such third party in the event
of default.

1.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software delivered
electronically, which shall be deemed delivered when made available to Customer for download. Mentor Graphics retains a
security interest in all Products delivered under this Agreement, to secure payment of the purchase price of such Products, and
Customer agrees to sign any documents that Mentor Graphics determines to be necessary or convenient for use in filing or
perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means is subject to Customer’s provision
of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement, including any
updates, modifications, revisions, copies, documentation, setup files and design data (“Software”) are copyrighted, trade secret and
confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain all rights not
expressly granted by this Agreement. Except for Software that is embeddable (“Embedded Software”), which is licensed pursuant to
separate embedded software terms or an embedded software supplement, Mentor Graphics grants to Customer, subject to payment of
applicable license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form
(except as provided in Subsection 4.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius. Customer
may have Software temporarily used by an employee for telecommuting purposes from locations other than a Customer office, such as
the employee’s residence, an airport or hotel, provided that such employee’s primary place of employment is the site where the
Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary depending on Software, license fees paid
or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be limited, for example, to
execution of a single session by a single user on the authorized hardware or for a restricted period of time (such limitations may be
technically implemented through the use of authorization codes or similar devices); and (c) support services provided, including
eligibility to receive telephone support, updates, modifications, and revisions. For the avoidance of doubt, if Customer provides any
feedback or requests any change or enhancement to Products, whether in the course of receiving support or consulting services,
evaluating Products, performing beta testing or otherwise, any inventions, product improvements, modifications or developments made
by Mentor Graphics (at Mentor Graphics’ sole discretion) will be the exclusive property of Mentor Graphics.

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S COMPLETE
AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

3. BETA CODE.

3.1. Portions or all of certain Software may contain code for experimental testing and evaluation (which may be either alpha or beta,
collectively “Beta Code”), which may not be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’
authorization, Mentor Graphics grants to Customer a temporary, nontransferable, nonexclusive license for experimental use to
test and evaluate the Beta Code without charge for a limited period of time specified by Mentor Graphics. Mentor Graphics may
choose, at its sole discretion, not to release Beta Code commercially in any form.

3.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under normal
conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation and testing,
Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths, weaknesses and
recommended improvements.

3.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform beta
testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or developments
that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title and
interest in all such property. The provisions of this Subsection 3.3 shall survive termination of this Agreement.

4. RESTRICTIONS ON USE.

4.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all notices
and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All copies shall
remain the property of Mentor Graphics or its licensors. Except for Embedded Software that has been embedded in executable
code form in Customer’s product(s), Customer shall maintain a record of the number and primary location of all copies of
Software, including copies merged with other software, and shall make those records available to Mentor Graphics upon
request. Customer shall not make Products available in any form to any person other than Customer’s employees and on-site
contractors, excluding Mentor Graphics competitors, whose job performance requires access and who are under obligations of
confidentiality. Customer shall take appropriate action to protect the confidentiality of Products and ensure that any person
permitted access does not disclose or use Products except as permitted by this Agreement. Customer shall give Mentor Graphics
written notice of any unauthorized disclosure or use of the Products as soon as Customer becomes aware of such unauthorized
disclosure or use. Customer acknowledges that Software provided hereunder may contain source code which is proprietary and
its confidentiality is of the highest importance and value to Mentor Graphics. Customer acknowledges that Mentor Graphics
may be seriously harmed if such source code is disclosed in violation of this Agreement. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
disassemble, reverse-compile, or reverse-engineer any Product, or in any way derive any source code from Software that is not
provided to Customer in source code form. Log files, data files, rule files and script files generated by or for the Software
(collectively “Files”), including without limitation files containing Standard Verification Rule Format (“SVRF”) and Tcl
Verification Format (“TVF”) which are Mentor Graphics’ trade secret and proprietary syntaxes for expressing process rules,
constitute or include confidential information of Mentor Graphics. Customer may share Files with third parties, excluding
Mentor Graphics competitors, provided that the confidentiality of such Files is protected by written agreement at least as well as
Customer protects other information of a similar nature or importance, but in any case with at least reasonable care. Customer
may use Files containing SVRF or TVF only with Mentor Graphics products. Under no circumstances shall Customer use
Products or Files or allow their use for the purpose of developing, enhancing or marketing any product that is in any way
competitive with Products, or disclose to any third party the results of, or information pertaining to, any benchmark.

4.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct software
errors and enhance or modify the Software for the authorized use, or as permitted for Embedded Software under separate
embedded software terms or an embedded software supplement. Customer shall not disclose or permit disclosure of source
code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or on-site
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code in
any manner except to support this authorized use.

4.3. Customer agrees that it will not subject any Product to any open source software (“OSS”) license that conflicts with this
Agreement or that does not otherwise apply to such Product.

4.4. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense, or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written consent and
payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer without Mentor
Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’ option, result in the
immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms of this Agreement,
including without limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successors in
interest and assigns.

4.5. The provisions of this Section 4 shall survive the termination of this Agreement.

5. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer with updates and
technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor Graphics’ then
current End-User Support Terms located at http://supportnet.mentor.com/supportterms.

6. OPEN SOURCE SOFTWARE. Products may contain OSS or code distributed under a proprietary third party license agreement, to
which additional rights or obligations (“Third Party Terms”) may apply. Please see the applicable Product documentation (including
license files, header files, read-me files or source code) for details. In the event of conflict between the terms of this Agreement

http://supportnet.mentor.com/supportterms

(including any addenda) and the Third Party Terms, the Third Party Terms will control solely with respect to the OSS or third party
code. The provisions of this Section 6 shall survive the termination of this Agreement.

7. LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly installed,
will substantially conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not
warrant that Products will meet Customer’s requirements or that operation of Products will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Customer must
notify Mentor Graphics in writing of any nonconformity within the warranty period. For the avoidance of doubt, this warranty
applies only to the initial shipment of Software under an Order and does not renew or reset, for example, with the delivery of (a)
Software updates or (b) authorization codes or alternate Software under a transaction involving Software re-mix. This warranty
shall not be valid if Products have been subject to misuse, unauthorized modification, improper installation or Customer is not in
compliance with this Agreement. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE
REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON
RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE
PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA CODE; ALL OF
WHICH ARE PROVIDED “AS IS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

8. LIMITATION OF LIABILITY. TO THE EXTENT PERMITTED UNDER APPLICABLE LAW, IN NO EVENT SHALL
MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES (INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS
AGREEMENT EXCEED THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS
LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8
SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

9. THIRD PARTY CLAIMS.

9.1. Customer acknowledges that Mentor Graphics has no control over the testing of Customer’s products, or the specific
applications and use of Products. Mentor Graphics and its licensors shall not be liable for any claim or demand made against
Customer by any third party, except to the extent such claim is covered under Section 10.

9.2. In the event that a third party makes a claim against Mentor Graphics arising out of the use of Customer’s products, Mentor
Graphics will give Customer prompt notice of such claim. At Customer’s option and expense, Customer may take sole control
of the defense and any settlement of such claim. Customer WILL reimburse and hold harmless Mentor Graphics for any
LIABILITY, damages, settlement amounts, costs and expenses, including reasonable attorney’s fees, incurred by or awarded
against Mentor Graphics or its licensors in connection with such claims.

9.3. The provisions of this Section 9 shall survive any expiration or termination of this Agreement.

10. INFRINGEMENT.

10.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product acquired
by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics
will pay costs and damages finally awarded against Customer that are attributable to such action. Customer understands and
agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify Mentor Graphics
promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the
action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.

10.2. If a claim is made under Subsection 10.1 Mentor Graphics may, at its option and expense: (a) replace or modify the Product so
that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return of the
Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

10.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with any
product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the use of
other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a product that
Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided by Mentor
Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; (h) OSS, except to the extent that
the infringement is directly caused by Mentor Graphics’ modifications to such OSS; or (i) infringement by Customer that is
deemed willful. In the case of (i), Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other costs
related to the action.

10.4. THIS SECTION 10 IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS, AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, FOR DEFENSE,

SETTLEMENT AND DAMAGES, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

11. TERMINATION AND EFFECT OF TERMINATION.

11.1. If a Software license was provided for limited term use, such license will automatically terminate at the end of the authorized
term. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon
written notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement
upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of this Agreement
or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or licenses granted prior to
the termination, which amounts shall be payable immediately upon the date of termination.

11.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination of this Agreement and/or any license granted under this Agreement, Customer shall ensure that
all use of the affected Products ceases, and shall return hardware and either return to Mentor Graphics or destroy Software in
Customer’s possession, including all copies and documentation, and certify in writing to Mentor Graphics within ten business
days of the termination date that Customer no longer possesses any of the affected Products or copies of Software in any form.

12. EXPORT. The Products provided hereunder are subject to regulation by local laws and European Union (“E.U.”) and United States
(“U.S.”) government agencies, which prohibit export, re-export or diversion of certain products, information about the products, and
direct or indirect products thereof, to certain countries and certain persons. Customer agrees that it will not export or re-export Products
in any manner without first obtaining all necessary approval from appropriate local, E.U. and U.S. government agencies. If Customer
wishes to disclose any information to Mentor Graphics that is subject to any E.U., U.S. or other applicable export restrictions, including
without limitation the U.S. International Traffic in Arms Regulations (ITAR) or special controls under the Export Administration
Regulations (EAR), Customer will notify Mentor Graphics personnel, in advance of each instance of disclosure, that such information
is subject to such export restrictions.

13. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. The parties agree that all Software is
commercial computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to U.S. FAR 48
CFR 12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. government or a U.S.
government subcontractor is subject solely to the terms and conditions set forth in this Agreement, which shall supersede any
conflicting terms or conditions in any government order document, except for provisions which are contrary to applicable mandatory
federal laws.

14. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation and
other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

15. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and during
Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to review Customer’s
software monitoring system and records deemed relevant by the internationally recognized accounting firm to confirm Customer’s
compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include FlexNet (or successor
product) report log files that Customer shall capture and provide at Mentor Graphics’ request. Customer shall make records available in
electronic format and shall fully cooperate with data gathering to support the license review. Mentor Graphics shall bear the expense of
any such review unless a material non-compliance is revealed. Mentor Graphics shall treat as confidential information all information
gained as a result of any request or review and shall only use or disclose such information as required by law or to enforce its rights
under this Agreement. The provisions of this Section 15 shall survive the termination of this Agreement.

16. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics intellectual
property licensed under this Agreement are located in Ireland and the U.S. To promote consistency around the world, disputes shall be
resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and construed under the laws of the State of
Oregon, U.S., if Customer is located in North or South America, and the laws of Ireland if Customer is located outside of North or
South America or Japan, and the laws of Japan if Customer is located in Japan. All disputes arising out of or in relation to this
Agreement shall be submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin,
Ireland when the laws of Ireland apply, or the Tokyo District Court when the laws of Japan apply. Notwithstanding the foregoing, all
disputes in Asia (excluding Japan) arising out of or in relation to this Agreement shall be resolved by arbitration in Singapore before a
single arbitrator to be appointed by the chairman of the Singapore International Arbitration Centre (“SIAC”) to be conducted in the
English language, in accordance with the Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be
incorporated by reference in this section. Nothing in this section shall restrict Mentor Graphics’ right to bring an action (including for
example a motion for injunctive relief) against Customer in the jurisdiction where Customer’s place of business is located. The United
Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

17. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable or
illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.

18. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all prior
or contemporaneous agreements. Any translation of this Agreement is provided to comply with local legal requirements only. In the
event of a dispute between the English and any non-English versions, the English version of this Agreement shall govern to the extent
not prohibited by local law in the applicable jurisdiction. This Agreement may only be modified in writing, signed by an authorized
representative of each party. Waiver of terms or excuse of breach must be in writing and shall not constitute subsequent consent, waiver
or excuse.

Rev. 151102, Part No. 265968

	Bookcase
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Syntax and Conventions
	Documentation Conventions
	File and Directory Pathnames
	Design Object Names
	Object Name Syntax
	Tcl Syntax and Specification of Array Bits and Slices
	SystemVerilog Scope Resolution Operator
	Specifying Names
	Environment Variables and Pathnames
	Name Case Sensitivity
	Extended Identifiers

	Wildcard Characters
	Supported Commands
	Using the WildcardFilter Preference Variable

	Simulator Variables
	Simulation Time Units
	Optionsets
	Argument Files
	Command Shortcuts
	Command History Shortcuts
	Numbering Conventions
	VHDL Numbering Conventions
	Verilog Numbering Conventions

	GUI_expression_format
	Expression Typing
	Expression Syntax
	Signal and Subelement Naming Conventions
	Grouping and Precedence
	Concatenation of Signals or Subelements
	Record Field Members
	Searching for Binary Signal Values in the GUI

	Chapter 2 Commands
	abort
	add dataflow
	add list
	add memory
	add message
	add watch
	add wave
	add_cmdhelp
	alias
	archive load
	archive write
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	call
	cd
	change
	classinfo ancestry
	classinfo descriptive
	classinfo find
	classinfo implements
	classinfo instances
	classinfo interfaces
	classinfo isa
	classinfo report
	classinfo stats
	classinfo trace
	classinfo types
	configure
	dataset alias
	dataset clear
	dataset close
	dataset config
	dataset current
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset restart
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	encoding
	environment
	examine
	exit
	find
	find connections
	find infiles
	find insource
	force
	formatTime
	gc configure
	gc run
	help
	history
	layout
	log
	lshift
	lsublist
	mem compare
	mem display
	mem list
	mem load
	mem save
	mem search
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	onfinish
	pause
	precision
	printenv
	process report
	project
	pwd
	quietly
	quit
	radix
	radix define
	radix delete
	radix list
	radix names
	radix signal
	readers
	report
	restart
	resume
	run
	runStatus
	searchlog
	see
	setenv
	shift
	show
	simstats
	simstatslist
	stack down
	stack frame
	stack level
	stack tb
	stack up
	status
	step
	stop
	suppress
	tb
	Time
	transcript
	transcript file
	transcript path
	transcript sizelimit
	transcript wrapcolumn
	transcript wrapmode
	transcript wrapwscolumn
	tssi2mti
	ui_VVMode
	unsetenv
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	vencrypt
	verror
	vgencomp
	vhencrypt
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsim_break
	vsource
	wave
	wave create
	wave edit
	wave export
	wave import
	wave modify
	wave sort
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave

	Index
	End-User License Agreement
	Documentation Feedback

