ModelSim® Command Reference Manual

Software Version 10.5¢

© 1991-2016 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in
the license agreement provided with the software, except for provisions which are contrary to applicable
mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
Syntax and CoNVENtIONS.ottt et e e 13
Documentation CONVENLIONSottt e ettt 13
Fileand Directory Pathnames 14
Design ObjeCt NamESot 15
Object Name SyntaXot 15
Tcl Syntax and Specification of Array Bitsand Slices 16
SystemVerilog Scope Resolution Operatorcoitiiii i 17
SPECIfYINg NaMES.o 18
Environment Variablesand Pathnames i 20
Name Case SENSItIVILYo e 20
Extended ldentifierso 20
Wildcard CharaCterso o e e e 21
Supported Commands.ot 21
Using the WildcardFilter PreferenceVariable 22
Simulator Variables. e 25
Simulation TIMEUNITS.o e e e e 26
Ot ONSELS . .\ ottt e 26
ArgUMENt FIlES . . oo e 27
Command ShOMCULS.o e e 28
Command History ShOrCULS oot e e e e 29
NUumbering Conventions i 30
VHDL Numbering Conventions.cv ittt et e et i 30
Verilog Numbering ConventionsSo v ittt et 31
GUI_expression format. e 32
EXPression TYPING . ..ottt e e e e e 32
EXPression SYNtaX.ot 33
Signal and Subelement Naming Conventionscooiiiiininnnnnn.n. 39
Grouping and PreCedenCe.ot 39
Concatenation of Signalsor Subelements i 39
Record Field Memberso 41
Searching for Binary Signal ValuesintheGUI 41

Chapter 2
COMMIANGS. . ..o e e e 43
00 P 63
add dataflOwW.o 64
A LISt . e 66
A0 MEMIOY . . .o e 71
A0 MBSO, . . . ottt 73
A0 WalCh e 75
B0 WAV . . e 77

ModelSim® Command Reference Manual, v10.5¢ 3

Table of Contents

add CmMANEl D . .o 84
A S o o e e e 86
aArChIVEI0ad . . . o e e 87
A NIV W . o ottt e e e e e 88
batch mode 89
DO . 90
bookmark add Wave. 92
bookmark delete Wave.o e 94
bookmark gotO Waveo o 95
DOOKMArK [ISEWAVE . . . oo e e e e 96
0] o 97
CaAll .. 103
CO . o 108
ChaNge . ..o e 109
Classinfo anCeStrYo 111
classinfo desCriptiVe.o e 112
ClassiNfO fiNGot e 114
classinfoimplements o 116
ClasSiNfO INSIANCES et e e 118
ClasSINfO MBI TACES.ttt e e 121
ClaSSIN O IS . . o vttt e e e e e 123
ClassinfO rEPOrt. e 124
ClaSSiNTO S . . . v vttt e e e 126
ClaSSINfOIrACE . . . oot e e 128
ClasSSIN O LY PES . . . oot 130
(000 10 = 132
JalaSEt AliaS . . . ottt e e 138
JalaSEL ClEA . . . ottt e e 139
Jatasel ClOSE. . . .ttt e e e 141
ataset CONfIg ot 142
Aatasel CUITENE . . . oot e e e e e 144
JalaSEt INfO. . . oot e e e 145
(01 7= = <: 1 A 146
Jataset OPENo 147
QA aSE FENAIME . . . ottt e e e e e 149
(075 11z < = 1 150
JaaSEL SAVE ottt 151
dataset SNaPSNOto e 152
JEIEE . .o e e 155
JESCIIDE . . et e e e 156
disablebp ... e 157
o o 2 158
OEIVEIS oo 160
dUMPIOgBA e 162
BCN0 & et e e 163
Bt . o 164
BNAD P . . . 165
BNCOTING. . . o oottt et e e e 166
LS 017/ 0001121181 167

ModelSim® Command Reference Manual, v10.5¢

Table of Contents

BXAMNINE . . o o e 168
BXIL . o 175
N, . e 176
fINA CONNECLIONS. . . .\ttt e e e e e e e e e e e 181
FINAINfIlES . .o e e 182
FINA INSOUICE . . oo e e e e e e e 183
L) o< 185
FOMMA TIMIE . ..ttt e e e e 191
OC CONFIQUIEo e e e e e 192
0 08 1 194
B . . 195
RSOy . .o 196
LAY OUL . . e 197
0 199
[SNIft . . et e e e 202
[SUBDII St . ettt e e e 203
MEM COMPEAIE. . . . e e it et e et e et e e e e e e e e e e e et e et e e e 204
MEM APl . . .o 205
MEM LIS e 208
MEM L0a . . . o e e e 209
(00150 11572 1Y/ 213
(LS LS == (o 216
(107070 1< =T o o 1 P 219
NOT O G . e 220
970] o P 221
0] o 223
101V Z=.. 224
MOWNIEN. © .ottt e e e e 225
ONBIEAK. . . o o e e 226
ONEIADEITOr 229
(] 1 1 (0] (P 230
(01121 232
072 1 233
0= 1S o) o 234
01 1= £ 235
0101075 =00 236
0= P 237
W, . .ot e 240
QUIEHLY o e e e 241
UIT . o e 242
27 1GNP 243
FadiX AEFING . . . 245
FadiX EIEO. . . . 249
(=70 |54 £ 250
FAOIX NAIMIES . . ettt et e e e e e 251
FadiX SIgNAl. . . 252
(27210 [=P 253
1070 254
(1= 7= 256

ModelSim® Command Reference Manual, v10.5¢ 5

Table of Contents

FESUIMIE . . ettt e et e e e e e e e e e 258
0 P 259
FUNSEAIUS . . .ot e e e e e e 262
SEACHIOg . ..ot e 264
BB it e 267
S BNV L s it 268
SNt L 269
S 1101 P 270
SIS LS. . . .ot 271
SIS A S . . .o 273
SEACK AOWN . . . 275
SACK fraME. . ..o e 276
StaCK lOVEl . e 277
SACK tD . . . 278
SACK U . .ot 279
SAUS . . e 280
(< 0 281
(0 283
SUPPIESS . . v et et et e e e e 284
11 P 286
T, . 287
LTS o 291
transCript file . .o 292
transCript Path . ..o e 294
transCript SIZEliMIt e 295
tranSCript WIapCOIUMINot e e et e 296
transCript WrapmoOdeo 297
transCript WrapWSCOIUMIN.o e e ettt 298
BSOS 2. . o 299
ULV VIMOOE. . o e 300
UNSE NIV . . .ottt e e 302
Ve A0, . o 303
ved ChecKpoINt 305
VOO COMIMIEIE « o o ottt ettt e e e e e e e e e e e e e e et 306
VOO AUMIPPOIS . . o ettt et e e e e e e e e 307
ved dumpportSall . ..o 310
ved dumpportSIIUSN . . . 311
ved dumpportslimit 312
ved dumpportsoff . ..o 314
VCA AUMIPPOISON . . o .o ettt et e e 315
VOO fIl . L 316
VOO FI S . o 318
VCA fIUSN. . o 321
VOO LML e e 322
VOO OFf L 324
VOO 0N . e 325
VCO2WIT L 326
1700 T 0 328
VAL, L 345

ModelSim® Command Reference Manual, v10.5¢

Table of Contents

VAT . e e 347
OO Y P . Lo e 350
17 10 354
170 <01 0o 356
VReNCIY Ot . . . 358
VEB L ettt e e e 361
VIFTUGl COUNEt e e e e e 364
virtual define e 365
virtual delete e 366
virtual describe.o 367
virtual expand 368
Virtual TUNCHION. e 369
VirtUal Nide. .. e 372
VIFUE 100, . . oo e 373
virtual NoNIde.o 375
VIrtUal NOLOG. . . oo e 376
VIFtUA FOgION . . o 378
VIFUEl SAVE. . . oo e 379
VIFTUAl SNOW . . o e 380
Virtual SIgnal e 381
VIRtUl By, . oo e e 385
VI . 387
VIOg .o 390
VA, .« ottt e e e 413
1740175 415
1725 2 417
VSIMSKIN 0>, . L 451
VSIM DreaK. . ..o e 452
VSOUICE. .« v v v ittt e e et e e e e e e e e e e e 453
11T = YL 454
WAV Ol . ..ottt ittt et et e e e 459
WaAVE BOIT . ..o 465
WAV BP0 . o e ettt e e e e e 469
WAV PO . . . ottt et e e e e 471
WaVE MOOITY . . 472
WAV SO . . oo e e e e e 477
W, L e e 478
W L o e e 486
W2l 00 . . o 487
W2V Cd . .o e 489
WM . L e 490
W TECOVET . . o e 497
W Ol . . . e 498
WL LIS . . oo e 501
WL PrEfErENCES . . . o 502
LT L= = oo 503
WL EIMING . . .o e e e 506
(SR = ot o 508
W IS . . ottt e 509

ModelSim® Command Reference Manual, v10.5¢ 7

Table of Contents

W WA .« e 511
I ndex

End-User License Agreement

8 ModelSim® Command Reference Manual, v10.5¢

List of Figures

Figure 2-1. drivers Command Resultsin Transcript, 160
Figure2-2. find infileSEXample i e 182
Figure2-3.findinsource Example i 184
Figure 2-4. readers Command Resultsin Transcript.oo ... 253

ModelSim® Command Reference Manual, v10.5¢ 9

List of Figures

10

ModelSim® Command Reference Manual, v10.5¢

List of Tables

Table 1-1. Conventionsfor Command Syntaxccoiuiiiiiianannenn. 13
Table 1-2. Examplesof Object Names 19
Table 1-3. Wildcard Charactersin HDL Object Names, 22
Table 1-4. WildcardFilter Argumentst 24
Table 1-5. WildcardFilter Argument GroupSo o vv ettt e e e 25
Table 1-6. Keyboard Shortcuts for Command History 29
Table 1-7. VHDL Number Conventions: Stylel, 30
Table 1-8. VHDL Number Conventions: Style2 30
Table 1-9. Verilog Number Conventionst 31
Table 1-10. Constants Supported for GUI EXpressions, 33
Table 1-11. Array Constants Supported for GUI EXpressionsc.oovuun.. 33
Table 1-12. Variables Supported for GUI EXpressionscccvvinian.. 34
Table 1-13. Array Variables Supported for GUI Expressions 34
Table 1-14. Operators Supported for GUI EXpressionsovviiinennnn.. 35
Table 1-15. Precedence of GUI EXpression Operatorso iii i 36
Table 1-16. Casting Conversions Supported for GUI Expressions 37
Table1-17. VHDL LogicVauesUsedinGUI Search 42
Table 1-18. Verilog Logic ValuesUsed inGUI Search 42
Table2-1. Supported Commandst 43
Table2-2. Message Viewer Calegories vttt et et 73
Table 2-3. Radix flag Argumentsto the ExamineCommand 172
Table 2-4. runStatus Command Statesot 262
Table 2-5. runStatus -full Command Information oo .. 262
Table 2-6. Warning Message Categoriesfor vcom-nowarn 338
Table2-7. Design Unit Propertiest e 348
Table 2-8. Warning Message Categoriesfor viog-nowarn 402
Table 2-9. Wave Window Commandsfor Cursorcovuiiiiiiinnnn.n. 455
Table 2-10. Wave Window Commands for Expanded TimeDisplay 455
Table 2-11. Wave Window Commands for Controlling Display 456
Table 2-12. Wave Window Commandsfor Zoomingc.ccciuun.. 456

ModelSim® Command Reference Manual, v10.5¢ 11

List of Tables

12

ModelSim® Command Reference Manual, v10.5¢

Chapter 1
Syntax and Conventions

This chapter describes the typographica conventions used in this manual to define ModelSim

command syntax.

Documentation Conventions

The following conventions are used to define Model Sim command syntax

Table 1-1. Conventions for Command Syntax

Syntax notation

Description

< >

angled brackets surrounding a syntax item indicate a
user-defined argument; do not enter the bracketsin
commands

[]

sguare brackets generally indicate an optional item; if
the brackets surround severa words, all must be entered

as agroup; the brackets are not entered!

{}

braces indicate that the enclosed expression contains
one or more spaces yet should be treated as asingle
argument, or that the expression contains square
brackets for an index; for either situation, the braces are
entered

an elipsisindicates items that may appear more than
once,; the ellipsisitself does not appear in commands

the vertical bar indicates a choice between items on
either side of it; do not include the bar in the command

monospaced type

monospaced type is used in command examples

#

commentsincluded with commands are preceded by the
number sign (#), which you can use to add commentsto
DO files (macros)

ModelSim® Command Reference Manual, v10.5¢

13

Syntax and Conventions
File and Directory Pathnames

1. One exception to this rule is when you are using Verilog syntax to designate an array
slice. For example:

add wave { vector1[4:0]}

The sguare brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

Note
Command examples do not show either the prompt at the beginning of aline nor the
<Enter> keystroke at the end of aline.

File and Directory Pathnames

Several Model Sim commands have arguments that specify file or directory locations
(pathnames). For example, the -y argument to the viog command specifies the Verilog source
library directory to search for undefined modules.

Spacesin file pathnames must be escaped or the entire path must be enclosed in quotation
marks. For example:

vlog top.v -y C:/Documents\ and\ Settings/projects/dut
or

vlog top.v -y "C:/Documents and Settings/projects/dut”

14 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Design Object Names

Design Object Names

Design objects are organized hierarchically, where various objects creates anew level in the
hierarchy.

VHDL — component instantiation statement, block statement, and package
Verilog — module instantiation, named fork, named begin, task and function

SystemVerilog — class, package, program, and interface

Object Name Syntax

To specify object names in Model Sim, you use the following syntax:

[<dataset name><datasetSeparator>] [<pathSeparator>] [<hierarchicalPaths>]
<objectName> [<elementSelections>]

where

dataset_name — The name mapped to the WLF file in which the object exists. The
currently active simulation isthe “sim” dataset. Any loaded WLF fileisreferred to by
the logical name specified when the WLF file was loaded. Refer to the chapter
“Recording Simulation Results With Datasets’ in the User’s Manual for more
information.

datasetSeparator — The character used to terminate the dataset name. The default is
colon (:), although you can specify adifferent character (except for abackslash (\)) as
the dataset separator by using the DatasetSeparator variable in the modelsim.ini file.
This character must be different than the pathSeparator character.

pathSepar ator — The character used to separate hierarchical object names. Normally,
abackdash (\) isused for VHDL and aperiod (.) isused for Verilog, athough you can
specify adifferent character (except for abackslash (\)) by using the PathSeparator
variable in the modelsim.ini file. This character must be different than the
datasetSeparator.

Neither (.) nor (/) can be used when referring to the contents of a SystemV erilog
package or class.

hierarchicalPath — A set of hierarchical instance names separated by a path separator
and ending in a path separator prior to the objectName. For example, /top/proc/clk.

objectName — The name of an object in adesign.
element Selection — Some combination of the following:

o Arrayindexing— Single array elements are specified using either parentheses (())
or square brackets ([]) around a single number. Y ou must also surround the object

ModelSim® Command Reference Manual, v10.5¢ 15

Syntax and Conventions
Tcl Syntax and Specification of Array Bits and Slices

and specified array element with curly braces ({}). Refer to Tcl Syntax and
Specification of Array Bits and Slices for important information about using square
brackets and parentheses in Model Sim commands.

o Array slicing— Slices (or part-selects) of arrays are specified using either
parentheses (()) or square brackets ([]) around arange specification. A rangeis
two numbers separated by one of the following: " to ", " downto ", or acolon (:).
Y ou must also surround the object and specified array slice with curly braces ({}).
Refer to Tcl Syntax and Specification of Array Bits and Slices for important
information about using square brackets and parentheses in Model Sim commands.

o Record field selection — A record field is specified using aperiod (.) followed by
the name of the field.

Tcl Syntax and Specification of Array Bits and
Slices

Because Model Sim is based on the Tcl scripting language, you must surround objects and
signals with braces ({}) when specifying array bits or slices with parentheses (()), spaces, or
square brackets ([]).

For example:

toggle add {datal[3:0]}
toggle add {data(3 to 0)}
force {busi[1]} 1

Further Details

Because Model Sim is based on Tcl, its commands follow Tcl syntax. One problem you may
encounter with Model Sim commands is the use of square brackets ([]), parentheses (()), or
spaces when specifying array bits and slices. As noted, square brackets specify dlices of arrays
(for example, data[3:0]). However, in Tcl, square brackets signify command substitution.
Consider the following example:

set aluinputs [find -in alu/*]

Model Sim evaluates the find command first and then sets variable aluinputs to the result of the
find command. Obviously, you do not want thistype of behavior when specifying an array slice,
so you would use brace escape characters, as follows:

add wave {/s/abc/data in[10:1]}

Y ou must also use the escape charactersif using VHDL syntax with spaces:

add wave {/s/abc/data in(10 downto 1)}

16 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
SystemVerilog Scope Resolution Operator

For more information on Tcl syntax, refer to Tcl Command Syntax.

SystemVerilog Scope Resolution Operator

SystemVerilog offers the scope resol ution operator, double colon (::), for accessing classes
within a package and static data within a class. The example below shows various methods of
using this operator as well as alternatives using standard hierarchical references.

Example 1-1. SystemVerilog Scope Resolution Operator Example

package myPackage;
class packet;

static int al0:1] = {1, 2};
int b[0:171;
int c;

function new;
b[0] = 3;
bl[1] = 4;
c = alo0];
endfunction
endclass
endpackage : myPackage

module top;
myPackage: :packet my = new;
int myint = my.all];
endmodule

The following examples of the examine command access data from the class packet.

examine myPackage: :packet::a
examine /top/my.a

Both of the above commands return the contents of the static array a within class packet.

examine myPackage: :packet::a(0)
examine /top/my.a(0)

Both of the above commands return the contents of the first element of the static array a within
class packet.

examine /top/my.b

Return the contents of the instance-specific array b.

examine /top/my.b(0)

ModelSim® Command Reference Manual, v10.5¢ 17

Syntax and Conventions
Specifying Names

Return the contents of the first element of the instance-specific array b.

When referring to the contents of a package or class, you cannot use the standard path
separators, aperiod (.) or aforward slash (/).

Specifying Names

Model Sim distinguishes between four "types' of object names. ssimple, relative, fully-rooted,
and absol ute.

e Simple name — does not contain any hierarchy. It is simply the name of an object
(suchas clk or data[3:0]) in the current context.

e Relative name — does not start with a path separator and may or may not include a
dataset name or a hierarchical path (such asul/data or view:clk). A relative nameis
relative to the current context in the current or specified dataset.

¢ Fully-rooted name — starts with a path separator and includes a hierarchical path to an
object (e.g., /top/ul/clk).There is a specia case of afully-rooted name where the top-
level design unit name can be unspecified (such as /ul/clk). In this case, the first top-
level instance in the design is assumed.

e Absolute name — is an exactly specified hierarchical name containing a dataset name
and afully rooted name (such as sim:/top/ul/clk).

The current dataset is used when accessing objects where a dataset name is not specified as part
of the name. The current dataset is determined by the dataset currently selected in the Structure
window or by the last dataset specified in an environment.

The current context in the current or specified dataset is used when accessing objects with
relative or ssimple names. The current context is either the current process, if any, or the current
instance if there is no current process, or the current processis not in the current instance. The
situation of the current process not being in the current instance can occur, for example, by
selecting a different instance in the Structure tab or by using the environment to set the current
context to a different instance.

The current context is also the activation level of an automatic task, function, or block. Different
levels of activation may be selected by using the Call Stack window, or by using the 'stack up' or
'stack down' commands.

18 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Specifying Names

For example, when you set a breakpoint on line 5 of the following code:

package p;
int I;
function automatic int factorial (int n);
if (n==0)
return 1;
else
return n * factorial(n - 1);
endfunction : factorial
endpackage : p

module top;
initial begin
p::I=p::factorial (3);
Sdisplay(p::I);
Sdisplay(p::factorial (4)) ;

end
endmodule: top

When you issue the command:

examine n

the transcript returns:
0
However, when you issue the command:

stack up;examine n

the transcript returns:

1

Table 1-2 contains examples of various ways of specifying object names.

Table 1-2. Examples of Object Names

Object Name Description
clk specifies the object clk in the current context
Itop/clk specifies the object clk in the top-level design unit.

level design unit

/top/blockl/u2/clk | specifies the object clk, two levels down from the top-

block1/u2/clk specifies the object clk, two levels down from the current
context
array_sig[4] specifies an index of an array object

ModelSim® Command Reference Manual, v10.5¢

19

Syntax and Conventions
Environment Variables and Pathnames

Table 1-2. Examples of Object Names (cont.)

Object Name Description
{array sig(1to specifiesadice of an array object in VHDL ; see Tcl
10)} Syntax and Specification of Array Bits and Slices for

more information

{mysignal[31:0]} | specifiesadliceof an array object in Verilog; see Tcl
Syntax and Specification of Array Bits and Slices for
more information

record_sig.field specifiesafield of arecord

Environment Variables and Pathnames
Y ou can substitute environment variables for pathnames in any argument that requires a
pathname.
For example:

vliog -v $1lib path/undl

Assuming you have defined $lib_path on your system, vliog will locate the source library file
undl and search it for undefined modules. Refer to Environment Variables for more
information.

Name Case Sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case-sensitive
except for extended identifiersin VHDL 1076-1993 or later. In contrast, all Verilog names are
case-sensitive.

Names in Model Sim commands are case-sensitive when matched against case-sensitive
identifiers; otherwise, they are not case-sensitive.

Extended Identifiers
The following are supported formats for extended identifiers for any command that takes an
identifier.
{\ext ident!\ }
Note that trailing space before closing brace is required

\\ext\ ident\!\\
All non-alpha characters escaped

20 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Wildcard Characters

Wildcard Characters

Y ou can use wildcard charactersin HDL object names in many simulator commands.

Supported Commands

There are anumber of commands that support wildcard characters.

The following isa partia list of the commands:

add dataflow
add list

add memory
add watch
add wave
describe
dumpports
examine

find (see the Examples section in the find command for wildcard searchesin foreach
loops to be applied with commands that do not accept wildcards.)

log
ved add

When you execute any of these commands with awildcard, the default behavior isto exclude
the following object types:

VHDL shared variablesin packages and design units, constants, generics, and
Immedi ate assertions

Verilog parameters, specparams, memories
SystemVerilog multi-dimensional arrays and class objects
Signalsin cells

Non-dynamic objects of asize equal to or greater than the level specified in the
WildcardSizeThreshold modelsim.ini variable if the variable has been enabled. Refer to
theWildcardSizeThreshold andWildcardSizeT hreshol dV erbose modelsim.ini variables
for more information.

Y ou can alter these exclusions with the WildcardFilter preference variable. Refer to the section
“Using the WildcardFilter Preference Variable” for more information.

ModelSim® Command Reference Manual, v10.5¢ 21

Syntax and Conventions
Using the WildcardFilter Preference Variable

Table 1-3 identifies these supported wildcard characters.

Table 1-3. Wildcard Characters in HDL Object Names
Character Syntax | Description

* matches any sequence of characters
? matches any single character
[matches any one of the enclosed

characters; a hyphen can be used to
specify arange (for example, a-z, A-Z, O-
9); can be used only with the find
command

Note
A wildcard character does not match a path separator. For example, /dut/* will match /dut/

siga and /dut/clk. However, /dut* will not match either of those.

Using the WildcardFilter Preference Variable

The WildcardFilter preference variable controls which object types are excluded when
performing wildcard matches with simulator commands. The WildcardFilter preference
variableisaTcl List and can be modified using Tcl commands.

The default object types are defined with the WildcardFilter modelsim.ini variable and load at
each invocation of the ssmulator. Y ou can add both individual (Table 1-4) and group objects
(Table 1-5) to the current variable list, and you can remove individual objects from the current
list.

Determining the Current WildcardFilter Variable Settings

Enter one of the following commands:

set WildcardFilter

or

echo $WildcardFilter
which returnsthe list of currently set variables.
Changing the WildcardFilter Settings from the Command Line

Refer to the list of WildcardFilter argumentsin Table 1-4 and Table 1-5 to determine what you
want to include in the wildcard matches.

22 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Using the WildcardFilter Preference Variable

e Todefineanew list of values enter the following command:
set WildcardFilter “<argl arg2 ...>"
Note that you must enclose the space-separated list of arguments in quotation marks.
e To add one or more values to the current list enter the following command:
lappend WildcardFilter <argl arg2 ...>
Note that you must not enclose the space-separated list of argumentsin quotation marks.

e Toremove avauefrom thefilter use the set command with the Tcl Isearch command to
create the new list from the existing list. For example:

set WildcardFilter [Isearch -not -all -inline $WildcardFilter Endpoint]
Changing the WildcardFilter Settings back to the Default
Enter the following command:

set WildcardFilter default

Changing the WildcardFilter settings from the GUI
1. Choose Tools> Wildcard Filter from the main menu.

2. Select the individua Filters you want to exclude from wildcard searches (Table 1-4
describes each option), or select Composite Filtersto activate related filters (Table 1-5
describes each composite option).

3. Click OK.

Refer to the Tcl man pages (Help>Tcl Man Pages) for more information about the Isearch and
set commands.

Changing the default WildcardFilter settings
1. Open the modelsim.ini file for editing (refer toMaking Changes to the modelsim.ini
File)

2. Select the individua Filters you want to exclude from wildcard searches (Table 1-4
describes each option), or select Composite Filtersto activate related filters (Table 1-5
describes each composite option).

3. Edit the WildcardFilter variable
4. Savethe modelsim.ini file to your working directory.

WildcardFilter Argument Descriptions
Table 1-4 provides alist of the WildcardFilter arguments.

ModelSim® Command Reference Manual, v10.5¢ 23

Syntax and Conventions
Using the WildcardFilter Preference Variable

Table 1-5 provides alist of the group aliases of WildcardFilter arguments. Y ou can set a group

Table 1-4. WildcardFilter Arguments

Argument Description

Alias VHDL Alias

CdlInternal Signalsin cells, where a cell is defined as 1) a module within a
‘celldefine 2) a Verilog module found with alibrary search
(using either vlog -v or vlog -y) and compiled with vliog +libcell
or 3) amodule containing a specify block

Class Verilog class declaration

ClassReference SystemVerilog class reference

Compare Waveform comparison signal

Constant VHDL constant

Generic VHDL generic

ImmediateA ssert VHDL immediate assertions

Integer VHDL integer

Memory Verilog memories

NamedEvent Verilog named event

Net Verilog net

Parameter Verilog parameter

Red Verilog real registers

Reg Verilog register

Signd VHDL signa

SpecParam Verilog specparam

Time Verilog time registers

Transaction Transaction stream and stream arrays

Variable VHDL shared variablesin packages and design units.

VHDLFile VHDL files

Virtual Expr Virtual expression

Virtual Signal Virtual signal

value with the set command. The expanded list of valuesis returned.

24

ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Simulator Variables

Table 1-5. WildcardFilter Argument Groups

Group Argument Specific argumentsincluded

AllVHDL Architecture, Block, Generate, Package, Foreign, Process,
Signal, Variable, Constant, Generic, Alias, Subprogram,
VHDLFile

AllVerilogVars Parameter, Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, ClassReference

AllVerilog Net, Parameter, Reg, Integer, Time, Real, SpecParam,

Memory, NamedEvent, Class, Cross, Covergroup,
Coverpoint, ClassReference

VirtualSignals

VirtualSignal, Virtual Expr

AlIHDLSignals Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, Virtual Signal, VirtualExpr, ClassReference

AllVariables Variable, Constant, Generic, Alias, Parameter, Reg,

Integer, Time, Real, SpecParam, Memory, NamedEvent,
ClassReference

AlIHDLSignalsVars

Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, Virtual Signal, VirtualExpr, ClassReference

AllSignals

Signal, Net, Parameter, Reg, Integer, Time, Real,
SpecParam, Memory, NamedEvent, Virtual Signal,
Virtual Expr, Endpoint, ClassReference

AllSignalsVars

Signal, Variable, Constant, Generic, Alias, Net, Parameter,
Reg, Integer, Time, Real, SpecParam, Memory,
NamedEvent, VirtualSignal, Virtual Expr, Endpoint,
ScVariable, ClassReference

AllConstants

Constant, Generic, Parameter, SpecParam

Default

Variable, Constant, Generic, Parameter, SpecParam,
Memory, Assertion, Cover, Endpoint, ScVariable,
CellInterna, ImmediateAssert VHDLFile

Simulator Variables

Y ou can reference Model Sim variables in a simulator command by preceding the name of the
variable with the dollar sign ($) character.

ModelSim® Command Reference Manual, v10.5¢ 25

Syntax and Conventions
Simulation Time Units

Model Sim uses global variables for simulator state variables, smulator control variables,
simulator preference variables, and user-defined variables. Refer to modelsim.ini Variablesin
the User’s Manual for more information on variables.

The report command returns alist of current settings for either the simulator state or simulator
control variables.

Simulation Time Units

Y ou can specify the time unit for delaysin all smulator commands that have time arguments.

For example:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time unitsin a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always expressed
using the resolution units that are specified by the UserTimeUnit variable.

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Optionsets

By defining and calling optionsets, you can easily use and combine common command line
options.

The executabl e expands these optionsets and passes them to the tool asif they appeared directly
on the command line. The behavior is similar to the -f <file> option.

Defining an Optionset

Define your optionsets in the [DefineOptionset] section of the modelsim.ini file, where the
syntax is.

<optionset name> = <command argumentss

e <optionset_name> — astring that begins with aletter, and contains only letters,
numbers, or underscores. The nameis case-insensitive.

e <command_arguments> — alist of arguments as you would specify them on the
command line. Thislist of arguments can:

o Refer to another <optionset_name>, enclosed in percent-signs (%).

26 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Argument Files

o Include shell environment variables, preceded by a dollar-sign ($). If you embed the
variable in astring, you must surround it with parentheses.

Y ou can instruct the executable to return all the values of any optionsets as they are read with
the following entry in the [optionsets] section.

PRINT OPTIONSET VALUE = 1

Calling an Optionset
Call your defined optionsets with the -optionset argument to the commands: vlog, vcom and
vsim.

The syntax of -optionset is:

<command> -optionset <optionset name>

Argument Files

Y ou can load additional arguments into some commands by using argument files, which are
specified with the -f argument.

The following commands support the -f argument:

e viog

e vcom

e vencrypt
e vmake

e vsm

The -f <filename> argument specifies afile that contains additional command line arguments.
The following conventions describe some syntax rules for argument files.

e Single Quotes (* ') — Allows you to group arbitrary characters so that no character
substitution occurs within the quotes, such as environment variable expansion or
escaped characters.

+acc=rn+' \mymodule'

//does not treat the '\' as an escape character

e Quotation marks (“ ”) — Allows you to group arbitrary characters so that Tcl-style
backsl ash substitution and environment variable expansion is performed.

+acc=rn+"\\mymodule\\SVAR"

// escapes the path separators (\) and substitues

ModelSim® Command Reference Manual, v10.5¢ 27

Syntax and Conventions
Command Shortcuts

// your value of 'S$SVAR'

¢ Unguoted — The following are notes on what occurs when some information is not
quoted:

o Backslash substitution — Any unquoted backslash (\) will be treated as an escape
character.

+acc=rn\\mymodule
// the leading '\' is considered an escape character

o Environment variable expansion — Any unguoted environment variable, such as
$envname, will be expanded. Y ou can also use curly braces ({ }) in your
environment variable, such as ${ envname} .

+acc=rn\ \ $MODULE
// the leading '\' is considered an escape character and the

// variable $MODULE is expanded

¢ Newline Character — Y ou can specify arguments on separate lines in the argument file
with abackslash (\), which isthe line continuation character. Y ou must use a space
before the backslash.

e Comments — Comments within the argument files follow these rules:
o All textinaline beginning with // to itsend is treated as a comment.
o All text bracketed by /* ... */ istreated as a comment.

o All textinaline beginning with # to its end is treated as a comment.

Command Shortcuts

The following shortcut techniques are avail able on the command line.

e You can abbreviate command syntax, but the minimum number of characters required to
run a command are those that make it unique. This means the addition of new
commands may prevent an older shortcut from working. For thisreason, Model Sim does
not allow command name abbreviations in macro files. This minimizes your need to
update macro files as new commands are added.

e You can enter multiple commands on one line if they are separated by semi-colons (;).
For example:

ModelSim> vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

28 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Command History Shortcuts

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c¢ -do "run 20 ; simstats ; quit -f" top

Although it seems as if the simstats results should display in the Transcript window,
they do not because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts

Y ou can review simulator command history or rerun previous commands by using keyboard
shortcuts at the Model Sm/VSIM prompt.

Table 1-6 contains alist of these shortcuts.

Table 1-6. Keyboard Shortcuts for Command History

Shortcut Description

" repeats the last command

In repeats command number n; nisthe VSIM prompt
number (for example, for this prompt: VSIM 12>, n
=12)

I<string> shows alist of executed commands that start with
<string>; Use the up and down arrows to choose from
thelist

labc repeats the most recent command starting with "abc"

Axyz™hab replaces "xyz" in the last command with "ab"

up arrow and down | scrolls through the command history
arrow keys

Ctrl-N (UNIX only) | scrall to the next command

Ctrl-P (UNIX only | scrall to the previous command

click on prompt left-click once on a previous ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)

ModelSim® Command Reference Manual, v10.5¢ 29

Syntax and Conventions
Numbering Conventions

Numbering Conventions

Numbers in Model Sim can be expressed in either VHDL or Verilog style. Y ou can use two
styles for VHDL numbers and one for Verilog.

VHDL Numbering Conventions
There are two types of VHDL number styles:

VHDL Style 1

[-] [radix #] value [#]

Table 1-7. VHDL Number Conventions: Style 1
Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by defaullt,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

isadelimiter between the radix and the value; the first # sign is required
if aradix is used, the second is always optional

A hyphen (-) can also designate a"don’t care" element when you search for asignal value or
expression in the List or Wave window. If you want the ‘-’ to beread asa"don’t care”" element,
rather than as a negative sign, be sure to enclose the number in quotation marks. For instance,
you would type "-0110--" as opposed to -0110--. If you do not include the quotation marks,
ModelSim will read the ‘-’ as anegative sign. For example:

16#FFca23#
2#11111110
-23749

VHDL Style 2

base "value"

Table 1-8. VHDL Number Conventions: Style 2

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

"value' specifies digits in the appropriate base with optional underscore
separators; default is decimal; required

30 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Verilog Numbering Conventions

For example:

B"11111110"
X"FFca23"

Searching for VHDL Arrays in the Wave and List Windows
Searching for signal valuesin the Wave or List window may not work correctly for VHDL
arrays if the target valueisin decimal notation. Y ou may get an error that the value is of
incompatible type. Since VHDL does not have aradix indicator for decimal, the target value
may get misinterpreted as a scalar value. Prefixing the value with the Verilog notation 'd should
eliminate the problem, even if the signal isVHDL.

Verilog Numbering Conventions

Verilog numbers are expressed in the style:

[-1 [size] [base] wvalue

Table 1-9. Verilog Number Conventions

Element Description

- indicates a negative number; optional

size the number of bitsin the number; optional

base specifiesthe base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D, hex: ‘h
or ‘H; optional

value specifies digitsin the appropriate base with optional underscore separators,

default is decimal; required

A hyphen (-) can also designate a"don’t care”" element when you search for asignal value or
expression in the List or Wave windows. If you want the ‘-’ to beread asa"don’t care”" element,
rather than a negative sign, be sure to enclose the number in double quotes. For instance, you
would type "-0110--" as opposed to 7'b-0110--. If you don’t include the double quotes,
ModelSim will read the ‘-’ as a negative sign. For example:

"b11111110 8/b11111110
'Hffca23 21'Hlfca23
-23749

ModelSim® Command Reference Manual, v10.5¢ 31

Syntax and Conventions
GUI_expression_format

GUI _expression_format

The GUI_expression_format is an option of several simulator commands that operate within the
ModelSim GUI environment. The expressions help you locate and examine objects within the
List and Wave windows (expressions may also be used through the Edit > Sear ch menu in both
windows). The commands that use the expression format are:

configure examine
searchlog
virtual function
virtual signa

Expression Typing

GUI expressions are typed. The supported types consist of the following scalar and array types.

Scalar Types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration, and
signal state. Signal states are represented by the nine VHDL std_logic states: 'U" ' X’ 0" "1 ' Z
"W L' 'H and’-’.

Verilog states 0, 1, x, and z are mapped into these states and the Verilog strengths are ignored.
Conversion is done automatically when referencing Verilog nets or registers.

Array Types
The supported array types are signed and unsigned arrays of signal states. This would
correspond to the VHDL std _logic_array type. Verilog registers are automatically converted to
these array types. The array type can be treated as either UNSIGNED or SIGNED, asin the
|EEE std_logic_arith package. Normally, referencing asignal array causes it to be treated as
UNSIGNED by the expression evaluator; to cause it to be treated as SIGNED, use casting as
described below. Numeric operations supported on arrays are performed by the expression
evaluator viaModel Sim’ s built-in numeric_standard (and similar) package routines. The
expression evaluator selects the appropriate numeric routine based on SIGNED or UNSIGNED
properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals may be
used in the expression as long as some variable of that enumeration type is referenced in the
expression. Thisis useful for sub-expressions of the form:

(/memory/state == reading)

32 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Expression Syntax

Expression Syntax

GUI expressions generally follow C-language syntax, with both VHDL -specific and Verilog-
specific conventions supported. These expressions are not parsed by the Tcl parser, and so do
not support general Tcl; parentheses should be used rather than braces. Procedure calls are not
supported.

A GUI expression can include the following elements: Tcl macros, constants, array constants,
variables, array variables, signal attributes, operators, and casting.

Tcl Macros

Macros are useful for pre-defined constants or for entire expressions that have been previously
saved. The substitution is done only once, when the expression is first parsed.

Macro syntax is:

S<name>

Substitutes the string value of the Tcl global variable <name>.

Constants
Table 1-10. Constants Supported for GUI Expressions
Type Values
boolean value truefalse TRUE FALSE
integer [0-9]+
real number ;]int>|([<int>],<int>[exp]) where the optional [exp] is: (€|E)[+]-][O-
+
time integer or real optionally followed by time unit
enumeration VHDL user-defined enumeration literal
single bit constants expressed as any of the following:
01xXzZUHLW'U'X'0'Y’Z'W 'L’"'H - 1'b01'bl

Array Constants, Expressed in Any of the Following Formats

Table 1-11. Array Constants Supported for GUI Expressions

Type Values

VHDL # notation | <int>#<alphanum>[#]
Example: 16#abcl123#

ModelSim® Command Reference Manual, v10.5¢ 33

Syntax and Conventions
Expression Syntax

Table 1-11. Array Constants Supported for GUI Expressions (cont.)
Type Values

VHDL bitstring | "(U[X|OJL|Z|WIL|H|-)*"
Example: "11010X 11"

Verilog notation [-][<int>]" (b|B|o|O|d|D|nh|H) <a phanum>

(where <alphanum> includes 0-9, a-f, A-F, and’-’)

Example: 12'hc91 (Thisisthe preferred notation because it removes the
ambiguity about the number of bits.)

Based notation ox..., 0X..., 0o..., 00...,0b..., OB...
Model Sim automatically zero fills unspecified upper bits.

Variables

Table 1-12. Variables Supported for GUI Expressions
Variable Type

Name of asignal | The name may be asimple name, a VHDL or Verilog style extended
identifier, or aVHDL or Verilog style path. The signal must be one of the
following types:

-- VHDL signal of type INTEGER, REAL, or TIME

-- VHDL signal of type std_logic or bit

-- VHDL signal of type user-defined enumeration

-- Verilog net, Verilog register, Verilog integer, or Verilog real

NOW Returns the value of time at the current location in the WLF file asthe
WLF file is being scanned (not the most recent simulation time).

Array variables

Table 1-13. Array Variables Supported for GUI Expressions
Variable Type

Name of asignal | -- VHDL signals of type bit_vector or std_logic_vector
-- Verilog register
-- Verilog net array

A subrange or index may be specified in either VHDL or Verilog syntax.
Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4), mysignal [4]

34 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Expression Syntax

Signal attributes

<name>’'event
<name>’'rising
<name>’'falling
<name>'delayed ()
<name>'hasX

The’ delayed attribute lets you assign adelay to aVHDL signal. To assign adelay toasignal in
Verilog, use “#’ notation in a sub-expression (e.g., #-10 /top/signal A).

The hasX attribute lets you search for signals, nets, or registers that contains an X (unknown)

value.

See Examples of Expression Syntax below for further details on’delayed and ’ hasX.

Operators
Table 1-14. Operators Supported for GUI Expressions

Operator Description Kind
+ arithmetic add arithmetic
/ arithmetic divide arithmetic
mod/MQOD arithmetic modulus arithmetic
* arithmetic multiply arithmetic
rem/REM arithmetic remainder arithmetic
- arithmetic subtract arithmetic
& concat arithmetic
<name>'del ayed(<time>) delayed signal (<time>) attributes
<name>'faling Falling edge attributes
<name>'rising Rising edge attributes
<name>'event Vaue change attributes
<name>'hasX Value hasan X attributes
and, AND bitwise and bitwise logical
nand, NAND bitwise nand bitwise logical
nor, NOR bitwise nor bitwise logical
or, OR bitwise or bitwise logical
xnor, XNOR bitwise xnor bitwise logical

ModelSim® Command Reference Manual, v10.5¢

35

Syntax and Conventions
Expression Syntax

Table 1-14. Operators Supported for GUI Expressions (cont.)

Operator Description Kind

xor, XOR bitwise xor bitwise logical
rol, ROL rotate | eft bitwise logical
ror, ROR rotate right bitwise logical
da SLA shift left arithmetic bitwise logical
dl, SLL shift left logical bitwise logical
sra, SRA shift right arithmetic bitwise logical
srl, SRL shift right logical bitwise logical
not, NOT, ~ unary bitwiseinversion bitwise logical
&& boolean and boolean

! boolean not boolean

| boolean or boolean

== equal boolean

=== exact equal boolean

I== exact not equal boolean

> greater than boolean

>= greater than or equal boolean

< less than boolean

<= less than or equal boolean

I= /= not equal boolean

& <vector_expr> AND reduction reduction
|<vector_expr> OR reduction reduction
A<vector_expr> XOR reduction reduction

1. This operator is allowed to be compatible with other simulators.

Table 1-15. Precedence of GUI Expression Operators

Operator Kind
delayed(), 'falling, 'rising, ‘event, 'hasX attributes
&, » unary

I, not, NOT, ~ boolean

36 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions

Expression Syntax

Table 1-15. Precedence of GUI Expression Operators (cont.)

Operator Kind

/, mod, MOD, *, rem, REM arithmetic
nand, NAND, nor, NOR bitwise logical
and, AND bitwise logical
xor, XOR, xnor, XNOR bitwise logical
or, OR bitwise logical
+, - arithmetic

& concat

rol, ROL, ror, ROR, sla, SLA, dll, SLL, sra, SRA, srl, SRL bitwise logical
> >= < <= boolean

==, ===, ==, 1= /= boolean

&& boolean

| boolean

Note

D Arithmetic operators use the std_logic_arith package.

Casting

Table 1-16. Casting Conversions Supported for GUI Expressions

Casting Description

(bool) convert to boolean
(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer
(std_logic) convert to 9-state signal value
(signed) convert to signed vector
(unsigned) convert to unsigned vector
(std_logic_vector) convert to unsigned vector

ModelSim® Command Reference Manual, v10.5¢

37

Syntax and Conventions
Expression Syntax

Examples of Expression Syntax

/top/bus & $bit mask
This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16'hffae)
This expression evaluates to a boolean true when signal clk changes and signal /top/xyzis equal
to hex ffag; otherwiseisfalse.

clk’rising && (mystate == reading) && (/top/u3/addr == 32'habcdl234)
Evaluates to a boolean true when signal clk just changed from low to high and signal mystateis

the enumeration reading and signal /top/u3/addr is equal to the specified 32-bit hex constant;
otherwiseisfase.

(/top/u3/addr and 32'hff000000) == 32’'hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/addr equals hex ac.

/top/signalA'delayed (10ns)

This expression returns /top/signal A delayed by 10 ns.

/top/signalA'delayed (10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signal A with /top/signal B.

virtual function { (#-10 /top/signaldA) && /top/signalB}
mySignalB AND DelayedSignalA

This evaluates /top/signal A at 10 simulation time steps before the current time, and takes the
logical AND of the result with the current value of /top/signal B. The '# notation uses positive
numbers for looking into the future, and negative numbers for delay. This notation does not
support the use of time units.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk just
changed from low to high, and signal mode is enumeration writing.

38 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Signal and Subelement Naming Conventions

searchlog -expr {dbus'hasX} {0 ns} dbus

Searchesfor an’ X’ indbus. Thisis equivalent to the expression: {dbus(0) == 'X' || dbus(1) ==
"X} Thismakesit possible to search for X values without having to write a type specific
literal.

Signal and Subelement Naming Conventions

Model Sim supports naming conventionsfor VHDL and Verilog signal pathnames, VHDL array
indexing, Verilog bit selection, VHDL subrange specification, and Verilog part selection.

Examplesin Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig (5 downto 2)

Grouping and Precedence

Operator precedence generally follows that of the C language, but liberal use of parenthesesis
recommended.

Concatenation of Signals or Subelements

Elements in the concatenation that are arrays are expanded so that each element in the array
becomes atop-level element of the concatenation. But for elementsin the concatenation that are
records, the entire record becomes one top-level element in the result.

To specify that the records be broken down so that their subel ements become top-level elements
in the concatenation, use the concat_flatten directive. Currently, leaving full arrays as elements
in the result is not supported. (Please contact Mentor Graphics if you need that option.)

If the elements being concatenated are of incompatible base types, aVHDL-style record will be
created. The record object can be expanded in the Objects and Wave windows just like an array
of compatible type elements.

Concatenation Syntax for VHDL

<signalOrSliceNamels> & <signalOrSliceName2> & ...

Concatenation Syntax for Verilog

&{<signalOrSliceNamel>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceNamel>}, <signalOrSliceName2>, ... }

ModelSim® Command Reference Manual, v10.5¢ 39

Syntax and Conventions
Concatenation of Signals or Subelements

Note that the concatenation syntax beginswith "&{" rather than just "{". Repetition multipliers
are supported, asillustrated in the second line. The repetition element itself may be an arbitrary
concatenation subexpression.

Concatenation Directives
A concatenation directive (asillustrated below) can be used to constrain the resulting array
range of a concatenation or influence how compound objects are treated. By default, ModelSim
will create the concatenation with a descending index range from (n-1) down to O, where nisthe
number of elementsin the array.

(concat _range 31:0)<concatenationExpr> # Verilog syntax
(concat range (31:0))<concatenationExpr> # Also Verilog syntax
(concat _range (31 downto 0))<concatenationExpr> # VHDL syntax

The concat_range directive completely specifies the index range.

(concat_ascending) <concatenationExprs>

The concat_ascending directive specifies that the index start at zero and increment upwards.

(concat flatten) <concatenationExpr>

The concat_flatten directive flattens the signal structure hierarchy.

(concat _noflatten) <concatenationExprs>
The concat_noflatten directive groups signal s together without merging them into one big array.
The signals become elements of arecord and retain their origina names. When expanded, the

new signal looks just like a group of signals. The directive can be used hierarchically with no
limits on depth.

(concat_sort wild ascending) <concatenationExprs>

The concat_sort_wild_ascending directive gathers signals by name in ascending order (the
default is descending).

(concat reverse) <concatenationExpr>

The concat_rever se directive reverses the bits of the concatenated signals.

Examples of Concatenation
&{ "mybusbasename*" }

40 ModelSim® Command Reference Manual, v10.5¢

Syntax and Conventions
Record Field Members

Gathers al signals in the current context whose names begin with "mybusbasename”, sorts
those names in descending order, and creates a bus with index range (n-1) downto O, whereniis
the number of matching signals found. (Note that it currently does not derive the index name
from the tail of the one-bit signal name.)

(concat range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in descending
order.

(concat_ascending) &{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in descending order.

(concat ascending) ((concat sort wild ascending) &{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending order.

(concat_reverse) (busl & bus2)

Specifies that the bits of busl and bus2 be reversed in the output virtual signal.

Record Field Members

Arbitrarily-nested arrays and records are supported, but operators will only operate on onefield
at atime. That is, the expression {a == b} where a and b are records with multiple fields, is not
supported.

Thiswould have to be expressed as:

{(a.f1 == b.f1l) && (a.f2 == b.f2) ...}

Examples:

vhdlsig.fieldl
vhdlsig.fieldl.subfieldl
vhdlsig. (5) .field3
vhdlsig.field4 (3 downto 0)

Searching for Binary Signal Values in the GUI

When you use the GUI to search for signal values displayed in 4-state binary radix, you should
be aware of how Model Sim maps between binary radix and std_logic. The issue arises because
thereisno “un-initialized” value in binary, while thereisin std_logic. So, ModelSim relies on

ModelSim® Command Reference Manual, v10.5¢ 41

Syntax and Conventions
Searching for Binary Signal Values in the GUI

mapping tables to determine whether a match occurs between the displayed binary signal value
and the underlying std_logic value.

This matching algorithm applies only to searching using the GUI. It does not apply to VHDL or
Verilog test benches.

For comparing VHDL std _logic/std_ulogic objects, Model Sim uses the table shown below. An
entry of “0” in the table is“no match”; an entry of “1” isa“match”; an entry of “2” isamatch
only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that X will match
aU, and - will match anything.

Table 1-17. VHDL Logic Values Used in GUI Search

Search | Matchesasfollows:
Entry X

C
o

U

II_ENl—‘OX

R|lOoO|lo|lOo|O|O|O|kr|F
RINININ NN R R
R O|lrRr|O|lO|O|FR|N|O
Rl Rr|lOo|lO|O|R|O|N|O|R
Rl O|lOo|lO|lrRr|O|O|N|O|IN
RlOolo|lrlOolOo|O|NIO|S
Rl O|lr|O|lO|O|FR|N|O|r
F|lRr|lO|lO|O|rR|O|N|O|T
i s

For comparing Verilog net values, Model Sim uses the table shown below. An entry of “2” isa
match only if you set the Tcl variable*VLOG_X_MatchesAnything” to 1.

Table 1-18. Verilog Logic Values Used in GUI Search

Search | Matchesasfollows:

Entry 0 1 ~ X
0 1 0 0 2
1 0 1 0 2
Z 0 0 1 2
X 2 2 2 1

42 ModelSim® Command Reference Manual, v10.5¢

Chapter 2
Commands

This chapter describes Model Sim commands that you can enter either on the command line of
the Main window or in a DO file. Some commands are automatically entered on the command
line when you use the graphical user interface.

Note that, in addition to the simulation commands listed in this chapter, you can also use the Tcl
commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl > Man Pages).

Table 2-1 provides a brief description of each Model Sim command and whether the command

is supported for use in batch simulation mode (vsim -batch), and/or command-line mode (vsim
-C). Refer to General Modes of Operation for more information about batch and command-line
simulation. For more information on command details, arguments, and examples, click the link
in the Command name column.

Table 2-1. Supported Commands

Command name

Action

-batch

abort

This command halts the execution of aDO file
interrupted by a breakpoint or error.

add dataflow

This command adds the specified process, signal,
net, or register to the Dataflow window. Wildcards
are alowed.

add list

This command adds the following objects and
their valuesto the List window:

add log

also known as the log command; see “log” on
page 199

add memory

This command displays the contents and sets the
address and data radix of the specified memory in
the MDI frame of the Main window.

add message

This command is used within aDO file or script
and specifies a user defined runtime message that
is sent to the transcript and .wliffiles. Messages are
displayed in the Message Viewer window in the
GUI. Refer to “Message Viewer Window for
information.

add watch

This command adds signals and variables to the
Watch window in the Main window.

ModelSim® Command Reference Manual, v10.5¢

43

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

add wave

This command adds the following objects to the
Wave window:

add_cmdhelp

This command adds the specified command name,
description, and command arguments to the
command-line help. Y ou can then access the
information using the help command.

dias

This command displays or creates user-defined
aliases. Any arguments passed on invocation of
the alias will be passed through to the specified
commands.

archive load

The archive load command allows you to load an
archived debug database (.dbar) file that was
previously created with the archive write
command. The archived file may include a
number of WLF files, design source files, and a
DBGfile.

archive write

The archive write command allows you to create a
debug archive file, with the file extension .dbar,
that contains one or more WLF files, debug
information captured from the design library, an
optional connectivity debug database file, and
optional HDL sourcefiles. With thisarchived file,
you can perform post-simulation debugging in
different location from that which the original
simulation was run.

batch_mode

Thiscommand returns“1” if QuestaSIM is
operating in batch mode, otherwise it returns “0.”
Itistypically used asaconditionin an if
statement.

bd

This command del etes a breakpoint. Y ou can
delete multiple breakpoints by specifying separate
information groupings on the same command line.

bookmark add wave

This command creates a named referenceto a
specific zoom range and scroll position in the
specified Wave window. Bookmarks are saved in
the wave format file and are restored when the
format fileisread.

bookmark delete wave

This command del etes bookmarks from the
specified Wave window.

44

ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

bookmark goto wave

This command zooms and scrolls a Wave window
using the specified bookmark.

bookmark list wave

This command displays alist of available
bookmarks in the Transcript window.

bp

This command sets either afile-line breakpoint or
returnsalist of currently set breakpoints. It allows
enum names, aswell asliteral values, to beusedin
condition expressions.

cal

This command calls the following types of
functions/tasks.

change

This command modifies the value of a2 VHDL
constant, generic, or variable;Verilog register or
variable; or C variableif running C Debug.

classinfo ancestry

This command returns class inheritance hierarchy
for anamed class type.

classinfo descriptive

This command returns the descriptive class name
for the specified authoritative class name.

classinfo find

This command reports on the current state of a
specified class instance, whether it exists, has not
yet been created, or has been destroyed.

classinfo implements

This command displays alist of which classes
implement SystemV erilog interface classes. The
type of the class argument affect the contents of
thislist.

classinfo instances

This command reports the list of existing class
instances of a specific classtype. You can use this
to determine what class instances to log or
examine. It can also help in debugging problems
where class instances are not being cleaned up as
they should be resulting in excessive memory

usage.

classinfo interfaces

This command lists the interface class types that
match or do not match a specified pattern. Finds
all interface classes that match aregular
expression and determines the full path of
interface class types.

classinfo isa

This command returns to the transcript alist of all
classes extended from the specified class type.

ModelSim® Command Reference Manual, v10.5¢

45

Commands

Table 2-1. Supported Commands (cont.)

Command name Action -batch | -c

classinfo report This command prints detailed reports on class Y Y
instance usage. The command displays columns
for class type names and their current, peak and
total classinstance counts. The columns may be
arranged, sorted, or eliminated using the command
arguments.

classinfo stats This command prints statistics about the total Y Y
number of class types and total, peak, and current
class instance counts during the smulation.

classinfo trace This command displays the active referencesto Y Y
the specified classinstance. Thisisvery useful in
debugging situations where class instances are not
being destroyed as expected because something in
the design is still referencing them. Finding those
references may lead to uncovering bugsin
managing these class references which often lead
to large memory savings.

classinfo types This command lists the class types that match or | Y Y
do not match a specified pattern. Finds all classes
that match aregular expression and determinesthe
full path of class types.

configure The configure command invokesthe List or Wave | N Y
widget configure command for the current default
List or Wave window.

dataset alias This command maps an alternate name (alias)to | N Y
an open dataset. A dataset can have any number of
aliases, but all dataset names and aliases must be
unique even when more than one dataset is open.
Aliases are not saved to the .wif file and must be
remapped if the dataset is closed and then re-
opened.

dataset clear All event datais removed from the current N Y
simulation WLF file, while retaining all currently
logged signals. Subsequent run commands will
continue to accumulate data in the WLF file.

dataset close This command closes an active dataset. Toopena | N Y
dataset, use the dataset open command.
dataset config This command configures WLF parametersfor an | N Y

open dataset and all aliases mapped to that dataset.

46 ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

dataset current

This command activates the specified dataset and
sets the GUI context to the last selected context of
the specified dataset. All context dependent GUI
datais updated and all context dependent CLI
commands start working with respect to the new
context.

dataset info

This command reports a variety of information
about a dataset. Arguments to this command are
order dependent. Please read through the argument
descriptions for more information.

dataset list

This command lists all active datasets.

dataset open

This command opens a WLF file (either the
currently running vsim.wlf or asaved WLF file)
and/or UCDB file (representing coverage data)
and assigns it the logical name that you specify.

dataset rename

This command changes the name of a dataset to
the new name you specify. Argumentsto this
command are order dependent. Follow the order
specified in the Syntax section.

dataset restart

This command unloads the specified dataset or
currently active dataset and rel oads the dataset
using the same dataset name. The contents of
Wave and other coverage windows are restored
for UCDB datasets after areload.

dataset save

This command writes data from the current
simulation to the specified file. Thislets you save
simulation datawhile the ssmulationis still in
progress.

dataset snapshot

This command saves data from the current WLF
file (vam.wif by default) at a specified interval. It
provides you with sequential or cumulative
"snapshots” of your simulation data.

delete

This command removes objects from either the
List or Wave window. Argumentsto this
command are order dependent.

describe

This command displays information about
simulation objects and design regionsin the
Transcript window.

ModelSim® Command Reference Manual, v10.5¢

47

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

disablebp

This command turns off breakpoints and when
commands. To turn on breakpoints or when
commands again, use the enablebp command.

do

This command executes the commands contained
inaDOfile.

drivers

This command displays the names and strength of
all drivers of the specified object.

dumplog64

Thiscommand dumps the contents of the specified
WLFfilein areadable format to stdout. The WLF
file cannot be opened for writing in asimulation
when you use this command. This command
cannot beused ina DO file.

echo

This command displays a specified message in the
Transcript window.

This command invokes the editor specified by the
EDITOR environment variable. By default, the
specified filename will open in the Source
window.

enablebp

This command turns on breakpoints and when
commands that were previoudly disabled.

encoding

This command translates between the 16-bit
Unicode characters used in Tcl stringsand a
named encoding, such as Shift-JIS.

environment

This command has two forms, environment and
env. It allows you to display or change the current
dataset and region/signal environment.

examine

This command has two forms, examine and exa. It
examines one or more objects and displays current
values (or the values at a specified previous time)
in the Transcript window.

exit

This command exits the simulator and the
Model Sim application.

find

This command |ocates objects by type and name.
Arguments to the command are grouped by object

type.

find connections

This command returns the set of nets that are
electrically equivalent to a specified net. It isonly
available during alive simulation.

ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

find infiles

This command searches for astring in the
specified file(s) and prints the results to the
Transcript window. The results are individually
hotlinked and will open the file and display the
location of the string.

find insource

This command searches for a string in the source
filesfor the current design and prints the results to
the Transcript window. The results are hotlinked
individually and will open the file and display the
location of the string. When you execute this
command in command-line mode from outside of
the GUI, the results are sent to stdout with no
hotlinks.

force

This command allows you to apply stimulus
interactively to VHDL signals, Verilog nets and
registers.

formatTime

This command provides global format control for
all time values displayed in the GUI. When
specified without arguments, this command
returns the current state of the three arguments.

gc configure

This command specifies when the System Verilog
garbage collector will run. The garbage collector
may be configured to run after a memory
threshold has been reached, after each simulation
run command completes, and/or after each
simulation step command. The default settings are
optimized to balance performance and memory
usage for either regular simulation or class
debugging (vsim -classdebug). Returns the current
settings when specified without arguments.

gcrun

This command runs the SystemV erilog garbage
collector.

help

This command displaysin the Transcript window
abrief description and syntax for the specified
command.

history

This command lists the commands you have
executed during the current session. History isa
Tcl command. For more information, consult the
Tcl Man Pages (Help > Tcl Man Pages).

ModelSim® Command Reference Manual, v10.5¢

49

Commands

Table 2-1. Supported Commands (cont.)

Command name Action -batch | -c

layout This command alowsyou to perform anumber of | N N
editing operations on custom GUI layouts, such as
loading, saving, maximizing, and deleting.

log This command creates awave log format (WLF) |Y Y
file containing simulation datafor all HDL objects
whose names match the provided specifications.
Objects that are displayed using the add list and
add wave commands are automatically recorded in
the WLF file. By default the file is named
vsim.wlIf and stored in the current working
directory. Y ou can change the default name using
the vsim -wlf option of the vsim command or by
setting the WLFFilename variablein the
modelsim.ini file.

|shift This command takesa Tcl list asan argument and | Y Y
shiftsit in-place, one place to the left, eliminating
the left-most element.

Isublist This command returns a sublist of the specified Y Y
Tcl list that matches the specified Tcl glob
pattern.Arguments to this command are order
dependent. Follow the order specified in the
Syntax section.

mem compare This command compares aselected memory toa | Y Y
reference memory or file. Must have the "diff"
utility installed and visible in your search path in
order to run this command. Arguments to this
command are order dependent. Please read
through the argument descriptions for more
information.

mem display Thiscommand printsto the Transcript window the | Y Y
memory contents of the specified instance. If the
given instance path contains only asingle array
signal or variable, the signal or variable name need
not be specified.

mem list This command displays a flattened list of all Y Y
memory instances in the current or specified
context after a design has been elaborated.

50 ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

mem load

This command updates the simulation memory
contents of a specified instance. Y ou can upload
contents either from amemory datafile, amemory
pattern, or both. If both are specified, the patternis
applied only to memory locations not contained in
thefile.

mem Save

This command saves the contents of a memory
instance to afile in any of the supported formats:
Verilog binary, Verilog hex, and MTI memory
pattern data.

mem search

This command finds and prints to the screen the
first occurring match of a specified memory
pattern in the specified memory instance.
Shorthand instance names are accepted.
Optionally, you can instruct the command to print
all occurrences. The search pattern can be one
word or a sequence of words.

modelsim

The modelsim command startsthe Model Sim GUI
without prompting you to load a design.

noforce

This command removes the effect of any active
force commands on the selected HDL objects. and
also causes the object’ s value to be re-eval uated.

nolog

This command suspends writing of datato the
wave log format (WLF) file for the specified
signals.

notepad

This command opens a simple text editor. It may
be used to view and edit ASCII files or create new
files.

noview

This command closes awindow in the ModelSim
GUI. To open awindow, use the view command.

nowhen

This command deactivates selected when
commands.

onbreak

This command is used within aDO file and
specifies one or more scripts to be executed when
running a script that encounters abreakpoint in the
source code.

ModelSim® Command Reference Manual, v10.5¢

51

Commands

Table 2-1. Supported Commands (cont.)

Command name Action -batch | -c

onElabError This command specifies one or more commands | Y Y
to be executed when an error is encountered
during the elaboration portion of avsim command.
The command is used by placing it withinaDO
file script. Use the onElabError command without
arguments to return to a prompt.

onerror This command is used within a DO file script Y Y
before arun command; it specifies one or more
commands to be executed when a running script
encounters an error.

onfinish This command controls simulator behavior when | Y Y
encountering $finish or sc_stop() in the design
code. When you specify this command without an
argument, it returns the current setting.

pause This command interrupts the execution of amacro | Y Y
and allows you to perform interactive debugging
of amacro file. The command is placed within the
macro to be debugged.

precision This command determines how real numbers Y Y
display in the graphic interface (e.g., Objects,
Wave, Locals, and List windows). It does not
affect the internal representation of areal number
and therefore precision values over 17 are not
allowed. Executing the precision command
without any arguments returns the current
precision setting.

printenv Thiscommand printsto the Transcript window the | Y Y
current names and values of all environment
variables. If variable names are given as
arguments, returns only the names and values of
the specified variables.

process report This command creates a textual report of all Y Y
processes displayed in the Process Window.

project This command is used to perform common N Y
operations on projects.

pwd This Tcl command displays the current directory | Y Y
path in the Transcript window.

quietly This command turns off transcript echoing for the | Y Y
specified command.

quit This command exits the simulator. Y Y

52 ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

radix

This command specifies the default radix to be
used for the current simulation. Specifying the
command with no argument returns the current
radix setting.

radix define

This command is used to create or modify a user-
defined radix. A user definable radix isused to
map bit patterns to a set of enumeration labels or
setup afixed or floating point radix. User-defined
radices are available for use in the most windows
and with the examine command.

radix delete

This command will remove the radix definition
from the named radix.

radix list

This command will return the complete definition
of aradix, if anameisgiven. If no nameisgiven,
it will list all the defined radices.

radix names

This command returns alist of currently defined
radix names.

radix signal

This command sets or inspects radix valuesfor the
specified signal in the Objects, Locals, Schematic,
and Wave windows.When no argument is used,
the radix signal command returns alist of al
signals with aradix.

report

This command displays information relevant to
the current simulation.

restart

This command rel oads the design elements and
resets the ssimulation time to zero. Only design
elements that have changed are reloaded. (Note
that SDF files are aways reread during arestart.)

resume

This command is used to resume execution of a
macro (DO) file after a pause command or a
breakpoint.

run

This command advances the ssimulation by the
specified number of timesteps.

runStatus

This command returns the current state of your
simulation to stdout after issuing arun or step
command.

searchlog

This command searches one or more of the
currently open logfiles for a specified condition.

ModelSim® Command Reference Manual, v10.5¢

53

Commands

Table 2-1. Supported Commands (cont.)

Command name Action -batch | -c

See This command displays the specified number of | Y Y
source file lines around the current execution line
and places amarker to indicate the current
execution line. If specified without arguments,
five lines will be displayed before and four lines
after.

setenv This command changes or reports the current Y Y
value of an environment variable. The setting is
valid only for the current Model Sim session.
Arguments to this command are order dependent.
Please read the argument descriptions for more
information.

shift This command shifts macro parameter valuesleft | Y Y
one place, so that the value of parameter \$2 is
assigned to parameter \$1, the value of parameter
\$3 is assigned to \$2, and so on. The previous
value of \$1 is discarded.

show This command lists HDL objects and subregions | Y Y
visible from the current environment.

simstats This command returns performance-related Y Y
statistics about elaboration and simulation. The
statistics measure the ssmulation kernel process
(vsimk) for asingleinvocation of vsim. If you
invoke vsim a second time, or restart the
simulation, the current statistics are discarded and
new values are collected.

simstatslist This command returns performance-related Y Y
statistics about elaboration and simulation. Use
this command in place of the simstats command to
produce the original statistics output format as a
list instead of on separate lines.

stack down This command moves down the call stack. Y Y

stack frame This command selects the specified call frame. Y Y

stack level This command reports the current call frame Y Y
number.

54 ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

stack th

This command displays a stack trace for the
current process in the Transcript window. This
lists the sequence of HDL function calls that have
been entered to arrive at the current state for the
active process. The stack tb command isan alias
for the tb command.

stack up

This command moves up the call stack.

Status

This command lists summary information about
currently interrupted macros.

step

The step command is an diasfor the run
command with the -step switch. Steps the
simulator to the next HDL.

stop

This command is used with the when command to
stop simulation in batch files. The stop command
has the same effect as hitting a breakpoint. The
stop command may be placed anywhere within the
body of the when command.

suppress

This command prevents one or more specified
messages from displaying. Y ou cannot suppress
Fatal or Internal messages. The suppress
command used without arguments returns the
message numbers of all suppressed messages.

tb

This (traceback) command (traceback) displays a

stack trace for the current processin the Transcript
window. Thislists the sequence of HDL function

callsthat have been entered to arrive at the current
state for the active process.

Time

These commands allow you to perform
comparisons between, operations on, and
conversions of, time values.

transcript

This command controls echoing of commands
executed in amacro file. If no option is specified,
the current setting is reported.

transcript file

This command sets or queries the current
PrefMain(file) Tcl preference variable. Y ou can
use this command to clear a transcript in batch
mode or to limit the size of atranscript file. It
offers an aternative to setting the PrefMain(file)
Tcl preference variable through the GUI.

ModelSim® Command Reference Manual, v10.5¢

55

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

transcript path

This command returns the full pathname to the
current transcript file.

transcript sizelimit

This command sets or queries the current
preference value for the transcript fileSizeLimit
value. If the sizelimit isreached, the transcript file
is saved and simulation continues.

tssi2miti

This command is used to convert avector filein
TSSI Format into a sequence of force and run
commands.

unsetenv

This command deletes an environment variable.
The deletion is not permanent —it isvalid only for
the current Model Sim session.

ui_VVMode

This command specifies behavior when
encountering Ul registration calls used by
verification packages, such asAVM or OVM.
Returns the current setting when specifies without
an argument.

ved add

This command adds the specified objectsto a
VCD file.

vcd checkpoint

This command dumps the current values of all
VCD variables to the specified VCD file. While
simulating, only value changes are dumped.
Related Verilog tasks: $dumpall, $fdumpall

vcd comment

This command inserts the specified comment in
the specified VCD file. Argumentsto this
command are order dependent. Please read the
argument descriptions for more information.

vcd dumpports

This command creates a VVCD file that includes
port driver data.

vcd dumpportsall

This command creates a checkpoint in the VCD
file which shows the value of all selected ports at
that time in the simulation, regardless of whether
the port values have changed since the last
timestep. Related Verilog task: $Sdumpportsall

vcd dumpportsflush

This command flushes the contents of the VCD
file buffer to the specified VCD file. Related
Verilog task: $dumpportsflush

ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

ved dumpportslimit

This command specifies the maximum size of the
VCD file (by default, limited to available disk
space). When the size of the file exceeds the limit,
acomment is appended to the fileand VCD
dumping is disabled.

vcd dumpportsoff

This command turns off VCD dumping and
records al dumped port values as x.

vcd dumpportson

This command turns on VCD dumping and
records the current values of all selected ports.
This command is typically used to resume
dumping after invoking vcd dumpportsoff.
Related Verilog task: $dumpportson

ved file

This command specifies the filename and state
mapping for the VCD file created by a ved add
command. The vcd file command is optional. If
used, it must be issued before any ved add
commands.

ved files

This command specifies filenames and state
mapping for VCD files created by the ved add
command. The vcd files command is optional. If
used, it must be issued before any ved add
commands.Related Verilog task: $fdumpfile

vcd flush

This command flushes the contents of the VCD
file buffer to the specified VCD file. This
command is useful if you want to create a
complete VCD file without ending your current
simulation. Related Verilog tasks: $dumpflush,
$fdumpflush

ved limit

This command specifies the maximum size of a
VCD file (by default, limited to available disk

space).

vcd off

This command turns off VCD dumping to the
specified file and records all VCD variable values
as x. Related Verilog tasks: $dumpoff, $fdumpoff

ved on

This command turns on VCD dumping to the
specified file and records the current values of al
VCD variables.

ModelSim® Command Reference Manual, v10.5¢

57

Commands

Table 2-1. Supported Commands (cont.)

Command name Action -batch | -c

ved2wlf This command is a utility that translatesaVCD Y Y
(Vaue Change Dump) file into aWLF file that
you can display in Model Sim using the vsim -view
argument. This command only works on VCD
files containing positive time values.

vcom The vcom command compiles VHDL source code | Y Y
into a specified working library (or to the work
library by default).

vdel This command deletes a design unit from a Y Y

specified library. This command provides
additional information with the -help switch.

vdir This command lists the contents of a design Y Y
library and checks the compatibility of a vendor
library. If vdir cannot read a vendor-supplied
library, the library may not be compatible with
ModelSim.

vencrypt This command encrypts Verilog and Y Y
SystemV erilog code contained within encryption
envelopes. The code is not pre-processed before
encryption, so macros and other “directives are
unchanged. This alows IP vendors to deliver
encrypted IP with undefined macros and
“directives.

verror This command prints a detailed description about | Y Y
amessage number. It may also point to additional
documentation related to the error. This command
provides additional information with the -help or -
h switch.

vgencomp Once aVerilog moduleis compiled into alibrary, | Y Y
you can use this command to write its equivalent
VHDL component declaration to standard outpui.

vhencrypt This command encrypts VHDL code contained Y Y
within encryption envelopes. The codeis not
compiled before encryption, so dependent
packages and design units do not have to exist
before encryption.

view This command opens the specified window. If you | N N
specify thiscommand without argumentsit returns
alist of all open windows in the current layout.

58 ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

virtual count

This command reports the number of currently
defined virtuals that were not read in using a
macro file.

virtual define

This command prints to the transcript the
definition of the virtual signals, functions, or
regionsin the form of acommand that can be used
to re-create the object.

virtual delete

This command removes the matching virtuals.

virtual describe

This command prints to the transcript a complete
description of the data type of one or more virtual
signals. Similar to the existing describe command.

virtual expand

This command prints to the transcript alist of all
the non-virtual objects contained in the specified
virtual signal(s). Y ou can usethisto create alist of
arguments for a command that does not accept or
understand virtual signals.

virtual function

This command creates a new signal, known only
by the GUI (not the kernel), that consists of logical
operations on existing signals and simulation time,
as described in <expressionString>.

virtual hide

This command causes the specified real or virtua
signals to not be displayed in the Objects window.
Thisis used when you want to replace an
expanded bus with a user-defined bus. Y ou make
the signals reappear using the virtual nohide
command.

virtual log

This command causes the simulation-mode
dependent signals of the specified virtual signals
to be logged by the kernel. If wildcard patterns are
used, it will aso log any normal signals found,
unless the -only option is used. Y ou unlog the
signals using the virtual nolog command.

virtual nohide

This command reverses the effect of avirtual hide
command, causing the specified real or virtual
signalsto reappear the Objects window.

ModelSim® Command Reference Manual, v10.5¢

59

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

virtual nolog

This command reverses the effect of avirtual log
command. It causes the simulation-dependent
signals of the specified virtual signalsto be
excluded ("unlogged") by the kernel. If wildcard
patterns are used, it will also unlog any normal
signals found, unless the -only option is used.

virtual region

This command creates a new user-defined design
hierarchy region.

virtual save

This command saves the definitions of virtuals to
afile named virtual.do in the current directory.

virtual show

This command lists the full path names of all
explicitly defined virtuals.

virtual signal

This command creates a new signal, known only
by the GUI (not the kernel), that consists of
concatenations of signals and subelements as
specified in <expressionString>.

virtual type

This command creates a new enumerated type
known only by the GUI, not the kernel. Virtual
types are used to convert signal valuesto character
strings. The command works with signed integer
values up to 64 hits.

vlib

This command creates adesign library. Y ou must
use vlib rather than operating system commandsto
create alibrary directory or index file.

vlog

The viog command compiles Verilog source code
and SystemV erilog extensions into a specified
working library (or to thework library by default).
Compressed SystemVerilog source files (those
compressed with zlib) are accepted.

vmake

The vmake utility allows you to use aMAKE
program to maintain individual libraries. You run
vmake on a compiled design library. This utility
operates on multiple sourcefiles per design unit; it
supports Verilog include files as well as Verilog
and VHDL PSL vunit files.

vmap

The vmap command defines a mapping between a
logical library name and a directory by modifying
the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5¢

Commands

Table 2-1. Supported Commands (cont.)

Command name

Action

-batch

vsim

The vsim command invokes the VSIM simulator,
which you can useto view the results of aprevious
simulation run (when invoked with the -view
switch)

vsim<info>

The vsim<info> commands return information
about the current vsim executable.

vsim_break

Stop (interrupt) the current simulation before it
runs to completion. To stop a simulation and then
resume it, use this command in conjunction with
run -continue.

vsource

This command specifies an aternative file to use
for the current source file. This command is used
when the current source file has been moved. The
alternative source mapping exists for the current
simulation only..

wave

A number of commands are available to
mani pul ate and report on the Wave window.

wave sort

This command sorts signals in the Wave window
by name or full path name.

when

This command instructs Model Sim to perform
actions when the specified conditions are met.

where

This command displays information about the
system environment. It is useful for debugging
problems where Model Sim cannot find the
required libraries or support files.

wlif2log

This command translates aModelSim WLF file
(vsim.wif) to aQuickSim Il logfile. It reads the
vsim.wlf WLF file generated by the add list, add
wave, or log commands in the simulator and
convertsit to the QuickSim Il logfile format.

wif2ved

This command trandates aModelSim WLFfileto
astandard VCD file. Complex data types that are
unsupported in the VCD standard (records,
memories, etc.) are not converted.

wlfman

This command allows you to get information
about and manipulate saved WLF files.

ModelSim® Command Reference Manual, v10.5¢

61

Commands

Table 2-1. Supported Commands (cont.)

Command name Action -batch | -c

wlfrecover This command attemptsto "repair* WLF filesthat | Y Y
are incomplete due to acrash or if the file was
copied prior to completion of the ssimulation. Use
this command if you receive a“bad magic
number” error message when opening aWLFfile.
Y ou can run the command from the VSIM> or
Model Sim> prompt or from a shell.

write format This command records the names and display N Y
options of the HDL objects currently being
displayed inthe Analysis, List, Memory, Message
Viewer, Test Browser, and Wave windows.

writelist This command records the contents of the List N Y
window in alist output file.

write preferences This command saves the current GUI preference | N Y
settingsto a Tcl preference file. Settings saved
include Wave, Objects, and Locals window
column widths; Wave, Objects, and Locals
window value justification; and Wave window
signal name width.

write report This command prints a summary of the design Y Y
being smulated including alist of all design units
(VHDL configurations, entities, and packages, and
Verilog modules) with the names of their source
files. The summary includes alist of all source
files used to compile the given design.

write timing This command displays path delays and timing Y Y
check limits, unadjusted for delay net delays, for
the specified instance.

write transcript This command writes the contents of the N Y
Transcript window to the specified file. The
resulting file can then be modified to replay the
transcribed commands as a DO file (macro).

writetss This command records the contents of the List Y Y
window in a"TSSI format" file.

write wave This command records the contents of the Wave | N N
window in PostScript format. The output file can
then be printed on a PostScript printer.

1. transcript on | off only are supported.

62 ModelSim® Command Reference Manual, v10.5¢

Commands
abort

abort

This command halts the execution of a DO file interrupted by a breakpoint or error.

When DO files are nested, you may choose to abort the last DO file script only, abort a specified
number of nesting levels, or abort all DO files. Y ou can specify this command withinaDO file
to return early.

Syntax

abort [<n> | all]

Arguments
o <N>

(optional) The number of nested DO file script levels to abort. Specified as an integer
greater than O, where the default valueis 1.

o dl
(optional) Instructs the tool to abort all levels of nested DO files.

ModelSim® Command Reference Manual, v10.5¢ 63

Commands
add dataflow

add dataflow

This command adds the specified process, signal, net, or register to the Dataflow window.
Wildcards are allowed.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax

add dataflow <object> ... [-connect <source net> <destination_net>]

{[-in] [-out] [-inout] | [-ports]} [-internal] [-nofilter] [-recursive]

Arguments

<object> ...

(required unless specifying -connect) Specifies a process, signal, net, or register to add to
the Dataflow window. Wildcards are allowed. Multiple objects are specified as a space
separated list, Refer to the section “Wildcard Characters’ on page 21 for wildcard usage as
it pertains to the add commands. Must be specified as the first argument to the add dataflow
command.

-connect <source _net> <destination_net>

(optional) Computes and displays in the Dataflow window all paths between two nets.
<source_net>— The net that originates the path search.
<destination_net> — The net that terminates the path search.

-in

(optional) Specifiesto add ports of mode IN.

-inout

(optional) Specifiesto add ports of mode INOUT.

-out

(optional) Specifiesto add ports of mode OUT.

-ports

(optional) Specifiesto add all ports. This switch has the same effect as specifying -in, -out,
and -inout together.

-internal
(optional) Specifiesto add internal (non-port) objects.
-nofilter

(optional) Specifiesthat the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

64

ModelSim® Command Reference Manual, v10.5¢

Commands
add dataflow

TheWildcardFilter Tcl preference variable identifies typesto ignore when matching objects
with wildcard patterns.

e -recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

Y ou can specify -r as an adias to this switch.
Examples
e Add all objectsin the design to the dataflow window.
add dataflow -r /*
e Add al objectsin the region to the dataflow window.
add dataflow *
Related Topics
Automatically Tracing All Paths Between Two Nets
Dataflow Window

ModelSim® Command Reference Manual, v10.5¢ 65

Commands
add list

add list

This command adds objects and their values to the List window. Arguments to this command
are order-dependent. Please read the argument descriptions for more information.

Syntax

add list {<object> ... | <object name> {sig...}} [-alowconstants] [-depth <level>]
[-filter <f> | -nofilter <f>] {[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>]
[-nodelta] [-<radix_type> | -radix <type>]
[-radixenumnumeric | -radixenumsymbolic] [-recursive] [-trigger | -notrigger]
[-width <integer>]
Description
Use add list to display the following types of objects and their valuesin the List window:

e VHDL signalsand variables
e Verilog nets and registers
e User-defined buses

If you do not specify a port mode, such as -in or -out, this command displays all objectsin the
selected region with names matching the object name specification.

Refer to Wildcard Characters for wildcard usage as it pertains to the add commands.

Arguments
e <oObject> ...

(required when <object_name >{sig ...} isnot specified.) Specifies the name of the object to
belisted. Multiple objects are entered as a space separated list. Wildcards are allowed. Refer
to the section “Wildcard Characters’ for wildcard usage asiit pertains to the add commands.
Must be specified as the first argument to the add list command.

Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching objects with wildcard patterns.

Y ou can add variables as long as they are preceded by the process name. For example:

add list myproc/intl

Y ou must specify the <object> argument as the first argument to the add list command.
e <oObject name>{sig...}

(required when <object> is not specified) Creates a user-defined bus with the specified
object name containing the specified signals (sig) concatenated within the user-defined bus.
Arguments, must be enclosed in braces ({ }). Must be specified as the second argument to
the add list command.

66 ModelSim® Command Reference Manual, v10.5¢

Commands
add list

sig— A space-separated list of signals, enclosed in braces ({}), that are included in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

For example:
add list {mybus {a b v}}

o -alowconstants

(optional) For use with wildcard searches. Specifies that constants matching the wildcard
search should be added to the List window.

This command does not add constants by default because they do not change.
e -depth <level>

(optional) Restricts arecursive search, as specified with -recursive, to a certain level of
hierarchy.

<level> — an integer greater than or equal to zero.
For example, if you specify -depth 1, the command descends only one level in the hierarchy.
o -filter <f> | -nofilter <f>

(optional) Allows a one-time modification of the WildcardFilter in the command
invocation. The add list command can take as many [-filter <f>] and [-nofilter <f>]
arguments as you would like to specify. Valid filters, <f>, are exactly the same set of words
that can be applied to the WildcardFilter. The filter(s) used during a command starts with
the WildcardFilter and then applies the user specified filters, if any. The -filter values are
added to the filter, the -nofilter values are removed from the filter. They are applied in the
order specified so conflicts are resolved with the last specified wins.

e -in
(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode IN if they match the object specification.

e -inout

(optional) For use with wildcard searches. Specifies that the scope of the searchisto
include ports of mode INOUT if they match the object specification.

e -OUt

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode OUT if they match the object specification.

e -ports

(optional) For use with wildcard searches. Specifiesthat the scope of the searchisto include
all ports. This switch has the same effect as specifying -in, -out, and -inout together.

ModelSim® Command Reference Manual, v10.5¢ 67

Commands
add list

-interna

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include internal objects (non-port objects) if they match the object specification. VHDL
variables are not selected.

-label <name>
(optional) Specifies an alternative signal name to be displayed as a column heading in the
listing.
<name> — Specifies the label to be used at the top of the column. Y ou must enclose
<name> in braces ({}) if it includes any spaces.
This aternative nameis not valid in aforce or examine command.
-nodelta

(optional) Specifies that the delta column not be displayed when adding signalsto the List
window. Identical to configure list -delta none.

-<radix_type>

(optional) Specifiesthe radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, sfixed,
symbolic, ufixed, time, and default.

If no radix is specified for an enumerated type, the default radix isused. Y ou can change the
default radix for the current simulation using the radix command. Y ou can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signal valueto 1, 0, Z, or X.

-radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

This option overridesthe global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file) for the current simulation only.

-radixenumnumeric

This option overrides the global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file).

-radixenumsymbolic

(optional) Reverses the action of -radixenumnumeric and sets the global setting of the
default radix (the DefaultRadix variable in the modelsim.ini file) to symbolic.

68

ModelSim® Command Reference Manual, v10.5¢

Commands
add list

e -recursive

(optional) For use with wildcard searches. Specifies that the scope of the search isto
descend recursively into subregions. If omitted, the search is limited to the selected region.
Y ou can use the -depth argument to specify how far down the hierarchy to descend. Y ou can
use"-r" asan aliasto this switch.

e -trigger | -notrigger

(optional) Specifies whether objects should be updated in the List window when the objects
change value.

-trigger — (default) Update objects in the List Window when their values change.
-notrigger — Do not update objects in the List Window when their values change.
e -width <integer>

(optional) Formats the column width. The maximum width, when not specifying this
argument is 30,000 characters, which you can override with this switch.

integer — A positive integer specifying the column width in characters.
Examples

e Listall objectsinthe design.
add list -r /*

e Listall objectsin the region.
add list *

e Listall input portsin the region.
add list -in *

e Digplay aList window containing three columns headed a, sig, and array_sig(9 to 23).
add list a -label sig /top/lower/sig {array_sig(9 to 23)}

o Listclk, a, b, c, and d only when clk changes.
add list clk -notriggerab c d

o Listsclk, a, b, ¢, and d every 100 ns.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk ab c d

e Creates a user-defined bus named "mybus" consisting of three signals; the busis
displayed in hex.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

e Liststhe object vecl using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

add list vecl -hex vec2 -dec vec3 vec4

ModelSim® Command Reference Manual, v10.5¢ 69

Commands
add list

Related Topics

add wave

70 ModelSim® Command Reference Manual, v10.5¢

Commands
add memory

add memory

This command displays the contents and sets the address and data radix of the specified memory
in the MDI frame of the Main window.

Refer to “Wildcard Characters’ for wildcard usage as it pertains to the add commands.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Syntax
add memory [-addressradix {decimal | hex}] [-dataradix <type>]

[-radixenumnumeric | -radixenumsymbolic] [-wordsperline <num>] <object_name> ...

Arguments

-addressradix { decimal | hex}
(optional) Specifiesthe address radix for the memory display.
decimal — (default) Sets the radix to decimal. Y ou can abbreviate this argument to "d".
hex — Sets the radix to hexadecimal. Y ou can abbreviate this argument to "h".
-dataradix <type>

(optional) Specifiesthe dataradix for the memory display. If you do not specify this switch,
the command uses the global default radix.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

If you do not specify aradix for an enumerated type, the command uses the symbolic
representation.

Y ou can change the default radix for the current simulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file. Changing the default radix does not change the radix of the currently
displayed memory. Use the add memory command to re-add the memory with the desired
radix, or change the display radix from the Memory window Properties dialog.

-radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

-radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -radixenumnumeric option.

ModelSim® Command Reference Manual, v10.5¢ 71

Commands
add memory

e -wordsperline <num>

(optional) Specifies how many words are displayed on each line in the memory window. By
default, the information displayed will wrap depending on the width of the window.

num — Any positive integer
e <object_name> ...

(required) Specifiesthe hierarchical path of the memory to be displayed. Multiple memories
are specified as a space separated list. Must be specified as the final argument to the add
memory command.

Wildcard characters are allowed.

Note
TheWildcardFilter Tcl preference variable identifies typesto ignore when matching
objects with wildcard patterns.)

Related Topics
Memory List Window

72 ModelSim® Command Reference Manual, v10.5¢

Commands
add message

add message

This command is used within a DO file or script and specifies a user-defined runtime message

that is sent to the transcript and .wif files. Messages are displayed in the Message Viewer

window in the GUI. Refer to the GUI Reference Manual for more information on this window.
Syntax

add message <message body> [-category <category>] [-efftime <time>] [-file <filename>]
[-id <id_number>] [-inling] [-line <linenumber>] [-noident] [-nolevel] [-objects <list>]
[-region region] [-severity { error | note | warning}]

Arguments
e <message body>
(required) User specified message.
e -category <category>

(optional) Sets the category for the message in the Message Viewer window where the
default is USER. The Message Viewer window Category column recognizes the following

keywords:
Table 2-2. Message Viewer Categories
DISPLAY FLI PA
PLI SDF TCHK
VCD VITAL WLF
MISC USER <user-defined>

e -cfftime <time>

(optional) Specifies the simulation time when the message is saved to the log file. The time
specified islisted in the Message Viewer window Time column when the message is called.
Useful for placing messages at specific times in the ssimulation.

<time> — Specified as an integer or decimal number.
o -file<filename>

(optional) Displays a user specified string in the File Info column of the Message Viewer
window.

e -id <id_number>
(optional) Assigns an identification number to the message.

<id_number>— Any non-negative integer from 0 - 9999 where the default is 0. The
number specified is added to the base identification number of 80000.

ModelSim® Command Reference Manual, v10.5¢ 73

Commands
add message

-inline

(optional) Causes the message to aso be returned to the caller as the return value of the add
message command.

-line <linenumber>

(optional) Displays the user specified number in File Info column of the Message Viewer
window.

-noident

(optional) Prevents return of the ID number of the message.
-nolevel

(optional) Prevents return of the severity level of the message.
-objects <list>

(optional) List of related design items shown in the Objects column of the Message Viewer
window.

<list>— A space separated list enclosed in curly braces ({}) or quotation marks
).

-region region
(optional) Message is displayed in the Region column of the Message Viewer window.
-severity { error | note | warning}
(optional) Sets the message severity level.
error — Model Sim cannot compl ete the operation.
note — (default) The message isinformational.
warning — There may be a problem that will affect the accuracy of the results.

Examples

e Create amessage numbered 80304.

add message -id 304 <message>

Related Topics

displaymsgmode

msgmode

Message Viewer Window

74

ModelSim® Command Reference Manual, v10.5¢

Commands
add watch

add watch

This command adds signals and variables to the Watch window in the Main window.

Refer to “Wildcard Characters’ for wildcard usage as it pertains to the add commands.

Arguments to this command are order-dependent. Please read the argument descriptions for
more information.

Syntax

add watch <object_name> ... [-radix <type>] [-radixenumnumeric | -radixenumsymbolic]

Arguments

<object_name> ...

(required) Specifies the name of the object to be added. Multiple objects are entered as a
space-separated list. Must be specified as the first argument to the add watch command.

Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.) Wildcard
expansion is limited to 150 items. If you exceed this limit, adialog box will ask you to
accept the limit or cancel the operation.

Variables must be preceded by the process name. For example,

add watch myproc/intl

-radix <type>

(optional) Specifies a user-defined radix. If you do not specify this switch, the command
uses the global default radix.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

Y ou can change the default radix for the current simulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

-radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

-radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -radixenumnumeric option.

Related Topics

Watch window

ModelSim® Command Reference Manual, v10.5¢ 75

Commands
add watch

DefaultRadix

76 ModelSim® Command Reference Manual, v10.5¢

Commands
add wave

add wave

This command adds objects to the Wave window. Arguments to this command are order-
dependent. Please read the argument descriptions for more information.
Syntax

add wave [-allowconstants] [-clampanalog {0 | 1}] [-color <standard color_name>]

[-depth <level>] [[-divider [<divider_name> ...] [-expand <signal _name>]
[-filter <f> | -nofilter <f>] [-format <type> | -<format>]
[-group <group_name> [<sig_namel> ...]] [-height <pixels>]
{[-in] [-inout] [-out] | [-ports]} [-internal] [-label <name>][-max <rea _num>]
[-min <real_num>][-noupdate]
[-numdynitem <int>] [-position <location>] [-queueends]
[-<radix_type> | -radix <type>] [-radixenumnumeric | -radixenumsymbolic] [-recursive]
[-startdynitem <int>] [-time] [<object_name> ...]
[{<object name>{sigl sig2 ...}}]

Description

Use add wave to display the following types of objectsin the Wave window:
e VHDL signalsand variables
e Verilog nets and registers
e SystemVerilog class objects
e Dividers and user-defined buses.

If no port mode is specified, this command will display all objectsin the selected region with
names matching the object name specification.

Refer to “Wildcard Characters’ on page 21 for wildcard usage as it pertains to the add
commands.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

o -alowconstants

(optional) For use with wildcard searches. Specifies that constants matching the wildcard
search should be added to the Wave window.

By default, constants are ignored because they do not change.

ModelSim® Command Reference Manual, v10.5¢ 77

Commands
add wave

-clampanalog {0 | 1}

(optional) Clamps the display of an analog waveform to the values specified by -max and
-min. Specifying avalue of 1 prevents the waveform from extending above the value
specified for -max or below the value specified for -min.

0 — not clamped
1 — (default) clamped

-color <standard_color_name>

(optional) Specifiesthe color used to display a waveform.
<standard_color_name> — Y ou can use either of the following:

standard X Window color name — enclose 2-word names in quotes ("), for example:
-color "light blue"

rgb value — for example:
-color #357£77

-depth <level>

(optional) Restricts arecursive search, as specified with -recursive to a specified level of
hierarchy.

<level> — Any integer greater than or equal to zero. For example, if you specify
-depths 1, the command descends only one level in the hierarchy.

-divider [<divider_name> ...]

(optional) Adds a divider to the Wave window. If you do not specify this argument, the
command inserts an unnamed divider.

<divider_name> ... — Specifiesthe name of the divider, which appearsin the pathnames
column. Multiple objects entered as a space separated list.

When you specify more than one <divider_name> the command creates adivider for
each name.

Y ou can begin aname with a space, but you must enclose the name within quotation
marks (") or braces ({ }) You cannot begin a name with a hyphen (-).

-expand <signal_name>
(optional) Instructs the command to expand a compound signal immediately, but only one
level down.

<signal_name> — Specifies the name of the signal. This string can include wildcards.
-filter <f> | -nofilter <f>

(optional) Allows a one-time modification of the WildcardFilter in the command
invocation. The add list command can take as many [-filter <f>] and [-nofilter <f>]
arguments as you would like to specify. Valid filters, <f>, are exactly the same set of words
that can be applied to the WildcardFilter. The filter(s) used during a command starts with

78

ModelSim® Command Reference Manual, v10.5¢

Commands
add wave

the WildcardFilter and then applies the user specified filters, if any. The -filter values are
added to the filter, the -nofilter values are removed from the filter. They are applied in the
order specified so conflicts are resolved with the last specified wins.

e -format <type> | -<format>
(optional) Specifiesthe display format of the objects. Valid entries are:

-format <type> -<format> Display Format

-format literal -literal Literal waveforms are displayed
as abox containing the object
value.

-format logic -logic Logic signalsmay be U, X, 0, 1,
Z,W,L,H,or‘".

-format analog-step -analog-step Analog-step changes to the new

time before plotting the new Y.
-format analog-interpolated -analog-interpolated Analog-interpolated draws a

diagonal line.
-format anal og-backstep -anal og-backstep Analog-backstep plotsthe new Y
before moving to the new time.
-format event -event Displays amark at every
transition.

The Y-axis range of analog signals is bounded by -max and -min switches.
e -group <group_name> [<sig_namel> ...]
(optional) Creates awave group with the specified group_name.

<group_name> — Specifies the name of the group. Y ou must enclose this argument in
quotation marks (") or braces ({ }) if it contains any spaces.

<sig_name> ... — Specifies the signalsto add to the group. Multiple signals are entered
as a space separated list. This command creates an empty group if you do not specify
any signal names.

e -height <pixels>
(optional) Specifiesthe height of the waveform in pixels.
<pixels> — Any positive integer.
e -in
(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode IN if they match the object_name specification.
e -out

(optional) For use with wildcard searches. Specifies that the scope of the searchisto
include ports of mode OUT if they match the object _name specification.

ModelSim® Command Reference Manual, v10.5¢ 79

Commands
add wave

-inout

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include ports of mode INOUT if they match the object_name specification.

-ports

(optional) For use with wildcard searches. Specifies that the scope of thelisting isto
include ports of modes IN, OUT, or INOUT.

-interna

(optional) For use with wildcard searches. Specifies that the scope of the search isto
include internal objects (non-port objects) if they match the object_name specification.

-label <name>
(optional) Specifies an aternative name for the signal being added. For example,

add wave -1label c clock

adds the clock signal, labeled as"c".
This alternative nameis not valid in aforce or examine command.
-max <real_num>

(optional) Specifiesthe maximum Y -axis data value to be displayed for an analog
waveform. Used in conjunction with the -min switch; the value you specify for -max must
be greater than the value you specify for -min.

<real_num>— Any integer that is greater than the value specified for -min.
-min <real_num>

(optional) Specifies the minimum Y -axis data value to be displayed for an analog
waveform. Used in conjunction with the -max switch; the value you specify for -min must
be less than the value you specify for -max.

<rea_num>— Any integer that is less than the value specified for -max.

For example, if you know the Y -axis data for a waveform varies between 0.0 and 5.0, you
could add the waveform with the following command:

add wave -analog -min 0 -max 5 -height 100 my signal

— Note
D Although -offset and -scale are still supported, the -max and -min arguments provide

an easier way to define upper and lower limits of an analog waveform.

-noupdate

(optional) Prevents the Wave window from updating when a series of add wave commands
are executed in series.

80

ModelSim® Command Reference Manual, v10.5¢

Commands
add wave

e -numdynitem <int>

(optional) Specifies the number of child elements of a queue or dynamic array to display in
the Wave window. For example, if the value 3 is specified, then only three elements will be
displayed in the Wave window.

<int>— Any non-negative integer from 0O to the number of elements of the specified
gueue or dynamic array.

e -position <location>
(optional) Specifies where the command adds the signals.
<location> — Can be any of the following:
top — Adds the signals to the beginning of thelist of signals.
bottom | end — Adds the signals to the end of thelist of signals.

before | above — Addsthe signalsto the location before the first selected signal in the
wave window.

after | below — Adds the signals to the location after the first selected signal in the
wave window.

<integer> — Adds the signals beginning at the specified point in the list of signals.
e -queueends

(optional) Adds a SystemV erilog queue to the Wave window and displays the first and last
elements of the queue.

<gueue> — The relative or full path to a queue.
o -<radix_type>

(optional) Specifiesthe radix type for the objects that follow in the command. Valid entries
(or any unique abbreviations) are: binary, ascii, unsigned, decimal, octal, hex, sfixed,
symbolic, time, ufixed, and default.

If no radix is specified for an enumerated type, the default radix isused. Y ou can change the
default radix for the current simulation using the radix command. Y ou can change the
default radix permanently by editing the DefaultRadix variable in the modelsim.ini file.

If you specify aradix for an array of aVHDL enumerated type, Model Sim converts each
signal valueto 1, 0, Z, or X.

o -radix <type>

(optional) Specifies a user-defined radix. The -radix <type> switch can be used in place of
the -<radix_type> switch. For example, -radix hexadecimal is the same as -hex.

<type> — binary, ascii, unsigned, decimal, octal, hex, sfixed, symbolic, time, ufixed,
and default.

Refer to the radix command for information about sfixed and ufixed radix types.

This option overridesthe global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file) for the current simulation only.

ModelSim® Command Reference Manual, v10.5¢ 81

Commands
add wave

e -radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

e -radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -radixenumnumeric option.

e -recursive

(optional) For use with wildcard searches. Specifies that the scope of the searchisto
descend recursively into subregions.

If you do not specify this switch, the search islimited to the selected region. Y ou can use the
-depth argument to specify how far down the hierarchy to descend.
e -startdynitem <int>

(optional) Specifiesthe index of a queue or dynamic array from where the Wave window
starts displaying the data. For example, if a queue has 10 elements and -startdynitem 3 is
specified, the display starts from q[3].

<int>— Any non-negative integer where 0 is the default.
o -time

(optional) Use time as the radix for Verilog objects that are register-based types (register
vectors, time, int, and integer types).

e <oObject name> ...

(required unless specifying { <object_name> {sigl sig2 ...}) Specifies the names of objects
to beincluded in the Wave window. Must be specified as the final argument to the add wave
command. Wildcard characters are allowed. Multiple objects are entered as a space
separated list. Note that the WildcardFilter Tcl preference variable identifies typesto ignore
when matching objects with wildcard patterns.

Variables may be added if preceded by the process name. For example,

add wave myproc/intl

e {<object name>{siglsig2...}}

(required unless specifying <object_name>) Creates a user-defined bus with the specified
object name containing the specified signals (sigl and so forth) concatenated within the
user-defined bus. Must be specified as the final argument to the add wave command.

sig— A space-separated list of signals, enclosed in braces ({ }), that areincluded in the
user-defined bus. The signals may be either scalars or various sized arrays as long as
they have the same element enumeration type.

—Note
D Y ou can also select Wave > Combine Signals (when the Wave window is selected)

to create a user-defined bus.

82 ModelSim® Command Reference Manual, v10.5¢

Commands

add wave
Examples
e Display an object named out2. The object is specified as being alogic object presented
in gold.

add wave -logic -color gold out2
e Display auser-defined, hex formatted bus named address.

add wave -hex {address {a_7a 6a 5a 4a 3a 2a_1la 0}}
e Add al wave objectsin the region.

add wave *
e Add al wave input portsin the region.

add wave -in *

e Create a user-defined bus named "mybus' consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vectorl is of type std_logic_vector (7 downto 1). The
busisdisplayed in hex.

add wave -hex {mybus {scalarl vectorl scalar2}}

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}
add wave {vector3[4:0]}

e Add the object vecl to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

add wave vecl -hex vec2 -dec vec3 vec4d

e Add adivider with the name "-Example-". Note that for thisto work, the first hyphen of
the name must be preceded by a space.

add wave -divider " -Example-"
e Add an unnamed divider.

add wave -divider
add wave -divider ""
add wave -divider {}

Related Topics

add list
Wave Window

ModelSim® Command Reference Manual, v10.5¢ 83

Commands
add_cmdhelp

add_cmdhelp
This command adds the specified command name, description, and command arguments to the
command-line help. Y ou can then access the information using the help command.

To delete an entry, invoke the command with an empty command description and arguments.
See examples.

The arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
add_cmdhelp { <command_name>} { <command_description>} {<command_arguments>}

Arguments
e {<command_name>}

(required) Specifies the command name that will be entered as an argument to the help
command. Must be enclosed in braces ({ }). The command_name must not interfere with an
already existing command_name. Must be specified as the first argument to the
add_cmdhelp command.

e {<command_description>}

(required) Specifies a description of the command. Must be enclosed in braces ({ }). Must
be specified as the second argument to the add_cmdhelp command.

e {<command_arguments>}

(required) A space-separated list of argumentsfor the command. Must be enclosed in braces
({ 1. If the command doesn’t have any arguments, enter {} . Must be specified as the third
argument to the add_cmdhelp command.

Examples
e Add acommand named "date" with no arguments.
add_cmdhelp date {Displays date and time.} {}
Entering:
VSIM> help date
Returns:

Displays date and time.
Usage: date

¢ Add the change date command.

add_cmdhelp {change date} {Modify date or time.} {-time|-date <arg>}

84 ModelSim® Command Reference Manual, v10.5¢

Commands
add_cmdhelp

Entering:

VSIM> help change date
Returns:

Modify data or time
Usage: change date -time|-date <args>

e Deletes the change date command from the command-line help.

add_cmdhelp {change date} {} {}

ModelSim® Command Reference Manual, v10.5¢ 85

Commands
alias

alias

This command displays or creates user-defined aliases. Any arguments passed on invocation of
the alias will be passed through to the specified commands.

Returns nothing. Existing commands (for example, run, env, and so forth) cannot be aliased.

Syntax
alias [<name> ["<cmds>"]]

Arguments
e <name>
(optional) Specifies the new procedure name to be used when invoking the commands.
e "<cmds>"
(optional) Specifiesthe command or commands to be evaluated when the alias isinvoked.
Multiple commands are specified as a semicolon (;) separated list. Y ou must enclose the
string in quotes (“*).
Examples
e Listall aliases currently defined.
alias
e Listthealias definition for the specified name if one exists.

alias <name>

e CreateaTcl procedure, "myquit”, that when executed, writes the contents of the List
window to the file mylist.save by invoking write list, and quits Model Sim by invoking
quit.

alias myquit "write list ./mylist.save; quit -f"

86 ModelSim® Command Reference Manual, v10.5¢

Commands
archive load

archive load

The archive load command allows you to load an archived debug database (.dbar) file that was
previously created with the archive write command. The archived file may include a number of
WLF files, design sourcefiles, and a DBG file.

Syntax
archive load <archive_name> [-dbgDir <directory_name>] -wlIf <wlf_file_name>

Arguments
e <archive _name>

(required) Specifies the name of the archived file to be opened for reading. A suggested
suffix is .dbar.

e -dbgDir <directory _name>

(optional) Specifies alocation to extract filesinto. Files are extracted on-demand when
Model Sim needs them. If you do not specify this switch, the command extracts to the
current working directory.

o -wif <wlf file_ name>
(required) Specifiesthe WLF filesto open for analysis.

<wlf_file_name>— can beasinglefileor alist of files. A list of file names must be
enclosed in curly braces{}. The name of the wif file must be exactly the same as that
specified in the archive write command, including the pathname, if provided.

Related Topics

archive write

ModelSim® Command Reference Manual, v10.5¢ 87

Commands
archive write

archive write

The archive write command allows you to create a debug archive file, with the file extension
.dbar, that contains one or more WLF files, debug information captured from the design library,
an optional connectivity debug database file, and optional HDL source files. With this archived
file, you can perform post-simulation debugging in different location from that which the
original simulation was run.

Syntax

archive write <archive_name> -wlf <wlf_file_name> [-include_src] [-dbg <dbg_file name>]

Arguments
e <archive_name>
(required) Specifies the name of the archivefile to be created. A suggested suffix is .dbar.
o -wif <wlf file name>
(required) Specifies the name of the WLF file to use for post-simulation analysis.

<wlf_file_name>— can beasinglefile or alist of files enclosed in curly braces{} if
you want to capture more than one WLF filein the archive.

e -include src

(optional) Indicate if source files should be captured in the archive. Thisis off by default,
which means no source will be in the archive.

e -dbg <dbg_file_ name>

(optional) Specifies the name of an existing debug database (.dbg) file to be included in the
archive.

88 ModelSim® Command Reference Manual, v10.5¢

Commands
batch_mode

batch _mode

This command returns“1” if Model Sim is operating in batch mode, otherwise it returns“0.” It
istypically used as a condition in an if statement.

Syntax
batch_mode

Arguments
None

Examples

Some GUI commands do not exist in batch mode. If you want to write ascript that will work in
or out of batch mode, you can use the batch_mode command to determine which command to

use. For example:

if [batch mode] {
log /*

} else {
add wave /*

}

Related Topics
General Modes of Operation

ModelSim® Command Reference Manual, v10.5¢ 89

Commands
bd

bd

This command deletes a breakpoint. Y ou can del ete multiple breakpoints by specifying separate
information groupings on the same command line.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.
Syntax
bd { <filename> <line_number>}
bd { <id_number> | <label>} ...

Arguments
o <filename>

(required when not specifying <id_number> or <label>.) A string that specifies the name of
the source file in which the breakpoint isto be deleted. The filename must match the one
used previoudly to set the breakpoint, including whether you used afull pathname or a
relative name. Must be specified as the first argument to the bd command.

e <line_number>
(required) A string that specifies the line number of the breakpoint to be del eted.
e <id_number> | <label>

(required when not specifying <filename>.) Specifiesthe identification of breakpoints using
markers assigned by the bp command. Must be specified as the first argument to the bd
command.

<id_number — A string that specifies the identification number of the breakpoint to be
deleted. The identification number is set with the -id argument to the bp command.

<label> — A string that specifiesthe label of the breakpoint to be deleted. The label is
set with the -label switch to the bp command.

Examples
Delete the breakpoint at line 127 in the source file named alu.vhd.
bd alu.vhd 127
e Delete the breakpoint with id# 5.
bd 5
o Delete the breakpoint with the label top_bp
bd top_bp

e Delete the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

bd 6 alu.vhd 234

90 ModelSim® Command Reference Manual, v10.5¢

Commands
bd

Related Topics
bp

ModelSim® Command Reference Manual, v10.5¢ 91

Commands
bookmark add wave

bookmark add wave

This command creates a named reference to a specific zoom range and scroll position in the
specified Wave window. Bookmarks are saved in the wave format file and are restored when
the format fileis read.

Y ou can aso interactively add a bookmark through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
bookmark add wave <label> [[<range_start> [<unit>]] [<range_end> [<unit>]] [<topindex>]]

Arguments

<|label>

(required) A string that specifies the name for the bookmark. Must be specified as the first
argument to the bookmark add wave command.

<range_start> [<unit>]

(optional) Specifiesthe beginning point of the zoom range where the default starting point is
zero (0).

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

The complete grouping of <range_start> and <range_end> must also be enclosed in braces
({ }) or quotes (" "), for example:

{{100 ns} {10000 ns}}
{10000}

<range_end> [<unit>]
(optional) Specifies the end point of the zoom range.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within curly braces ({}).

<topindex>

(optional) Aninteger that specifies the vertical scroll position of the window. Y ou must
specify azoom range to specify topindex. The number identifies which object the window
should be scrolled to. For example, specifying 20 means the Wave window will be scrolled
down to show the 20th object.

92

ModelSim® Command Reference Manual, v10.5¢

Commands
bookmark add wave

Examples

e Add abookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th object in the
window.

bookmark add wave foo {{10 ns} {1000 ns}} 20
Related Topics
bookmark delete wave
bookmark goto wave
bookmark list wave

ModelSim® Command Reference Manual, v10.5¢ 93

Commands
bookmark delete wave

bookmark delete wave

This command del etes bookmarks from the specified Wave window.

Y ou can aso interactively delete a bookmark through the GUI by selecting the
Wave > Bookmar ks > Bookmar ks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
bookmark delete wave { <label> | -all}

Arguments
o <label>|-al

(required) Controls which bookmarks to delete. Must be specified as the first argument to
the bookmark delete wave command.

<label> — Specifies the name of the bookmark to delete.
-all — Specifiesthat al bookmarksin the window be deleted.
Examples
e Delete the bookmark named "foo" from the current default Wave window.

bookmark delete wave foo

Related Topics
bookmark add wave
bookmark goto wave
bookmark list wave

94 ModelSim® Command Reference Manual, v10.5¢

Commands
bookmark goto wave

bookmark goto wave

This command zooms and scrolls a Wave window using the specified bookmark.

Y ou can also interactively navigate between bookmarks through the GUI by selecting the
Wave > Bookmarks > Bookmar ks menu item.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
bookmark goto wave <label>

Arguments
o <label>

(required) Specifies the bookmark to go to. Must be specified as the first argument to the
bookmark goto wave command.

Related Topics
bookmark add wave
bookmark delete wave

bookmark list wave

ModelSim® Command Reference Manual, v10.5¢ 95

Commands
bookmark list wave

bookmark list wave

This command displays alist of available bookmarks in the Transcript window.

Syntax
bookmark list wave

Arguments
none

Related Topics
bookmark add wave
bookmark delete wave

bookmark goto wave

96

ModelSim® Command Reference Manual, v10.5¢

Commands
bp

bp

This command sets either afile-line breakpoint or returns alist of currently set breakpoints. It
allows enum names, as well as literal values, to be used in condition expressions.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax

Setting an HDL breakpoint
bp {[<filename>] <line_number> | <filename>:<line_number> | in} [-ancestor] [-appendinst] [-
cond "<condition_expression>"]
[-disable] [-id <id_number> | -label "<label>"] [-inst <region> [-inst <region> ...]] [-uvm]
[<command>...]

Querying a breakpoint
bp [-query <filename> [<line_number>]]

Reporting all breakpoints
Note
If you specify this command with no arguments, it returns alist of al breakpointsin the
design containing information about each breakpoint. For example, the command “bp”
returns

bp top.vhd 70;# 2

Arguments
o <filename>

(optional) Specifies the name of the source file in which to set the breakpoint. If you do not
specify afilename, the command will use the source file of the current context.

e <line_number>

(required to set an HDL breakpoint) Specifies the line number where the breakpoint isto be
Set.

e in
(required for task or function breakpoints) Supports the lookup of Verilog and
SystemVerilog task and function names as an alternative to file name and line numbers.

Places a breakpoint on the first executable line of the specified task or function. Does not
work for VHDL or SystemC.

e -ancestor

(optional) Stops the simulation only when any ancestor parent of the process matches the
given process-name.

ModelSim® Command Reference Manual, v10.5¢ 97

Commands

bp

-appendinst

(optional) When specifying multiple breakpoints with -inst, append each instance-path
condition to the earlier condition. This overrides the default behavior, in which each
condition overwrites the previous one.

-disable

(optional) Sets the breakpoint to a disabled state. Y ou can enable the breakpoint later using
the enablebp command. This command enabl es breakpoints by default.

<command>...

(optional, must be specified asthe final argument) Specifies one or more commands that are
to be executed at the breakpoint. Y ou must separate multiple commands with semicolons (;)
or place them on multiple lines. Braces are required only if the string contains spaces.

—Note
Y ou can also specify this command string by choosing Tools > Breakpoints... from

the main menu and using the M odify Breakpoints dialog box.

Any commands that follow arun or step command are ignored. A run or step command
terminates the breakpoint sequence. This rule also appliesif you use a DO file script within
the command string.

If many commands are needed after the breakpoint, you could place them in aDO file script.
-cond "<condition_expression>"
(optional) Specifies one or more conditions that determine whether the breakpoint is hit.

"<condition_expression>" — A conditional expression that resultsin atrue/false value.
Y ou must enclose the condition expression within braces ({}) or quotation marks
(* ") when the expression makes use of spaces. Refer to the note below when setting
breakpoints in the GUI.

If the condition is true, the simulation stops at the breakpoint. If false, the ssimulation
bypasses the breakpoint. A condition cannot refer to aVHDL variable (only asignal).

The -cond switch re-parses expressions each time the breakpoint is hit. This allows
expressions with local references to work. Condition expressions referencing items outside
the context of the breakpoint must use absolute names. Thisis different from the behavior in
previous Model Sim versions where arelative signal name was resolved at the time the bp
command was issued, allowing the breakpoint to work even though the relative signal name
was inappropriate when the breakpoint was hit.

Note
Y ou can a'so specify this expression by choosing Tools > Breakpoints... from the

main menu and entering the expression in the Breakpoint Condition field of the
M odify Breakpoints dialog box. Do not enclose the condition expression in quotation
marks
(“ ") orbraces ({}).

98

ModelSim® Command Reference Manual, v10.5¢

Commands
bp

The condition expression can use the following operators:

Operation Operator Syntax

equals ==, =
not equal I= /=
AND &&, AND
OR I, OR

The operands may be object names, signame’ event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1. The forma BNF syntax for an expressionis:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
| relation

relation ::= Name = Literal

Name /= Literal

Name ' EVENT

(expression)

Literal ::= '<char>' | "<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals (for example, Name = Name is not valid).

Y ou can construct a breakpoint such that the simulation breaks when a SystemV erilog Class
is associated with a specific handle, or address:

bp <filename> <line number> -cond "this==<class_ handle>"
bp <filename> <line number> -cond "this!=<class handle>"

where you can obtain the class handle with the examine -handle command. The string "this’
isaliteral that refersto the specific line_number.

Y ou can construct a breakpoint such that the simulation breaks when a line number is of a
specific class type or extends the specified class type:

bp <filename> <line number> -cond "this ISA <class_type name>"

where class_type nameisthe actual class name, not avariable.
e -id<id number> | -label "<label>"

(optional) Attemptsto assign an id number or label to the breakpoint. The command returns
an error if theid number you specify is aready assigned.

-id <id_number> — Any positive integer that is not already assigned.

-label "<label>" — Associates a name or label with the specified breakpoint. Adds a
level of identification to the breakpoint. The label may contain specia characters.

ModelSim® Command Reference Manual, v10.5¢ 99

Commands

bp

Quotation marks (" ") or braces ({ }) arerequired only if <label> contains spaces or
specia characters.

Note
D Id numbers for breakpoints are assigned from the same pool as those used for the

when command. So even if you have not specified a given id number for a
breakpoint, that number may still be used for awhen command.

-inst <region> [-inst <region> ...]
(optional) Sets an HDL breakpoint so it applies only to the specified instance.

To apply multiple instance-path conditions on a single breakpoint, specify -inst <region>
multiple times. By default, this overrides the previous breakpoint condition (you can use the
-appendinst argument to append conditions instead).

<region>— The full path to the instance specified.

Note
Y ou can a'so specify thisinstance by choosing Tools > Breakpoints... from the

main menu and using the M odify Breakpoints dialog box.

-query <filename> [<line_number>]

(optional) Returns information about the breakpoint(s) set in the specified file. The
information returned varies depending on the condition of the breakpoint(s) in the specified
file. Returns a complete list of all breakpoints and whether they are enabled or not when
specified without <line_number>. Returns nothing if <line_number> is not executable.

<filename> — The name of the file containing the breakpoint.
<line_number> — The line number where a breakpoint has been set.
The output contains six fields of information. For example:

bp -query top.vhd 70

Returns

1 1 top.vhd 70 2 1

o {1]|0} — Indicates whether a breakpoint exists at the location.
0 — Breakpoint does not exit.
1 — Breakpoint exists.

o l1—awaysreportsal.

o <file_name>

o <line_number>

o <id_number>

100

ModelSim® Command Reference Manual, v10.5¢

Commands
bp

o {1]|0} — Indicates whether the breakpoint is enabled.
0 — Breakpoint is not enabled.
1 — Breakpoint is enabled.

e -uvim

Specifies UV M-style instance name(s) for setting source breakpoints on class instancesin
the UVM hierarchy. Must be followed by the -inst <instance_name> option.

Examples

List all existing breakpointsin the design, including the source file names, line numbers,
breakpoint id numbers, labels, and any commands that have been assigned to the
breakpoints.

bp
Set a breakpoint in the source file alu.vhd at line 147.
bp alu.vhd 147
Set a breakpoint at line 153 of the source file of the current context:
bp 153
Execute the macro.do DO file when the breakpoint is hit.
bp alu.vhd 147 {do macro.do}

Set a breakpoint on line 22 of test.vhd. When the breakpoint is hit, the values of
variables var1 and var2 are examined. This breakpoint isinitially disabled; it can be
enabled with the enablebp command.

bp -disable test.vhd 22 {echo [exa varl]; echo [exa var2]}
Set a breakpoint so that the simulation pauses whenever clk=1 and prdy=0:
bp test.vhd 14 -cond {clk=1 AND prdy=0}
Set a breakpoint with the label top_bp
bp top.vhd 14 -label top_bp
Set a breakpoint for line 15 of avhd, but only for the instance a2:
bp a.vhd 15 -inst "/top/a2"

Set multiple breakpoints in the source file test.vhd at line 14. The second instance will
overwrite the conditions of the first.

bp test.vhd 14 -inst /test/instl -inst /test/inst2

Set multiple breakpoints at line 14. The second instance will append its conditions to the
first.

bp test.vhd 14 -inst /test/instl -inst /test/inst2 -appendinst

ModelSim® Command Reference Manual, v10.5¢c 101

Commands
bp

Set a breakpoint for a specific variable of a particular class type:

set x [examine -handle my_class_var]

bp top.sv 15 -cond {this == $x}
e Set abreakpoint on the first executable line of the function /uvm_pkg::set_config_int.
bp in /Juvm_pkg::set_config_int

e List theline number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd
e List details about the breakpoint on line 48.
bp -query testadd.vhd 48
e List all executablelinesin testadd.vhd between lines 2 and 59.
bp -query testadd.vhd 2 59
Related Topics
bd
Editing File-Line Breakpoints

102 ModelSim® Command Reference Manual, v10.5¢

Commands
call

call

This command calls the following types of functions/tasks:
e SystemVerilog static functions and class functions directly from the vsim command line
in live simulation mode. Tasks are not supported.
e PLI and VPI system tasks and system functions.

Function return values are returned to the vsim shell asa Tcl string. If the function returns a
class reference, the classinstance ID is returned.

Syntax

Note
Note the grouping of the following arguments, which indicates slightly different usage
depending on how you want the command to perform a search on a system task or function
name.

e <pathToFunction> <classl nstancePath>
SystemVerilog static functions and class functions

o -usertf -builtin <systfName>
PLI and VPI system tasks and system functions (restricts the search for the task/function
name to either the user-added PLI/VPI routines or to the built-in routines):

cal [-env <hierEnvPath>] [{ <pathToFunction> [<classlnstancePath>]}] [{-usertf | -builtin
<gystfName>}] [<argl> [<arg2>] ...[<argN>]]
Arguments
e -env <hierEnvPath>

(optional) Hierarchical environment path, to be used as the starting scope for the object
name lookups. If present,must appear before actual function name.

e <pathToFunction>

(required when calling a System Verilog static or class function) The name of afunction,
which you can qualify in any of the following ways:

o By specifying the path to the function declaration, through the structural hierarchy,
or declaration hierarchy. Hierarchical paths must be specified asafull pathto a
function or afunction that exists relative to the current context (as shown in the
Structure window, or returned by the environment command).

o By specifying aclass instance hierarchical path.

o By specifying aclassinstance id string.

ModelSim® Command Reference Manual, v10.5¢c 103

Commands

call

<classl nstancePath>

(optional) Must be specified if the function path is a declaration path and the functionisa
non-static class function. Conversely, the class instance path name must not be specified if
the given function path is a class instance variable reference or a class instance name in the
format @<class_type>@nnn. Thisis because the class instance information can be
extracted from the pathname itself.

-builtin

(optional) Search only built-in system functions or task names. (The $ is understood to be a
prefix.)

-usertf

(optional) Search only user-defined system functions or task names. (The $ is understood to
be a prefix.)

<systfName>

(required when calling a system task or function) The system task or function to be
executed. Y ou can specify the sysfName according to the following syntax rules:

o \$<systfName> (for example, \$display or \$mytask)

o With —usertf or —builtin flags (as the case may be).
(for example, —usertf mytask or —builtin display)

o <systfName> (for example, display or mytask) In this case SystemVerilog static
functions and class functions will be searched first and then the PL1/VPI system
tasks/functions, for a match.

<argl> [<arg2>] ...[<argN>]

(optional) All arguments required by the function are specified in a space-separated list in
declaration order. If afunction has default arguments, the arguments may be omitted from
the command line provided that the arguments occur at the end of the declaration list.
Function input arguments can be constant values including integers, enumerated values, and
strings. A string containing spaces or special characters must be enclosed in quotation marks
(" ™) or braces ({ }) or Tcl will try to interpret the string. For example: "my string” or { my
string} . Arguments can al so be design objects. Class references can be arguments, specified
by either their design instance path or classinstance id string. If afunction has type inout,
out, or ref arguments, suitable user design objects must be passed in as arguments. Any
passed in argument will first be tested to determineif it is an appropriate constant value. If it
Is not, then the argument will be tested to determineiif it is a design object. Consequently,
where there is ambiguity between a constant string and the name of a design object, the
constant will be given precedence. If in this case the design object is desired, the full
hierarchical path to the object can be supplied to differentiate it from the constant string.

104

ModelSim® Command Reference Manual, v10.5¢

Commands
call

Examples

Calling a System Verilog Static of Class Function
e Call using a static declaration path, where the function sf_voidstring() is a static class
function that accepts a string:

call sim:/user_pkg::myfcns::sf_voidstring first_string

e Cadll using aclassinstance path to specify the function, where the function f_intint() of
the class type /utop/tmyfcns accepts an integer:

call /Jutop/tmyfcns.f_intint 37

e Cadll using aclass instance path to specify the function, and passin a class instance (/
utop/tmyfcns is a class handle):

call /Jutop/tmyfcns.f_voidclasscolor /utop/tmyfcns

e Cadll using aclassinstance path, and passin aclassinstance as an argument using a class
instance id string

call /utop/tmyfcns.f_voidclasscolor @myType@3
e (Call using aclassinstance id string to specify the function:
call @myType@543.get_full_name

e Cadll using adeclaration path, where the function is non-static so a class instance must
also be supplied. The member function f_voidstring() accepts a string:

call sim:/user_pkg::myfcns::f voidstring /my/class/instance "some string”

e Call using aclassinstanceid string to specify the function where the function returns a
string:

call @uvm_sequencer__3@3.get_full_name
Returns:

test.e2 a.sequencer

e Cadll using arelative class hierarchical name to specify the function where the function
returns a class handle:

call moduleX.who_am i
Returns:

@myClassX@4

Calling a System Task
e Call $display with literal values:

call \$display {"%0s"} {"Hello from TCL!"}

ModelSim® Command Reference Manual, v10.5¢c 105

Commands
call

Returns:
Hello from TCL!
call —builtin display {"%0d"} 'd2999
Returns:
2999
call —usertf display {"%0d"} 'd3999
Returns:

** Error: Expected user-defined system task $display not found in
the context (/top2) .

e Call $display with literal values:
call \$display {"top2.i=%0d top2.r=%0b"} top2/i top2/r
Returns:
top2.i=5 top2.r=110
Calling a System Function
In the following examples $pow is a user defined function that raises the 1% argument to the
power of the 2" (for example, $pow(a, b) => ab)
e Cadll $pow with literal values:
call \$pow 2 1
Returns:
2
call \$pow 3 2
Returns:
9
call \$pow [call \$pow 2 1] [call \$pow 3 2]
Returns:

512

e Call $pow with variable values:

call —env /top/ul display rl1
Returns:
7

106 ModelSim® Command Reference Manual, v10.5¢

Commands
call

call —env /top/u2 display r2
Returns:
2
call pow /top/ul/rl top/u2i/r2
Returns:

49

ModelSim® Command Reference Manual, v10.5¢ 107

Commands
cd

cd

This command changes the Model Sim local directory to the specified directory.

This command cannot be executed while asimulation isin progress. Also, executing acd
command will close the current project.

Syntax
cd [<dir>]
Arguments
o <dir>

(optional) Specifiesafull or relative directory path for Model Sim to use as the local
directory. If you do not specify a directory, the command changes to your home directory.

108 ModelSim® Command Reference Manual, v10.5¢

Commands
change

change

This command modifies the value of a2 VHDL constant, generic, or variable; Verilog register or
variable

Syntax

change <variable> <value>

Description

For VHDL constants, The change command may not affect any and all uses of deferred (or
other) constants. Refer to the following technote for more information:

http://supportnet.mentor.com/portal ?do=reference.technote& id=M G588185

Arguments

<variable>

(required) A string that specifies the name of an object. The name can be afull hierarchical
name or arelative name, where arelative name is relative to the current environment.

Wildcards are not permitted.

The following sections list supported objects:
o VHDL

Scalar variable, constant, or generics of all types except FILE.

Generates a warning when changing a VHDL constant or generic. Y ou can
suppress this warning by setting the TCL variable WarnConstantChange to O or
in the [vsim] section of the modelsim.ini file.

Scalar subelement of composite variable, constant, and generic of all types
except FILE.

One-dimensional array of enumerated character types, including slices.

Accesstype. An access type pointer can be set to "null”; the value that an access
type points to can be changed as specified above.

o Verilog

Parameter.
Register or memory.
Integer, real, realtime, time, and local variablesin tasks and functions.

Subelements of register, integer, real, realtime, and time multi-dimensional
arrays (all dimensions must be specified).

ModelSim® Command Reference Manual, v10.5¢c 109

http://supportnet.mentor.com/portal?do=reference.technote&id=MG588185

Commands
change

e Bit-selects and part-selects of the above except for objects whose basic typeis
real.

The name can be afull hierarchical name or arelative name. A relative nameisrdativeto
the current environment. Wildcards cannot be used.

e <vaue>

(required) Defines avalue for <variable>. The specified value must be appropriate for the
type of the variable. Y ou must place <value> within quotation marks (*”). If the string
contains spaces, the quoted string must be placed inside curly braces ({ }).

Note
Theinitial type of <variable> determines the type of value that it can be given. For

example, if <variable> isinitially equal to 3.14 then only real values can be set onit.
Also note that changing the value of a parameter or generic will not modify any design
elements that depended on the parameter or generic during elaboration (for example,
sizes of arrays).

Examples
e Change the value of the variable count to the hexadecimal value FFFF.
change count 16#FFFF
e Change the value of the element of rega that is specified by the index (for example, 16).
change {rega[16]} O

e Changethe value of the set of elements of foo that is specified by the dlice (for example,
20:22).

change {foo0[20:22]} 011

e Setthe Verilog register file_nameto "test2.txt". Note that the quote marks are escaped
with '\’

change file_name \"test2.txt\"

e Set thetime value of the mytimegeneric variable to 500 ps. The time value is enclosed
by curly braces because of the space between the value and the units.

change mytimegeneric {500 ps”"}

110 ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo ancestry

classinfo ancestry

This command returns class inheritance hierarchy for a named class type.

Syntax

classinfo ancestry [-dataset <name>] [-n] [-0 <outfile>] [-tcl] <class_type>

Arguments

<class type>
(required) Name of the class type or the full path to the class type.
-dataset <name>

(optional) Specifies an open dataset to search for class information. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
-n

(optional) Returns class type names only. Does not include the path unless required to
resolve name ambiguity.

-0 <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.

-tcl

(optional) Returns atcl list instead of formatted output.

Related Topics

ClassDebug
classinfo descriptive

classinfo find

classinfo instances

classinfoisa

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5¢c 111

Commands
classinfo descriptive

classinfo descriptive

This command returns the descriptive class name for the specified authoritative class name.

Syntax

classinfo descriptive [-dataset <name>] [-exact | -glob | -regexp] [-tcl] [-0 <outfile>]

<class type>

Arguments

<class type>

(required) Treats <class_type> as a glob-style expression and returns all matches to the
transcript. Wildcard characters asterisk (*) and question mark (?) are permitted.

-dataset <name>

(optional) Specifies an open dataset to search for classinformation. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
-exact
(optional) Returns results that match <class _type> exactly.
-glob

(optional, default) Treats <class_type> as a glob-style expression. Wildcard characters
asterisk (*) and question mark (?) are permitted.

-0 <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.

-regexp

(optional) Treats <class name> as aregular expression.

-tcl

(optional) Returns atcl list instead of formatted output.

Related Topics

ClassDebug
Logging Class Types and Class Instances

Working with Class Types

Analyzing Class Types

classinfo ancestry

classinfo find

112

ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo descriptive

classinfo instances
classinfoisa
classinfo report
classinfo stats
classinfo trace
classinfo types

ModelSim® Command Reference Manual, v10.5¢ 113

Commands
classinfo find

classinfo find

This command reports on the current state of a specified classinstance, whether it exists, has not
yet been created, or has been destroyed.

Syntax
classinfo find [-dataset <name>] [-tcl] [-0 <outfile>] <class instance identifier>

Arguments
e <class instance_identifier>
(required) Class instance identifier of the specific class instance to find.
e -dataset <name>

(optional) Specifies an open dataset to search for class information. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
e -0 <outfile>
(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.
o -tcl
(optional) Returns atcl list instead of formatted outpui.
Examples
¢ Find the class instance @mem_item@87
VSIM> classinfo find @mem_item @87
Returns:

@mem item@87 has been destroyed

¢ Findthe classinstance @mem_item@200
VSIM> classinfo find @mem_item @200
Returns:

@mem item@200 not yet created

Related Topics
ClassDebug
classinfo ancestry
classinfo descriptive
classinfo instances

114 ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo find

classinfoisa
classinfo report
classinfo stats
classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5¢ 115

Commands
classinfo implements

classinfo implements

This command displays alist of which classes implement SystemV erilog interface classes. The
type of the class argument affects the contents of this list.

Syntax
classinfo implements [-dataset <name>] [-tcl] [-0 <outfile>] <class_type>

Arguments
e <class type>

(required) Name of the SystemVerilog class that you want to use to generate the output
listing. The type of this class determines the type of classes listed, as follows:

o If <class type> isnot an interface class, the output indicates which interface classes
that classimplements.

o If <class type> isan interface class, the output indicates which classes implement
that interface class.

e -dataset <name>

(optional) Specifies an open dataset to search for classinformation. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
e -0 <outfile>
(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.
o -tcl
(optional) Returns atcl list instead of formatted output.

Examples
The following module defines classes labeled A, B, C1, C2, M, N, X, Y:

module testS§;
interface class M; endclass
interface class N; endclass
interface class X extends M, N; endclass
interface class Y extends M; endclass
class A implements M; endclass
class B extends A implements X; endclass
class Cl extends B implements Y; endclass
class C2 extends B; endclass

endmodule

e Useinterface class M as argument:

vsim> classinfo implements M

116 ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo implements

Output list:

/test8/A implements /test8/M
/test8/B implements /test8/M
/test8/Cl implements /test8/M
/test8/C2 implements /test8/M

e UseclassA asargument:
vsim> classinfo implements A
Output list:

/test8/A implements /test8/M

e Useclass B asargument to access extended classes defined in test8:
vsim> classinfo implements B
Output list:

/test8/B implements /test8/M
/test8/B implements /test8/N
/test8/B implements /test8/X

Related Topics
ClassDebug
classinfo descriptive
classinfo find
classinfo instances
classinfo interfaces
classinfoisa
classinfo report
classinfo stats
classinfo trace
classinfo types

ModelSim® Command Reference Manual, v10.5¢c 117

Commands
classinfo instances

classinfo instances

This command reports the list of existing class instances of a specific classtype. You can use
thisto determine what class instancesto log or examine. It can aso help in debugging problems
where class instances are not being cleaned up as they should be, resulting in excessive memory

usage.
Syntax

classinfo instances [-dataset <name>] [-tcl] [-verbose] [-0 <outfile>] <class_type>

Arguments

<class type>

(required) Name of the class type or the full path of the classtype. If thisisan interface
class, the output lists al instances that implement that interface class.

-dataset <name>

(optional) Specifies an open dataset to search for class information. The default isto search
the currently active dataset.

<name> — The name of an open dataset.

-tcl

(optional) Returns atcl list instead of formatted output.

-verbose

(optional) Includes the classname in the output along with the instance name.

-0 <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.

Examples

e List the current instances for the class type mem_item.
vsim> classinfo instances mem_item
Returns:

@mem item@140
@mem_ item@139
@mem_ item@138
@mem_item@80
@mem_item@76
@mem_item@72
@mem_item@68
@mem_ item@64

H HHHHHH

118

ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo instances

e Thefollowing module defines classeslabeled A, B, C1, C2, M, N, X, Y:

module testS§;
interface class M; endclass
interface class N; endclass
interface class X extends M, N; endclass
interface class Y extends M; endclass
class A implements M; endclass
class B extends A implements X; endclass
class Cl extends B implements Y; endclass
class C2 extends B; endclass

endmodule

The following commands show the difference between using and omitting the -verbose
argument.

vsim> classinfo instances -verbose M
Returns:

@A@l /test8/A
@B@l /test8/B

vsim> classinfo instances -verbose A
Returns:

@A@l /test8/A

vsim> classinfo instances M
Returns:

erel
@B@l

vsim> classinfo instances A
Returns:

@A@l

Related Topics
ClassDebug
classinfo ancestry
classinfo descriptive
classinfo find
classinfo implements
classinfo interfaces
classinfoisa

classinfo report

ModelSim® Command Reference Manual, v10.5¢c 119

Commands
classinfo instances

classinfo stats
classinfo trace
classinfo types

120

ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo interfaces

classinfo interfaces

This command lists the interface class types that match or do not match a specified pattern.
Finds all interface classes that match aregular expression and determines the full path of
interface class types.

Syntax

classinfo interfaces [-dataset <name>] [-tcl] [-0 <outfile>] [<class type>]

Arguments
e <class type>

(optional) Name of the interface class type or the full path to the interface classtype. If
omitted, all interface classes are listed.

e -dataset <name>

(optional) Specifies an open dataset to search for interface class information. The default is
to search the currently active dataset.

<name> — The name of an open dataset.
e -0 <outfile>
(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.
o -tcl
(optional) Returns atcl list instead of formatted output.

Examples
The following module defines classes labeled A, B, C1, C2, M, N, X, Y:

module test8§;
interface class M; endclass
interface class N; endclass
interface class X extends M, N; endclass
interface class Y extends M; endclass
class A implements M; endclass
class B extends A implements X; endclass
class Cl extends B implements Y; endclass
class C2 extends B; endclass

endmodule

e Usewith no argument, which will return the names of al interface classes:

vsim> classinfo interfaces

ModelSim® Command Reference Manual, v10.5¢c 121

Commands
classinfo interfaces

Output list:

/test8/M
/test8/N
/test8/X
/test8/Y

Related Topics
ClassDebug
classinfo descriptive
classinfo find
classinfo implements
classinfo instances
classinfoisa
classinfo report
classinfo stats
classinfo trace
classinfo types

122 ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo isa

classinfo isa

This command returns to the transcript alist of al classes extended from the specified class
type.

Syntax

classinfo isa[-dataset <name>] [-n] [-0 <outfile>] [-tcl] <class_type>

Arguments

<class type>
(required) Name of the class type or the full path of the class type.
-dataset <name>

(optional) Specifies an open dataset to search for class information. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
-n

(optional) Returns class names only. Does not include the path unless required to resolve
name ambiguity.

-0 <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.

-tcl

(optional) Returns atcl list instead of formatted output.

Related Topics

ClassDebug
classinfo ancestry

classinfo descriptive

classinfo find

classinfo instances

classinfo report

classinfo stats

classinfo trace

classinfo types

ModelSim® Command Reference Manual, v10.5¢c 123

Commands
classinfo report

classinfo report

This command prints detailed reports on class instance usage. The command displays columns
for classtype names and their current, peak and total classinstance counts. The columns may be
arranged, sorted, or eliminated using the command arguments.

Syntax

classinfo report [-c [fntpc]] [-dataset <name>] [-m <maxout>] [-0 <outfile>]

[-sort[a|d] [f|n]|t|p]c]] [-tc] [-Z]

Arguments

-c [fntpc]

(optional) Display the report columnsin the specified order in areport. The default isto
display all columnsin thefollowing order: Full Path, ClassName, Total, Peak, Current. Y ou
can specify one or more columnsin any order.

f — The Full Path column displays the full relative path name.
n — The Class Name column displays the name of the class instance.
t— The Total column displays the total number of instances of the named class.

p — The Peak column displays the maximum number of instances of the named class
that existed simultaneously at any time in the simulation.

¢ — The Current column displays the current number of instances of the named class.
-dataset <name>

(optional) Specifies an open dataset to search for classinformation. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
-m <maxout>
(optional) Display the specified number of lines of the report.
<maxout>— Any non-negative integer.
-0 <outfile>
(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.
-sort[a|d] [f[n]|t[p]|c]

(optional) Specifies whether the report information is sorted in ascending or descending
order and which column to sort by. Only one column can be specified for sorting.

a— Sort the entries in ascending order.
d — Sort the entries in descending order.
f — Sort by the Full Path column

124

ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo report

n— Sort by the Class Name column
t — Sort by the Total column
p — Sort by the Peak column
¢ — Sort by the Current column
o -tcl

(optional) Returns atcl list instead of formatted output.

s -7

(optional) Remove all items from the report with atotal instance count of zero.

Examples

e Create areport of al classinstances in descending order in the Total column. Print the

Class Names, Total, Peak, and Current columns. List only the first six lines of that

report.

vsim> classinfo report -s dt -c ntpc -m 6

Returns:

Class Name

uvm_pool_ 11

uvm_event

uvm _callback iter 1

uvm_queue 3

uvm_object string pool 1
mem item

Related Topics
ClassDebug
classinfo ancestry
classinfo descriptive
classinfo find
classinfo instances
classinfoisa
classinfo stats
classinfo trace
classinfo types

Total

318
286
273
197
175
140

Peak Current

315
55
3
13
60
25

315
52
2
10
58
23

ModelSim® Command Reference Manual, v10.5¢

125

Commands
classinfo stats

classinfo stats

This command prints statistics about the total number of class types and total, peak, and current

class instance counts during the simulation.

Syntax

classinfo stats [-dataset <name>] [-tcl] [-0 <outfile>]

Arguments
o -dataset <name>

(optional) Specifies an open dataset to search for class information. The default isto search

the currently active dataset.

<name> — The name of an open dataset.

e -0 <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.

e -tcl

(optional) Returns atcl list instead of formatted output.

Examples

e Digplay the current number of class types, the maximum number, peak number and

current number of all class instances.

vsim> classinfo stats

Returns:

class type count

class instance count
class instance count
class instance count

Related Topics
ClassDebug
classinfo ancestry
classinfo descriptive
classinfo find
classinfo instances
classinfoisa
classinfo report
classinfo trace

(current)

451
2070
1075
1058

126

ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo stats

classinfo types

ModelSim® Command Reference Manual, v10.5¢ 127

Commands
classinfo trace

classinfo trace

This command displays the active references to the specified classinstance. Thisis very useful
in debugging situations where class instances are not being destroyed as expected because
something in the design is still referencing them. Finding those references may lead to
uncovering bugs in managing these class references which often lead to large memory savings.

Syntax
classinfo trace [-dataset <name>] [-m <maxout>] [-tcl] [-0 <outfile>] <class instance _name>

Arguments
e <class instance name>
(required) Name of the classitem in the following format @<name>@#.
e -dataset <name>

(optional) Specifies an open dataset to search for class information. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
e -m <maxout>
(optional) Display the specified number of lines of the report.
<maxout> — Any non-negative integer.
e -0 <outfile>
(optional) Sends the results of the command to <outfile> instead of the transcript.

<outfile> — Specifies the name of the file where the output will be written.
o -tcl
(optional) Returns atcl list instead of formatted output.

Examples
¢ Report the active references to @mem_item@200
VSIM> classinfo trace @uvm_resource_ 14@2

Returns:

#{uvm pkg::uvm resources.rtab["mem interface"].queue[15]}
#{uvm pkg::uvm config db::uvm config db 12::m rsc[@uvm root@l] .
pool ["uvm test topmem interface"]}

Related Topics
ClassDebug
classinfo ancestry
classinfo descriptive

128 ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo trace

classinfo find
classinfo instances
classinfoisa
classinfo report
classinfo stats
classinfo types

ModelSim® Command Reference Manual, v10.5¢ 129

Commands
classinfo types

classinfo types

This command lists the class types that match or do not match a specified pattern. Finds all
classes that match aregular expression and determines the full path of class types.

Syntax

classinfo types [-dataset <name>] [-exact | -glob | -regexp] [-n] [-0 <outfile>] [-tcl] [-X]

<pattern>

Arguments

<pattern>
(required) A standard TCL glob expression used as a search string.
-dataset <name>

(optional) Specifies an open dataset to search for classinformation. The default isto search
the currently active dataset.

<name> — The name of an open dataset.
-exact
(optional) Returns results that match <pattern> exactly.
-glob
(optional) Returns glob styles matches for <pattern>.
-n

(optional) Returns class names only. Does not include the path unless required to resolve
name ambiguity.

-0 <outfile>

(optional) Sends the results of the command to <outfile> instead of the transcript.
<outfile> — Specifies the name of the file where the output will be written.

-regexp

(optional) Returns regular expressions that match <pattern>.

-tcl

(optional) Returns atcl list instead of formatted output.

-X

(optional) Display classes that do not match the pattern.

Examples

e List thefull path of the classtypesthat do not match the pattern *uvm®*.

vsim> classinfo types -x *uvm*

130

ModelSim® Command Reference Manual, v10.5¢

Commands
classinfo types

Returns:

/environment pkg::test predictor
/environment pkg::threaded scoreboard
/mem_agent pkg::mem agent

/mem_agent pkg::mem config

/mem_agent pkg::mem driver

H H H HH

Related Topics
ClassDebug
classinfo ancestry
classinfo descriptive
classinfo find
classinfo implements
classinfo instances
classinfo interfaces
classinfoisa
classinfo report
classinfo stats
classinfo trace

ModelSim® Command Reference Manual, v10.5¢c 131

Commands
configure

configure

The configure command invokes the List or Wave widget configure command for the current
default List or Wave window. Some arguments to this command are order-dependent. Please
read through the arguments for further information.

Syntax

Base Command Usage
configure list | wave [<option> <value>]

List Window Arguments
[-delta[all | collapse | events | none]] [-gateduration [<duration_open>]]
[-gateexpr [<expression>]] [-usegating [off | on]] [-strobeperiod [<period>[<unit>]]]
[-strobestart [<start_time>[<unit>]]] [-usesignaltriggers [0 | 1]] [-usestrobe [0 | 1]]

Wave Window Arguments
[-childrowmargin [<pixels>]] [-cursorlockcolor [<color>]] [-gridauto [off | on]]

[-gridcolor [<color>]][-griddelta [<pixels>]] [-gridoffset [<time>[<unit>]]]
[-gridperiod [<time>[<unit>]]] [-namecolwidth [<width>]] [-rowmargin [<pixels>]]
[-signalnamewidth [<value>]] [-timecolor [<color>]] [-timeline [0 | 1]]
[-timelineunits [fs| ps| ns|us| ms|sec | min | hr]] [-valuecolwidth [<width>]]
[-vectorcolor [<color>]] [-waveselectcolor [<color>]] [-waveselectenable [0 | 1]]

Description

The command works in three modes:

e without options or valuesit returns alist of al attributes and their current values

e with just an option argument (without a value) it returns the current value of that
attribute

e with one or more option-value pairsit changes the values of the specified attributes to
the new values

The returned information has five fields for each attribute: the command-line switch, the Tk
widget resource name, the Tk class name, the default value, and the current value.

Arguments

o list|wave

(required) Controls the widget to configure. Must be specified as the first argument to the
configure command.

list — Specifies the List widget.
wave — Specifies the Wave widget.
e <option> <value>
-bg <color> — (optional) Specifies the window background color.

132 ModelSim® Command Reference Manual, v10.5¢

Commands
configure

-fg <color> — (optional) Specifies the window foreground color.

-sel ectbackground <color> — (optional) Specifies the window background color when
selected.

-sel ectforeground <color> — (optional) Specifies the window foreground color when
selected.

-font — (optional) Specifies the font used in the widget.
-height <pixels> — (optional) Specifiesthe height in pixels of each row. .
Arguments, List window only
e -delta[all | collapse | events | noneg]

(optional) Specifies how information is displayed in the delta column. To use -delta,
-usesignaltriggers must be set to 1 (on).

all — Displays anew line for each time step on which objects change.
collapse — Displays the final value for each time step.

events — Displays an "event" column rather than a"delta’ column and sorts List
window data by event.

none — Turns off the display of the delta column.
e -gateduration [<duration_open>]

(optional) Extends gating beyond the back edge (the last list row in which the expression
evaluates to true). The duration for gating to remain open beyond when -gateexpr (below)
becomes fal se, expressed in x number of timescale units. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

<duration_open> — Any non-negative integer where the default is O (values are not
displayed).
e -gateexpr [<expression>]

(optional) Specifiesthe expression for trigger gating. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would normally
have displayed arow of data.

<expression> — An expression.
e -usegating [off | on]

(optional) Enables triggers to be gated on or off by an overriding expression. (Use the
-gatexpr argument to specify the expression.) Refer to “Using Gating Expressions to
Control Triggering” for additional information on using gating with triggers.

off — (default) Triggers are gated off (avalue of 0).
on — Triggers are gated on (avalue of 1).

ModelSim® Command Reference Manual, v10.5¢c 133

Commands
configure

-strobeperiod [<period>[<unit>]]
(optional) Specifiesthe period of thelist strobe.
<period> — Any non-negative integer.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: s, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

-strobestart [<start_time>[<unit>]]
(optional) Specifiesthe start time of the list strobe.
<start_time> — Any non-negative integer.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

-usesignaltriggers [0 | 1]
(optional) Specifies whether or not signals are to be used as triggers.
0 — Signals are not used astriggers
1 — Signals are used astriggers
-usestrobe [0 | 1]
(optional) Specifies whether or not a strobe is used as atrigger.
0 — Strobe is not used to trigger.
1 — Strobeisused to trigger.

Arguments, Wave window only

-childrowmargin [<pixels>]

(optional) Specifies the distance in pixels between child signals. Related Tcl variableis
PrefWave(childRowMargin).

<pixels> — Any non-negative integer where the default is 2.
-cursorlockcolor [<color>]

(optional) Specifiesthe color of alocked cursor. Related Tcl variable is
PrefWave(cursorLockColor).

<color>— Any Tcl color where the default is red.
-gridauto [off | on]
(optional) Controlsthe grid period when in simulation time mode.
off — (default) user-specified grid period is used.
on — grid period is determined by the major tick marksin the time line.

134

ModelSim® Command Reference Manual, v10.5¢

Commands
configure

e -gridcolor [<color>]

(optional) Specifies the background grid color. Related Tcl variableis
PrefWave(gridColor).

<color>— Any color where the default is grey50.
e -griddelta[<pixels>]

(optional) Specifiesthe closest (in pixels) two grid lines can be drawn before intermediate
lineswill be removed. Related Tcl variable is PrefWave(gridDelta).

<pixels> — Any non-negative integer where the default is 40.
e -gridoffset [<time>[<unit>]]

(optional) Specifiesthetime (in user time units) of thefirst grid line. Related Tcl variableis
PrefWave(gridOffset).

<time> — Any non-negative integer where the default is 0.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

e -gridperiod [<time>[<unit>]]

(optional) Specifiesthe time (in user time units) between subsequent grid lines. Related Tcl
variable is PrefWave(gridPeriod).

<time> — Any non-negative integer where the default is 1.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: s, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <delay> and <unit>
within curly braces ({}).

e -namecolwidth [<width>]

(optional) Specifies the width of the name column in pixels. Related Tcl variable is
PrefWave(nameCol Width).

<width> — Any non-negative integer where the default is 150.
e -rowmargin [<pixels>]

(optional) Specifies the distance between top-level signalsin pixels. Related Tcl variableis
PrefWave(rowMargin).

<pixels> — Any non-negative integer where the default is 4.
e -signalnamewidth [<value>]

(optional) Controls the number of hierarchical regions displayed as part of asignal name
shown in the pathname pane. Related Tcl variable is PrefWave(Signal NameWidth). Can
also be set with the WaveSignalNameWidth variable in the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5¢c 135

Commands
configure

<vaue> — Any non-negative integer where the default is O (display the full path. For
example,1 displays only the leaf path element, 2 displays the last two path elements,
and so on.

-timecolor [<color>]

(optional) Specifiesthe time axis color. Related Tcl variable is PrefWave(timeColor).
<color> — Any color where the default is green.

-timeline [0 | 1]

(optional) Specifies whether the horizontal axis displays simulation time or grid period
count. Related Tcl variable is PrefWave(timeline).

0 — (default) Simulation time is displayed.
1 — Grid period count is displayed.
-timelineunits [fs | ps| ns|us| ms|sec| min | hr]

(optional) Specifies units for timeline display. Does not affect the currently-defined
simulation time.

fs— femtosecond (10%°

seconds)
ps — picosecond (1012 seconds)
ns — nanosecond (10°° seconds) (default)
us — microsecond (1076 seconds)
ms— millisecond (10°3 seconds)
sec — second
min — minute (60 seconds)
hr — hour (3600 seconds)
-valuecolwidth [<width>]

(optional) Specifiesthe width of the value column, in pixels. Related Tcl variableis
PrefWave(valueCol Width).

<width> — Any non-negative integer where the default is 100.
-vectorcolor [<color>]

(optional) Specifiesthe vector waveform color. Default is#b3ffb3. Related Tcl variableis
PrefWave(vectorColor).

<color>— Any color where the default is #b3ffb3.
-wavesel ectcolor [<color>]

(optional) Specifies the background highlight color of a selected waveform. Related Tcl
variable is PrefWave(waveSel ectColor).

<color> — Any color where the default is grey30.

136

ModelSim® Command Reference Manual, v10.5¢

Commands
configure

e -waveselectenable [0 | 1]

(optional) Specifies whether the waveform background highlights when an object is
selected. Related Tcl variable is PrefWave(waveSel ectEnabled).

0 — (default) Highlighting is disabled.
1 — Highlighting is enabled.

There are more options than are listed here. See the output of a configure list or configure
wave command for all options.

Examples
e Digplay the current value of the strobeperiod attribute.
config list -strobeperiod
e Set the period of the list strobe and turnsit on.
config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1
e Set the wave vector color to blue.
config wave -vectorcolor blue
e Setthedisplay in the current Wave window to show only the leaf path of each signal.

config wave -signalnamewidth 1
Related Topics
Setting GUI Preferences

ModelSim® Command Reference Manual, v10.5¢c 137

Commands
dataset alias

dataset alias

This command maps an alternate name (alias) to an open dataset. A dataset can have any
number of aliases, but al dataset names and aliases must be unigue even when more than one
dataset is open. Aliases are not saved to the .wif file and must be remapped if the dataset is
closed and then re-opened.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
dataset alias <dataset name> [<alias_name>]

Arguments
e <dataset name>

(required) Specifies a dataset name or currently assigned dataset alias. Must be specified as
the first argument to the dataset alias command. Returns alist of all aliases mapped to the
specified dataset file when specified without <alias_name>.

e <dias name>

(optional) Specifies string to assign to the dataset as an alias. Wildcard characters are
permitted.

Examples
Assign the alias name “bar” to the dataset named “gold.”

dataset alias gold bar
Related Topics
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset open
dataset rename
dataset restart
dataset save
dataset snapshot

138 ModelSim® Command Reference Manual, v10.5¢

Commands
dataset clear

dataset clear

All event datais removed from the current smulation WLF file, while retaining al currently
logged signals. Subsequent run commands will continue to accumulate datain the WLF file.

Note
D Thiscommand applies only to WL F-based simulation datasets.

Syntax
dataset clear

Description

If you run this command when no design is |oaded, then the error: “Dataset not found:sim” is
returned. If you run the command when a design is loaded, then the “sim:” dataset is cleared,
regardless of which dataset is currently set. Clearing the dataset will clear any open Wave
window based on the “sim:” dataset.

Arguments

None

Examples

Clear datain the WLF file from time Ons to 100000ns, then log datainto the WLF file from time
100000ns to 200000ns.

add wave *

run 100000ns
dataset clear
run 100000ns

Related Topics
dataset alias
dataset close
dataset config
dataset info
dataset list
dataset open
dataset rename
dataset restart
dataset save
dataset snapshot

ModelSim® Command Reference Manual, v10.5¢c 139

Commands
dataset clear

log
Recording Simulation Results With Datasets

140 ModelSim® Command Reference Manual, v10.5¢

Commands
dataset close

dataset close
This command closes an active dataset. To open a dataset, use the dataset open command.

Syntax
dataset close { <dataset_name> | -all}

Arguments
e <dataset name> | -all
(required) Closes active dataset(s).
<dataset_name> — Specifies the name of the dataset or aias you wish to close.
-all — Closes al open datasets and the simulation.

Related Topics
dataset alias
dataset clear
dataset config
dataset info
dataset list
dataset open
dataset rename
dataset restart
dataset save
dataset snapshot

ModelSim® Command Reference Manual, v10.5¢c 141

Commands
dataset config

dataset config

This command configures WLF parameters for an open dataset and all aliases mapped to that
dataset. Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
dataset config <dataset_name> [-wlfcachesize [<n>]] [-wlfdeleteonquit [O | 1]] [-wlifopt [O | 1]]

Arguments

<dataset_name>

(required) Specifies a open dataset or dataset alias you wish to configure. Must be specified
asthe first argument to the dataset config command.

-wlfcachesize [<n>]

(optional) Setsthe size, in megabytes, of the WLF reader cache. Does not affect the WLF
write cache.

<n>— Any non-negative integer, in MB where the default is 256.

If you do not specify avalue for <n>, this switch returns the size, in megabytes, of the WLF
reader cache.

-wlfdeleteonquit [0 | 1]

(optional) Deletes the WLF file automatically when the simulation exits. Valid for the
current simulation dataset only.

0 — Disabled (default)
1 — Enabled
If you do not specify an argument, this switch returns the current setting for the switch.
-wlifopt [0 | 1]
(optional) Optimizes the display of waveforms in the Wave window.
0 — Disabled
1 — Enabled (default)
If you do not specify an argument, this switch returns the current setting for the switch.

Examples
Set the size of the WLF reader cache for the dataset “gold” to 512 MB.

dataset config gold -wlfcachesize 512

Related Topics
dataset alias
dataset clear

142

ModelSim® Command Reference Manual, v10.5¢

Commands
dataset config

dataset close

dataset info

dataset list

dataset open

dataset rename

dataset restart

dataset save

dataset snapshot

WLF File Parameter Overview

ModelSim® Command Reference Manual, v10.5¢c 143

Commands
dataset current

dataset current

This command activates the specified dataset and sets the GUI context to the last selected
context of the specified dataset. All context dependent GUI datais updated and all context
dependent CLI commands start working with respect to the new context.

Syntax

dataset current [<dataset_name>|

Arguments
e <dataset name>

(optional) Specifies the dataset name or dataset alias you want to activate. If no dataset
name or aliasis specified, the command returns the name of the currently active dataset.

Related Topics
dataset alias
dataset clear
dataset close
dataset info
dataset list
dataset open
dataset rename
dataset restart
dataset save
dataset snapshot
WLF File Parameter Overview

144

ModelSim® Command Reference Manual, v10.5¢

Commands
dataset info

dataset info

This command reports a variety of information about a dataset. Arguments to this command are
order dependent. Please read through the argument descriptions for more information.

Syntax
dataset info { name | file | exists} <dataset_name>

Arguments
e {name|file|exists}
(required) Identifies what type of information you want reported.
Only one option per command is allowed. The current options include:

name — Returns the name of the dataset. Useful for identifying the real dataset name of
an dias.

file— Returns the name of the file associated with the dataset.
exists— Returns "1" if the dataset is currently open, "0" if it does not.
Must be specified as the first argument to the dataset info command.
e <dataset_name>

(optional) Specifiesthe name of the dataset or alias for which you want information. If you
do not specify a dataset name, Model Sim uses the dataset of the current environment.

Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset list
dataset open
dataset rename
dataset restart
dataset save
dataset snapshot
environment

ModelSim® Command Reference Manual, v10.5¢c 145

Commands
dataset list

dataset list
This command lists al active datasets.

Syntax
dataset list [-long]

Arguments
e -long

(optional) Lists the dataset name followed by the .wif file to which the dataset nameis
mapped.

Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset open
dataset rename
dataset restart
dataset save
dataset snapshot

146 ModelSim® Command Reference Manual, v10.5¢

Commands
dataset open

dataset open

Thiscommand opensaWLF file (either the currently running vsim.wif or asaved WLF file) and
assigns it the logical name that you specify.

Syntax
dataset open <file_name> [<dataset_name>|

Description
The file can be the existing WLF file for a currently running simulation. To close a dataset, use
the dataset close command.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments
o <file_name>

(required) Specifies the file to open as a view-mode dataset. Must be specified as the first
argument to the dataset open command. Specify vsim.wif to open the currently running WLF
file.

e <dataset_ name>

(optional) Specifies aname for the open dataset. Thisis aname that will identify the dataset
in the current session. By default the dataset prefix will be the name of the specified file.

Examples
Open the dataset file last.wif and assign it the name test.

dataset open last.wlf test
Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset rename
dataset restart
dataset save

ModelSim® Command Reference Manual, v10.5¢c 147

Commands
dataset open

dataset snapshot

148 ModelSim® Command Reference Manual, v10.5¢

Commands
dataset rename

dataset rename

This command changes the name of a dataset to the new name you specify. Arguments to this
command are order dependent. Follow the order specified in the Syntax section.

Syntax
dataset rename <dataset_name> <new_dataset_name>

Arguments
e <dataset name>
Specifies the existing name of the dataset.
e <new_dataset_name>
Specifies the new name for the dataset.

Examples
Rename the dataset file "test" to "test2".

dataset rename test test2
Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset open
dataset restart
dataset save
dataset snapshot

ModelSim® Command Reference Manual, v10.5¢c 149

Commands
dataset restart

dataset restart

This command unloads the specified dataset or currently active dataset and rel oads the dataset
using the same dataset name.

Syntax
dataset restart [<file_name>]

Arguments
o <file_name>

(optional) Specifiesthefileto open asadataset. If <filename> is not specified, the currently
active dataset is restarted.

Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset open
dataset rename
dataset save
dataset snapshot

150 ModelSim® Command Reference Manual, v10.5¢

Commands
dataset save

dataset save

This command writes data from the current simulation to the specified file. Thislets you save
simulation data while the simulation is still in progress.

Syntax
dataset save <dataset name> <file_name>

Description
Arguments to this command are order dependent. Follow the order specified in the Syntax
section.
Arguments
e <dataset name>
(required) Specifies the name of the dataset you want to save.
o <file_name>
(required) Specifies the name of the file to save.

Examples
Save all current log datain the sim dataset to the file gold.wif.

dataset save sim gold.wlf
Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset open
dataset rename
dataset restart
dataset snapshot

ModelSim® Command Reference Manual, v10.5¢c 151

Commands
dataset snapshot

dataset snapshot

This command saves datafrom the current WLF file (vsim.wif by default) at a specified interval.
It provides you with sequential or cumulative "snapshots" of your simulation data.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Syntax
dataset snapshot [-dir <directory>] [-disable] [-enable] [-file <file_name>]

[-filemode { overwrite | increment}] [-mode { cumulative | sequential}] [-report] [-reset]
{-size <file_size> | -time <n> [<unit>]}

Arguments

-dir <directory>

(optional) Specifies adirectory into which the files should be saved. Either absolute or
relative paths may be used. Default is to save to the current working directory.

-disable

(optional) Turns snapshotting off. All dataset snapshot settings from the current simulation
are stored in memory. All other options are ignored after you specify -disable.

-enable

(optional) Turns snapshotting on. Restores dataset snapshot settings from memory or from a
saved dataset. (default)

-file <file_name>
(optional) Specifiesthe name of the file to save snapshot data.

<file_name> — A specified file name where the default isvsim_snapshot.wif. The suffix
wif will be appended to specified filename and, possibly, an incrementing suffix.

When the duration of the simulation run is not amultiple of the interval specified by -size or
-time, the incomplete portion is saved in the file vsim.wif.

-filemode { overwrite | increment}
(optional) Specifies whether to overwrite the snapshot file each time a snapshot occurs.
overwrite — (default)

increment — A new fileis created for each snapshot. An incrementing suffix (1ton) is
added to each new file (for example, vsim_snapshot_1.wif).

-mode { cumulative | sequential}

(optional) Specifies whether to keep all datafrom the time signals are first logged.
cumul ative — (default)
sequential — The current WLF fileis cleared every time a snapshot is taken.

152

ModelSim® Command Reference Manual, v10.5¢

Commands
dataset snapshot

e -report

(optional) Lists current snapshot settings in the Transcript window. All other options are
ignored if you specify -report.

o -reset

(optional) Resets values back to defaults. The behavior isto reset to the default, then apply
the remainder of the arguments on the command line. See examples below. If specified by
itself without any other arguments, -reset disables dataset snapshot and resets the values.

o -size<file size>

(Required if -timeis not specified.) Specifies that a snapshot occurs based on WLFfile size.
Must be specified as the final argument to the dataset snapshot command.

<file_size> — Size of WLFfilein MB.
e -time<n> [<unit>]

(Required if -sizeis not specified.) Specifies that a snapshot occurs based on simulation
time. Must be specified as the final argument to the dataset snapshot command.

<n>— Any positive integer.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <limit> and <unit>
within braces ({}).

Examples

e Createthefilevaim snapshot_<n>.wif that iswritten to every time the current WLF file
reaches amultiple of 10 MB (i.e,, at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10

e Similar to the previous example, but in this case the current WLF fileis cleared every
timeit reaches 10 MB.

dataset snapshot -size 10 -mode sequential

e Assuming simulator time units are ps, this command saves afile called gold_<n>.wif
every 1000000 ps. If you run the simulation for 3000000 ps, three files are saved:
gold_1.wif with data from 0 to 12000000 ps, gold_2.wlf with data from 1000000 to
2000000, and gold_3.wif with data from 2000000 to 3000000.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential
-filemode increment

Because this exampl e sets the time interval to 12000000 ps, if you run the simulation for
3500000 ps, afile containing the data from 3000000 to 3500000 psis saved as vsim.wif
(default).

¢ Enable snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

ModelSim® Command Reference Manual, v10.5¢c 153

Commands
dataset snapshot

dataset snapshot -reset -time 10000
Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset open
dataset rename
dataset restart
dataset save

154 ModelSim® Command Reference Manual, v10.5¢

Commands
delete

delete

This command removes objects from either the List or Wave window. Argumentsto this
command are order dependent.
Syntax
delete list [-window <wname>] <object_name>...
delete wave [-window <wname>] <object_name>...

Arguments
o list
Specifiesthe target is alist window.
e wave
Specifies the target is a wave window.
e -window <wname>

(optional) Specifiesthe name of the List or Wave window to target for the delete command.
(The view command allows you to create more than one List or Wave window.) If no
window is specified, the default window is used; the default window is determined by the
most recent invocation of the view command and has “ -Default” appended to the name.

e <oObject name>...

(required) Specifies the name of an object. Must match an object name used in an add list or
add wave command. Multiple object names are specified as a space separated list. Wildcard
characters are allowed. Must be specified as the final argument to the delete list and delete
wave commands.

Examples
e Remove the object vec2 from the list2 window.
delete list -window list2 vec2
e Remove all objects beginning with the string /test from the Wave window.

delete wave /test*

ModelSim® Command Reference Manual, v10.5¢c 155

Commands
describe

describe

This command displays information about simulation objects and design regions in the
Transcript window.

Syntax
describe <name>...

Description

This command displays information about the following types of simulation objects and design
regions in the Transcript window:

e VHDL — signals, variables, constants, and FILE objects.
e Verilog— nets and registers
e Designregion
VHDL signals, Verilog nets and registers, can be specified as hierarchical names.

Arguments
e <pame>...
(required) The name of an HDL object for which you want a description.

Multiple object names are specified as a space separated list. Wildcard characters are
allowed. HDL object names can be relative or full hierarchical names.

Examples
e Print the types of the three specified signals.
describe clk prw prdy
e Return information about /textio/INPUT.
describe /textio/INPUT
produces:

File of
Unconstrained Array of
VHDL standard type CHARACTER

156 ModelSim® Command Reference Manual, v10.5¢

Commands
disablebp

disablebp

This command turns off breakpoints and when commands. To turn on breakpoints or when
commands again, use the enablebp command.

Syntax
disablebp [<id#> | <label>]

Arguments
o <id#>
(optional) Specifiesthe ID number of a breakpoint or when statement to disable.
o <l|abel>
(optional) Specifiesthe label name of a breakpoint or when statement to disable.

If you do not specify either of these arguments, all breakpoints and when statements are
disabled.

Use the bp command with no argumentsto find labels and ID numbersfor all breakpointsin
the current simulation. Use the when command with no argumentsto find labels and ID
numbers of all when statementsin the current simulation.

Note
Id numbers for breakpoints and when statements are assigned from the same pool.
Evenif you have not specified a given id number for a breakpoint, that number may

still be used for awhen command.

Related Topics

enablebp
onbreak

ModelSim® Command Reference Manual, v10.5¢c 157

Commands

do

do

This command executes the commands contained in aDO file.

Syntax

do <filename> [<parameter_value>...]

Description

A DO file can have any name and extension. An error encountered during the execution of aDO
file script causes its execution to be interrupted, unless an onerror command or the
OnErrorDefaultAction Tcl variableis specified with the resume command. The onbreak
command is used to take action with source code breakpoint cases.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Arguments

<filename>

(required) Specifiesthe name of the DO file to be executed. The name can be a pathname or
arelative file name. Pathnames are relative to the current working directory. Must be
specified as the first argument to the do command.

If the do command is executed from another DO file, pathnames are relative to the directory
of the calling DO file. This allows groups of DO files to be stored in a separate sub-
directory.

<parameter_vaue>...

(optional) Specifies valuesthat are to be passed to the corresponding parameters $1 through
$9 inthe DO file. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (for example, specify fewer parameter values
than the number of parameters actually used in thefile), you must use the argc simulator
state variable in the DO file script. Refer to “ Simulator State Variables’ and “Making Script
Parameters Optional”.

Note
While there is no limit on the number of parameters that can be passed to macros,

only nine values are visible at one time. Use the shift command to see the other
parameters.

Examples

e Execute the file macrog/stimulus and pass the parameter value 100 to $1 in the DO file.
do macros/stimulus 100

Where the DO file testfile contains the line

158

ModelSim® Command Reference Manual, v10.5¢

Commands
do

bp $1 $2
place a breakpoint in the source file named design.vhd at line 127.
do testfile design.vhd 127
Related Topics
Tcl and DO Files
General Modes of Operation
Using a Startup File
DOPATH
Saving a Transcript Fileasa DO File

ModelSim® Command Reference Manual, v10.5¢c 159

Commands
drivers

drivers

This command displays the names and strength of all drivers of the specified object.

Syntax
drivers <object_name> [-source]

Description

Thedriver list is expressed relative to the top-most design signal/net connected to the specified
object. If the object isarecord or array, each sub-element is displayed individually.

The output from the drivers command, which is displayed in the Transcript window as a
hypertext link, allowing you to right-click to open a drop-down menu and quickly add signalsto

various windows. It includes a"View Declaration™" item to open the source definition of the
signal.

Figure 2-1. drivers Command Results in Transcript
& Transcriph —78M8M8M8 B

WSIM 26> drivers /ftop/dut/enable -
Drivers for stop/dutsenable:
3tl : Net Stop/dut/enable

St-l : DIlVEI _.'"t-l:lp_f"dut AMTACTRT TOTT OTTTTT S oee 2121 =L M

_op/dut/#IMPLICIT-WIRE{enable)#1
Wigww Declaration

WSIM 27 =

Add o Wave L@
fdd Eo Lisk

Add ko Schematic
Add ko Dakaflow

Mow: 170,170 ns Delka: 3

Copy

Arguments
e <oObject name>

(required) Specifies the name of the signal or net whose drivers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

e -Source

(optional) Returns the source file name and line number for each driver of the specified

signal or net. If the source location cannot be determined, the value n/aiis returned for that
driver.

Examples
drivers /top/dut/pkt_cnt(4)

Drivers for /top/dut/pkt _cnt(4):
St0 : Net /top/dut/pkt cnt [4]
St0 : Driver /top/dut/pkt counter/#IMPLICIT-WIRE (cnt out)#6

160 ModelSim® Command Reference Manual, v10.5¢

Commands
drivers

In some cases, the output may supply a strength value similar to 630 or 52x, which indicates an
ambiguous Verilog strength.

ModelSim® Command Reference Manual, v10.5¢c 161

Commands
dumplog64

dumplog64

This command dumps the contents of the specified WLF file in areadable format to stdout. The
WLF file cannot be opened for writing in a simulation when you use this command. This
command cannot be used in aDO file.

Syntax
dumplog64 <filename>

Arguments
o <filename>
(required) The name of the WLF file to be read.

162 ModelSim® Command Reference Manual, v10.5¢

Commands
echo

echo

This command displays a specified message in the Transcript window.
Syntax

echo [<text_string>]

Arguments
o <text string>

(required) Specifies the message text to be displayed. If the text string is surrounded by
quotation marks, blank spaces are displayed as entered. If quotation marks are omitted, two
or more adjacent blank spaces are compressed into one space.

Examples
e If the current timeis 1000 ns, this command:
echo “The time is $now ns.”
returns the message:

The time is 1000 ns.

e If the quotes are omitted:
echo Thetime is $now ns.
all blank spaces of two or more are compressed into one space.
The time is $now ns.”
e echo can also use command substitution, such as:
echo The hex value of counter is [examine -hex counter].
If the current value of counter is 21 (15 hex), this command returns:

The hex value of counter is 15.

ModelSim® Command Reference Manual, v10.5¢c 163

Commands
edit

edit

This command invokes the editor specified by the EDITOR environment variable. By default,
the specified filename will open in the Source window.

Syntax

edit [<filename>]
Arguments

o <filename>

(optional) Specifies the name of thefile to edit. If the <filename> argument is omitted, the
editor opens the current source file. If you specify anon-existent filename, it will open a
new file. Either absolute or relative paths may be used.

Related Topics
notepad
EDITOR

164 ModelSim® Command Reference Manual, v10.5¢

Commands
enablebp

enablebp

This command turns on breakpoints and when commands that were previously disabled.

Syntax
enablebp [<id#> | <label>]

Arguments
o <id#>
(optional) Specifies a breakpoint 1D number or when statement to enable.
o <label>
(optional) Specifiesthe label name of a breakpoint or when statement to enable.
If you do not specify either of these arguments, all breakpoints are enabled.

Use the bp command with no argumentsto find labels and ID numbersfor all breakpointsin
the current simulation. Use the when command with no argumentsto find labelsand ID
numbers of all when statementsin the current simulation.

Related Topics
disablebp
onbreak

ModelSim® Command Reference Manual, v10.5¢c 165

Commands
encoding

encoding

These related commands trandl atebetween the 16-bit Unicode characters used in Tcl strings and
anamed encoding, such as Shift-JIS.

Syntax
encoding convertfrom <encoding_name> <string>
encoding convertto <encoding_name> <string>
encoding names
encoding system <encoding_name>

Description
The following encoding commands work with the encoding of your character representationsin
the GUI.

e encoding convertfrom — Converts a string from the named encoding to Unicode.
e encoding convertto — Converts a string to the named encoding from Unicode.
e encoding names — Returns alist of all valid encoding names (takes no arguments).

e encoding system — Changes the current system encoding to a named encoding. If anew
encoding is omitted the command returns the current system encoding. The system
encoding is used whenever Tcl passes strings to system calls.

Arguments
e dtring
Specifies astring to be converted.
e encoding_name
The name of the encoding to use.

166 ModelSim® Command Reference Manual, v10.5¢

Commands
environment

environment

This command has two forms, environment and env. It allows you to display or change the
current dataset and region/signal environment.

Syntax
environment [-dataset | -nodataset] [<pathname> | -forward | -back]
Arguments
o -dataset
(optional) Displays the specified environment pathname with a dataset prefix. Dataset
prefixes are displayed by default.
e -nodataset

(optional) Displays the specified environment pathname without a dataset prefix.
e <pathname>
(optional) Specifies a new pathname for the region/signal environment.
If omitted the command causes the pathname of the current region/signal environment to be
displayed.
e -forward
(optional) Displays the next environment in your history of visited environments.
e -back
(optional) Displays the previous environment in your history of visited environments.
Examples
e Display the pathname of the current region/signal environment.
env
e Change to another dataset but retain the currently selected context.
env test:
e Change all unlocked windows to the context "test:/top/foo".
env test:/top/foo
e Move down two levelsin the design hierarchy.
env blk1/u2
e Movetothetop level of the design hierarchy.
env /
Related Topics
Setting your Context by Navigating Source Files

ModelSim® Command Reference Manual, v10.5¢c 167

Commands
examine

examine

This command has two forms, examine and exa. It examines one or more objects and displays
current values (or the values at a specified previous time) in the Transcript window.
Syntax

examine <name>... [-delta <delta>] [-env <path>] [-event <time>] [-handl€] {[-in] [-out]
[-inout] | [-ports]} [-internal] [-maxlen <integer>] [-expr <expression>] [-name]
[-<radix_type>] [-radix [<radix_type>][,<radix_flag>][,...]]
[-radixenumnumeric | -radixenumsymbolic] [-showbase] [-time <time>] [-valug]
Description

It can also compute the value of an expression of one or more objects.
The following objects can be examined:

e VHDL — signals, shared variables, process variables, constants, generics, and FILE
objects

o Verilog— nets, registers, parameters, and variables

To display a previous value, specify the desired time using the -time option.

To compute an expression, use the -expr option. The -expr and the -time options may be used
together.

Virtual signals and functions may al so be examined within the GUI (actual signals are examined
in the kernel).

The following rules are used by the examine command to locate an HDL object:

e |f the name does not include a dataset name, then the current dataset is used.
¢ If the name does not start with a path separator, then the current context is used.

o |f the nameis apath separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

e For arelative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

e If no objects of the specified name can be found in the specified context, then an upward
search is done to ook for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

168 ModelSim® Command Reference Manual, v10.5¢

Commands
examine

The wildcards *' and '? can be used at any level of aname except in the dataset name
and inside of a slice specification.

A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* will not match either of those.

If no radix is specified with the examine command, the default radix and radix flags are used.

Set the default radix with the radix command or by editing the DefaultRadix variable in
the modelsim.ini file.

Set the default radix flags value with the radix command or by editing the
DefaultRadixFlags variable in the modelsim.ini file.

Specifying examine -<radix_type> returns the value of the object in the specified radix
and default radix flags value.

Specifying examine -radix <radix_type> returns the value of the object in the specified
radix.

Specifying examine -radix [<radix_type>][, [<radix_flag>] returns the value of the
object in the specified radix and radix flags.

Specifying examine -radix <radix_flag>[,<radix_flag>] returnsthe value of the object in
the default radix and specified radix flags.

For example, assume a default of hexadecimal + showbase:

examine d

16'h0009

examine -binary d

16'b0000000000001001

examine -radix binary d

0000000000001001

examine -radix binary,showbase d

16'b0000000000001001

examine -radix hex,enumsymbolic nxt_state

send5

examine -radix hex,enumnumeric nxt_state

0000000d

Refer to Design Object Names for more information on specifying names.

ModelSim® Command Reference Manual, v10.5¢c 169

Commands
examine

Arguments

<name>...

(required except when specifying -expr.) Specifies the name of any HDL object.

All object types are allowed, except those of the type file. Multiple names and wildcards are
accepted. Spaces, square brackets, and extended identifiers require braces; see examples

below for more details. To examine a VHDL variable you can add a process label to the
name. For example, (make certain to use two underscore characters):

exa line 36/1

-delta <delta>

(optional) Specifies asimulation cycle at the specified time step from which to fetch the
value, where the default isto use the last delta of the time step. Y ou must log the objects to
be examined using the add list, add wave, or log command for the examine command to be
able return avalue for arequested delta.

<delta> — Any non-negative integer.
-env <path>
(optional) Specifies a path in which to look for an object name.

<path> — The specified path to a object.
-event <time>
(optional) Specifies asimulation cycle at the specified event time from which to fetch the
value. The event <time> refersto the event time relative to events for al signalsin the
objects dataset at the specified time. Y ou must log the objects to be examined using the add
list, add wave, or log command for the examine command to be able return avalue for a
requested event.
-expr <expression>

(optional) Specifies an expression to be examined. Y ou must log the expression using the
add list, add wave, or log command for the examine command to return avalue for a
specified expression. The expression is evaluated at the current time simulation. If you also
specify the -time argument, the expression will be evaluated at the specified time. It is not
necessary to specify <name> when using this argument. See GUI_expression_format for the
format of the expression.

<expression> — Specifies an expression enclosed in braces ({}).
-handle

(optional) Returns the memory address of the specified <name>. Y ou can usethisvalueasa
tag when analyzing the simulation. This value also appears as the title of abox in the Watch
window. This option will not return any value if you are in -view mode.

-in
(optional) Specifiesthat <name> include ports of mode IN.

170

ModelSim® Command Reference Manual, v10.5¢

Commands
examine

e -Out
(optional) Specifies that <name> include ports of mode OUT.
e -inout
(optional) Specifiesthat <name> include ports of mode INOUT.
e -interna
(optional) Specifies that <name> include internal (non-port) signals.
e -maxlen <integer>
(optional) Specifies the maximum number of charactersin the output of the command.
<integer> — Any non-negative integer where 0 is unlimited.
e -ports

(optional) Specifies that <name> include all ports. Has the same effect as specifying -in,
-inout, and -out together.

e -name
(optional) Displays object name(s) and value(s). Related switch is-value.

o -<radix_type>
(optional) Specifiesthe radix type for the objects that follow in the command. Retains the
current flag value for the objects that follow in the command. Valid entries (or any unique

abbreviations) are: ascii, binary, decimal, fpoint, hexadecimal, octal, sfixed, symbolic, time,
ufixed, unsigned, and default.

This option overridesthe global setting of the default radix (the DefaultRadix variablein the
modelsim.ini file).

o -radix [<radix_type>][,<radix_flag>][,...]

(optional) Specifiesthe radix and/or the radix flags to be used by the examine command.
The -radix <radix_type> switch can be used in place of examine -<radix_type>.

<radix_type> — (required unless specifying <radix_flag>) Specifies aradix and clears
the radix flags for the objects that follow in the command. Valid values are: ascii,
binary, decimal, fpoint, hexadecimal, octal, sfixed, symbolic, time, ufixed, unsigned,
default, and user- defined radix names (refer to the radix define command).

<radix_flag> — (optional) Sets one or more radix flags on the objects that follow in the
command. Multiple flags specified as a comma separated list. Must follow
-<radix_type> when the two are specified together.

ModelSim® Command Reference Manual, v10.5¢c 171

Commands

examine
Valid radix flags:
Table 2-3. Radix flag Arguments to the Examine Command

Argument Description

enumeric enumeric — Displays Verilog as numbers (formatted by the
current radix). This overrides the default behavior of always
showing enums symbolically.

enumsymbolic enumsymbolic — Restores the default behavior of displaying
Verilog enums as symbols by reversing the action of the -
radixenumnumeric option.

showbase showbase — Displays the number of bits of the vector and the
radix used, where:

d decimal

b binary

h hexadecimal

a ASCII

t time

For example, instead of simply displaying avector value of “31”, avalue of “16'h31” may
be displayed to show that the vector is 16 bits wide, with a hexadecimal radix.

This option overrides the global default settings for the radix and the radix flag (the
DefaultRadix and the DefaultRadixFlags in the modelsim.ini file).

-radixenumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

-radixenumsymbolic

(optional) Restores the default behavior of displaying Verilog and enums as symbols by
reversing the action of the -radixenumnumeric option.

-showbase

(optional) Display the number of bits of the vector and the radix used (binary = b, decimal =
d, hexadecimal = h, ASCII = a, and time = t).

For example, instead of simply displaying avector value of “31”, avalue of “16'h31" may
be displayed to show that the vector is 16 bits wide, with a hexadecimal radix.

-time <time>
(optional) Specifies the time value between 0 and $now for which to examine the objects.

172

ModelSim® Command Reference Manual, v10.5¢

Commands
examine

<time> — A non negative integer where the default unit is the current time unit. If the
<time> field uses a unit other than the current unit, the value and unit must be placed
in braces. For example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal a
exa -time 3600 signal a

If an expression is specified it will be evaluated at that time. The objects to be examined
must be logged viathe add list, add wave, or log command in order for the examine
command to be able to return avalue for arequested time.

e -vaue
(default) Returns value(s) as a curly-braces separated Tcl list. Use to toggle off a previous
use of -name.
Examples

e Return the value of /top/busl.
examine /top/bus1

¢ Return the value of the subelement of rega that is specified by the index (16). Note that
you must use braces when examining subelements.examine

{rega[16]}
e Return information about /textio/ OUTPUT
examine /textio/OUTPUT
returns the following:

{STD OUTPUT {stdout NOTPIPE} WRITE MODE N/A}
The output isaTcl list with up to four elements. There are three scenarios of results:
o If thefile has not been elaborated, the result will be the following one-element list:

{“NOT ELABORATED” }

o If thefileisclosed, the result will be the following one-element list.
{“CLOSED”}

o Inall other cases, the result will be afour-element list, following the format:

{<file path> { <descriptor> PIPE | NOTPIPE } <file mode>
<file positions}

where,

o <file_path> — references either the FILE declaration or corresponding
file_open() call

ModelSim® Command Reference Manual, v10.5¢c 173

Commands

examine

e <descriptor> — one of the following:
o N — operating system file descriptor resource number.
o stdin— identifying the file as stdin.
o stdout — identifying the file as stdout.

o <file_mode>— identifying thefile mode, of which thefilewas opened, asde-
fined in std.standard package; either READ_MODE, WRITE_MODE, or AP-
PEND_MODE.

o <file_position> — value in bytes. For stdin or stdout files, the value will be
“ N/A”l

Return the value of the contiguous subelements of foo specified by the slice (i.e., 20:22).
Note the use of braces.

examine {foo[20:22]}

Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '} .

examine {/top/\My extended id\ }

In this example, the -expr option specifies asignal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

examine -time {3450 us} -expr {/top/bus and $bit_mask}

Using the ${fifo} syntax limits the variable to the smple name fifo, instead of
interpreting the parenthesis as part of the variable. Quotation marks (“) are needed
when spaces are involved; by using quotation marks instead of braces, the Tcl
interpreter will expand variables before calling the command.

examine -time $t -name $fifo "${fifo}(1 to 3)" ${fifo}(1)

Because -time is not specified, this expression will be evaluated at the current
simulation time. Note the signal attribute and array constant specified in the expression.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Commandslike find and examine return their resultsasaTcl list (just a blank-separated
list of strings). Y ou can do things like:

foreach sig [find sig ABC*] {echo "Signal $sig is [exa $sig]" ...}
if {{examine -bin signal_12] ==“11101111XXXZ"}{...}

examine -hex [find *]

Related Topics
DefaultRadix

174

ModelSim® Command Reference Manual, v10.5¢

Commands
exit

exit
This command exits the simulator and the Model Sim application.

Syntax
exit [-force] [-code <integer>]

Description

If you want to stop the simulation using awhen command, use a stop command within your
when statement, do not use an exit command or a quit command. The stop command acts like a
breakpoint at the timeit is evaluated.

Arguments
e -force

(optional) Quits without asking for confirmation. If this argument is omitted, ModelSim
asks you for confirmation before exiting. Y ou can also use -f as an alias for this switch.

e -code <integer>
(optional) Quits the smulation and issues an exit code.

<integer> — Thisisthe value of the exit code. Y ou should not specify an exit code that
already existsin thetool. Refer to the section "Exit Codes" in the User’s Manual for a
list of existing exit codes. Y ou can also specify avariablein place of <integer>.

Y ou should always print a message before executing the exit -code command to explicitly
state the reason for exiting.

Examples

Y ou can use exit -code to instruct a vmake command to exit when it encounters an assertion
error. The onbreak command can specify commands to be executed upon an assert failure of
sufficient severity, after which the smulator can be made to return an exit status. Thisis shown
in the following example:

set broken 0
onbreak {
set broken 88
resume
}
run -all
if { $broken } {
puts "failure -- exit status S$broken"
exit -code Sbroken} else ({
puts "success"

}

quit -f

The resume command gives control back to the commands following the run -all to handle the
condition appropriately.

ModelSim® Command Reference Manual, v10.5¢c 175

Commands

find

find

This command |ocates objects by type and name. Arguments to the command are grouped by

object type.
Syntax
find nets | signals <object_name> ... [-internal] [-nofilter] {[-in] [-inout] [-out] | [-ports]}
[-recursive]
find instances | blocks { <object_name> ... | -bydu <design_unit> | -file <file_name>}

[-arch] [-recursive] [-nodu]

find virtuals <object_name> ... [-kind <kind>] [-unsaved] [-recursive]

find classes [<class_name>]

find objects [-class <class_name>] [-isa <class name>] [<object_name>]

Description
The following rules are used by the find command to locate an object:

If the name does not include a dataset name, then the current dataset is used.
If the name does not start with a path separator, then the current context is used.

If the name is a path separator followed by a name that is not the name of atop-level
design unit, then the first top-level design unit in the design is used.

For arelative name containing a hierarchical path, if the first object name cannot be
found in the current context, then an upward search is done up to the top of the design
hierarchy to look for a matching object name.

If no objects of the specified name can be found in the specified context, then an upward
search is done to ook for a matching object in any visible enclosing scope up to an
instance boundary. If at least one match is found within a given context, no (more)
upward searching is done; therefore, some objects that may be visible from a given
context will not be found when wildcards are used if they are within a higher enclosing
scope.

The wildcards *' and '? can be used at any level of aname except in the dataset name
and inside of a dlice specification. Square bracket ([]) wildcards can also be used.

A wildcard character will never match a path separator. For example, /dut/* will match
/dut/siga and /dut/clk. However, /dut* will not match either of those.

Because square brackets are wildcards in the find command, only parentheses (()) can be
used to index or dlice arrays.

The WildcardFilter Tcl preference variable is used by the find command to exclude the
specified types of objects when performing the search.

176

ModelSim® Command Reference Manual, v10.5¢

Commands
find

See Design Object Names for more information on specifying names.

Arguments

Arguments to the command are grouped by object type.

Arguments for nets and signals
When searching for nets and signals, the find command returns the full pathname of all nets,
signals, registers, variables, and named events that match the name specification.

<object_name> ...

(required) Specifiesthe net or signal for which you want to search. Multiple nets and signals
and wildcard characters are allowed. Wildcards cannot be used inside of a slice
specification. Spaces, square brackets, and extended identifiers require special syntax; see
the examples below for more details.

-in

(optional) Specifies that the scope of the search is to include ports of mode IN.

-inout

(optional) Specifies that the scope of the search is to include ports of mode INOUT.
-internal

(optional) Specifies that the scope of the search isto include internal (non-port) objects.
-nofilter

(optional) Specifiesthat the WildcardFilter Tcl preference variable be ignored when finding
signals or nets.

-out
(optional) Specifies that the scope of the search is to include ports of mode OUT.
-ports

(optional) Specifiesthat the scope of the searchiisto include al ports. Has the same effect as
specifying -in, -out, and -inout together.

-recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

Arguments for instances and blocks
When searching for instances, the find command returns the primary design unit name.

-arch

Used with “instances’ only: Lists the corresponding architecture name aong with the entity
name for any VHDL design unit names returned by the find command.

-bydu <design_unit>
Searches for adesign unit. Mutually exclusive with -file and <object_name>.

ModelSim® Command Reference Manual, v10.5¢c 177

Commands
find

<design_unit>— Name of asingle design unit to search for. This argument matches the
pattern specified by primary <design_unit> of the instance only. Library and
Secondary names are not supported.

o -file<file_name>

Writes a complete list of the instancesin adesign to afile. Mutually exclusive with -bydu
and <object_name>.

<file_name> — A string specifying the name for afile.
e <oObject name> ...

Specifies the name of an instance or block for which you want to search. Multiple instances
and wildcard characters are allowed. Mutually exclusive with -file and -bydu.

e -recursive

(optional) Specifies that the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

e -nodu

(optional) Removes the "du" string from the names of design units found with -bydu
argument.

Arguments for virtuals
When searching for virtuals, al optional arguments must be specified before any object names.

e <object_name> ...

(required) Specifiesthe virtual object for which you want to search. Multiple virtuals and
wildcard characters are allowed.

e -kind <kind>
(optional) Specifiesthe kind of virtual object for which you want to search.
<kind>— A virtual object of one of the following kinds:
e designs
o explicits
e functions
e implicits
e gignals.
e -unsaved
Specifies that Model Sim find only virtuals that have not been saved to aformat file.

Arguments for classes
e <class name>

(optional) SpecifiestheincrTcl classfor which you want to search. Wildcard characters are
allowed. The options for class_name include nets, objects, signals, and virtuals. If you do

178 ModelSim® Command Reference Manual, v10.5¢

Commands
find

not specify aclass name, the command returns all classesin the current namespace context.
SeeincrTcl commandsin the Tcl Man Pages (Help > Tcl Man Pages) for more information.

Arguments for objects
e -class<class name>

(optional) Restricts the search to objects whose most-specific classis class name.
e -isa<class name>

(optional) Restricts the search to those objects that have class name anywhere in their
heritage.

e <object_name>

(optional) SpecifiestheincrTcl object for which you want to search. Wildcard characters are
allowed. If you do not specify an object name, the command returns all objectsin the current
namespace context. See incrTcl commandsin the Tcl Man Pages (Help > Tcl Man Pages)
for more information.

Examples
e Find all signalsin the entire design.
find signals -r /*
e Find all instancesin the entire design and save the list in the file instancelist.txt.
find instances -file instancelist.txt -r /*
e Findall input signalsin region /top that begin with the letters "xy".
find nets -in /top/xy*

e Findall signasinthedesign hierarchy at or below the region <current_context>/ul/u2
whose names begin with "cl".

find signals -r ul/u2/cl*

e Find asignal named sl. Note that you must enclose the object in braces because of the
square bracket wildcard characters.

find signals {s[1]}
e Findsignalssl, s2, or s3.
find signals {s[123]}

e Find the element of signal sthat isindexed by the value 1. Note that the find command
uses parentheses (()), not square brackets ([]), to specify a subelement index.

find signals s(1)

e Find a4-bit array named data. Note that you must use braces ({}) due to the spacesin
the array dlice specification.

find signals {/top/data(3 downto 0)}

ModelSim® Command Reference Manual, v10.5¢c 179

Commands
find

¢ Note that when specifying an object that contains an extended identifier as the last part
of the name, there must be a space after the closing '\' and before the closing '} .

find signals {/top/\My extended id\ }

o If /dut/core/pclk exists, printsthe message "pclk does exist” in the transcript. Thiswould
typically beruninaTcl script.

if {[find signals /dut/core/pclk] !=""}{
echo "pclk does exist"

e Find instances based on their names using wildcards. Send search results to atext file
that lists instance names, including the hierarchy path, on separate lines.

Search for all instances with ul in path
set pattern match "*ul*"
Get the list of instance paths
set inst list [find instances -r *] ;
Initialize an empty list to strip off the architecture names
set ilist [list] ;
foreach inst $inst list {
set ipath [lindex $inst 0]
if {[string match S$pattern match $ipath]} {
lappend ilist $ipath

}

At this point, ilist contains the list of instances only--
no architecture names

#

Begin sorting list

set ilist [lsort -dictionary $ilist]

Open a file to write out the list

set fhandle [open "instancelist.txt" w]

foreach inst $ilist {

Print instance path, one per line

puts S$fhandle S$Sinst

}

Close the file, done.
close $fhandle ;

180

ModelSim® Command Reference Manual, v10.5¢

Commands
find connections

find connections

This command returns the set of nets that are electrically equivalent to a specified net. It isonly
available during alive simulation.

Syntax
find connections <net>

Arguments

e <net>
(required) A net in the design. Returns alist of nets connected to the specified net.

Examples
find connections /top/p/strb

returns:

Connected nets for strb
output : /top/p/strb
internal : /top/pstrb
input : /top/c/pstrb

ModelSim® Command Reference Manual, v10.5¢c 181

Commands
find infiles

find infiles

Thiscommand searchesfor astring in the specified file(s) and printsthe resultsto the Transcript
window. The results are individually hotlinked and will open the file and display the location of
the string.

Syntax
find infiles <string_pattern> <file>...

Description
When you run this command in command-line mode from outside of the GUI, the results are
sent to stdout with no hotlinks.

Arguments to this command are order-dependent. Follow the order specified in the Syntax
section.

Arguments
e <string_pattern>

(required) The string you are searching for. Y ou can use Tcl regular expression wildcards to
further restrict the search capability.

o <file>...

(required) The file(s) to search. Y ou can use Tcl regular expression wildcards to further
restrict the search capability.

Examples

Figure 2-2 shows a screen capture containing afew examples of the find infiles command and
the results.

Figure 2-2. find infiles Example

Transcripk

W3IM 10 find infiles memary *,whd ;I
i fQuestaTestcases/dataflow/cache whd: 116; - #ekkssekiskrtobts® | nogl MRL memory sk |
i fQuestaTestcases dataflow/memary whd: 1 2:entity memory is

i fQuestaTestcases dataflow/memaory whid: 21 :end entity memaory;

i fQuestaTestcases/dataflow/memory whd: 25: architecture RTL of memory is

i fQuestaTestcases dataflow /top. vhd: 44 COMponent mMemory

i fQuestaTestcases/dataflow/top.vhdiS3: me memory port maplclk, saddr, sdata, srw, sskrb, sedy);

W3IM 11> find infiles "memory port” *,vhd

i fQuestaTestcases/dataflow/top.vhdiS3: me memory port maplclk, saddr, sdata, srw, sskrb, sedy);

W3IM 12 find infiles wsim *.do

C:fCuestaTestcases dataflow run, do: 28 vsim -voptargs="+acc" top fnemprof

F l Transcripk

Ll

182 ModelSim® Command Reference Manual, v10.5¢

Commands
find insource

find insource

This command searches for a string in the source files for the current design and prints the
results to the Transcript window. The results are hotlinked individually and will open the file
and display the location of the string. When you execute this command in command-line mode
from outside of the GUI, the results are sent to stdout with no hotlinks.

Syntax

find insource <pattern> [-exact | -glob | -regexp] [-inling] [-nocase]

Arguments
e <pattern>

(required) The string you are searching for. Y ou can use regular expression wildcards to
further restrict the search. Y ou must enclose <pattern> in quotation marks (*) if it includes
spaces. You must specify the <pattern> at the end of the command line; any switches
specified after <pattern> will not be registered.

e -exact|-glob | -regexp
(optional) Defines the style of regular expression used in the <pattern>

-exact — Indicates that no characters have special meaning, thus disabling wildcard
features.

-glob — (default) Allows glob-style wildcard characters. For more information refer to
the Tcl documentation:

Help > Tcl Man Pages
Select “Tcl Commands’, then “string”, then “ string match”

-regexp — Allows Tcl regular expressions. For more information refer to the Tcl
documentation:

Help > Tcl Man Pages
Select “ Tcl Commands’, then “re_syntax”.
e -inline

(optional) Returns the matchesin the form of a Tcl list, which disables the hotlink feature
but allows for easier post-processing.

e -nocase
(optional) Treats <pattern> as case-insensitive.

Examples
e Figure 2-3 shows a couple of examples of the find insource command and the resullts.

ModelSim® Command Reference Manual, v10.5¢c 183

Commands
find insource

Figure 2-3. find insource Example

Transcripk
W3IM S find insource memory LI
Eachelvhd: 1 16: o ke L|:||:a| MRU mEmDr':." ****************I

memory, vhd: 12:entity memory is

memory,vhd: 21:end entity memory:;

mermory,vhd: 25 architecture RTL of memory is

top.vhd: 44 COMponent mMemory

top.vhd:@3: me memory port map(clk, saddr, sdata, sew, sskrb, srdw);
W3IM 6 find insource "memaory port”

top.vhd:@3: me memory port map(clk, saddr, sdata, sew, sskrb, srdw);

WIIM 7

F l Transcripk

e Searching for two keywords with whitespace between them:

e KAN

find insource -regexp {top_dut\s+dut}
returns:
top.sv:20: top_dut dut (
e Searching for string starting with 'dut’ and ending with 'o0":
find insource -regexp {dut.*o}
returns.
top.sv:17: DUT io dut _io(.clock(tb clk), .reset(tb reset));
e Searching for string irrespective of case:

find insource -regexp -nocase {DUT}

returns:
test.sv:10: virtual DUT io dut io;
test.sv:27: this.dut _io = dut io;

Related Topics
DISABLE _ELAB DEBUG

184 ModelSim® Command Reference Manual, v10.5¢

Commands
force

force

This command allows you to apply stimulus interactively to VHDL signals, Verilog nets and
registers.
Syntax

Forcing values, driver type, repetition time or stop time on an object
force { <object_name> <value> [[@]<time_info>][, <vaue> [@]<time_info>]...
[-deposit | -drive | -freeze] [-cancel [@]<time info>] [-repeat [@]<time_info>]

Reporting all force commands
If you specify this command without arguments, it returns alist of the most recently applied
force commands and alist of forces coming from the Signal Spy signal_force() and
$signal_force() calls from within VHDL, Verilog.

For example, after entering:

force -freeze /top/p/addr 0 100, 1 150 -r 200 -cancel 2000

the times specified are relative to the current simulation time, in this case 2820 ns
Entering:
force

Returns:

force -freeze /top/p/addr 0 {@2920 ns} , 1 {@2970 ns}
-repeat {@3020 ns} -cancel {@4820 ns}

Note
When you run the force command, the simulator tranglates the relative time you specify into
absolute time.

Description

It is possible to create a complex sequence of stimuli when the force command isincluded in a
DOfile.

There are anumber of constraints on what you can and cannot force.
Y ou can force:

e VHDL signalsor parts of signals.

e Verilog nets and registers, bit-selects, part-selects, and field-selects. Refer to “Force and
Release Statementsin Verilog” for more information.

e “Virtual Signals’ if the number of bits corresponds to the signal value.
e Anadliasof aVHDL signa.

ModelSim® Command Reference Manual, v10.5¢c 185

Commands

force

e Aninput port that is mapped at a higher level in VHDL and mixed models.

Y ou cannot force:

e Virtua functions.

e VHDL variables. Refer to the change command for information on working with VHDL
variables.

e Aninput port that has a conversion function on the input or on the path up the network
mapped from the input.

This command provides additional information with the -help switch.

Argumentsto this command are order dependent. Please read through the argument descriptions

for

more information.

Arguments

<object_name>

(required when forcing a value change) Specifies the name of the HDL object to be forced.
A wildcard is permitted only if it matches one object. Refer to Design Object Names and Tcl
Syntax and Specification of Array Bitsand Slices for the full syntax of an object name. The
object name must specify ascalar type or aone-dimensional array of character enumeration.
Y ou may also specify arecord sub-element, an indexed array, or adliced array, aslong as
the type is one of the above. Must be specified as the first argument to the for ce command.

<value>

(required when forcing a value change) Specifies the value to which the object isto be
forced. The specified value must be appropriate for the type. Must be specified as the second
argument to the force command.

A one-dimensional array of character enumeration can be forced as a sequence of character
literals or as a based number with aradix of 2, 8, 10 or 16. For example, the following
values are equivalent for asignal of type bit_vector (0 to 3):

Description VHDL Value Verilog Vaue
character literal sequence F F

binary radix 2#1111 'b1111

octal radix 8#17 '017

decimal radix 10#15 'd15
hexadecimal radix 16#F 'hF

186

ModelSim® Command Reference Manual, v10.5¢

Commands
force

Note
For based numbersin VHDL, Model Sim translates each 1 or O to the appropriate

value for the number’s enumerated type. The translation is controlled by the
trandation table in the pref.tcl file. If Model Sim cannot find atranslation for O or 1, it
uses the left bound of the signal type (type' left) for that value.

Y ou can create a sequence of forced values on an object by specifying <value>
[@]<time_info> in a comma/space separated list.

For example:

force /top/p/addr 1 100ns, 0 200ns, 1 250ns

e -cancel [@]<time_info>
(optional) Cancels the force command at the time specified by <time_info>.
where:
<time_info> is[@]<time_value>[<time_unit>]
Refer to [@]<time_info> for more information about specifying time values.
e -drive

(optional) Attaches a driver to the object and drives the specified <value> until the object is
forced again or until it is unforced with the noforce command.

Thisoptionisillegal for unresolved signals.
e -deposit

(optional) Sets the object to the specified <value>. The <value> remains until the object is
forced again, there is a subsequent driver transaction, or it is unforced with anoforce
command. When used for registers, it behaves like the change command.

Note
B If the -freeze, -drive, or -deposit options are not used, then -freeze is the default for
unresolved objects, and -drive is the default for resolved objects. If you prefer -
freeze as the default for resolved and unresolved VHDL signals, change the

DefaultForceKind variable in the modelsim.ini file.

e -freeze

(optional) Freezes the object at the specified <value> until it isforced again or until it is
unforced with the noforce command.

Note
D If you prefer -freeze as the default for resolved and unresolved VHDL signals,

change the DefaultForceKind variable in the modelsim.ini file.

e -repeat [@]<time_info>
(optional) Repeats a series of forced values and times at the time specified.

ModelSim® Command Reference Manual, v10.5¢c 187

Commands

force

where;

<time_info> is[@]<time_value>[<time_unit>]
Refer to [@] <time_info> for more information about specifying time values.

Y ou must specify at least two <value> <time_info> pairs on the forced object before
specifying -repeat, for example:

force top/dut/p 1 0, 0 100 -repeat 200 -cancel 1000

A repeating force command will force a value before other non-repeating force commands
that occur in the same time step.

[@]<time_info>

(optional) Specifiesthe relative or absolute simulation time at which the <value> isto be
applied.

where;

<time_info> is[@]<time_value>[<time_unit>]

@ — A prefix applied to <time_value> to specify an absolute time. By default, the
specified time units are assumed to be relative to the current time unless the value is
preceded by the character "at" (@). Omit the "at" (@) character to specify relative
time. For example:

-cancel {520 ns} \\ Relative Time

-cancel {@ 520 ns} \\ Absolute Time

<time_value> — Thetime (either relative or absolute) to apply to <value>. Any non-
negative integer. A value of zero cancels the force at the end of the current time
period.

<time_unit>— An optional suffix specifying atime unit where the default isto use the
current ssimulator time by omitting <time_unit>. Valid time units are: fs. ps, ns, us,
ms, sec, min, and hr.

<time_value> and <time_unit> can be formatted in any of the following ways:
10ns

10 ns
{10 ns}

“10 ns”

188

ModelSim® Command Reference Manual, v10.5¢

Commands
force

Note
If you specify a sequence of forces and use braces ({}) surrounding a <time value>

and <time_unit> pair, you must place a space in front of the comma (,) separating
the two value/time pairs. For example:

forcefoo 1 {10 ns} , 0 {20 ns}

Examples
e Reporting al recently applied force commands

If you specify this command with no arguments, it returns alist of all forced objects and the
changes applied. For example, after executing:

force -freeze /top/p/addr 0 100, 1 150 -r 200 -cancel 2000

where the times specified are relative to the current simulation time, in this case 2820 ns.
Entering:

force

returns:

force -freeze /top/p/addr 0 {@2920 ns} , 1 {@2970 ns}
-repeat {@3020 ns} -cancel {@4820 ns}

Note
Executing the force command trandlates the rel ative time you specified into absolute time.

e Forceinputl to O at the current simulator time.
force inputl 0

e Force the fourth element of the array busl to 1 at the current simulator time.
force bus1(4) 1

e Forcebusl to 01XZ at 100 nanoseconds after the current simulator time.
force busl1 2#01XZ 100 ns

e [Force busl to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

force busl1 16#f @200

e Forceinputl to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. Repeat this cycle every 100 time units after the
current simulation time, If the current ssmulation timeis 100 ns, the next transition isto
lat 110 nsand O at 120 ns, this pattern to start repeating at 200 ns.

ModelSim® Command Reference Manual, v10.5¢c 189

Commands
force

force inputl 1 10, 0 20 -r 100
e Similar to the previous example, but also specifies the time units.
force inputl 110 ns, 0 20 ns -r 100 ns

e Forcesignal sto aternate between values 1 and O every 100 time units until 1000 time
units have occurred, starting from time Now. Cancellation occurs at the last simulation
deltacycle of atime unit.

force s 1 0, 0 100 -repeat 200 -cancel 1000
3o,
force s 1 0 -cancel O
will force signal sto 1 for the duration of the current time period.
e Forcesigato decimal value 85 whenever the value on the signal is 1.

when {/mydut/siga = 10#1} {
force -deposit /mydut/siga 10#85

}
e Force one bit of arecord containing an array.

force structl.busl(4) 1
e Forceadiceof anarray.
force {bus1[2:5]} 'hF
Related Topics
DefaultForceKind
Force and Release Statementsin Verilog
Force Command Defaults
noforce
Virtual Signals

190 ModelSim® Command Reference Manual, v10.5¢

Commands
formatTime

formatTime

This command provides global format control for all time values displayed in the GUI. When
specified without arguments, this command returns the current state of the three arguments.

Syntax
formatTime [[+|-]commag] [[+|-]nodefunits] [[+]-] bestunits]

Arguments
e [+|-]Jcommas
(optional) Insert commas into the time value.
+ prefix — On
- prefix — Off. (default)
e [+|-]nodefunits
(optional) Do not include default unit in the time.
+ prefix — On
- prefix — Off. (default)
o [+|-]bestunits
(optional) Use the largest unit value possible.

+ prefix — On
- prefix — Off. (default)
Examples

e Display commasin time values.
formatTime +commas
Instead of displaying 6458131 ps, the GUI will display 6,458,131 ps.
e Uselargest unit value possible.

formatTime +bestunits

Displays 8 usinstead of 8,000 ns.

ModelSim® Command Reference Manual, v10.5¢c 191

Commands
gc configure

gc configure

Prerequisite:
Before using this command, do one of the following:

¢ Regular simulation — Simulate with the vsim command, but omit the -classdebug
argument.

e Interactive class debugging — Simulate with the vsim -classdebug command.

This command specifies when the System Verilog garbage collector will run. The garbage
collector may be configured to run after amemory threshold has been reached, after each
simulation run command completes, and/or after each simulation step command. The default
settings are optimized to balance performance and memory usage for either regular simulation
or class debugging (vsim -classdebug). Returns the current settings when specified without
arguments.

Syntax

gc config [-onrun O | 1] [-onstep O | 1] [-threshold <n>]

Arguments
e -onrun0|1

(optional) Enables/disables garbage collector execution after each simulation run command
completes.

0 — Off, default for regular smulation
1 — On, default for interactive class debugging
e -onstep0]1

(optional) Enables or disables garbage collector execution after each step when stepping
through your simulation.

0 — Off, default for both regular simulation and interactive class debugging.
1—0On
e -threshold <n>

(optional) Sets the maximum amount of memory in megabytes allocated for storage of class
objects before the garbage collector runs.

<n>— Any positive integer where <n> is the number of megabytes.
Regular smulation default =100 megabytes
Interactive class debugging default = 5 megabytes
Related Topics

SystemVerilog Class Debugging
Class Instance Garbage Collection

192 ModelSim® Command Reference Manual, v10.5¢

Commands
gc configure

GCThreshold
GCThresholdClassDebug

ModelSim® Command Reference Manual, v10.5¢ 193

Commands
gc run

gc run

This command runs the SystemV erilog garbage collector.

Syntax
gc run

Arguments
None

Related Topics
gc configure
SystemVerilog Class Debugging
Class Instance Garbage Collection
GCThreshold
GCThresholdClassDebug

194 ModelSim® Command Reference Manual, v10.5¢

Commands
help

help

This command displays in the Transcript window a brief description and syntax for the

specified command.

Syntax
help [<command> | <topic>]

Arguments
e <command>

(optional) Specifiesthe command for which you want help. The entry is case and space

sensitive.

e <topic>

(optional) Specifies atopic for which you want help. The entry is case and space sensitive.
Specify one of the following six topics:

Topic
commands

debugging
execution

Tcl
Tk
incrTCL

Description

Lists all available commands and
topics

Lists debugging commands

Lists commands that control
execution of your simulation.

Lists al available Tcl commands.
Lists all available Tk commands

Lists all availableincrTCL
commands

ModelSim® Command Reference Manual, v10.5¢c 195

Commands
history

history

This command lists the commands you have executed during the current session. History isa
Tcl command. For more information, consult the Tcl Man Pages (Help > Tcl Man Pages).

Syntax
history [clear] [keep <value>]

Arguments
e Clear
(optional) Clears the history buffer.
e keep <vaue>
(optional) Specifies the number of executed commands to keep in the history buffer.
<value> — Any positive integer where the default is 50.

196 ModelSim® Command Reference Manual, v10.5¢

Commands
layout

layout

This command allows you to perform a number of editing operations on custom GUI layouts,
such as loading, saving, maximizing, and deleting.

Syntax

layout active

layout current

layout delete <name>

layout load <name>

layout names

layout normal

layout maximized

layout restoretype <window>

layout save <name>

layout showsuppresstypes

layout suppresstype <window>

layout togglezoom

layout zoomactive

layout zoomwindow <window>

Description
The command options include:

layout active — returns the current active window

layout current — lists the current layout

layout delete — removes the current layout from the Registry (Windows)

layout load — opens the specified layout

layout names — lists all known layouts

layout normal — minimizes the current maximized window

layout maximized — return a 1 if the current layout is maximized, or a0 if minimized

layout restoretype — removesthe list of window type(s) that will not be restored when a
new layout is loaded.

layout save — saves the current layout to the specified name

ModelSim® Command Reference Manual, v10.5¢c 197

Commands
layout

e |ayout showsuppresstypes— lists the window typesthat will not be restored when anew
layout is loaded.

e layout suppresstype — adds the specified window type(s) to thelist of typesthat will not
be restored when alayout is reloaded.

e |ayout togglezoom — toggles the current zoom state of the active window (from
minimized to maximized or maximized to minimized)

e layout zoomactive — maximizes the current active window
e layout zoomwindow — maximizes the specified window

Arguments
e <pame>
(required) Specifies the name of the layout.
e <window>

(required) The window specification can be any format accepted by the view command. The
window can be specified by itstype (such as wave, list, objects), by the windowobj name
(such as main_pane.wave, .main_pain.library), or by the tab name (such as wavel, list3)

Related Topics

Simulator GUI Layout Customization
Configuring Default Windows for Restored Layouts

198 ModelSim® Command Reference Manual, v10.5¢

Commands
log

log

This command creates awave log format (WLF) file containing simulation data for all HDL
objects whose names match the provided specifications. Objects that are displayed using the
add list and add wave commands are automatically recorded in the WLF file. By default thefile
isnamed vsim.wlIf and stored in the current working directory. Y ou can change the default name
using the vsim -wlf option of the vaim command or by setting the WLFFilename variable in the
modelsim.ini file.

Syntax

log [-howmany] [-filter <f> | -nofilter <f>]
{[-in] [-inout] [-out] | [-ports]} [-internal]
[-recursive [-depth <level>]] <object_name> ...

log -flush [<object>]

Description

If no port mode is specified, the WLF file contains data for all objectsin the selected region
whose names match the object name specification.

The WLF file contains arecord of all data generated for the list and wave windows during a
simulation run. Reloading the WLF file restores all objects and waveforms and their complete
history from the start of the logged simulation run. See dataset open for more information.

For al transaction streams created through the SCV or Verilog APIs, logging is enabled by
default. A transaction islogged to the WLF file if logging is enabled at the beginning of a
simulation run when the design calls ::begin_transaction() or $begin_transaction. The effective
start time of the transaction (the time passed by the design as a parameter to ::begin_transaction)
isirrelevant. For example, a stream could have logging disabled between T1 and T2 and still
record atransaction in that period, through retroactive logging after time T2. A transaction is
always either entirely logged or entirely ignored.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Note
The log command is also known as the "add log" command.

Arguments
e -depth <level>

(optional) Restricts arecursive search (specified with the -recursive argument) to a certain
level of hierarchy.

<level> — Any non-negative integer. For example, if you specify -depth 1, the
command descends only one level in the hierarchy.

ModelSim® Command Reference Manual, v10.5¢c 199

Commands

log

-filter <f> | -nofilter <f>

(optional) Allows a one-time modification of the WildcardFilter in the command
invocation. The add list command can take as many [-filter <f>] and [-nofilter <f>]
arguments as you would like to specify. Valid filters, <f>, are exactly the same set of words
that can be applied to the WildcardFilter. The filter(s) used during a command starts with
the WildcardFilter and then applies the user specified filters, if any. The -filter values are
added to the filter, the -nofilter values are removed from the filter. They are applied in the
order specified so conflicts are resolved with the last specified wins.

-flush [<object>]

(optional) Forced the WLF file to write all buffered region and event datato the WLF file.
By default, the region and event data is buffered and periodically written to thefile, as
appropriate. If <object> is specified, that object isfirst logged and then the file is flushed.

-howmany
(optional) Returns an integer indicating the number of signals found.
-in

(optional) Specifiesthat the WLF fileisto include datafor ports of mode IN whose names
match the specification.

-inout

(optional) Specifiesthat the WLF fileisto include datafor ports of mode INOUT whose
names match the specification.

-interna

(optional) Specifiesthat the WLF fileisto include datafor internal (non-port) objects whose
names match the specification.

-out

(optional) Specifiesthat the WLF fileisto include datafor ports of mode OUT whose
names match the specification.

-ports

(optional) Specifiesthat the scope of the search isto include al ports, IN, INOUT, and
OUT.

-recursive

(optional) Specifies that the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region. Y ou can use the -depth argument to
specify how far down the hierarchy to descend.

<object_name>

(required) Specifies the object name that you want to log. Must be specified as the final
argument to the log command. Multiple object names are specified as a space separated list.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching objects with wildcard patterns.

200

ModelSim® Command Reference Manual, v10.5¢

Commands
log

By default, wildcard card logging does not log the internals of cells. Refer to the +libcell |
+nolibcell argument of the viog command for more information.

Examples
e Logal objectsin the design.
log -r /*
e Logall output portsin the current design unit.
log -out *
Related Topics
dataset alias
dataset clear
dataset close
dataset config
dataset info
dataset list
dataset open
dataset restart
dataset rename
dataset save
dataset snapshot
nolog
Recording Simulation Results With Datasets
WL FFilename

ModelSim® Command Reference Manual, v10.5¢c 201

Commands
Ishift

Ishift

This command takes a Tcl list as an argument and shiftsit in-place, one place to the | eft,
eliminating the left-most element.

Syntax
Ishift <list> [<amount>]

Description
The number of shift places may also be specified. Returns nothing.
Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.
Arguments
o <list>

(required) Specifiesthe Tcl list to target with Ishift. Must be specified as the first argument
to the Ishift command.

e <amount>
(optional) Specifies the number of placesto shift where the default is 1.
Examples

proc myfunc args
throws away the first two arguments
lshift args 2

202 ModelSim® Command Reference Manual, v10.5¢

Commands
Isublist

Isublist

This command returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern.Arguments to this command are order dependent. Follow the order specified in the

Syntax section.
Syntax
Isublist <list> <pattern>
Arguments
o <list>
(required) Specifiesthe Tcl list to target with Isublist.

o <pattern>
(required) Specifies the pattern to match within the <list> using Tcl glob-style matching.

Examples
e Inthe example below, variable ‘t’ returns "structure signals source".
set window_names "structure signals variables process source wave list"

set t [Isublist $window_names s*)

ModelSim® Command Reference Manual, v10.5¢c 203

Commands
mem compare

mem compare

This command compares a selected memory to areference memory or file. Must have the "diff"
utility installed and visible in your search path in order to run this command. Arguments to this
command are order dependent. Please read through the argument descriptions for more
information.

Syntax

mem compare { [-mem <ref_mem>] | [-file <ref file>]} [actua _mem]

Arguments
e -mem <ref_mem>
(optional) Specifies areference memory to be compared with actual_mem.
<ref_mem>— A memory record.
o -file<ref file>
(optional) Specifies areference file to be compared with actual_mem.
<ref _file>— A saved memory file.
e actual_mem

(required) Specifies the name of the memory to be compared against the reference data.
Must be specified as the final argument to the mem compare command.

204 ModelSim® Command Reference Manual, v10.5¢

Commands
mem display

mem display

This command printsto the Transcript window the memory contents of the specified instance. I
the given instance path contains only asingle array signal or variable, the signal or variable
name need not be specified.

Syntax

mem display [-addressradix [d | h]] [-compress] [-dataradix <radix_type>]
[-endaddress <end>][-format [bin | hex | mti]] [-noaddress] [-startaddress <st>]
[-wordsperline <n>] [<path>]

Description

Y ou can redirect the output of the mem display command into afile for later use with the mem
load command. The output file can also be read by the Verilog $readmem system tasks if the
memory module is a Verilog module and Verilog memory format (hex or binary) is specified.

Address radix, data radix, and address range for the output can also be specified, aswell as
specia output formats.

By default, identical datalines are printed. To replace identical lineswith asingle line
containing the asterisk character, you can enable compression with the -compress argument.

Note
The format settings are stored at the top of thisfile as a pseudo comment so that subsequent

mem load commands can correctly interpret the data. Do not edit this data when
manipulating a saved file.

Argumentsto this command are order dependent. Please read through the argument descriptions
for more information.

Arguments
e -addressradix [d | h]
(optional) Specifiesthe address radix for the default (MTI) formatted files.
d — Decimal radix. (default if -format is specified as mti.)
h — Hex radix.
e -compress

(optional) Specifiesthat identical lines not be printed. Reduces the file size by replacing
exact matches with a single line containing an asterisk. These compressed files are
automatically expanded during a mem load operation.

e -dataradix <radix_type>

(optional) Specifiesthe dataradix for the default (MTI) formatted files. If unspecified, the
global default radix is used.

ModelSim® Command Reference Manual, v10.5¢c 205

Commands
mem display

<radix_type> A specified radix type. Valid entries (or any unique abbreviations) are:
binary, decimal, unsigned, octal, hex, symbolic, and default. If no radix is specified
for an enumerated type, the symbolic representation is used.

Y ou can change the default radix type for the current simulation using the radix command or
make the default radix permanent by editing the DefaultRadix variable in the modelsim.ini
file.

e -endaddress <end>
(optional) Specifiesthe end address for arange of addresses to be displayed.

<end> — Any valid address in the memory. If unspecified, the default is the end of the
memory.

o -format [bin | hex | mti]
(optional) Specifies the output format of the contents.
bin— Specifies a binary output.
hex— Specifies a hex outpuit.
mti — MTI format. (default).
e -noaddress
(optional) Specifies that addresses not be printed.
e -startaddress <st>
(optional) Specifiesthe start address for arange of addresses to be displayed.

<st>— Any valid address in the memory. If unspecified, the default is the start of the
memory.

e -wordsperline <n>
(optional) Specifies how many words are to be printed on each line.
<n>— Any positive integer where the default is an 80 column display width.
e <path>

(required) Specifiesthe full path to the memory instance. The default is the current context,
as shown in the Structure window. Indexes can be specified. Must be specified as the final
argument to the mem display command.

Examples

e Thiscommand displays the memory contents of instance /top/c/mru_mem, addresses 5
to 10:

mem display -startaddress 5 -endaddress 10 /top/c/mru_mem
e returns:

5: 110 110 110 110 110 000

206 ModelSim® Command Reference Manual, v10.5¢

Commands
mem display

e Display the memory contents of the same instance to the screen in hex format, as
follows:

mem display -format hex -startaddress 5 -endaddress 10 /top/c/mru_mem
e returns:

5: 6 6 6 6 60

Related Topics

mem load

ModelSim® Command Reference Manual, v10.5¢c 207

Commands
mem list

mem list

This command displays aflattened list of all memory instances in the current or specified
context after a design has been elaborated.

Syntax
mem list [-r] [<path>]
Description
Each instance lineis prefixed by "VHDL:" or "Verilog:", depending on the type of model.

Returns the signal/variable name, address range, depth, and width of the memory.

Arguments
o -
(optional) Recursively descends into sub-modules when listing memories.
e <path>

(optional) The hierarchical path to the location the search should start where the default is
the current context, as shown in the Structure window.

Examples
e Recursively list all memories at the top level of the design.
mem list -r /
Returns:

Verilog: /top/m/mem[0:255] (256d x 16w)
#

e Recursively list all memoriesin /top2/uut.
mem list /top2/uut -r
Returns:

Verilog: /top2/uut/mem[0:255] x 1léw

208 ModelSim® Command Reference Manual, v10.5¢

Commands
mem load

mem load

This command updates the simulation memory contents of a specified instance. Y ou can upload
contents either from amemory data file, amemory pattern, or both. If both are specified, the
pattern is applied only to memory locations not contained in the file.

Syntax

mem load {-infile <infile> | -filldata <data word> [-infile <infile>]} [-endaddress <end>]
[-fillradix <radix_type>] [-filltype {dec | inc | rand | value}] [-format [bin | hex | mti]]
[<path>] [-skip <Nwords>] [-startaddress <st>] [-truncate]

Description

A relocatable memory fileis one that has been saved without address information. Y ou can load
arelocatable memory file into the instance of amemory core by specifying an address range on
the mem load command line. If no address range (starting and ending address) is specified, the
memory isloaded starting at the first location.

The order in which the datais placed into the memory depends on the format specified by the
-format option. If you choose bin or hex format, the memory isfilled low to high, to be
compatible with $readmem commands. Thisisin contrast to the default MTI format, which fills
the memory according to the memory declaration, from left index to right index.

For Verilog objects and VHDL integers and std_logic types: if the word width in afileiswider
than the word width of the memory, the leftmost bits (msb) in the datawords are ignored. To
allow wide words use the -truncate option which will ignore the msb bits that exceed the
memory word size. If the word width in the fileis less than the width of the memory, and the
leftmost digit of thefiledataisnot ' X', then the leftmost bits are zero filled. Otherwise, they are
X-filled.

The type of datarequired for the -filldata argument is dependent on the -filltype specified: a
fixed value, or one that governs an incrementing, decrementing, or random sequence.

o For fixed pattern values, thefill pattern isrepeatedly tiled to initialize the memory block
specified. The pattern can contain multiple word values for this option.

e For incrementing or decrementing patterns, each memory word istreated as an unsigned
quantity, and each successive memory location isfilled in with a value one higher or
lower than the previous value. Theinitial value must be specified.

e For arandom pattern, a random data sequence will be generated to fill in the memory
values. The datatype in the sequence will match the type stored in the memory. For
std_logic and associated types, unsigned integer sequences are generated. A seed value
may be specified on the command line. For any given seed, the generated sequenceis
identical.

ModelSim® Command Reference Manual, v10.5¢c 209

Commands
mem load

The interpretation of the pattern datais performed according to the default system radix setting.
However, this can be overridden with a standard Verilog-style ‘ <radix_char><data>
specification.

Arguments

-infile <infile>

(required unless the -filldata argument is used) Updates memory data from the specified file.
<infile> — The name of a memory file.

-endaddress <end>

(optional) Specifiesthe end address for arange of addresses to be |oaded.
<end> — Specified as any valid address in the memory.

-filltype {dec | inc | rand | value}

(optional, use with the -filldata argument) Fillsin memory addresses in an algorithmic
pattern starting with the dataword specified in -filldata. If afill pattern isused without afile
option, the entire memory or specified address range is filled with the specified pattern. If
both are specified, the pattern is applied only to memory locations not contained in the file.

dec — Decrement each succeeding memory word by one digit.
inc — Increment each succeeding memory word by one digit.

rand — Randomly generate each succeeding memory word starting with the word
specified by -filldata as the seed.

value — Value (default) Substitute each memory word in the range with the value
specified in -filldata.

-filldata <data word>

(required unless -infile is used) Specifies a dataword used to fill memory addressesin the
pattern specified by -filltype.

<data_word> — Specifies a dataword. Must be in the same format as specified by the
-fillradix switch.

-fillradix <radix_type>
(optional, use with -filldata) Specifiesradix of the data specified by the -filldata switch.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, symbolic, and default.

-format [bin | hex | mti]

(optional, use with -infile) Specifies the format of the file to be loaded.
bin — Specifies binary data format.
hex — Specifies hex format.
mti — MTI format. (default).

210

ModelSim® Command Reference Manual, v10.5¢

Commands
mem load

Specifiesthe format of the file to be loaded. The bin and hex values are the standard Verilog
hex and binary memory pattern file formats. These can be used with Verilog memories, and
with VHDL memories composed of std_logic types.

Inthe MTI memory datafile format, internal file address and data radix settings are stored
within the file itself. Thus, there is no need to specify these settings on the mem load
command line. If aformat specified on the command line and the format signature stored
internally within the file do not agree, the file cannot be loaded.

° <pah>

(optional) The hierarchical path to the memory instance. If the memory instance nameis
unique, shorthand instance names can be used. The default is the current context, as shown
in the Structure window.

Memory address indexes can be specified in the instance name also. If addresses are
specified both in the instance name and the file, only the intersection of the two address
ranges is populated with memory data.

e -skip <Nwords>

(optional) Specifiesthe number of wordsto be skipped between each fill pattern value. Used
with -filltype and -filldata.

<Nwords> — Specified as an unsigned integer.
e -startaddress <st>
(optional) Specifiesthe start address for arange of addresses to be loaded.
<st>— Any valid address in the memory.
e -truncate
(optional) Ignores any most significant bits (msb) in a memory word which exceed the
memory word size. By default, when memory word size is exceeded, an error results.
Examples

e Load the memory pattern from the file vals.mem to the memory instance /top/m/mem,
filling the rest of the memory with the fixed-value 1' bO.

mem load -infile vals.mem -format bin -filltype value -filldata 1'b0 /top/m/mem

When you enter the mem display command on memory addresses O through 12, you see
the following:

mem display -startaddress 0 -endaddress 12 /top/m/mem

0: 0000000000000000 0000000000000001 0000000000000010
0000000000000011

4: 0000000000000100 0000000000000101 0000000000000110
0000000000000111

8: 0000000000001000 0000000000001001 0000000000000000
0000000000000000

12: 0000000000000000

ModelSim® Command Reference Manual, v10.5¢c 211

Commands
mem load

e Load the memory pattern from the file vals.mem to the memory instance
/top/m/mru_mem, filling the rest of the memory with the fixed-value 16'Hbeef.

mem load -infile vals.mem -format hex -st 0 -end 12 -filltype value -filldata 16'Hbeef
ftop/m/mru_mem

e Load memory instance /top/mem?2 with two words of memory data using the Verilog
Hex format, skipping 3 words after each fill pattern sequence.

mem load -filltype value -filldata "16'hab 16'hcd" /top/mem2 -skip 3
e Load memory instance /top/mem with zeros (0).
mem load -filldata O /top/mem
e Truncate the msb bits that exceed the maximum word size (specified in HDL code).
mem load -format h -truncate -infile data_files/data.out /top/m_reg_inc/mem
Related Topics

mem Save

212 ModelSim® Command Reference Manual, v10.5¢

Commands
mem save

mem Save

This command saves the contents of amemory instanceto afilein any of the supported formats:
Verilog binary, Verilog hex, and MTI memory pattern data.

Syntax

mem save -outfile <filename> [-addressradix { dec | hex}] [-dataradix <radix_type>]
[-format { bin | hex | mti}] [-compress | -noaddress] [<path>]
[-startaddress <st> -endaddress <end>] [-wordsperline <Nwords>]
Description

This command works identically to the mem display command, except that its output iswritten
to afilerather than adisplay.

The order in which the datais placed into the saved file depends on the format specified by the
-format argument. If you choose bin or hex format, the file is populated from low to high, to be
compatible with $readmem commands. Thisisin contrast to the default mti format, which
populates the file according to the memory declaration, from left index to right index.

Y ou can use the mem save command to generate rel ocatable memory datafiles. The -noaddress
option omits the address information from the memory datafile. You can later load the
generated memory data file using the memory load command.
Arguments
e -outfile <filename>
(required) Specifies that the memory contents are to be stored in afile.

<filename> — The name of the file where the specified memory contents are to be
stored.

e -addressradix {dec | hex}
(optional) Specifiesthe address radix for the default mti formatted files.
dec — Decimal (default).
hex — Hexadecimal.
e -compress

(optional) Specifiesthat only unique lines are printed, identical lines are not printed.
Mutually exclusive with the -noaddress switch.

e -dataradix <radix_type>
(optional) Specifiesthe data radix for the default mti formatted files.

<radix_type> — Valid entries (or any unique abbreviations) are: binary, decimal,
unsigned, octal, hex, and symbolic.

ModelSim® Command Reference Manual, v10.5¢c 213

Commands
mem save

Y ou can change the default radix for the current simulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

e -endaddress <end>
(optional) Specifiesthe end address for arange of addresses to be saved.
<end>— Any valid address in the memory.
e -format {bin | hex | mti}
(optional) Specifiesthe format of the output file.
bin— Binary data format.
hex— Hexadecimal format.
mti — MTI format. (default).

The bin and hex values are the standard V erilog hex and binary memory pattern file formats.
These can be used with Verilog memories, and with VHDL memories composed of
std_logic types.

Inthe MTI memory datafile format, internal file address and data radix settings are stored
within thefile itself.

e -noaddress

(optional) Prevents addresses from being printed. Mutually exclusive with the -compress
switch.

° <path>

(optional) The hierarchical path to the location of the memory instance. The default is the
current context, as shown in the Structure window.

e -startaddress <st>
(optional) Specifiesthe start address for arange of addresses to be saved.
<st>— Any valid address in the memory.
e -wordsperline <Nwords>
(optional) Specifies how many memory vaues are to be printed on each line.

<Nwords> — Any unsigned integer where the default assumes an 80 character display
width.

Examples

e Savethe memory contents of the instance /top/m/mem(0: 10) to memfile, written in the
mti radix.

mem save -format mti -outfile memfile -start 0 -end 10 /top/m/mem

214 ModelSim® Command Reference Manual, v10.5¢

Commands
mem save

The contents of memfile are as follows:

// memory data file (do not edit the following line - required for
mem load use)

// format=mti addressradix=d dataradix=s version = 1.0

0: 0000000000000000 0000000000000001 00O0OOOOOOOOOOOO10
0000000000000011

4: 0000000000000100 0000000000000101 00O0OOOOOOOOOOO11O0
00000000000001112

8: 0000000000001000 0000000000001001 XXXXXXXXXXXXXXXX

Related Topics
mem display
mem load

ModelSim® Command Reference Manual, v10.5¢c 215

Commands
mem search

mem search

This command finds and prints to the screen the first occurring match of a specified memory
pattern in the specified memory instance. Shorthand instance names are accepted. Optionally,
you can instruct the command to print all occurrences. The search pattern can be one word or a
sequence of words.

Syntax

mem search {-glob <word> [<word>...] | -regexp <word> [<word>...]}

[-addressradix {dec | hex}] [-dataradix <radix_type>] [-all] [-replace <word> [<word>...]]
[-startaddress <address>] [-endaddress <address>] [<path>]

Arguments

-glob <word> [<word>...]

(required unless using -regexp) Specifiesthe value of the pattern, accepting glob pattern
syntax for the search.

<word>— Any word pattern. Multiple word patterns are specified as a space separated
list. Wildcards are accepted in the pattern.

This argument and -regexp are mutually exclusive arguments.
-regexp <word> [<word>...]

(required unless using -glob) Specifies the value of the pattern, accepting regular expression
syntax for the search.

<word> — Any word pattern. Wildcards are accepted in the pattern. Multiple word
patterns are specified as a space separated list.

This argument and -glob are mutually exclusive arguments.
-addressradix { dec | hex}
(optional) Specifiesthe radix for the address being displayed.
dec — Decimal (default).
hex — Hexadecimal.
-al

(optional) Searches the specified memory range and returns all matching occurrences to the
transcript. By default only the first matching occurrence is printed.

-dataradix <radix_type>
(optional) Specifiesthe radix for the memory data being displayed.

<radix_type> — Can be specified as symbolic, binary, octal, decimal, unsigned, or hex. By
default the radix displayed is the system default.

216

ModelSim® Command Reference Manual, v10.5¢

Commands
mem search

Y ou can change the default radix for the current simulation using the radix command. Y ou
can change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

e -endaddress <address>
(optional) Specifiesthe end address for arange of addresses to search.
<address> — Any valid address in the memory.
o <path>

(optional) Specifiesthe hierarchical path to the location of the memory instance. The default
is the current context, as shown in the Structure window.

e -replace <word> [<word>...]
(optional) Replaces the found patterns with a designated pattern.

<word>— A word pattern Multiple word patterns are accepted, separated by asingle
space. No wildcards are allowed in the replaced pattern.

e -startaddress <address>
(optional) Specifies the start address for arange of addresses to search.
<address> — Any valid address in the memory.
Examples

e Search for and print to the screen all occurrences of the pattern 16° Hbeef in /uut/u0/
mem3:

mem search -glob 16'Hbeef -dataradix hex /uut/u0/mem3
returns;
#7845: beef

#7846: beef
#100223: beef

e Search for and print only the first occurrence of 16'Hbeef in the address range
7845:150000, replacing it with 16'Hcafe in /uut/ul/mem3:

mem search -glob 16'Hbeef -d hex -replace 16'Hcafe -st 7846 -end 150000
/uut/ul/mem3

returns:

#7846: cafe

e Replace all occurrences of 16'Hbeef with 16'Habe in /uut/ul/mem3:

mem search -glob 16'Hbeef -r 16'Habe -addressadix hex -all /Juut/ul/mem3

ModelSim® Command Reference Manual, v10.5¢c 217

Commands
mem search

returns.
#leab5: 2750

#lea6: 2750
#1877f£: 2750

e Search for and print the first occurrence any pattern ending in f:
mem search -glob "*f"

e Search for and print the first occurrence of this multiple word pattern:
mem search -glob "abe cafe" /uut/ul/mem3

e Search for patterns 0000 0000" or "0001 0000" in nVYmem:
mem search -data hex -regexp {000[0]|1] 0{4}} m/mem -all

e Search for a pattern that has any number of Os followed by any number of 1sasa
memory location, and which has a memory location containing digits as the value:

mem search -regexp {"0+1+$\d+} m/mem -all
e Search for any initialized location inaVHDL memory:

mem search -regexp {[*U]} -all <vhdl_memory>

218 ModelSim® Command Reference Manual, v10.5¢

Commands
modelsim

modelsim

The modelsim command starts the Model Sim GUI without prompting you to load a design.

Syntax
modelsim [-do <macrofile>] [<license_option>] [-nosplash]

Description
This command is valid only for Windows platforms and may be invoked in one of three ways:

e from the DOS prompt
¢ from aModel Sim shortcut
e from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the properties of that
shortcut. (As expected, arguments also work on the DOS command line.)

Y ou can invoke the simulator from either the Model Sim> prompt after the GUI starts or from a
DO file called by modelsim.

Arguments
e -do <macrofile>

(optional) Executes a DO file when modelsim is invoked.
<macrofile> — The name of aDO file

Note
D In addition to the script called by this argument, if aDO fileis specified by the

STARTUP variable in modelsim.ini, it will be called when the vsim command is
invoked.

e <license _option>
(optional) Restricts the search of the license manager.
e -nosplash
(optional) Disables the splash screen.
Related Topics

do
Using a Startup File

ModelSim® Command Reference Manual, v10.5¢c 219

Commands
noforce

noforce

This command removes the effect of any active force commands on the selected HDL objects.
and also causes the object’ s value to be re-evaluated.

Syntax
noforce <object_name> ...

Arguments

e <object_name>

(required) Specifies the name of an object. Must match an object name used in a previous
force command. Multiple object names may be specified as a space separated list. Wildcard
characters are alowed.

Related Topics

force

220 ModelSim® Command Reference Manual, v10.5¢

Commands
nolog

nolog

This command suspends writing of data to the wave log format (WLF) file for the specified
signals.
Syntax
nolog [-al] [-depth <level>] [-howmany] [-in] [-inout] [-internal] [-out] [-ports] [-recursive]
[-reset] [<object_name>...]
Description

A flag iswritten into the WLF file for each signal turned off, and the GUI displays"-No Data-"
for the signal(s) until logging (for the signal(s)) is turned back on. Logging can be turned back
on by issuing another log command or by doing a nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files created
when using the nolog command cannot be read by older versions of the ssmulator.

Transactions written in SCV or Verilog are logged automatically, and can be removed with the
nolog command. A transaction islogged into the .wlf file if logging is enabled (in other words,
if no nolog command has disabled it) for that stream at the time when the transaction was
begun. An entire span of atransaction is either logged or not logged, regardless of the begin and
end times specified for that transaction.

Arguments
o -l
(optional) Turns off logging for al signals currently logged.
e -depth <level>

(optional) Restricts arecursive search (specified with the -recursive argument) to a certain
level of hierarchy.

<level>— Aninteger greater than or equal to zero. For example, if you specify -depth 1,
the command descends only one level in the hierarchy.

e -howmany
(optional) Returns an integer indicating the number of signals found.

e -in
(optional) Turns off logging only for ports of mode IN whose names match the
specification.

e -inout

(optional) Turns off logging only for ports of mode INOUT whose names match the
specification.

ModelSim® Command Reference Manual, v10.5¢c 221

Commands

nolog

-interna

(optional) Turns off logging only for internal (non-port) objects whose names match the
specification.

-out

(optional) Turns off logging only for ports of mode OUT whose hames match the
specification.

-ports
(optional) Specifies that the scope of the search isto include all ports.
-recursive

(optional) Specifies that the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region. Y ou can use the -depth argument to
specify how many levels of the hierarchy to descend.

-reset
(optional) Turns logging back on for all unlogged signals.
<object_name>...

(optional) Specifies the object name which you want to unlog. Multiple object names may
be specified as a space separated list. Wildcard characters are allowed.

Examples

e Unlog all objectsin the design.
nolog -r /*
e Turnlogging back on for all unlogged signals.

nolog -reset

Related Topics

log

222

ModelSim® Command Reference Manual, v10.5¢

Commands
notepad

notepad

This command opens a simple text editor. It may be used to view and edit ASCII files or create
new files.

Syntax
notepad [<filename>] [-r | -edit]

Description
This mode can be changed from the Notepad Edit menu.
Returns nothing.

Arguments
o <filename>
(optional) Name of the file to be displayed.

o I
(optional) Specifies read-only mode.
o -edit

(optional) Specifies editing mode. Will not save changes to an existing file that has the
Read-only attribute turned on. (default)

ModelSim® Command Reference Manual, v10.5¢c 223

Commands
noview

noview

This command closes a window in the Model Sim GUI. To open awindow, use the view
command.

Syntax
noview <window_name>...

Arguments
e <window_name>...

(required) Specifies the window(s) to close. Multiple window types may be specified in a
space separated list. Wildcards permitted. At least one type (or wildcard) is required.

Refer to the view command for a complete list of possible arguments.
Y ou can aso close Source windows using the tab or file name.
Examples
e Close the Wave window named "wavel".
noview wavel
e Closeall List windows.

noview List

224 ModelSim® Command Reference Manual, v10.5¢

Commands
nowhen

nowhen

This command deactivates sel ected when commands.

Syntax
nowhen [<label>]

Arguments

o <label>
(optional) Specifies an individual when command. Wildcards may be used to select more
than one when command.

Examples
e Deactivate the when command labeled 99.
nowhen 99
e Deactivate all when commands.

nowhen *

ModelSim® Command Reference Manual, v10.5¢c 225

Commands
onbreak

onbreak

This command is used within a DO file and specifies one or more scripts to be executed when
running a script that encounters a breakpoint in the source code.

Syntax
onbreak <script>; <script>...

Description

The onbreak setting will affect any run commands that follow the onbreak statement until
another onbreak command isissued. If aDO fileis executed from within the script, the DO file
script will inherit the onbreak setting specified prior to execution unless and until another
onbreak command is given, in which case, that onbreak setting will be in effect until the DO file
script completes at which point execution will return to the calling script and the calling script’s
onbreak setting is restored. For more information, refer to Breakpoint Flow Control in Nested
DO files. The script must be followed by arun command to take effect.

Default behavior when there is no onbreak setting in effect is defined by the
OnBreakDefaultAction Tcl variable. If the OnBreakDefaultAction variable is not defined, the
simulator default is to resume execution.

Use an empty string to change the onbreak command back to the default behavior:

onbreak ""

In this case, the script will resume after a breakpoint occurs (after any associated bp command
string is executed).

If you specify this command in a DO file with an empty script (" "), the default behavior isto
resume execution of the DO file. The onbreak command with no argument will return the
current user specified script or empty if the default onbreak isin effect.

Arguments
o <sCript>

(optional) Any command or script can be used as an argument to onbreak. If you want to use
more than one command or script, use a semicolon to separate them or place them on
multiple lines and enclose the entire script in braces ({}) or quotation marks (* ”). Y ou must
use the onbreak command before arun, run -continue, or step command. If arun or step
command is issued within an onbreak script, the script will return immediately and any
following commands will not be executed. It isan error to execute any commands within an
onbreak command string following any of the run commands. Thisrestriction appliesto any
macros or Tcl procedures used in the onbreak command string.

226 ModelSim® Command Reference Manual, v10.5¢

Commands
onbreak

Examples

Examine the value of the HDL object data when a breakpoint is encountered. Then
continue the run command.

onbreak {exa data ; cont}

Resume execution of the DO file on encountering a breakpoint.

onbreak resume

This set of commands test for assertions. Assertions are treated as breakpoints if the
severity level is greater than or equal to the current BreakOnA ssertion variable setting
(refer to modelsim.ini Variables). By default aseverity level of failure or above causes a
breakpoint; a severity level of error or below does not.

set broken 0

onbreak {
lassign [runStatus -full] status fullstat
if {$status eqg "error"} {

Unexpected error, report info and force an error exit

echo "Error: $fullstat"

set broken 1

resume

elseif {$status eq "break"} {

If this is a user break, then

issue a prompt to give interactive

control to the user

if {[string match "user *" $fullstat]} {
pause

} else {
Assertion or other break condition
set broken 2

resume
} else {
resume
}
}
run -all
if {$broken == 1} {

Unexpected condition. Exit with bad status.
echo "failure"
quit -force -code 3
} elseif {$broken == 2} (
Assertion or other break condition
echo "erroxr"
quit -force -code 1
} else {
echo "success!"

}

quit -force

Related Topics

do

ModelSim® Command Reference Manual, v10.5¢c 227

Commands
onbreak

onerror
Useful Commands for Handling Breakpoints and Errors
DO Files

228 ModelSim® Command Reference Manual, v10.5¢

Commands
onElabError

onElabError

This command specifies one or more commands to be executed when an error is encountered

during the elaboration portion of avsim command. The command is used by placing it within a

DO file script. Use the onElabError command without arguments to return to a prompt.
Syntax

onElabError {[<command> [; <command>] ...]}

Arguments
e <command>

(optional) Any command can be used as an argument to onElabError. If you want to use
more than one command, use a semicolon to separate the commands, or place them on
multiple lines. The entire command string must be placed in braces ({}).

Related Topics
do

ModelSim® Command Reference Manual, v10.5¢c 229

Commands
onerror

onerror

This command is used within a DO file script before a run command; it specifies one or more
commands to be executed when a running script encounters an error.

Syntax
onerror {[<command> [; <command>] ...]}

Description

Using the onerror command without arguments will return the current onerror command string.
Use an empty string (onerror “*) to change the onerror command back to its default behavior.
Use onerror with aresume command to allow an error message to be printed without halting the
execution of the DO file.

When your onerror command is successful, the DO file script will continue normally, unless
your command instructs the simulator to quit. For example:
onerror{quit -f}

or

onerror {break}

However, if your onerror command is not successful, the ssmulator will quit. For example:

onerrror {add wave b}
when you do not have asignal named b.
The onerror command is executed when a Tcl command (such as break) encounters an error in
the DO file that contains the onerror command (note that a run command does not necessarily
need to be in process). Conversely, OnErrorDefaultAction will run even if the DO file does not

contain alocal onerror command. This can be useful when you run aseries of DO filesfrom one
script, and you want the same behavior across all DO files.

Arguments
e <command>

(optional) Any command can be used as an argument to onerror. If you want to use more
than one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in braces ({}).

Examples
e Forcethe ssimulator to quit if an error is encountered while the DO fileis running.

onerror {quit -f}

230 ModelSim® Command Reference Manual, v10.5¢

Commands
onerror

Related Topics
do
onbreak

Useful Commands for Handling Breakpoints and Errors
DO Files

ModelSim® Command Reference Manual, v10.5¢ 231

Commands
onfinish

onfinish

This command controls simulator behavior when encountering $finish or sc_stop() in the design
code. When you specify this command without an argument, it returns the current setting.

Syntax
onfinish [ask | exit | final | stop | default]

Arguments

ask

(optional) In batch mode, the simulation will exit; in GUI mode, the user is prompted for
action.

exit

(optional) The ssimulation exits without asking for any confirmation.
final

(optional) The simulation executes all finish blocks before exiting.
stop

(optional) The ssmulation ends but remains loaded in memory, allowing for easier post-
simulation tasks.

default
(optional) Uses the current setting for the OnFinish variable in the modelsim.ini file.

Related Topics
OnFinish

232

ModelSim® Command Reference Manual, v10.5¢

Commands
pause

pause

This command interrupts the execution of amacro and allows you to perform interactive
debugging of amacro file. Insert this command within the macro to be debugged.

Syntax
pause

Description
When a macro is interrupted during execution, the macro returns the prompt:

VSIM (paused) >

This“pause” prompt notifies you that a macro has been interrupted.

When amacro is paused, you can invoke another macro. If the second macro isinterrupted, you
can continue invoking macros up to anesting level of 50 macros.

The status command lists summary information about al interrupted macros.

Use the resume command to resume execution of the macro. Use the abort command to stop
execution of some or al of the macros.

Arguments
None.

Related Topics
resume
run
Status

ModelSim® Command Reference Manual, v10.5¢c 233

Commands
precision

precision

This command determines how real numbers display in the graphic interface (such as the
Objects, Wave, Locals, and List windows). It does not affect the internal representation of areal
number and therefore precision values over 17 are not allowed. Executing the precision
command without any arguments returns the current precision setting.

Syntax
precision [<digits>[#]]
Arguments
o <digits>[#]
(optional) Specifies the number of digitsto display where the default is 6.
#— A suffix that forces the display of trailing zeros. See examples for more details.
Examples
e Resultsin 4 digits of precision.
precision 4
For example:

1.234 or 6543

e Resultsin 8 digits of precision including trailing zeros.
precision 8#
For example:
1.2345600 or 6543.2100
e Resultsin 8 digits of precision but doesn’t print trailing zeros.
precision 8
For example:

1.23456 or 6543.21

234 ModelSim® Command Reference Manual, v10.5¢

Commands
printenv

printenv

This command prints to the Transcript window the current names and values of all environment
variables. If variable names are given as arguments, returns only the names and values of the
specified variables.
Syntax
printenv [<var>...]
Arguments
e <var>...
(optional) Specifies the name(s) of the environment variable(s) to print.

Examples
e Print al environment variable names and their current values.
printenv
Returns:

CC = gcc
DISPLAY = srl:0.0

e Print the specified environment variables:

printenv USER HOME

Returns:
USER = vince
HOME = /scratch/srl/vince

ModelSim® Command Reference Manual, v10.5¢c 235

Commands
process report

process report
This command creates a textual report of all processes displayed in the Process Window.

Syntax
process report [-file <filename>] [-append]

Arguments
o -file<filename>

(optional) Creates an external file where raw process data will be saved. If -fileis not
specified, then the output is redirected to stdoui.

<filename> — A user-specified name for thefile.
e -append

(optional) Specifiesthat process datais to be appended to the current process report file. If
this option is not used, the process data will overwrite the existing process report file.

236 ModelSim® Command Reference Manual, v10.5¢

Commands
project

project

Prerequisites:

Some arguments to this command require a project to be opened with either the project new or
project open command. Some arguments must be used outside of asimulation session. Refer
to the argument descriptions for more information.

This command is used to perform common operations on projects.

Syntax

project [addfile <filename> [<file_type>] [<folder_name>]] | [addfolder <foldername>
[<folder_parent>]] | [calculateorder] | [closg] | [compileall [-n]] | [compileorder] |
[compileoutofdate [-n]] | [delete <filename>] | [filenameg] | [env] | [history] | [new
<home_dir> <proj_name> [<defaultlibrary>] [<intiaini>] [0 | 1]] | [open <project>] |
[removefile <filename>]

Arguments

o addfile <filename> [<file_type>] [<folder_name>]

(optional) Adds the specified file to the current project. Requires a project to be open.
<filename> — (required) The name of an existing file.

<file_type> — (optional) The HDL file type of the file being added. For example do for
a.dofile.

<folder_name> — (optional) Places the file in an existing folder created with project
addfolder command. If no folder name is specified the file will be placed in the top
level folder.

e addfolder <foldername> [<folder_parent>]
(optional) Creates a project folder within the project. Requires a project to be open.
<foldername> — (required) Any string.

<folder_parent> — (optional) Places <foldername> in an existing parent folder. If
<folder_parent> is unspecified, <foldername> is placed at the top level.

e calculateorder

(optional) Determines the compile order for the project by compiling each file, then moving
any compiles that fail to the end of thelist. Thisis repeated until there are no more compile
errors.

e close
(optional) Closes the current project.
e compileall [-n]
(optional) Compiles all filesin the project using the defined compile order.

-n — (optional) Returns alist of the compile commands this command would execute,
without actually executing the compiles.

ModelSim® Command Reference Manual, v10.5¢c 237

Commands
project

compileorder
(optional) Returns the current compile order list.
compileoutofdate [-n]

(optional) Compiles dll filesthat have a newer date/time stamp than the last time thefilewas
compiled.

-n— Returns alist of the compile commands this command would execute, without
actually executing the compiles.

delete <filename>
(optional) Deletes a project file.
<filename> — Any .mpf file.
filenames
Returns the absolute pathnames of all files contained in the currently open project.
env
(optional) Returns the current project file and path.
history
(optional) Lists a history of manipulated projects. Must be used outside of a simulation
session.
new <home_dir> <proj_name> [<defaultlibrary>] [<intialini>] [0 | 1]

(optional) Creates anew project under a specified home directory with a specified name and
optionally adefault library. The name of the work library will default to "work™ unless
specified. A new project cannot be created while a project is currently open or asimulation
isin progress.

<home_dir> — The path to the new project directory within the current working
directory.

<proj_name> — Specifies aname for the new project. The file will be saved as an .mpf
file

<defaultlibrary> — Specifies a name for the default library.

<intialini>— An optional modelsim.ini file can be specified as a seed for the project file
by using theinitialini option. If initialini isan empty string, then Model Sim uses the
current modelsim.ini file when creating the project. Y ou must specify adefault library
iIf you want to specify initialini.

0 — (default) Copies al library mappings from the specified <initiaini> file into the
new project.

1 — Copieslibrary mappings referenced in an "others' clause in theinitia .ini file.

238

ModelSim® Command Reference Manual, v10.5¢

Commands
project

e Open <project>

(optional) Closes any currently opened project and opens a specified project file (must be a
valid .mpf file), making it the current project. Changes the current working directory to the
project's directory. Must be used outside of a simulation session.

e removefile <filename>
(optional) Removes the specified file from the current project.

Examples

e Make /user/george/design/test3/test3.mpf the current project and changes the current
working directory to /user/george/design/test3.

project open /user/george/design/test3/test3.mpf
e Execute current project library build scripts.

project compileall

ModelSim® Command Reference Manual, v10.5¢c 239

Commands
pwd

pwd
This Tcl command displays the current directory path in the Transcript window.

Syntax
pwd

Arguments
None

240 ModelSim® Command Reference Manual, v10.5¢

Commands
quietly

quietly
This command turns off transcript echoing for the specified command.

Syntax
quietly <command>

Arguments

e <command>

(required) Specifies the command for which to disable transcript echoing. Any results
normally echoed by the specified command will not be written to the Transcript window. To
disable echoing for all commands use the transcript command with the -quietly option.

Related Topics

transcript

ModelSim® Command Reference Manual, v10.5¢c 241

Commands

quit

quit

This command exits the simulator.

Syntax

quit [-f | -force] [-sim] [-code <integer>]

Description

If you want to stop the simulation using awhen command, you must use a stop command within
your when statement, you must not use an exit or a quit command. The stop command acts like
abreakpoint at the timeit is evaluated.

Arguments

-f | -force

(optional) Quits without asking for confirmation. If omitted, Model Sim asks you for
confirmation before exiting. (The -f and -force arguments are equivalent.)

-sim

(optional) Unloads the current design in the simulator without exiting ModelSim. All files
opened by the simulation will be closed including the WLF file (vsim.wif).

-code <integer>

(optional) Quits the simulation and issues an exit code.

<integer> — Thisisthe value of the exit code. Y ou should not specify an exit code that
already existsin Model Sim. Refer to the section "Exit Codes" in the User’s Manual
for alist of existing exit codes. Y ou can also specify avariable in place of <integer>.

Y ou should always print a message before running the quit -code command to explicitly
state the reason for exiting.

Examples

Refer to the Examples section of the exit command for an example of using the -code argument.
The quit and exit commands behave similarly in thisregard.

242

ModelSim® Command Reference Manual, v10.5¢

Commands
radix

radix

This command specifies the default radix to be used for the current simulation. Specifying the
command with no argument returns the current radix setting.

Syntax
radix [-binary | -octal | -decimal | -hexadecimal | -unsigned | -ascii | -time]
[-enumnumeric | -enumsymbolic | -showbase | -symbolic]
Description
The command can be used at any time.
The specified radix is used for all commands (force, examine, change, etc.) aswell asfor

displayed values in the Objects, Locals, Dataflow, List, and Wave windows, as well asthe
Source window in the source annotation view.

Alternate methods for changing the default radix:

e Inthe modelsim.ini file, edit the DefaultRadix variable.

e Choose Simulate > Runtime Options from the main menu, click the Defaults tab,
make your selection in the Default Radix box.

Numeric radix other than symbolic are defined to trandate bits to a 4 state representation as part
of the numeric conversion. Groups of bits are then converted to a number in the correct radix, or
to'x' or 'Z'if the value is not numeric (that is, contains only '0O'sand '1's). Thereisno'U'inthe 4
state representation, nor 'W' or '-'. All of the odd values are converted to 'x'.

Alternatives to changing the default radix for the simulation session include:
e Use examine <name> -<radix_type> to transcript the current value of <name> using the
specified radix
e useradix signal to set asignal-specific radix

Arguments

Y ou can abbreviate the following arguments to any length. For example, -dec is equivalent to
-decimal.

e -astii

(optional) Display a Verilog object as a string equivalent using 8-bit character encoding.
e -binary

(optional) Displays valuesin binary format.

ModelSim® Command Reference Manual, v10.5¢c 243

Commands
radix

e -enumnumeric

(optional) Causes Verilog enums to be displayed as numbers (formatted by the current
radix). This overrides the default behavior of always showing enums symbolically.

e -enumsymbolic

(optional) Restores the default behavior of displaying Verilog enums as symbols by
reversing the action of the -enumnumeric option.

e -decimd

(optional) Displays valuesin decimal format. Y ou can specify -signed as an alias for this
argument.

e -hexadecima
(optional) Displays values in hexadecimal format.
e -octa
(optional) Displays valuesin octal format.
o -time
(optional) Displays values of time for register-based typesin Verilog.
e -showbase

(optional) Display the number of bits of the vector and the radix used (binary = b, decimal =
d, hexidecimal = h, ASCII = a, and time =1t)

For example, instead of simply displaying avector value of “31”, avalue of “16'h31" may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

e -symbolic
(optional) Displays valuesin aform closest to their natural form.
e -unsigned
(optional) Displays values in unsigned decimal format.
Related Topics
User-Defined Radices
radix define
radix delete
radix names
radix list
radix signal

244 ModelSim® Command Reference Manual, v10.5¢

Commands
radix define

radix define

Thiscommand is used to create or modify a user-defined radix. A user definableradix is used to
map bit patternsto a set of enumeration labels or setup afixed or floating point radix. User-
defined radixes are available for use in most windows and with the examine command.

Syntax

User Custom Radix
radix define <name> <definition_body> [-color <value>]

Fixed or Floating Point Number Radix
radix define <name> [[-fixed [-signed] | -float] -fraction <n>] [-base <base>] [-precision <p>]

Arguments

<name>
(required) User-specified name for the radix.
<definition_body>

(required for custom radix) A list of number pattern, label pairs. The definition body hasthe
form:

<numeric-value> <enum-label> [-color <color>],
<numeric-value> <enum-label>

-default <radix type>

-defaultcolor <colors>

}

A <numeric-value> is any legitimate HDL integer numeric literal. To be more specific:

<integers

<bases>#i<value># --- <base> is 2, 8, 10, or 16
<base>"value" --- <base> is B, 0O, or X
<size>'<base><values> --- <size> is an integer,

<base> is b, d, o, or h.

The question mark (?) wildcard character may be specified for bits or characters of the
value. For example:
radix define bus-state

6'b01??200 "Write" -color orange,
6'b10??200 "Read" -color green

}

In this example, the first pattern will match *010000", 010100, "011000", and "011100".
In case of overlaps, the first matching pattern is used, going from top to bottom.

The commay(,) in the definition body is optional. The <enum-label> isany arbitrary string. It
should surrounded by quotation marks (""), especialy if it contains spaces.

The-default entry isoptional. If present, it definestheradix to useif amatchisnot found for
agiven value. The-default entry can appear anywherein thelist, it does not haveto be at the

ModelSim® Command Reference Manual, v10.5¢c 245

Commands
radix define

end. The optional -color argument in the definition body will set the color for the specific
value when the value is displayed in the Wave window.

Refer to the Verilog and VHDL Language Reference Manuals for exact definitions of these
numeric literals.

e -bpase <base>

(optional for fixed and floating point radixes) Specifies the base for afixed or floating point
radix.

<base> — Any valid radix type: binary, ascii, unsigned, decimal, octal, hex, symbolic,
time, and default.

e -color <value>

(optional for custom radixes) Designates a color for the waveform and text in the Wave
window.

<value> — The color value may be a color name or its hex value (see example below).
o -fixed
(required for fixed point radix) Specifies afixed number radix.
o -float
(required for floating point radix) Specifies a floating point number radix.
e -fraction<n>

(required for fixed and floating point radixes) Specifiesthe location of the decimal pointina
vector.

<n>— Any integer between 3 and the full bit value of the vector. For example, if you
specify -fraction 3 for the eight bit vector “10001001”, the decimal is placed two bits
away from the least significant bit on the right so the vector becomes “10001.001".

e -precision <p>

(optional for fixed and floating point radixes) Specifies now many numbers after the
decimal point or significant digits of afloating point or fixed number in symbolic format.

<p>— A number, less than or equal to 17, and optional format specification taking the
form “<width>[efg],” for example 3g, 4f, or 6.

e -signed
(optional for fixed point radix) Treats fixed numbers as signed where the most significant bit
isthe sign bit. The default is an unsigned number.
Examples

e Theradix define command used to create aradix called “ States,” which will display
state values in the List, Watch, and Wave windows instead of numeric values.

246 ModelSim® Command Reference Manual, v10.5¢

Commands
radix define

radix define States {

11'b00000000001 "IDLE",
11'b00000000010 "CTRL",
11'b00000000100 "WT_WD_1",
11'b00000001000 "WT_WD_2",
11'b00000010000 "WT_BLK_ 1",
11'b00000100000 "WT_BLK_2",
11'b00001000000 "WT_BLK_3",
11'b00010000000 "WT_BLK_ 4",
11'b00100000000 "WT_BLK_5",
11'b01000000000 "RD_WD_1",
11'b10000000000 "RD_WD_2",
11'bzzzzzzzzzzzz "UNCONNECTED",
11'bxxxxxxxxxxx "ERROR",
-default hex

Note
The‘Z and ‘x’ values must be lower case.

e Thefollowing exampleillustrates how to specify the radix color:

radix define States {
11'b00000000001 "IDLE" -color yellow,
11'b00000000010 "CTRL" -color #ffee0O,
11'b00000000100 "WT_WD_1" -color orange,
11'b00000001000 "WT_WD_2" -color orange,
11'b00000010000 "WT_BLK_1",
11'b00000100000 "WT_BLK_2",
11'b00001000000 "WT_BLK_3",
11'b00010000000 "WT_BLK_4",
11'b00100000000 "WT_BLK_5",
11'b01000000000 "RD_WD_1" -color green,
11'b10000000000 "RD_WD_2" -color green,
-default hex
-defaultcolor white

}

If apattern/label pair does not specify a color, the normal wave window colors will be
used. If the value of the waveform does not match any pattern, then the -default radix
and -defaultcolor will be used.

e Create afixed point radix named fx5 and apply that radix to the signal checksf.
Entering
VSIM> radix define fx5 -fixed -fraction 3 -base decimal -signed
returns
#£x5
Entering

VSIM> radix signal checksf

returns

ModelSim® Command Reference Manual, v10.5¢c 247

Commands
radix define

#Ex5

Entering
VSIM> examine -name cecksf
returns

#/test fixed/basictest/checksf -15.8750

Related Topics
User-Defined Radices
precision
radix
radix delete
radix names
radix list
radix signal

248 ModelSim® Command Reference Manual, v10.5¢

Commands

radix delete
radix delete
This command will remove the radix definition from the named radix.
Syntax
radix delete <name>
Arguments
e <name>

(required) Removes the radix definition from the named radix.

Related Topics
User-Defined Radices
radix
radix define
radix list
radix names
radix signal

ModelSim® Command Reference Manual, v10.5¢c 249

Commands
radix list

radix list

This command will return the complete definition of aradix, if anameisgiven. If no nameis
given, it will list all the defined radixes.

Syntax
radix list [<name>]
Arguments

e <name>
(optional) Returns the compl ete definition of the named radix.

Related Topics
User-Defined Radices
radix
radix define
radix delete
radix names
radix signal

250 ModelSim® Command Reference Manual, v10.5¢

Commands
radix names

radix names
This command returns alist of currently defined radix names.

Syntax
radix names

Arguments
None

Related Topics
User-Defined Radices
radix
radix define
radix delete
radix list
radix signal

ModelSim® Command Reference Manual, v10.5¢ 251

Commands
radix signal

radix signal

This command sets or inspects radix values for the specified signal in the Objects, Locals,
Schematic, and Wave windows.When no argument is used, the radix signal command returns a
list of al signalswith aradix.

Note
The intent is for this command to be used for a small number of signals. If the majority of

signalsin adesign are to use a particular radix value, then set that value as the default radix
with the radix command, and use the radix signal command for the rest.

Syntax

radix signal [<signal_name> [<radix_value>]] [-showbasg]
Arguments

e <signa_name>

(optional) Name of the signal for which the radix will be set (if <radix_value> is specified)
or inspected.

e <radix_vaue>

(optional) Value of the radix to be set for the specified signal. Use empty quotation marks
("") to unset the radix for the specified signal.

e -showbase

(optional) Display the number of bits of the vector and the radix used (binary = b, decimal =
d, hexidecimal = h, ASCII = a, and time = t).

For example, instead of simply displaying avector value of “31”, avalue of “16'h31" may
be displayed to show that the vector is 16 bits wide, with a hexidecimal radix.

Related Topics
User-Defined Radices
radix
radix define
radix list
radix delete

252 ModelSim® Command Reference Manual, v10.5¢

Commands
readers

readers

This command displays the names of all readers of the specified object.

Syntax
readers <object_name> [-source]

Description

The reader list is expressed relative to the top-most design signal/net connected to the specified
object.

The output from the readers command, which is displayed in the Transcript window as a
hypertext link, allows you to right-click to open adrop-down menu and to quickly add signalsto

various windows. It includes a"View Declaration™" item to open the source definition of the
signal.

Figure 2-4. readers Command Results in Transcript

L] Transcripk -
WSIM 27> readers Jftop/sdut/enable -
BEeaders for stop/dutsenable:
Net : /top/dutfenable
Reader : Stop/dut/#ALWAVS£1A5
_ Jbop/dut/#ALWAYS#168
Wieww Declaration
WSIM 263 | 5
fdd bo Wave
Mow: 170,170 ns Delka: 3 siri: &dd b Lisk
add to Schematic
add to Dakaflow
Copy

Arguments
e <oObject name>

(required) Specifies the name of the signal or net whose readers are to be shown. All signal
or net types are valid. Multiple names and wildcards are accepted.

e -Source

(optional) Returns the source file name and line number for each driver of the specified
signal or net. If the source location cannot be determined, the value n/aiis returned for that
driver.

ModelSim® Command Reference Manual, v10.5¢c 253

Commands
report

report

This command displays information relevant to the current simulation.

Note

D Viewing preference variables: preference variables have more to do with the way things

look (but not entirely) rather than controlling the simulator. Y ou can view preference

variables from the Preferences dialog box. Select Tools > Edit Preferences (Main window).

Syntax

report files

report where [ini] [pwd] [transcript] [wif] [project]

report simulator control

report simulator state

Arguments

files

Returnsalist of all source files used in the loaded design. Thisinformation is also available
in the Specified Path column of the Files window.

where [ini] [pwd] [transcript] [wlif] [project]

Returnsalist of configuration fileswhere the argumentslimit thelist to those fil es specified.
If specified without arguments, returns alist of all configuration filesin the current
simulation.

ini — (optional) Returns the [ocation of the modesim.ini file.
pwd — (optional) Returns the current working directory.
transcript — (optional) Returns the location for saving the transcript file.
wlif — (optional) Returns the current location for saving the .wif file.
project — (optional) Returns the current location of the project file.
simulator control
Displays the current values for all simulator control variables.
simulator state
Displays the simulator state variables relevant to the current simulation.

Examples

o Digplay configuration file information

report where

254

ModelSim® Command Reference Manual, v10.5¢

Commands
report

Returns:

INI {modelsim.ini}
PWD ./Testcases/
Transcript transcript
WLF vsim.wlf

Project {}

H H H HH

e Display al simulator control variables.
report simulator control
Returns:

UserTimeUnit = ns
RunLength =

IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0

IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0

IgnoreSVAInfo= 0
IgnoreSVAWarning = 0
IgnoreSVAError = 0
IgnoreSVAFatal = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 1
WLFFilename = vsim.wlf
WLFTimeLimit 0
WLFSizeLimit = 0

HHHFHHAHHHEHFHHFHHFEHFEHFHHHHFHFHF

e Digplay al ssimulator state variables. Only the variables that relate to the design being
simulated are displayed:

report simulator state

Returns:

now = 0.
delta =
library work
entity = type clocks
architecture = full
resolution = 1ns

0
0

H H H H H

Related Topics
modelsim.ini Variables
Setting GUI Preferences

ModelSim® Command Reference Manual, v10.5¢c 255

Commands
restart

restart

This command rel oads the design elements and resets the simulation time to zero. Only design
elements that have changed are reloaded. (Note that SDF files are always reread during a
restart.)

Syntax
restart [-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Description

e If nodesignisloaded, the restart command produces a message to that effect and takes
no further action.

e |f asmulation isloaded, the restart command restarts the simulation.

e |If multiple datasets are open, including a simulation, the environment is changed to the
simulation context and the simulation is restarted.

Shared libraries are handled as follows during a restart:

e Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless vsim -keeploaded is used).

e Shared libraries |oaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded (unless vsim -keeploaded is used).

e Shared librariesthat implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for aforeign architecture.

Y ou can configure defaults for the restart command by setting the DefaultRestartOptions
variable in the modelsim.ini file. Refer to “ Restart Command Defaults”.

To handle restarts with Verilog PLI applications, you need to define aVerilog user-defined task
or function, and register amisctf class of callback.

Refer to “Verilog Interfacesto C” for more information on the Verilog HDL interfaces.

Arguments
o -force

(optional) Specifiesthat the simulation will be restarted without requiring confirmation in a
popup window.

e -nobreakpoint

(optional) Specifiesthat all breakpoints will be removed when the ssimulation is restarted
where the default is for all breakpoints to be reinstalled after the ssimulation is restarted.

256 ModelSim® Command Reference Manual, v10.5¢

Commands
restart

e -nolist

(optional) Specifiesthat the current List window environment will not be maintained after
the ssimulation is restarted where the default isfor all currently listed HDL objects and their
formats to be maintained.

e -nolog

(optional) Specifies that the current logging environment will not be maintained after the
simulation is restarted where the default isfor al currently logged objects to continue to be
logged.

e -Nowave

(optional) Specifiesthat the current Wave window environment will not be maintained after
the simulation is restarted where the default isfor all objects displayed in the Wave window
to remain in the window with the same format.

ModelSim® Command Reference Manual, v10.5¢c 257

Commands
resume

resume

This command is used to resume execution of amacro (DO) file after a pause command or a
breakpoint.

Syntax
resume

Description

This command may be input manually or placed in an onbreak command string. (Placing a
resume command in a bp command string does not have this effect.) The resume command can
also be used in an onerror command string to alow an error message to be printed without
halting the execution of the macro file.

Arguments

None
Related Topics
pause

Useful Commands for Handling Breakpoints and Errors

258 ModelSim® Command Reference Manual, v10.5¢

Commands
run

run

This command advances the simulation by the specified number of timesteps.

Syntax
run { [<timesteps>[<time_units>]] | -all | -continue | -init | -next } |
{-step [-current] [<n>] [-out] [-over [<n>]] [-this]}
Description
Y ou can control any return values after the run operation completes with the following
preference variables:

e noRunTimeMsg — Set thisvariable to 0 to display simulation time and delta
information or set it to 1 to disable the display of thisinformation.

e noRunStatusMsg — Set this variable to 0 to display run status information or setitto 1
to disable the display of this information.

The following is an example that shows a series of run commands and how the output changes
with the preference variable settings:

VSIM 1> run 105
VSIM 2> set PrefMain (noRunTimeMsg) 0
0

VSIM 3> run 112
Time: @217 ns 0

VSIM 4> set PrefMain (noRunStatusMsg) 0
0

VSIM 5> run 100
Time: @317 ns 0
Status: ready end

VSIM 6> set PrefMain (noRunTimeMsg) 1
1

VSIM 7> run 50
Status: ready end

VSIM 8> set PrefMain (noRunStatusMsg) 1
#1

VSIM 9> run 55
VSIM 10>
Arguments

e No arguments
Runs the ssmulation for the default time (100 ns).

ModelSim® Command Reference Manual, v10.5¢c 259

Commands

run

Y ou can change the default <timesteps> and <time_units> in the GUI with the Run Length
toolbar box in the Simulate toolbar or from the modelsim.ini file: RunLength and
UserTimeUnit variables.

<timesteps>[<time_units>]

(optional) Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified as absolute by preceding the value with the character @.

<time_units> — Any valid time unit: fs, ps, ns, us, ms, or sec where the default isto use
the current time unit.

-all

(optional) Causes the simulator to run the current simulation forever, or until it hitsa
breakpoint or specified break event.

-continue

(optional) Continues the last simulation run after arun -step, run -step -over command or a
breakpoint. A run -continue command may be input manually or used as the last command
in abp command string.

-final

(optional) Instructs the ssmulator to run all final blocks then exit the simulation.

-init

(optional) Initializes non-trivial static SystemV erilog variables before beginning the
simulation, for example, expressions involving other variables and function calls,. This

could be useful for when you want to initialize values before executing any force, examine,
or bp commands.

Y ou cannot use run -init after any other run commands or if you have specified vsim -runinit
on the command line because all variables would have been initialized by that point.

-next

(optional) Causes the simulator to run to the next event time.
_aep

(optional) Steps the simulator to the next HDL.

Current values of local HDL variables may be observed at this time using the Locals
window. Y ou can specify the following arguments when you use -step:

-current

(optional) Instructs the simulation to step into an instance, process, or thread and stay
in the current thread. Prevents stepping into a different thread.

<n>

(optional) Moves the simulator <n> steps ahead. Moves the debugger <n> lines ahead
when you are using C Debug. Specified as a positive integer value.

-out

260

ModelSim® Command Reference Manual, v10.5¢

Commands
run

(optional) Instructs the simulation to step out of the current function or procedure and
return to the caler.

-over

(optional) Directs Model Sim to run VHDL procedures and functions, Verilog tasks
and functions but to treat them as simple statements instead of entering and tracing
them line by line.

Y ou can use the -over argument to skip over aVHDL procedures or functions,
Verilog task or functions.

When await statement or end of process is encountered, time advances to the next
scheduled activity. Model Sim then updates the Process and Source windows to reflect
the next activity.

-this "this==<class_handle>"

(optional) Instructs the simulation to step into a method of a SystemV erilog class
when “this” refers to the specified class handle. To obtain the handle of the class, use
the examine -handle command.

<class_handle> — Specifies a SystemVerilog class. Note that you must use
quotation marks (" ") with this argument.

Examples
e Advance the ssimulator 1000 timesteps.
run 1000

e Advance the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run 10.4 ms
e Advance the simulator to timestep 8000.
run @8000
e Advance the simulator into the instance /top/p.

run -step -current /top/p

Related Topics
Simulate Toolbar
step

ModelSim® Command Reference Manual, v10.5¢c 261

Commands
runStatus

runStatus

This command returns the current state of your simulation to stdout after issuing arun or step
command.

Syntax
runStatus [-full]

Arguments
o -full
(optional) Appends additional information to the output of the runStatus command.

Return Values

Table 2-4 (runStatus Command States) and Table 2-5 (runStatus -full Command Information)
show outputs of the runStatus command.

Table 2-4. runStatus Command States

State Description

ready The design isloaded and is ready to run.

break The simulation stopped before completing the requested run.
error The simulation stopped due to an error condition.

loading The simulation is currently elaborating.

nodesign There is no design loaded.

checkpoint A checkpoint is being created, do not interrupt this process.
cready The design isloaded and is ready to run in C debug mode.
initializing The user interface initialization isin progress.

Table 2-5. runStatus -full Command Information

-full Infor mation Description

bkpt stopped at breakpoint

bkpt_builtin stopped at breakpoint on builtin process

end reached end of requested run

fatal _error encountered fatal error (such as, divide by 0)
iteration_limit iteration limit reached, possible feedback 1oop
silent_halt mti_BreakSilent() called,

262 ModelSim® Command Reference Manual, v10.5¢

Commands
runStatus

Table 2-5. runStatus -full Command Information (cont.)

-full Infor mation

Description

step

run -step completed

step_builtin

run -step completed on builtin process

step_wait_suspend

run -step completed, time advanced.

user_break run interrupted do to break-key or *C (SIGINT)
user_halt mti_Break() called.
user_stop stop or finish requested from stop command, etc.

gate _oscillation

Verilog gate iteration limit reached.

simulation_stop

pli stop_simulation() called.

ModelSim® Command Reference Manual, v10.5¢

263

Commands
searchlog

searchlog

This command searches one or more of the currently open logfiles for a specified condition.

Syntax
searchlog [-command <cmd>] [-count <n>] [-deltas] [-endtime <time> [<unit>]] [-env <path>]
[-event <time>] [-expr { <expr>}] [-reverse] [-rising | -falling | -anyedge]
[-startDelta <num>] [-value <string>] <startTime> [<unit>] <pattern>
Description

It can be used to search for rising or falling edges, for signals equal to a specified value, or for
when a generalized expression becomes true.

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

If at least one match isfound, it returns the time (and, optionally, delta) at which the last match
occurred and the number of matches found, inaTcl list:

{{<time>} <matchCounts>}

where <time> isin the format <number> <unit>. If the -deltas option is specified, the delta of
the last match is aso returned:

{{<time>} <delta> <matchCounts}

If no matches are found, aTCL_ERROR isreturned. If one or more matches are found, but less
than the number requested, it is not considered an error condition, and the time of the farthest
match is returned, with the count of the matches found.

Arguments
e -command <cmd>
(optional) SpecifiesaTcl command that will be called for each event on the specified signal.
<cmd>— A Tcl command that receives four arguments and returns one of three values:

", "stop’, or ™" (empty).

"continue", "stop", or
The command will be passed four arguments: the reason for the call, the time of the event,
the deltafor the event, and the value. The reason value will be one of WLF_STARTLOG,
WLF_ENDLOG, WLF_EVENT, or WLF_WAKEUP. The function is expected to return
"continue", "stop”, or """ (empty). If "continue" or "" (empty) is returned, the search
continues, making additional callbacks as necessary. If "stop” is returned, the search stops

and control isreturned to the caller of the searchlog command.
Only searching for asingle signal is supported.
e -count <n>
(optional) Specifiesto search for the nth occurrence of the match condition.

264 ModelSim® Command Reference Manual, v10.5¢

Commands
searchlog

<n>— Any positive integer.
e -deltas

(optional) Indicates to test for amatch on simulation delta cycles. Otherwise, matches are
only tested for at the end of each simulation time step.

e -endtime <time> [<unit>]

(optional) Specifiesthe simulation time at which to end the search. By default no end timeis
specified. Must be specified after -reverse when searching backwards.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and
<unit> within curly braces ({}).

For -reverse searches the specified end time must be earlier than the specified <startTime>.
For -reverse searches the default <endTime> is 0.

e -env <path>
(optional) Specifies a path to a design region. Wildcards not allowed.
e -event <time>

(optional) Indicates to test for amatch on asimulation event. Otherwise, matches are only
tested for at the end of each simulation time step.

o -expr{<expr>}

(optional) Specifies a search for ageneral expression of signal values and simulation time.
searchlog will search until the expression evaluates to true.

{<expr>} — An expression that evaluates to a boolean true. See
“GUI_expression_format” on page 32 for the format of the expression.

e -feverse

(optional) Specifiesto search backwards in time from <startTime>. Y ou can limit the time
span for the reverse search by including the -endtime <time> argument.

e -rising
(optional) Specifies a search for rising edge on a scalar signal. This option isignored for
compound signals.

o -faling

(optional) Specifies a search for falling edge on a scalar signal. This option isignored for
compound signals.

e -anyedge

(optional) Specifiesasearch for arising or falling edge on ascaar signal. Thisoptionis
ignored for compound signals. (default)

ModelSim® Command Reference Manual, v10.5¢c 265

Commands
searchlog

-startDelta <num>

(optional) Indicates a simulation delta cycle on which to start.
<num> — Any positive integer.

-value <string>

(optional) Specifiesamatch of asingle scalar or compound signal against a specified string.
<string> — Specifies a string to be matched.

<gtartTime> [<unit>]

(required) Specifiesthe simulation time at which to start the search. The time is specified as
an integer or decimal number. Must be placed immediately before the <pattern> argument.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and
<unit> within curly braces ({}).

<pattern>

(Required unless the -expr argument is used.) Specifies one or more signal names or
wildcard patterns of signal names to search on. Must be specified as the final argument to
the searchlog command.

266

ModelSim® Command Reference Manual, v10.5¢

Commands
see

see

This command displays the specified number of source file lines around the current execution
line and places a marker to indicate the current execution line. If specified without arguments,
fivelineswill be displayed before and four lines after.

Syntax

see [<n> | <pre> <post>]
Arguments

o <N>

(optional) Designates the number of lines to display before and after the current execution
line.

o <pre>

(optional) Designates the number of lines to display before the current execution line.
e <post>

(optional) Designates the number of lines to display after the current execution line.

Examples
o Digplay 2 lines before and 5lines after the current execution line.
see25

92 :

93 : if (verbose) $display("Read/Write test done") ;
->94 Sstop (1) ;

95 end

96 : end

97 :

98 : or2 11 (

99 : .y (t_set),

H HHHHHHFH

ModelSim® Command Reference Manual, v10.5¢c 267

Commands
setenv

setenv

This command changes or reports the current value of an environment variable. The setting is
valid only for the current Model Sim session. Arguments to this command are order dependent.
Please read the argument descriptions for more information.

Syntax

setenv <varname> [<value>|

Arguments
e <varname>

(required) The name of the environment variable you wish to set or check. Must be specified
asthe first argument to the setenv command.

e <vaue>

(optional) The new value for <varname>. If you do not specify avaue, Model Sim reports
the variabl€e’ s current value.

Related Topics
unsetenv

printenv

268 ModelSim® Command Reference Manual, v10.5¢

Commands
shift

shift

This command shifts macro parameter values|eft one place, so that the value of parameter \$2 is
assigned to parameter \$1, the value of parameter \$3 is assigned to \$2, and so on. The previous
value of \$1 is discarded.

Syntax
shift

Description

The shift command and macro parameters are used in macro files. If amacro file requires more
than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc simulator state variable.
Refer to “ Simulator State Variables’ for more information.

For amacro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named, the
value of the tenth parameter becomes the value of $9 and can be accessed from within the macro
file.

Arguments
None

ModelSim® Command Reference Manual, v10.5¢c 269

Commands
show

show

This command lists HDL objects and subregions visible from the current environment.

Syntax
show [-all] [<pathname>]

Description
The objects listed include:

e VHDL — signals, processes, constants, variables, and instances.
e Verilog — nets, registers, tasks, functions, instances, variables, and memories.

The show command returns formatted results to stdout. To eliminate formatting (to use the
output in a Tcl script), use the Show form of the command instead.
Arguments
o -l
(optional) Displays all names at and below the specified path recursively.
e <pathname>

(optional) Specifies the pathname of the environment for which you want the objects and
subregions to be listed; if omitted, the current environment is assumed.

Examples
e List the names of all the objects and subregion environments visible in the current
environment.
show

e List the names of all the objects and subregions visible in the environment named /uut.
show /uut

e List the names of all the objects and subregions visible in the environment named
sub_region whichisdirectly visiblein the current environment.

show sub_region
e List the names of all the objects and subregions visible in all top-level environments.

show -all /

270 ModelSim® Command Reference Manual, v10.5¢

Commands
simstats

simstats

This command returns performance-related statistics about elaboration and simulation with the
data for each statistic on a separate line. The statistics measure the simulation kernel process
(vsimk) for asingle invocation of vsim. If you invoke vsim a second time, or restart the
simulation, the current statistics are discarded and new values are collected.

Syntax
simstats [elabcpu | elabmemory | elabtime | license | logepu | logtime | sSsimepu | Ssmmemory |
simtime | tclemdcpu | tclemdtime | totalcpu | totaltime | verbose] [kb]
Description

If executed without arguments, the command returns alist of statistics and their related units on
separate lines. For example:

Memory Statistics

mem: size after elab (VSZ) 88.89 Mb
mem: size during sim (VSZ) 97.17 Mb
Elaboration Time

elab: wall time 0.41 s
elab: cpu time 0.23 s
Simulation Time

sim: wall time 1.18 s
sim: cpu time 0.66 s
Tcl Command Time

cmd: wall time 356.39 s
cmd: cpu time 0.80 s
Total Time

total: wall time 357.98 s
total: cpu time 1.68 s

Y ou can use the simstatslist command to provide this output as a continuous display (without
line breaks).

All statistics are measured at the time you invoke simstats. See the arguments below for
descriptions of each statistic.

Units for time values are in seconds. Units for memory values are auto-scaled.

Note
D Different operating systems report these numbers differently.

Arguments
e ¢eabcpu
(optional) Returns cpu time consumed by vsim elaboration.
e elabmemory
(optional) Returns memory consumed during vsim elaboration.

ModelSim® Command Reference Manual, v10.5¢c 271

Commands

simstats
e ¢labtime
(optional) Returns wall clock time consumed by vsim elaboration.
e kb

(optional) Returns statistics in kilobyte units with no auto-scaling.
e |icense

(optional) Returns a‘ License Statistics' section that includes license statistics for checkout
time and checked-out license feature names.

e logcpu
(optional) Returns cpu time consumed by WLF logging.
e logtime
(optional) Returns wall clock time consumed by WLF logging.
e simcpu
(optional) Returns cumulative cpu time consumed by all run commands
e Simmemory

(optional) Returns memory consumed during the whole simulation, including the
elaboration memory.

e sSimtime

(optional) Returns cumulative wall clock time consumed by al run commands.
e tclcmdcpu

(optional) Returns cpu time consumed by all TCL commands, excluding run commands.
e tclcmdtime

(optional) Returns wall clock time consumed by al TCL commands, excluding run
commands.

e totalcpu

(optional) Returns total cpu time consumed by vsim command.
e totaltime

(optional) Returnstotal wall clock time consumed by vsim command.
e verbose

(optional) Displays verbose performance statistics, including an ‘elab’ report for checked-
out license feature names.

272 ModelSim® Command Reference Manual, v10.5¢

Commands
simstatslist

simstatslist

This command returns performance-related statistics about elaboration and simulation as a
continuous list (without line breaks).

Syntax
simstatslist [elabcpu | elabmemory | elabtime | logepu | logtime | sSimepu | Ssimmemory | ssimtime
| tclemdcpu | tclemdtime | totalcpu | totaltime |
Description
Use this command in place of the simstats command to display the origina statisticsin a
continuous format (without line breaks). For example:

{{elab memory} 105348} {{sim memory} 171492} {{elab time} 0.410009}
{{elab cpu time} 0.234002} {{sim time} 1.18003} {{sim cpu time} 0.655204}
{{tclemd time} 411.601} {{tclcmd cpu time} 0.795605}

{{total time} 413.191} {{total cpu time} 1.68481}

All statistics are measured at the time you invoke simstatslist. See the arguments below for
descriptions of each statistic.

Unitsfor time values are in seconds. Units for memory values are in kilobytes.

Note
D Different operating systems report these numbers differently.

Arguments
e ¢labcpu
(optional) Returns cpu time consumed by vsim elaboration.
e elabmemory
(optional) Returns memory consumed during vsim elaboration.
o celabtime
(optional) Returns wall clock time consumed by vsim elaboration.
e logcpu
(optional) Returns cpu time consumed by WLF logging.
e logtime
(optional) Returnswall clock time consumed by WLF logging.
e Simcpu
(optional) Returns cumulative cpu time consumed by all run commands

ModelSim® Command Reference Manual, v10.5¢c 273

Commands
simstatslist

e Simmemory

(optional) Returns memory consumed during the whole simulation, including the
elaboration memory.

e sSimtime

(optional) Returns cumulative wall clock time consumed by al run commands.
e tclemdcpu

(optional) Returns cpu time consumed by all TCL commands, excluding run commands.
e tclcmdtime

(optional) Returns wall clock time consumed by al TCL commands, excluding run
commands.

e totalcpu
(optional) Returns total cpu time consumed by vsim command.
e totaltime
(optional) Returns total wall clock time consumed by vsim command

274 ModelSim® Command Reference Manual, v10.5¢

Commands
stack down

stack down

This command moves down the call stack.

Syntax
stack down [n]

Description

If invoked without arguments, the command moves down the call stack by 1 level. The Locals

window displays local variables at the level.
Arguments

e n

(optional) Moves down the call stack by n levels. The default valueis 1 level.

Related Topics

stack frame

stack level

stack th

stack up

ModelSim® Command Reference Manual, v10.5¢c 275

Commands
stack frame

stack frame

This command sel ects the specified call frame.

Syntax
stack framen

Arguments
o <N>

Selects call frame number n. The currently executing frame is zero (also called the
innermost) frame, frame one is the frame that called the innermost, and so on. The highest
numbered frame is that of main.

Related Topics
stack down
stack level
stack th
stack up

276 ModelSim® Command Reference Manual, v10.5¢

Commands
stack level

stack level

This command reports the current call frame number.

Syntax
stack level

Arguments
None

Related Topics
stack down
stack frame
stack th
stack up

ModelSim® Command Reference Manual, v10.5¢ 277

Commands
stack tb

stack tb

This command displays a stack trace for the current processin the Transcript window. Thislists
the sequence of HDL function calls that have been entered to arrive at the current state for the
active process. The tb command is an alias for the stack tb command.

Syntax
th

Description
None

Arguments
None

278 ModelSim® Command Reference Manual, v10.5¢

Commands
stack up

stack up

This command moves up the call stack.

Syntax
stack up [n]

Description

If invoked without arguments, the command moves up the call stack by 1 level. The Locals

window displays local variables at the level.
Arguments

e n

(optional) Moves up the call stack by n levels. The default valueis 1 level.

Related Topics

stack down

stack frame

stack level

stack th

ModelSim® Command Reference Manual, v10.5¢c 279

Commands
status

status

This command lists summary information about currently interrupted macros.

Syntax
status [file | ling]

Description

If invoked without arguments, the command lists the filename of each interrupted macro, the
line number at which it was interrupted, and prints the command itself. It also displays any
onbreak or onerror commands that have been defined for each interrupted macro.

Arguments
o file
(optional) Reports the file pathname of the current macro.
e line
(optional) Reports the line number of the current macro.

Examples
The transcript below contains examples of resume, and status commands.

VSIM (paused) > status
Macro resume test.do at line 3 (Current macro)
command executing: "pause"
is Interrupted
ONBREAK commands: "resume"
Macro startup.do at line 34
command executing: "run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: "resume"
SIM (paused) > resume
Resuming execution of macro resume test.do at line 4

H < HF H o HHHF

Related Topics
pause
resume

280 ModelSim® Command Reference Manual, v10.5¢

Commands
step

step

The step command is an alias for the run command with the -step switch. Steps the ssmulator to
the next HDL.

Syntax
step [-current] [<n>] [-out] [-over [<n>]] [-this "this==<class_handle>"]

Description
Current values of local HDL variables may be observed at this time using the Locals window.

Y ou can control any return values after the step operation completes with the following
preference variables:

e noRunTimeMsg — Set this variable to 0 to display simulation time and delta
information or set it to 1 to disable the display of thisinformation.

e noRunStatusMsg — Set this variable to 0 to display run status information or set it to 1
to disable the display of thisinformation.

The following is an example that shows a series of run commands (the step command behaves
similarly) and how the output changes with the preference variable settings:

VSIM 1> run 105
VSIM 2> set PrefMain (noRunTimeMsg) 0
0

VSIM 3> run 112
Time: @217 ns 0

VSIM 4> set PrefMain (noRunStatusMsg) 0
0

VSIM 5> run 100
Time: @317 ns 0
Status: ready end

VSIM 6> set PrefMain (noRunTimeMsg) 1
1

VSIM 7> run 50
Status: ready end

VSIM 8> set PrefMain(noRunStatusMsg) 1
1

VSIM 9> run 55

VSIM 10>

ModelSim® Command Reference Manual, v10.5¢c 281

Commands

step

Arguments

-current

(optional) Instructs the simulation to step into an instance, process, or thread and stay in the
current thread. Prevents stepping into a different thread.

<n>
Moves the simulator <n> steps ahead. Specified as a positive integer value.
-out

(optional) Instructs the simulation to step out of the current function or procedure and return
to the caler.

-over

(optional) Directs ModelSim to run VHDL procedures and functions, Verilog tasks and
functions but to treat them as simple statements instead of entering and tracing them line by
line.

Y ou can use the -over argument to skip over aVHDL procedure or function, Verilog task or
function.

When await statement or end of process is encountered, time advances to the next
scheduled activity. Model Sim then updates the Process and Source windows to reflect the
next activity.

-this "this==<class_handle>"

(optional) Instructs the simulation to step into a method of a SystemV erilog class when
“this’ refersto the specified class handle. To obtain the handle of the class, use the examine
-handle command.

<class_handle> — Specifies a SystemVerilog class. Note that you must use quotation
marks (" ") with this argument.

Related Topics

run

Stepping Through Y our Design

282

ModelSim® Command Reference Manual, v10.5¢

Commands
stop

stop

This command is used with the when command to stop simulation in batch files. The stop
command has the same effect as hitting a breakpoint. The stop command may be placed
anywhere within the body of the when command.

Syntax
stop [-sync]
Description

Use run -continue to continue the simulation run, or the resume command to continue macro
execution. If you want macro execution to resume automatically, put the resume command at
the top of your macro file:

onbreak {resume}

Note
If you want to stop the simulation using a when command, you must use a stop command

within your when statement. DO NOT use an exit command or a quit command. The stop
command acts like a breakpoint at the timeit is evaluated.

Arguments
e -sync
(optional) Stopsthe currently running ssimulation at the next time step.
Related Topics
resume

run

ModelSim® Command Reference Manual, v10.5¢c 283

Commands
suppress

SuUppress

This command prevents one or more specified messages from displaying. Y ou cannot suppress
Fatal or Internal messages. The suppress command used without arguments returns the message
numbers of all suppressed messages.

Note
D To use the suppress command, you must have a design loaded in Model Sim. Otherwise,
Model Sim will display an error message without running the command.

Syntax

suppress [-clear <msg_number>[,<msg_number>,...]] [<msg_number>[,<msg_number>,...]]
[<code_string>[, <code_string>,...]]

Description
Edit the suppress variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.
Arguments
e -clear <msg_number>[,<msg_number>,...]
(optional) Clears suppression of one or more messages identified by message number.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

e <msg_number>[,<msg_number>,...]

(optional) A number identifying the message to be suppressed. Multiple message numbers
are specified as a comma separated list.

e <code string>[, <code_string>,...]

(optional) A string identifier of the message to be suppressed. Disables warning messagesin
the category specified by <code string>. Warnings that can be disabled include the
<code_string> name in square brackets in the warning message.

Examples
e Return the message numbers of all suppressed messages.
suppress
e Suppress messages by message number:
suppress 8241,8242,8243,8446,8447
e Suppress messages by numbers and code categories:
suppress 8241, TFMPC,CNNODP,8446,8447

284 ModelSim® Command Reference Manual, v10.5¢

Commands
suppress

e Clear message suppression for the designated messages:
suppress -clear 8241,8242

ModelSim® Command Reference Manual, v10.5¢c 285

Commands
tb

th

This (traceback) command displays a stack trace for the current process in the Transcript
window. It lists the sequence of HDL function calls that have been entered to arrive at the
current state for the active process. The tb command is an alias for the stack tb command.

Syntax
th

Description
None

Arguments
None

286 ModelSim® Command Reference Manual, v10.5¢

Commands
Time

Time

The string “Time” is used as the suffix for a collection of related commands that allow you to
perform comparisons between, operations on, and conversions of, time values for simulation.
Arguments for each command are order-dependent, as shown in the Syntax section below.

Syntax

eqTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> and <time2> are equal.
negTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> and <time2> are not equal .
[tTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> islessthan <time2>.
gtTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> is greater than <time2>.
IteTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> islessthan or equal to <time2>.
gteTime <timel>[unit] <time2>[unit]

Returnsa 1 (true) or O (false) if <timel> is greater than or equal to <time2>.
addTime <timel>[unit] <time2>[unit]

Returns the sum of adding <timel> to <time2>
subTime <timel>[unit] <time2>[unit]

Returns the value of subtracting <time2> from <timel>
mul Time <timel>[unit] <integer>

Returns the value of multiplying <timel> by an <integer>
divTime <timel>[unit] <time2>[unit]

Returns an integer, that is the value of dividing <timel> by <time2>.
Specifying 0 for <time2> resultsin an error.

intToTime <high_32bit_int> <low_32bit_int>

Returns a 64-bit time value based on two 32-bit parts of a 64-bit integer.
This command is useful when you'’ ve performed an integer calculation
that resultsin a 64-bit value and need to convert it to atime unit.

scaleTime <timel>[unit] <scale factor>

Returns atime value scaled by areal number and truncated to the
current time resolution.

ModelSim® Command Reference Manual, v10.5¢c 287

Commands
Time

Real ToTime <real>

Returns a time value equivalent to the specified real number and truncated to the
current time resolution.

vaidTime <time>

Returnsa 1 (true) or O (false) if the given string isavalid time for use with any
of these Time calculations.

formatTime {+ | -} commas | {+ | -}nodefunit | {+ | -}bestunits
Sets display properties for time values.

Description

When [unit] isleft unspecified, each of these commands assumes the current smulation time
unit, as specified by the Resolution variable in the modelsim.ini file or by using the vsim -t
command. For most commands, units of time (such asns, us, ps) can be specified independently
for each <time[1 | 2]>. See the description of each command and examples for more
information.

Arguments
o <timel>[unit]

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are:

fs— femtosecond (101° seconds)
ps — picosecond (1012 seconds)
ns — nanosecond (10°° seconds)
us — microsecond (10°® seconds)
ms — millisecond (10" seconds)
sec — second

min — minute (60 seconds)

hr — hour (3600 seconds)

Note that if you put a space between the values, you must enclose the argument in braces
({ }) or quotation marks (" ").

e <high 32bit_int> | <low_32bit_int>
<high_32bit_int>— The "high" part of the 64-bit integer.
<low_32bit_int>— The "low" part of the 64-bit integer.

288 ModelSim® Command Reference Manual, v10.5¢

Commands
Time

e <scale factor>— area number to be used as scaling factor. Common values can include:
0.25, 0.5, 1.5, 2, 10, 100

e {+|-} commas— controls whether commas are displayed in time values.
+commas — time values include commas
-commas — time values do not include commas

e {+|-}nodefunit — controls whether time values display time units

+nodefunit — time values do not include time units and will bein current time
resolution

-nodefunit — time values may include time units

e {+|-}bestunits— controls whether time values display the largest possible time unit.
For example, 8 us instead of 8,000 ns.

+bestunits — time values display the largest possible time unit
-bestunits — time values display the default time unit

Examples
e Entering the command:
>|tTime 100ns 1ms
Returns:
1

e Entering the command:
>addTime {1545 ns} {455 ns}
Returns:
2 us
e Entering the command:
>gteTime "1000 ns" "1 us”
Returns:
1
e Entering the command:
>divTime 1us 10ns
Returns:

100

ModelSim® Command Reference Manual, v10.5¢c 289

Commands
Time

¢ Entering the command:
>formatTime +bestunit
Returns:

-commas -nodefunit +bestunits

e Entering the command:
>scaleTime 3ms 1000

Returns:

3 sec

e Entering the command:
>RealToTime 1.345e04
Returns:

13450 ns

290 ModelSim® Command Reference Manual, v10.5¢

Commands
transcript

transcript

Thiscommand controls echoing of commands executed in amacro file. If no optionis specified,
the current setting is reported.

Syntax

transcript [on | off | -q | quietly]
Arguments

e On

(optional) Specifiesthat commandsin amacro file will be echoed to the Transcript window
asthey are executed.

o Off

(optional) Specifiesthat commandsin amacro file will not be echoed to the Transcript
window as they are executed.

e q
(optional) Returns" 0" if transcripting isturned off or "1" if transcripting is turned on. Useful
inaTcl conditional expression.

e (uietly

(optional) Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command.

Examples

e Commands within amacro file will be echoed to the Transcript window as they are
executed.

transcript on
e If issued immediately after the previous example, the command:
transcript

returns

Macro transcripting is turned ON.

Related Topics

Transcript Window

ModelSim® Command Reference Manual, v10.5¢c 291

Commands
transcript file

transcript file

This command sets or queries the current PrefMain(file) Tcl preference variable. Y ou can use
this command to clear atranscript in batch mode or to limit the size of atranscript file. It offers
an aternative to setting the PrefMain(file) Tcl preference variable through the GUI.

Syntax
transcript file [<filename>]

Arguments
o <filename>

(optional) Specifies a name for the transcript file. Wildcard characters are allowed, and
“stdout” or “stderr” arevalid file names. If you specify anew file, the existing transcript file
Is closed and a new transcript file opened. If you specify an empty string ("), the existing
fileis closed and no new fileis opened. If you don’t specify this argument, the current
filenameis returned.

Note
Y ou can prevent overwriting older transcript files by including a pound sign (#) in

<filename> when <filename> is arepeated string. The simulator replaces the pound
character (#) with the next available sequence number when saving a new transcript file.

Examples

e Closethe current transcript file and stops writing data to the file. Thisis a method for
reducing the size of your transcript.

transcript file ""

e Close the current transcript file named transl.txt and open anew transcript file,
incrementing the file name by 1.

transcript file trans#.txt
Closes transl.txt and opens trans2.txt.

e Thisseriesof commands results in the transcript containing only data from the second
millisecond of the simulation. The first transcript file command closes the transcript so
no datais being written to it. The second transcript file command opens anew transcript
and records datafrom 1 msto 2 ms.

transcript file ""
run 1 ms
transcript file transcript
run 1 ms
Related Topics

Creating a Transcript File

292 ModelSim® Command Reference Manual, v10.5¢

Commands
transcript file

Setting GUI Preferences
Transcript Window
transcript path

transcript sizelimit

ModelSim® Command Reference Manual, v10.5¢ 293

Commands
transcript path

transcript path

This command returns the full pathname to the current transcript file.

Syntax
transcript path

Arguments
None

Related Topics
Cresating a Transcript File
Setting GUI Preferences
Transcript Window
transcript file

294 ModelSim® Command Reference Manual, v10.5¢

Commands
transcript sizelimit

transcript sizelimit

Thiscommand sets or queriesthe current preference value for the transcript fileSizeLimit value.
If the size limit is reached, the transcript file is saved and simulation continues.

Syntax
transcript sizelimit [<size>]

Arguments
o <size>
(optional) Specifiesthe size, in KB, of the transcript file where the default is 0 or unlimited.
The actual file size may be larger by as much as one buffer size (usually about 4k),

depending on the operating system default buffer size and the size of the messages written to
the transcript.

—Note
Y ou can set the size of the transcript file with the $PrefMain (fileSizeLimit) Tcl

variable in the Preferences dialog. Refer to “ Setting GUI Preferences’ for more
information.

Related Topics
Creating a Transcript File
Setting GUI Preferences
Transcript Window
transcript file

ModelSim® Command Reference Manual, v10.5¢c 295

Commands
transcript wrapcolumn

transcript wrapcolumn

This command defines the column width when wrapping output lines in the transcript file.

Syntax
transcript wrapcolumn <integer>

Arguments
e <integer>
An integer that defines the width, in characters, before forcing aline break. The default
value is 30000.
Description

This column is somewhat soft; the wrap will occur at the first white-space character after
reaching the transcript wrapwscolumn value or at exactly the column width if no white-spaceis
found.

296 ModelSim® Command Reference Manual, v10.5¢

Commands
transcript wrapmode

transcript wrapmode

This command controls wrapping of output linesin the transcript file.

Syntax
transcript wrapmode [0 | 1| 2]
Arguments
e O
(default) Disables wrapping.
o 1

Enables wrapping, based on the value of the transcript wrapcolumn command, which
defaults to 30,000 characters.

o 2

Enables wrapping and adds a continuation character (\) at the end of every wrapped line,
except for the last.

ModelSim® Command Reference Manual, v10.5¢c 297

Commands
transcript wrapwscolumn

transcript wrapwscolumn

This variable defines the column width when wrapping output linesin the transcript file.

Usage
transcript wrapwscolumn <integer>

Arguments
e <integer>

An integer that specifies that the wrap will occur at the first white-space character after
reaching the specified number of characters. If there is no white-space, the wrap will occur
at the transcript wrapcolumn value. The default value is 27000.

298 ModelSim® Command Reference Manual, v10.5¢

Commands
tssi2mti

tssi2mti

This command is used to convert avector filein TSSI Format into a sequence of force and run
commands.

Syntax

tssizmti <signal_definition_file> [<sef_vector_file>]
Description

The stimulusis written to the standard output.

The source code for tssi2miti is provided in the examples directory as:
<install _dir>/examples/tssi2mti/tssi2mti.c

Arguments
e <signa_definition_file>

(required) Specifies the name of the TSSI signal definition file describing the format and
content of the vectors.

o <sef vector file>

(optional) Specifies the name of the file containing vectors to be converted. If noneis
specified, standard input is used.

Examples

e The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def trigger.sef > trigger.do
e Thisexample isthe same as the previous one, but uses the standard input instead.
tssi2mti trigger.def < trigger.sef > trigger.do
Related Topics

run

ModelSim® Command Reference Manual, v10.5¢c 299

Commands
ui_VVMode

ui_VVMode

This command specifies behavior when encountering Ul registration calls used by verification
packages, such as AVM or OVM. Returns the current setting when specifies without an
argument.

Syntax

ui_VVMode [full | logclass | logobj | nolog | off]

Description

Ul registration calls, Verilog system tasks specific to this product, are typically included in
verification packages such as AVM and OVM so that key information about the packagesis
available when debugging the simulation. The Ul registration calls include:

e $ui_VVInstalllnst() — Defines aregion in the context tree, which will appear in the
Structure window.

e 3ui_VVInstallObj() — Adds an object to the defined parent, which will appear in the
Objects window when the parent instance is selected in the Structure window.

e $ui_VVInstalPort() — Addsaport that is an object that connects to another component,
which will appear in the Objects window when the parent instance is selected in the
Structure window.

o $ui_VV SetFilter() — Specifies which class properties should not be shown in the GUI.

e $ui_VVSetAllow() — Specifies which class properties should be retained that were
filtered out with $ui_VV SetFilter.

Arguments

full

(optional) Enables the context registration of the Ul registration call and automatically logs
both the class type and the registered object to the WLF file.

logclass

(optional) Enables the context registration of the Ul registration call and automatically logs
the class type of the registered object to the WLF file.

logobj

(optional) Enables the context registration of the Ul registration call and automatically logs
the registered object to the WLF file

nolog

(optional) Enables the context registration of the Ul registration call, but does not
automatically log the registration to the WLF file. (default)

300

ModelSim® Command Reference Manual, v10.5¢

Commands
ui_VVMode

o Off

(optional) Disables context registration and automatic logging when encountering Ul
registration calls.

ModelSim® Command Reference Manual, v10.5¢c 301

Commands
unsetenv

unsetenv

This command del etes an environment variable. The deletion is not permanent — it isvalid only
for the current Model Sim session.

Syntax
unsetenv <varname>

Arguments
e <varname>
(required) The name of the environment variable you wish to delete.
Related Topics
setenv

printenv

302 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd add

vcd add

This command adds the specified objectsto aVCD file.

Syntax

ved add [-dumpports] [-file <filename>] [[-in] [-out] [-inout] | [-ports]] [-internal]

[-r | -r -optcells] <object_name> ...

Description

The allowed objects are Verilog nets and variables and VHDL signals of type bit, bit_vector,
std_logic, and std_logic_vector (other types are silently ignored). The command works with
mixed HDL designs.

All ved add commands must be executed at the same simulation time. The specified objects are
added to the VCD header and their subsequent value changes are recorded in the specified VCD
file. By default all port driver changes and internal variable changes are captured in thefile. Y ou
can filter the output using arguments detailed below.

Related Verilog tasks. $dumpvars, $fdumpvars

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

-dumpports

(optional) Specifies port driver changes to be added to an extended VCD file. When the ved
dumpports command cannot specify all port driver changes that will appear within the VCD
file, multiple ved add -dumpports commands can be used to specify additional port driver
changes.

-file <filename>

(optional) Specifies the name of the VCD file. This option should be used only when you
have created multiple VCD files using the vcd files command.

<filename> — A .vcd file.
-in
(optional) Includes only port driver changes from ports of mode IN.
-out
(optional) Includes only port driver changes from ports of mode OUT.
-inout
(optional) Includes only port driver changes from ports of mode INOUT.

ModelSim® Command Reference Manual, v10.5¢c 303

Commands
vcd add

-ports

(optional) Includes only port driver changes. Excludes internal variable or signal changes.
-internal

(optional) Includes only internal variable or signal changes. Excludes port driver changes.
-r | -r -optcells

(optional) Specifiesthat signal and port selection occurs recursively into subregions. If
omitted, included signals and ports are limited to the current region. When -r is used with
-optcells, it alows Verilog optimized cell ports to be visible when using wildcards. By
default, Verilog optimized cell ports are not selected even if they match the specified
wildcard pattern.

<object_name> ...

(required) Specifiesthe Verilog or VHDL object or objects to add to the VCD file. Multiple
objects may be specified by separating names with spaces. Wildcards are accepted. Must be
specified as the final argument to the ved add command.

Related Topics

vcd checkpoint

ved comment

vcd dumpports

ved dumpportsall

ved dumpportsflush

vcd dumpportslimit

vcd dumpportsoff

ved dumpportson

vcd file

ved files
ved flush

ved limit

ved off

vcd on

ved2wlf

DumpportsCollapse

Value Change Dump (VCD) Files

304

ModelSim® Command Reference Manual, v10.5¢

Commands
vcd checkpoint

vcd checkpoint

This command dumps the current values of all VCD variables to the specified VCD file. While
simulating, only value changes are dumped. Related Verilog tasks: $dumpall, $fdumpall

Syntax
ved checkpoint [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Related Topics
ved add
vcd comment
ved dumpports
vcd dumpportsall
vcd dumpportsflush
ved dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off
ved on
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 305

Commands
vcd comment

vcd comment

This command inserts the specified comment in the specified VCD file. Argumentsto this
command are order dependent. Please read the argument descriptions for more information.

Syntax
ved comment <comment string> [<filename>]

Arguments
e <comment string>

(required) Comment to be included in the VCD file. Must be enclosed by double quotation
marks or curly braces. Must be specified as the first argument to the ved comment
command.

o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Related Topics
ved add
vcd checkpoint
vcd dumpports
vcd dumpportsall
vcd dumpportsflush
ved dumpportslimit
vcd dumpportsoff
vcd dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off
ved on
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

306 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd dumpports

vcd dumpports

This command creates aVVCD file that includes port driver data.

Syntax

vcd dumpports [-compress] [-direction] [-file <filename>] [-force_direction] [-in] [-out] [-inout]

[-no_strength _range] [-unique] [-vcdstim] <object_name> ...

Description

By default all port driver changes are captured in the file. Y ou can filter the output using
arguments detailed below. Related Verilog task: $dumpports

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments

-compress

(optional) Produces a compressed VCD file. Model Sim uses the gzip compression
algorithm. It is not necessary to specify -compressif you specify a.gz extension with the
-file <filename> argument

-direction
(optional) Includes driver direction datain the VCD file.
-file <filename>

(optional) Creates aVCD file. Defaults to the current working directory and the filename
dumpports.ved. Multiple filenames can be opened during a single simulation.

<filename> — Specifies a filename. When specified with a.gz extension, thefileis
compressed.

-force_direction

(optional) Causes ved dumpports to use the specified port direction (instead of driver
location) to determine whether the value being dumped isinput or output. This argument
overrides the default use of the location of drivers on the net to determine port direction (this
is because Verilog port direction is not enforced by the language or by Model Sim).

-in

(optional) Includes ports of mode IN.

-out

(optional) Includes ports of mode OUT.
-inout

(optional) Includes ports of mode INOUT.

ModelSim® Command Reference Manual, v10.5¢c 307

Commands
vcd dumpports

e -no_strength range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the IEEE 1364 specification. Refer to Resolving Values for additional
information.

e -unique

(optional) Generates unique VCD variable names for ports even if those ports are connected
to the same collapsed net.

e -ycdstim

(optional) Ensures that port name order in the VCD file matches the declaration order in the
instance module or entity declaration. Refer to Port Order Issues for further information.

e <object_name> ...

(required) Specifies one or more HDL objectsto add to the VCD file. Y ou can specify
multiple objects by separating names with spaces. Wildcards are accepted. Must be
specified as the final argument to the ved dumpports command.

Examples
e Create aVCD file named counter.vcd of all IN portsin the region /test_design/dut/.
ved dumpports -in -file counter.ved /test_design/dut/*

e These two commands resimulate adesign from aVCD file. Refer to Simulating with
Input Valuesfrom aVCD Filefor further details.

vcd dumpports -file addern.ved /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

e Thisseries of commands creates VCD filesfor the instances proc and cache and then re-
simulates the design using the VCD filesin place of the instance source files. Refer to
Replacing Instances with Output Values from aVCD File for more information.

vcd dumpports -vcdstim -file proc.ved /top/p/*
vcd dumpports -vcdstim -file cache.ved /top/c/*
run 1000

vsim top -vcdstim /top/p=proc.vcd -vedstim /top/c=cache.vcd

Related Topics

ved add

vcd checkpoint

vcd comment

ved dumpportsall

vcd dumpportsflush

vcd dumpportslimit

308 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd dumpports

vcd dumpportsoff
vcd dumpportson
vcd file

vcd files

vcd flush

ved limit

vcd off

vcd on

ved2wif
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 309

Commands
vcd dumpportsall

vcd dumpportsall

This command creates a checkpoint in the VCD file which shows the value of al selected ports
at that time in the simulation, regardless of whether the port values have changed since the last

timestep. Related Verilog task: $dumpportsall

Syntax
vcd dumpportsall [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all

open VCD files.

Related Topics
ved add
vecd checkpoint
vcd comment
vcd dumpports
ved dumpportsflush
vcd dumpportslimit
vcd dumpportsoff
ved dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off
vcd on
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

310

ModelSim® Command Reference Manual, v10.5¢

Commands
vcd dumpportsflush

vcd dumpportsflush

This command flushes the contents of the VCD file buffer to the specified VCD file. Related
Verilog task: $dumpportsflush

Syntax
ved dumpportsflush [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics
ved add
vcd checkpoint
vcd comment
vcd dumpports
vcd dumpportsall
ved dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off
vcd on
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 311

Commands
vcd dumpportslimit

vcd dumpportslimit

This command specifies the maximum size of the VCD file (by default, limited to available disk
space). When the size of the file exceeds the limit, a comment is appended to the file and VCD
dumping is disabled.

Syntax
vcd dumpportslimit <dumplimit> [<filename>]

Description
Related Verilog task: $dumpportslimit
Arguments to this command are order dependent. Please read the argument descriptions for
more information.
Arguments
e <dumplimit>

(required) Specifies the maximum VCD file sizein bytes. Must be specified as the first
argument to the ved dumpportslimit command.

e <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics
vcd add
vecd checkpoint
vcd comment
vcd dumpports
ved dumpportsall
vcd dumpportsflush
vcd dumpportsoff
ved dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off

ved on

312 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd dumpportslimit

ved2wlf
DumpportsCollapse
Value Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢ 313

Commands
vcd dumpportsoff

vcd dumpportsoff

This command turns off VCD dumping and records all dumped port values as x.

Syntax
ved dumpportsoff [<filename>]

Description
Related Verilog task: $dumpportsoff

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics
ved add
vecd checkpoint
vcd comment
vcd dumpports
vcd dumpportsall
vcd dumpportsflush
vcd dumpportslimit
ved dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off
vcd on
ved2wilf
DumpportsCollapse
Vaue Change Dump (VCD) Files

314 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd dumpportson

vcd dumpportson

This command turns on VCD dumping and records the current values of all selected ports. This
command is typically used to resume dumping after invoking ved dumpportsoff. Related
Verilog task: $dumpportson

Syntax
vcd dumpportson [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on all
open VCD files.

Related Topics
ved add
vecd checkpoint
vcd comment
vcd dumpports
ved dumpportsall
vcd dumpportsflush
vcd dumpportslimit
ved dumpportsoff
vcd file
vcd files
vcd flush
ved limit
vcd off
vcd on
ved2wilf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 315

Commands
ved file

vcd file

This command specifies the filename and state mapping for the VCD file created by aved add
command. The vcd file command is optional. If used, it must be issued before any ved add
commands.

Syntax

vcd file [-dumpports] [-direction] [<filename>] [-map <mapping pairs>] [-no_strength range]

[-nomap] [-unique]

Description
Related Verilog task: $dumpfile

Arguments

-dumpports

(optional) Capture detailed port driver datafor Verilog portsand VHDL std_logic ports.
This option works only on ports, and any subsequent ved add command will accept only
qualifying ports (silently ignoring all other specified objects).

-direction

(optional) Includes driver direction datain the VCD file.

<filename>

(optional) Specifies the name of the VCD file that is created where the default is dump.vcd.
-map <mapping pairs>

(optional) Overrides the default mappings. Affects only VHDL signals of type std_logic.

<mapping pairs> — Specified asalist of character pairs. The first character in apair
must be one of the std_logic characters UX01ZWLH- and the second character isthe
character you wish to be recorded in the VCD file. The Tcl convention for command
strings that include spacesisto enclose them in quotation marks (" "). For example, to
map L and H to z:

ved file -map "L z H z"

-no_strength_range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the |EEE 1364 specification. Refer to Resolving Vaues for additional
information.

-nomap

(optional) Affectsonly VHDL signals of type std_logic. It specifies that the values recorded
inthe VCD file shall usethe std_logic enumeration characters of UX01ZWLH-. Thisoption
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

316

ModelSim® Command Reference Manual, v10.5¢

Commands
vcd file

VHDL VCD VHDL VCD
U X wW X
X X L 0
0 0 H 1
1 1 - X
Z z
e -unique

(optional) Generates unique VCD variable namesfor ports even if those ports are connected
to the same collapsed net.

Related Topics
ved add
vcd checkpoint
vcd comment
vcd dumpports
vcd dumpportsall
ved dumpportsflush
ved dumpportslimit
vcd dumpportsoff
ved dumpportson
vcd files
vcd flush
ved limit
vcd off
vcd on
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 317

Commands
vcd files

vcd files

This command specifies filenames and state mapping for VCD files created by the ved add
command. The vcd files command is optional. If used, it must be issued before any ved add
commands.Related Verilog task: $fdumpfile

Syntax

vcd files [-compress| [-direction] <filename> [-map <mapping pairs>] [-no_strength_range]

[-nomap] [-unique]

Arguments

-compress

(optional) Produces a compressed VCD file. Model Sim uses the gzip compression
algorithm. If you specify a.gz extension on the -file <filename> argument, ModelSim
compresses the file even if you don’t use the -compress argument.

-direction
(optional) Includes driver direction datain the VCD file.
<filename>

(required) Specifies the name of aVCD fileto create. Multiple files can be opened during a
single simulation; however, you can create only onefile at atime. If you want to create
multiple files, invoke vcd files multiple times.

-map <mapping pairs>
(optional) Overrides the default mappings. Affects only VHDL signals of type std_logic.

<mapping pairs> — Specified asalist of character pairs. The first character in apair
must be one of the std_logic characters UX01ZWLH- and the second character isthe
character you wish to be recorded in the VCD file. The Tcl convention for command
strings that include spacesisto enclose them in quotation marks (" "). For example, to
map L and H to z:

ved file -map "L z H z"

-no_strength_range

(optional) Ignores strength ranges when resolving driver values. This argument is an
extension to the |EEE 1364 specification. Refer to “Resolving Vaues’ for additional
information.

-nomap

(optional) Affectsonly VHDL signals of type std_logic. It specifiesthat the values recorded
inthe VCD file shall usethe std_logic enumeration characters of UX01ZWLH-. Thisoption
results in a non-standard VCD file because VCD values are limited to the four state
character set of x01z. By default, the std_logic characters are mapped as follows.

318

ModelSim® Command Reference Manual, v10.5¢

Commands
vcd files

VHDL VCD VHDL VCD
U X W X
X L 0
0 0 H 1
1 1 - X
Z z
e -unique

(optional) Generates unique VCD variable namesfor ports even if those ports are connected
to the same collapsed net.

Examples

The following example shows how to "mask" outputs from aVVCD file until a certain time after
the start of the ssmulation. The example uses two vcd files commands and the ved on and ved
off commands to accomplish this task.

vcd files in_inout.ved

vcd files output.ved

vcd add -in -inout -file in_inout.ved /*
vcd add -out -file output.ved /*

vcd off output.ved

run lus

vcd on output.ved

run -all

Related Topics
vcd add
vecd checkpoint
vcd comment
vcd dumpports
ved dumpportsall
vcd dumpportsflush
ved dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file
vcd flush
ved limit

ModelSim® Command Reference Manual, v10.5¢c 319

Commands
vcd files

vcd off

vcd on

ved2wif

DumpportsCollapse

Vaue Change Dump (VCD) Files

320 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd flush

vcd flush

This command flushes the contents of the VCD file buffer to the specified VCD file. This
command is useful if you want to create a complete VCD file without ending your current
simulation. Related Verilog tasks: $dumpflush, $fdumpflush

Syntax
vcd flush [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Related Topics
ved add
vecd checkpoint
vcd comment
vcd dumpports
ved dumpportsall
vcd dumpportsflush
vcd dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file
vcd files
ved limit
vcd off
vcd on
ved2wilf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 321

Commands
ved limit

vced limit
This command specifies the maximum size of aVCD file (by default, limited to available disk
space).

Syntax
vcd limit <filesize> [<filename>]

Description
When the size of the file exceeds the limit, acomment is appended to the file and VCD dumping
is disabled.
Related Verilog tasks: $dumplimit, $fdumplimit

Arguments to this command are order dependent. Please read the argument descriptions for
more information.

Arguments
o <filesize>

(Required) Specifies the maximum VCD file size, in bytes. The numerical value of
<filesize> can only be awhole number. Must be specified as the first argument to the ved
limit command.

Y ou can specify aunit of Kb, Mb, or Gb with the numerical value (units are case
insensitive). Do not insert a space between the numerical value and the unit (for example,
400Mb, not 400 Mb).

o <filename>

(Optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Examples

e Specify amaximum VCD file size of 6 gigabytes and a VCD file named
my_vcd file.ved.

ved limit 6gb my_ved_file.ved

Related Topics

vcd add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

ved dumpportsflush

322 ModelSim® Command Reference Manual, v10.5¢

Commands
ved limit

vcd dumpportslimit
vcd dumpportsoff
vcd dumpportson
vcd file

vcd files

vcd flush

vcd off

vcd on

ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 323

Commands
vcd off

vcd off

This command turns off VCD dumping to the specified file and records all VCD variable values
as x. Related Verilog tasks: $dumpoff, $fdumpoff

Syntax
vcd of f [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted, the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Related Topics
ved add
vcd checkpoint
vcd comment
vcd dumpports
vcd dumpportsall
ved dumpportsflush
ved dumpportslimit
vcd dumpportsoff
ved dumpportson
vcd file
vcd files
vcd flush
ved limit
ved on
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

324 ModelSim® Command Reference Manual, v10.5¢

Commands
vcd on

vcd on

This command turns on VCD dumping to the specified file and records the current values of all
VCD variables.

Syntax
vcd on [<filename>]

Description
By default, vcd on is automatically performed at the end of the simulation time that the ved add
command performed.
Related Verilog tasks: $dumpon, $fdumpon

Arguments
o <filename>

(optional) Specifies the name of the VCD file. If omitted the command is executed on the
file designated by the ved file command or dump.ved if ved file was not invoked.

Related Topics
ved add
vecd checkpoint
vcd comment
vcd dumpports
vcd dumpportsall
vcd dumpportsflush
vcd dumpportslimit
ved dumpportsoff
vcd dumpportson
vcd file
vcd files
vcd flush
ved limit
vcd off
ved2wlf
DumpportsCollapse
Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 325

Commands
ved2wlf

vcd2wilf

This command is a utility that trandatesaVVCD (Vaue Change Dump) fileinto a WLF file that
you can display in Model Sim using the vsim -view argument. This command only works on
V CD files containing positive time values.

Syntax

ved2wif [-splitio] [-splitio_in_ext <extension>] [-splitio_out_ext <extension>] [-nocase]
{<vcd filename> | -} <wilf filename>

Description

The ved2wlf command functions as simple one-pass converter. If you are defining abusin a
VCD file, you must specify all bus bits before the next $scope or $upscope statement appearsin
thefile. The best way to ensure that bits get converted together as a busis to declare them on
consecutive lines.

For example:
Line 21 : Svar wire 1 $ in [2] Send
Line 22 : $var wire 1 Su in [1] S$end
Line 23 : $var wire 1 # in [0] S$end

Arguments to this command are order dependent. Please read the argument descriptions for
more information.
Arguments
e -gplitio
(optional) Specifiesthat extended VCD port values are to be split into their corresponding
input and output components by creating two signals instead of just one in the resulting .wif

file. By default the new input-component signal keeps the same name as the original port
name while the output-component name is the original name with"__ 0" appended to it.

o -gplitio_in_ext <extension>
(optional) Adds an extension to input-component signal names created by using -splitio.
<extension> — Specifies a string.
o -gplitio_out_ext <extension>
(optional) Adds an extension to output-component signal names created by using -splitio.
<extension> — Specifies a string.
e -nocase
(optional) Converts all alphabetic identifiers to lowercase.

326 ModelSim® Command Reference Manual, v10.5¢

Commands
vced2wlf

o {<vcdfilename> |-}

(required) Specifies the name of the VCD file, or standard input (-), you want to translate
into aWLF file. Must be specified immediately preceding the <wlf filename> argument to
the ved2wlf command.

e <wlif filename>

(required) Specifies the name of the output WLF file. Must be specified as the fina
argument to the ved2wlf command.

Examples

e Concatenate my.vcd file and pipe standard input to ved2wlIf and save output to my.wif
file.

cat my.ved | ved2wlf - my.wif
e Redirect input from the file my.ved file to ved2wlf and save the output to my.wif file.
ved2wlf - my.wlf <my.ved

Related Topics

ved add

vcd checkpoint

vcd comment

vcd dumpports

vcd dumpportsall

ved dumpportsflush

ved dumpportslimit

vcd dumpportsoff

ved dumpportson

vcd file

vcd files

vcd flush

ved limit

vcd off

vcd on

DumpportsCollapse

Vaue Change Dump (VCD) Files

ModelSim® Command Reference Manual, v10.5¢c 327

Commands
vcom

vcom

The vcom command compiles VHDL source code into a specified working library (or to the
work library by default).
Syntax
vcom [options] <filename> [<filename> ...]
[options]:
[-87]-93|-2002 | -2008]
[-addpragmaprefix <prefix>] [-allowProtectedBeforeBody] [-amsstd | -noamsstd]
[-bindAtCompile] [-bindAtL oad]
[-check synthesis] [-nocreatelib]
[-defercheck] [-deferSubpgmCheck | -noDefer SubpgmCheck]
[-error <msg_number>[,<msg_number>,...]] [-explicit]

[(-F | -file | -f) <filename>] [-fatal <msg_number>[,<msg_number>,...]]
[-force_refresh <primary> [<secondary>]]
[-fsmimplicittrans | -nofsmimplicittrang] [-fsmresettrans | -nofsmresettrans | [-fsmsingle | -
nofsmsingle]
[-fsmverbose [b |t | w]]

[-gen_xml <design_unit> <filename>|

[-ignoredefaultbinding] [-ignorepragmaprefix <prefix>] [ignoreStandardReal V ector]
[-ignorevitalerrors] [-initoutcompositeparam | -noinitoutcompositeparam]

[-just abcep]

[-logfile <filename> | -I <filename>] [-line <number>] [-lint] [-lower]
[-Irmconfigvis]

[-mixedsvvh [b ||| r][i]] [-modelsimini <path/modelsim.ini>]
[-msglimit [all, | none,] [-|+]<msg_number>[,[-[+]<msg_number>,...]]
[-msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
[+]<msgNumber>...]]

[-nol1164] [-noaccel <package name>] [-nocasestaticerror] [-nocheck]
[-nocreatelib] [-nodbgsym] [-nofprangecheck]
[-noFunctioninline] [-noindexcheck] [-nologo] [-nonstddriverinit]
[-noothersstaticerror] [-note <msg_number> [,<msg_number>, ...]] [-novitalcheck] [-
nowarn <category number>]

[-oldconfigvis] [-optionset <optionset_name>]
[-outf <filename>]

[-pedanticerrors] [-performdefaultbinding] [-preserve] [-[w]prof=<filename>]
[-proftick=<integer>]

328 ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

[-quiet]
[-rangecheck | -norangecheck] [-refresh <primary> [<secondary>]]

[-S] [-separateConfigLibrary] [-showsubprograms | -noshowsubprograms] [-skip abcep] [-
skipsynthoffregion] [-smartdbgsym] [-source]
[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]]
[-suppress <msg_number>[,<msg_number>,...]]

[-version] [-vitalmemorycheck] [-vmake]

[-warning <msg_number>[,<msg_number>,...]] [-warning error] [-work <library name>]

Description

Y ou can invoke vcom either from within Model Sim or from the command prompt of your
operating system. Y ou can invoke this command during simulation.

Compiled libraries are dependent on the major version of Model Sim. When moving between
major versions, you must refresh compiled libraries using the -refresh argument to vcom. Thisis
not required for minor versions (letter releases).

All arguments to the vcom command are case-sensitive. For example, -WORK and -work are
not equivalent.

This command provides additional information with the -help or -h switch.

Arguments
e -87|-93|-2002 |-2008

(optional) Specifies which LRM-specific compiler to use. Y ou can also control this
behavior with the VHDL 93 variable in the modelsim.ini file. Refer to “ Differences Between
Versions of VHDL” for more information.

-87 — Enables support for VHDL 1076-1987.
-93 — Enables support for VHDL 1076-1993.
-2002 — Enables support for VHDL 1076-2002. (default)
-2008 — Enables support for VHDL 1076-2008.
e -addpragmaprefix <prefix>

(optional) Enables recognition of pragmas with a user specified prefix. If thisargument is
not specified, pragmas are treated as comments.

All regular synthesis pragmas are honored.

<prefix> — Specifies a user defined string where the default is no sting, indicated by
guotation marks.

Y ou may also set this with the AddPragmaPrefix variable in the vcom section of the
modelsim.ini file.

ModelSim® Command Reference Manual, v10.5¢c 329

Commands

vcom

-allowProtectedBeforeBody
(optional) Allows avariable of a protected type to be created prior to declaring the body.
-amsstd | -noamsstd

(optional) Specifies whether vcom adds the declaration of REAL_VECTOR to the
STANDARD package. Thisisuseful for designersusing VHDL-AMSto test digital parts of
their model.

-amsstd — REAL_VECTOR isincluded in STANDARD.
-noamsstd — REAL_VECTOR is not included in STANDARD (default).

Y ou can aso control this with the AmsStandard variable or the MGC_AMS HOME
environment variable.

-bindAtCompile

(optional) Forces Model Sim to perform default binding at compile time rather than at oad
time. Refer to “ Default Binding” for more information. Y ou can change the permanent
default by editing the BindAtCompile variable in the modelsim.ini.

-bindAtLoad

(optional) Forces Model Sim to perform default binding at load time rather than at compile
time. (Default)

-check_synthesis

(optional) Turns on limited synthesis rule compliance checking. Specifically, it checksto
see that signals read by a process are in the sensitivity list. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis variable in the modelsim.ini
file to set a permanent default.

-defercheck
(optional) Defers index checks until run time.
-deferSubpgmCheck

(optional) Forces the compiler to report array indexing and length errors as warnings
(instead of as errors) when encountered within subprograms. Subprograms with indexing
and length errors that are invoked during simulation cause the simulator to report errors,
which can potentially slow down simulation because of additional checking.

-error <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "error.” Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “Message Severity
Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

330

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

e -explicit

(optional) Directs the compiler to resolve ambiguous function overloading by favoring the
explicit function definition over the implicit function definition. Strictly speaking, this
behavior does not match the VHDL standard. However, the mgjority of EDA tools choose
explicit operators over implicit operators. Using this switch makes Model Sim compatible
with common industry practice.

e (-F|-file|-f) <filename>

(optional) -f, -file and -F: each specifies an argument file with more command-line
arguments, allowing complex argument strings to be reused without retyping. Nesting of -F,
-f and -file commands is allowed. Allows gzipped input files.

With -F only: relative file names and paths within the arguments file <filename> are
prefixed with the path of the arguments file when lookup with relative path fails. Refer to
the section “Argument Files” on page 27for more information.

e -fatal <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "fatal." Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

o -force_refresh <primary> [<secondary>]

(optional) Forces the refresh of all specified design units. By default, the work library is
updated; use -work <library _name>, in conjunction with -force_refresh, to update a
different library (for example, vcom -work <your_lib_name> -force refresh).

<primary> [<secondary>] — Specifies the entity, package, configuration, or module to
be deleted.

e If <primary> isan entity — only that entity, no related architectures, is
refreshed.

e If <primary> isapackage — the only legal value of <secondary> is“body”, and
only the package is refreshed.

e If you specify both <primary> and <secondary> — Only the <secondary>
architecture is updated, not the entity.

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/

dware 6le beta.dwpackages because /home/users/questasim/../
synopsys.attributes has changed.

ModelSim® Command Reference Manual, v10.5¢c 331

Commands

vcom

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checksisto
recompile the source code, if it isavailable.

Y ou cannot specify the <filename> argument when specifying this argument.
-fsmimplicittrans | -nofsmimplicittrans

(optional) Toggles recognition of implied same state transitions, which is off by default
(-nofsmimplicittrans).

-fsmresettrans | -nofsmresettrans

(optional) Toggles recognition of synchronous or asynchronous reset transitions, and is on
by default (-fsmresettrans).

-fsmsingle | -nofsmsingle

(optional) Toggles the recognition of VHDL FSMs where the current state variable of type
std_logic, bit, boolean, or single-bit std_logic_vector/bit_vector and Verilog single-bit
FSMs.

-fsmverbose[b |t | w]

(optional) Provides information about FSM's detected, including state reachability analysis.
b — displays only basic information.
t — displays atransition table in addition to the basic information.
w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

** Note: (vcom-1947) FSM RECOGNITION INFO

Fsm detected in : ../fpu/rtl/vhdl/serial mul.vhd

Current State Variable : s_state : ../fpu/rtl/vhdl/serial_mul.vhd(76)
Clock : clk_i

Reset States are: { waiting , busy }

State Set is : { busy , waiting }

Transition table is

B

busy => waiting Line : (114 => 114)

busy => busy Line : (111 => 111)

waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

B

When you do not specify this switch, you will receive a message similar to:

** Note: (vcom-143) Detected 'l' FSM/s in design unit
'serial mul.rtl'.

332

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

e -gen_xml <design_unit> <filename>
(optional) Produces an XML -tagged file containing the interface definition of the specified
entity.
<design_unit>— The name of an entity or design unit in the Work library. Wildcards
and multiple design unit names are not allowed.
<filename> — A user-specified name for thefile.
For example:
This option requires a two-step process where you must:
1) compile <filename> into alibrary with vcom (without -gen_xml) then
2) execute vcom with the -gen_xml switch.

vlib work
vcom counter.vhd
vcom -gen xml counter counter.xml

e -ignoredefaultbinding

(optional) Instructs the compiler not to generate a default binding during compilation. Y ou
must explicitly bind all componentsin the design through either configuration specifications
or configurations. If an explicit binding is not fully specified, defaults for the architecture,
port maps, and generic maps will be used as needed. Refer to Default Binding for more
information. Edit the RequireConfigForAllDefaultBinding modelsim.ini variable to set a
permanent default.

e -ignorepragmaprefix <prefix>

(optional) Directs vcom to ignore pragmas with the specified prefixname. All affected
pragmas will be treated as regular comments. Edit the IgnorePragmaPrefix modelsim.ini
variable to set a permanent default.

<prefix> — Specifies a user defined string.
e ignoreStandardReal V ector

(optional) Instructs ModelSim to ignore the REAL_VECTOR declaration in package
STANDARD when compiling with vcom -2008. Edit the ignoreStandardReal V ector
modelsim.ini variable to set a permanent default. For more information refer to the
REAL_VECTOR section in Help > Technotes > vhdl2008migr ation.

e -ignorevitalerrors

(optional) Directs the compiler to ignore VITAL compliance errors. The compiler till
reportsthat VITAL errorsexist, but it will not stop the compilation. Y ou should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

e -initoutcompositeparam

(optional) Causes initialization of subprogram parameters for array and record types when
the subprogram is executed in designs compiled with LRM 1076-2002 and earlier. This

ModelSim® Command Reference Manual, v10.5¢c 333

Commands

vcom

argument forces the output parametersto their default initial (“left”) values when entering a
subprogram. By default, -initoutcompositeparam is enabled for designs compiled with vcom
-2008 and later. Y ou can aso enabl e this by setting the InitiOutCompositeParam variable to
1in the modelsm.ini file.

-noi nitoutcompositeparam

(optional) Disablesinitialization of subprogram parameters for array and record types when
the subprogram is executed in designs compiled with LRM 1076-2002 and earlier. By
default, designs compiled with LRM 1076-2008 and later do not initialize subprogram
parameters for array and record types when the subprogram is executed. Y ou can also
disableinitialization of subprogram parameters for array and record types by setting the
InitiOutCompositeParam variable to 2 in the modelsim.ini file.

-just abcep
(optional) Directs the compiler to include only the following:
a— architectures
b — bodies
¢ — configurations
e — entities
p — packages

Any combination in any order can be used, but you must specify at least one choiceif you
use this switch.

-logfile <filename> | -I <filename>
(optional) Generates alog file of the compile.

-logfile <filename> — Saves transcript data to <filename>. Can be abbreviated to
-| <filename>. Overridesthe default transcript file creation set with the TranscriptFile
or BatchTranscriptFile modelsim.ini variables. Y ou can aso specify “stdout” or
“stderr” for <filename>.

-line <number>

(optional) Starts the compiler on the specified line in the VHDL sourcefile. By default, the
compiler starts at the beginning of thefile.

<number> —
-lint

(optional) Performs additional static checks on case statement rules and enables warning
messages for the following situations:

o Theresult of the built-in concatenation operator ("&") isthe actual for a subprogram
formal parameter of an unconstrained array type.

o If you specify the -BindAtCompile switch with vcom, the entity to which a
component instantiation is bound has a port that is not on the component, and for
which there is no error otherwise.

334

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

o A direct recursive subprogram call.

o Incasesinvolving class SSIGNAL formal parameters, as described in the |IEEE
Standard VHDL Language Reference Manual entitled "Signal parameters'. This
check only appliesto designs compiled using -87. If you compile using -93, it would
be flagged as awarning or error, even without the -lint argument. Can aso be
enabled using the Show_Lint variable in the modelsim.ini file.

e -lower

(optional) Forces vcom to convert uppercase lettersin object identifiers to lowercase. You
can also enable this by setting the PreserveCase variable to 0 in the modelsim.ini file.

e -Irmconfigvis

(optional, default) Forces vecom to use visibility rulesthat comply with the Language
Reference Manual when processing VHDL configurations. Refer to vcom -oldconfigvis or
the oldVHDL ConfigurationVisibility variable in the modelsim.ini file for more information.

e -mixedswh[b|l|r][i]

(optional) Facilitates using VHDL packages at the SystemVerilog-VHDL boundary of a
mixed-language design. When you compile a VHDL package with -mixedsvvh, the package
can beincluded in a SystemVerilog design asif it were defined in SystemVerilog itself.

Executing -mixedsvvh without arguments compiles VHDL vectorsin the following ways:
o VHDL bit_vectors are treated as SystemV erilog bit vectors.

o VHDL std logic_vectors, std_ulogic_vectors, and vl_logic _vectors are treated as
SystemVerilog logic vectors.

b — treats all scalars and vectorsin the package as SystemV erilog bit type
| — treats all scalars and vectors in the package as SystemVerilog logic type
r — treats all scalars and vectorsin the package as SystemV erilog reg type

i — ignores the range specified with VHDL integer types. Can be specified together
with b, |, or r, spaces are not allowed between arguments.

e -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overridesthefile path specified in the MODEL SIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the file itself. On Windows systems the path separator should be a
forward slash (/).

e -mgglimit [all, | none,] [-[+]<msg_number>[,[-[+]<msg_number>,...]

(optional) Limits the number of iterations of the specified message(s) to the default message
limit count of five, then suppresses all new instances. Refer to Suppression of Warning
Messages for more information.

all — Limits all messages to the default count except specified msgNumber(s).

ModelSim® Command Reference Manual, v10.5¢c 335

Commands

vcom

none — Limits only the specified msgNumber(s) to the default count.

[-[+] — The ‘- argument is used only with “all” to specify exclusion of specified
msgNumber(s). The ‘+ argument is used only with “none” to specify inclusion of
specific message IDs. If neither is used, the command works the same way.

Note
The ‘-’ argument can only be used with the “all” argument and the ‘+ argument can

only be used with the “none” argument. Otherwise incorrect results may appear.

<msg_number>[,<msg_number>,...] — Specifies the message number(s) to limit to
fiveiterations. Multiple messages are specified as a comma-separated list.

For example, the following limits all messages to the default count except msgNumber 1 and
msgNumber 2.

vsim -msglimit all, <msgNumberl>, <msgNumber2s

While the following, limits only msgNumber 1 and msgNumber 2 to the default count.
vsim -msglimit none, <msgNumberl>, <msgNumber2s>

-msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-

|+]<msgNumber>...]

(optional) Limits the reporting of listed messages to user-defined limit_value. Overridesthe
MsgLimitCount variable in the modelsim.ini file.

-noll64

(optional) Causes the source files to be compiled without taking advantage of the built-in
version of the IEEE std_logic 1164 package. Thiswill typically result in longer simulation
timesfor VHDL programs that use variables and signals of type std logic.

-noaccel <package name>

(optional) Turns off acceleration of the specified package in the source code using that
package.

<package name>— A VHDL package name.
-nocasestaticerror

(optional) Suppresses case statement static warnings. VHDL standards require that case
statement alternative choices be static at compile time. However, some expressions which
are globally static are allowed. This switch prevents the compiler from warning on such
expressions. If the -pedanticerrors switch is specified, this switch isignored.

-nocheck

(optional) Disables index and range checks. Y ou can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

336

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

e -nocreatelib

(optional) Stops automatic creation of missing work libraries and reverts back to 10.3x and
earlier version behavior. Overrides the Createlib modelsim.ini variable.

e -nodbgsym

(optional) Disables the generation of the symbols debugging database in the compiled
library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

Y ou should only specify this switch if you know that anyone using the library will not
require thisinformation for design analysis purposes.

e -noDeferSubpgmCheck

(optional) Causes range and length viol ations detected within subprograms to be reported as
errors (instead of as warnings). As an alternative to using this argument, you can set the
NoDeferSubpgmCheck variable in the modelsim.ini file to avalue of 1.

e -nofprangecheck
(optional) Disables range checks on floating type values only.
e -noFunctioninline

(optional) Turns off VHDL subprogram inlining for design units using alocal copy of a
VHDL package. Thismay be needed in case thelocal package hasthe same nameasan MTI
supplied package.

e -noindexcheck

(optional) Disables checking on indexing expressions to determine whether indexes are
within declared array bounds.

e -nologo
(optional) Disables display of the startup banner.
e -nonstddriverinit

(optional) Forces Model Sim to match pre-5.7c behavior ininitializing driversin a particular
case. Prior to 5.7c, VHDL ports of mode out or inout could have incorrectly initialized
driversif the port did not have an explicit initialization value and the actual signal connected
to the port had explicit initial values. Depending on a number of factors, Model Sim could
incorrectly use the actual signal'sinitial value when initializing lower level drivers. Note
that the argument does not cause all lower-level driversto use the actual signal'sinitial
value. It doesthis only in the specific cases where older versions used the actual signal's
initial value.

ModelSim® Command Reference Manual, v10.5¢c 337

Commands

vcom

-noothersstaticerror

(optional) Disables warnings that result from array aggregates with multiple choices having
"others" clauses that are not locally static. If -pedanticerrorsis specified, this switch is
ignored.

-norangecheck

(optional) Disables run time range checking. In some designs, thisresultsin a 2X speed
increase. Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck. If you run asimulation with range checking disabled, any scalar valuesthat are
out of range are indicated by showing the value in the following format: ?2(N) where N isthe
current value.

-note <msg_number> [,<msg_number>, ...]

(optional) Changes the severity level of the specified message(s) to "note. Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

-novitalcheck

(optional) Disables Vital level 1 and Vital level O checks defined in section 4 of the Vital-95
Spec (IEEE Std 1076.4-1995).

-nowarn <category number>

(optional) Selectively disables a category of warning messages. Warnings may be disabled
for all compiles viathe Main window Compile > Compile Options menu command or the
modelsim.ini file (Refer to modelsim.ini Variables).

<category_number> — Specifies one or more numbers corresponding to the categories
in Table 2-6. Multiple message categories are specified as a comma separated list.

Table 2-6. Warning Message Categories for vcom -nowarn

Category | Description

number

1 unbound component

2 process without await statement

3 null range

4 no space in time literal

5 multiple drivers on unresolved signal

6 VITAL compliance checks (“VitalChecks’ also works)
7 VITAL optimization messages

338

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

Table 2-6. Warning Message Categories for vcom -nowarn (cont.)

Category | Description

number

8 lint checks

9 signal value dependency at elaboration

10 VHDL-1993 constructsin VHDL-1987 code
14 locally static error deferred until simulation run

Multiple message categories are specified as a comma separated list.
e -oldconfigvis

(optional) Forces vcom to process visibility of VHDL component configurations consistent
with prior releases. Default behavior isto comply with Language Reference Manual
visibility rules. Refer to vcom -Irmconfigvis or the modelsim.ini variable

OldVHDL ConfigurationVisibility for more information.

e -optionset <optionset_name>

(optional) Calls an optionset as defined in the modelsim.ini file. Refer to the section
“Optionsets’ on page 26for more information.

e -outf <filename>

(optional) Specifies afileto which the final list of optionsis saved, after recursively
expanding al -f, -fileand -F files.

e -pedanticerrors

(optional) Forces display of an error message (rather than awarning) on avariety of
conditions. Refer to “Enforcing Strict 1076 Compliance” for acomplete list of these
conditions. This argument overrides -nocasestaticerror and -noothersstaticerror (refer
above).

Y ou can also view acomplete list of errors by executing the command:

verror -kind vcom -pedanticerrors

e -performdefaultbinding

(optional) Enables default binding when it has been disabled viathe
RequireConfigForAllDefaultBinding option in the modelsim.ini file.

e -preserve

(optional) Forces vcom to preserve the case of lettersin object identifiers. Can also be
enabled by setting the PreserveCase variable to 1 in the modelsm.ini file.
e -[w]prof=<filename>

(optional; -prof and -wprof are mutually exclusive) Enables CPU (-prof) or WALL (-wprof)
time based profiling and saves the profile data to <filename>. Output from these arguments
is used by Customer Support for debugging purposes.

ModelSim® Command Reference Manual, v10.5¢c 339

Commands

vcom

-proftick=<integer>

(optional) Setsthe timeinterval between the profile data collections. Default = 10.
-quiet

(optional) Disables ‘Loading’ messages.

-rangecheck

(default) Enables run time range checking. Range checking can be disabled using the
-norangecheck argument.
-refresh <primary> [<secondary>]

(optional) Regenerates a library image. By default, the work library is updated. To update a
different library, use -work <library _name> with -refresh (for example, vcom -work
<your_lib_name> -refresh).

<primary> [<secondary>] — Specifies the entity, package, configuration, or module to
be deleted.

e |If <primary> isan entity — only that entity, no related architectures, is
refreshed.

e If <primary> isapackage — the only legal value of <secondary> is“body”, and
only the package is refreshed.

¢ If you specify both <primary> and <secondary> — Only the <secondary>
architecture is updated, not the entity.

If adependency checking error occurs which prevents the refresh, use the vcom
-force_refresh argument. Refer to the vcom Examples for more information. Y ou may use a
specific design name with -refresh to regenerate alibrary image for that design, but you may
not use afile name.

Y ou cannot specify the <filename> argument when specifying this argument.

-S

(optional) Instructs the compiler not to load the standard package. This argument should
only be used if you are compiling the standard package itself.

-separateConfigLibrary

Allows the declaration of a VHDL configuration to occur in adifferent library than the
entity being configured. Strict conformanceto the VHDL standard (LRM) requiresthat they
be in the same library.

-showsubprograms | -noshowsubprograms

(optional) Toggles viewing VHDL subprogram scopes on the command line and in GUI
windows, for example, the Structure window. The default is not to show subprogram
SCOopes.

340

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

e -skip abcep
(optional) Directs the compiler to skip all:
a— architectures
b — bodies
¢ — configurations
e— entities
p — packages
Any combination in any order can be used, but one choiceisrequired if you use this switch.
e -skipsynthoffregion
(optional) Ignore al constructs within synthesis_off or translate off pragma regions.
e -smartdbgsym

(optional) Reduces the size of design libraries by minimizing the amount of debugging
symbol files generated at compile time.

Edit the SmartDbgSym variable in the modelsim.ini file to set a permanent default.
e -source

(optional) Displays the associated line of source code before each error message that is
generated during compilation. By default, only the error message is displayed.

o -stats[=[+ | -]<feature>[,[+ | -]<mode>]]
(optional) Controls display of compiler statistics sent to alogfile, stdout, or the transcript.
Specifying -stats without options sets the default features (cmd, msg, and time).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. Y ou can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disablesthe feature. Y ou can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the settings
in the Stats modelsim.ini variable.

Features

all — Display all statistics features (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

perf — Display time and memory performance statistics.

ModelSim® Command Reference Manual, v10.5¢c 341

Commands

vcom

time — (default) Display Start, End, and Elapsed times.
Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vcom -stats=cmd+verbose,perf+list. To add or subtract a mode
globally for all features, specify the modes in a comma-separated list, for example,
vcom -stats=time,perf list,-verbose. Y ou cannot specify global and feature specific
modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.
list — Display statisticsin aTcl list format when available.
verbose — Display verbose statistics information when available.

Note
D Y ou can disable all -stats features by specifying vcom -quiet.

-suppress <msg_number>[,<msg_number>,...]

(optional) Prevents the specified message(s) from displaying. The <msg_number> isthe
number preceding the message you wish to suppress. Y ou cannot suppress Fatal or Internal
messages. Edit the suppress variable in the modelsim.ini file to set a permanent default.
Refer to “Message Severity Level” for more information.

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

-version

(optional) Returns the version of the compiler as used by the licensing tools.
-vitalmemorycheck

(optional) Enables VITAL level 1 checks.

-vmake

(optional) Generates a complete record of all command line data and files accessed during
the compile of adesign. This datais then used by the vmake command to generate a
comprehensive makefile for recompiling the design library. By default, vcom stores compile
data needed for the -refresh switch and ignores compile data not needed for -refresh. The
-vmake switch forcesinclusion of all file dependencies and command line data accessed
during a compile, whether they contribute data to the initial compile or not. Executing this
switch can increase compile time in addition to increasing the accuracy of the compile. refer
to the vmake command for more information.

-warning <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

342

ModelSim® Command Reference Manual, v10.5¢

Commands
vcom

<msg_number>— A number identifying the message. Multiple message numbers are
specified as a comma separated list.

e -warning error
(optional) Reports all warnings as errors.
e -work <library_name>

(optional) Maps alibrary to the logical library work. By default, the compiled design units
are added to the work library. The specified pathname overrides the pathname specified for
work in the project file.

<library_name>— A logical name or pathname of alibrary.
o <filename>

(required, except for when you specify -refresh or -force _refresh) Specifies the name of a
file containing the VHDL source to be compiled. One filename is required; multiple
filenames can be entered separated by spaces.Wildcards may be used, for example, * .vhd.

If you don’t specify afilename, and you are using the GUI, adialog box pops up alowing
you to select the options and enter a filename.
Examples
e Compilethe VHDL source code contained in the file example.vhd.
vcom example.vhd

e ModelSim supports designs that use elements conforming to the 1987, 1993, and 2002
standards. Compile the design units separately using the appropriate switches.

vcom -87 o_unitsl.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

¢ When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in theieeelibrary.

vcom -noaccel numeric_std example.vhd

e Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration datatypesin VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there isan implicit one. Thisimplicit declaration
can be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

vcom -explicit example.vhd

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

ARITHMETIC."="(left, right)

ModelSim® Command Reference Manual, v10.5¢c 343

Commands
vcom

e The-work option specifies mylib asthe library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of ModelSim (4.6 and
later only).

vcom -work mylib -refresh

e Enablethedisplay of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vcom -stats=time,-cmd,msg

e Thefirst -stats option is ignored. The none option disables all modelsim.ini settings and
then enables the perf option.

vcom -stats=time,cmd,msg -stats=none,perf

344 ModelSim® Command Reference Manual, v10.5¢

Commands
vdel

vdel

This command deletes adesign unit from a specified library. This command provides additional
information with the -help switch.

Syntax
vdel [-lib <library_path>] [-modelsimini <path/modelsim.ini>] [-verbose]
{-dl | <primary> [<arch_name>]| -obj {<object_info>}] | -dpiobj [<object_info>] }
Arguments
o -dl
(optional) Deletes an entire library.

Caution
D Y ou cannot recover libraries once deleted. Y ou are not prompted for confirmation.

e -dpiobj [<object_info>]
(optional) Delete auto-compiled DPI object files.

<object_info> — Specifiesthe type of object to remove, as reported by the output of the
vdir -obj command. Thiswill take the form of either:

<compiler> — a string identifying the compiler, such as gcc-3.3.1.
<platform> — a string identifying the platform.

<platform-compiler> — a string identifying a compiler/platform pair, such as
linux_gcc-3.2.3.

all — Specifiesthat al objects should be removed, as reported by the output of the
vdir -obj command.

e -lib<library path>

(optional) Specifieslocation of the library that holds the design unit to be deleted. By
default, the design unit is deleted from the work library.

<library_path>— A logical name or pathname of the library.
e -modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides thefile path specified in the MODEL SIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the fileitself. On Windows systems the path separator should be a
forward slash (/).

e -0bj {<object_info>}
(optional) removes directories containing DPI object files.

ModelSim® Command Reference Manual, v10.5¢c 345

Commands
vdel

<object_info> — Specifies the type of directory to remove, as reported by the output of
the vdir -obj command. Thiswill take the form of either:

<compiler> — a string identifying the compiler, such as gcc-3.3.1.
<platform> — a string identifying the platform.

<platform-compiler> — a string identifying a compiler/platform pair, such as
linux_gce-3.2.3.

all — Specifiesthat all directories should be removed, as reported by the output of
the vdir -obj command.

e <primary> [<arch_name>]

(required unless -all is used) Specifies the entity, package, configuration, or module to be
deleted.

<arch_name> — Specifies the name of an architecture to be deleted. If omitted, all of
the architectures for the specified entity are deleted. Invalid for a configuration or a

package.
e -verbose
(optional) Displays progress messages.
Examples

e Deletethework library.
vdel -all

e Delete the synopsyslibrary.
vdel -lib synopsys -all

e Delete the entity named xor and all its architectures from the work library.
vdel xor

o Delete the architecture named behavior of the entity xor from the work library.
vdel xor behavior

e Delete the package named base from the work library.

vdel base

346 ModelSim® Command Reference Manual, v10.5¢

Commands
vdir

vdir

This command lists the contents of adesign library and checks the compatibility of a vendor
library. If vdir cannot read a vendor-supplied library, the library may not be compatible with
ModelSim.

Syntax

vdir [-| | [-prop <prop>]] [-r] [-al | [-lib <library_name>]] [<design_unit>]

[-modelsimini <path/modelsim.ini>]

Description

This command provides additional information with the -help switch.

Arguments

-all

(optional) Lists the contents of all librarieslisted in the Library section of the active
modelsim.ini file. Refer to modelsim.ini Variables for more information.

<design_unit>

(optional) Indicates the design unit to search for within the specified library. If the design
unitisaVHDL entity, its architectures are listed. By default all entities, configurations,
modules, packages, and optimized design units in the specified library are listed.

(optional) Prints the version of vcom/vlog with which each design unit was compiled, plus
any compilation options used. Also prints the object-code version number that indicates
which versions of vcom/vlog and Model Sim are compatible.

-lib <library_name>

(optional) Specifiesthelogical name or the pathname of alibrary to belisted. By default, the
contents of the work library are listed.

<library_name>— A logical name or pathname of alibrary.
-modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overridesthefile path specified in the MODEL SIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the fileitself. On Windows systems the path separator should be a
forward slash (/).

-prop <prop>
(optional) Reports on a specified design unit property.

<prop>— SpecifiesaDesign Unit Property, aslisted in Table 2-7. If you do not specify
avalue for <prop>, an error message is displayed.

ModelSim® Command Reference Manual, v10.5¢c 347

Commands

vdir

-r

(optional) Prints architecture information for each entity in the output.

Table 2-7. Design Unit Properties

Value of <prop>

Description

archcfg configuration for arch
body needs a body

cmpltime compilation time
default default options

dir source directory

dpnd depends on

entcfg configuration for entity
fulloptions Full compile options
inline module inlined

lock lock/unlock status

Irm language standard
mtime source modified time
name short name

opcode opcode format

options compile options

pdu preoptimized design unit
root optimized Verilog design root
src sourcefile

top top level model

ver version string

vliogv Verilog version

Examples

List the architectures associated with the module named and?2 that reside in the default

library work.

vdir -l and2

348

ModelSim® Command Reference Manual, v10.5¢

Commands
vdir

Library vendor : Model Technology

Maximum unnamed designs : 3

MODULE and2

Verilog version: <XOed; mSdz@l2Fz9b] 73

Version string: 3EdggZ>V3z51fE;>K[517?2

Source directory: C:\examples\dataflow verilog
Source modified time: Tue Apr 28 22:48:56 2009
HDL source file: gates.v

Source file: gates.v

Start location: gates.v:18

Opcode format: 10.la; VLOG SE Object version 51
Optimized Verilog design root: 1

VHDL language standard: 1

Compile options: -L mtiAvm -L mtiOvm -L mtiUvm -L mtiUPF
Debug Symbol file exists

HHHFHHFHHHFHFHHH

ModelSim® Command Reference Manual, v10.5¢c 349

Commands
vencrypt

vencrypt

This command encrypts Verilog and SystemV erilog code contained within encryption
envelopes. The codeis not pre-processed before encryption, so macros and other “directives are
unchanged. This allows IP vendors to deliver encrypted IP with undefined macros and
“directives.

Syntax

vencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>]
[-hea <filename>] [-logdfile <filename> | -I <filename>] [-0 <filename>] [-p <prefix>]
[-quiet] [[-stats [=[+ | -]<feature>[[+ | -] <mode>]]]

Description

Upon execution of thiscommand, the filename extension will be changed to .vp for Verilog files
(.vfiles) and .svp for SystemVerilog files (.sv files).

If the vencrypt utility processes the file (or files) and does not find any encryption directivesit
reprocesses the file using the following default encryption:

“pragma protect data method = "aesl28-cbc"

“pragma protect key keyowner = "MTI"

‘pragma protect key keyname = "MGC-DVT-MTI"

‘pragma protect key method = "rsa"

“pragma protect key block encoding = (enctype = "base64")
“pragma protect begin

The vencrypt command must be followed by a compile command — such as vlog — for the
design to be compiled.

This command provides additional information with the -help or -hel switch.

Arguments
o <filename>

(required) Specifies the name of the Verilog source code file to encrypt. One filenameis
required. Multiple filenames can be entered separated by spaces. Wildcards can be used.
Default encryption pragmas will be used, as described above, if no encryption directives are
found during processing.

e -d<dirname>

(optional) Specifies where to save encrypted Verilog files. If no directory is specified,
current working directory will be used.

<dirname> — Specifiesthe directory to contain the encrypted Verilog or SystemVerilog
files. The original file extension (.v for Verilog and .sv for SystemVerilog) will be
preserved.

350 ModelSim® Command Reference Manual, v10.5¢

Commands
vencrypt

e -e<extension>
(optional) Specifies afilename extension.
<extension> — Any apha-numeric string.
o -f <filename>

(optional) Specifies afile with more command line arguments. Allows complex arguments
to be reused without retyping. Nesting of -f optionsis allowed.

Refer to the section “ Argument Files’ on page 27 for more information.
<filename> — Specifies the name of afile containing command line arguments.
e -hea<filename>

(optional) Concatenates header information into all design files listed with <filename>.
Allows the user to pass alarge number of filesto the vencrypt utility that do not contain the
“pragma protect or “protect information about how to encrypt the file. Saves the user from
editing hundreds of filesto add in the same "pragma protect to every file.

<filename> — Specifies an existing file.
e -logfile <filename> | -I <filename>
(optional) Redirects log output to the file designated by <filename>.
<filename> — Specifies afile for saving output.
e -0 <filename>
(optional) Combines all encrypted output into asinglefile.
<filename> — Specifies afile for saving output.
o -p<prefix>
(optional) Prepends file names with a prefix.
<prefix>— Any apha-numeric string.
e -Quiet
(optional) Disables encryption messages.
o -stats[=[+ | -]<feature>[,[+ | -]<mode>]

(optional) Controls display of statistics sent to alogfile, stdout, or the transcript. Specifying
-stats without options sets the default features (cmd and msg).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. Y ou can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disablesthe feature. Y ou can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the default
settings "cmd,msg"”.

ModelSim® Command Reference Manual, v10.5¢c 351

Commands

vencrypt

Features
all — Display all statistics features (cmd, msg, perf). Mutually exclusive with none
option. When specified in a string with other options, all is applied first.
cmd — (default) Echo the command line.
msg — (default) Display error and warning summary at the end of command
execution.
none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.
perf — Display time and memory performance statistics.
time — Display Start, End, and Elapsed times. Has no effect and is ignored.

Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a

mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vencrypt -stats=scmd+verbose,perf+list. To add or subtract a
mode globally for al features, specify the modesin acomma-separated list, for
example, vencrypt -stats=time,perf,list,-verbose. Y ou cannot specify global and
feature specific modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.
list — Display statisticsin aTcl list format when available.
verbose — Display verbose statistics information when available.

Note

D vencrypt -quiet disables all default or user-specified -stats features.

Examples

e Insert header information into all design files listed.

vencrypt -h encrypt_head top.v cache.v gates.v memory.v

The encrypt_head file may look like the following:

“pragma protect data method = "aesl28-cbc"

“pragma protect author = "IP Provider"

“pragma protect key keyowner = "MTI", key method = "rsa"
“pragma protect key keyname = "MGC-DVT-MTI"

pragma protect begin

There is no “pragma protect end expression in the header file, just the header block that
starts the encryption. The “pragma protect end expression isimplied by the end of the
file. For more detailed examples, refer to "Protecting Y our Source Code" in the User’s
Manual.

e Enable the display of message count summary. Echoing of the command lineis
disabled.

352

ModelSim® Command Reference Manual, v10.5¢

Commands
vencrypt

vencrypt -stats=msg,-cmd,

e Thefirst -stats option isignored. The none option disables all default settings and then
enables the perf option.

vencrypt -stats=msg,cmd -stats=none,perf
Related Topics

Protecting Y our Source Code
vhencrypt

ModelSim® Command Reference Manual, v10.5¢c 353

Commands

verror

verror

Returns a detailed description about a message number or alist of messagesrelated to a
specified portion of the product.

Syntax
verror [-fmt | -full] <msgNum> ...
verror [-fmt | -full] [-kind <tool>] -al
verror [-kind <tool>] {-pedanticerrors | -permissive | -suppressibleerrors}

Arguments

-fmt | -full
(optional) Specifies the type and amount of information to return.
-fmt
Returns the format string used in the message.
-full
Returns the format string and compl ete text associated with the message.
[-kind <tool>] -all

(required when not specifying <msgNum>) Returns information about all messages
associated with a specified tool, where <tool> can be one of the following:

ad hm_entity mc2com gverilog
sccom scgenmod sdfcomp sm_entity
ved2wlf vcom vcovkill vdel

vdir vencrypt vgencomp vish

vlib vliog vmake vmap
vopt vsim wif wlif2log
wlfman wlfrecover

[-kind <tool>] {-pedanticerrors | -permissive | -suppressibleerrors}
(optional) Specifiesfiltering for messages according to either or both of the following:
<tool>
Any of the values allowed for the -kind argument.
-pedanticerrors

Display messages that are reported as errors due to adhering to a more strict
interpretation of the LRM.

354

ModelSim® Command Reference Manual, v10.5¢

Commands
verror

-permissive

Display messages reported as warnings that would be displayed as errors if you use
vsim -pedanticerrors.

-suppressibleerrors
Display messages that you can suppress from the command line or modelsim.ini file.
e <msgNum>

(required when not specifying -all) Specifies the message number(s) you would like more
information about. Y ou can find the message number in messages of the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsgs>

Y ou can specify <msgNum> any number of times for one verror command in a space-
separated list.

Optionally, you can specify the toolname prior to the message number, similar to how it
appears in an error message. For example:

verror vsim-5003

Examples
e If you receive the following message in the transcript:

** BError (vsim-3061) foo.v(22): Too many Verilog port connections.

and you would like more information about this message, you would type:
verror 3061
and receive the following output:

Message # 3061:

Too many Verilog ports were specified in a mixed VHDL/Verilog
instantiation. Verify that the correct VHDL/Verilog connection is
being made and that the number of ports matches.

[DOC: ModelSim User's Manual - Mixed VHDL and Verilog Designs
Chapter]

ModelSim® Command Reference Manual, v10.5¢c 355

Commands
vgencomp

vgencomp

Once a Verilog module is compiled into alibrary, you can use this command to write its
equivalent VHDL component declaration to standard output.

Syntax

vgencomp [-lib <library _name>] [-b] [-bool] [-modelsimini <path/modelsim.ini>] [-s] [-V] [-

work <name>] <module_name>

Description

Optional switches allow you to generate bit or vl_logic port types; std_logic port types are
generated by default.

This command provides additional information with the -help switch.

Arguments

-lib <library_name>

(optional) Specifiesthe working library where the default is to use the work library.
<library_name> — Specifies the path and name of the working library.

-b

(optional) Causes vgencomp to generate bit port types.

-bool

(optional) Causes vgencomp to generate boolean port types.

-modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODEL SIM environment variable.

<path/modelsim.ini> — Specifies either an absolute or relative path to the initialization
file, including the fileitself. On Windows systems the path separator should be a
forward slash (/).

-S

(optional) Used for the explicit declaration of default std_logic port types.
-V

(optional) Causes vgencomp to generate vl_logic port types.

-work <name>

(optional) Specifiesthe name of the work library, where the default is the library containing
the module.

<module_name>
(required) Specifies the name of the Verilog module to be accessed.

356

ModelSim® Command Reference Manual, v10.5¢

Commands
vgencomp

Examples

e Thisexample usesaVerilog module that

begins as Verilog source code:

module top(il, ol, o2, iol);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.
input il;
output [7:0] ol;
output [4:7] 02;
inout ([width-1:0] io1l;
endmodule

is compiled into the work library. The module

in";

After compiling, vgencomp is invoked on the compiled module:

vgencomp top
and writes the following to stdout:

component top

generic (
width intege
delay real
filename string
) ;
port (
il in
ol out
o2 out
iol inout

) ;

end component;

r 8;
4.500000;

"file.in"

std logic;

std_logic vector (7 downto 0);
std _logic vector (4 to 7);

std _logic_vector

ModelSim® Command Reference Manual, v10.5¢

357

Commands
vhencrypt

vhencrypt

This command encrypts VHDL code contained within encryption envelopes. The code is not
compiled before encryption, so dependent packages and design units do not have to exist before
encryption.

Syntax

vhencrypt <filename> [-d <dirname>] [-e <extension>] [-f <filename>]

[-hea <filename>] [-logdfile <filename> | -| <filename>] [-0 <filename>] [-p <prefix>]
[-quiet] [-stats [=[+ | -]<feature>[,[+ | -]<mode>]]

Description

Upon execution of this command, the .vhd filename extension is changed to .vhdp and the .vhdl
filename extension is changed to .vhdlp.

If the vhencrypt utility does not find any encryption directives, no output file is produced.

The vhencrypt command must be followed by a compile command — such as vcom —for the
design to be compiled.

This command provides additional information with the -help or -hel switch.

Arguments

<filename>

(required) Specifies the name of the VHDL source code file to encrypt. One filenameis
required. Multiple filenames can be entered separated by spaces. Wildcards can be used.

-d <dirname>

(optional) Specifies where to save encrypted VHDL files. If no directory is specified, the
current working directory will be used.

<dirname> — Specifies the directory to contain the encrypted VHDL files. The original
file extension (.vhd or .vhdl) will be preserved.

-e <extension>

(optional) Specifies afilename extension to be applied to the encrypted file.
<extension> — Any apha-numeric string.

-f <filename>

(optional) Specifies afile with more command line arguments. Allows complex arguments
to be reused without retyping. Nesting of -f optionsis allowed.

Refer to the section “Argument Files’ on page 27 for more information.
<filename> — Specifies the name of afile containing command line arguments.

358

ModelSim® Command Reference Manual, v10.5¢

Commands
vhencrypt

e -heac<filename>

(optional) Concatenates header information into all design files listed with <filename>.
Allowsthe user to pass alarge number of filesto the vhencrypt utility that do not contain the
encryption information (between the “protect and “protect end directives) about how to
encrypt the file. Saves the user from editing hundreds of files to add the same encryption
information into every file.

<filename> — Specifies an existing file.
e -logfile <filename> | -I <filename>
(optional) Redirects log output to the file designated by <filename>.
<filename> — Specifies afile for saving output.
e -0 <filename>
(optional) Combines all encrypted output into asinglefile.
<filename> — Specifies afile for saving output.
o -p<prefix>
(optional) Prepends encrypted file names with a prefix.
<prefix>— Any apha-numeric string.
e -quiet
(optional) Disables encryption messages.
o -stats[=[+ | -]<feature>[,[+ | -]<mode>]

(optional) Controls display of statistics sent to alogfile, stdout, or the transcript. Specifying
-stats without options sets the default features (cmd and msg).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. Y ou can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enabl es the feature and the minus character (-) disables the feature. Y ou can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the default
Settings "cmd,msg".

Features

all — Display all statistics features (cmd, msg, perf). Mutually exclusive with none
option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

ModelSim® Command Reference Manual, v10.5¢c 359

Commands
vhencrypt

perf — Display time and memory performance statistics.
time — Display Start, End, and Elapsed times. Has no effect and is ignored.
Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vhencrypt -stats=cmd+verbose,perf+list. To add or subtract a
mode globally for al features, specify the modesin acomma-separated list, for
example, vhencrypt -stats=time,perf,list,-verbose. Y ou cannot specify global and
feature specific modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.
list — Display statisticsin aTcl list format when available.
verbose — Display verbose statistics information when available.

Note
vhencrypt -quiet disables all default or user-specified -stats features.

Examples

e Enable the display of message count summary. Echoing of the command lineis
disabled.

vhencrypt -stats=msg,-cmd,

e Thefirst -stats option isignored. The none option disables all default settings and then
enables the perf option.

vhencrypt -stats=msg,cmd -stats=none,perf
Related Topics

Protecting Y our Source Code

vencrypt

360 ModelSim® Command Reference Manual, v10.5¢

Commands
view

view

This command opens the specified window. If you specify this command without arguments, it
returnsalist of all open windows in the current layout.

Syntax

view <window_type>...[-aliases|[-names] [-title { New Window Title}]
[-undock {[-icon] [-height <n>] [-width <n>] [-x <n>] [-y <n>]} | -docK]

Description

To remove awindow, use the noview command.

The view command with one or more options and no window names specified applies the
options to the currently open windows. Refer to examples for additional details.

Arguments

e <window_type>...

(required) Specifies the window type to view. Y ou do not need to type the full type name
(see the examples below); implicit wildcards are accepted; multiple window types are

accepted. Available window types are:

assertions
canaysis
covergroups
exclusions
fsmview
locals
objects
ranked
stackview
transaction

wave

atv
capacity
dataflow
fcovers
Instance
memdata
process
runmgr
structural

transcript

browser
classgraph
details

files

library
memory
profiledetail s
schematic
structure

uvmdetails

calltree
Classtree
duranked
fsmlist

list
msgviewer
project
source
tracker
watch

Not all windows are available with al variants of ModelSim and Questa SIM

e -diases

(optional) Returns alist of <window_type> aliases.

e -height <n>

(optional) Specifiesthe window height in pixels. Can only be used with the -undock switch.

ModelSim® Command Reference Manual, v10.5¢

361

Commands

view

<n>— Any non-negative integer.
-icon

(optional) Toggles the view between window and icon. Can only be used with the -undock
switch.

-names

(optional) Returns allist of valid <window_type> arguments.
-title { New Window Title}

(optional) Specifiesthe window title of the designated window.

{New Window Title} — Any string. Curly braces are needed for a string containing
spaces. Double quotes (" ") can be used in place of braces, for example "New
Window Title."

-dock
(optional) Docks the specified standal one window into the Main window.
-undock

(optional) Opens the specified window as a standal one window, undocked from the Main
window.

-width <n>

(optional) Specifies the window width in pixels. Can only be used with the -undock switch.
<n>— Any non-negative integer.

-X <n>

(optional) Specifiesthe window upper-left-hand x-coordinate in pixels. Can only be used
with the -undock switch.

<n>— Any non-negative integer.
-y <n>

(optional) Specifiesthe window upper-left-hand y-coordinate in pixels. Can only be used
with the -undock switch.

<n>— Any non-negative integer.

Examples

¢ Undock the Wave window from the Main window and makes it a standal one window.
view -undock wave

e Display an undocked Processes window in the upper left-hand corner of the monitor
with awindow size of 300 pixels, square.

view process -undock -x 0 -y 0 -width 300 -height 300
e Display the Watch and Wave windows.

362

ModelSim® Command Reference Manual, v10.5¢

Commands
view

view w
e Display the Objects and Processes windows.
view ob pr
e Open anew Wave window with My Wave Window asitstitle.

view -title {My Wave Window} wave

ModelSim® Command Reference Manual, v10.5¢c 363

Commands
virtual count

virtual count

This command reports the number of currently defined virtuals that were not read in using a
macro file.

Syntax
virtual count [-kind {implicits | explicits}] [-unsaved]
Arguments
e -kind {implicits | explicits}
(optional) Reports only a subset of virtuals.
implicits — virtual signals created internally by the product.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
e -unsaved
(optional) Reports the count of only those virtuals that have not been saved to a macro file.

Related Topics
virtual define
virtual save
virtual show
Virtual Objects

364 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual define

virtual define

This command prints to the transcript the definition of the virtual signals, functions, or regions
in the form of acommand that can be used to re-create the object.

Syntax
virtual define [-kind {implicits | explicits}] <pathname>
Arguments
e -kind {implicits | explicits}
(optional) Transcripts only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
e <pathname>

(required) Specifies the path to the virtual (s) for which you want definitions, where
wildcards are allowed.

Examples
e Show the definitions of all the virtuals you have explicitly created.

virtual define -kind explicits *

Related Topics
virtual describe
virtual show
Virtual Objects

ModelSim® Command Reference Manual, v10.5¢c 365

Commands
virtual delete

virtual delete

This command removes the matching virtuals.

Syntax
virtual delete [-kind {implicits | explicits}] <pathname>
Arguments
e -kind {implicits | explicits}
(optional) Removes only a subset of virtuals.

implicits — virtual signals created internally by the product.

explicits — virtual signals explicitly created by a user, such aswith the virtual signal
command.

Unigue abbreviations are accepted.

e <pathname>

(required) Specifies the path to the virtual (s) you want to delete, where wildcards are
alowed.

Examples
e Delete dl of the virtuals you have explicitly created.

virtual delete -kind explicits *

Related Topics
virtual signal
virtual function
Virtual Objects

366 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual describe

virtual describe

This command prints to the transcript a compl ete description of the data type of one or more
virtual signals. Similar to the existing describe command.

Syntax
virtual describe [-kind {implicits | explicits}] <pathname>
Arguments
e -kind {implicits | explicits}
(optional) Transcripts only a subset of virtuals.
implicits — virtual signals created internally by the product.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
e <pathname>

(required) Specifies the path to the virtual (s) for which you want descriptions, where
wildcards are allowed.

Examples
e Describe the datatype of all virtuals you have explicitly created.

virtual describe -kind explicits *

Related Topics
virtual define
virtual show
Virtual Objects

ModelSim® Command Reference Manual, v10.5¢c 367

Commands
virtual expand

virtual expand

This command prints to the transcript alist of all the non-virtual objects contained in the
specified virtual signal(s). Y ou can use thisto create alist of arguments for a command that
does not accept or understand virtual signals.

Syntax
virtual expand [-base] <pathname> ...

Arguments
o -base
(optional) Outputs the root signal parent in place of a subelement. For example:

ved add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vced add signala signalb signalc

e <pathname>

(required) Specifiesthe path to the signals and virtual signals to expand, where wildcards
are allowed and you can specify any number of paths.

Examples
e Add the elements of avirtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command.

vcd add [virtual expand myVirtualSignal]

Therefore, if myVirtualSgnal is a concatenation of signala, signalb.recl and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.recl {signalc(5 downto 3)}
The dice of signalc is enclosed in curly braces, because it contains spaces.
Related Topics
virtual signal
Virtual Objects

368 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual function

virtual function

This command creates a new signal, known only by the GUI (not the kernel), that consists of
logical operations on existing signals and simulation time, as described in <expressionString>.

Syntax
virtual function [-env <path>] [-install <path>] [-delay <time> <unit>] { <expressionString>}
<name>
Description

It cannot handle bit selects and slices of Verilog registers. Please see Syntax and Conventions’
on page 13 for more details on syntax.

If the virtual function references more than asingle scalar signal, it will display as an
expandable object in the Wave and Objects windows. The children correspond to the inputs of
the virtual function. This alows the function to be "expanded” in the Wave window to see the
values of each of the input waveforms, which could be useful when using virtual functions to
compare two signal values.

Virtual functions can also be used to gate the List window display.

Note
The virtual function and virtual signal commands are interchangeable. The product will

keep track of whether you’ ve created asignal or afunction with the commands and maintain
them appropriately. We document both commands because the virtual save, virtual describe,
and virtual define commands will reference your virtual objects using the correct command.

Arguments
Argumentsfor virtual function are the same asthose for virtual signal, except for the contents of
the expression string.
e -env <path>
(optional) Specifies a hierarchical context for the signal names in <expressionString> so
they don't all have to be full paths.
<path> — Specifies arelative path to the signal(s).
e -instal <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions.

<path> — Specifies arelative path to the signal(s). On Windows systems the path
separator should be aforward slash (/).

ModelSim® Command Reference Manual, v10.5¢c 369

Commands
virtual function

-delay <time> <unit>

(optional) Specifies avalue by which the virtual function will be delayed. Y ou can use
negative values to look forward in time. Refer to the examples below for more details.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,
ns, us, ms, sec, min, and hr. Y ou must enclose <time> and <unit> within curly braces

(822
{ <expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
“GUI_expression_format” on page 32.

<name>
(required) The name you define for the virtual signal.
Caseisignored unlessinstaled in aVerilog region.

Use apha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
(" ") or with curly braces ({ }).

Examples

o Createasignal /chip/sectionl/clk _n that isthe inverse of /chip/sectionl/clk.
virtual function { not /chip/sectionl/clk } clk_n

e Createastd logic_vector equivalent of aVerilog register rega and installsit as /chip/
rega_sv.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega } rega_slv

e Create aboolean signal /chip/addr_eq _fab that istrue when /chip/addr[11:0] is equal to
hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { /chip/addr[11:0] == Oxfab } addr_eq_fab

e Createasignal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
thereis no common design region for the inputs to the expression, siga_diff isinstalled
in region virtuals./Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being compared.

virtual function { gate:/chip/siga XOR rtl:/chip/siga } siga_diff

e Createavirtual signal consisting of thelogical "AND" function of /top/signal A with
/top/signal B, and delays it by 10 ns.

370

ModelSim® Command Reference Manual, v10.5¢

Commands
virtual function

virtual function -delay {10 ns} {/top/signhalA AND /top/signalB} myDelayAandB

e Create aone-bit signal outbus_diff which is non-zero during times when any bit of /chip/
outbus in the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction” operator, which takes the logical OR of all the
bits of the vector argument.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff

Commands fully compatible with virtual functions

add log and log delete describe
examine find restart
searchlog show

Commands not compatible with virtual functions

drivers force noforce
ved add when

Related Topics
virtual count
virtual define
virtual delete
virtual describe
virtual expand
virtual hide
virtual log
Virtual Objects
virtual nohide
virtual nolog
virtual region
virtual save
virtual show
virtual signal
virtual type

ModelSim® Command Reference Manual, v10.5¢c 371

Commands
virtual hide

virtual hide

This command causes the specified real or virtual signals to not be displayed in the Objects
window. Thisis used when you want to replace an expanded bus with a user-defined bus. Y ou
make the signals reappear using the virtual nohide command.

Syntax
virtual hide {{[-kind {implicits | explicits}] | [-region <path>]} <pattern>

Arguments
e -kind {implicits | explicits}
(optional) Hides only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unique abbreviations are accepted.
e -region <path>
(optional) Specifies aregion of design space in which to look for the signal names.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

e <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signalsto hide, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics
virtual nohide
Virtual Objects

372 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual log

virtual log

This command causes the simulation-mode dependent signals of the specified virtual signalsto
be logged by the kernel. If wildcard patterns are used, it will also log any normal signals found,
unless the -only option is used. Y ou unlog the signals using the virtual nolog command.
Syntax
virtual log {[-kind {implicits | explicits}] | [-region <path>]} [-recursive] [-only] [-in] [-out]
[-inout] [-internal] [-ports] <pattern>
Arguments
e -kind {implicits | explicits}
(optional) Logs only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
e -region <path>
(optional) Specifies aregion of design space in which to look for signalsto log.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

e -recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

e -only

(optional) Specify that only virtual signals (as opposed to all signals) found by a <pattern>
containing awildcard should be logged.

e -in
(optional) Specifiesthat the kernel log data for ports of mode IN whose names match the
specification.

e -Out

(optional) Specifiesthat the kernel log data for ports of mode OUT whose names match the
specification.

e -inout

(optional) Specifiesthat the kernel log data for ports of mode INOUT whose nhames match
the specification.

ModelSim® Command Reference Manual, v10.5¢c 373

Commands
virtual log

e -internd

(optional) Specifiesthat the kernel log data for internal (non-port) objects whose names
match the specification.

e -ports
(optional) Specifiesthat the kernel log datafor all ports.
o <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signalsto log, where you can specify any number of names or wildcard patterns.

Related Topics

Virtual Objects
virtual nolog

374 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual nohide

virtual nohide

This command reverses the effect of avirtual hide command, causing the specified real or
virtual signals to reappear the Objects window.

Syntax
virtual nohide {[-kind {implicits | explicits}] | [-region <path>]} <pattern>

Arguments
e -kind {implicits | explicits}
(optional) Unhides only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
e -region <path>
(optional) Specifies aregion of design space in which to look for the signal hames.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

o <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to hide, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics
virtual hide
Virtual Objects

ModelSim® Command Reference Manual, v10.5¢c 375

Commands
virtual nolog

virtual nolog

This command reverses the effect of avirtual log command. It causes the simulation-dependent
signals of the specified virtual signalsto be excluded ("unlogged") by the kernel. If wildcard
patterns are used, it will also unlog any normal signals found, unless the -only option is used.

Syntax

virtual nolog {[-kind {implicits | explicits}] | [-region <path>]} [-recursive] [-only] [-in] [-out]

[-inout] [-internal] [-ports] <pattern>

Arguments

-kind {implicits | explicits}
(optional) Excludes only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.
-region <path>
(optional) Specifies aregion of design space in which to look for signals to unlog.

<path> — Specifies an absolute or relative path to the signal(s). On Windows systems
the path separator should be aforward slash (/).

-recursive

(optional) Specifiesthat the scope of the search isto descend recursively into subregions. If
omitted, the search is limited to the selected region.

-only

(optional) Specify that only virtual signals (as opposed to all signals) found by a <pattern>
containing awildcard should be unlogged.

-in

(optional) Specifies that the kernel exclude data for ports of mode IN whose names match
the specification.

-out

(optional) Specifiesthat the kernel exclude datafor ports of mode OUT whose names match
the specification.

-inout

(optional) Specifies that the kernel exclude data for ports of mode INOUT whose names
match the specification.

376

ModelSim® Command Reference Manual, v10.5¢

Commands
virtual nolog

e -internd

(optional) Specifiesthat the kernel exclude datafor internal (non-port) objects whose names
match the specification.

e -ports
(optional) Specifiesthat the kernel exclude datafor all ports.
o <pattern>

(required) Indicates which signal names or wildcard patterns should be used in finding the
signals to unlog, where wildcards are allowed and you can specify any number of names or
patterns.

Related Topics
virtual log
Virtual Objects

ModelSim® Command Reference Manual, v10.5¢c 377

Commands
virtual region

virtual region

This command creates a new user-defined design hierarchy region.

Note
D Virtual regions cannot be used in the when command.

Syntax
virtual region <parentPath> <regionName>

Arguments
o <parentPath>
(required) The full path to the region that will become the parent of the new region.
e <regionName>
(required) The name you want for the new region.

Related Topics
virtual function
virtual signd
Virtual Objects

378 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual save

virtual save

This command saves the definitions of virtuals to afile named virtual.do in the current
directory.

Syntax
virtual save [-kind {implicits | explicits}] [-append] [<filename>]

Arguments
e -kind {implicits | explicits}
(optional) Saves only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits— virtual signals explicitly created by a user, such as with the virtual signal
command.

Unigue abbreviations are accepted.

e -append

(optional) Specifiesto save only virtualsthat are not already saved or weren't read in from a
macro file. These unsaved virtuals are then appended to the specified or default file.

o <filename>

(optional) The name of the file containing the definitions. If you don’t specify <filename>,
the default virtual filename (virtuals.do) will be used. Y ou can specify a different default in
the pref.tcl file.

Related Topics
virtual count
Virtual Objects

ModelSim® Command Reference Manual, v10.5¢c 379

Commands
virtual show

virtual show

This command lists the full path names of all explicitly defined virtuals.

Syntax
virtual show [-kind {implicits | explicits}]
Arguments
e -kind {implicits | explicits}
(optional) Lists only a subset of virtuals.
implicits — virtual signals created internally by the tool.

explicits — virtual signals explicitly created by a user, such aswith the virtual signal
command.

Unigue abbreviations are accepted.
Related Topics
virtual define
virtual describe
Virtual Objects

380 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual signal

virtual signal

This command creates a new signal, known only by the GUI (not the kernel), that consists of
concatenations of signals and subelements as specified in <expressionString>.

Syntax
virtual signal [-env <path>] [-install <path>] [-delay <time> <unit>] { <expressionString>}
<name>
Description

It cannot handle bit selects and slices of Verilog registers. Please see “ Concatenation of Signals
or Subelements’ on page 39 for more details on syntax.

Note
The virtual function and virtual signal commands are interchangeable. The product will

keep track of whether you’ ve created asignal or afunction with the commands and maintain
them appropriately. We document both commands because the virtual save, virtual describe,
and virtual define commands will reference your virtual objects using the correct command.

Arguments
e -env <path>

(optional) Specifies a hierarchical context for the signal namesin <expressionString> so
they don't all have to be full paths.

<path> — Specifies arelative path to the signal(s). On Windows systems the path
separator should be aforward slash (/).

e -instal <path>

(optional) Causes the newly-created signal to become a child of the specified region. If
-install is not specified, the newly-created signal becomes a child of the nearest common
ancestor of all objects appearing in <expressionString>. If the expression references more
than one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Signals.

<path> — Specifies arelative path to the signal(s). On Windows systems the path
separator should be aforward slash (/).

e -delay <time> <unit>

(optional) Specifies avalue by which the virtual function will be delayed. Y ou can use
negative values to look forward in time. Refer to the examples below for more details.
<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid VHDL time units are: fs, ps,

ModelSim® Command Reference Manual, v10.5¢c 381

Commands
virtual signal

ns, us, ms, sec, min, and hr. Y ou must enclose <time> and <unit> within curly braces
(822
e {<expressionString>}

(required) A text string expression, enclosed in curly braces ({ }) using the
“GUI_expression_format” on page 32.

e <name>
(required) The name you define for the virtual signal.
Caseisignored unlessinstaled in aVerilog region.

Use alpha, numeric, and underscore characters only, unless you are using VHDL extended
identifier notation.

If using VHDL extended identifier notation, <name> needs to be quoted with double quotes
(" ") or with curly braces ({ }).

Examples

e Reconstruct a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii aredl scalars of the sametype.

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_ 04 & a 03 & a_02 &
a0l&ao00)}a

e Reconstruct abus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -env sim:chip.alu
{ (concat_range [4:0])&{a_04,a 03,a 02,a 01,a 00}}a

e Create asignal sim:/testbench/stuff which is arecord type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of
type integer, /chipa/alu/ais of type std_logic_vector, and /chipa/decode/inst is a user-
defined enumeration.

virtual signal -install sim:/testbench
{ /chipa/alu/a(19 downto 13) & /chipa/decode/inst & /chipa/mode } stuff

e Createavirtual signal that isthe same as /top/signal A except it is delayed by 10 ps.
virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

o Create athree-bit signal, chip.address mode, as an alias to the specified bits.
virtual signal { chip.instruction[23:21] } address_mode

e Concatenate signals a, b, and c with the literal constant ‘000’ .
virtual signal {a & b & ¢ & 3'b000} myextendedbus

e Add three missing bitsto the bus num, creates a virtual signal fullbus, and then adds that
signal to the Wave window.

382 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual signal

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

Reconstruct a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (for example, num28, num27,
and so on) represented by the ... in the syntax above.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" } fullbus
add wave -unsigned fullbus

Create atwo-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit istrue (1).
Alternatively, if bold does not equal bnew, the second bit isfalse (0). Each
subexpression is evaluated independently.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

Create signal newbus that is a concatenation of busl (bit-reversed) and bus2[7:4] (bit-
reversed). Assuming busl has indices running 7 downto 0, the result will be
newbus[11:0] with the upper 8 bits being bus1[0:7] and the lower 4 bits being bus2[4.7].
See “ Concatenation of Signals or Subelements’ on page 39 for further details.

virtual signal {(concat_reverse)(busl & bus2[7:4])} newbus

Commands fully compatible with virtual signals

add list add log or log add wave
delete describe examine
find force and noforce restart
searchlog show

Commands compatible with virtual signals using [virtual expand <signal>]

drivers

ved add

Commands not currently compatible with virtual signals

e when

Related Topics

virtual count

virtual describe

virtual log

virtual region

ModelSim® Command Reference Manual, v10.5¢c 383

Commands
virtual signal

virtual function
virtual define
virtual expand
virtual nohide
virtual save
virtual type
virtual delete
virtual hide
virtual nolog
virtual show
Virtual Objects

384 ModelSim® Command Reference Manual, v10.5¢

Commands
virtual type

virtual type

This command creates a new enumerated type known only by the GUI, not the kernel. Virtual
types are used to convert signal valuesto character strings. The command works with signed
integer values up to 64 bits.

Syntax
virtual type -delete <name> | {<list_of strings>} <name>

Description
Virtual types cannot be used in the when command.

Note
If you are using SystemV erilog, you can also convert signal valuesto character strings using

associative arraysin your code. See the SystemVerilog LRM for more information.

Arguments
e -delete <name>
(Required if not defining atype.) Deletes a previously defined virtual type.
<name> — The name you gave the virtual type when you originally defined it. .
o {<list_of strings>}

(Required if -deleteis not used.) A list of values and their associated character strings.
Values can be expressed in decimal or based notation and can include "don’t-cares" (see
examples below). Three kinds of based notation are supported: Verilog, VHDL, and C-
language styles. The values are interpreted without regard to the size of the bus to be
mapped. Bus widths up to 64 bits are supported.

If the string contains spaces the string must be enclosed in quotation marks (“) If they
contain special characters square brackets, curly braces, backslashes...), they need to be
quoted within curly braces.

See the examples below for further syntax.
e <name>

(Required if -delete is not used.) The user-defined name of the virtual type. Caseis not
ignored. Use alpha, numeric, and underscore characters only, unless you are using VHDL
extended identifier notation. If using VHDL extended identifier notation, <name> needs to
be quoted with double quotes (" ") or with curly braces ({ }).

Examples

e Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List, or Objects window, the string "state0" will appear when
mysignal == 0, "statel" when mysignal == 1, "state2" when mysignal == 2, and so on.

ModelSim® Command Reference Manual, v10.5¢c 385

Commands
virtual type

virtual type {stateO statel state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

Use sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It showsthe variety of syntax that can be used for values. The value "default”
has special meaning and corresponds to any value not explicitly specified.

virtual type {{O NULL_STATE} {1 st1} {2 st2} {Ox04 st3} {16'h08 st4} \
{'h10 st5} {16#20 st6} {Ob01000000 st7} {Ox80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus

add wave myConvertedBus

Delete the virtua type "mystateType".
virtual type -delete mystateType

Create avirtual type that includes "don’'t-cares" (the ‘-’ character).
virtual type {{Ox01-- add}{0x02-- sub}{default bad}} mydecodetype

Create avirtual type using amask for "don’t-cares."” The middle field is the mask, and
the mask should have bits set to 1 for the bits that are don't care.

virtual type {{0x0100 Oxff add}{0x0200 0xff sub}{default bad}} mydecodetype

Related Topics

virtual function
Virtual Objects

386

ModelSim® Command Reference Manual, v10.5¢

Commands
vlib

viib

This command creates adesign library. Y ou must use vlib rather than operating system
commandsto create alibrary directory or index file.

Syntax
vlib -help

vlib [-short | -dos | -long | -unix] [-dirpath <pathname>] [-format { 1|3 |4 }]
[-type {directory | archive | flat}]

[{-lock | -unlock} <design unit>] [-locklib | -unlocklib] [-compress | -nocompress]
<library_name>

Description

If the specified library aready exists asavalid ModelSim library, the vlib command will exit
with a warning message without touching the library.

This command provides additional information with the -help switch.

Arguments
e -cOmpress | -nocompress

(optional) Defines whether some compiled results are stored in the library in a compressed
form.

-compress — Compression occurs, producing smaller libraries. However, this can slow
down your subsequent executions of the vopt command.

-nocompress — (default) No compression is made on the libraries.
e -dirpath <pathname>

(optional) Specifiesthe location of aworking directory to be stored in the library in order to
override the current working directory. This allows you hide the directory path information.

Caution
D Use of this argument is not recommended.

For example, if you use -dirpath to override the working directory information, then the
Model Sim user interface will not be able to find the source filesif the end user selects
something in the design and asks to see the declaration.

e -dos

(optional) Specifiesthat subdirectoriesin alibrary have names that are compatible with
DOS. Not recommended if you use the vmake utility.

On by default for ModelSim PE.

ModelSim® Command Reference Manual, v10.5¢c 387

Commands
vlib

o -format{1|3|4}

(optional) Prepares alibrary for conversion to be compatible with a previous release, by
altering the _info file.

1 — alowsyou to convert alibrary to be compatible with the 6.2 series and earlier.

3 — alowsyou to convert alibrary to be compatible with the 6.3 series and newer.

4 — allows you to convert alibrary to be compatible with the 10.2 series and newer.
The usage flow is:

\\1) Using a current release of the simulator, run:
vlib -format 1 current 1lib
vcom -refresh -work current lib
\\ to prepare current 1lib for conversion back to a 6.2 release

A\
\\2) Using a 6.2 release of the simulator, run:
vcom -refresh -work current 1lib
\\ to refresh current lib for use with the previous release

e -long
(optional) Interchangeable with the -unix argument.
e {-lock |-unlock} <design unit>

(optional) Locks an existing design unit so it cannot be recompiled or refreshed. The
-unlock switch reverses this action. File permissions are not affected by these switches.

e -locklib | -unlocklib

(optional) Locks a complete library so that compilation cannot target the library and the
library cannot be refreshed. The -unlocklib switch reverses this action. File permissions are
not affected by these switches.

e -short
(optional) Interchangeable with the -dos argument.
e -type{directory | archive | flat}
(optional) Specifiesthe type of library you want to create.

directory — directory-based, legacy library. Use this option when working in aflow
requiring the vmake command.

archive — archive library (replaces vlib -archive option).
flat — (default) condensed library without design unit directories.
® -UNiX

(optional) Specifiesthat subdirectoriesin alibrary may have long file names that are NOT
compatible with DOS.

e <library_name>
(required) Specifies the pathname of the library to be created.

388 ModelSim® Command Reference Manual, v10.5¢

Commands
vlib

Examples

e Createthedesign library design. You can define alogical name for the library using the
vmap command or by adding aline to the library section of the modelsim.ini file that is

located in the same directory.

vlib design

e Createthedesign library uut and specifiesthat any design units compiled into the library
are created as archives.

vlib -type archive uut

ModelSim® Command Reference Manual, v10.5¢c 389

Commands
viog

viog

The viog command compiles Verilog source code and SystemV erilog extensionsinto a
specified working library (or to the work library by default). Compressed SystemV erilog source
files (those compressed with zlib) are accepted.

Syntax
vlog [options] <filename> [<filename> ...]
[options]:
[-93]

[-addpragmaprefix <prefix>]
[-compat] [-compile_uselibg=<directory _name>]] [-convertallparams] [-cuname
<package _name>] [-cuautoname=[file | du]]

[+definet<macro_name>[=<macro_text>]] [-deglitchalways | -nodeglitchalways]
[+delay_mode_distributed] [+delay_mode path] [+delay _mode_unit]
[+delay_mode_zero] [-dirpath <pathname>] [-dpiforceheader] [-dpiheader <filename>]

[-E <filename>] [-Edebug <filename>] [-enumfirstinit] [-Epretty <filename>]
[-error <msg_number>[,<msg_number>,...]]

[(-F | -file | -f) <filename>] [-force refresh <design_unit>]
[-fsmimplicittrans | -nofsmimplicittrang] [-fsmresettrans | -nofsmresettrans | [-fsmsingle | -
nofsmsingle]
[-fsmverbose[b | t | w]] [-fsmxassign | -nofsmxassign |

[-gen_xml <design_unit> <filename>]
[-hazards]

[-ignorepragmaprefix <prefix>] [+incdir+<directory>] [-incr | -noincr]
[-isymfile] [+iterevaluation]

[+libcell | +nolibcell] [+libext+<suffix>]
[-libmap <pathname>] [-libverbose=libmap] [-libmap_verbose] [+librescan] [-line
<number>]
[-lint]
[-logfile <filename> | -I <filename>] [-Irmclassinit]

[+maxdelays] [+mindelays] [-mixedansiports] [-mixedsvvh [b | s| V]]
[-mfcu[=macro] | -sfcu] [-modelsimini <path/modelsim.ini>]
[-msglimit [all, | none,] [-|+]<msg_number>[,[-[+]<msg_number>,...]]
[-msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
[+]<msgNumber>...]]

[-nocreatelib] [-nodbgsym]

[-noForceUnsignedToV hdlInteger] [-nologo] [-nooverrideundef] [+nospecify]
[-note <msg_number>[,<msg_number>,...]] [+notimingchecks]

390 ModelSim® Command Reference Manual, v10.5¢

Commands
viog

[-novtblifixup] [+nowarn<CODE>] [-nowarn <category number>]

[-optionset <optionset_name>] [-outf <filename>] [-override precision]
[-override_timescale[=]|[]<time_unit>/ <time_precision>] [-O0]

[-pedanticerrorg] [-permissive] [-permit_defunct_sv] [-printinfilenameg =<filename>]]

[-quiet]

[-R [<simargs>]] [-refresh]

[-s] [-sfcu] [-skipprotected] [-skipprotectedmodul €]
[-skipsynthoffregion] [-smartdbgsym] [-source]
[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]
[-suppress <msg_number>[,<msg_number>,...]] [-sV]
[-svext=[+]-]<extension>[,[+|-] <extension>]...[sceq]]
[-svfilesuffix=<extension>[,<extension>...] <filename>]
[-svinputport=net | var | relaxed] [-svpkgcasesens]
[-svO5compat] [-svO9compat] [-sv12compat]

[-timescalg]=]|[]<time_units>/<time_precision>] [+typdelays]
[-ul
[-v <library_file>] [-version] [-vlogOlcompat] [-vliog95compat] [-vmake]

[-warning <msg_number>[,<msg_number>,...]] [-warning error] [-warnrbw]
[-work <library_name>] [-writetoplevels <fileName>]

[-y <library_directory>]

Description
The viog command may be invoked from within Model Sim or from the operating system
command prompt. It may also be invoked during simulation.

Compiled libraries are major-version dependent. When moving between major versions, you
have to refresh compiled libraries using the -refresh argument to vlog. Thisis not true for minor
versions (letter releases).

All arguments to the viog command are case sensitive: -WORK and -work are not equivalent.

SystemVerilog requires that the default behavior of the viog command isto treat each Verilog
design file listed on the command line as a separate compilation unit. To treat multiple files
listed within a single command line as a single compilation unit, use either the vlog -mfcu
argument or the MultiFileCompilationUnit modelsim.ini file variable.

This command provides additional information with the -help switch.

ModelSim® Command Reference Manual, v10.5¢c 391

Commands

viog

Arguments

-93

(optional) Specifiesthat the VHDL interface to Verilog modules use VHDL 1076-1993
extended identifiersto preserve case in Verilog identifiers that contain uppercase |etters.

-addpragmaprefix <prefix>

(optional) Enables recognition of pragmas with a user specified prefix. If thisargument is
not specified, pragmas are treated as comments.

All regular synthesis pragmas are honored.

<prefix> — Specifies a user defined string where the default is no string, indicated by
quotation marks (“*).

Y ou may also set this with the AddPragmaPrefix variable in the vlog section of the
modelsim.ini file.

-compat
(optional) Disables optimizations that result in different event ordering than Verilog-XL.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
whereit isinefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. Refer to “Event Ordering in Verilog Designs” for additional information.

-compile_uselibs[=<directory name>]

(optional) Locates source files specified in a "uselib directive (Refer to “Verilog-XL uselib
Compiler Directive™), compiles those files into automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. If adirectory nameis
not specified, Model Sim uses the name specified in the MTI_USELIB_DIR environment
variable. If that variable is not set, Model Sim creates the directory mti_uselibsin the current
working directory.

-convertallparams

(optional) Enables converting parameters not defined in ANSI style to VHDL generics of
type std_logic_vector, bit_vector, std logic, vl_logic, vl_logic_vector, and bit.

-cuname <package name>

(optional) Used only in conjunction with -mfcu. The -cuname argument names the
compilation unit (package_name) being created by vlog. The named compilation unit can
then be specified on the vsim command line, a ong with the <top> design unit. The purpose
of doing so isto force elaboration of specified compilation unit package, thereby forcing
elaboration of anecessary ‘bind’ statement within that compilation unit that would
otherwise not be elaborated. An example of the necessary commandsis.

vlog -cuname pkg name -mfcu filel.sv file2.sv
vsim top pkg name

392

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

Y ou need to do thisonly in cases where you have a‘bind’ statement in a module that might
otherwise not be elaborated, because no module in the design depends on that compilation
unit. In other words, if amodule that depends on that compilation unit exists, you don’t need
to force the elaboration, for it occurs automatically. Also, if you are using qverilog to
compile and simulate the design, this binding issue is handled properly automatically.

e -cuautoname=[file | du]
(optional) Specifiesthe method for naming $unit library entries.
file— (default) Base the name on first file in on the command line.

du — Base the name on the first design unit following items found in the $unit scope.
This option is useful for cases where you have multiple viog command lines that
specify the same file asthe first entry.

e +definet<macro_name>[=<macro_text>|

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

“define <macro name> <macro_ texts>

Optionally, you can specify more than one macro with a single +define. For example:

vlog +define+one=rl+two=r2+three=r3 test.v

A command line macro overrides a macro of the same name defined with the “define
compiler directive. It will also override all “undef directivesin the RTL code — i.e., "undef
for that macro will be ignored. Use the -nooverrideundef option for backward compatibility
with previous operation. If amacro is defined using +define command line option and the
-nooverrideundef option is used, the “undef will be honored for that macro.

e -deglitchalways | -nodeglitchaways

Controls the behavior related to zero-delay oscillations among always _comb and always
@* combinatorial logic blocks, aswell asregular always blocks, that produce glitches on
the variables they write.

-deglitchalways — (default) Reduces the incidents of zero delay oscillations among the
affected blocks.

-nodeglitchalways — Disables the functionality. A side effect of this behavior is that
time zero races involving the glitch-producing always blocks may resolvein a
different order.

e +delay _mode distributed

(optional) Disables path delays in favor of distributed delays. Refer to “Delay Modes” for
details.

e +delay_mode path
(optional) Sets distributed delays to zero in favor of using path delays.

ModelSim® Command Reference Manual, v10.5¢c 393

Commands

viog

+delay_mode_unit

(optional) Sets path delays to zero and non-zero distributed delays to one time unit.
+delay_mode zero

(optional) Sets path delays and distributed delays to zero.

-dirpath <pathname>

(optional) Specifiesthe location of aworking directory to be stored in the library in order to
override the current working directory. This allows you hide the directory path information.

Caution
D Use of this argument is not recommended.

For example, if you use -dirpath to override the working directory information, then the
Model Sim user interface will not be able to find the source filesif the end user selects
something in the design and asks to see the declaration.

-dpiforceheader

(optional) Forces the generation of a DPI header file even if it will be empty of function
prototypes.

-dpiheader <filename>

(optional) Generates a header file that may then be included in C source code for DPI import
functions. Refer to “DPI Use Flow” for additional information.

-E <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred
and copies that text to an output file. Thisincludes text read from source files specified by
using the -v or -y argument.

<filename> — Specifies a name for the debugging output file. Wildcards are not
allowed.

Generally, preprocessing consists of the following compiler directives. "ifdef, "else, "elsif,
“endif, “ifndef, "define, "undef, “include.

The “line directive attempts to preserve line numbers, file names, and level in the output file
(per the 1800-2009 LRM). White space is usually preserved, but sometimesit may be
deleted or added to the output file.

-Edebug <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred
and copies that text to a debugging output file.

<filename> — Specifies a name for the debugging output file. Wildcards are not
allowed.

Generally, preprocessing consists of the following compiler directives: “ifdef, "else, “esif,
“endif, “ifndef, “define, “undef, “include. Thefileis a concatenation of source files with

394

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

“include expanded. The file can be compiled and then used to find errorsin the original
source files. The “line directive attempts to preserve line numbers and file namesin the
output file. White space is usually preserved, but sometimes it may be deleted or added to
the output file.

e -enumfirstinit

(optional) Initializes enum variables in SystemV erilog using the leftmost value as the
default. Y ou must also use the argument with the vsim command in order to implement this
initialization behavior. Specify the EnumBaselnit variable as 0 in the modelsim.ini file to set
this as a permanent default.

e -Epretty <filename>

(optional) Captures text processed by the Verilog parser after preprocessing has occurred,
performs some formatting for better readability, and copies that text to an output file,
<filename>.

e -error <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "error.” Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

o (-F|-file|-f) <filename>

(optional) -f, -file and -F: each specifies an argument file with more command-line
arguments, allowing complex argument strings to be reused without retyping. Nesting of -F,
-f and -file commands is allowed. Allows gzipped input files.

With -F only: relative file names and paths within the arguments file <filename> are
prefixed with the path of the arguments file when lookup with relative path fails. Refer to
the section " Argument Files” on page 27" for more information.

o -force refresh <design unit>

(optional) Forces the refresh of all specified design units. By default, the work library is
updated; use -work <library _name>, in conjunction with -force_refresh, to update a
different library (for example, vlog -work <your_lib_name> -force refresh).

When the compiler refreshes a design unit, it checks each dependency to ensure its source
has not been changed and recompiled. Sometimes the dependency checking algorithm
changes from release to release. This can lead to false errors during the integrity checks
performed by the -refresh argument. An example of such a message follows:

** Error: (vsim-13) Recompile /u/test/dware/
dware 6le beta.dwpackages because /home/users/questasim/../
synopsys.attributes has changed.

The -force_refresh argument forces the refresh of the design unit, overriding any
dependency checking errors encountered by the -refresh argument.

A more conservative approach to working around -refresh dependency checksisto
recompile the source code, if it isavailable.

ModelSim® Command Reference Manual, v10.5¢c 395

Commands

viog

-fsmimplicittrans | -nofsmimplicittrans

(optional) Toggles recognition of implied same state transitions. This setting is off by
default.

-fsmresettrans | -nofsmresettrans

(optional) Toggles recognition of synchronous or asynchronous reset transitions.
This setting is on by default.

-fsmsingle | -nofsmsingle

(optional) Toggles the recognition of VHDL FSMs where the current state variable of type
std_logic, bit, boolean, or single-bit std logic_vector/bit_vector and Verilog single-bit
FSMs. This setting is off by default.

-fsmverbose[b | t | w]

(optional) Provides information about FSMs detected, including state reachability anaysis.
b — displays only basic information.
t — displays atransition table in addition to the basic information.
w — displays any warning messages in addition to the basic information.

When you do not specify an argument, this switch reports all information similar to:

** Note: (vliog-1947) FSM RECOGNITION INFO

o # Fsm detected in : ../fpu/rtl/vhdl/serial mul.vhd

o H Current State Variable : s _state : ../fpu/rtl/vhdl/serial mul.vhd(76)
Clock : clk i

Reset States are: { waiting , busy }

State Set is : { busy , waiting }

Transition table is

B oo

busy => waiting Line : (114 => 114)

busy => busy Line : (111 => 111)

waiting => waiting Line : (120 => 120) (114 => 114)
waiting => busy Line : (111 => 111)

B o

When you do not specify this switch, you will receive a message similar to:
** Note: (vlog-143) Detected 'l' FSM/s in design unit
'serial mul.rtl"'.

-fsmxassign | -nofsmxassign

(optional) Toggles recognition of finite state machines (FSMs) containing X assignment.
This option is used to detect FSMsif current state variable or next state variable has been
assigned "X" valuein a"case" statement. FSM's containing X-assign are otherwise not
detectable. This setting is on by default.

-gen_xml <design_unit> <filename>

(optional) Produces an XML -tagged file containing the interface definition of the specified
module. This option requires atwo-step process where you must 1) compile <filename> into

396

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

alibrary with vlog (without -gen_xml) then 2) execute vlog with the -gen_xml switch, for
example:
vlib work

vlog counter.wv
vlog -gen xml counter counter.xml

e -hazards

(optional) Detects event order hazards involving simultaneous reading and writing of the
same register in concurrently executing processes. Y ou must also specify this argument
when you simulate the design with vsim. Refer to “Hazard Detection” for more details.

Note
Enabling -hazards implicitly enables the -compat argument. As aresult, using this
argument may affect your simulation results.

e -ignorepragmaprefix <prefix>

(optional) Directs vlog to ignore pragmas with the specified prefixname. All affected
pragmas will be treated as regular comments. Edit the IgnorePragmaPrefix modelsim.ini
variable to set a permanent default.

<prefix>— Specifies a user defined string.
e +incdir+<directory>

(optional) Specifiesdirectoriesto search for filesincluded with “include compiler directives.
By default, the current directory is searched first and then the directories specified by the
+incdir options in the order they appear on the command line. Y ou may specify multiple
+incdir options as well as multiple directories separated by "+" in asingle +incdir option.

e -incr

(optional) Performs an incremental compilation. Compiles only code that has changed. For
example, if you change only one modulein afile containing severa modules, only the
changed module will be recompiled. Note however that if the compile options change, all
modules are recompiled, regardless of whether you use vlog -incr or not.

o -isymfile

Generates a complete list of all imported tasks and functions (TFs). Used with DPI to
determine all imported TFs that are expected by Model Sim.

e +iterevauation

(default) Enable an iterative evaluation mechanism on optimized gate-level cells with
feedback loops.

e -logfile <filename> | -I <filename>
(optional) Generates alog file of the compile.

-logfile <filename> — Saves transcript data to <filename>. Can be abbreviated to -|
<filename>. Overrides the default transcript file creation set with the TranscriptFile

ModelSim® Command Reference Manual, v10.5¢c 397

Commands

viog

or BatchTranscriptFile modelsim.ini variables. Y ou can aso specify “stdout” or
“stderr” for <filename>.

+libcell | +nolibcell

+libcell — (optional) Treats all modules found and compiled by source library search as
though they contained a ‘ celldefine compiler directive, thus marking them as cells
(refer to the -v and -y arguments of vlog, which enable source library search). Using
the +libcell argument matches historical behavior of Verilog-XL with respect to
source library search.

+nolibcell — (default) Disables treating all modules found and compiled by source
library search as though they contained a‘ celldefine compiler directive. That is, this
argument restores the default library search behavior if you have changed it using the
+libcell | +nolibcell argument.

Note

D log

+libext+<suffix>

(optional) Worksin conjunction with the -y option. Specifiesfile extensionsfor thefilesina
source library directory. By default, the compiler searches for files without extensions. If
you specify the +libext argument, then the compiler will search for afile with the suffix
appended to an unresolved name. Y ou may specify only one +libext option, but it may
contain multiple suffixes separated by the plus character (+). The extensions aretried in the
order you specify them with the +libext argument.

-libmap <pathname>

(optional) SpecifiesaVerilog 2001 library map file. Y ou can omit this argument by placing
the library map file as the first option on the vlog invocation (for example, viog top.map
top.v top_cfg.v). Y ou can use the viog -mfcu argument to compile macros for all filesina
given testbench. Any macros aready defined before the -libmap argument appears are still
defined for use by the -libmap files.

-libverbose=libmap
(optional)

Displays library map pattern matching information during compilation. Use this argument
to troubleshoot problems with matching filename patternsin alibrary map file.

For example, when aresolved module has a choice between two libraries, you want to know
which one it selected (confirming that your config file worked).

-libmap_verbose

(optional) Displays library map pattern matching information during compilation.
Note
This argument is being deprecated—you should use the -libverbose=libmap

argument instead. However, -libmap_verbose will continue to be supported
indefinitely for compatibility reasons, so it is safe to use until further notice.

398

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

e +librescan
(optional) Scans librariesin command-line order for all unresolved modules.
e -line <number>

(optional) Starts the compiler on the specified line in the Verilog source file. By default, the
compiler starts at the beginning of thefile.

o -lint
(optional) Issues warnings on the following lint-style static checks:
o when Module portsare NULL.

o when assigning to an input port.
o when referencing undeclared variables/nets in an instantiation.

This switch generates additional array bounds-checking code, which can slow down
simulation, to check for the following:

o index warnings for dynamic arrays
o when an index for aVerilog unpacked variable array reference is out of bounds.

The warnings are reported as WARNINGJ[8]. Y ou can aso enable this option using the
Show_Lint variable in the modelsim.ini file.

e -|rmclassinit

Changes initialization behavior to match the SystemV erilog specification (per IEEE Std
1800-2007) where al superclass properties will be initialized before any subclass
properties.

e +maxdelays
(optional) Selects maximum delays from the "min:typ:max" expressions. If preferred, you

can defer delay selection until simulation time by specifying the same option to the
simulator.

e +mindelays

(optional) Selects minimum delays from the "min:typ:max" expressions. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

v — treats all scalars/vectorsin the package as VHDL vl_logic/vl_logic_vector
e -mfcu[=macro]

(optional) Instructs the compiler to treat al files within a compilation command line as a
single compilation unit. The default behavior isto treat each file listed in acommand as a
separate compilation unit, per the SystemV erilog standard. Prior versions concatenated the
contents of the multiple filesinto a single compilation unit by default. When specified, the
=macro modifier enables the visibility of macro definitions across different files.

ModelSim® Command Reference Manual, v10.5¢c 399

Commands

viog

All global declarations present in both compile file and library files specified with the -v
argument will be lumped together in a single $unit scope.

Y ou can use -mfcu to compile macros for al filesin agiven testbench. Any macros already
defined before the -libmap argument appears are still defined for use by the -libmap files.

Y ou can also enable this option (without the =macro functionality) using the
MultiFileCompilationUnit variable in the modelsim.ini file.

-mixedansiports

Use this switch only when your design files contain a combination of ANSI and non-ANSI
port declarations and task/function declarations. For example:
module top (input reg [7:0] a,
output b) ;

reg [7:0] b;
endmodule

-mixedsvvh [b|s| V]

(optional) Facilitates using SystemV erilog packages at the SystemV erilog-VHDL boundary
of amixed-language design. When you compile a SystemV erilog package with -mixedsvvh,
the package can beincluded in aVHDL design asif it were defined in VHDL itself.

b — treats all scalars/vectorsin the package as VHDL bit/bit_vector
s— treats all scalars/vectorsin the package as VHDL std_logic/std_logic vector
-modelsimini <path/modelsim.ini>

Loads an alternate initialization file that replaces the current initialization file. Overridesthe
file path specified in the MODEL SIM environment variable. Specifies either an absolute or
relative path to theinitialization file, including the file itself. On Windows systems the path
separator should be aforward slash (/).

-msglimit [all, | none,] [-[+]<msg_number>[,[-|+]<msg_number>,...]

(optional) Limits the number of iterations of the specified message(s) to the default message
limit count of five, then suppresses all new instances. Refer to Suppression of Warning
Messages for more information.

all — Limits all messages to the default count except specified msgNumber(s).
none — Limits only the specified msgNumber(s) to the default count.

[-[+] — The ‘- argument is used only with “all” to specify exclusion of specified
msgNumber(s). The ‘+ argument is used only with “none” to specify inclusion of
specific message IDs. If neither is used, the command works the same way.

Note
The ‘-’ argument can only be used with the “all” argument and the ‘+' argument can

only be used with the “none” argument. Otherwise incorrect results may appear.

<msg_number>[,<msg_number>,...] — Specifies the message number(s) to limit to
five iterations. Multiple messages are specified as a comma-separated list.

400

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

For example, the following limits all messages to the default count except msgNumber 1 and
msgNumber 2.

vsim -msglimit all, <msgNumberl>, <msgNumber2s

While the following, limits only msgNumber 1 and msgNumber 2 to the default count.

vsim -msglimit none, <msgNumberl>, <msgNumber2s

e -msglimitcount <limit_value> -msglimit [all,|none,] [-|+]<msgNumber>[,[-
|+]<msgNumber>...]

(optional) Limits the reporting of listed messages to user-defined limit_value. Overridesthe
MsgLimitCount variable in the modelsim.ini file.

e -nocreatelib

(optional) Stops automatic creation of missing work libraries and reverts back to 10.3x and
earlier version behavior. Overrides the Createlib modelsim.ini variable.

e -nodbgsym
Disables the generation of the symbols debugging database in the compiled library.

The symbols debugging database is the .dbs file in the compiled library that provides
information to the GUI allowing you to view detailed information about design objects at
the source level. Two major GUI features that use this database include source window
annotation and textual dataflow.

Y ou should only specify this switch if you know that anyone using the library will not
require thisinformation for design analysis purposes.

e -noForceUnsignedToV hdllnteger

Prevents untyped Verilog parameters in mixed-language designs that are initialized with
unsigned values between 2* 31-1 and 2* 32 from being converted to a VHDL generic. By
default, untyped Verilog parametersthat areinitialized with unsigned val ues between 2* 3 -1
and 2* 32 are converted to VHDL INTEGER generics. Because VHDL INTEGER
parameters are signed numbers, the Verilog values 2* 31 -1 to 2* 32 are converted to
negative VHDL valuesin the range from -2* 31 to -1 (the 2's complement value).

e -noincr
(optional) Disables incremental compilation previously turned on with -incr argument.
Default.

e -nologo

(optional) Disables the startup banner.
e -nooverrideundef

(optional) Prevents “undefs from being overridden by macros defined using the +define
command line option. If amacro is defined using +define command line option, and -
nooverrideundef is also passed as a compile option, the “undef will be honored for that
macro.

ModelSim® Command Reference Manual, v10.5¢c 401

Commands

viog

+nospecify
(optional) Disables specify path delays and timing checks.
-note <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "note." Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

+notimingchecks
(optional) Removes all timing check entries from the design asit is parsed.
-novtblfixup

Causes virtual method callsin SystemVerilog class constructors to behave as they would in
normal class methods, which prevents the type of athis reference from changing during
construction.

This overrides default behavior, where the type of athisreferenceistreated asif itisa
handle to the type of the active new() method while a constructor is executing (which
implies that virtual method calls resolve will not execute methods of an uninitialized class
type).

+nowarn<CODE>

(optional) Disables warning messages in the category specified by <CODE>. Warnings that
can be disabled include the <CODE> name in square brackets in the warning message. For
example,

** Warning: test.v(15): [RDGN] - Redundant digits in numeric
literal.

This warning message can be disabled by specifying +nowarnRDGN.
-nowarn <category_number>

(optional) Prevents the specified message(s) from displaying. The <msg_number> isthe
number preceding the message you wish to suppress. Multiple -nowarn switches are
allowed. Warnings may be disabled for all compiles viathe Main window Compile >
Compile Options menu command or the modelsim.ini file (refer to modelsim.ini
Variables).

The warning message categories are described in the following table:

Table 2-8. Warning Message Categories for vilog -nowarn

Category Description
number
12 non-LRM compliance in order to match Cadence behavior

402

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

e -Optionset <optionset_name>

(optional) Calls an optionset as defined in the modelsim.ini file. Refer to the section
“Optionsets’ for more information.

e -outf <filename>

(optional) Specifiesafileto which thefinal list of optionsis saved, after recursively
expanding all -f, -file and -F files.
e -override precision

(optional) Used with the -timescale argument, this argument overrides the precision of
“timescal e specified in the source code.

e -override timescale[=]|[]<time_unit>/ <time_precision>

(optional) Specifiesatimescale for all compiled design units. This timescale overrides all
‘timescal e directives and all declarations of timeunit and timeprecision. An equal sign (=) or
whitespace is accepted between option and arguments.

time_unit — unit of measurement for times and delays. This specification consists of
one of threeintegers (1, 10, or 100) representing order of magnitude and one of six
character strings representing units of measurement:

{1]110|100} {s|ms]|us|ns|ps|fs}

For example, 10 ns.

time_precision — unit of measurement for rounding delay values before being used in
simulation. Allowable values are the same as for time_unit.

e -O0

(optional) Lower the optimization to a minimum with -O0 (capital oh zero). Use thisto
work around bugs, increase your debugging visibility on a specific cell, or when you want to
place breakpoints on source lines that have been optimized out.

e -pedanticerrors

(optional) Enforces strict compliance of the IEEE Std 1800-2005. The following are some
of the cases:

o Using "new” for queuesis not legal. When strict compliance is not enforced, use of
"new" creates a queue of the specified size where all elements are initialized to the
default value of the queue element type.

o Using underscore character () in sized, based literalsisnot legal. When you specify
this argument, an error will occur for literalssuch as2’b_01.

o Omitting the grave accent mark (*) preceding the left brace ({) when writing
structure literalsis not legal. When you specify this argument, an error will occur for
literals written without that mark.

o Inserting the grave accent mark to precede quotation marks (*") that enclose string
literalsis not legal—only string literals within quotation marks (") are allowed.

ModelSim® Command Reference Manual, v10.5¢c 403

Commands

viog

When you specify this argument, an error will occur for string literals using that
mark.

o Using class extern method prototypes with lifetime (automatic/static) designations
produces a compliance error (instead of awarning).

o Using “cover bool@clk” asa PSL statement.

o Using an unsized constant in a concatenation if it isthe leftmost value in the list.
o Cadling avirtual function in the constructor of the same class.

o Using integersto define macro names.

This argument also produces a report of mismatched * el se directives.
Y ou can produce a complete list by executing the command:

verror -kind vlog -pedanticerrors
-permissive
(optional) Allows messagesin the LRM group of error messages to be downgraded to a
warning. Allows reserved keywords ‘config' and 'instance' to be used outside of unit and
configuration scopes. Also allows named port connections on bit-select and part-select

ports, though only when multiple bit-select or part-sel ect ports of same name are not present
in the port list.

Y ou can produce a complete list by executing the command:

verror -kind vlog -permissive

-permit_defunct_sv

(optional) Allows using a selected set of constructs no longer supported by the
SystemVerilog standard. Currently, the set supports only the use of the keyword “char.”
This argument allows use of the keyword “char” to be interpreted as the SystemVerilog
“byte” type.

-printinfilenames[=<filename>]

Prints the path names of al source files opened (including “include’ files) during the
compile. Specifies whether each fileisaVerilog or SystemVerilog file. To write these path
names to atext file in the current directory, add =<filename> to this argument. If you use
this argument again with the same filename, you overwrite the contents of the previous
version of thefile.

-quiet

(optional) Disables 'Loading’ messages.

-R [<simargs>]

Instructs the compiler to invoke vsim after compiling the design. The compiler
automatically determines which top-level modules are to be simulated.

404

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

When using -R option, the log files for viog and vsim need to be specified separately. The
file specified before -R will capture the output of the viog compiler and the one provided
after -R will capture the vsim output.

For example, in the following viog command, "logl.txt" will contain the vlog output and
"log2.txt" will contain the vsim output.

vlog -1 logl.txt top.sv -R -c¢ -do '"run -all;quit" -1
log2.txt

The -R option isnot aVerilog-XL option, but it is used by Model Sim to combine the
compile and simul ate phases together as you may be used to doing with Verilog-XL. Itis
not recommended that you regularly use this option because you will incur the unnecessary
overhead of compiling your design for each simulation run. Mainly, it is provided to ease
the transition to Model Sim.

e -refresh

(optional) Regenerates a library image. By default, the work library is updated. To update a
different library, use -work <library _name> with -refresh (for example, vliog -work
<your_lib_name> -refresh). If a dependency checking error occurs which prevents the
refresh, use the vlog -force _refresh argument. See vliog examplesfor more information. Y ou
may use a specific design name with -refresh to regenerate alibrary image for that design,
but you may not use afile name.

e -S

(optional) Instructs the compiler not to load the standard package. This argument should
only be used when you are compiling the sv_std package.

e -sfcu

Instructs the compiler to treat al files within a compilation command line as a separate
compilation units. Thisis the default behavior and is the inverse of the behavior of -
mfcu[=macro].

A loca $unit scope will be created for alibrary file passed through -v argument if thisfile
has global declarations.

This switch will override the MultiFileCompilationUnit variableif itisset to "1" in the
modelsm.ini file.

e -skipprotected
(optional) Ignores any ‘ protected/* endprotected region contained in a module.
e -skipprotectedmodule

(optional) Prevents adding any module containing a ‘ protected/* endprotected region to the
library.

e -skipsynthoffregion
(optional) Ignore al constructs within synthesis_off or translate off pragma regions.

ModelSim® Command Reference Manual, v10.5¢c 405

Commands

viog

-smartdbgsym

(optional) Reduces the size of design libraries by minimizing the amount of debugging
symbol files generated at compile time.

Edit the SmartDbgSym variable in the modelsim.ini file to set a permanent default.
-source

(optional) Displays the associated line of source code before each error message that is
generated during compilation. By default, only the error message is displayed.

_stats [=[+ | -]<feature>[[+ | -]<mode>]

(optional) Controls display of compiler statistics sent to alogfile, stdout, or the transcript.
Specifying -stats without options sets the default features (cmd, msg, and time).

Multiple features and modes for each instance of -stats are specified as a comma separated
list. Y ou can specify -stats multiple times on the command line, but only the last instance
will take effect.

[+ | -] — Controls activation of the feature or mode where the plus character (+)
enables the feature and the minus character (-) disablesthe feature. Y ou can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this switch will add or subtract features and modes from the settings
in the Stats modelsim.ini variable.

Features

all — Display all statistics features (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, noneis applied first.

perf — Display time and memory performance statistics.
time — (default) Display Start, End, and Elapsed times.
Modes

Modes can be set for a specific feature or globally for all features. To add or subtract a
mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vlog -stats=cmd+verbose,perf+list. To add or subtract a mode
globally for all features, specify the modes in a comma-separated list, for example,
vlog -stats=time,perf list,-verbose. Y ou cannot specify global and feature specific
modes together.

kb — Print performance statistics in kilobyte units with no auto-scaling.
list — Display statisticsin aTcl list format when available.
verbose — Display verbose statistics information when available.

406

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

Note
D vlog -quiet disables all default or user-specified -stats features.

e -suppress <msg_number>[,<msg_number>,...]

(optional) Prevents the specified message(s) from displaying. The <msg_number> isthe
number preceding the message you wish to suppress. Y ou cannot suppress Fatal or Internal
messages. Edit the suppress variable in the modelsim.ini file to set a permanent default.
Refer to “Message Severity Level” for more information.

* -V

(optional) Enables SystemV erilog features and keywords. By default Model Sim follows the
|EEE Std 1364-2001 and ignores SystemV erilog keywords. If asourcefilehasa".sv"
extension, Model Sim will automatically parse SystemV erilog keywords.

e -svext=[+|-]<extension>[,[+|-]<extension>]...[sceq]

(optional) Enables SystemV erilog language extensions through a comma-separated list of
arguments.

[+ | -] — controls activation of the extension. Remember that arguments on the
command line control the precedence; any settings to this switch will override your
settings of the SvExtensions modelsim.ini variable.

+ — activates the extension.
- — deactivates the extension.

If you do not specify either a“+” or “-”, the command assumes you are activating the
specified extension.

<extension> —

Note
D Multiple extensions are specivlog -svext=+feci,-udlt,paefied as a comma-separated

list. For example:

vlog -svext=+feci,-udt,pae

acum — Specifies that the get(), try_get(), peek(), and try_peek() methods on an
untyped mailbox will return successfully if the argument passed is assignment-
compatible with the entry in the mailbox. The LRM-compliant behavior isto return
successfully only if the argument and entry are of equivalent types.

arif — Allow the use of refsin fork-join_any or fork-join_none blocks inside tasks.

atpi — Use type names as port identifiers. Disabled when compiling with
-pedanticerrors.

ared — Allows use of array reduction methods on multi-dimensional unpacked
arrays, without the need of using a'with' clause. A multi-dimensional unpacked array
will be treated as if it had a single dimension [O:total_number_of elements-1].

ModelSim® Command Reference Manual, v10.5¢c 407

Commands
viog

catx — Allow an assignment of a single unsized constant in a concat to be treated as
an assignment of 'default:val'.

daoa— Allowsthe passing a dynamic array asthe actual argument of DPI open array
output port. Without this option, aruntime error, similar to the following, is
generated, which is compliant with LRM requirement.

** Fatal: (vsim-2211) A dynamic array cannot be passed as an
argument to the DPI import function 'impcall' because the formal 'o!
is an unsized output.

Time: 0 ns Iteration: 0 Process: /top/#INITIAL#56 File:
dynarray.sv

Fatal error in Module dynarray sv_unit at dynarray.sv line 2

defervda— SV variables having an initializer in the declaration will trigger top-
blocking always blocks at time zero.

ddup — (Drive Default Unconnected Port) Reverts behavior to where explicit named
unconnected ports are driven by the default value of the port.

evdactor — enables early variable declaration assignments during class construction.
The default behavior isto perform all superclassinitialization before initializing any
fieldsin a subclass.

evis— Supports the expansion of environment variables within curly braces ({})
within “include string literals and in “include path names. For example, if MYPATH
existsin the environment then it will be expanded in the following:

“include "$MYPATH/inc.svh"

feci — Treat constant expressions in aforeach loop variable index as constant.

fin0 — Treats $finish() system call as $finish(0), which resultsin no diagnostic
information being printed.

las — lterate on always @* evaluations until inputs settle. Typically, an always @*
block is not sensitive to events generated by executing the block itself. This argument
increases the sensitivity of the block so that it will re-trigger if any input has changed
since the last iteration of the always block.

idcl — Allows passing of import DPI call locations as implicit scopes.
iddp — Ignore the DPI task disable protocol check.

ncref — A ref argument in the new operator of a covergroup will not be treated as a
constant, unless specified.

pae — Automatically export all symbolsimported and referenced in a package.
sccts — Process string concatenations converting the result to string type.
sps — (default) Search for packages in source libraries specified with -y and +libext.

stop0 — Treats $stop and $stop() as $stop(0), which resultsin no diagnostic
information being printed.

substrl — Allows one argument in the builtin function substr. A second argument
will be treated as the end of the string.

408

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

This extension runs a top-blocking always @* at time zero, asis done for an
always comb.

udmO — Expands any undefined macro with the text “1'b0”.

uslt — (default) Promote unused design units found in source library files specified
with the -y option to top-level design units.

vmctor — Allows virtual method calls in class constructor. The default isto treat
them as non-virtual during construction.

Sceq
Allow string comparison with SystemVerilog case equality operator (===).
o -svfilesuffix=<extension>[,<extension>...] <filename>

Allows specification of filename extensions for SystemVerilog files. Overrides the
SVFileSuffixes variable in the modelsim.ini file for specified <filename>.

e -svinputport=net | var | relaxed

(optional) Used in conjunction with -sv to determine the default data type assigned to an
input port declaration.

net — declares the port to be a net. This value enforces strict compliance to the Verilog
LRM (IEEE Std 1364-2005), where the port declaration defaults to wire.

var — declares the port to be avariable. This value enforces behavior from previous
releases, where the port declaration defaults to variable.

relaxed — (default) declaresthe port to be anet only if the type is a 4-state scalar or
4-state single dimensional vector. Otherwise, the port is declared avariable.

e -svpkgcasesens

(optional) Requires case-sensitive matching between SystemV erilog package import
statements and package names.

e -svO5compat

Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of IEEE Std 1800-2005.

e -sv09compat

Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of |EEE Std 1800-2009.

e -svl2compat

Used in conjunction with the -sv switch to ensure compatibility with the reserved keyword
set of IEEE Std 1800-2012.
e -timescale[=]|[]<time_units>/<time_precision>

(optional) Specifiesthe default timescale for all design unit types (modules, interfaces,
programs, packages, checkers, and so forth) not having an explicit timescale directive in
effect during compilation.

ModelSim® Command Reference Manual, v10.5¢c 409

Commands

viog

The format of the -timescale argument is the same as that of the “timescale directive. An
equal sign (=) or whitespace is accepted between option and arguments in which case
<time_units/ <time_precision must be enclosed in quotation marks ("). The format for
<time_units> and <time_precision> is <n><units>. The value of <n> must be 1, 10, or 100.
The value of <units> must befs, ps, ns, us, ms, or s. In addition, the <time_precision> must
be smaller than or equal to the <time_units>. Refer to “ Simulator Resolution Limit
(Verilog)” for more information.

+typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until ssimulation time by specifying the same option to the ssimulator.

-u

(optional) Convertsregular Verilog identifiers to uppercase. Allows case insensitivity for
module names.

-v <library_file>

(optional) Specifies a source library file containing module and UDP definitions. Refer to
“Verilog-XL Compatible Compiler Arguments’ for more information.

After all explicit filenames on the viog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet defined.
Modules and UDPs within the file are compiled only if they match previously unresolved
references. Multiple -v options are allowed. See additional discussion in the examples.

-version

(optional) Returns the version of the compiler as used by the licensing tools.
-vlog0lcompat

(default) Ensures compatibility with rules of IEEE Std 1364-2001.
-vlog95compat

(optional) Disables Verilog 2001 keywords, which ensures that code that was valid
according to the 1364-1995 spec can still be compiled. By default Model Sim follows the
rules of IEEE Std 1364-2001. Some requirements in 1364-2001 conflict with requirements
in 1364-1995. Edit the viog95compat variable in the modelsim.ini file to set a permanent
default.

-vmake

Generates a complete record of all command line data and files accessed during the compile
of adesign. Thisdataisthen used by the vmake command to generate a comprehensive
makefile for recompiling the design library. By default, vcom stores compile data needed
for the -refresh switch and ignores compile data not needed for -refresh. The -vmake switch
forcesinclusion of al file dependencies and command line data accessed during a compile,
whether they contribute datato the initial compile or not. Executing this switch can increase
compiletimein addition to increasing the accuracy of the compile. See the vmake command
for more information.

410

ModelSim® Command Reference Manual, v10.5¢

Commands
viog

e -warning <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

e -warning error

(optional) Reports all warnings as errors.
e -warnrbw

(optional) Displays awarning when avariable is read before written in an always @* block.
e -work <library_name>

(optional) Specifies alogical name or pathname of alibrary that isto be mapped to the
logical library work. By default, the compiled design units are added to the work library.
The specified pathname overrides the pathname specified for work in the project file.

e -writetoplevels <fileName>

(optional) Records the names of all top level module namesin a specified file. Also records
any compilation unit name specified with -cuname. May only be specified when compiling
the top level modules.

<fileName> — Required. Specifies the name of the file where module names are to be
recorded.

e -y <library_directory>

(optional) Specifiesa source library directory containing definitions for modules, packages,
interfaces, and user-defined primitives (UDPs). Usually, thisis adirectory of source files
that you want to scan if the compiled versions do not already exist in alibrary. Refer to
“Verilog-XL Compatible Compiler Arguments’ for more information.

After all explicit filenames on the viog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet defined.
Fileswithin this directory are compiled only if the file names match the names of previously
unresolved references. Multiple -y options are allowed. Y ou will need to specify afile suffix
by using -y in conjunction with the +libext+<suffix> option. See additional discussion inthe
examples.

Note
Any -y arguments that follow a-refresh argument on avlog command line are

ignored. Any -y arguments that come before the -refresh argument on avlog
command line are processed.

o <filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

ModelSim® Command Reference Manual, v10.5¢c 411

Commands

viog

Examples

Compile the Verilog source code contained in the file example.vig.
vlog example.vlg

After compiling top.v, vlog will scan the file undl for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v -v undl

After compiling top.v, vliog will scan the viog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
impliesfilenameswith a.v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y viog_lib

The -work option specifies mylib asthe library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled
libraries without source code to be rebuilt for a specific release of Model Sim.

If your library contains VHDL design units, be sure to regenerate the library with the
vcom command using the -refresh option as well. Refer to “Regenerating Y our Design
Libraries” for more information.

vlog -work mylib -refresh

The -incr option determines whether or not the module source or compile options have
changed as modulel.v is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match
exactly.

vlog modulel.v -u -O0 -incr

The -timescal e option specifies the default timescale for modulel.v, which did not have
an explicit timescale directive in effect during compilation. Quotes (" ") are necessary
because the argument contains white spaces.

vlog modulel.v -timescale "1 ns /1 ps"

Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command lineis disabled

vlog -stats=time,-cmd,msg

Thefirst -stats option isignored. The none option disables all default settings and then
enables the perf option.

vlog -stats=time,cmd,msg -stats=none,perf

412

ModelSim® Command Reference Manual, v10.5¢

Commands
vmake

vmake

Requirement: This command does not work with the default format of the output from the vlib
command, therefore you must add the -type directory argument to the vlib command line.

The vmake utility allows you to use aMAKE program to maintain individual libraries. Y ou run
vmake on a compiled design library. This utility operates on multiple source files per design
unit; it supports Verilog include files as well as Verilog and VHDL PSL vunit files.

Note
If adesign is spread across multiple libraries, then each library must have its own makefile

and you must build each one separately.

Syntax
vmake [-du <design_unit_name> ...] [-f <filename>] [-fullsrcpath] [-ignore] [<library _name>]
[-modelsimini <path/modelsim.ini>]
Description

By default, the output of vmake is sent to stdout—however, you can send the output to a
makefile by using the shell redirect operator (>) along with the name of thefile. Y ou can then
run the makefile with a version of MAKE (not supplied with Model Sim) to reconstruct the
library. This command must be invoked from either the system prompt.

A MAKE program isincluded with Microsoft Visual C/C++, aswell as many other program
development environments.

After running the vmake utility, MAKE recompiles only the design units (and their
dependencies) that have changed. Y ou run vmake only once; then you can ssmply run MAKE to
rebuild your design. If you add new design units or delete old ones, you should re-run vmake to
generate a new makefile.

The vmake utility ignores library objects compiled with -nodebug.
This command provides additional information with the -help switch.

Arguments
e -du<design_unit_name>

(optional) Specifiesthat avmake file will be generated only for the specified design unit.
Y ou can specify this argument any number of times for a single vmake command.

o -f <filename>
(optional) Specifies afileto read command line arguments from.
Refer to the section "“ Argument Files’ on page 27" for more information

ModelSim® Command Reference Manual, v10.5¢c 413

Commands
vmake

-fullsrcpath

(optional) Produces compl ete source file paths within generated makefiles. By default,
source file paths are relative to the directory in which compilations originally occurred. Use
this argument to copy and evaluate generated makefiles within directories that are different
from where compilations originally occurred.

-ignore

(optional) Omits a make rule for the named primary design unit and its secondary design
units.

<library_name>

(optional) Specifiesthe library name; if noneis specified, then work is assumed.
-modelsimini <path/modelsim.ini>

(optional) Loads an alternate initialization file that replaces the current initialization file.
Overridesthe file path specified by the MODEL SIM environment variable. Specifies either
an absolute or relative path to the initialization file, including the file itself. On Windows
systems, the path separator should be aforward slash (/).

Examples

e To produce a makefile for the work library:
vmake >mylib.mak

e Torunvmake on libraries other than work:
vmake mylib >mylib.mak

e Torebuild mylib, specify its makefile when you run MAKE:
make -f mylib.mak

e Tousevmake and MAKE on your work library:
C:\MIXEDHDL> vmake >makefile

e Toedit an HDL source file within the work library:
C:\MIXEDHDL> make

Y our design gets recompiled for you. Y ou can change the design again and re-run
MAKE to recompile additional changes.

e Torunvmake on libraries other than work:
C:\MIXEDHDL> vmake mylib >mylib.mak

e Torebuild mylib, specify its makefile when you run MAKE:
C:\MIXEDHDL> make -f mylib.mak

414

ModelSim® Command Reference Manual, v10.5¢

Commands
vmap

vmap

The vmap command defines a mapping between alogical library name and a directory by
modifying the modelsim.ini file.
Syntax
vmap [-c | -del <logical_name> ... | <logical _name> [<path>]]
[-modelsimini <path/modelsim.ini>]
Description
With no arguments, vmap reads the appropriate modelsim.ini file(s) and prints to the transcript
the current logical library to physical directory mappings.
This command provides additional information with the -help switch.

Arguments
e -C

(optional) Copies the default modelsim.ini file from the Model Sim installation directory to
the current directory.

This argument is intended only for making a copy of the default modelsim.ini file to the
current directory. Do not use it while making your library mappings or the mappings may
end up in the incorrect copy of the modelsm.ini.

e -del <logical_name> ...

(optional) Deletes the mapping specified by <logical_name> from the current project file.
Y ou can specify multiple logical name arguments to the -del switch to delete multiple
library mappings.

e <logica_name> [<path>]
(optional) Maps alogical library name to the specified physical library.
If you do not specify <path> the command returns the current mapping for <logical_name>.
e -modelsimini <path/modelsim.ini>
(optional) Loads an alternate initialization file that replaces the current initialization file.
Overrides thefile path specified in the MODEL SIM environment variable. Specifies either
an absolute or relative path to the initialization file, including the fileitself. On Windows
systems the path separator should be aforward slash (/).
Examples
e Maptwo logical librariesto the physical library “work”:
vlib work
vmap libraryl work

vmap library2 work

ModelSim® Command Reference Manual, v10.5¢c 415

Commands
vmap

e Display information about the logical library “library1”:
vmap libraryl

o Deletethelogical library mappings:
vmap -del libraryl library2

416 ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

VSim

The vsim command invokes the VSIM simulator, which you can use to view the results of a
previous simulation run (when invoked with the -view argument)

Syntax
This section lists all arguments of the vsim command in a phabetical order.

The Arguments section groups the argument descriptions into the following categories:

Note
D Argument Groups

e All languages
e VHDL Arguments
e Verilog Arguments

e Object Arguments

vsim [options]
[options]:
[-accessobjdebug | -noaccessobjdebug] [+alt_path _delays] [-assertfile <filename>]

[-batch] [+bitblast[=[iopath | tcheck]]]
[-c] [-capacity[=line]] [-checkvifacedrivers] [-classdebug | -noclassdebug] [-colormap new]

[-default_radix <radix>] [-defaultstdlogicinittoz] [+delayed timing_checks] [-display
<display_spec>]
[-displaymsgmode both | tran | wif] [-do “<command_string>" | <do_file_name>]
[-donotcollapsepartiallydriven] [-dpiforceheader] [-dpiheader] [-dpilib <libname>]
[-dpioutoftheblue O | 1 | 2] [+dumpports+collapse | +dumpports+nocollapse]
[+dumpportstdirection] [+dumpports+no_strength _range] [+dumpports+unique]

[-error <msg_number>[,<msg_number>,...]]
[-enumfirstinit]

[-f <filename>] [-fatal <msg_number>[,<msg_number>,...]] [-fsmdebug]

[-g <Name>=<Value> ...] [-G<Name>=<Vaue> ...] [-gblso <shared_obj>[,<shared_obj>]]
[-gconrun | -nogconrun] [-gconstep | -nogconstep] [-gcthreshold <n>]
[-geometry <geometry spec>] [-gui]

[-hazards] [-help]

[-i] [-ignoreinilibs] [+initregNBA | +noinitregNBA]
[-installcolormap]

ModelSim® Command Reference Manual, v10.5¢c 417

Commands

vsim

[-keeploaded)] [-keeploadedrestart] [-keepstdout]
[-logfile <filename> | -I <filename> | -nolog] [-L <library_name> ...]

[-lib <libname>] [<library_name>.<design_unit>]
[-Ldir <pathname> [<pathname> ...]]
[-Lf <library_name> ...]

[-modelsimini <path/modelsim.ini>]

[-msgfile <filename>] [-msglimit [al, | none,] <msgNumber>[, <msgNumber>,...]]
[-msglimitcount <limit_value> -msglimit [all, | none,] <msgNumber>[, <msgNumber>...]]
[-msgmode both | tran | wif]

[-multisource _delay min | max | latest] [+multisource int_delays]

[-name <name>] [-noappendclose] [+no_autodtc] [-noautoldlibpath] [-nodpiexports]

[+no_cancelled e msg] [+no_glitch_msg] [+no_neg_tchk] [+no_notifier] [+no_path_edge]
[+no_pulse msg] [-no_risefall _delaynets]

[+no_show_cancelled €] [+no_tchk _msg] [-nocollapse] [-nocapacity] [-nocompress]
[-nofileshare] [-noimmedca] [-noglitch][+nosdferror] [+nosdfwarn] [+nospecify] [-
nostdout]

[-note <msg_number>[,<msg_number>,...]] [+notifier_ondetect] [+notimingchecks |
+ntcnotchks] [-novhdlvariablelogging] [+nowarnBSOB] [+nowarn<CODE | number>]
[-nowiremodelforce] [+ntc_warn] [+ntcnotchks]

[-oldvhdIforgennames] [-onfinish ask | stop | exit | final] [-optionset <optionset_name>]

[-pduignore]=<instpath>]] [-pedanticerrors] [-permissive]

[-permit_unmatched_virtual _intf] [-pli "<object list>"]

[+<plusarg>] [-postsimdataf|ow]

[-printsimstats]=[<val>][V]]] [+pulse_e/<percent>] [+pulse_e style ondetect]
[+pulse_e style onevent] [+pulse_r/<percent>] [+pulse_int_e/<percent>]
[+pulse_int_r/<percent>]

[-quiet]
[-runinit]

[+sdf_iopath to prim_ok] [+sdf _nocheck celltype]

[-sdfmin | -sdftyp | -sdf max[@<delayScale>] [<instance>=]<sdf_filename>]

[-sdfmaxerrors <n>] [-sdfnoerror] [-sdfnowarn] [-sdfreport=<filename>]
[+sdf_report_unannotated insts] [+sdf_verbose] [-showlibsearchpath] [-stackcheck] [-
std_input <filename>] [-std_output <filename>] [+show_cancelled €]

[-stats [=[+ | -]<feature>[,[+ | -]<mode>]]

[-strictvital] [-suppress <msg_number>[,<msg_number>,...]] [-sv_lib <shared_obj>]
[-sv_liblist <filename>] [-sv_root <dirname>] [-sync]

[-syncio | -nosyncio]

418

ModelSim® Command Reference Manual, v10.5¢

Commands
vVSim

[-t [<multiplier>]<time_unit>] [-tab <tabfile>] [-tag <string>] [-title <title>]
[-trace foreign <int>] [+transport_int_delays]
[+transport_path delays]

[-undefsyms={ <args>}] [-uvmcontrol={ <args>}]

[-v2k_int_delays][-vedstim [<instance>=]<filename>]
[-version] [-vhdimergepdupackage] [-vhdlseparatepdupackage]
[-vhdlvariablelogging] [-view [<alias_name>=]|<WLF_filename>]
[-visual <visual>][-vital2.2b]

[-warning <msg_number>[,<msg_number>,...]] [-warning error] [-wIf <file_name>]
[-wlfcachesize <n>] [-wlfcollapsedelta] [-wlfcollapsetime] [-nowlfcollapse]
[-wIfcompress] [-nowlfcompress] [-wlifdel eteonquit] [-nowlfdel eteonquit]
[-wiflock] [-nowlflock] [-nowlfopt] [-wlfsimcachesize <n>]

[-wlfslim <size>] [-wIftlim <duration>] [-work <pathname>] [-wrealdefaultzero]

Description
Y ou can simulate a VHDL configuration or an entity/architecture pair, a Verilog module or
configuration.

If you specify aVHDL configuration, itisinvalid to specify an architecture. During elaboration,
Model Sim determines if the source has been modified since the last compile.

Y ou can use this command in batch mode from the Windows command prompt. Refer to “Batch
Mode” for more information on the VSIM batch mode.

To manually interrupt design loading, use the Break key or press <Ctrl-C> from a shell.

Y ou can invoke vsim from a command prompt or in the Transcript window of the Main
window. Y ou can also invoke it from the GUI by selecting Simulate > Start Simulation.

Package names may be used at the command line and will be treated as top-level design units.

All arguments to the vsim command are case-sensitive; for example, -g and -G are not
equivalent.

Arguments

All languages
o -assertfile <filename>

(optional) Designates an alternative file for recording VHDL assertion messages.

An alternate file may aso be specified by the AssertFile modelsim.ini variable. By default,
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file. Refer to “ Creating a Transcript File” for more information.

ModelSim® Command Reference Manual, v10.5¢c 419

Commands

vsim

-batch

(optional) Runs scripted batch simulations via the -do argument to vsim. Must be specified
from a Windows command prompt or a UNIX terminal. The simulator returns an error if
-batch is used with the -c, the -gui, or the -i argument to vsim. Y ou can edit the BatchMode
modelsim.ini variable to automatically run in batch mode when none of -c, -gui, or -i are
used.

By default, vsim -batch prevents automatic creation of atranscript file by disabling the
TranscriptFile modelsim.ini variable and sending transcript data to stdout. Y ou can create a
transcript file by specifying the -logfile <filename> argument to vsim or by uncommenting
the BatchTranscriptFile modelsim.ini variable. Y ou can also disable sending transcript data
to stdout by specifying vsim -nostdout however, you must then save transcript datato afile.
Refer to “Batch Mode” for more information about saving transcript data.
+bitblast[=[iopath | tcheck]]

(optional) Enables bit-blasting of specify block iopaths and timing checks (tchecks) with
wide atomic ports. Without the optional qualifiers, this argument operates on both specify
paths and tchecks. The qualifiers work as follows:

+bitblast=iopath — bit-blasts only specify paths with wide ports.
+hitblast=tcheck — bit-blasts only tchecks with wide ports.
This argument is intended for use with applications employing SDF annotation.
-C

(optional) Specifiesthat the simulator isto be run in command-line mode. Refer to “General
Modes of Operation” for more information.

-capacity[=ling]

(optional) Enables the fine-grain analysis display of memory capacity. (The defaultisa
coarse-grain analysis display.) The “=line” option allows the point of allocation to be
generated along with the point of declaration.

-colormap new

(optional) Specifies that the window should have a new private colormap instead of using
the default colormap for the screen.

-default_radix <radix>

(optional) Sets the default radix for the simulation and overrides the DefaultRadix
preference variable. <radix> may be any of the following: ascii, binary, decimal,
hexadecimal, octal, symbolic, unsigned.

-defaultstdl ogicinittoz

(optional) Setsthe default VHDL initialization of std_logic to "Z" (high impedance) for
ports of type OUT and INOUT. |EEE Std 1076-1987 VHDL Language Reference Manual
(LRM) compliant behavior isfor std_logic to initializeto "U" (uninitialized) whichis
incompatible with the behavior expected by synthesis and hardware.

420

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

o -display <display_spec>
(optional) Specifies the name of the display to use. Does not apply to Windows platforms.
For example:

-display :0

e -displaymsgmode both | tran | wif

(optional) Controls the transcription of $display system task messages to the transcript and/
or the Message Viewer. Refer to the section "Message Viewer Window™ in the User’s
Manual for more information and the displaymsgmode .ini file variable.

both — outputs messages to both the transcript and the WLF file.

tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer. Default behavior.

wlif — outputs messages only to the WLF file/Message Viewer, therefore they are not
available in the transcript.

The display system tasks displayed with this functionality include: $display, $strobe,
$monitor, $write as well as the analogous file 1/0 tasks that write to STDOUT, such as
$fwrite or $fdisplay.

e -do*“<command_string>" | <do_file_name>

(optional) Instructs vsim to use the command(s) specified by <command_string> or the DO
file named by <do_file_name> rather than the startup file specified in the .ini file, if any.
Multiple commands can be specified as a semi-colon (;) separated list. Y ou can a so specify
multiple instances of -do “<command_string>" on the same command line. The commands
are joined together in the order specified.

For example:

vsim -do "force clk 0 0, 1 10 -r 20" top -wlf top.wlf /
-do "testfile.do" -do "run -all"

will turn into the following script:
"force clk 0 0, 1 10 -r 20; do testfile.do; run -all"
Y ou can include nested vsim-do operations. A vsim command do-file that contains another
vsim command with its own do-file executes the nested do-file.
e -donotcollapsepartiallydriven

(optional) Prevents the collapse of partially driven and undriven output ports during
optimization. Prevents incorrect values that can occur when collapsed.

e +dumpports+collapse | +dumpports+nocollapse

(optional) Determines whether vectors (VCD id entries) in dumpports output are collapsed
or not. The default behavior is collapsed, and can be changed by setting the
DumpportsCollapse variable in the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5¢c 421

Commands

vsim

+dumpportstdirection
(optional) Modifies the format of extended VCD files to contain direction information.
+dumpports+no_strength _range

(optional) Ignores strength ranges when resolving driver values for an extended VCD file.
This argument is an extension to the |EEE 1364 specification. Refer to “Resolving Values’
for additional information.

+dumpportstunique

(optional) Generates unique VCD variable namesfor portsin aVCD file even if those ports
are connected to the same collapsed net.

-enumfirstinit

(optional) Initializes enum variables in SystemVerilog using the leftmost value as the
default. Y ou must also use the argument with the viog command in order to implement this
initialization behavior. Specify the EnumBaselnit variable as 0 in the modelsim.ini file to set
this as a permanent defaullt.

-error <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "error.” Edit the error
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

-f <filename>

(optional) Specifies afile with more vsim command arguments. Allows complex argument
strings to be reused without retyping.

Refer to the section "“Argument Files” on page 27" for more information.
-fatal <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "fatal." Edit the fatal
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

-fsmdebug

(optional) Enables visualization of FSMsin the GUI. Y ou must specify this argument to
view FSM information the GUI.

-g <Name>=<Vaue> ...

(optional) Assigns avalueto all specified VHDL generics and Verilog parameters that have
not received explicit values in generic maps, instantiations, or from defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values).

Multiple -g options are allowed, one for each generic/parameter, specified as a space
separated list.

422

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

<Name>— Name of a generic/parameter, exactly asit appearsin the VHDL source (caseis
ignored) or Verilog source. Name may be prefixed with arelative or absolute hierarchical
path to select generics in an instance-specific manner. For example, specifying -g/top/ul/
tpd=20ns on the command line would affect only the tpd generic on the /top/ul instance,
assigning it avalue of 20ns. Specifying -gul/tpd=20ns affects the tpd generic on all
instances named ul. Specifying-gtpd=20ns affects all generics named tpd.

<Value> — Specifies an appropriate value for the declared data type of aVHDL generic or
any legal value for a Verilog parameter. Make sure the value you specify for aVHDL
generic is appropriate for VHDL declared datatypes. Integers are treated as signed values.
For example, -gp=-10 overwrites the parameter p with the signed value of -10.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/ul/tpd hl=10ns -gtpd hl=15ns top
This command setstpd_hl to 10nsfor the /top/ram/ul instance. However, al other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, genericy/parameters of composite type (arrays and records) cannot
be set from the command line. However, you can set string arrays, std_logic vectors, and bit
vectorsif they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks (" ") must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this command

from ashell, add single quotes (' ') around the string. For example:

-gstrgen='"This is a string"'

If working within the Model Sim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

Y ou can aso enclose the value escaped quotes (\"), for example:

-gstrgen=\"This is a string\"

e -G<Name>=<Vadue> ...

(optional) Same as -g (see above) except that it will also override generics/parameters that
received explicit values in generic maps, instantiations, or from defparams.

This argument is the only way for you to alter the generic/parameter, such asits length,
(other than its value) after the design has been loaded.

<Name>— Name of a generic/parameter, exactly asit appearsinthe VHDL source (caseis
ignored) or Verilog source. Name may be prefixed with arelative or absolute hierarchical
path to select generics in an instance-specific manner. For example, specifying -G/top/ul/
tpd=20ns on the command line would affect only the tpd generic on the /top/ul instance,

ModelSim® Command Reference Manual, v10.5¢c 423

Commands

vsim

assigning it avalue of 20ns. Specifying -Gul/tpd=20ns affects the tpd generic on all
instances named ul. Specifying -Gtpd=20ns affects all generics named tpd.

<Value> — Specifies an appropriate value for the declared data type of aVHDL generic or
any legal value for a Verilog parameter. Make sure the value you specify for aVHDL
generic is appropriate for VHDL declared data types. Integers are treated as signed values.
For example, -Gp=-10 overwrites the parameter p with the signed value of -10.

-ghlso <shared_obj>[,<shared_obj>]

(optional) Open the specified shared object(s) with global symbol visibility. Essentialy all
data and functions are exported from the specified shared object and are available to be
referenced and used by other shared objects. If you specify multiple, comma-separated,
shared objects, they will be merged internally and then loaded as asingle shared object. Y ou
can also specify this argument with the Global SharedObjectsList variable in the
modelsim.ini file.

-geometry <geometry _spec>

(optional) Specifies the size and location of the main window. Where <geometry spec> is
of the form:

WxH+X+Y

-gui
(optional) Starts the Model Sim GUI without loading a design and redirects the standard
output (stdout) to the GUI Transcript window.

-help
(optional) Sends the arguments and syntax for vsim to the transcript.
-i
(optional) Specifies that the simulator be run in interactive mode.
+initregNBA | +noinitregNBA
(optional) Controls whether +initreg settings applied to registers of sequential UDPs should
be non-blocking. Thisis useful when continuous assignments overwrite register
initialization.
+initregNBA — (default) enables this functionality.
+noinitregNBA — disables this functionality.
-installcolormap

(optional) For UNIX only. Causes vsim to use its own colormap so as not to hog all the
colorson the display. Thisis similar to the -install argument on Netscape.

-keeploaded

(optional) Prevents the ssmulator from unloading/reloading any HDL interface shared
libraries when it restarts or loads a new design. The shared libraries will remain loaded at

424

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

their current positions. User application code in the shared libraries must reset its internal
state during arestart in order for thisto work effectively.

o -keeploadedrestart

(optional) Prevents the ssmulator from unloading/reloading any HDL interface shared
libraries during arestart. The shared libraries will remain loaded at their current positions.
User application code in the shared libraries must reset itsinternal state during arestart in
order for thisto work effectively.

We recommend using this option if you'll be doing warm restores after arestart and the user
application code has set callbacks in the simulator. Otherwise, the callback function pointers
might not be valid if the shared library isloaded into a new position.

e -keepstdout

(optional) For use with foreign programs. Instructs the simulator to not redirect the stdout
stream to the Main window.

e -logfile <filename> | -I <filename> | -nolog
(optional) Controls saving of transcript data during batch and regular simulations.

-logfile <filename> — Saves transcript data to <filename>. Can be abbreviated to -|
<filename>. Overrides the default transcript file creation set with the TranscriptFile
or BatchTranscriptFile modelsim.ini variables. Y ou can aso specify “stdout” or
“stderr” for <filename>.

-nolog — Disables transcript file creation. Overrides the TranscriptFile or
BatchTranscriptFile variables set in the modelsim.ini file.

Refer to “Batch Mode” for more information about saving transcript data.
o -L <library_name> ...

(optional) Specifiesthe library to search for top level design unitsinstantiated from Verilog
and for VHDL default component binding. Printsalist of all visibletop level librariesif a
top level design unit cannot be found. Refer to “Library Usage” for more information. If
multiple libraries are specified, each must be preceded by the -L option. Libraries are
searched in the order in which they appear on the command line.

e -Ldir <pathname> [<pathname> ...]

(optional) Passes one or more container folders for libraries specified by either vsim -L or
vsim -Lf. Once you specify a container folder (pathname), the libraries contained in this
folder can be directly referenced using their logical names. When you specify multiple
values for pathname, Model Sim searches in the order in which these paths are specified on
the command line.

Note
The current working directory ($cwd) is always searched before any pathnames you

specify for -Ldir. That is, Model Sim searches asif there was an implicit veim -Ldir .
specified first on the command line.

ModelSim® Command Reference Manual, v10.5¢c 425

Commands

vsim

-Lf <library_name> ...

(optional) Same as -L but libraries are searched before "uselib directives. Refer to “Library
Usage” for more information.

-lib <libname>

(optional) Specifies the default working library where vsim will 1ook for the design unit(s).
Default is "work".

-libverbose[=prlib]

(optional) Enables verbose messaging about library search and resolution operations. The
“=prlib” option will print out the -L or -Lf option that was used to locate each design unit
loaded by vsim. Thisinformation is printed to the right of the existing “Loading design unit

Xyz. .." messages.

Libraries containing top design units that are not explicitly present in the set of -L/-Lf
options areimplicitly promoted to searchable libraries at the end of the library search order.
They will appear as-Ltop in the output of the -libverbose option. To stop creation of -Ltop
libraries, use the -noltop argument of vsim.

-modelsimini <path/modelsim.ini>

(optional) Loads an aternate initialization file that replaces the current initialization file.
Overrides the file path specified in the MODEL SIM environment variable. Specifies either
an absolute or relative path to the initialization file, including the file itself. On Windows
systems the path separator should be aforward slash (/).

-msgfile <filename>

(optional) Designates an alternative file for recording error messages. An alternate file may
also be specified by theErrorFile modelsim.ini variable. By default, error messages are
output to the file specified by the TranscriptFile variable in the modelsim.ini file (refer to
“Creating a Transcript File").

-msglimit [all, | none,] <msgNumber>[, <msgNumber>,...]

(optional) Limits the number of iterations of the specified message(s) to five (the default
count) then suppresses all new instances. Refer to “ Suppression of Warning Messages’ for
more information.

all — Limits all messages to the default count except the specified msgNumber(s).
none — Limits only the specified msgNumber(s) to the default count.

<msgNumber>[,<msgNumber>,...] — Specifies the message number(s) to limit to five
iterations. Multiple messages are specified as a comma-separated list.

For example:
vsim -msglimit all, <msglD1>, <msglD2>
Limits all messages to the default count except msglD1 and msglD2.
vsim -msglimit none, <msglD1>, <msglD2>
Limits only msglD1 and msgl D2 to the default count.

426

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

e -msglimitcount <limit_value> -msglimit [all, | none,] <msgNumber>[, <msgNumber>...]
(optional) Limits the reporting of listed messages to user-defined limit_value. Overridesthe
MsgLimitCount variable in the modelsim.ini file.

e -msgmode both | tran | wif
(optional) Specifies the location(s) for the simulator to output elaboration and runtime
messages.

both — outputs messages to both the transcript and the WLF file.

tran — (default) outputs messages only to the transcript, therefore they are not available
in the Message Viewer.

wlif — outputs messages only to the WLF file/Message Viewer windows, therefore they
are not available in the transcript.

Refer to the section "Message Viewer Window" in the User’s Manual for more information.
e -multisource_delay min | max | latest

(optional) Controls the handling of multiple PORT or INTERCONNECT constructs that
terminate at the same port. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest of
the values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource int_delays argument.

e +multisource int_delays
(optional) Enables multisource interconnect delay with pulse handling and transport delay
behavior. Works for both Verilog and VITAL cells.

Use this argument when you have interconnect datain your SDF file and you want the delay
on each interconnect path modeled independently. Pulse handling is configured using the
+pulse_int_e and +pulse_int_r arguments (described below).

The +multisource_int_delays argument cannot be used if you compiled using the -novital
argument to vcom. The -novital argument instructs vcom to implement VITAL functionality
using VHDL code instead of accelerated code, and multisource interconnect delays cannot
be implemented purely within VHDL.

® -name <name>

(optional) Specifies the application name used by the interpreter for send commands. This
does not affect the title of the window.
e -noautoldlibpath

(optional) Disables the default internal setting of LD_LIBRARY_PATH, enabling you to
set it yourself. Use this argument to make surethat LD _LIBRARY_PATH isnot set
automatically while you are using the GUI,

e -nocapacity
(optional) Disables the display of both coarse-grain and fine-grain analysis of memory
capacity.

ModelSim® Command Reference Manual, v10.5¢c 427

Commands

vsim

-NOCoMpress

(optional) Causes VSIM to create uncompressed checkpoint files. This option may also be
specified with the CheckpointCompressMode variable in the modelsim.ini file.

-noimmedca

(optional) Causes Verilog event ordering to occur without enforced prioritization—
continuous assignments and primitives are not run before other normal priority processes
scheduled in the same iteration. Use this argument to prevent the default event ordering
where continuous assignments and primitives are run with “immediate priority.” Y ou may
also set even ordering with the ImmediateContinuousAssign variable in the modelsim.ini
file.

+no_notifier

(optional) Disables the toggling of the notifier register argument of al timing check system
tasks. By default, the notifier istoggled when there is atiming check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
in both Verilog and VITAL for the entire design.

+nospecify
(optional) Disables specify path delays and timing checksin Verilog.
-nostdout

(optional) Directs al output to the transcript only when in command line and batch mode.
Prevents duplication of 1/O between the shell and the transcript file. Has no affect on
interactive GUI mode. Refer to “Batch Mode” for information about batch mode usage.
+no_tchk_msg

(optional) Disables error messages generated when timing checks are violated. For Verilog,
it disables messages issued by timing check system tasks. For VITAL, it overridesthe
MsgOn arguments and generics.

Notifier registers are still toggled and may result in the propagation of Xs for timing check
violations.

-note <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "note." Edit the note
variable in the modelsim.ini file to set a permanent default. Refer to “ Message Severity
Level” for more information.

+notifier_ondetect

(optional) Causes timing check notifier toggle generated X output values to be scheduled
with zero delay.

+notimingchecks | +ntcnotchks

(optional) Disables Verilog timing checks. (This option sets the generic TimingChecksOn to
FALSE for al VHDL Vital modelswith the Vital_levelO or Vital_level1 attribute. Generics
with the name TimingChecksOn on non-VITAL models are unaffected.) By default, Verilog

428

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For VITAL, the
timing check default is controlled by the ASIC or FPGA vendor, but most default to
enabled.

Additionally, +ntcnotchks maintains the delay net delays necessitated by negative timing
check limits. For this reason when using +ntcnotchks it is necessary to SDF annotate all
timing check values.

e -nowiremodelforce

(optional) Restores the force command to previous usage (prior to version 10.0b) where an
input port cannot be forced directly if it is mapped at a higher level in VHDL and mixed
models. Signals must be forced at the top of the hierarchy connected to the input port.

e -Optionset <optionset_name>

(optional) Calls an optionset as defined in the modelsim.ini file. Refer to the section
““Optionsets’ on page 26" in the Reference Manual for more information.

e -pduignore[=<instpath>]
Ignore Preoptimized Design Unit (black-box). If <instpath> is not specified, all PDUsfound
in compiled libraries will be ignored. Otherwise, the PDU specified by <instpath> will be
ignored. Y ou can specify this argument multiple times using different values of <instpath>.
Equivalent to the deprecated -ignore_bbox argument.

e -permissive
(optional) Allows messagesin the LRM group of error messages to be downgraded to a
warning.
Y ou can produce a complete list of error messages by entering the following command:

verror -kind vsim -permissive

e -postsimdataflow

(optional) Makes Dataflow window available for post simulation debug operations. By
default, the Dataflow window is not available for post-sim debug.

e -printsimstats[=[<val>][V]]

(optional) Prints the output of the simstats command to the transcript at the end of
simulation before exiting. <val>is0 - disables simstats, 1(default) - prints stats at the end of
simulation,2 - prints out stats at the end of each run command and simulation. v- prints out
verbose statistics, including the checkout time.

Each performance statistic is printed with its related units on a separate line. Edit the
PrintSimStats variable in the modelsim.ini file to set the simulation to print the simstats data
by default.

The command vsim -printsimstats=v is equivalent to vsim -stats=perf+verbose. The
command vsim -printsimstats=2v is equivalent to vsim -stats=perf+verboseteor.

ModelSim® Command Reference Manual, v10.5¢c 429

Commands

vsim

+pulse_int_e/<percent>

(optional) Controls how pulses are propagated through interconnect delays, where
<percent> isanumber between 0 and 100 that specifiesthe error limit as a percentage of the
interconnect delay. Used in conjunction with +multisource _int_delays (see above). This
option works for both Verilog and VITAL cells, though the destination of the interconnect
must be a Verilog cell. The source may be VITAL or Verilog.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_int_r/<percent>
below) propagatesto the output asan X. If therejection limit is not specified, then it defaults
to the error limit. For example, consider an interconnect delay of 10 along with a
+pulse_int_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. This resultsin the propagation of pulses greater than or equal to 8, while all other
pulses are filtered.

+pulse_int_r/<percent>

(optional) Controls how pulses are propagated through interconnect delays, where
<percent> isanumber between 0 and 100 that specifiesthe rejection limit as a percentage of
the interconnect delay. This option works for both Verilog and VITAL cells, though the
destination of the interconnect must be a Verilog cell. The source may be VITAL or
Verilog.

A pulse less than the rejection limit is filtered. If the error limit is not specified by
+pulse_int_ethen it defaultsto the rgjection limit.

-quiet

(optional) Disable 'Loading’ messages during batch-mode simulation.

-runinit

(optional) Initializes non-trivial static SystemVerilog variables, for example expressions
involving other variables and function calls, before displaying the simulation prompt.

+sdf iopath to_prim_ok
(optional) Prevents vsim from issuing an error when it cannot locate specify path delays to
annotate. If you specify this argument, IOPATH statements are annotated to the primitive

driving the destination port if a corresponding specify path is not found. Refer to “ SDF to
Verilog Construct Matching” for additional information.

-sdfmin | -sdftyp | -sdfmax[@<delayScale>] [<instance>=|<sdf _filename>

(optional) Annotates VITAL or Verilog cellsin the specified SDF file (a Standard Delay
Format file) with minimum, typical, or maximum timing. Can also specify instances under
VHDL generates as the SDF back-annotation point.

@<delayScale> — scales all values by the specified value. For example, if you specify
-sdfmax@1.5, al maximum values in the SDF file are scaled to 150% of their
original value.

430

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

<instance>= — specifies a specific instance for the associated SDF file. Use thiswhen
not performing backannotation at the top level.

<godf_filename> — specifies the file containing the SDF information.
e -sdfmaxerrors <n>

(optional) Controls the number of Verilog SDF missing instance messages to be generated
before terminating vsim. <n> is the maximum number of missing instance error messagesto
be emitted. The default number is 5.

e -sdfnoerror

(optional) Errorsissued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to warnings so
that the simulation can continue.

e -sdfnowarn

(optional) Disables warnings from the SDF reader. Refer to “VHDL Simulation” for an
additional discussion of SDF.

o -sdfreport=<filename>

(optional) Produces areport at the location of <filename> containing information about
unannotated and partially-annotated specify path objects, specifically path delays and
timing checks. Refer to the section “ Reporting Unannotated Specify Path Objects’ in the
User's Manual for more information.

e +sdf report_unannotated insts

(optional) Enables error messages for any un-annotated Verilog instances with specify
blocks or VHDL instances with VITAL timing generics that are under regions of SDF
annotation.

e +sdf verbose

(optional) Turns on the verbose mode during SDF annotation. The Transcript window
provides detailed warnings and summaries of the current annotation as well asinformation
including the module name, source file name, and line number. When the
+multisource_int_delays argument is also specified, the +sdf verbose argument causes the
output from the write timing command to contain more detail.

e -stackcheck

(optional) Enables runtime stack usage sanity checking. This argument causes vsim to add
additional instrumentation at runtime to monitor the system stack usage. If the usage
exceeds the reserved stack limit, vsim will report afatal error. An uncaught stack overflow
will lead to a potentially mysterious and random downstream crash.

o -stats[=[+ |-]<feature>[,[+ | -]<mode>]

(optional) Controls display of statistics sent to alogfile, stdout, or the transcript. Specifying
-stats without options sets the default features (cmd, msg, and time).

ModelSim® Command Reference Manual, v10.5¢c 431

Commands
vsim

Multiple features and modes for each instance of -stats are specified as a comma separated
list. Y ou can specify -stats multiple times on the command line, but only the last instance
takes effect.

Y ou can specify -printsimstats and -stats on the same command line, however -stats will
always override -printsimstats regardless of the order in which the options are specified.

[+ | -] — Controls activation of the feature or mode where the plus character (+)

enables the feature and the minus character (-) disablesthe feature. Y ou can also
enable a feature or mode by specifying a feature or mode without the plus (+)
character. Setting this argument will add or subtract features and modes from the
default settings "cmd,msg,time".

Features

all — Display all statistics features (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, all is applied first.

cmd — (default) Echo the command line.

msg — (default) Display error and warning summary at the end of command
execution.

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, none is applied first.

perf — Display time and memory performance statistics.
time — (default) Display Start, End, and Elapsed times.

Modes
Modes can be set for a specific feature or globally for all features. To add or subtract a

mode for a specific feature, specify using the plus (+) or minus (-) character with the
feature, for example, vcover dump -stats=cmd+verbose,perf+list. To add or subtract a
mode globally for al features, specify the modesin acomma-separated list, for
example, vcover dump -stats=time,perf,list,-verbose. Y ou cannot specify global and
feature specific modes together.

eor — Print performance statistics at the end of each run command. Valid for use only
with perf feature (-stats=perf+eor); it isinvalid with other features.

kb — Print statistics in kilobyte units with no auto-scaling.
list — Display statisticsin aTcl list format when available.
verbose — Display verbose statistics information when available.

Note

D By default, vsim prints the command line with the '-f filename' option. Prior to

10.3c, behavior was to print the command line with expanded arguments from '-f

filename'. To enable the previous behavior, specify -stats=cmd+verbose.

Refer to Tool Statistics Messages for more information.

432

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

e -suppress <msg_number>[,<msg_number>,...]

(optional) Prevents the specified message(s) from displaying. Y ou cannot suppress Fatal or
Internal messages. Edit the suppress variable in the modelsim.ini file to set a permanent
default. Refer to “Message Severity Level” for more information.

e -sync
(optional) Executes all X server commands synchronously, so that errors are reported
immediately. Does not apply to Windows platforms.

e -Syncio | -nosyncio

(optional) Controls buffering of text output to console and logfile. Both options are no-ops
when vsim -batch isin effect.

-syncio — (default) 1/0 is synchronous with simulation activity, always up-to-date.

-nosyncio — Disables I/O synchronization. This allows vsim to run faster by buffering
(delaying) output.

e -t[<multiplier>]<time_unit>

(optional) Specifies the simulator time resolution. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ps; the optional <multiplier> may be 1, 10 or 100.
Note that there is no space between the multiplier and the unit (for example, 10fs, not 10 fs).
If you omit the -t argument, the default simulator time resolution depends on design type:

o InaVHDL design—the value specified for the Resolution variable in modelsim.ini
is used.

o InaVerilog design with ‘timescal e directives—the minimum specified time
precision of all directivesis used.

o InaVerilog design with no ‘timescal e directives—the value specified for the
Resolution variable in the modelsim.ini fileis used.

o Inamixed design with VHDL on top—the value specified for the Resolution
variablein the modelsim.ini file is used.

o Inamixed design with Verilog on top—

e for Verilog modules not under a VHDL instance: the minimum value specified
for their ‘timescale directivesis used.

o for Verilog modules under aVHDL instance: all their ‘timescale directives are
ignored (the minimum value for ‘timescale directivesin all modules not under a
VHDL instance is used).

ModelSim® Command Reference Manual, v10.5¢c 433

Commands

vsim

If there are no ‘timescale directivesin the design, the value specified for the Resolution
variable in modelsim.ini is used.

Tip
After you have started a simulation, you can view the current ssmulator resolution by
using the report command as follows: report simulator state

-tab <tabfile>

(optional) Specifiesthe location of a Synopsys VCS “tab” file (.tab), which the simulator
uses to automate the registration of PLI functions in the design.

<tabfile> — The location of a.tab file contains information about PLI functions. The
tool expectsthe .tab file to be based on Synopsys VCS version 7.2 syntax. Because
the format for thisfile is non-standard, changes to the format are outside of the
control of Mentor Graphics.

-tag <string>

(optional) Specifies a string tag to append to foreign trace filenames. Used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.
-title <title>

(optional) Specifiesthetitle to appear for the Model Sim Main window. If omitted the
current Model Sim version is the window title. Useful when running multiple simultaneous
simulations. Text strings with spaces must be in quotes (for example, "my title").

-trace _foreign <int>

(optional) Creates two kinds of foreign interface traces: alog of what functions were called,
with the value of the arguments, and the results returned; and a set of C-language filesto
replay what the foreign interface side did.

The purpose of the logfile isto aid the debugging of your PLI/VPI code. The primary
purpose of the replay facility isto send the replay fileto MTI support for debugging co-
simulation problems, or debugging problems for which it isimpractical to send the PLI/VPI
code.

-undefsyms={ <args>}

(optional) Manages the undefined symbolsin the shared libraries currently being loaded into
the simulator. Y ou can also manage undefined symbols with the Undef Syms modelsim.ini
variable.

{<args>}
Y ou must specify at least one argument.

on — Enables automatic generation of stub definitions for undefined symbols and
permits loading of the shared libraries despite the undefined symbols.

off — (default) Disables loading of undefined symbols. Undefined symbolstrigger an
immediate shared library loading failure.

434

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

verbose — Permits loading to the shared libraries despite the undefined symbols and
reports the undefined symbols for each shared library.

e -uvmcontrol={ <args>}

(optional) Controls UVM-Aware debug features. These features work with either a standard
Accelera-released open source toolkit or the pre-compiled UVM library packagein
ModelSim.

{<args>}

Y ou must specify at least one argument. Y ou can enable or disable some arguments by
prefixing the argument with adash (-). Refer to the argument descriptions for more
information.

all — Enables all UVM-Aware functionality and debug options except disable and
verbose. Y ou must specify verbose separately.

certe— Enablestheintegration of the elaborated design in the Certetool. Disables Certe
features when specified as -certe.

disable — Prevents the UV M-Aware debug package from being loaded. Changes the
results of randomized valuesin the smulator.

msglog — Enables messages logged in UVM to be integrated into the Message Viewer.
Y ou must aso enable wif message logging by specifying tran or wif with vsim
-msgmode. Disables message logging when specified as -msglog

none — Turns off all UVM-Aware debug features. Useful when multiple -uvmcontrol

options are specified in a separate script, makefile or alias and you want to be sure all
UVM debug features are turned off.

reseed — Disables behavior of UVM simulation, whereif you reseed the simulation, the
random sequences generated by UVM will change.

struct — (default) Enables UVM component instances to appear in the Structure
window. UV M instances appear under “uvm_root” in the Structure window. Disables
Structure window support when specified as -struct.

trlog — Enables or disables UVM transaction logging. Logs UVM transactions for
viewing in the Wave window. Disables transaction logging when specified as -trlog.

verbose — Sends UVM debug package information to the transcript. Does not affect
functionality. Must be specified separately.

Arguments may be specified as multiple instances of -uvmcontrol. Multiple arguments are
specified as a comma separated list without spaces. For example,

vsim -uvmcontrol=all, -trlog

enables al UVM features except UVM transaction logging. Where arguments are in
conflict, the last argument will override earlier arguments and awarning is issued.

Y ou can aso control UVM-Aware debugging with theUV M Control modelsim.ini variable.

ModelSim® Command Reference Manual, v10.5¢c 435

Commands

vsim

-vcdstim [<instance>=]<filename>

(optional) Specifiesa VCD file from which to re-simulate the design. The VCD file must
have been created in a previous Model Sim simulation, which was executed with the
+dumpports+nocollapse option, then using the ved dumpports command. Refer to “Using
Extended VCD as Stimulus’ for more information.

-version
(optional) Returns the version of the simulator as used by the licensing tools.
-view [<alias_name>=]<WLF _filename>

(optional) Specifies awave log format (WLF) file for vsim to read. Allows you to use vsim
to view the results from an open simulation (vsim.wif) or an earlier saved ssimulation. The
Structure, Objects, Wave, and List windows can be opened to look at the results stored in
the WLF file (other Model Sim windows will not show any information when you are
viewing a dataset).

<alias_name> — Specifies an alias for <WLF_file_name> where the default isto use
the prefix of the WLF_filename. Wildcard characters are allowed.

<WLF _file_name>— Specifies the pathname of a saved WLF file.
See additional discussion in the Examples.
-visual <visual>
(optional) Specifiesthe visua to use for the window. Does not apply to Windows platforms.
Where <visual> may be:
<class> <depth> — One of the following:

{directcolor | grayscale | greyscale | pseudocolor | staticcolor | staticgray | staticgrey |
truecolor}

followed by:
<depth> — Specifies how many bits per pixel are needed for the visual.
default — Instructs the tool to use the default visual for the screen
<number> — Specifiesavisua X identifier.

best <depth> — Instructs the tool to choose the best possible visual for the specified
<depth>, where:

<depth> — Specifies how many bits per pixel are needed for the visual.
-warning <msg_number>[,<msg_number>,...]

(optional) Changes the severity level of the specified message(s) to "warning." Edit the
warning variable in the modelsim.ini file to set a permanent default. Refer to “Message
Severity Level” for more information.

-warning error
(optional) Reports al warnings as errors.

436

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

o -wlif <file_ name>

(optional) Specifies the name of the wave log format (WLF) fileto create. The default file
name is vsim.wif. This option may also be specified with the WLFFilename variable in the
modelsim.ini file.

e -wlfcachesize <n>

(optional) Specifies the size in megabytes of the WLF reader cache. By default the cache
Sizeis set to zero. WLF reader caching caches blocks of the WLF file to reduce redundant
file 1/0O. This should have significant benefit in slow network environments. This option
may also be specified with the WL FCacheSize variable in the modelsim.ini file.

o -wlifcollapsedelta

(default) Instructs Model Sim to record values in the WLF file only at the end of each
simulator delta step. Any sub-deltavalues are ignored. May dramatically reduce WLF file
size. This option may also be specified with the WLFCollapseMode variable in the
modelsim.ini file.

e -wlifcollapsetime

(optional) Instructs Model Sim to record values in the WLF file only at the end of each
simulator time step. Any delta or sub-delta values are ignored. May dramatically reduce
WLF file size. This option may also be specified with the WLFCollapseM ode variable in
the modelsim.ini file.

e -nowlfcollapse

(optional) Instructs Model Sim to preserve all events for each logged signal and their event
order to the WLF file. May result in relatively larger WLF files. This option may also be
specified with the WLFCollapseM ode variable in the modelsim.ini file.

e -wlfcompress

(default) Creates compressed WLF files. Use -nowlfcompress to turn off compression. This
option may also be specified with the WLFCompress variable in the modelsim.ini file.

e -nowlfcompress

(optional) Causes vsim to create uncompressed WLF files. WLF files are compressed by
default in order to reduce file size. This may slow simulation speed by one to two percent.
Y ou may want to disable compression to speed up simulation or if you are experiencing
problems with faulty datain the resulting WLF file. This option may also be specified with
the WLFCompress variable in the modelsim.ini file.

e -wifdeleteonquit

(optional) Deletes the current simulation WLF file (vssm.wif) automatically when the
simulator exits. This option may also be specified with the WLFDeleteOnQuit variablein
the modelsim.ini file.

ModelSim® Command Reference Manual, v10.5¢c 437

Commands

vsim

-nowlfdel eteonquit

(default) Preserves the current simulation WLF file (vsim.wlif) when the ssmulator exits.
This option may also be specified with the WLFDeleteOnQuit variable in the modelsim.ini
file.

-wlflock

(optional) Locks aWLF file. An invocation of Model Sim will not overwrite aWLF file that
is being written by a different invocation.

-nowlflock

(optional) Disables WLF filelocking. Thiswill prevent vsim from checking whether aWLF
fileislocked prior to opening it as well as preventing vsim from attempting to lock aWLF
once it has been opened.

-nowlfopt

(optional) Disables optimization of waveform display in the Wave window. This option
may also be specified with the WLFOptimize variable in the modelsim.ini file.

-wlfsimcachesize <n>

(optional) Specifies the size in megabytes of the WLF reader cache for the current
simulation dataset only. By default the cache sizeis set to zero. This makes it easier to set
different sizes for the WLF reader cache used during simulation and those used during post-
simulation debug. WLF reader caching caches blocks of the WLF file to reduce redundant
filel/O. If neither the -wlfsimcachesize argument nor the WLFSImCacheSize modelsim.ini
variable are specified, the -wlfcachesize argument or the WL FCacheSize modelsim.ini
variable settings will be used.

-wlfdim <size>
(optional) Specifies asize restriction for the event portion of the WLF file.
size— an integer, in megabytes, where the default is 0, which implies an unlimited size.

— Note
Note that a WLF file contains event, header, and symbol portions. The size

restriction is placed on the event portion only. Consequently, the resulting file will
be larger than the specified size.

If used in conjunction with -wliftlim, the more restrictive of the limits takes precedence.

This option may also be specified with the WLFSizeLimit variable in the modelsim.ini file.
(See Limiting the WLF File Size.)

-wliftlim <duration>

(optional) Specifiesthe duration of simulation time for WLF file recording. The default is
infinite time (0). The <duration> is an integer of simulation time at the current resolution;
you can optionally specify the resolution if you place curly braces around the specification.
For example,

438

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

{5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000
writes at most the last 5000ns of the current ssmulation to the WLF file (the current
simulation resolution in this case is ns).
If used in conjunction with -wlifslim, the more restrictive of the limits will take effect.
This option may also be specified with the WLFTimeLimit variable in the modelsm.ini file.

The -wlfslim and -wlftlim arguments were designed to help users limit WLF file sizesfor
long or heavily logged simulations. When small values are used for these arguments, the
values may be overridden by the internal granularity limits of the WLF file format. (See
Limiting the WLF File Size.)

VHDL Arguments

-absentisempty

(optional) Causes VHDL files opened for read that target non-existent files to be treated as
empty, rather than Model Sim issuing fatal error messages.

-accessobjdebug

(optional) Enableslogging of VHDL access type variables—both the variable value and any
access object that the variable points to during the simulation. Further, it changes the default
form of display-only names (such as[10001]) to adifferent form that you can use asinput to
any command that expects an object name.

By default, logging is turned off. This means that while access variables themselves can be
logged and displayed in the Model Sim display windows, any access objects that they point
to will not be logged.

Overrides the setting forthe AccessObjDebug variable in the modelsim.ini file.

-noaccessobjdebug

(optional) Disables logging of VHDL accesstype variables, which is the default setting.
This means that while access variables themselves can be logged and displayed in the
Model Sim display windows, any access objects that they point to will not be logged.

Overrides the setting forthe AccessObjDebug variable in the modelsim.ini file.
-nocollapse

(optional) Disables the optimization of internal port map connections.
-nofileshare

(optional) Turns off file descriptor sharing. By default Model Sim shares afile descriptor for
all VHDL files opened for write or append that have identical names.

ModelSim® Command Reference Manual, v10.5¢c 439

Commands

vsim

-noglitch

(optional) Disables VITAL glitch generation.

Refer to “VHDL Simulation” for additional discussion of VITAL.
+no_glitch_msg

(optional) Disable VITAL glitch error messages.
-novhdlvariablelogging

(optional) This argument turns off the ability to log recursively or add process variables to
the Wave or List windows. Refer to -vhdlvariable logging and VV hdlVariablel ogging
modelsim.ini variable for more information.

-std_input <filename>

(optional) Specifiesthefileto usefor the VHDL TextlO STD_INPUT file.
-std_output <filename>

(optional) Specifiesthefileto usefor the VHDL TextlO STD_OUTPUT file.
-strictvital

(optional) Specifiesto exactly match the VITAL package ordering for messages and delta
cycles. Useful for eliminating delta cycle differences caused by optimizations not addressed
inthe VITAL LRM. Using this argument negatively impacts simulator performance.

+transport_int_delays

(optional) Selects transport mode with pulse control for single-source nets (one interconnect
path). By default interconnect delays operate in inertial mode (pulses smaller than the delay
are filtered). In transport mode, narrow pulses are propagated through interconnect delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource int_delays.

+transport_path_delays

(optional) Selects transport mode for path delays. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

-vhdlmergepdupackage

(optional) Turns off sharing of one package between two PDUs. Each PDU will have a
separate copy of the package. This option may also be specified with the
V hdl SeparatePduPackage variable in the modelsim.ini file.

-vhdl separatepdupackage
(optional, default) Turns on sharing of packages between two or more PDUSs.

440

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

-vhdlvariablelogging

(optional) This argument makes it possible for process variables to be logged recursively or
added to the Wave and List windows (process variables can still be logged or added to the
Wave and List windows explicitly with or without this argument).

Y ou can disable this argument with -novhdlvariablelogging. Refer to -vhdlvariable logging
and VhdlV ariablel ogging modelsim.ini variable for more information.

Note
D Logging process variables inherently decreases simulation performance because of

their nature. It is recommended that they not be logged or added to the Wave and
List windows. However, if debugging does require logging them, then you can use this
argument to minimize the performance decrease.

-vital2.2b
(optional) Selects SDF mapping for VITAL 2.2b (default isVITAL 2000).

Verilog Arguments

+alt_path delays

(optional) Configures path delays to operate in inertial mode by default. Ininertial mode, a
pending output transition is canceled when a new output transition is scheduled. The result
isthat an output may have no more than one pending transition at atime, and that pulses
narrower than the delay arefiltered. The delay is selected based on the transition from the
canceled pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on a transition from the current output
value rather than the canceled pending value of the net. This option has no effect in transport
mode (see +pulse_e/<percent> and +pulse_r/<percent>).

-checkvifacedrivers

(optional) Turns off/on checks for multiple-driver analysis in assignments made through
virtual interfaces.

-classdebug | -noclassdebug

(optional) Enables/disables visibility into class instances, and includes SystemVerilog
gueues, dynamic arrays, and associative arrays for class and UVM debugging. Y ou can aso
enable visibility into class instances by setting the ClassDebug modelsim.ini variableto 1.
Refer to the classinfo find command for more information.

+delayed_timing_checks

(optional) Causes timing checks to be performed on the delayed versions of input ports
(used when there are negative timing check limits). By default, Model Sim automatically
detects and applies +delayed timing_checks to cells with negative timing checks. To turn
off this feature, specify +no_autodtc with vsim.

ModelSim® Command Reference Manual, v10.5¢c 441

Commands

vsim

-dpiforceheader

(optional) Forces the generation of a DPI header file even if it will be empty of function
prototypes.

-dpiheader

(optional) Generates a header file that may then be included in C source code for DPI import
functions. Simulation quits after header file is generated. Refer to “DPI Use Flow” for
additional information.

-dpilib <libname>

(optional) Specifiesthe design library name that contains DPI exports and automatically
compiled object files. If the -dpilib argument is not set, vsim loads export symbols from all
libraries accessible viavsim options-L, -Lf, and -lib. Multiple occurrences of -dpilib are
supported.

-dpioutoftheblue 0| 1|2

(optional) Instructs vsim to allow DPI out-of-the-blue calls from C functions. The C
functions must not be declared as import tasks or functions.

0 — Support for DPI out-of-the-blue calls is disabled.

1 — Support for DPI out-of-the-blue callsis enabled, but debugging support is not
available.

-gconrun | -nogconrun

(optional) Enables/disables garbage collector execution after each simulation run command
completes.

-gconstep | -nogconstep

(optional) Enables/disables garbage collector execution after each step when stepping
through your simulation.

-gcthreshold <n>

(optional) Sets the maximum amount of memory in megabytes allocated for storage of class
objects before the garbage collector runs to delete unreferenced objects.

<n>— Any positive integer where <n> is the number of megabytes. The default sizeis
100 megabytes.

Related modelsim.ini file variables are GCThreshold andGCT hreshol dClassDebug.
-hazards

(optional) Enables event order hazard checking in Verilog modules (Verilog only). You
must also specify this argument when you compile your design with viog. Refer to “Hazard
Detection” for more details.

Note
Using -hazards implicitly enables the -compat argument. As aresult, using this

argument may affect your simulation results.

442

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

e -ignoreinilibs

(optional) Ignore the libraries specified in the LibrarySearchPath variable in the vaim
section of the modelsim.ini file.

e -noappendclose

(optional) Simulator will not immediately close files opened in APPEND mode. Designed
to override the AppendClose modelsim.ini variable when it is set to one (On). Subsequent
callstofile_openin APPEND mode will therefore not require operating system interaction,
resulting in faster performance.

e +no_autodtc

(optional) Turns off auto-detection of optimized cells with negative timing checks and auto-
application of +delayed timing_checks to those cells.

e +no_cancelled e msg

(optional) Disables negative pulse warning messages. By default vsim issues awarning and
then filters negative pulses on specify path delays. Y ou can drive an X for a negative pulse
using +show_cancelled_e.

e +no_neg_tchk

(optional) Disables negative timing check limits by setting them to zero. By default negative
timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where negative
timing check limits are disabled by default, and they are enabled with the +neg_tchk option.

e +no_notifier

(optional) Disables the toggling of the notifier register argument of all timing check system
tasks. By default, the notifier is toggled when there is atiming check violation, and the
notifier usually causes a UDP to propagate an X. This argument suppresses X propagation
on timing violations for the entire design.

e +n0o_path_edge

(optional) Causes Model Sim to ignore the input edge specified in a path delay. The result of
thisargument isthat all edges on the input are considered when selecting the output delay.
Verilog-XL awaysignores the input edges on path delays.

e +n0o_pulse msg

(optional) Disables the warning message for specify path pulse errors. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse regjection limit
and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error resultsin
awarning message, and the pulse is propagated as an X. The +no_pulse_msg option
disables the warning message, but the X is still propagated.

e -no_risefal_delaynets

(optional) Disables the default rise/fall delay net delay negative timing check algorithm.
This argument is provided to return Model Sim to older behavior where violation regions
must overlap in order to find adelay net solution. Beginning with Release 6.0, you do not

ModelSim® Command Reference Manual, v10.5¢c 443

Commands

vsim

need to use this argument because Model Sim uses separate rise/fall delays, so violation
regions need not overlap for adelay solution to be found.

+no_show_cancelled e

(optional) Filters negative pulses on specify path delays so they do not show on the output.
Default. Use +show_cancelled e to drive a pulse error state.

+no_tchk_msg

(optional) Disables error messages issued by timing check system tasks when timing check
violations occur. Notifier registers are still toggled and may result in the propagation of Xs
for timing check violations.

-nodpiexports

(optional) Instructs Model Sim to not generate C wrapper code for DPI export task and
function routines found at elaboration time. More specifically, the command does not
generate the exportwrapper.so shared object file.

For a description on when you should use this argument, refer to the section * Deprecated
Legacy DPI Flows’ in the User's Manual.

+nosdferror

(optional) Errorsissued by the SDF annotator while loading the design prevent the
simulation from continuing, whereas warnings do not. Changes SDF errors to warnings so
that the simulation can continue.

+nosdfwarn

(optional) Disables warnings from the SDF annotator.
+nospecify

(optional) Disables specify path delays and timing checks.
+nowarnBSOB

(optional) Disables run-time warning messages for bit-selectsininitial blocksthat are out of
bounds.

+nowarn<CODE | number>

(optional) Disables warning messages in the category specified by a warning code or
number. Warnings that can be disabled include the code name in square brackets in the
warning message. For example:

** Warning: (vsim-3017) test.v(2): [TFMPC] - Too few port
connections. Expected <m>, found <n>.

The warning code for this example is TFMPC, and the warning number is 3017. Therefore,
this warning message can be disabled with +nowarnTFMPC or +nowarn3017.
+ntc_warn

(optional) Enables warning messages from the negative timing constraint algorithm. By
default, these warnings are disabled.

444

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If thereis no solution for this set of limits, then the algorithm sets one of the
negative limitsto zero and recal culates the delays. This processisrepeated until asolutionis
found. A warning message is issued for each negative limit set to zero.

e +ntcnotchks

(optional) Instructs vsim to not simulate timing checks but still consider negative timing
check limits for the calculation of delayed input delays.

e -oldvhdiforgennames

(optional) Enablesthe use of a previous style of namingin VHDL for ... generate statement
iteration names in the design hierarchy. The previous style is controlled by the value of the
GenerateFormat value. The default behavior isto use the current style names, which is
described in “Naming Behavior of VHDL For Generate Blocks” This argument duplicates
the function of the OldV hdlForGenNames variable in modelsim.ini and will override the
setting of that variable if it specifiesthe current style.

e -onfinish ask | stop | exit | final

(optional) Customizes the simulator shutdown behavior when it encounters $finish in the
design:

o ask—
¢ |n batch mode, the simulation exits.

e In GUI mode, adialog box pops up and asks for user confirmation on whether to
quit the simulation.

o stop — stops simulation and leaves the simulation kernel running
o exit— exitsout of the ssimulation without a prompt
o final — executes all final blocks then exits the smulation

By default, the ssmulator exitsin batch mode; prompts you in GUI mode. Edit the OnFinish
variable in the modelsim.ini file to set the default operation of $finish.

e -pedanticerrors

(optional) Forces display of an error message (rather than awarning) on a variety of
conditions.

Y ou can view acomplete list of errors by executing the command:

verror -kind vsim -pedanticerrors

e -permit_unmatched_virtual_intf

(optional) Permits vsim to elaborate designs containing virtual interface declarations for
which no actual interface instances exist that are compatible with that declaration. Such
virtual interface declarations are considerted "unmatched" since there is no matching or

ModelSim® Command Reference Manual, v10.5¢c 445

Commands

vsim

compatible interface instance. By default, unmatched virtual interfaces prevent vsim from
elaborating the design. For further information on this design situation, see "Unmatched
Virtual Interface Declarations’.

-pli "<object list>"

(optional) Loads a comma- or space-separated list of PL1 shared objects. The list must be
quoted if it contains more than one object. Thisis an alternative to specifying PL1 objectsin
the Veriuser entry in the modelsim.ini file, refer to modelsim.ini Variables. Y ou can use
environment variables as part of the path.

+<plusarg>

(optional) Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). All plusarg argument values can be overridden in -restore mode and
will take effect when simulation resumes after restoring the design.

+pulse_e/<percent>

(optional) Controls how pulses are propagated through specify path delays, where
<percent> isanumber between 0 and 100 that specifiesthe error limit as a percentage of the
path delay.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the regjection limit (see +pulse_r/<percent>)
propagates to the output asan X. If theregjection limit is not specified, then it defaultsto the
error limit. For example, consider a path delay of 10 along with a+pulse_e/80 option. The
error limit is 80% of 10 and the rejection limit defaults to 80% of 10. Thisresultsin the
propagation of pulses greater than or equal to 8, while all other pulses are filtered. Note that
you can force specify path delays to operate in transport mode by using the +pulse_e/0
option.

+pulse_e style ondetect

(optional) Selects the "on detect” style of propagating pulse errors (see +pulse_e). A pulse
error propagates to the output as an X, and the "on detect” style isto schedule the X
immediately, as soon asit has been detected that a pulse error has occurred. "on event” style
is the default for propagating pulse errors (see +pulse_e_style_onevent).

+pulse e style onevent

(optional) Selectsthe "on event” style of propagating pulse errors (see +pulse_€). Default. A
pulse error propagates to the output as an X, and the "on event" styleisto schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it had
propagated through normally.

+pulse_r/<percent>

(optional) Controls how pulses are propagated through specify path delays, where
<percent> isanumber between 0 and 100 that specifiesthe rejection limit as a percentage of
the path delay.

446

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

A pulselessthan the rgjection limit is suppressed from propagating to the output. If the error
limit is not specified by +pulse_e then it defaults to the rejection limit.

e +sdf_nocheck_celltype

(optional) Disables the error check afor mismatch between the CELLTY PE name in the
SDF file and the modul e or primitive name for the CELL instance. It isan error if the names
do not match.

e +show _cancelled e

(optional) Drives a pulse error state (' X’) for the duration of a negative pulse on a specify
path delay. By default Model Sim filters negative pul ses.

e -showlibsearchpath
(optional) Returns to the transcript al libraries that will be searched for precompiled
modules.

e -sv_lib <shared_obj>
(required for use with DPI import libraries) Specifiesthe name of the DPI shared object with
no extension. Refer to “DPI Use Flow” for additional information.

e -sv_liblist <filename>
(optional) Specifies the name of a bootstrap file containing names of DPI shared objects
(libraries) to be loaded. Refer to “DPI File Loading” for format information.

e -sv_root <dirname>
(optional) Specifies the directory name to be used as the prefix for DPI shared object
lookups.

e +transport_int_delays

(optional) Selectstransport mode with pulse control for single-source nets (one interconnect
path). By default interconnect delays operate in inertial mode (pulses smaller than the delay
arefiltered). In transport mode, narrow pulses are propagated through interconnect delays.

This option works for both Verilog and VITAL cells, though the destination of the
interconnect must be a Verilog cell. The source may be VITAL or Verilog. This option
works independently from +multisource_int_delays.

e +transport _path delays

(optional) Selects transport mode for path delays. By default, path delays operate in inertial
mode (pulses smaller than the delay are filtered). In transport mode, narrow pulses are
propagated through path delays. Note that this option affects path delays only, and not
primitives. Primitives always operate in inertial delay mode.

e -v2k int_delays

(optional) Causes interconnect delays to be visible at the load module port per the IEEE
1364-2001 spec. By default Model Sim annotates INTERCONNECT delaysin a manner
compatible with Verilog-XL. If you have $sdf_annotate() callsin your design that are not
getting executed, add the Verilog task $sdf _done() after your last $sdf _annotate() to remove

ModelSim® Command Reference Manual, v10.5¢c 447

Commands

vsim

any zero-delay MIPDs that may have been created. May be used in tandem with the
+multisource_int_delays argument (see above).

-work <pathname>

(optional) When using a 2-step flow, this argument overrides the library in which veim
writes the optimized design generated by the internally invoked vopt command.

-wrealdefaultzero
(optional) For nets declared aswreal, sets the default value for an undriven wreal net to zero

(0).

Object Arguments
The object arguments may be a[<library_name>].<design_unit>, an .mpf file, a.wif file, or a
text file. Multiple design units may be specified for Verilog modules and mixed VHDL/Verilog
configurations.

<library_name>.<design_unit>

(optional) Specifies alibrary and associated design unit; multiple library/design unit
specifications can be made. If no library is specified, the work library isused. Y ou cannot
use the wildcard character (*) for this argument. Environment variables can be used.
<design_unit> may be one of the following:

<configuration> Specifies the VHDL configuration to simulate.

<module> ... (optional) Specifies the name of one or more top-
level Verilog modules to be simulated.

<entity> [(<architecture>)] (optional) Specifies the name of the top-level
VHDL entity to be smulated. The entity may have
an architecture optionally specified; if omitted the
last architecture compiled for the specified entity
issimulated. An entity isnot valid if a

configuration is specified.!
1. Most UNIX shellsrequire arguments containing () to be single-quoted to prevent special
parsing by the shell. See the examples below.
<MPF _file_name>
(optional) Opens the specified project.
<WLF file_ name>

(optional) Opens the specified dataset. When you open a WLF file using the following
command:

vsim test.wlf

448

ModelSim® Command Reference Manual, v10.5¢

Commands
vsim

The default behavior isto not automatically load any signalsinto the Wave window. Y ou
can change this behavior, such that the Wave window contains all signalsin the design, by
setting the preference PrefWave(OpenL ogAutoAddWave) to 1 (true).

o <text file_ name>

(optional) Opens the specified text file in a Source window.

Examples

Invoke vsim on the entity cpu and assigns values to the generic parameters edge and
VCC.

vsim -gedge=""low high"’ -gVCC=4.75 cpu
If working within the Model Sim GUI, you would enter the command as follows:
vsim {-gedge="low high"} -gvVCC=4.75 cpu

Instruct Model Sim to view the results of a previous simulation run stored in the WLF
filesm2.wif. The simulation is displayed as a dataset named test. Use the -wlIf argument
to specify the name of the WLF file to create if you plan to create many files for later
viewing.

vsim -view test=sim2.wlf

For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

Annotate instance /top/ul using the minimum timing from the SDF file myasic.sdf.
vsim -sdfmin /top/ul=myasic.sdf

Use multiple arguments to annotate multiple instances:
vsim -sdfmin /top/ul=sdfl -sdfmin /top/u2=sdf2 top

This example searches the libraries mylib for top(only) and gatelib for cache _set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) isoptional.

vsim 'mylib.top(only)’ gatelib.cache_set

Invokevsim on test_counter and run the simulation until abreak event, then quit when it
encounters a $finish task.

vsim -do "set PrefMain(forceQuit) 1; run -all" work.test_counter

Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vsim -stats=time,-cmd,msg

The first -stats option isignored. The none option disables all modelsim.ini settings and
then enables the perf option.

ModelSim® Command Reference Manual, v10.5¢c 449

Commands
vsim

vsim -stats=time,cmd,msg -stats=none,perf

450 ModelSim® Command Reference Manual, v10.5¢

Commands
vsim<info>

vsim<info>
Series of commands that return information about the current vsim executable.

Syntax

vsimAuth
Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsmDate
Returns the date the executable was built, such as"Apr 10 2000".

vsimid
Returns the identifying string, such as"ModelSim 6.1".

vsmVersion
Returns the version as used by the licensing tools, such as "1999.04".

vsimVersionString
Returns the full vsim version string. Y ou can obtain this same information using the
-version argument of the vsim command.

Arguments
none

ModelSim® Command Reference Manual, v10.5¢c 451

Commands
vsim_break

vsim_Dbreak

Stop (interrupt) the current simulation before it runs to completion. To stop a simulation and
then resume it, use this command in conjunction with run -continue.

Syntax
vsim_break
Arguments
None.
Examples
e Interrupt asimulation, then restart it from the point of interruption.

vsim_break
run -continue

452 ModelSim® Command Reference Manual, v10.5¢

Commands
vsource

vsource

This command specifies an aternative file to use for the current source file. This command is
used when the current source file has been moved. The alternative source mapping existsfor the
current simulation only.

Syntax
vsource [<filename>]

Arguments
o <filename>
(optional) Specifiesarelative or full pathname. If filename is omitted, the sourcefile for the
current design context is displayed.
Examples

vsource design.vhd
vsource /old/design.vhd

ModelSim® Command Reference Manual, v10.5¢c 453

Commands
wave

wave

A collection of related commands that manipul ate and report on the Wave window.

Syntax
wave cursor active [-window <win>] [<cursor-num>]
wave cursor add [-window <win>] [-time <time>] [-name <name>] [-lock <0 |1>]
wave cursor configure [<cursor-num>] [-window <win>] [<option> [<value>]]
wave cursor delete [-window <win>] [<cursor-num>]
wave cursor see [-window <win>] [-at <percent>] [<cursor-num>]
wave cursor time [-window <win>] [-time <time>] [<cursor-num>]
wave collapse al [-window <win>]
wave collapse cursor [-window <win>] [<cursor-num>]
wave collapse range [-window <win>] <start-time> <end-time>
wave expand all [-window <win>]
wave expand cursor [-window <win>] [<cursor-num>]
wave expand mode [-window <win>] [off | deltas | events]
wave expand range [-window <win>] <start-time> <end-time>
wave interrupt [-window <win>]
wave refresh [-window <win>]
wave seetime [-window <win>] [-at <percent>] -time <time>
wave zoom in [-window <win>] [<factor>]
wave zoom out [-window <win>] [<factor>]
wave zoom full [-window <win>]
wave zoom last [-window <win>]

wave zoom range [-window <win>] [<start-time> <end-time>]

454 ModelSim® Command Reference Manual, v10.5¢

Commands
wave

Description

The following tables summarize the available options for manipulating cursors, for zooming,
and for adjusting the wave display view in the Wave window:

Table 2-9. Wave Window Commands for Cursor

Cursor Commands

Description

Wave Ccursor active

Sets the active cursor to the specified cursor or, if no cursor is
specified, reports the active cursor

wave cursor add

Adds a new cursor at specified time and returns the number of
the newly added cursor

wave cursor configure

Sets or reports values for the specified cursor

wave cursor delete

Deletes the specified cursor or, if no cursor is specified, the
active cursor

wave CUrsor see

Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display — 0% isthe left edge, 100% is the right edge.

wave cursor time

Moves or reports the time of the specified cursor or, if no
cursor is specified, the time of the active cursor

Table 2-10. Wave Window Commands for Expanded Time Display

Display view Commands

Description

wave expand mode

Selects the expanded time display mode: Delta Time, Event
Time, or off.

wave expand all

Expands simulation time into deltatime stepsif Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over the full range of the simulation
from time O to the current time.

wave expand cursor

Expands simulation time into deltatime stepsif Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) at the simulation time of the active
cursor.

wave expand range

Expands simulation time into deltatime stepsif Delta Time
mode is currently selected (WLFCollapseMode = 1) or into
event time steps if Event Time mode is currently selected
(WLFCollapseMode = 0) over atime range specified by a start
time and an end time.

ModelSim® Command Reference Manual, v10.5¢c 455

Commands
wave

Table 2-10. Wave Window Commands for Expanded Time Display (cont.)

Display view Commands

Description

wave collapse all

Collapses simulation time over the full range of the ssimulation
from time O to the current time.

wave collapse cursor

Collapses simulation time at the time of the active cursor.

wave collapse range

Collapses simulation time over a specific simulation time
range.

Table 2-11. Wave Window Commands for Controlling Display

Display view Commands

Description

wave interrupt

Immediately stops wave window drawing

wave refresh

Cleans wave display and redraws waves

wave CUrsor see

Positions the wave display such that the specified or active
cursor appears at the specified percent from the left edge of the
display — 0% isthe left edge, 100% is the right edge.

wave seetime

Positions the wave display such that the specified time appears
at the specified percent from the left edge of the display — 0% is
the left edge, 100% is the right edge.

Table 2-12. Wave Window Commands for Zooming

Zooming Commands

Description

wave zoom in

Zoom in the wave display by the specified factor. The default
factor is 2.0.

wave zoom out

Zoom out the wave display by the specified factor. The default
factor is 2.0.

wave zoom full

Zoom the wave display to show the full smulation time.

wave zoom last

Return to last zoom range.

wave Zzoom range

Sets left and right edge of wave display to the specified start
time and end time. If times are not specified, reports left and
right edge times.

Arguments
e -at <percent>

(optional) Positions the display such that the time or cursor is the specified <percent> from
the left edge of the wave display.

456

ModelSim® Command Reference Manual, v10.5¢

Commands
wave

<percent> — Any non-negative number where the default is 50. O is the left edge of the
Wave window and 100 is the right edge.

e <cursor-num>
(optional) Specifies a cursor number. If not specified, the active cursor is used.
o <factor>

(optional) A number that specifies how much you want to zoom into or out of the wave
display. Default valueis 2.0.

e -lock<0|1>
(optional) Specify the lock state of the cursor.
0 — (default) Unlocked
1— Locked
e -name<name>
(optional) Specify the name of the cursor.

<name> — Any string where the default is " Cursor <n>" where <n> is the cursor
number.

e Off | deltas| events
(optional) Specifies the expanded time display mode for the Wave window. Default is off.
e <option> [<value>]

(optional) Specify avalue for the designated option. Currently supported options are -name,
-time, and -lock. If no option is specified, current value of al options are reported.

o <dart-time> <end-time>

(optional) start-time and end-time are times that specify an expand, collapse, or zoom range.
If neither number is specified, the command returns the current range.

e -time <time>
(optional) Specifiesa cursor time.
<time> — Any positive integer.
e -window <win>

(optional) All commands default to the active Wave window unless this argument is used to
specify adifferent Wave window.

<win> — Specifies the name of a Wave window other than the current active window.

Examples

e Either of these commands creates a zoom range with a start time of 20 nsand an end
time of 100 ns.

wave zoom range 20ns 100ns
wave zoom range 20 100

ModelSim® Command Reference Manual, v10.5¢c 457

Commands
wave

¢ Return the name of cursor 2:
wave cursor configure 2 -name
e Name cursor 2, "reference cursor" and return that name with:
wave cursor configure 2 -name {reference cursor}
e Return the values of all wave cursor configure options for cursor 2:

wave cursor configure 2

458 ModelSim® Command Reference Manual, v10.5¢

Commands
wave create

wave create

This command generates a waveform known only to the GUI. Y ou can then modify the
waveform interactively or with the wave edit command and use the results to drive simulation.

Syntax

All waveforms
wave create [-driver { freeze | deposit | driver | expectedoutput}] [-initialvalue <value>]
[-language { vhdl | verilog}] [-portmode {input | output | inout | internal}] [-range <msb
|sb>]
[-starttime { <time><unit>}] [-endtime { <time><unit>}] <object_name>

Clock patterns
wave create -pattern clock [-dutycycle <value>] [-period { <time><unit>}] <object_name>

Constant patterns
wave create -pattern constant [-initialvalue <value>] [-value <value>] <object_name>

Random patterns
wave create -pattern random [-initialvalue <value>] [-period { <time><unit>}]
[-random_type { normal | uniform | poisson | exponential}] [-seed <value>] <object_name>

Repeater patterns
wave create -pattern repeater [-initiavalue <value>] [-period { <time><unit>}]
[-repeat { forever | never | <n>}] [-sequence { <val1>} <val2> ...]

Counter patterns
wave create -pattern counter [-direction { up | down | upthendown | downthenup}]
[-initialvalue <value>] [-period { <time><unit>}] [-repeat {forever | never | <n>}]
[-startvalue <value>] [-endvalue <value>] [-step <value>]
[-type{binary | gray | johnson | onehot | range | zerohot}] <object_name>

No pattern
wave create -pattern none <object_name>

Description
Refer to “ Generating Stimulus with Waveform Editor” for more information.

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information. d

The following table summarizes the avail able waveform pattern options:

Command Description

wave create -pattern clock Generates a clock waveform. Recommended that you
specify aninitial value, duty cycle, and clock period for the
waveform.

ModelSim® Command Reference Manual, v10.5¢c 459

Commands
wave create

Command
wave create -pattern constant

wave create -pattern random

wave create -pattern repeater

wave create -pattern counter

wave create -pattern none

Arguments

Description

Generates awaveform with a constant value. It is suggested
that you specify avalue.

Generates a random waveform based upon a seed value.
Specify the type (normal or uniform), aninitial value, and a
seed value. If you don't specify a seed value, Questa uses a
default value of 5.

Generates a waveform that repeats. Specify an initial value
and pattern that repeats. Y ou can also specify how many
times the pattern repeats.

Generates a waveform from a counting pattern. Specify
start and end values, repeat, step count, time period, and
type (Binary, Gray, Johnson, OneHot, Range, and
ZeroHot).

Creates a placeholder for awaveform. Specify an object
name.

e -pattern clock | constant | random | repeater | counter | none

(required) Specifies the waveform pattern. Refer to “ Accessing the Create Pattern Wizard”
for a description of the pattern types.

clock — Specifies a clock pattern.

constant — Specifies a constant pattern.

random — Specifies arandom pattern.

repeater — Specifies arepeating pattern.
counter — Specifies a counting pattern.

none — Specifies ablank pattern.

e -direction {up | down | upthendown | downthenup}

(optional, recommended when specifying -pattern counter) The direction in which the
counter will increment or decrement.

up — (default) Increment only.

down — Decrement only.

upthendown — Increment then decrement.

downthenup — Decrement then increment.

e -driver {freeze | deposit | driver | expectedoutput}

(optional) Specifiesthat the signal isadriver of the specified type. Appliesto waveforms
created with -portmode inout or -portmode internal.

460

ModelSim® Command Reference Manual, v10.5¢

Commands
wave create

e -dutycycle <value>

(optional, recommended for -pattern clock) Specifies the duty cycle of the clock. Expressed
as a percentage of the period that the clock is high.

<value> — Any integer from 0 to 100 where the default is 50.
e -endtime { <time><unit>}

(optional) The simulation time where the waveform will stop. If omitted, the waveform
stops at 1000 simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

e -endvalue <vaue>

(optional, recommended when specifying -pattern counter) The end value for the counter.
This option applies to patterns specifying -type Range only. All other counter patterns start
from 0 and go to the maximum value for that particular signal (for example, for a 3-bit
signal, the start value will be 000 and the end value will be 111).

<value> — Value must be appropriate for the type of waveform you are creating.
e -initialvalue <value>
(optional) The initial value for the waveform. Not applicable to counter patterns.
<value> — Value must be appropriate for the type of waveform you are creating.
e -language {vhdl | verilog}
(optional) Controls which language is used for the created wave.
vhdl — (default) Specifiesthe VHDL language.
verilog — Specifies the Verilog language.
e -period {<time><unit>}
(optional, recommended for all patterns except -constant) Specifies the period of the signal.

<time> — Specified as an integer or decimal number. Current simulation units are the
default unless specifying <unit>.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).
e -portmode {input | output | inout | internal}
(optional) The port type for the waveform. Useful for creating signals prior to loading a
design.

in — Ports of type IN. You can also specify “input” asan aliasfor in.

ModelSim® Command Reference Manual, v10.5¢c 461

Commands
wave create

out — Ports of type OUT. Y ou can also specify “output” as an alias for out.
inout — Ports of type INOUT.
internal — (default) Ports of type INTERNAL.

-random_type {normal | uniform | poisson | exponential}

(optional, recommended when specifying -pattern random) Specifies the type of algorithm
used to generate a random waveform pattern.

norma — Normal or Gaussian distribution of waveform events.

uniform — (default) Uniform distribution of waveform events.

poisson — Poisson distribution of waveform events.

exponential — Exponential distribution of waveform events.
-range <msb |sb>
(optional) Identifies bit significance in a counter pattern.

msb |sbh — Most significant bit and least significant bit. Both must be specified.
-repeat {forever | never | <n>}

(optional, recommended when specifying -pattern repeater or -pattern counter) Controls
duration of pattern repetition.

forever — Repeat the pattern for as long as the ssmulation runs.

never — Never repeat the pattern during simulation.

<n> — Repeat the pattern <n> number of times where <n> is any positive integer.
-seed <value>

(optional, recommended when specifying -pattern random) Specifies a seed value for a
randomly generated waveform.

<value> — Any non-negative integer where the default is 5.
-sequence { <val1>} <val2> ...

(optional, recommended when specifying pattern -repeater) The set of values that you want
repeated.

<vall> — Vaue must be appropriate for the type of waveform you are creating.
Multiple values are entered as a space separated list and enclosed in curly braces ({}).

-starttime { <time><unit>}

(optional) The simulation time at which the waveform should start. If omitted, the waveform
starts at O simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

462

ModelSim® Command Reference Manual, v10.5¢

Commands
wave create

e -startvalue <value>

(required when specifying -pattern counter) The initial value of the counter. This option
applies to patterns specifying -type Range only. All other counter patterns start from 0 and
go to the maximum value for that particular signal (e.g., for a3-bit signal, the start value will
be 000 and the end value will be 111).

<value> — Value must be appropriate for the type of waveform you are creating.
o -step <vaue>

(optional, recommended when specifying -pattern counter) The step by which the counter is
incremented/decremented.

<value> — Value must be appropriate for the type of waveform you are creating.
e -type{binary | gray | johnson | onehot | range | zerohot}
(optional) Specifies a counter format.
binary — Specifies abinary counter.

gray — Specifies abinary counter where two successive values differ in only one bit.
Also known as areflected binary counter.

johnson — Specifies atwisted ring or Johnson counter.
onehot — Specifies a shift counter where only one bit at atimeisset to “on” (1).

range — (default) Specifies abinary counter where the values range between -startvalue
and -endvalue

zerohot — Specifies a shift counter where only one bit at atimeis set to “ off” (0).
e -vaue<vaue>

(optional, recommended when specifying -pattern constant) Specifies avalue for the
constant pattern.

<value> — Value must be appropriate for the type of waveform you are creating.
e <oObject name>
(required) User specified name for the waveform. Must be the final argument.

Examples
e Create aclock signal with the following default values:

wave create -pattern clock -period 100 -dutycycle 50 -starttime 0 -endtime 1000
-initialvalue 0 /counter/clk

e Create aconstant 8-bit signal vector from 0 to 1000 ns with avalue of 1111 and adrive
type of freeze.

wave create -driver freeze -pattern constant -value 1111 -range 7 O -starttime Ons
-endtime 1000ns sim:/andm/v_cont2

ModelSim® Command Reference Manual, v10.5¢c 463

Commands
wave create

Related Topics
wave edit
wave modify
Generating Stimulus with Waveform Editor
Accessing the Create Pattern Wizard

464 ModelSim® Command Reference Manual, v10.5¢

Commands
wave edit

wave edit
This command modifies waveforms created with the wave create command.

Syntax

wave edit { cut | copy | paste | invert | mirror} -end { <time><unit>} -start { <time><unit>}
<object_name>

wave edit insert_pulse [-duration { <time><unit>}] -start { <time><unit>} <object_name>
wave edit delete -time { <time><unit>} <object_name>

wave edit stretch | move { -backward { <time><unit>} | -forward { <time><unit>}}
-time { <time><unit>} <object_name>

wave edit change value -end { <time><unit>} -start { <time><unit>} <value> <object_name>
wave edit extend -extend to | by -time { <time><unit>}

wave edit driveType -driver freeze | deposit | driver | expectedoutput -end { <time><unit>}
-start { <time><unit>}

wave edit undo <number>
wave edit redo <number>

Description

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

The following table summarizes the available editing options:

Command Description

wave edit cut Cut part of awaveform to the clipboard

wave edit copy Copy part of awaveform to the clipboard

wave edit paste Paste the waveform from the clipboard

wave edit invert Verticaly flip part of awaveform

wave edit mirror Mirror part of awaveform

wave edit insert_pulse Insert a new edge on awaveform; doesn’'t affect waveform duration
wave edit delete Delete an edge from awaveform; doesn’t affect waveform duration
wave edit stretch Move an edge by stretching the waveform

wave edit move Move an edge without moving other edges

wave edit change value Change the value of part of a waveform
wave edit extend Extend all waves

ModelSim® Command Reference Manual, v10.5¢c 465

Commands

wave edit

Command Description

wave edit driveType Change the driver type

wave edit undo Undo an edit

wave edit redo Redo a previously undone edit
Arguments

-backward { <time><unit>}

(required if -forward <time> isn’t specified) The amount to stretch or move the edge
backwards in simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

cut | copy | paste | invert | mirror
(required) Specifiesthe type of edit to perform.
cut — Deletes the specified portion of the waveform.
copy — Saves a copy of the specified portion of the waveform.
paste — Inserts the contents of the clipboard into the specified portion of the waveform.
invert — Flips the specified portion of the waveform vertically.
mirror — Flips the specified portion of the waveform horizontally.
-driver freeze | deposit | driver | expectedoutput

(required) Specifiesthe type of driver to which you want the specified section of the
waveform changed. Appliesto signals of type inout or internal.

-duration { <time><unit>}
(optional) The length of the pulse.
<time> — Specified as an integer or decimal number where the default is 10 time units.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

-end { <time><unit>}

(required unless specifying paste) The end of the section of waveform to perform the editing
operation upon, denoted by a simulation time.

<time> — Specified as an integer or decimal number.

466

ModelSim® Command Reference Manual, v10.5¢

Commands
wave edit

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

e -extendto|by
(required) Specifies the format for extending waves.
to — Extends the wave to the time specified by -time <time>.
by — Extends the wave by the amount of time specified by -time <time>.
e -forward { <time><unit>}

(required if -backward <time> is not specified) The amount to stretch or move the edge
forwards in simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

e <number>

(optional) The number of editing operations to undo or redo. If omitted, only one editing
operation is undone or redone.

e <oObject name>

(required) The pathname of the waveform to edit. Must be specified as the last argument to
wave edit.

o -start {<time><unit>}

(required) The beginning of the section of waveform to perform the editing operation upon,
denoted by a simulation time.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

e -time{<time><unit>}
(required) The amount of time to extend or stretch waves.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim® Command Reference Manual, v10.5¢c 467

Commands
wave edit

e <vaue>
(required) The new value. Must match the type of the <object_name>.
Related Topics

wave create
Generating Stimulus with Waveform Editor

468 ModelSim® Command Reference Manual, v10.5¢

Commands
wave export

wave export

This command creates a stimulus file from waveforms created with the wave create command.

Syntax
wave export -designunit <name> -starttime { <time><unit>} -endtime { <time><unit>} -file
<filename> {-format force | vcd | vhdl | verilog}
Arguments
e -designunit <name>

(required) Specifies a design unit for which you want to export created waves. If omitted,
the command exports waves from the active design unit.

<name> — Specifies a design unit in the ssimulation.
e -endtime { <time><unit>}
(required) The ssimulation time at which you want to stop exporting.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

o -file<filename>
(required) The filename for the saved export file.
<name> — Any user specified string.
e -format force|ved | vhdl | verilog
(required) The format of the saved stimulus file. The format optionsinclude:

force— A Tcl script that recreates the waveforms. The file should be sourced when
reloading the simulation.

vcd — An extended VCD file. Load using the -vedstim argument to vsim.
vhdl — A VHDL test bench. Compile and load the file as your top-level design unit.
verilog — A Verilog test bench. Compile and load the file as your top-level design unit.
e -starttime { <time><unit>}
(required) The ssimulation time at which you want to start exporting.
<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

ModelSim® Command Reference Manual, v10.5¢c 469

Commands
wave export

Related Topics
wave create
wave import

Generating Stimulus with Waveform Editor

470

ModelSim® Command Reference Manual, v10.5¢

Commands
wave import

wave import

This command imports an extended V CD file that was created with the wave export command.
It cannot read extended VCD file created by software other than Model Sim. Use this command
to apply a VCD file as stimulus to the current simulation.

Syntax

wave import <VCD_file>
Arguments

e <VCD file>

(required) The name of the extended VCD file to import.

Related Topics

wave create

wave export

Generating Stimulus with Waveform Editor

ModelSim® Command Reference Manual, v10.5¢c 471

Commands
wave modify

wave modify

This command modifies waveform parameters set by a previous wave create command.

Syntax

All waveforms
wave modify [-driver freeze | deposit | driver | expectedoutput] [-endtime { <time><unit>}]
[-initialvalue <value>] [-portmode {input | output | inout | internal}] [-range <msb Isb>]
[-starttime { <time><unit>}] <wave name>

Clock patterns only
wave modify -pattern clock -period <value> -dutycycle <value> <wave name>

Constant patterns only
wave modify -pattern constant [-driver freeze | deposit | driver | expectedoutput]
[-language { vhdl | verilog}] [-value <value>] <wave_name>

Counter patterns only
wave modify -pattern counter -period <value> -repeat forever | <n> | never -startvalue <value> -
step <value> [-direction { up | down | upthendown | downthenup} |
[-endvalue <value>] [-type { binary | gray | johnson | onehot | range | zerohot} |
<wave_name>

Random patterns only
wave modify -pattern random -period <value>
-random_type exponential | normal | poisson | uniform [-seed <value>] <wave_name>

Repeater patterns only
wave modify -pattern repeater -period <value> -repeat forever | <n> | never
-sequence{vallva?2val3 ...} <wave name>

No pattern
wave create -pattern none <wave_name>

Description
Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

The following table summarizes the available wave modification options:

Command Description

wave modify -pattern clock Generates a clock waveform. Specify an initial value, duty
cycle, and clock period for the waveform.

wave modify -pattern constant Generates a waveform with a constant value. Specify a
value.

472 ModelSim® Command Reference Manual, v10.5¢

Commands
wave modify

Command
wave modify -pattern counter

wave modify -pattern random

wave modify -pattern repeater

wave modify -pattern none

Arguments

Description

Generates a waveform from a counting pattern. Specify
start and end values, repeat, step count, time period, and
type (Binary, Gray, Johnson, OneHot, Range, and
ZeroHot).

Generates a random waveform based upon a seed value.
Specify the type (normal or uniform), aninitial value, and a
seed value. If you don't specify a seed value, Questa uses a
default value of 5.

Generates a waveform that repeats. Specify aninitial value
and pattern that repeats. Y ou can also specify how many
times the pattern repeats.

Creates a placeholder for awaveform. Specify an object
name.

e -direction {up | down | upthendown | downthenup}

(optional, recommended when specifying -pattern counter) The direction in which the
counter will increment or decrement.

up — (default) Increment only.

down — Decrement only.

upthendown — Increment then decrement.

downthenup — Decrement then increment.

e -driver freeze | deposit | driver | expectedoutput
(optional) Specifiesthat the signal isadriver of the specified type. Appliesto signals of type

inout or internal.

e -dutycycle <value>

(required) The duty cycle of the clock, expressed as a percentage of the period that the clock

ishigh.

<value> — Any integer from 0 to 100 where the default is 50.

e -endtime { <time><unit>}

(optional) The simulation time that the waveform should stop. If omitted, the waveform
stops at 1000 simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: fs, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>

within curly braces ({}).

ModelSim® Command Reference Manual, v10.5¢c 473

Commands
wave modify

e -endvalue <vaue>

(optional) The ending value of the counter. This option applies to Range counter patterns
only. All other counter patterns start from 0 and go to the max value for that particular signal
(for example, for a 3-hit signal, the start value will be 000 and end value will be 111).

<value> — Any positive integer.
e -initialvalue <value>

(optional) The initial value for the waveform. Vaue must be appropriate for the type of
waveform you are creating. Not applicable to counter patterns.

<value> — Any positive integer.
e -language {vhdl | verilog}
(optional) Controls which language is used for modifying the wave.
vhdl — (default) Specifiesthe VHDL language.
verilog — Specifies the Verilog language.
e -period <value>
(required) The period of the signal.
e -portmode {input | output | inout | internal}
(optional) The port type for the waveform.
in — Ports of type IN. You can also specify “input” asan aliasfor in.
out — Ports of type OUT. Y ou can also specify “output” as an alias for out.
inout — Ports of type INOUT.
internal — (default) Ports of type INTERNAL.
e -random_type exponentia | normal | poisson | uniform
(required) Specifies arandom pattern to generate.
exponential — Exponential distribution of waveform events.
norma — Normal or Gaussian distribution of waveform events.
poisson — Poisson distribution of waveform events.
uniform — (default) Uniform distribution of waveform events.
e -range <msb Isb>
(optional) Identifies bit significance in a counter pattern.
msb |sbh — Most significant bit and least significant bit. Both must be specified.
e -repeat forever | <n> | never
(required) Controls duration of pattern repetition.
forever — Repeat the pattern for aslong as the ssmulation runs.
<n> — Repeat the pattern <n> number of times where <n> is any positive integer.

474 ModelSim® Command Reference Manual, v10.5¢

Commands
wave modify

never — Never repeat the pattern during simulation.
e -seed <vaue>
(optional) Specifies a seed value for arandomly generated waveform.
<value> — Any non-negative integer where the default is 5.
e -sequence{vallval2val3...}
(required) The set of values that you want repeated.

<vall> — Vaue must be appropriate for the type of waveform you are creating.
Multiple values are entered as a space separated list and enclosed in curly braces ({}).

e -Starttime { <time><unit>}

(optional) The simulation time that the waveform should start. If omitted, the waveform
starts at 0 simulation time units.

<time> — Specified as an integer or decimal number.

<unit>— (optional) A suffix specifying aunit of time where the default isto specify the
current simulation resolution by omitting <unit>. Valid time units are: s, ps, ns, us,
ms, sec, min, and hr. If <unit> is specified, you must enclose <time> and <unit>
within curly braces ({}).

e -startvalue <value>

(required when specifying -pattern counter) The initial value of the counter. This option
appliesto patterns specifying -type Range only. All other counter patterns start from 0 and
go to the maximum valuefor that particular signal (e.g., for a3-bit signal, the start value will
be 000 and the end value will be 111).

<value> — Value must be appropriate for the type of waveform you are creating.
e -step <value>
(required) The step by which the counter is incremented/decremented.
<value> — Value must be appropriate for the type of waveform you are creating.
e -type{binary | gray | johnson | onehot | range | zerohot}
(optional) Specifies a counter format.
binary — Specifies abinary counter.

gray — Specifies abinary counter where two successive values differ in only one bit.
Also known as areflected binary counter.

johnson — Specifies atwisted ring or Johnson counter.
onehot — Specifies a shift counter where only one bit at atimeisset to “on” (1).

range — (default) Specifies abinary counter where the values range between -startvalue
and -endvalue

zerohot — Specifies a shift counter where only one bit at atimeis set to “ off” (0).

ModelSim® Command Reference Manual, v10.5¢c 475

Commands
wave modify

e -value<vaue>

(optional, recommended when specifying -pattern constant) Specifies avalue for the
constant pattern.

<value> — Value must be appropriate for the type of waveform you are creating.
e <wave name>
(required) The name of an existing waveform created with the wave create command.

Related Topics
wave create

Generating Stimulus with Waveform Editor
Accessing the Create Pattern Wizard

476 ModelSim® Command Reference Manual, v10.5¢

Commands
wave sort

wave sort

This command sorts signals in the Wave window by name or full path name.

Syntax
wave sort { ascending | descending | fa | fd}

Arguments
e ascending | descending | fa | fd
(required) Sort signalsin one of the following orders.
ascending — Sort in ascending order by signal name.
descending — Sort in descending order by signal name.
fa— Sort in ascending order by the full path name.
fd — Sort in descending order by full path name.

Examples

wave sort ascending

ModelSim® Command Reference Manual, v10.5¢c 477

Commands

when
when
This command instructs Model Sim to perform actions when specified conditions are met.
Syntax
when [[-fast] [-id <id#>] [-label <label>] [-repeat] { <when_condition_expression>}
{<command>}]
Description

Use this command to control Model Sim activity for one or more specified conditions.

For example, you can use the command to break on asignal value or at a specific smulator
time. Use the nowhen command to deactivate when commands.

The when command uses awhen_condition_expression to determine whether or not to perform
the action. Conditions can include VHDL signals and Verilog nets and registers. The
when_condition_expression uses a simple restricted language (that is not related to Tcl), which
permits only four operators and operands that may be either HDL object names, signame'event,
or constants. Model Sim evaluates the condition every time any object in the condition changes,
hence the restrictions.

Here are some additional pointsto keep in mind about the when command:

The when command creates the equivalent of aVHDL process or aVerilog aways
block. It does not work like alooping construct you might find in other languages such
asC.

Virtual signals, functions, regions, types, and so forth, cannot be used in the when
command. Neither can simulator state variables other than $now.

With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Embedded Commands Allowed with the -fast Argument

Y ou can use any Tcl command as a <command>, along with any of the following veim
commands:

bp, bd

change

disablebp, enablebp
echo

examine

force, noforce

478

ModelSim® Command Reference Manual, v10.5¢

Commands
when

e log, nolog
e stop

¢ when, nowhen

Embedded Commands Not Allowed with the -fast Argument

e Any do commands
e Any Tk commands or widgets
o Referencesto U/l state variables or tcl variables

e Virtual signals, functions, or types

Using Global Tcl Variables with the -fast Argument

Embedded commands that use global Tcl variables for passing a state between the when
command and the user interface need to declare the state using the Tcl uivar command. For
example, the variablei below isvisiblein the GUI. From the command prompt, you can display
it (by entering echo $i) or modify it (for example, by entering set i 25).

set i 10

when -fast {clk == '0'} {
uivar i
set 1 [expr {$i - 1}]
if {$i <= 0} {

force reset 1 0, 0 250

}

}

when -fast {reset == '0'} {
uivar i
set i 10

}

Additional Restrictions on the -fast Argument

Accessing channels (such asfiles, pipes, sockets) that were opened outside of the embedded
command will not work. For example:

set fp [open mylog.txt w]
when -fast {bus} {
puts $fp "bus change: [examine bus]"

}

The channel that $fp refersto is not available in the simulator, only in the user interface. Even
using the uivar command does not work here because the value of $fp has no meaning in the
context of the -fast argument.

ModelSim® Command Reference Manual, v10.5¢c 479

Commands
when

The following method of rewriting this example opens the channel, writes to it, then closes it
within the when command:

when -fast {bus} {
set fp [open mylog.txt al]
puts $fp "bus change: [examine bus]"
close sfp

}

The following exampleis alittle more sophisticated method of doing the same thing:

when -fast {$now == Ons} {
set fp [open mylog.txt w]
}

when -fast {bus} {
puts $fp "bus change: [examine bus]"

when -fast {$now == 1000ns} ({
close sfp
}

The general principleisthat any embedded command done using the -fast argument is global to
all other commands used with the -fast argument. Here, { $now == Ons} isaway to define Tcl
processes that the -fast commands can use. These processes have the same restrictions that
when bodies have, but the advantage is again speed as a proc will tend to execute faster than
code in the when body itself.

It is recommended not to use virtual signals and expressions.

Arguments
o -fast

(optional) Causes the embedded <command> to execute within the simulation kernel, which
provides faster execution and reduces impact on simulation runtime performance.
Limitations on using the -fast argument are described above (in “* Embedded Commands Not
Allowed with the -fast Argument”). Disallowed commands still work, but they slow down
the simulation.

o -label <label>
(optional) Used to identify individual when commands.

<label> — Associates a name or label with the specified when command. Adds alevel
of identification to the when command. The label may contain special characters.
Quotation marks (" ") or braces ({ }) arerequired only if <label> contains spaces or
special characters.
o -id<id#>

(optional) Attempts to assign thisid number to the when command.

480 ModelSim® Command Reference Manual, v10.5¢

Commands
when

<id#>— Any positive integer that is not already assigned. If the id number you specify
is aready used, Model Sim will return an error.

Note
D Id numbers for when commands are assigned from the same pool as those used for

the bp command. So even if you have not specified a given id number for awhen
command, that number may still be used for a breakpoint.

-repeat

(Limited to “when” breakpoint expressions involving “$now”). Instructs the command to
reestablish the breakpoint when triggered so that it will fire again for the next time period.
Without this argument, expressions using $now only trigger once.

{<when_condition_expression>}

(required if acommand is specified) Specifies the conditions to be met for the specified
<command> to be executed. The condition is evaluated in the smulator kernel and can be
an object name, in which case the curly braces can be omitted. The command will be
executed when the object changes value. The condition can be an expression with these
operators:

Name Operator
equals ==, =

not equal I=, /=
greater than >

less than <

greater than or equal >=

less than or equal <=
AND &&, AND
OR I, OR

The operands may be object names, signame'event, or constants. Subexpressionsin
parentheses are permitted. The command will be executed when the expression is evaluated
as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation
| relation

ModelSim® Command Reference Manual, v10.5¢c 481

Commands

when

relation ::= Name = Literal
| Name /= Literal
| Name ' EVENT
| (expression)
Literal ::= '<char>' | "<bitstring>" | <bitstring>

The"=" operator can occur only between a Name and a Literal. This means that you cannot
compare the value of two signals, i.e.,, Name = Name is not possible.

Tcl variables can be used in the condition expression but you must replace the curly braces
({}) with double quotes (""). Thisworks like a macro substitution where the Tcl variables
are evaluated once and the result is then evaluated as the when condition. Condition
expressions are evaluated in the vsim kernel, which knows nothing about Tcl variables.
That's why the condition expression must be evaluated in the GUI before it is sent to the
vsim kernel. See below for an example of using a Tcl variable.

The">","<", ">=" and "<=" operators are the standard ones for vector types, not the
overloaded operatorsin the std_logic_1164 package. This may cause unexpected results
when comparing objects that contain values other than 1 and 0. Model Sim does a lexical
comparison (position number) for values other than 1 and 0. For example:

0000 < 1111 ## This evaluates to true

HOO0O0 < 1111 ## This evaluates to false
001X >= 0010 ## This also evaluates to false

{<command>}

(required if awhen expression is specified) The command(s) for this argument are eval uated
by the Tcl interpreter within the Model Sim GUI. Any ModelSim or Tcl command or series
of commands are valid with one exception—the run command cannot be used with the when
command. The command sequence usually contains a stop command that sets aflag to
break the ssmulation run after the command sequence is completed. Multiple-line
commands can be used.

— Note
If you want to stop the simulation using awhen command, you must use a stop

command within your when statement. DO NOT use an exit command or a quit
command. The stop command acts like a breakpoint at the time it is evaluated.

Examples

e Thewhen command below instructs the smulator to display the value of object cin
binary format when there isaclock event, the clock is 1, and the value of b is01100111.
Finally, the command tells Model Sim to stop.

when -label when1l {clk'event and clk="1" and b ="01100111"} {
echo "Signal c is [exa -bin c]"

stop

}

482

ModelSim® Command Reference Manual, v10.5¢

Commands
when

The when command below echoes the ssimulator time when slice [3:1] of wire [15:0]
count matches the hexadecimal value 7, and simulation timeis between 70 and 111
nanoseconds.

when {$now > 70ns and count(3:1) == 3'h7 && $now < 111ns} {

echo "count(3:1) matched 3'h7 at time " $now

}

The commands below show an example of using a Tcl variable within awhen
command. Note that the curly braces ({}) have been replaced with double quotes ().

set clkb_path /tb/ps/dprb_O/udprb/ucar_reg/uint_ram/clkb;
when -label whenl "$clkb_path'event and $clkb_path ="1" {
echo "Detected Clk edge at path $clkb_path"

}

The when command below islabeled a and will cause Model Sim to echo the message “b
changed” whenever the value of the object b changes.

when -label a b {echo "b changed"}

The multi-line when command below does not use alabel and has two conditions. When
the conditions are met, Model Sim runs an echo command and a stop command.

when {b = 1
and ¢ /= 0 } {
echo "b is 1 and ¢ is not 0"
stop

}

In the example below, for the declaration "wire [15:0] &;", the when command will
activate when the selected bits match a 7:

when {a(3:1) = 3'h7} {echo "matched at time " $now}

In the example below, we want to sample the values of the address and data bus on the
first falling edge of clk after sstrb has gone high.

ModelSim® Command Reference Manual, v10.5¢c 483

Commands

when
::strobe is our state variable
set ::strobe Zero
This signal breakpoint only fires when sstrb changes to a '1'
when -label checkStrobe {/top/sstrb == '1'} {

Our state Zero condition has been met, move to state One
set ::strobe One
}
This signal breakpoint fires each time clk goes to '0'
when {/top/clk == '0'} {
if {$::strobe eq "One"}
Our state One condition has been met
Sample the busses

echo Sample paddr=[examine -hex /top/paddr] :: sdata=[examine
-hex

/top/sdatal

reset our state variable until next rising edge of sstrb
(back to

state Zero)

set ::strobe Zero

Ending the simulation with the stop command
Batch mode simulations are often structured as "run until condition X istrue,”" rather than "run
for X time" simulations. The multi-line when command (shown below) sets a done condition,
and Model Sim runs an echo command and a stop command when the condition is reached.

The simulation will not stop (even if aquit -f command is used) unless you enter a stop
command. To exit the ssmulation and quit Model Sim, use an approach like the following:

onbreak {resume}
when {/done condition == "1’} {
echo "End condition reached"
if [batch mode] {
set DoneConditionReached 1
stop
}
}
run 1000 us

if {$DoneConditionReached == 1} {
quit -f
}

484 ModelSim® Command Reference Manual, v10.5¢

Commands
when

This example stops 100ns after asignal transition:

when {a = 1} {
If the 100ns delay is already set then let it go.
if {[when -label a 100] == ""} {
when -label a 100 { $now = 100 } {
delete this breakpoint then stop
nowhen a_100
stop

}
}
}

Time-based breakpoints
Y ou can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750 ns} {stop}
Y ou can also use:

when {errorFlag ='1' OR $now = 2 ms} {stop}

This example adds 2 ms to the simulation time at which the when statement is first evaluated,
then stops. The white space between the value and time unit is required for the time unit to be
understood by the simulator.

Y ou can also use variables, as shown in the following example:

set time 1000
when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" hasthe'$ escaped. This prevents Tcl from expanding the variable, because if
it did, you would get:

when "0 = 1000" stop

ModelSim® Command Reference Manual, v10.5¢c 485

Commands
where

where

This command displays information about the system environment. It is useful for debugging
problems where Model Sim cannot find the required libraries or support files.

Syntax

where

Description
The command displays two results on consecutive lines:

e current directory

Thisisthe current directory that Model Sim was invoked from, or that was specified on
the Model Sim command line.

e current project file

Thisisthe .mpf file ModelSim isusing. All library mappings are taken from herewhen a
project is open. If the design is not loaded through a project, this line displays the
modelsim.ini file in the current directory.

Arguments
None.

Examples
e Designisloaded through a project:
VSIM> where
Returns:

Current directory is: D:\Client
Project is: D:/Client/monproj.mpf

e Designisloaded with no project (indicates the modelsim.ini fileis under the mydesign
directory):

VSIM> where
Returns:

Current directory is: C:\Client\testcase\mydesign
Project is: modelsim.ini

486 ModelSim® Command Reference Manual, v10.5¢

Commands
wlf2log

wlf2log

This command translates a Model Sim WLF file (vsim.wif) to a QuickSim Il logfile. It reads the
vsm.wlf WLF file generated by the add list, add wave, or log commands in the simulator and
convertsit to the QuickSim Il logfile format.

Note

D This command should be invoked only after you have stopped the simulation using quit -

sim or dataset close sim.

Syntax
wlif2log <wlffile> [-bits] [-fullname] [-help] [-inout] [-input] [-internal] [-] <instance path>]

[-lower] [-0 <outfile>] [-output] [-quiet]

Arguments

<wlffile>

(required) Specifies the Model Sim WLF file that you are converting.

-bits

(optional) Forces vector netsto be split into 1-bit wide netsin the log file.
-fullname

(optional) Shows the full hierarchical pathname when displaying signal names.
-help

(optional) Displays alist of command options with a brief description for each.
-inout

(optional) Lists only the inout ports. This may be combined with the -input, -output, or
-internal switches.

-input

(optional) Lists only the input ports. This may be combined with the -output, -inout, or
-internal switches.

-internd

(optional) Listsonly theinternal signals. This may be combined with the -input, -output, or -
inout switches.

-| <instance_path>
(optional) Liststhe signals at or below an HDL instance path within the design hierarchy.
<instance_path>— Specifies an HDL instance path.

ModelSim® Command Reference Manual, v10.5¢c 487

Commands
wlf2log

e -lower

(optional) Shows all logged signals in the hierarchy. When invoked without the -lower
switch, only the top-level signals are displayed.

e -0 <outfile>

(optional) Directs the output to be written to a file where the default destination for the
logfile is standard out.

<outfile> — A user specified filename.
e -output

(optional) Lists only the output ports. This may be combined with the -input, -inout, or
-internal switches.

e -quiet
(optional) Disables error message reporting.

488 ModelSim® Command Reference Manual, v10.5¢

Commands
wlf2ved

wlf2vcd

Thiscommand translatesaModel Sim WLF fileto astandard VCD file. Complex data types that
are unsupported in the VCD standard (records, memories, etc.) are not converted.

Note
This command should be invoked only after you have stopped the ssmulation using quit -

sim or dataset close sim.

Syntax
wlif2ved <wlffile> [-help] [-0 <outfile>] [-quiet]

Arguments
o <wiffile>
(required) Specifiesthe ModelSim WLF file that you are converting.
e -help
(optional) Displays alist of command options with a brief description for each.
e -0 <outfile>

(optional) Specifies afilename for the output where the default destination for the VCD
output is stdout.

<outfile> — A user specified filename.
e -quiet
(optional) Disables warning messages that are produced when an unsupported type (for
example, records) is encountered in the WLF file.

ModelSim® Command Reference Manual, v10.5¢c 489

Commands
wlfman

wlfman

Thisisacollection of related commands you can use to get information about saved WLF files
and perform various actions on them.

Syntax
wlfman info <source wilffile> [-V]
wlfman items <source_wlffile> [-n] [-V]

wlifman filter -o <out_wilffile> <source wilffile> [-begin <time>] [-end <time>]
[-collapsedelta | -collapsetime | -nocollapse] [-compress | -nocompress]
[-f <object_list_file>] [-index | -noindex] [-r <object>] [-nowarn <number>] [-opt | -noopt]
[-s <symbol>] [-t <resolution>]

wlfman profile <source_wlffile> [-rank] [-top <number>]

wlfman merge -o <out_wilffile> [<wlffilel> <wlffile2> ...] [-compress | -nocompress]
[-index | -noindex] [-opt | -noopt]

wlfman monitor [-f | -i <interval Time> | -p <endTime>] [-q | -v] <source wlffile>

wlfman optimize -o <out_wilffile> <source wilffile> [-compress | -nocompress]
[-index | -noindex] [-opt | -noopt]

Description
The following wifman commands perform different functions on saved WLF files:

e wlfman info returns file information, resolution, versions, and so forth about the source
WLFfile.

o wlfman items generatesalist of HDL objects (i.e., signals) and/or transaction streams
from the source WLF file and outputsit to stdout. When redirected to afile, the output is
called an object_list_file, and it can be read in by wifman filter. Comments start with a
'# and continueto the end of theline. Wildcards are legal in the leaf portion of the name.
Hereis an example:

/top/foo # signal foo

/top/ul/* # all signals under ul

/top/ul # same as line above

-r /top/u2 # recursively, all signals under u2
/top/streaml # transaction stream streaml

object_list_files— The object _list_fileisalist of objects and/or transaction streams, one per
line. Transaction object lists can include a stream name, stream array name, or sub stream, all
with afull path. Transaction objects recorded in the object_list file:

Full path of a stream array — Logs and records all of the individual streamsin the specified
stream array, the sub-streams of each stream, and the phase sub-streams recursively for each

490 ModelSim® Command Reference Manual, v10.5¢

Commands
wlfman

sub-stream including the attributes of the transactions present in the sub-streams and phase sub-
streams. For example:

/top/<stream_array> # stream array full path (ex: /top/stream_array)

Full path of a stream object — Logs and records all of the sub-streams and recursively records
all phase sub-streams for each specified sub-stream including the attributes of the transactions
present in the sub-streams and phase sub-streams. For example:

ltop/<stream_object> # individua stream full path (ex: /top/stream)

Sub-streams — Logs and records all of the attributes of the specified sub-stream. Other sub-
streams of the main stream are not logged. Phase sub-streams cannot be individually logged.
For example:

/top/<stream_object> # individual stream full path (ex: /top/stream)
[/top/<stream_object>.<sub-stream> # sub-stream full path

(ex: /top/stream.s0)

Note
Y ou can produce these files from scratch but be careful with syntax. It is recommended that
you use wlfman items as it always creates alegal object_list_file.

o wilfman filter readsin a WLF file and, optionally, an object_list_file, and writes a new
WLF file containing filtered information from those sources. Y ou determine the filtered
information with the arguments you specify.

e wlfman monitor returns the current state of a WLF file to the transcript. Each time the
state is monitored, aline of information is output. The state of the WLF file can be
monitored at regular intervals, indicating the changes over time. For example:

wlfman monitor visim.wlf
File Sim

State Time

closed 14000

o wilfman profile generates areport of the estimated percentage of file space that each
signal istaking in the specified WLF file. This command can identify signals that
account for alarge percentage of the WLF file size (such as alogged memory that uses a
zero-delay integer loop to initialize the memory). Y ou may be able to drastically reduce
WLF file size by not logging those signals.

When the WLF file contains transaction streams and/or stream arrays, wifman profile
generates an additional report of estimated file space used for each transaction as a
percentage of total file size. Y ou may be ableto drastically reduce WLF file size by not
logging some transactions or streams.

ModelSim® Command Reference Manual, v10.5¢c 491

Commands
wlfman

The stated size of atransaction is equal to the size of the transaction without any user
attributes plus the sum of the sizes of every attribute in that transaction. Also, an
assumption is made that every transaction will have its attributes recorded if one of the
transactions in a sub-stream has that attribute. If the object is a stream array, the sum of
the sizes of all the streamsis presented in which case the sizes of the individual elements
are not presented.

¢ wlfman mergecombines two WLF files with different signals or transaction objects into
one WLF file. It does not combine wif files containing the same signals at different
runtime ranges (for example, mixedhdl_Ons_100ns.wlf & mixedhdl_100ns_200ns.wiIf).
When merging two WLF files containing the same transaction streams, the first stream’s
datais recorded, the second stream isignored, and awarning is issued that a horizontal
merge is not supported.

e wlfman optimize copies the data from the WLF file to the output WLF file, adding or
replacing the indexing and optimization information.

The different command are intended to be used together. For example, you might run wifman
profile and identify asignal or transaction stream that accounts for 50% of the WLF file size. If
you do not actually need that object, you can then run wifman filter to remove it from the WLF
file.

Arguments

-0 <out_wlffile>

(required) Specifies the name of the output WLF file. The output WLF file will contain all
objects specified by the preceding arguments. Output WLF files are always written in the
latest WLF version regardless of the source WLF file version.

<source wliffile>
(required) Specifies the WLF file from which you want information.
<wlffilel> <wilffile2> ...

(required) Specifies the WLF files whose objects you want to copy into one WLF file.
Specified as a space separated list.
-begin <time>
(optional) Specifies the simulation time at which to start reading information from the
source WLF file where the default is to include the entire length of time recorded in
<source wilffile>. If atransaction on a particular stream started prior to the time specified,
then that transaction isignored.

<time> —
-collapsedelta | -collapsetime | -nocol lapse
(optional) Controls preservation of eventsin the resulting WLF file. The data preserved

depends on how events were recorded in the input WLF file. Specifying afiner granularity
of preservation than the input WLF file will have no additional affect.

492

ModelSim® Command Reference Manual, v10.5¢

Commands
wlfman

-collapsedelta— (default) Preserves only the values at the end of a delta.
-collapsetime — Preserves only the values at the end of atime step.
-nocollapse — Preserves all events.
e -COMPpress | -nocompress
(optional) Controls compression of the output WLF file.
-compress — Enables compression. (default)
-nocompress — Disables compression.
e -end<time>

(optional) Specifiesthe simulation time at which filtering of <source wilffile> is stopped
and no further datais logged.

o f

(optional) Repeat status update every 10 seconds of real time unless an aternate time
interval is specified with -i <interval Time>.

o -f <object list_file>

(optional) Specifies an object_list_file created by wifman items or by the user to includein
<out_wilffile>.

For user created object list files, the object list can include stream name, stream array name,
or sub stream with afull path. All

e - <intervaTime>

(optional) Specifiesthe time delay before the next status update where the default is 10
seconds of real timeif not specified.

<interval Time> — Any positive integer.
e -index | -noindex

(optional) Controls indexing when writing the output WLF file. Indexing makes viewing
wave datafaster, however performance during optimization will be slower because indexing
and optimization require significant memory and CPU resources. Disabling indexing makes
viewing wave data slower unless the display is near the start of the WLF file. Disabling
indexing also disables optimization of the WLF file but may provide a significant
performance boost when archiving WLF files. Indexing and optimization information can
be added back to the file using the wlfman optimize command.

-index — Enables indexing. (default)
-noindex — Disables indexing and optimization.
e -n
(optional) Listsregions only (no signals).
e -nowarn <number>
(optional) Selectively disables a category of warning messages.

ModelSim® Command Reference Manual, v10.5¢c 493

Commands
wlfman

1 — Disables " Skipping unsupported object” warning message.
e -0opt | -noopt
(optional) Controls optimization of the output WLF file.
-opt — Enables WLF file optimization. (default)
-noopt — Disables WLF file optimization.
e -p<endTime>
(optional) Specifies the simulation time at which wifman will stop monitoring the WLF file.
<endTime> — Any positive integer.
e q
(optional) Suppress normal status messages while monitoring.
e -r <Object>

(optional) Specifies an object (region) to recursively include in the output. If <object>isa
signal, the output would be the same as using -s.

e -rank

(optional) Sorts the wlfman profile report by percentage of the total file space used by each
signal.

e -s<symbol>
(optional) Specifies an object to include in the output. By default all objects are included.
e -t <resolution>

(optional) Specifiesthe time resolution of the new WLF file. By default the resolution isthe
same as the source WLF file.

e -top <number>

(optional) Filtersthe wifman profile report so that only the top <number> signalsin terms of
file space percentage are displayed.

e -V
(optional) Produces verbose output that lists the object type next to each object.
Examples
e Specifying the command:

wlfman profile -rank top_vh.wif

494 ModelSim® Command Reference Manual, v10.5¢

Commands
wlfman

returns:

#Repeated ID #'s mean those signals share the same
#ispace in the wlf file.

2192 33 % /top_vh/pdata
/top_vh/processor/data
/top_vh/cache/pdata
/top vh/cache/gen 0/s/data
/top vh/cache/gen 1/s/data
/top vh/cache/gen 2/s/data
/top_vh/cache/gen 3/s/data

AU WWWNRRRE R R R R

1224 18 % /top_vh/ptrans
1216 18 % /top_vh/sdata
/top vh/cache/sdata
/top vh/memory/data
675 10 % /top _vh/strans
423 6 % /top_vh/cache/gen 3/s/data_out
135 3 % /top_vh/paddr.

e Specifying the command:
wlfman profile -top 3 trans.wlf

returns:

#The following table lists the number of transitions and approximate
#wlf file space consumed (prior to compression) for each signal
#logged in the wlf file.

#Repeated ID #'s mean those signals share the same

#space in the wlf file.

#

ID Transitions File % Name

B oo o o .
1 1001 11 % /top/t3

2 1001 11 % /top/t1l

3 1 0% /top/s2

#The following table lists the number of transactions and
#approximate wlf file space consumed (prior to compression) for each
#istream or stream array logged in the wlf file.

#

ID Transactions File % Name

B oo oo e e
1 3000 61 % /top/stream?2

1 1000 17 % /top/streaml

e Specifying the command:

wlfman monitor -f -p 100000000 vsim.wIf

ModelSim® Command Reference Manual, v10.5¢c 495

Commands

wlfman

Returns:

Setting end time to 100000000, measuring progress %
Percent
Complete
.2%

File
State
open
open
open
open

Related Topics

Recording Simulation Results With Datasets
WLF File Parameter Overview

File
Time
7239185
7691785
8144385
8596625

7

7.
8.
8.

7%
1%
6%

[

496

ModelSim® Command Reference Manual, v10.5¢

Commands
wlfrecover

wlfrecover

This command attemptsto "repair* WLF files that are incomplete due to a crash or if thefile
was copied prior to completion of the simulation. Use this command if you receive a*bad
magic number” error message when opening a WLF file. Y ou can run the command from the
VSIM> or Model Sim> prompt or from a shell.

Syntax

wlfrecover <filename> [-force] [-q]

Arguments
o <filename>
(required) Specifiesthe WLF fileto repair.

o -force
(optional) Disregards file locking and attempts to repair thefile.
e

(optional) Hides al messages unless there is an error while repairing the file.

Related Topics
Saving a Simulation to aWLF File

ModelSim® Command Reference Manual, v10.5¢c 497

Commands
write format

write format

This command records the names and display options of the HDL objects currently being

displayed in the Analysis, List, Memory, Message Viewer, Test Browser, and Wave windows.
Syntax

write format { <window_type>} <filename>

write format restart [<option optionl ...>] <filename>

Description

Thefile created is primarily alist of add list or add wave commands, though a few other
commands are included (refer to "Output” below).

Thisfile may be invoked with the do command to recreate the window format on a subsequent
simulation run (refer to restart below.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments
e <window_type>

(required unless specifying restart) Specifies that the contents of the designated window are
recorded in the file specified by <filename>.

breakpoints — Records file line and signal breakpoints.

list — Records objects of the List window.

memory — Records objects of the Memory window.

msgviewer — Records objects of the Message Viewer window.

watch — Records objects of the Watch window.

wave — Records objects of the Wave window.

restart — Records objects of all windows and breakpointsin the .do file.
e restart

(required) Creates a .do file that recreates all debug windows, all file/line breakpoints, and
all signal breakpoints created using the when command. If the ShutdownFile modelsim.ini
variable is set to this .do filename, it will call the write format restart command upon exit.

When you load aformat file, Model Sim verifies the existence of the datasets required by
that file. Model Sim displays an error message if the requisite datasets do not all exist. To
force the execution of the format file even if all datasets are not present, use the -force
switch with your do command. For example:

VSIM> do format.do -force

498 ModelSim® Command Reference Manual, v10.5¢

Commands
write format

Note
Note that using the -force switch when datasets are not present will result in error

messages for signals referencing the nonexistent datasets. Also, -force is recognized
by the format file not the do command.

e <optionoptionl ...>
(optional) Excludes a specific type of information from write format restart .do file.
-nobreak — Do not record breakpoints.
-nolastnow — Do not report last now value.
-nolist — Do not record the List window format.
-nomemory — Do not record Memory window views.
-nosource — Do not record source files.
-novsim — Do not record the vsim command.
-nowave — Do not record the Wave window format.
o <filename>

(required) Specifies the name of the output file where the data is to be written. Y ou must
specify the .do extension.

Examples
e Savethe current datain the List window in afile named alu_list.do.

write format list alu list.do

e Savethe current datain the Wave window in afile named alu_wave.do.

write format wave alu wave.do

ModelSim® Command Reference Manual, v10.5¢c 499

Commands
write format

e Anexample of asaved Wave window format file:

onerror {resume}

quietly WaveActivateNextPane {} 0

add wave -noupdate -format Logic /cntr struct/1ld

add wave -noupdate -format Logic /cntr struct/rst
add wave -noupdate -format Logic /cntr_ struct/clk
add wave -noupdate -format Literal /cntr struct/d
add wave -noupdate -format Literal /cntr struct/g
TreeUpdate [SetDefaultTreel]

quietly WaveActivateNextPane

add wave -noupdate -format Logic /cntr struct/pl

add wave -noupdate -format Logic /cntr struct/p2

add wave -noupdate -format Logic /cntr struct/p3

TreeUpdate [SetDefaultTree]

WaveRestoreCursors {0 ns}

WaveRestoreZoom {0 ns} {1 us}

configure wave -namecolwidth 150

configure wave -valuecolwidth 100

configure wave -signalnamewidth 0

configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window. The TreeUpdate command then refreshes all five waveforms. The second
WaveA ctivateNextPane command creates a second pane which contains three
signals.The WaveRestoreCursors command restores any cursors you set during the
origina simulation, and the WaveRestoreZoom command restores the Zoom range you
set. These four commands are used only in saved Wave format files; therefore, they are
not documented elsewhere.

500 ModelSim® Command Reference Manual, v10.5¢

Commands
write list

write list

This command records the contents of the List window in alist output file.

Syntax
write list [-events] <filename>

Description
Thisfile contains simulation datafor all HDL objects displayed in the List window: VHDL
signals and variables and Verilog nets and registers.

Arguments to this command are order-dependent. Please read through the argument
descriptions for more information.
Arguments
e -events
(optional) Specifies to write print-on-change format where the default is tabular format.
o <filename>
(required) Specifies the name of the output file where the data is to be written.

Examples
e Savethe current datain the List window in afile named alu.lst.
write list alu.lst
Related Topics

write tssi

ModelSim® Command Reference Manual, v10.5¢c 501

Commands
write preferences

write preferences

This command saves the current GUI preference settingsto a Tcl preference file. Settings saved
include Wave, Objects, and L ocals window column widths; Wave, Objects, and L ocals window
value justification; and Wave window signal name width.

Syntax

write preferences <preference file name>

Arguments
o <preference file name>

(required) Specifies the name for the preferencefile. If the file is named modelsim.tcl,
Model Sim will read the file each time vsim isinvoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
environment variable.

Y ou can modify variables by editing the preference file with the Model Sim notepad:

notepad <preference file name>

502 ModelSim® Command Reference Manual, v10.5¢

Commands
write report

write report

This command prints a summary of the design being simulated including alist of all design
units (VHDL configurations, entities, and packages, and Verilog modules) with the names of
their source files. The summary includes alist of all source files used to compile the given
design.

Syntax

write report [-capacity [-] | -] [-lin€] [-gdas | -vmem]] |
[-I'|-9] | [-tcl] | [<filename>]

Description
The Simulation Report contains the following information:

e Design Simulated — directory path of the design’ s top-level module
e Number of signals/netsin the design
e Number of processesin the design
e Simulator Parameters, including:
e Current directory
e Project file directory
e Simulation time resolution
e List of design units used, including:
e Module name
e Architecture, if applicable
e Library directory
e Sourcefile
e Timescale
e Occurrences

Some arguments to this command are order-dependent. Please read through the argument
descriptions for more information.

Arguments

e -Capacity
(optional) Reports data on memory usage of various types of SystemV erilog constructsin
the design. Collects memory usage data for dynamic objects.

Model Sim collects memory usage data for dynamic objects.

ModelSim® Command Reference Manual, v10.5¢c 503

Commands
write report

Must be specified first when specifying -qdas.
To display memory datafor al object types, specify -capacity -I.
o <filename>

(optional) Specifiesthe name of the output file where the dataisto be written. If <filename>
is omitted, the report is written to the Transcript window.

(optional) Generates more detailed information about the design, including alist of sparse
memories or the memory capacity for all object types. Y ou must precede this argument with

-capacity when specifying a capacity report.
e -line

(optional) Generates point of allocation (line) based report. If -lineis not used, the report
will be generated based on declaration. Vsim must be run with -capacity=line to print a
point of alocation (line) based report.

e -qgdas

(optional) Reports memory usage data for queues, dynamic arrays, associative arrays, and
strings (each is provided in its own section in the report). Y ou must precede this argument
with -capacity when specifying a capacity report.

e -S

(optional) Generates ashort list of design information. Y ou must precede this argument with
-capacity when specifying a capacity report.

o -tcl

(optional) Generatesa Tcl list of design unit information. This argument cannot be used
with afilename.

e -vmem
(optional) When specified with capacity, -vmem reports usage data for Verilog memories.
Examples
e Saveinformation about the current design in afile named alu_rpt.txt.
write report alu_rpt.txt
e Create a Simulation Report for the current simulation

write report -

504 ModelSim® Command Reference Manual, v10.5¢

Commands
write report

returns:

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

SIMULATION REPORT Generated on Mon Aug 10 12:56:15 2009

Design simulated: <directorys>\work.top (fast)
Number of signals/nets in design: 89
Number of processes in design: 74

Simulator Parameters:

Current directory: <directorys\

Project file: <directory>\win32/../modelsim.ini

Simulation time resolution: 1ns
List of Design units used:

Module: top

Architecture: fast
Library: <directorys>\work
Source File: top.v
Timescale: 1ns / 1ns
Occurrences: 1

Module: proc
Architecture: fast
Library: <directorys>\work
Source File: proc.v
Timescale: 1lns / 1ns
Occurrences: 1

ModelSim® Comma

nd Reference Manual, v10.5¢

505

Commands
write timing

write timing

This command displays path delays and timing check limits, unadjusted for delay net delays, for
the specified instance.

Syntax

write timing [-recursive] [-file <filename>] [<instance _namel>...<instance nameN>]
[-simvalues]

Description

When the write timing command reports interconnect delays on a Verilog modul e instance you
will see either MIPDs (Module Input Port Delays) or MITDs (Module Transport Port Delays)
reported. If you specify either the +multisource int_delays or the +transport_int_delays
argument with the vssim command, INTERCONNECT delays will be reported as MITDs.
Otherwise they will be reported as MIPDs. An MIPD report may look like the following:

[top/ul: [mymod:src/5/test.v(18)]
MIPD(s):
Portclk_in: (6, 6, 6)

An MITD report may look like the following:

[top/ul: [mymod:src/5/test.v(18)]
MITDsto port clk_in:
From port /top/ply = (6)

When the +multisource_int_delays argument is specified without +sdf verbose on the vsim
command line, “write timing" does not report the individual bits of vector source ports of SDF
INTERCONNECT delays.

For example, assume the SDF file contains the following two INTERCONNECT statements:

(INTERCONNECT ply[0] n/bus _in[0] (3))
(INTERCONNECT ply[1] n/bus in[1] (4))

The corresponding "write timing" output looks like this:

MITDsto port bus _in[0]:
From port /tb12/ply = (3)
MITDsto port bus_in[1]:

From port /tb12/ply = (4)

Notice that the specific bits of the source port are not reported.

506 ModelSim® Command Reference Manual, v10.5¢

Commands
write timing

When "+sdf_verbose" is added to the vsim command line the "write timing" output becomes:

MITDsto port bus_in[0]:

From port /tb12/p/y[0] = (3)
MITDsto port bus_in[1]:

From port /tb12/ply[1] = (4)

Notice that the specific bits of the source port are now reported.

Arguments
o -file<filename>

(optional) Specifies the name of the output file where the datais to be written. If the -file
argument is omitted, timing information is written to the Transcript window.

<filename> — Any valid filename. May include special characters and numbers.
e <instance namel>...<instance nameN>

(required) The name(s) of the instance(s) for which timing information will be written. If
<instance_name> is omitted, the command returns nothing.

e -recursive

(optional) Generates timing information for the specified instance and al instances
underneath it in the design hierarchy.

e -simvalues
(optional) Displays optimization-adjusted values for delay net delays.
Examples

e Writetiming about /top/ul and all instances underneath it in the hierarchy to the file
timing.txt.

write timing -r -f timing.txt /top/ul
e Write timing information about the designated instances to the Transcript window.

write timing /top/ul /top/u2 /top/u3 /top/u8

ModelSim® Command Reference Manual, v10.5¢c 507

Commands
write transcript

write transcript

This command writes the contents of the Transcript window to the specified file. The resulting
file can then be modified to replay the transcribed commands as a DO file (macro).

Note
The command cannot be used in batch mode. In batch mode use the standard Transcript file

or redirect stdout.

Syntax
write transcript [<filename>]

Arguments
o <filename>

(optional) Specifies the name of the output file where the datais to be written. If the
<filename> is omitted, the transcript iswritten to afile named transcript.

Related Topics
Saving a Transcript Fileasa DO file

508 ModelSim® Command Reference Manual, v10.5¢

Commands
write tssi

write tssi

This command records the contents of the List window in a"TSSI format" file.

Syntax
writetss <filename>

Description

The file contains simulation data for all HDL objects displayed in the List window that can be
converted to TSSI format (VHDL signals and Verilog nets). A signal definition fileisalso
generated.

The List window needsto be using symbolic radix in order for write tssi to produce useful
output.

If the <filename> has afile extension (e.g., listfile.Ist), then the definition file is given the same
file name with the extension .def (e.g., listfile.def). The valuesin the listfile are produced in the
same order that they appear in the List window. The directionality is determined from the port
typeif the object isaport, otherwise it is assumed to be bidirectional (mode INOUT).

Objects that can be converted to SEF are VHDL enumerations with 255 or fewer elements and
Verilog nets. The enumeration values U, X, 0,1, Z, W, L, H and - (the enumeration values
defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF values
according to the table below. Other values are converted to a question mark (?) and cause an
error message. Though the write tssi command was devel oped for use with std_ulogic, any
signal which usesonly the values defined for std_ulogic (including the VHDL standard type bit)
will be converted.

std_ulogic State SEF State Characters
Characters I nput Output Bidirectional
U N X ?
X N X ?
0 D L 0
1 U H 1
Z Z T F
w N X ?
L D L 0
H U H 1
- N X ?

ModelSim® Command Reference Manual, v10.5¢c 509

Commands
write tssi

Bidirectional logic values are not converted because only the resolved value is available. The
TSSI TDS ASCII In Converter and ASCII Out Converter can be used to resolve the
directionality of the signal and to determine the proper forcing or expected value on the port.
Lowercase values x, z, w, |, and h are converted to the same values as the corresponding
capitalized values. Any other values will cause an error message to be generated the first time
an invalid value is detected on asignal, and the value will be converted to a question mark (?).

Note
The TDS ASCII In Converter and ASCII Out Converter are part of the TDS software.

Model Sim outputs a vector file, and TSSI tools determine whether the bidirectional signals
are driving or not.

Arguments
o <filename>
(required) Specifies the name of the output file where the data is to be written.

510 ModelSim® Command Reference Manual, v10.5¢

Commands
write wave

Wwrite wave

This command records the contents of the Wave window in PostScript format. The output file
can then be printed on a PostScript printer.
Syntax

write wave <filename> [-end <time>] [-landscape] [-height <real _num>]
[-margin <real_num>] [-perpage <time>] [-portrait][-start <time>] [-width <real_num>]

Arguments
o <filename>
(required) Specifies the name of the PostScript (.ps) output file.
e -end<time>
(optional) The simulation time at which the record will end.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resol ution.

e -height <real_num>
(optional) Specifiesthe paper height in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
11.0.

e -landscape

(optional) Use landscape (horizontal) orientation. (default)
e -margin <rea_num>

(optional) Specifiesthe margin ininches.

<real_num> — Specified as a positive integer or decimal number where the default is
0.5.

e -perpage <time>
(optional) Specifies the time width per page of outpui.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resol ution.

e -portrait

(optional) Use portrait (vertical) orientation where the default islandscape (horizontal).
e -start <time>

(optional) Specifies the start time to be written.

<time> — Specified as a positive integer or decimal number where the units are the
current simulation time resolution.

ModelSim® Command Reference Manual, v10.5¢c 511

Commands
write wave

e -width <real_num>
(optional) Specifiesthe paper width in inches.

<real_num> — Specified as a positive integer or decimal number where the default is
8.5.

Examples
e Savethe current datain the Wave window in afile named alu.ps.

write wave alu.ps

e Write two separate pages to top.ps. The first page contains data from 600ns to 700ns,
and the second page contains data from 701ns to 800ns.

write wave -start 600ns -end 800ns -perpage 100ns top.ps

To make the job of creating a PostScript waveform output file easier, use the File >
Print Postscript menu selection in the Wave window.

512 ModelSim® Command Reference Manual, v10.5¢

Index

— Symbols —
'delayed, 35

"hasX, 35

"hasX, hasX, 35
+definet, 393
+delay_mode_distributed, 393
+delay_mode_path, 393
+delay_mode _unit, 394
+delay_mode_zero, 394
+incdir+, 397
+maxdelays, 399
+mindelays, 399
+nowarn, 402
+typdelays, 410

— A —
abort command, 63
absolute time, using @, 26
add dataflow command, 64
add list command, 66
add log command, 199
add memory command, 71
add message command, 73
add watch command, 75
add wave command, 77
add_cmdhelp command, 84
addTime command, 288
alias command, 86
analog

signal formatting, 79
annotating interconnect delays,

v2k_int_delays, 447

archive load command, 87
archive write command, 88
arrays

dices, 16
arrays

indexes, 15
arrays, VHDL, searching for, 30

assertions

testing for with onbreak command, 229
attributes, of signals, using in expressions, 33
automatic saving of coverage, 419

— B —
batch_mode command, 89
batch-mode simulations

halting, 485
bd (breakpoint delete) command, 90
binary radix, mapping to std_logic values, 41
bookmark add wave command, 92
bookmark delete wave command, 94
bookmark goto wave command, 95
bookmark list wave command, 96
bp (breakpoint) command, 97
break

on signal value, 478
breakpoints

conditional, 478

continuing simulation after, 260

deleting, 90

listing, 97

setting, 97

signal breakpoints (when statements), 478

time-based

in when statements, 485

busses

user-defined, 82

—C—
call command, 103
case choice, must be locally static, 336
case sensitivity

VHDL vs. Verilog, 20
cd (change directory) command, 108
change command, 109
-check_synthesis argument, 330
class instance garbage collector, 192, 194
class member selection, syntax, 16

ModelSim® Command Reference Manual, v10.5¢

513

classobjects, viewing, 114, 116, 118, 121, 124,
126, 128, 130
classinfo command, 114, 116, 118, 121, 124,
126, 128, 130
co mmands
virtua define, 365
Color
radix, 246
example, 247
combining signals, busses, 82
commands
abort, 63
add dataflow, 64
add list, 66
add memory, 71
add message, 73
add wave, 77
add cmdhelp, 84
alias, 86
archive load, 87
archive write, 88
batch_mode, 89
bd (breakpoint delete), 90
bookmark add wave, 92
bookmark delete wave, 94
bookmark goto wave, 95
bookmark list wave, 96
bp (breakpoint), 97
cal, 103
cd (change directory), 108
change, 109
classinfo, 114, 116, 118, 121, 124, 126,
128, 130
configure, 132
dataset close, 141
dataset current, 144
dataset info, 145
dataset list, 146
dataset open, 147
dataset rename, 149
dataset save, 151
delete, 155
describe, 156
disablebp, 157
do, 158

drivers, 160
dumplog64, 162
echo, 163

edit, 164
enablebp, 165
encoding, 166
environment, 167
examine, 168
exit, 175

find, 177

find connections, 181
find infiles, 182
find insource, 183
force, 185

gc configure, 192
gcrun, 194

help, 195

history, 196
layout, 197

log, 199

Ishift, 202
Isublist, 203

mem compare, 204
mem display, 205
mem list, 208
mem load, 209
mem save, 213
mem search, 216
modelsim, 219
nolog, 221
notepad, 223
noview, 224
nowhen, 225
onbreak, 226
onElabError, 229
onerror, 230
onfinish, 232
pause, 233
printenv, 234, 235
process report, 236
pwd, 240

quietly, 241

quit, 242

radix, 243

radix define, 245

514

ModelSim® Command Reference Manual, v10.5¢

radix list, 250

radix name, 251
readers, 253

report, 254

restart, 256

resume, 258

run, 259

runStatus, 262
searchlog, 264

see, 267

setenv, 268

shift, 269

show, 270

simstats, 271
simstatdlist, 273

stack down, 275

stack frame, 276

stack level, 277

stack up, 279

status, 280

stop, 283

suppress, 284

Time, 288

transcript, 291
transcript file, 292
transcript path, 294
transcript sizelimit, 295
TreeUpdate, 501
tssi2mti, 299

unsetenv, 302
variables referenced in, 26
ved add, 303

vcd checkpoint, 305
ved comment, 306

ved dumpports, 307
ved dumpportsall, 310
ved dumpportsflush, 311
vcd dumpportslimit, 312
vcd dumpportsoff, 314
vcd dumpportson, 315
vcd file, 316

vcd files, 318

vcd flush, 321

ved limit, 322

vcd off, 324

ved on, 325

vcom, 329

vdel, 345

vencrypt, 350
verror, 354
vgencomp, 356
vhencrypt, 358
virtual count, 364
virtual delete, 366
virtual describe, 367
virtual expand, 368
virtual function, 369
virtual hide, 372
virtual log, 373
virtual nohide, 375
virtual nolog, 376
virtual region, 378
virtual save, 379
virtual show, 380
virtual signal, 381
vlib, 387

vlog, 391

vmake, 413

vmap, 415
vsimVersion, 451
vsource, 453

wave, 455

wave create, 459
wave edit, 465
wave export, 469
wave import, 471
wave modify, 472
wave sort, 477
WaveAcctivateNextPane, 501
WaveRestoreCursors, 501
WaveRestoreZoom, 501
when, 478

where, 486

wlif2log, 487
wlf2vcd, 489
wlfman, 490
wlfrecover, 497
write format, 498
write list, 501

write preferences, 502

ModelSim® Command Reference Manual, v10.5¢

write report, 503
write timing, 506
write transcript, 508
write tssi, 509
write wave, 511
commands formatTime, 191
comment charactersin VSIM commands, 14
compiling
range checking in VHDL, 340
Verilog, 391
VHDL, 329
selected design units (-just eapbc), 334
standard package (-s), 340
VHDL-2008
REAL_VECTOR, 333
compressing files
VCD files, 307, 318
concatenation
directives, 40
of signals, 39
conditional breakpoints, 478
configurations, simulating, 419
configure command, 132
constants
in case statements, 336
values of, displaying, 156, 168
conversion
radix, 243
coverage, automatic s ave, 419
coverstore, auto-saved coverage, 419

—D—
dataset close command, 141
dataset current command, 144
dataset info command, 145
dataset list command, 146
dataset open command, 147
dataset rename command, 149
dataset save command, 151
datasets
environment command, specifying with,
167
de sign loading, interr upting, 419
declarations, hiding implicit with explicit, 343
delay
interconnect, 427

delete command, 155
deltas
collapsing in WLF files, 437
dependency errors, 395
describe command, 156
design units
report of units simulated, 503
Verilog
adding to alibrary, 391
directories
mapping libraries, 415
disablebp command, 157
dividers
adding from command line, 78
divTime ccommand, 288
do command, 158
DO file
executing, 158
DO files, 158
breakpoints, executing at, 98
forcing signals, nets, or registers, 185
parameters
passing, 158
relative directories, 158
shifting parameter values, 269
-dpiheader, vlog, 394, 442
drivers command, 160
dump files, viewing in the ssimulator, 326
dumplog64 command, 162

— E—
echo command, 163
edit command, 164
enablebp command, 165
encoding command, 166
environment command, 167
environment variables
reading into Verilog code, 393
specifying UNIX editor, 164
state of, 235
using in pathnames, 20
environment, displaying or changing
pathname, 167
eqTime command, 288
errors
getting details about messages, 354

516

ModelSim® Command Reference Manual, v10.5¢

onerror command, 230

SDF, disabling, 431
event order

changing in Verilog, 392
examine command, 168
exit command, 175
extended identifiers, 20

— F—
file compression

VCD files, 307, 318
find command, 177
find connections command, 181
find infiles command, 182
find insource command, 183
fixed point radix, 245
floating point radix, 245
force

remove wire model, 429
force command, 185
format file

List window, 498

Wave window, 498
formatTime command, 191, 288

— G —
gc configure command, 192
gc run command, 194
generics

assigning or overriding values with -g and -

G, 422
examining generic values, 168
limitation on assigning composite types,
423

glitches

disabling generation

from command line, 440

global visibility

PLI/FLI shared objects, 424
gotolingk modelsim_user

DPI File Loading, 447
gteTime command, 288
gtTime command, 288
GUI_expression_format, 32

syntax, 33

— H—
hazards
-hazards argument to vlog, 397
-hazards argument to vsim, 442
help command, 195
history
of commands
shortcuts for reuse, 29
history command, 196
— | —
implicit operator, hiding with vcom -explicit,
343
interconnect de lays, 427
interconnect delays
annotating per Verilog 2001, 447
internal signals, adding to aVCD file, 304
interruptin g design loading, 419
intToTime command, 288

— K —
keywords
enabling SystemV erilog keywords, 407

— L —
layout command, 197
LD_LIBRARY_PATH, disabling default
internal setting of, 427
libraries
design libraries, creating, 387
refreshing library images, 405
Verilog, 425
lint-style checks, 399
List window
adding itemsto, 66
loading designs, interrupti ng, 419
log command, 199
log file
log command, 199
nolog command, 221
QuickSim Il format, 487
redirecting wi th -1, 425
redirecting with -1, 426
virtual log command, 373
virtual nolog command, 376
Is hift command, 202

ModelSim® Command Reference Manual, v10.5¢

517

Isublist command, 203
IteTime command, 288
ItTime command, 288

- M—
mc_scan_plusargs, PLI routine, 446
mem compare command, 204
mem display command, 205
mem list command, 208
mem load command, 209
mem save command, 213
mem search command, 216
memory window
add memory command, 71
adding itemsto, 71
memory, comparing contents, 204
memory, displaying contents, 205
memory, listing, 208
memory, loading contents, 209
memory, saving contents, 213
memory, searching for patterns, 216
messages
echoing, 163
getting more information, 354
loading, disabling with -quiet, 404
loading, disbling with -quiet, 340
-mfcu, 399
modelsim command, 219
mul Time command, 288
multi-source interconnect de lays, 427

— N—
name case sensitivity, VHDL vs. Verilog, 20
negative pulses

driv ing an error state, 447
negTime command, 288
nets

drivers of, displaying, 160

readers of, displaying, 253

stimulus, 185

values of

examining, 168

-no_risefall_delaynets, 443
nolog command, 221
notepad command, 223
noview command, 224

nowhen command, 225

— 0 —
object_list_file, WLF files, 490
onbreak command, 226
onElabError command, 229
onerror command, 230
onfinish command, 232
optimizations
disabling for VHDL designs, 339
optimizing wlif files, 492
order of events
changing in Verilog, 392

— P —
parameters
using with DO files, 158
pathnames
in VSIM commands, 15
spacesin, 14
pause command, 233
PLI
loading shared objects with global symbol
visibility, 424
preference variables
WildcardFilter, 22
printenv command, 234, 235
process report command, 236
projects
override mapping for work directory with
vcom, 343
override mapping for work directory with
vlog, 411
propagation, preventing X propagation, 428
pulse error state, 447
pwd command, 240

—Q—
QuickSim Il logfile format, 487
quietly command, 241

quit command, 242

— R—
Radix
color, 246
example, 247
radix

518

ModelSim® Command Reference Manual, v10.5¢

display valuesin debug windows, 243
of signals being examined, 68, 81, 171
user defined, 245
radix command, 243
Radix define command
setting rad ix color, 247
setting radix color, 246
radix define command, 245
fixed point radix, 245
floating point radix, 245
radix list command, 250
radix name command, 251
range checking
disabling, 338
enabling, 340
readers command, 253
Rea ToTime command, 288
record field selection, syntax, 16
refresh, dependency check errors, 395
refreshing library images, 405
report command, 254
reporting
processes in the Process Window, 236
variable settings, 26
resolution
specifying with -t argument, 433
restart command, 256
resume command, 258
run command, 259
runStatus command, 262

—S—
scaleTime command, 288
scope resolution operator, 17
scope, setting region environment, 167
SDF
annotation verbose mode, 431
controlling missing instance messages, 431
errors on loading, disabling, 431
warning messages, disabling, 431
search libraries, 425
searching
binary signal valuesin the GUI, 41
List window
signal values, transitions, and names,
32

VHDL arrays, 30
searchlog command, 264
see command, 267
setenv command, 268
shared objects
loading with global symbol visibility, 424
shift command, 269
shortcuts
command history, 29
command line caveat, 28
show command, 270
signas
alternative names in the Wave window (-
label), 80
attributes of, using in expressions, 33
breakpoints, 478
combining into a user-defined bus, 82
drivers of, displaying, 160
environment of, displaying, 167
force time, specifying, 188
log file, creating, 199
pathnamesin VSIM commands, 15
radix
specifying for examine, 68, 81, 171
readers of, displaying, 253
stimulus, 185
values of
examining, 168
simstats command, 271
simstatslist command, 273
simulating
delays, specifying time units for, 26
design unit, specifying, 419
saving simulations, 199, 437
stopping simulation in batch mode, 485
simulations
saving results, 151
Simulator commands, 63
simulator resolution
vsim -t argument, 433
simulator version, 436, 451
simultaneous eventsin Verilog
changing order, 392
spaces in pathnames, 14
Sparse memories

ModelSim® Command Reference Manual, v10.5¢

519

listing with write report, 504
specify path delays, 447
stack down command, 275
stack frame command, 276
stack level command, 277
stack up command, 279
startup

aternate to startup.do (vsim -do), 421
status command, 280
Std _logic

mapping to binary radix, 41
stop command, 283
subTime command, 288
suppress command, 284
synthesis

rule compliance checking, 330
SystemC

class and structure member naming syntax,

16
SystemVerilog
enabling with -sv arg ument, 407

multiple filesin a compilation unit, 399

scope resolution, 17
SystemVerilog classes
call command, 103

— T —
Tcl

history shortcuts, 29

variable

in when commands, 482

TFMPC

disabling warning, 444
time

absolute, using@, 26

simulation time units, 26
time collapsing, 437
Time commands, 288
time resolution

setting

with vsim command, 433

time, time units, simulation time, 26
timescale directive warning

disabling, 444
timing

disabling checks, 402

disabling checks for entire design, 428
title, Main window, changing, 434
transcript

redirecting with -1, 425, 426
transcript command, 291
transcript file command, 292
transcript path command, 294
transcript sizelimit command, 295
TreeUpdate command, 501
TSCALE, disabling warning, 444
TSSI, 509
tssi2mti command, 299

—U—
-u, 410

undeclared nets, reporting an error, 399
unsetenv command, 302

user-defined bus, 82

User-defined radix, 245

—V —
-v, 410
v2k_int_delays, 447
validTime command, 288
values
describe HDL items, 156
examine HDL item values, 168
variable settings report, 26
variables
describing, 156
referencing in commands, 26
value of
changing from command line, 109
examining, 168
ved add command, 303
vecd checkpoint command, 305
vcd comment command, 306
vcd dumpports command, 307
vcd dumpportsall command, 310
ved dumpportsflush command, 311
vcd dumpportslimit command, 312
vcd dumpportsoff command, 314
ved dumpportson command, 315
vcd file command, 316
VCD files
adding itemsto the file, 303

520

ModelSim® Command Reference Manual, v10.5¢

capturing port driver data, 307
converting to WLF files, 326
creating, 303
dumping variable values, 305
flushing the buffer contents, 321
generating from WLF files, 489
inserting comments, 306
internal signals, adding, 304
specifying maximum file size, 322
specifying name of, 318
specifying the file name, 316
state mapping, 316, 318
turn off VCD dumping, 324
turn on VCD dumping, 325
viewing files from another tool, 326
vcd files command, 318
ved flush command, 321
vcd limit command, 322
vcd off command, 324
ved on command, 325
ved2wlf command, 326
vcom command, 329
vdel command, 345
vector elements, initializing, 109
vencrypt command, 350
Verilog
capturing port driver datawith -dumpports,
316
verror command, 354
version
obtaining with vsim command, 436
obtaining with vsimcommands, 451
vgencomp command, 356
VHDL
arrays
searching for, 30
binding, ignore default, 333
field naming syntax, 16
VHDL-2008
package STANDARD
REAL_VECTOR, 333
vhencrypt command, 358
viewing
waveforms, 437
virtual count commands, 364

virtual define command, 365
virtual delete command, 366
virtual describe command, 367
virtual expand commands, 368
virtual fun ction command, 369
virtual hide command, 372
virtual log command, 373
virtual nohide command, 375
virtual nolog command, 376
virtual region command, 378
virtual save command, 379
virtual show command, 380
virtual signal command, 381
vlib command, 387
viog

multiple file compilation, 399
vlog command, 391
vmake command, 413
vmap command, 415
vsim

disabling internal setting of

LD LIBRARY_PATH, 427

— W —
warnings
SDF, disabling, 431
suppressing VCOM warning messages,
338, 402
suppressing VLOG warning messages, 402
suppressing VSIM warning messages, 444
watch window
add watch command, 75
watching signal values, 75
wave commands, 455
wave create command, 459
wave cursor commands, 455
wave edit command, 465
wave export command, 469
wave import command, 471
wave log format (WLF) file, 437
of binary signal values, 199
wave modify command, 472
wave sort command, 477
Wave window
adding itemsto, 77
WaveA ctivateNextPane command, 501

ModelSim® Command Reference Manual, v10.5¢

521

waveform editor
creating waves, 459
editing commands, 465
importing ved stimulusfile, 471
modifying existing waves, 472
saving waves, 469
waveform logfile
log command, 199
waveforms
saving and viewing, 199
WaveRestoreCursors command, 501
WaveRestoreZoom command, 501
when command, 478
when statement
time-based breakpoints, 485
where command, 486
wildcard characters
for pattern matching in simulator
commands, 21
WildcardFilter Preference Variable, 22
windows
List window
output file, 501
saving the format of, 498
Wave window
path elements, changing, 135
WLFfiles
collapsing deltas, 437
collapsing time steps, 437
converting to VCD, 489
creating from VCD, 326
indexing, 492
limiting size, 438
log command, 199
merging, 492
optimizing, 492
repairing, 497
saving, 151
specifying name, 437
wlfman command, 490
wlf2log command, 487
wlf2ved command, 489
wlfman command, 490
wlfrecover command, 497
write format command, 498

write list command, 501

write preferences command, 502
write report command, 503
write timing command, 506
write transcript command, 508
write tss command, 509

write wave command, 511

— X —
X propagation
disabling for entire design, 428

zoom
wave window
returning current range, 456

522

ModelSim® Command Reference Manual, v10.5¢

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S COMPLETE
AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (“Agreement”)

Thisisalegal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“ Customer”), and the Mentor Graphics entity that issued the corresponding
quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics’). Except for license
agreementsrelated to the subject matter of thislicense agreement which are physically signed by Customer and an authorized
representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties’ entire understanding
relating to the subject matter and supersede all prior or contemporaneous agreements. |f Customer does not agree to these
terms and conditions, promptly return or, in the case of Software received electronically, certify destruction of Software and all
accompanying itemswithin five days after receipt of Software and receive a full refund of any license fee paid.

ORDERS, FEESAND PAYMENT.

11. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and Mentor
Graphics accepts purchase orders pursuant to this Agreement (each an “Order”), each Order will constitute a contract between
Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this Agreement,
any applicable addenda and the applicable quotation, whether or not those documents are referenced on the Order. Any
additional or conflicting terms and conditions appearing on an Order or presented in any electronic portal or automated order
management system, whether or not required to be electronically accepted, will not be effective unless agreed in writing and
physically signed by an authorized representative of Customer and Mentor Graphics.

1.2. Amountsinvoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such invoice.
Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half percent per month
or the applicable legal rate currently in effect, whichever islower. Prices do not include freight, insurance, customs duties, taxes
or other similar charges, which Mentor Graphics will state separately in the applicable invoice. Unless timely provided with a
valid certificate of exemption or other evidence that items are not taxable, Mentor Graphics will invoice Customer for all
applicable taxes including, but not limited to, VAT, GST, sales tax, consumption tax and service tax. Customer will make all
payments free and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments by
Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third party to place purchase orders and/or
make payments on Customer’ s behalf, Customer shall be liable for payment under Orders placed by such third party in the event
of default.

1.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software delivered
electronically, which shall be deemed delivered when made available to Customer for download. Mentor Graphics retains a
security interest in all Products delivered under this Agreement, to secure payment of the purchase price of such Products, and
Customer agrees to sign any documents that Mentor Graphics determines to be necessary or convenient for use in filing or
perfecting such security interest. Mentor Graphics' delivery of Software by electronic meansis subject to Customer’s provision
of both aprimary and an alternate e-mail address.

GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement, including any
updates, modifications, revisions, copies, documentation, setup files and design data (“ Software”) are copyrighted, trade secret and
confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain all rights not
expressly granted by this Agreement. Except for Software that is embeddable (“Embedded Software”), which is licensed pursuant to
separate embedded software terms or an embedded software supplement, Mentor Graphics grants to Customer, subject to payment of
applicable license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form
(except as provided in Subsection 4.2); (b) for Customer’ s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A siteis restricted to a one-half mile (800 meter) radius. Customer
may have Software temporarily used by an employee for telecommuting purposes from locations other than a Customer office, such as
the employee’ s residence, an airport or hotel, provided that such employee’s primary place of employment is the site where the
Software is authorized for use. Mentor Graphics' standard policies and programs, which vary depending on Software, license fees paid
or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be limited, for example, to
execution of a single session by a single user on the authorized hardware or for a restricted period of time (such limitations may be
technically implemented through the use of authorization codes or similar devices); and (c) support services provided, including
eligibility to receive telephone support, updates, modifications, and revisions. For the avoidance of doubt, if Customer provides any
feedback or requests any change or enhancement to Products, whether in the course of receiving support or consulting services,
evaluating Products, performing beta testing or otherwise, any inventions, product improvements, modifications or developments made
by Mentor Graphics (at Mentor Graphics' sole discretion) will be the exclusive property of Mentor Graphics.

http://www.mentor.com/eula

BETA CODE.

3.1

3.2

3.3.

Portions or all of certain Software may contain code for experimental testing and evaluation (which may be either alpha or beta,
collectively “Beta Code”), which may not be used without Mentor Graphics' explicit authorization. Upon Mentor Graphics’
authorization, Mentor Graphics grants to Customer a temporary, nontransferable, nonexclusive license for experimental use to
test and evaluate the Beta Code without charge for alimited period of time specified by Mentor Graphics. Mentor Graphics may
choose, at its sole discretion, not to release Beta Code commercialy in any form.

If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to eval uate and test the Beta Code under normal
conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation and testing,
Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths, weaknesses and
recommended improvements.

Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer |ocation(s) authorized by Mentor Graphics to perform beta
testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or developments
that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’ s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title and
interest in all such property. The provisions of this Subsection 3.3 shall survive termination of this Agreement.

RESTRICTIONS ON USE.

4.1.

4.2.

4.3.

4.4.

45.

Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all notices
and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All copies shall
remain the property of Mentor Graphics or its licensors. Except for Embedded Software that has been embedded in executable
code form in Customer’s product(s), Customer shall maintain arecord of the number and primary location of al copies of
Software, including copies merged with other software, and shall make those records available to Mentor Graphics upon
request. Customer shall not make Products available in any form to any person other than Customer’s employees and on-site
contractors, excluding Mentor Graphics competitors, whose job performance requires access and who are under obligations of
confidentiality. Customer shall take appropriate action to protect the confidentiality of Products and ensure that any person
permitted access does not disclose or use Products except as permitted by this Agreement. Customer shall give Mentor Graphics
written notice of any unauthorized disclosure or use of the Products as soon as Customer becomes aware of such unauthorized
disclosure or use. Customer acknowledges that Software provided hereunder may contain source code which is proprietary and
its confidentiality is of the highest importance and value to Mentor Graphics. Customer acknowledges that Mentor Graphics
may be seriously harmed if such source code is disclosed in violation of this Agreement. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
disassemble, reverse-compile, or reverse-engineer any Product, or in any way derive any source code from Software that is not
provided to Customer in source code form. Log files, data files, rule files and script files generated by or for the Software
(collectively “Files”), including without limitation files containing Standard Verification Rule Format (“SVRF") and Tcl
Verification Format (“TVF") which are Mentor Graphics' trade secret and proprietary syntaxes for expressing process rules,
constitute or include confidential information of Mentor Graphics. Customer may share Files with third parties, excluding
Mentor Graphics competitors, provided that the confidentiality of such Filesis protected by written agreement at least aswell as
Customer protects other information of a similar nature or importance, but in any case with at least reasonable care. Customer
may use Files containing SVRF or TVF only with Mentor Graphics products. Under no circumstances shall Customer use
Products or Files or allow their use for the purpose of developing, enhancing or marketing any product that is in any way
competitive with Products, or disclose to any third party the results of, or information pertaining to, any benchmark.

If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct software
errors and enhance or modify the Software for the authorized use, or as permitted for Embedded Software under separate
embedded software terms or an embedded software supplement. Customer shall not disclose or permit disclosure of source
code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or on-site
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code in
any manner except to support this authorized use.

Customer agrees that it will not subject any Product to any open source software (“OSS’) license that conflicts with this
Agreement or that does not otherwise apply to such Product.

Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense, or otherwise transfer the
Products, whether by operation of law or otherwise (“ Attempted Transfer”), without Mentor Graphics' prior written consent and
payment of Mentor Graphics' then-current applicable relocation and/or transfer fees. Any Attempted Transfer without Mentor
Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in the
immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms of this Agreement,
including without limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successorsin
interest and assigns.

The provisions of this Section 4 shall survive the termination of this Agreement.

SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphicswill provide Customer with updates and
technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor Graphics' then
current End-User Support Terms located at http://supportnet.mentor.com/supportterms.

OPEN SOURCE SOFTWARE. Products may contain OSS or code distributed under a proprietary third party license agreement, to
which additional rights or obligations (“Third Party Terms’) may apply. Please see the applicable Product documentation (including
license files, header files, read-me files or source code) for details. In the event of conflict between the terms of this Agreement

http://supportnet.mentor.com/supportterms

10.

(including any addenda) and the Third Party Terms, the Third Party Terms will control solely with respect to the OSS or third party
code. The provisions of this Section 6 shall survive the termination of this Agreement.

LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly installed,
will substantially conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not
warrant that Products will meet Customer’s requirements or that operation of Products will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Customer must
notify Mentor Graphics in writing of any nonconformity within the warranty period. For the avoidance of doubt, this warranty
applies only to theinitial shipment of Software under an Order and does not renew or reset, for example, with the delivery of (a)
Software updates or (b) authorization codes or alternate Software under a transaction involving Software re-mix. This warranty
shall not bevalid if Products have been subject to misuse, unauthorized modification, improper installation or Customer isnot in
compliance with this Agreement. MENTOR GRAPHICS ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE
REMEDY SHALL BE, AT MENTOR GRAPHICS OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON
RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE
PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA CODE; ALL OF
WHICH ARE PROVIDED “ASIS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

LIMITATION OF LIABILITY. TO THE EXTENT PERMITTED UNDER APPLICABLE LAW, IN NO EVENT SHALL
MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES (INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS' LIABILITY UNDER THIS
AGREEMENT EXCEED THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS
LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8
SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

THIRD PARTY CLAIMS.

9.1. Customer acknowledges that Mentor Graphics has no control over the testing of Customer’s products, or the specific
applications and use of Products. Mentor Graphics and its licensors shall not be liable for any claim or demand made against
Customer by any third party, except to the extent such claim is covered under Section 10.

9.2. Inthe event that athird party makes a claim against Mentor Graphics arising out of the use of Customer’s products, Mentor
Graphics will give Customer prompt notice of such claim. At Customer’s option and expense, Customer may take sole control
of the defense and any settlement of such claim. Customer WILL reimburse and hold harmless Mentor Graphics for any
LIABILITY, damages, settlement amounts, costs and expenses, including reasonable attorney’s fees, incurred by or awarded
against Mentor Graphics or its licensors in connection with such claims.

9.3. Theprovisions of this Section 9 shall survive any expiration or termination of this Agreement.
INFRINGEMENT.

10.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product acquired
by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics
will pay costs and damages finally awarded against Customer that are attributable to such action. Customer understands and
agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify Mentor Graphics
promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the
action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.

10.2. If aclaimis made under Subsection 10.1 Mentor Graphics may, at its option and expense: (@) replace or modify the Product so
that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return of the
Product and refund to Customer any purchase price or license fee paid, less a reasonable alowance for use.

10.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with any
product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the use of
other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (€) a product that
Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided by Mentor
Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; (h) OSS, except to the extent that
the infringement is directly caused by Mentor Graphics' modifications to such OSS; or (i) infringement by Customer that is
deemed willful. In the case of (i), Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other costs
related to the action.

10.4. THIS SECTION 10 IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS, AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, FOR DEFENSE,

11.

12.

13.

14.

15.

16.

17.

18.

SETTLEMENT AND DAMAGES, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

TERMINATION AND EFFECT OF TERMINATION.

11.1. If a Software license was provided for limited term use, such license will automatically terminate at the end of the authorized
term. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon
written notice if Customer: () exceeds the scope of the license or otherwise fails to comply with the licensing or confidentidity
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any
provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement
upon 30 days written notice if Customer failsto cure the breach within the 30 day notice period. Termination of this Agreement
or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or licenses granted prior to
the termination, which amounts shall be payable immediately upon the date of termination.

11.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination of this Agreement and/or any license granted under this Agreement, Customer shall ensure that
all use of the affected Products ceases, and shall return hardware and either return to Mentor Graphics or destroy Software in
Customer’s possession, including all copies and documentation, and certify in writing to Mentor Graphics within ten business
days of the termination date that Customer no longer possesses any of the affected Products or copies of Software in any form.

EXPORT. The Products provided hereunder are subject to regulation by local laws and European Union (“E.U.”) and United States
(“U.S.") government agencies, which prohibit export, re-export or diversion of certain products, information about the products, and
direct or indirect products thereof, to certain countries and certain persons. Customer agrees that it will not export or re-export Products
in any manner without first obtaining all necessary approval from appropriate local, E.U. and U.S. government agencies. |If Customer
wishes to disclose any information to Mentor Graphicsthat is subject to any E.U., U.S. or other applicable export restrictions, including
without limitation the U.S. International Traffic in Arms Regulations (ITAR) or special controls under the Export Administration
Regulations (EAR), Customer will notify Mentor Graphics personnel, in advance of each instance of disclosure, that such information
is subject to such export restrictions.

U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. The parties agree that all Softwareis
commercia computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to U.S. FAR 48
CFR 12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. government or a U.S.
government subcontractor is subject solely to the terms and conditions set forth in this Agreement, which shall supersede any
conflicting terms or conditions in any government order document, except for provisions which are contrary to applicable mandatory
federal laws.

THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation and
other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and during
Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to review Customer’s
software monitoring system and records deemed relevant by the internationally recognized accounting firm to confirm Customer’s
compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include FlexNet (or successor
product) report log files that Customer shall capture and provide at Mentor Graphics' request. Customer shall make records available in
electronic format and shall fully cooperate with data gathering to support the license review. Mentor Graphics shall bear the expense of
any such review unless a material non-compliance is revealed. Mentor Graphics shall treat as confidential information all information
gained as aresult of any request or review and shall only use or disclose such information as required by law or to enforce its rights
under this Agreement. The provisions of this Section 15 shall survive the termination of this Agreement.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics intellectual
property licensed under this Agreement are located in Ireland and the U.S. To promote consistency around the world, disputes shall be
resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and construed under the laws of the State of
Oregon, U.S,, if Customer is located in North or South America, and the laws of Ireland if Customer is located outside of North or
South America or Japan, and the laws of Japan if Customer is located in Japan. All disputes arising out of or in relation to this
Agreement shall be submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin,
Ireland when the laws of Ireland apply, or the Tokyo District Court when the laws of Japan apply. Notwithstanding the foregoing, all
disputes in Asia (excluding Japan) arising out of or in relation to this Agreement shall be resolved by arbitration in Singapore before a
single arbitrator to be appointed by the chairman of the Singapore International Arbitration Centre (“SIAC”) to be conducted in the
English language, in accordance with the Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be
incorporated by reference in this section. Nothing in this section shall restrict Mentor Graphics' right to bring an action (including for
example amotion for injunctive relief) against Customer in the jurisdiction where Customer’s place of business is located. The United
Nations Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable or
illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.

MISCELLANEOUS. This Agreement contains the parties' entire understanding relating to its subject matter and supersedes al prior
or contemporaneous agreements. Any translation of this Agreement is provided to comply with local legal requirements only. In the
event of a dispute between the English and any non-English versions, the English version of this Agreement shall govern to the extent
not prohibited by local law in the applicable jurisdiction. This Agreement may only be modified in writing, signed by an authorized
representative of each party. Waiver of terms or excuse of breach must be in writing and shall not constitute subsegquent consent, waiver
Or excuse.

Rev. 151102, Part No. 265968

	Bookcase
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Syntax and Conventions
	Documentation Conventions
	File and Directory Pathnames
	Design Object Names
	Object Name Syntax
	Tcl Syntax and Specification of Array Bits and Slices
	SystemVerilog Scope Resolution Operator
	Specifying Names
	Environment Variables and Pathnames
	Name Case Sensitivity
	Extended Identifiers

	Wildcard Characters
	Supported Commands
	Using the WildcardFilter Preference Variable

	Simulator Variables
	Simulation Time Units
	Optionsets
	Argument Files
	Command Shortcuts
	Command History Shortcuts
	Numbering Conventions
	VHDL Numbering Conventions
	Verilog Numbering Conventions

	GUI_expression_format
	Expression Typing
	Expression Syntax
	Signal and Subelement Naming Conventions
	Grouping and Precedence
	Concatenation of Signals or Subelements
	Record Field Members
	Searching for Binary Signal Values in the GUI

	Chapter 2 Commands
	abort
	add dataflow
	add list
	add memory
	add message
	add watch
	add wave
	add_cmdhelp
	alias
	archive load
	archive write
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	call
	cd
	change
	classinfo ancestry
	classinfo descriptive
	classinfo find
	classinfo implements
	classinfo instances
	classinfo interfaces
	classinfo isa
	classinfo report
	classinfo stats
	classinfo trace
	classinfo types
	configure
	dataset alias
	dataset clear
	dataset close
	dataset config
	dataset current
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset restart
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	do
	drivers
	dumplog64
	echo
	edit
	enablebp
	encoding
	environment
	examine
	exit
	find
	find connections
	find infiles
	find insource
	force
	formatTime
	gc configure
	gc run
	help
	history
	layout
	log
	lshift
	lsublist
	mem compare
	mem display
	mem list
	mem load
	mem save
	mem search
	modelsim
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	onfinish
	pause
	precision
	printenv
	process report
	project
	pwd
	quietly
	quit
	radix
	radix define
	radix delete
	radix list
	radix names
	radix signal
	readers
	report
	restart
	resume
	run
	runStatus
	searchlog
	see
	setenv
	shift
	show
	simstats
	simstatslist
	stack down
	stack frame
	stack level
	stack tb
	stack up
	status
	step
	stop
	suppress
	tb
	Time
	transcript
	transcript file
	transcript path
	transcript sizelimit
	transcript wrapcolumn
	transcript wrapmode
	transcript wrapwscolumn
	tssi2mti
	ui_VVMode
	unsetenv
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	vencrypt
	verror
	vgencomp
	vhencrypt
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsim_break
	vsource
	wave
	wave create
	wave edit
	wave export
	wave import
	wave modify
	wave sort
	when
	where
	wlf2log
	wlf2vcd
	wlfman
	wlfrecover
	write format
	write list
	write preferences
	write report
	write timing
	write transcript
	write tssi
	write wave

	Index
	End-User License Agreement
	Documentation Feedback

