
SSY011 - Electrical Systems

Laboratory Report

Authors:
John Croft
19930814-7959

Andreas Johansson
19960813-8872

October 24, 2017

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Contents
Summary 2

1 Introduction 3

2 Subsystems 4
2.1 Counter/Clock Generation . 4
2.2 D/A converter . 6

2.2.1 Calculating component values . 6
2.2.2 Test & Verification . 8

2.3 A/D converter . 10
2.4 Sample and hold . 14
2.5 Serial transmitter . 16
2.6 Serial Receiver . 18
2.7 Audio Amplifier . 21

2.7.1 Characterising the signal amplifier . 21
2.7.2 Characterising the power amplifier . 22

2.8 LP filter . 25

3 Test and Verification 27

4 Conclusion 30

5 Reflection 31
5.1 Preparatory work . 31
5.2 Equipment . 31
5.3 Teamwork . 31
5.4 Guidance . 31

Appendix 32
VHDL Code . 32
Schematics . 41

Page 1

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Summary
This laboratory report presents the design, construction, testing and verification of a digital
audio transfer system. The system is composed of a transmitter and a receiver, which are
themselves composed of a number of subsystems. The chief component of the system was an
FPGA, which primarily was used to serve as a digital control unit. The design is modular and
each individual subsystem is presented in detail in this report.

The system succeeded in its primary goal of transmitting and receiving audio using the
RS-232 protocoll, though failed to meet all of the set specifications, especially the bandwidth
criteria, which was far below the expected range. Despite this, the system was eminently usable
for transmitting speech.

Page 2

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

1 Introduction
The goal of this laboratory assignment is to design, construct, test and characterize a digi-
tal audio transmission system. The system as a whole consists of many different component
subsystems, as summarized in the block diagram in figure 1.

The design revolves around the use of the Altera DE1 evelopment board and the FPGA
(Field Programmable Gate Array) it houses. The FPGA is programmed using VHDL ((Very
High Speed Integrated Circuit) Hardware Description Language) in order to generate timings,
to implement combinational and sequential gate-level logic and especially in order to construct
finite-state machines as will be discussed later on in this report. The remaining electrical
subsytems are constructed using discrete components on a prototyping breadboard. The fre-
quencies in this system are low enough that the use of a prototyping board should result in any
expected behaviour.

Figure 1: Block diagram of the complete audio transmission system.

Functionally, the system should be capable of receiving audio within the 20-12000Hz fre-
quency range, digitize it and transmit it via a serial link using the RS-232 communication
protocol to a receiver (using the exact same hardware) that then converts the digital data back
to analog information and outputs it as standard ’line level’ audio.

In order to realize this relatively simple functionality in practice, the subsystems required
included signal amplifiers, power amplifiers (class AB), 4th order LP-filters, Sample & Hold
circuits, DACs (Digital to Analog converters) and ADCs (Analog to Digital converters). Most
of these subsystems were controlled by timed sequential and combinational networks on the
FPGA.

Page 3

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2 Subsystems
This section will explain each subsystem in detail including its design specification, implemen-
tation in hardware and software and subsequent testing and verification.

Hardware designs are constrained to standard values, E12 for resistors and E6 for capacitors
and component value calculations will take this into account.s

Figures and code may be edited to remove elements that are not strictly relevant to the
function of the subsystem at hand. Complete schematics and code can be found in the Ap-
pendix.

2.1 Counter/Clock Generation

As seen in the block diagram in figure 1, clock signals control most of the subsystems and it is
thus vital to the functionality of the system as a whole that they are sufficiently accurate and,
in the case of subsystems that use both clocks, synchronized (ie. without drift relative to each
other).

Two clock signals, the sample-clock and bit-rate-clock or Ts and Tb respectively are generated
by the FPGA, based on its internal 50MHz clock. Ts has a frequency 24kHz and duty-cycle
of 5% whereas Tb has a frequency of 240kHz and a duty cycle of 20ns (ie. a single clock-
pulse). These particular frequencies are chosen in order to satisfy the Shannon-Nyquist sampling
theorem which states that the sampling frequency, fs, must be twice that of the sampled signal’s
frequency, f . Furthermore, the generated clock frequencies must be within 5% of that of the
receiver’s, as required by the RS-232 protocol.

The timings for these clock-signals are generated using two internally clocked registers that
are incremented on each internal clock-pulse until they match preset values, whereupon the
output signals change and/or the counters are reset.

Code Snippet 1 shows an implementation of the clock generators, albeit at lower frequencies
than in the specification (though with the correct ratios) in order to aid in debugging.

Proper timings could be verified directly using an oscilloscope. The results from the imple-
mentation in Code Snippet 1 are shown in table 1.

Table 1: Generated clock timings.

Signal T_s T_b
Amplitude 3.3V 3.3V
Period, T 1.042 ms ∼25 ns
Frequency 960 Hz 9598 Hz
Pulswidth
(at |V|/2) 52 us 18 ns

Page 4

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Code Snippet 1: Counter

1 architecture arch of clock_gen is
2 signal cnt_Ts : std_logic_vector(15 downto 0);
3 signal cnt_Tb : std_logic_vector(13 downto 0);
4 begin
5 proc_Ts: process(CLOCK_50, reset) -- (960 Hz)
6 begin
7 if reset='0' then --Clear counter and pull clock output LOW.
8 cnt_Ts <= (others => '0');
9 clk_Ts <= '0';

10 elsif rising_edge(CLOCK_50) then
11 if cnt_Ts = 49475 then -- at 95% of period set clock output HIGH.
12 clk_Ts <= '1';
13 cnt_Ts <= cnt_Ts + 1;
14 elsif clk_Ts = 52079 then -- at end of period (note: (52079 + 1)*20ns => 960Hz).
15 clk_Ts <= '0'; -- set clock output LOW and reset counter.
16 cnt_Ts <= (others => '0');
17 else
18 cnt_Ts <= cnt_Ts + 1;
19 end if;
20 end if;
21 end process;
22

23 proc_Tb: process(CLOCK_50,reset) -- (9600 Hz)
24 begin
25 if reset='0' then -- --Clear counter and pull clock output LOW.
26 cnt_Tb <= (others => '0');
27 clk_Tb <= '0';
28 elsif rising_edge(CLOCK_50) then
29 if cnt_Tb = (5207 - 1) then -- 1 clock-cycle before period end, set clock output

HIGH.↪→

30 clk_Tb <= '1';
31 cnt_Tb <= cnt_Tb + 1;
32 elsif cnt_Tb = 5207 then -- end of period, set clock output LOW.
33 clk_Tb <= '0';
34 cnt_Tb <= (others => '0');
35 else
36 cnt_Tb <= cnt_Tb + 1;
37 end if;
38 end if;
39 end process;
40 end architecture;

Page 5

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2.2 D/A converter

The primary function of the D/A converter (or DAC) is to receive a digital parallel byte (0-255)
and output a corresponding analog voltage (-5V to +5V). Furthermore, it should perform the
conversion faster than the nominal sample-rate of the system, 12kHz.

The DAC subsystem consists of two active components: an integrated DAC chip with
a parallel byte input and a corresponding analog output current and a current to voltage
converter (transimpedance amplifier). The characteristics of these components are determined
by auxiliary passive components which must be calculated according to the desired operation
mode.

Figure 2: DAC subsystem.

2.2.1 Calculating component values

Several design constraints had to be observed when calculating the component values (refer to
the circuit diagram in figure 2 for component, current and node names and values):

• I14 ≈ 2mA.

• IR5 ≈ 2mA.

• IZener > 10mA in order to stabilize the zener voltage, VREF.

• IR3 < 20mA in order to protect R3.

• VDA should range from -5V to 5V.

Page 6

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

First, R1 may be calculated based on the fact that I14 ≈ 2mA

R1 =
VREF

2mA
=

5.6V

2mA
= 2.7kΩ (1)

R3 can then be calculated, as the currents at VREF are known. First we let Izener > 10mA

R3 <
15V − 5.6V

10mA + 2mA + 2mA
= 671Ω ≈ 560Ω (2)

then we pick the nearest lower standard value resistor in order to allow for marginally more
current than we originally calculated.

Here we deviate slightly from the specification and calculate R2 for a non-bipolar DAC with
a range from 0 to 10 V. This is important, as it temporarily eliminates R5 while allowing us
to examine the characteristics of the subsystem at the same voltage range. The ’conversion’
formula for the DAC IC (DAC0808) is as follows

I4 = I14
A

256
(3)

, where A is the digital input to the DAC0808 (ie. 0-255). With some quick circuit analysis we
can quickly determine the equation for R2 as

R2 = VDA ·
R1

VREF

256

A
(4)

Letting VDA = VDAMAX = 10V and A = AMAX = 255 gives

R2 = 4840Ω ≈ 4.8kΩ = 4.7kΩ + 100Ω

From here, it is relatively easy to determine a formula for R5 in much the same manner, being
mindful of the fact that we are moving the operating point to a level at which the DAC is
bipolar. VDA can now be expresed as

VDA = I2 ·R2

= (I4 − I5)R2

= (I14 ·
A

256
− I5) ·R2

=
(VREF

R1

A
256
− VREF

R5

)
·R2 (5)

If we let A and VDA take on their extreme values (ie. ±5V) we get

R5 = 5374Ω ≈ 5.38kΩ = 4.7kΩ + 680Ω

Page 7

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2.2.2 Test & Verification

The DAC was tested in its non-bipolar state in which the output range is between approx.
0V and 10V. Constant digital test inputs where used and the corresponding outputs where
measured as well as theoretically calculated, as shown in table 2.

Table 2: Measuring the analog output in relation to the digital input.

Digital Input
(decimal)

Theoretical
Analog Output

Measured
Analog Output

0 0 0
16 0.622 0.635
32 1.244 1.271
64 2.488 2.547
128 4.977 5.094
255 9.916 10.140

In order to test the linear as well as the step-response (or slew-rate) of the DAC, the
FPGA was programmed to output a parallel digital signal in such a way that would result in
a sawtooth wave on the output. The code implementation is shown in code snippet 2. The
program increments or decrements a parallel byte at a rate determined by the generated bit-
rate clock, implemented in chapter 2.1, but configured to run at 100 Hz. This byte is then
outputted over the DE1’s GPIO header to the DAC0808 IC. Whether this value increases or
decreases depends on the state of a toggle switch, SW9. This allows control over whether the
sawtooth signal and the ’step’ at the transition between periods is rising or falling.

Code Snippet 2: Counter

1 --
2 -- Process: proc_bin_cnt
3 -- Description: 100Hz binary counter.
4 -- Increments or decrements depending on the state of SW9.
5 -- Creates a sawtooth pattern by allowing bin_cnt to over/underflow.
6 -- Input(s) : CLOCK_50, SW9, reset
7 -- Output(s):
8 -- Internal Signals: bin_cnt
9 --

10 proc_bin_cnt: process(CLOCK_50, reset)
11 begin
12 if reset='0' then
13 bin_cnt <= (others => '0');
14 elsif rising_edge(CLOCK_50) then
15 if clk_Tb_buff='1' and SW9='1' then -- if toggle switch HIGH...
16 bin_cnt <= bin_cnt + 1; -- count up.
17 elsif clk_Tb_buff='1' and SW9='0' then -- else count down.
18 bin_cnt <= bin_cnt - 1;
19 end if;
20 end if;
21 end process;
22 end arch;

Page 8

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

The resulting sawtooth signal has a theoretical period length of 256
100

= 2.56s and a measured
period length of approximately 2.60s.

Figure 3: 2.6Hz sawtooth signal generated by the FPGA.

Having ascertained the accuracy of sawtooth generator, the frequency was changed to 9600
Hz in order to examine the ’slew rate’ of the DAC, that is, how quickly the output VDA

responds to a change on the digital input. This was measured on the ’step’-transitions under
two conditions: with and without the inclusion of C2 (see figure 2).{

With C2 : SR = 11.3V µs−1

Without C2 : SR = 6.1V µs−1

The step response resulted in rather significant ringing however, as seen in figure 4, which
effectively limits the bandwidth. The maximum frequency of the DAC can then be estimated
(on the presumptions that the output signal is allowed to settle before each transition, and that
the fall time is similar in length).

fMAX =
1

rise-time + fall-time
≈ 200kHz (6)

This may seem as though it fails to meet the required bandwidth of 240 kHz, but under
normal conditions the input will not jump between it’s extreme values and so it will not be
limited.

Page 9

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Figure 4: Ringing on the DAC output during a large ’step’ in the input signal.

2.3 A/D converter

The function of the ADC (Analog to Digital Converter) is to convert an analog signal of ±5V
to an 8 bit digital representation (ie. 0-255). The ADC contains three main components: an
FPGA implementation of a SAR (Successive Approximation Register) state-machine, a DAC
(previously introduced in chapter 2.2) and a comparator based on the LM311 IC. The full
circuit is shown in figure 5.

Figure 5: ADC circuit diagram. To the left is the FPGA’s GPIO connector, in the middle is
the DAC subcircuit and to the right is the voltage comparator.

The system can be thought of as having the SAR as its main component and the DAC
in series with the comparator as a feedback signal. This feedback signal is labeled ’D’ in the
circuit diagram.

The functional principle of the ADC can be described with the help of both the circuit
diagram and the SAR state-machine diagram in figure 6. The signal to be converted is inputted
on VSH .

Page 10

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

To start a conversion the SAR receives a Ts pulse. It then sets its parallel output (A1-A8 in
the circuit diagram) to (10000000)2 ie. half of the maximum range of the DAC. This value is
converted by the DAC to an analog voltage and passed on to the comparator, where it compared
to the input signal. If the input signal exceeds the signal generated by the SAR, ’D’ is pulled
HIGH in logic terms, else LOW. The SAR will then store this value of ’D’ in the MSB position
of its eventual converted digital output.

IDLEstart

SAR7 SAR6 SAR5 SAR4

SAR3

SAR2SAR1SAR0STOP

Ts = ’1’
Q <= (10000000)2

Ts = ’0’

Q7 <= D
Q6 <= ’1’

Q6 <= D
Q5 <= ’1’

Q5 <= D
Q4 <= ’1’

Q4 <= D
Q3 <= ’1’

Q3 <= D
Q2 <= ’1’

Q2 <= D
Q1 <= ’1’

Q1 <= D
Q0 <= ’1’

Q0 <= D

parallel <= Q

Figure 6: Finite state-machine describing the SAR’s function.

Next, the SAR sets the MSB-1 of its parallel output HIGH, while keeping the previous
value of the MSB, and the process repeats, doing so for each bit until the complete digital byte
representation is determined.

The way in which this successive approximation takes place is perhaps best seen on a time-
graph such as in figure 9.

Figure 7: ADC successively converging on 1.9V. Note: the ADC used in this image is not
bipolar!

The VDHL implementation of the SAR below shows how the SAR solves bits with a case
structure by saving the current state and moving to the next state. In this process there

Page 11

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

are three input signals state,SAR and Q. "Q" is the signal which will provide changes to the
output voltage and "state" continues the bitlow by incrementing by 1 after each set bit. If
VDA approximation higher than sampled signal, D is set LOW, and thus also Q(n). When the
voltage has converged the state will move to stop and loop back into the idle state and wait for
the next TS signal..

Code Snippet 3: SAR Implementation as a VHDL Process

1 proc_SAR_comb : process(CLOCK_50,reset)
2 begin
3 if reset='0' then
4 state <= IDLE;
5 SAR_result <= (others => '1');
6 elsif rising_edge(CLOCK_50) then
7 if clk_Ts='1' then
8 Q <= "10000000"; -- MSB set, first approximation is half of maximum value.
9 state <= SAR7; -- Switch to next state in sequence.

10 elsif clk_Tb='1' then
11 case state is
12 when SAR7 =>
13 Q(7) <= D; -- If V_DA approximation higher than sampled signal,
14 -- D is set LOW, and thus also Q(n).
15 Q(6) <= '1'; -- Add 1/4 of maximum value to approximation,
16 -- and so on for subsequent states.
17 nextState <= SAR6;
18 when SAR6 =>
19 Q(6) <= D;
20 Q(5) <= '1';
21 nextState <= SAR5;
22 .
23 .
24 . -- (truncated)
25 .
26 .
27 when STOP =>
28 nextState <= IDLE; -- wait for next Ts trigger.
29 SAR_result <= Q;
30 when IDLE | U =>
31 -- do nothing
32 end case;
33 end if;
34 end if;
35 end process;

The A/D converter consists of an LM311 chip which is used to compare voltage sources
from D/A aswell as the sample and hold circuit. The input sources are compared to create a
digitalized source of power through recursive comparisons of the voltage from a D/A converter
with the desired analog signal. The LM311 chip uses three state logic which consists of a
logical zero and a high impedance state "Z". When the sample and hold circuit outputs a
greater voltage than the DAC, the SAR will interpret the signal as a logical one and increase

Page 12

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

the digital voltage output. {
Vout = 0 : VSH > VDA

Vout = Z: VSH < VDA

(7)

Table 3: DC inputs and corresponding ADC output.

Analog DC Input [V] Theoretical Digital Output Measured Digital Output
-5 00000000 00000011
-2 01001101 01001111
-1 01100111 01101111
0 10000000 10000001
1 10011010 10011111
2 10110010 10110101
5 11111111 11111111

The testing provided a table which showed that the conversion displayed rounding errors.
The ADC rounding error was calculated to be about 0.4 procent off target value as a worst
case scenario, which may or may not be acceptable depending on the application.

The ADC converts with is restrained by a delay which is the creating a maxiumum bitratio.
The theroetical delay was calculated in the simulation below. The delay was calculated to
around 800 ns.

208.4µs 208.8µs 209.2µs 209.6µs 210.0µs 210.4µs 210.8µs 211.2µs 211.6µs 212.0µs 212.4µs
0.0V
0.5V

1.0V
1.5V
2.0V
2.5V

3.0V
3.5V
4.0V

4.5V
5.0V

0.0mA
0.1mA
0.2mA
0.3mA
0.4mA
0.5mA
0.6mA
0.7mA
0.8mA
0.9mA
1.0mA
1.1mA

V(d) I(I1)

Figure 8: Q->D falling edge

To be able to calculate the ADC maximum bitratio the delay of the ADC has to be known.
The delay can be interpreted as the fall time of the Q signal until the stability of the D signal.
With this we can then equate the bit transfer to be the frequency differential of these signals.
By triggering the oscilloscope on a negative flank on the signal Q, the delay could be calculated
to 850 ns. With this delay the maximum bit ratio could then be calculated to be 1.18 Mb/s.

Page 13

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Figure 9: Q->D falling edge

2.4 Sample and hold

In order for the ADC to accurately convert an analog voltage, it must be held constant for the
duration of the conversion. A S/H (Sample & Hold) circuit uses an external control signal (in
this case the sample-clock, Ts) to either sample or ’hold’, that is, keep the voltage constant.

The S/H achieves this behaviour by allowing the voltage over its capacitor (see figure 10)
to vary with the input signal during ’sample’ mode.

Figure 10: S/H circuit. The 10nF capacitor is responsible for ’holding’ the sampled voltage.

The circuit used in this project uses the purpose-designed IC LF398 which has the following
two states {

Sample : V8 − V7 > 1.4V,

Hold : V8 − V7 < 1.4V
(8)

Page 14

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Using this relationship and considering that the FPGA uses LVTTL (ie. 3.3V logic), setting
V7 = GND and V8 = Ts (the sample clock) gives us the required behaviour. The fact that Ts
has a 5% duty cycle means that there is always enough time for the capacitor to reach the level
of the input signal before it is ’held’.

A comparison between the input and output signals from the S/H can be seen in figure 11,
while the input signal is a triangle wave of an arbitrary frequency, the output samples the input
and holds it constant with a frequency of 960Hz.

Figure 11: The input signal (blue) is a triangle wave that gets periodically sampled by the S/H.
The resulting output signal (yellow) is held between samples.

Page 15

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2.5 Serial transmitter

The serial transmitter is implemented in software using a shift register and makes use of the
DE1’s onboard RS-232 port to translate between logic and the RS-232 specified voltage levels,
which in the DE1’s implementation range between ±8V (-8V being logic ’0’ and +8V being
logic ’1’).

The data to be transmitted is the parallel byte ’Q’, generated be the ADC in chapter 2.3.
The serial transmitter completes the byte with a START bit (logic ’0’) before the LSB and a
STOP bit (logic ’1’) after the MSB, according to the RS-232 protocol, before transmitting the
complete 10-bit packet LSB first. When idling, the transmitter outputs a continuous STOP
bit.

The serial transmitter’s operation is triggered by a Ts pulse and each individual bit is then
sent upon receiving a Tb pulse.

Code Snippet 4: Shift Register

1 proc_shift_register: process(CLOCK_50, reset)
2 begin
3 if reset='1' then
4 SR <= (others => '1'); -- Init. SR with STOP bits.
5 elsif rising_edge(CLOCK_50) then
6 if SR_start='1' then -- Shift Register activated?
7 if clk_Ts='1' then
8 SR <= SAR_result & '0'; -- Load Shift Register with DATA & START bit.
9 elsif clk_Tb='1' then

10 SR <= '1' & SR(8 downto 1); -- Shift data right, Shift in STOP bit.
11 end if;
12 end if;
13 end if;
14 end process;
15

16 serial <= SR(0); -- Serial output from LSB of Shift Register

Code snippet 4 shows a VHDL process implementing the serial transmitter. ’SR’ is the
contents of the shift register, ie. the complete packet to be sent, ’SAR_result’ is an intermediate
register to hold contents of Q (Q itself cannot be used as the ADC and serial transmitter
operate in parallel, and Q would then change before it was fully sent!). ’SR_start’ is simply a
flag indicating whether at least one ADC conversion has taken place, so that the transmitter
under no circumstances transmits undefined data.

As seen in the code, a positive Ts signal reads the data to be sent into the shift register
prepended by a START bit. A positive Tb signal then causes the shift register to logical shift
right while also shifting in a STOP bit from the left (that is, in the MSB position). The LSB
of the shift register is continuously outputted on the serial link. Eventually the shift register
will contain and therefore output only STOP bits, which will be interpreted by the receiver as
a complete transmission (or otherwise serve to synchronize the transmitter and receiver, see
the next chapter).

The serial transmitter was tested by allowing the ADC to convert a known external DC voltage,
and transmitting the resulting byte to a PC-based receiver. On a successful transmission the

Page 16

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

PC interpreted the information as an ASCII character, which was then compared to both the
theoretical digital value of the input signal as well as the result of the conversion in the ADC,
which was outputted directly to 8 debug LEDs by the FPGA.

Page 17

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2.6 Serial Receiver

The serial receiver (hereafter Rx) should be able to asynchronously interpret an incoming stream
of serial bits as data packets according to the RS-232 protocol, and output the encapsulated
data as a parallel byte. It is in this sense a serial to parallel converter, the opposite of the serial
transmitter (hereafter Tx) in 2.5. Also in accordance with the RS-232 protocol, the Rx should be
able to automatically synchronise itself to the Tx (using clock recovery/symbol synchronization)
and compensate for both clock drift (the frequencies of Tx and Rx do not exactly match) and
triggering a read at the wrong position in a packet (block synchronisation).

The receiver is implemented in software and utilizes the DE1’s onboard serial port. To im-
plement the functionality described above, a state machine (of type Mealy) is used as described
in figure 12.

STOPstart

START S0 S1 S2

S3

S4S5S6S7

serial = ’0’

serial = ’1’

Q0 <= serial Q1 <= serial Q2 <= serial

Q3 <= serial

Q4 <= serial

Q5 <= serialQ6 <= serialQ7 <= serial

serial = ’1’
parallel <= Q

serial = ’0’
parallel <= Q

Figure 12: Finite state-machine describing an 8-bit serial to parallel RS-232 receiver.

The receiver initializes in the STOP state where it is assumed that it is receiving STOP-bits
(’1’) and waits for a START-bit, indicating the start of a packet, before transitioning to the
START state. It then successively transitions from the START state to the S7 state at a rate
determined by an internally generated sample-clock, reading a bit from the packet at each tran-
sition. Once at the S7 state, it awaits a STOP-bit while still sampling with the same frequency.
By synchronously waiting until this STOP bit is received, the position in the packet where the
next read will start is moved, effectively resulting in block synchronization. Once the STOP-bit
is received it transitions back to the STOP state and awaits the next START-bit. However,
unlike previously, it will start the next read immediately (asynchronously) upon receiving the
START-bit. This results in clock drift compensation as the Rx and Tx are essentially resyn-
chronised on each new start, and any drift in the relative timings is nullified.

The code implementation of the state machine is shown in code snippet 5. In keeping with
the model of a Mealy machine, the state machine is implemented as two processes: a syn-
chronous and an asynchronous/combinational part. The combinational part handles the logic
that determines outputs and state changes, whereas the synchronous part handles timings and
synchronously latches the combinational logic.

Also note that the synchronous process reads or ’samples’ each data bit in the middle of its
period in order to get the most reliable reading.

Code Snippet 5: Serial Receiver

Page 18

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

1 proc_Rx_sync : process(CLOCK_50, reset) -- Synchronous process.
2 begin
3 if reset='0' then
4 state <= STOP;
5 Q <= (others => '0');
6 cnt <= (others => '0');
7 elsif rising_edge(CLOCK_50) then
8 cnt <= cnt + 1;
9 if (state = STOP AND serial = '1') then -- If state is STOP and receiving

STOP-bits...↪→

10 cnt <= (others => '0'); -- ...reset counter and await START. (Block
synchronization)↪→

11

12 elsif cnt = 103 then -- At half of period T, sample data and transition to
next state.↪→

13 state <= next_state;
14 Q <= next_Q;
15 parallel <= next_parallel;
16 elsif cnt = 207 then -- At full period T, reset counter.
17 cnt <= (others => '0');
18 end if;
19 end if;
20 end process;
21

22 proc_Rx_comb : process(state, serial, Q) -- Combinational process.
23 begin
24 next_Q <= Q;
25 case state is
26 when STOP =>
27 next_state <= START;
28 when START =>
29 next_state <= S0;
30 next_Q(0) <= serial;
31 when S0 =>
32 next_state <= S1;
33 next_Q(1) <= serial;
34 -- continuing for Q2-6
35 when S6 =>
36 next_state <= S7;
37 next_Q(7) <= serial;
38 when S7 =>
39 next_parallel <= Q;
40 if serial='0' then -- If serial is NOT STOP-bit ...
41 next_state <= S7; -- ... do nothing. (Drift compensation)
42 else -- If serial is STOP-bit...
43 next_state <= STOP; -- transition to STOP state.
44 end if;
45 when others =>
46 -- undefined state
47 next_state <= STOP;
48 end case;
49 end process;

The serial receiver was tested by linking it to a PC-based serial transmitter and configuring

Page 19

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

both for 9600 buad. ASCII characters where then sent from the PC and the resulting parallel
byte on the receivers output was directly displayed by the FPGA using 8 LEDs. The test
results can be seen in the table below.

Table 4: Sent ASCII characters and resulting bit-patterns and voltages D/A conversion. Note
that the receiver’s DAC is bipolar at this stage.

ASCII-character Received bit-pattern Measured Analog Output [V]
P 01010000 -1.95
? 00111111 -2,62
å 10000110 0.17
! 00100001 -3,80
= 01011101 -2,70
A 01000001 -2,54

Page 20

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2.7 Audio Amplifier

There are two audio amplifiers in the system: the transmitter has a signal amplifier for the
microphone and the receiver has a power amplifier for the speaker. The difference is that
the signal amplifier increases the amplitude of the microphone’s signal to match the range of
the ADC (ie. ±5V), whereas the power amplifier increases the amount of power that can be
delivered to the load without substantially changing the amplitude.

2.7.1 Characterising the signal amplifier

The microphone and signal amplifier subcircuit is shown in figure 13.

Figure 13: An analog signal is generated by the microphone and amplified by the OP-amp on
the right.

In order to calculate the input impedance Zin of the signal amplifier from the perspective
of the microphone, the small signal circuit must be considered. If we let the microphone act as
a current source, short any external voltage sources and consider the OP-amp ideal (in that it
draws no current on its comparator inputs), then

ZIN =
10kΩ · 100kΩ

10kΩ + 100kΩ
= 9090.9Ω (9)

Since this result differs from the specification’s 2kΩ, the sensitivity of the microphone will be
affected and must be recalculated.

Since the microphone’s specification gives a typical sensitivity of -39dB V Pa−1 @ 2kΩ input
impedance, we can express this as an effective (RMS) voltage

Ueff = 1V · 10
−39
20 = 0.0112V (10)

in order to calculate a current at the specifications input impedance

Ieff =
Ueff

ZIN

=
0.0112V

2kΩ
= 5.61µA (11)

Page 21

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

but at this current with the new input impedance (remember, the microphone can be seen as
a current source) the effective voltage is

Ueff = ZINnew · Ieff = 9090.9Ω · 5.61µA = 0.051V (12)

giving the new sensitivity

20log
(0.051V

1V

)
= −25.8dB V Pa−1 (13)

It is now possible to calculate the maximum soundpressure that the system can receive
before the transduced signal exceeds the range of the ADC, and clipping occurs.

If the amplification of the non-inverting amplifier in figure 13 is AU = 11 and the maxi-
mum amplitud after amplification is |Vamp|MAX = 5V, then then maximum microphone signal
amplitude is

Umic =
5V

11
= 0.455⇒ 20log

(
0.455V√

2

1V

)
= −9.85dB V Pa−1 (14)

at 9090.9Ω input impedance.
Taking the difference between the microphone’s maximum output as defined above, and the

nominal output yields

−9.85dB V −−25.8dB V Pa−1 = 15.95dB V (15)

which can then be directly added to the nominal SPL (ie. 1 Pa = 94dB SPL).

94 + 15.95 = 109.95dB SPL (16)

to get the maximum allowed sound pressure.

Several characteristics were best calculated using SPICE such as the DC operating point,
lower cutoff frequency and the amplification of the non-inverting amplifier (using a better
mathematical model than the assumed ideal one). The results of these simulations follow in
the table below.

Table 5: SPICE simulation of microphone amplifier.

DC Operating Point [V] Cutoff Frequency [Hz] Gain
3.08 6.6 10.96

2.7.2 Characterising the power amplifier

The power amplifier circuit is shown in figure 14. The total gain of the amplifier is simple
to compute with the approximation that the CMOS amplifier stage has no gain and that the
capacitor can be approximated by a short. This leaves two potential dividers with a non-
inverting amplifier in between them, also acting as a convenient buffer.

Thus AU =
1kΩ//47kΩ

10kΩ + 1kΩ//47kΩ
· 33kΩ + 10kΩ + 100Ω

10kΩ
· 20Ω

20Ω + 47Ω
= 0.115 (17)

Page 22

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Figure 14: The power amplifier shown here consists of several cascaded stages. From right to
left: a potential divider, a passive HP-filter, a non-inverting amplifier, a CMOS amplifier and
another potential divider in which the speaker completes the divider.

The maximum SPL that a typical speaker with sensitivity of 100 dB SPL/mW can generate
with a 5V AC input can now be calculated.

PMAX =

(
5V ·0.115√

2

)2

20Ω
= 8.26mW (18)

⇒ 10log

(
8.26mW

1mW

)
= 9.17dB mW (19)

thus the maximum sound pressure level is

100dB SPL/mW + 9.17dB SPL/mW = 109.17dB SPL/mW

Page 23

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

SPICE was used to simulate a few remaining characteristics and to confirm the gain calcu-
lation, with the results presented in the following table.

Table 6: SPICE simulation of power amplifier. NOTE: power amplification is POUTMAX
PINMAX

.

Power Amplification Lower Cutoff Freq. [Hz] Upper Cutoff Freq. [kHz] Gain
8 7 172.9 0.115

The power amplifier was tested in practise, which resulted in the gain/frequency curve seen
in figure 15. Sheet1

Sida 1

1 10 100 1000 10000 100000
0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

Measured Gain vs. Freq. for Power Amplifier

Frequency [Hz]

G
a

in

Figure 15: Measured Gain vs. Freq. for Power Amplifier. Note the attenuation below 10 Hz.

Page 24

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

2.8 LP filter

The system itself is required to inherit a maxium frequency of 12 kilo hertz. To fit the re-
quirement the circuit is required to contain a Low Pass filter. The LP filter is designed and
calculated as a fourth order butterworth filter.

The equation of a general fourth order butterworth filter:

Hs =
1

1 + 2.613a+ 3.414a2 + 2.613a3 + a4
(20)

The LP filter simply put, is set to cutoff at the a targeted frequency. The butterworth filter
is set to be built in sallenkey filter structure.

vin vout

R1 R2

C1

C2

Figure 16: A general LP sallenkey filter

By cascading two second order sallen-key filter structures, the butterworth equation splits
into two second order butterworth filters

Hs =
1

(1 + 0.765a+ a2) ∗ (1 + 1.848a+ a2)
(21)

To calculate the components for the sallenkey filter which can be equated to the butterworth
filter:

1

(1 + ax+ a2)
=

1

(1 + (R1 +R2)C2 +R1R2C1C2)
(22)

a =
S

ω
=
S ∗ 0.765

Fc ∗ 2π
=

S ∗ 0.765

12000 ∗ 2π
(23)

Calculating The first sallenkey filter as the first part of the butterworth filter:

1

(1 + 0.765a+ a2)
=

1

(1 + (R1 +R2)C2 +R1R2C1C2)
(24)

Let C2 be equal to 1nF and assuming that the resistor are equal

2R =
S

12000 ∗ 2π ∗ C2

=> R = 5075Ω (25)

With three known components we can calculate the last capacitor

2R =
S2

12000 ∗ 2π ∗ C2 ∗R2
=> C1 = 6.8nF (26)

Page 25

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

With the first filter calculated, computing the second filter can be used the same method-
ology, inserting the second part of the buttworth filter equation we get:

a =
S

ω
=
S ∗ 1.848

Fc ∗ 2π
=

S ∗ 1.848

12000 ∗ 2π
(27)

Let C2 = 1.5nF and R1=R2 => gives 8200Ω and C2 = 1,72 nF which can be rounded to
1.5 nF. With all the components solved they create the schematic:

Figure 17: Two sallenkey filters cascaded with calculated component values

Using the above component values, we can implement the filter in LTSpice, giving us the
following frequency response plot:

1Hz 10Hz 100Hz 1KHz 10KHz 100KHz 1MHz
-110dB

-100dB

-90dB

-80dB

-70dB

-60dB

-50dB

-40dB

-30dB

-20dB

-10dB

0dB
V(v_ut)

11.987546KHz,-3.0936989dB

Figure 18: The frequency response curve for the 4th order LP-filter. The cuttoff frequency is
marked. Note that the attenuation reaches a maximum and then decreases again.

The filter in practice functions as in the simulation wereas the cutoff frequency was located
between 11500-12000 Hz.

Page 26

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

3 Test and Verification
In order to examine the functionality of the system as a whole, verifying that it was up to
specification, an array of measurements were performed. To test both sides of the system,
without having to physically build both, we partnered with another lab group and designated
our system the receiver and theirs the transmitter.

The first step was to measure the maximum input amplitude that the system can withstand
before noticeable clipping occurs on the receiver output. This was done using a 1kHz sine wave
and was determined to be

UINMAX
= 11Vpp

Figure 19: Noticeable clipping on the receiver. VDA in Yellow, Vamp2 in Blue

Likewise, the minimum input amplitude that could be detected before the receiver output
was drowned out by noise was

UINMIN
= 400mVpp

This gives the transmission a dynamic range of

20log

(
11V

0.4mV

)
= 28.79dB

Page 27

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Secondly, the outputs from the LP-filters on either side were observed and compared, as
shown in figure 20.

Figure 20: The smooth lines in each image are the filter outputs. Rx on top, Tx below. Note
the high frequency components in the latter are not attenuated.

Continuing, the system’s bandwidth was examined by adjusting the input signal frequency
on the transmitter side at a 11Vpp amplitude. The cutoff frequencies where determined to
occur at 900Hz and 3900Hz.

Page 28

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

The systems resilience to partial transmission failure was also tested by grounding several of
the least significant bits on the transmitter side, thus reducing the resolution of the transmitted
data. It was unanimously decided by the group that a minimum of 5 bits of resolution is needed
to communicate, anything less was rendered completely unintelligible.

A working example of normal speech transmission at the full 8-bit resolution is illustrated
in figure 21.

Figure 21: Input: "jag heter john"

Page 29

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

4 Conclusion
The fact that clipping occurs when UIN ≥ ±10V pp is entirely expected due to the fact that
it exceeds the range of the ADC, indicating that the ADC itself fulfills its specification. In
reality, using a regular microphone such as the one the system was designed for (see chapter
2.7.1) would require an exceptionally loud noise before clipping occurred, unlikely to happen
under normal circumstances.

The presence of high frequency components on the receiver side of the system was unantic-
ipated and may contribute distortion. These components may be explained by examining the
frequency response of the filter used in figure 18. In the graph one can see how the attenuation
reaches a maximum before decreasing again, possibly allowing these high frequency components
through. The fact that a breadboard is used with no regards to potentially parasitic effects
may also contribute.

An area in which the system clearly did not live up to its specification was in the bandwidth.
Whereas the specified bandwidth was 20-12000Hz, the actual measured bandwidth was 900-
3900Hz, despite the individual subsystems (on the receiver side) performing as required. As
we were partnered with another group for the final system test, we cannot account for the
performance of the transmitter. An adequate explanation for this poor performance may require
further testing of the individual subsystems on both sides of the transmission.

Nevertheless, this bandwidth was sufficient for regular speech, which was described as sound-
ing "like an ordinary telephone". Decreasing the resolution of the sent data, however, quickly
resulted in a loss of intelligibility.

On the whole, despite the presence of some undesirable characteristics, the system is em-
inently functional when used to transmit spoken audio. All the various subsystems have had
their individual performances tested and verified and since there is no inherent bandwidth lim-
iting factor, improving the system’s characteristics may simply be a matter of debugging the
electrical circuit.

Page 30

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

5 Reflection

5.1 Preparatory work

The preparatory work required a large time commitment which in all likelihood exceeded the
recommended 95 hours. The assignments were often, however, self explanatory and was easily
reflected on what was happening inside of the laboratory.

5.2 Equipment

There were a few time consuming issues with the laboratory equipment that usually turned out
to be trivial:

• The oscilloscopes can’t seem to differentiate between amplitude and peak-to-peak mea-
surements.

• The bench-top power supplies are current limited and due to inexperience a sudden drop
in voltage (due to the current limiting kicking in) was interpreted as a short circuit.

• The passives (resistors especially) had very large tolerances which made it difficult to
build the theoretical designs with any precision.

• The handheld DMMs cannot seem to adjust to an amplitude-varying AC signal, unlike
the benchtop DMMs.

5.3 Teamwork

Teamwork in the preparation assignment was hardly divided since both had to understand and
explain the meaning of the laboratory work. Inside of the laboratory the teamwork was divided
into one working on coding the FPGA-chip and the other one setting up the new circuits on
the breadboard. Then together solve the assignments or troubleshooting the new part of the
system.

5.4 Guidance

The guidance was sufficient and wasn’t over exaggerated thus leaving the students to solve the
problems with some minor hints.

Page 31

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Appendix

VHDL Code

Page 32

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Code Snippet 6: Complete Transmitter Program

1 --
2 --- Description

--↪→

3 --
4 -- ADC (Analog voltage in, parallel byte out) with Shift Register serial output.
5

6 -- ADC based on SAR (Successive Approximation Register) with feedback through DAC and
subsequent comparator.↪→

7 --
8 -- The SAR is a state machine that is initialised by a sample-pulse (clk_Ts) whereby it

sets the MSB of its parallel output HIGH and the rest LOW,↪→

9 -- this is fed into the DAC which outputs an analog voltage corresponding to the input (ie.
"10000000" in -> Vmax/2 out),↪→

10 -- this voltage is fed into the comparator and compared with the external input signal. If
it is higher than the input signal then the comparator's output is LOW, else HIGH.↪→

11 -- The SAR then uses this information to set the MSB HIGH or LOW before moving onto Bit
n-1. State changes in the SAR are triggered by a bit-rate pulse (clk_Tb).↪→

12

13 -- Parallel to serial shift register. LSB out first.
14 -- Shift register must conform to RS/EIA-232 standard and therefore uses 1 START, 1 STOP

and 8 DATA bits.↪→

15 -- START is logical LOW (voltage HIGH), STOP is logical HIGH (voltage LOW). There should a
positive flank between STOP and START, seen from oscilloscope.↪→

16 --
17

18 --
19 -- Libraries
20 --
21 library ieee;
22 use ieee.std_logic_1164.all;
23 use ieee.std_logic_unsigned.all;
24

25 --
26 -- Entity
27 --
28 entity Tx_FINAL is
29 port(CLOCK_50 : in std_logic; -- 50MHz internal clock.
30 reset : in std_logic; -- resets and/or initializes clocked elements.

Asynchronous.↪→

31 D_async : in std_logic; -- input from external
(asynchronous) comparator.↪→

32 Q : buffer std_logic_vector(7 downto 0); -- parallel output from
SAR.↪→

33 clk_Ts : buffer std_logic; -- Generated 'sample-rate'
clock.↪→

34 clk_Tb : buffer std_logic; -- Generated 'bit-rate'
clock.↪→

35 LEDR : out std_logic_vector(7 downto 0); -- SAR output display on
LEDs.↪→

36 serial : out std_logic); -- Serial data out.
EIA-232.↪→

37 end entity;

Page 33

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

38

39 --
40 --Architecture
41 --
42 architecture rtl of Tx_FINAL is
43 --
44 -- Constants
45 --
46 constant clk_Ts_CONST : integer := 2079; -- Clock-gen constants. Determines frequency.
47 constant clk_Ts_5perc_CONST : integer := 1975; -- 5% duty cycle on Ts.
48 constant clk_Tb_CONST : integer := 207;
49

50 --
51 -- Signals
52 --
53 type StateType is (U,IDLE,SAR7,SAR6,SAR5,SAR4,SAR3,SAR2,SAR1,SAR0,STOP); -- Enumerated

machine states. U used in simulation only.↪→

54 signal state : StateType;
55

56 signal D_semisync : std_logic;
57 signal D : std_logic;
58

59 signal cnt_Ts : std_logic_vector(11 downto 0);
60 signal cnt_Tb : std_logic_vector(7 downto 0);
61

62 signal SR : std_logic_vector(8 downto 0); -- shift register containing 8 DATA
bits & 1 START bit. ((MSB -> LSB) & START).↪→

63 -- STOP bits are shifted in, so
space need not be allocated
for them specifically.

↪→

↪→

64 signal SAR_result : std_logic_vector(7 downto 0); -- Holds the SAR output after a
completed conversion. Multiple processes use this result (at different times) and
so a separate signal is needed.

↪→

↪→

65 signal SR_start : std_logic; -- Has ADC completed at least once? Prevents SR
from outputting undefined values before first SAR conversion.↪→

66

67 begin
68 --
69 -- Architecture: - Top Level
70 --
71 serial <= SR(0); -- Serial output from LSB of Shift Register (in accordance with

EIA-232).↪→

72

73 --
74 -- Process: proc_SAR
75 -- Description: SAR (successive approximation register) state machine.
76 -- State sequence: IDLE -> SAR7 -> ... -> SAR0 -> STOP -> IDLE0
77 -- Input(s) : CLOCK_50, clk_Tb, clk_Ts, reset, D
78 -- Output(s): Q, LEDR
79 -- Internal Signals: state, SAR_result, SR_start
80 --
81 proc_SAR : process(CLOCK_50,reset)
82 begin
83 if reset='0' then -- CHECK WHETHER RESET IS INVERTED!
84 state <= IDLE;
85 LEDR <= (others => '0');

Page 34

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

86 SAR_result <= (others => '1');
87 SR_start <= '0';
88

89 elsif rising_edge(CLOCK_50) then
90 if clk_Ts='1' then
91 Q <= "10000000"; -- MSB set, first approximation is half of maximum

value.↪→

92 state <= SAR7; -- Switch to next state in sequence.
93 elsif clk_Tb='1' then
94 case state is
95 when SAR7 =>
96 Q(7) <= D; -- If V_DA approximation higher than sampled

signal, D is set LOW, and thus also Q(n).↪→

97 Q(6) <= '1'; -- Add 1/4 of maximum value to approximation, and
so on for subsequent states.↪→

98 state <= SAR6;
99 when SAR6 =>

100 Q(6) <= D;
101 Q(5) <= '1';
102 state <= SAR5;
103 when SAR5 =>
104 Q(5) <= D;
105 Q(4) <= '1';
106 state <= SAR4;
107 when SAR4 =>
108 Q(4) <= D;
109 Q(3) <= '1';
110 state <= SAR3;
111 when SAR3 =>
112 Q(3) <= D;
113 Q(2) <= '1';
114 state <= SAR2;
115 when SAR2 =>
116 Q(2) <= D;
117 Q(1) <= '1';
118 state <= SAR1;
119 when SAR1 =>
120 Q(1) <= D;
121 Q(0) <= '1';
122 state <= SAR0;
123 when SAR0 =>
124 Q(0) <= D;
125 state <= STOP;
126 when STOP =>
127 state <= IDLE; -- Loop back to IDLE state, until next Ts trigger.
128 LEDR <= Q; -- Indicate converion value.
129 SAR_result <= Q;
130 SR_start <= '1'; -- First digital conversion completed, shift

register now active.↪→

131 when IDLE | U =>
132 -- do nothing
133 end case;
134 end if;
135 end if;
136 end process;
137

Page 35

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

138 --
139 -- Process: proc_comparator_read
140 -- Description: Makes the asynchronous comparator output (signal D) synchronous in

order to mitigate metastability issues.↪→

141 -- Does this by sychronously reading D into an intermediate flip-flop,
'D_semisync'.↪→

142 -- Input(s) : D_async
143 -- Output(s): D
144 -- Internal Signals: D_semisync
145 --
146 proc_comparator_read : process(CLOCK_50)
147 begin
148 if rising_edge(CLOCK_50) then
149 D_semisync <= D_async;
150 D <= D_semisync;
151 end if;
152 end process;
153

154 --
155 -- Process: proc_Ts
156 -- Description: Generates the sample-rate clock, clk_Ts
157 -- Input(s) : CLOCK_50, reset
158 -- Output(s): clk_Ts
159 -- Internal Signals: cnt_Ts
160 --
161 proc_Ts: process(CLOCK_50,reset) -- reset is asynchronous, and so process must be

sensitive to it!↪→

162 begin
163 if reset='0' then -- CHECK IF LOGIC INVERTED!
164 cnt_Ts <= (others => '0'); --Clear counter and pull clock output low.
165 clk_Ts <= '0';
166 elsif rising_edge(CLOCK_50) then
167 if cnt_Ts = clk_Ts_5perc_CONST then
168 clk_Ts <= '1';
169 cnt_Ts <= cnt_Ts + 1;
170 elsif cnt_Ts = clk_Ts_CONST then
171 clk_Ts <= '0';
172 cnt_Ts <= (others => '0');
173 else
174 cnt_Ts <= cnt_Ts + 1;
175 end if;
176 end if;
177 end process;
178

179 --
180 -- Process: proc_Tb
181 -- Description: Generates the bit-rate clock, clk_Tb
182 -- Input(s) : CLOCK_50, reset
183 -- Output(s): clk_Tb
184 -- Internal Signals: cnt_Tb,
185 --
186 proc_Tb: process(CLOCK_50,reset)
187 begin
188 if reset='0' then -- CHECK IF LOGIC INVERTED!
189 cnt_Tb <= (others => '0'); --Clear counter and pull clock output low.
190 clk_Tb <= '0';

Page 36

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

191 elsif rising_edge(CLOCK_50) then
192 if cnt_Tb = (clk_Tb_CONST - 1) then
193 clk_Tb <= '1';
194 cnt_Tb <= cnt_Tb + 1;
195 elsif cnt_Tb = clk_Tb_CONST then
196 clk_Tb <= '0';
197 cnt_Tb <= (others => '0');
198 else
199 cnt_Tb <= cnt_Tb + 1;
200 end if;
201 end if;
202 end process;
203

204 --
205 -- Process: proc_shift_register
206 -- Description: Parallel in -> serial out, LSB first.
207 -- Input(s) : CLOCK_50, reset, Q, clk_Ts, clk_Tb
208 -- Output(s): serial
209 -- Internal Signals: SR, SAR_result, SR_start
210 --
211 proc_shift_register: process(CLOCK_50, reset)
212 begin
213 if reset='0' then
214 SR <= (others => '1'); -- Init. SR with STOP bits.
215 elsif rising_edge(CLOCK_50) then
216 if SR_start='1' then -- Shift Register activated?
217 if clk_Ts='1' then
218 SR <= SAR_result & '0'; -- Load Shift Register with DATA & START bit

((MSB..LSB) & START).↪→

219 elsif clk_Tb='1' then
220 SR <= '1' & SR(8 downto 1); -- Shift data right, Shift in STOP

bit.↪→

221 end if;
222 end if;
223 end if;
224 end process;
225 end architecture;

Page 37

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Code Snippet 7: Complete Receiver Program

1 --- Description
--↪→

2 -- RS-232 receiver.
3

4 -- Works at 12 kbaud.
5 -- Uses 'clock recovery' to synchronize timing. (Symbolsynkronisering)
6 --
7

8 --
9 -- Libraries

10 --
11 library IEEE;
12 use IEEE.STD_LOGIC_1164.all;
13 use IEEE.STD_LOGIC_UNSIGNED.all;
14

15 --
16 -- Entity
17 --
18 entity Rx_FINAL is
19 port(reset, CLOCK_50 : in std_logic;
20 serial_async : in std_logic; -- Serial in.
21 parallel : buffer std_logic_vector(7 downto 0);
22 LEDR : out std_logic_vector(7 downto 0);
23

24 DTx : out std_logic);
25 end entity;
26

27 --
28 --- Architecture

---↪→

29 --
30 architecture arch of Rx_FINAL is
31 signal cnt : std_logic_vector(7 downto 0);
32 signal Q, next_Q : std_logic_vector(7 downto 0);
33 signal next_parallel : std_logic_vector(7 downto 0);
34 signal serial_semisync, serial : std_logic;
35

36 type stateType is (U,STOP,START,S0,S1,S2,S3,S4,S5,S6,S7);
37 signal state, next_state : stateType;
38 begin
39

40 LEDR <= parallel;
41 DTx <= serial;
42

43

--↪→

44 -- Process: proc_Rx_sync
45 -- Description: Synchronous part of serial->parallel Mealy machine.
46

47 -- Input(s) : reset, CLOCK_50, serial
48 -- Output(s): parallel
49 -- Internal Signals: cnt, state, next_state, next_parallel, Q, next_Q

Page 38

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

50

--↪→

51 proc_Rx_sync : process(CLOCK_50, reset)
52 begin
53 if reset='0' then
54 state <= STOP;
55 Q <= (others => '0');
56 cnt <= (others => '0');
57 elsif rising_edge(CLOCK_50) then
58 cnt <= cnt + 1;
59 if (state = STOP AND serial = '1') then
60 cnt <= (others => '0');
61

62 elsif cnt = 103 then
63 state <= next_state;
64 Q <= next_Q;
65 parallel <= next_parallel;
66 elsif cnt = 207 then
67 cnt <= (others => '0');
68 end if;
69 end if;
70 end process;
71

--↪→

72 -- Process: proc_Rx_comb
73 -- Description: Combinational part of serial->parallel Mealy machine.
74

75 -- Input(s) :
76 -- Output(s):
77 -- Internal Signals: state, next_state, next_parallel, Q, next_Q, serial, S(n)
78

--↪→

79 proc_Rx_comb : process(state, serial, Q)
80 begin
81 next_Q <= Q;
82 case state is
83 when STOP =>
84 next_state <= START;
85 when START =>
86 next_state <= S0;
87 next_Q(0) <= serial;
88 when S0 =>
89 next_state <= S1;
90 next_Q(1) <= serial;
91 when S1 =>
92 next_state <= S2;
93 next_Q(2) <= serial;
94 when S2 =>
95 next_state <= S3;
96 next_Q(3) <= serial;
97 when S3 =>
98 next_state <= S4;
99 next_Q(4) <= serial;

100 when S4 =>
101 next_state <= S5;
102 next_Q(5) <= serial;

Page 39

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

103 when S5 =>
104 next_state <= S6;
105 next_Q(6) <= serial;
106 when S6 =>
107 next_state <= S7;
108 next_Q(7) <= serial;
109 when S7 =>
110 next_parallel <= Q;
111 if serial='0' then
112 next_state <= S7;
113 else
114 next_state <= STOP;
115 end if;
116 when others =>
117 -- undefined state
118 next_state <= STOP;
119 end case;
120 end process;
121 \newpage
122

--↪→

123 -- Process: proc_serial_read
124 -- Description: Makes the asynchronous input signal synchronous
125 -- in order to mitigate metastability issues.
126 -- Does this by sychronously reading the signal into
127 -- an intermediate flip-flop.
128

129 -- Input(s) : serial_async
130 -- Output(s): serial
131 -- Internal Signals: serial_semisync
132

--↪→

133 proc_serial_read : process(serial_async, CLOCK_50)
134 begin
135 if rising_edge(CLOCK_50) then
136 serial_semisync <= serial_async;
137 serial <= serial_semisync;
138 end if;
139 end process;
140 end architecture;

Page 40

Laboratory Report
October 24, 2017

John Croft
Andreas Johansson

Schematics

Page 41

Laboratory
R
eport

O
ctober

24,2017
John

C
roft

A
ndreas

Johansson

Figure 22: Serial receiver

P
age

42

Laboratory
R
eport

O
ctober

24,2017
John

C
roft

A
ndreas

Johansson

Figure 23: Serial transmitter

P
age

43

	Summary
	Introduction
	Subsystems
	Counter/Clock Generation
	D/A converter
	Calculating component values
	Test & Verification

	A/D converter
	Sample and hold
	Serial transmitter
	Serial Receiver
	Audio Amplifier
	Characterising the signal amplifier
	Characterising the power amplifier

	LP filter

	Test and Verification
	Conclusion
	Reflection
	Preparatory work
	Equipment
	Teamwork
	Guidance

	Appendix
	VHDL Code
	Schematics

