

ENM061 - Power Electronic Converters

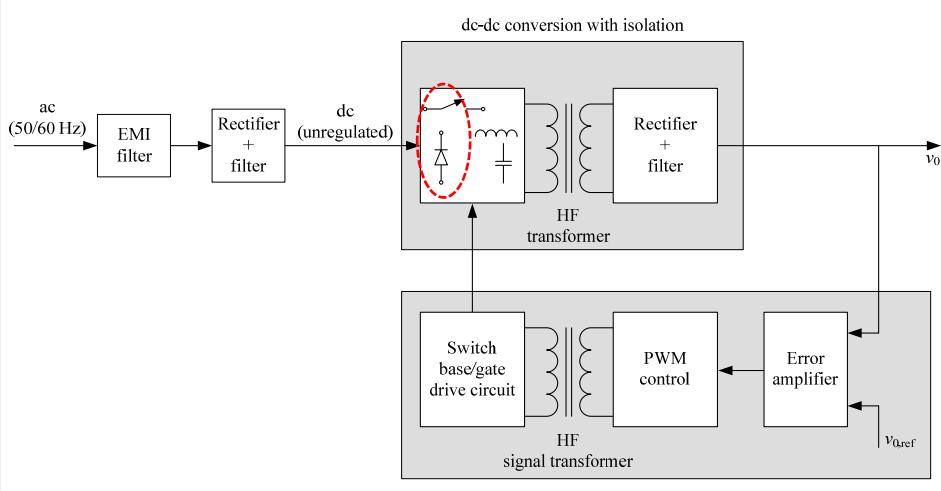
7.5 ECTS, 2017

Mebtu Beza

mebtu.beza@chalmers.se

Chalmers University of Technology
Department of Electrical Engineering
Division of Electric Power Engineering

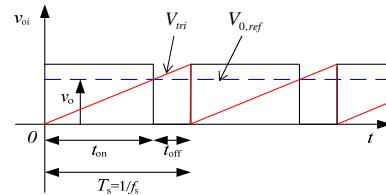
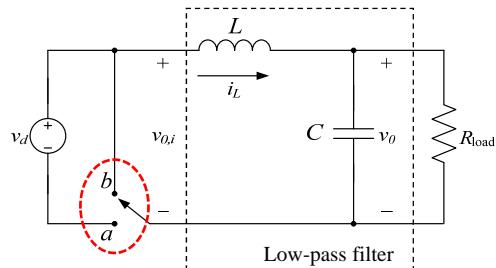
Lecture outline


Active components

- On-state vs switching losses
- The diode
- The thyristor
- BJT (Bipolar Junction Transistor)
- The GTO (Gate Turn-Off Thyristor)
- The MOSFET (Metal-Oxide Semiconductor Field Effect Transistor)
- The IGBT (Insulated Gate Bipolar Transistor)
- Component selection
- Brief description of the Tutorial and PSpice exercises
- Summary

Learning outcomes

- Fourier components and total harmonic distortion (THD) for basic waveforms.
- Operating principles of the most common active components (e.g. diode, thyristor, IGBT, and MOSFET)** and passive components (e.g. capacitors, transformers and inductors).
- Operation of a pulse width modulation (PWM), the purpose of controlling the desired quantity and the need for a controller circuit within the power electronic converter.
- Analysis of ideal DC/DC converters (e.g. buck, boost, buck-boost, flyback, the forward, the push-pull, half-bridge and full-bridge converters) in CCM and DCM operation.
- Operating principles of single-phase and three-phase AC/DC inverters with different modulation strategies (e.g. PWM and square wave operation).
- Operation of multilevel converters (e.g. NPC, flying capacitor and MMC topologies) using current and voltage waveform analysis. Pros and Cons of the converter in terms of harmonics and losses.
- Operation of single- and three-phase diode rectifiers operating with voltage-stiff and current-stiff DC-side. Investigating the impact of line impedance within the converter circuit for current commutation.
- Operation of single- and three-phase thyristor rectifiers operating with a current-stiff DC-side and the impact of line impedance for current commutation. Investigating the use of 6/12-pulse configurations.
- Identify simple power electronic converter schematics. Recognizing the different parts in a physical circuit on which basic wave-shape and efficiency measurements is performed.
- Loss calculation in passive and active components. Evaluating the temperature rise in the active components and choosing an appropriate heat-sink. Gaining a basic understanding of component life time.
- Utilizing the software Cadence PSpice to simulate basic power electronic circuits and the practical labs to have a firsthand experience of how real DC/DC converters operate.

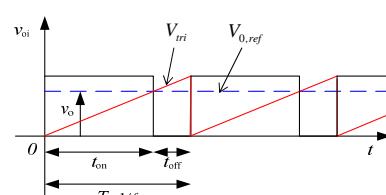
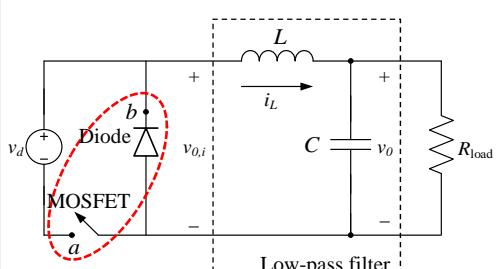


Switch-mode power supply

Undeland, Power Electronics
Figure 10 - 2, page 303

Switch-mode power supply

Equivalent circuit

Average load voltage



$$V_0 = \frac{1}{T_s} \int_0^{T_s} v_{0i} dt = \frac{t_{on}}{T_s} V_d = D V_d$$

Switching function

$$\text{switch} = \begin{cases} a, & V_{0,\text{ref}} \geq V_{tri} \\ b, & V_{0,\text{ref}} < V_{tri} \end{cases}$$

Switch-mode power supply

Equivalent circuit

Average load voltage

$$V_0 = \frac{1}{T_s} \int_0^{T_s} v_{0i} dt = \frac{t_{on}}{T_s} V_d = D V_d$$

Switching function

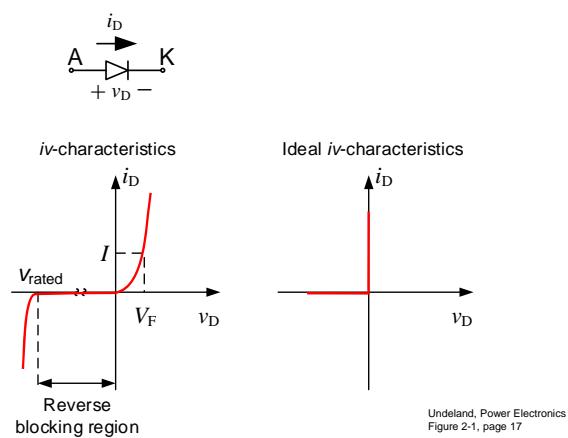
$$\text{switch } a = \begin{cases} \text{on} \Rightarrow \text{Diode off}, & V_{0,\text{ref}} \geq V_{tri} \\ \text{off} \Rightarrow \text{Diode on}, & V_{0,\text{ref}} < V_{tri} \end{cases}$$

On-state vs switching losses

Active components are characterized based on these parameters

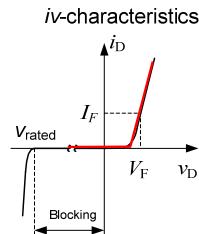
Why are they important?

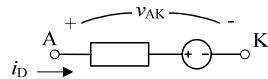
- System efficiency, temperature rise (heat sink selection=>size)
- Factors: switching frequency, load current and voltage
- What type of active components to choose
 - ❖ High vs low switching frequency => switching loss
 - ❖ High vs low load current => on-state loss


How are they calculated?

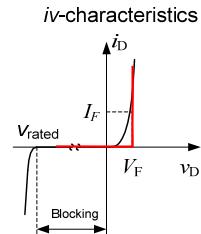
- On-state loss => steady-state current in the component
- Switching loss (turn-on and turn-off losses) => energy dissipation during a state change (on \leftrightarrow off) of the component
- Factors: On-state resistance, on-state voltage drop, accumulated charge, switching energy function, transient current and voltage waveforms

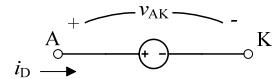
The Diode


- On and off states controlled by the power circuit

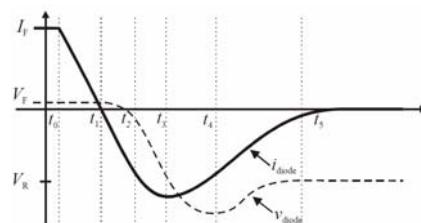

Undeland, Power Electronics
Figure 2-1, page 17

The Diode


High voltage diode


Equivalent circuit when conducting

Low voltage diode



Equivalent circuit when conducting

The Diode – Dynamic Characteristics

- Reverse recovery – when the diode goes from conducting state to blocking state a negative current can flow through the diode for a short time.

- Long reverse recovery – higher switching loss

The Diode - Different Types

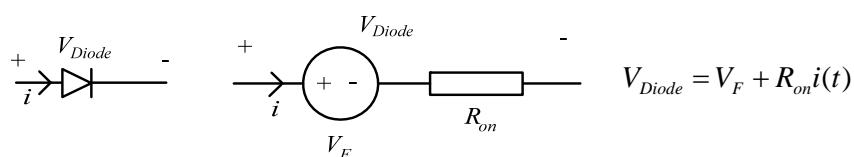
- Schottky diode
 - ✓ Low voltage drop
 - ✓ No recovery and hence low reverse blocking voltage
- Line frequency (rectifying) diodes
 - ✓ Lower voltage drop
 - ✓ Large recovery and hence high reverse blocking voltage
- Fast-recovery (switching) diodes
 - ✓ Higher voltage drop
 - ✓ Low recovery

Diode data sheet

Shottky diode

Electrical Specifications

Parameters	19TQ	Units	Conditions
V_{FM} Max. Forward Voltage Drop (1) * See Fig. 1	0.36	V	$T_J = 25^\circ\text{C}$
	0.46	V	$T_J = 75^\circ\text{C}$
	0.32	V	$T_J = 100^\circ\text{C}$
	0.43	V	$T_J = 125^\circ\text{C}$
I_{RM} Max. Reverse Leakage Current (1) * See Fig. 2	10.5	mA	$V_R = \text{rated } V_R$
	522	mA	$T_J = 100^\circ\text{C}$
	465	mA	$T_J = 100^\circ\text{C}$
	285	mA	$T_J = 100^\circ\text{C}$
C_T Max. Junction Capacitance	2000	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C
L_S Typical Series Inductance	8.0	nH	Measured lead to lead 5mm from package body
dv/dt Max. Voltage Rate of Change (Rated V_R)	10,000	V/ μs	


Diode data sheet

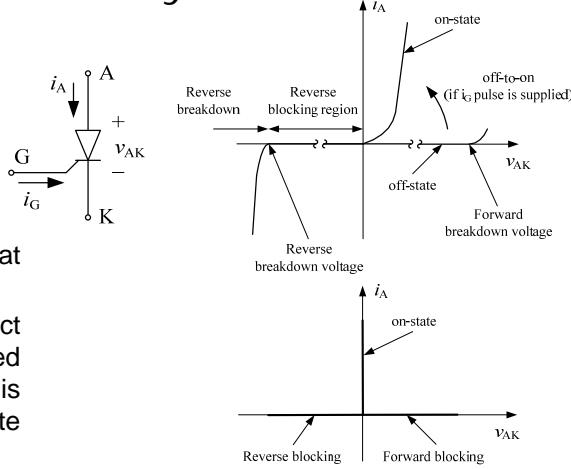
Switch diode TO-220

Electrical Specifications

Parameters	20ETF..	Units	Conditions
V_{FM} Max. Forward Voltage Drop	1.3	V	@ 20A, $T_J = 25^\circ\text{C}$
r_t Forward slope resistance	12.5	$\text{m}\Omega$	$T_J = 150^\circ\text{C}$
$V_{F(TO)}$ Threshold voltage	0.9	V	
I_{RM} Max. Reverse Leakage Current	0.1	mA	$T_J = 25^\circ\text{C}$
	5.0		$T_J = 150^\circ\text{C}$
			$V_R = \text{rated } V_{RRM}$

The diode - On-state/switching loss

$$\text{Ex.: } P_{on} = ? \quad P_{on} = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{T} \int_0^T V_{Diode}(t)i(t) dt = \frac{1}{T} \int_0^T (V_F i(t) + R_{on}i(t)^2) dt$$

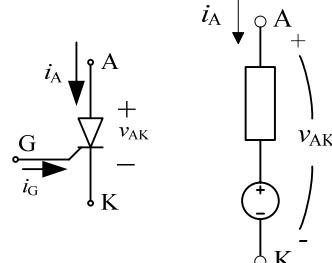

$$\Rightarrow P_{on} = V_F I_{AVG} + R_{on} I_{RMS}^2$$

- The switching loss which mainly is the turn-off loss depends on the type of diode (reverse recovery time and current, blocking voltage)

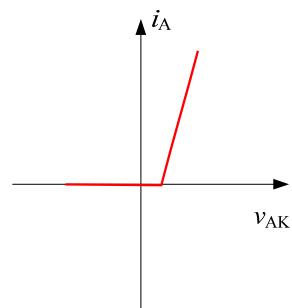
$$P_{switching} = \frac{1}{T} \int_{t_{on,0}}^{t_{on,0}+t_{on}} V_{Diode}(t)i(t) dt + \frac{1}{T} \int_{t_{off,0}}^{t_{off,0}+t_{off}} V_{Diode}(t)i(t) dt \approx \frac{1}{T} \int_0^{t_{rr}} V_{Diode}(t)i(t) dt$$

The Thyristor

- Basically a diode that can be turned on.
- Does not conduct when forward biased unless a current is applied on the gate terminal


Undeland, Power Electronics
Figure 2-3, page 18

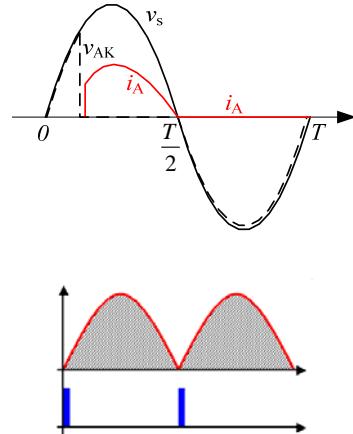
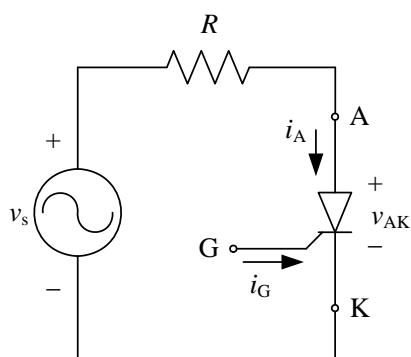
ENM061 – 2017


Lecture 2 – 14/32

The Thyristor

Equivalent circuit when conducting

simplified i - v -characteristics

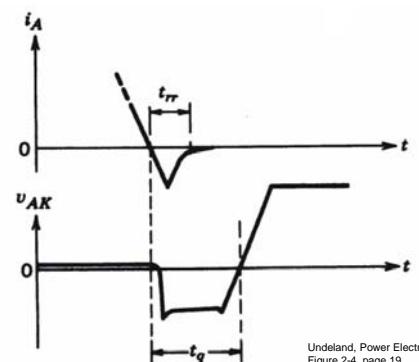
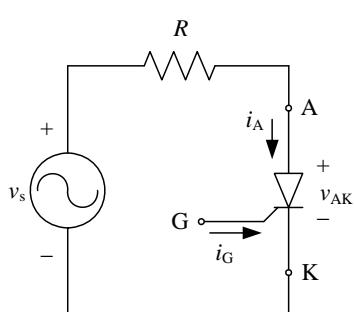



- Semi-controlled device
- Latches ON by a gate-current pulse if forward biased
- Turns-off if current tries to reverse

ENM061 – 2017

Lecture 2 – 15/32

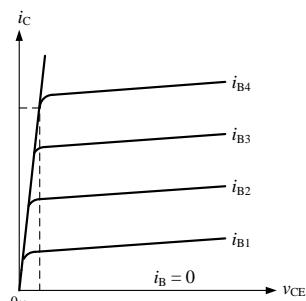
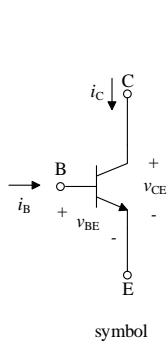
The Thyristor

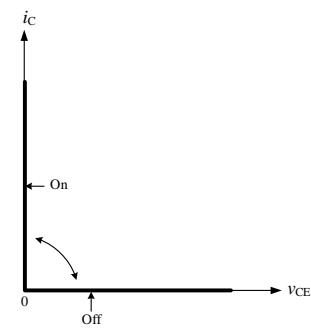
ENM061 – 2017

Lecture 2 – 16/32

The Thyristor

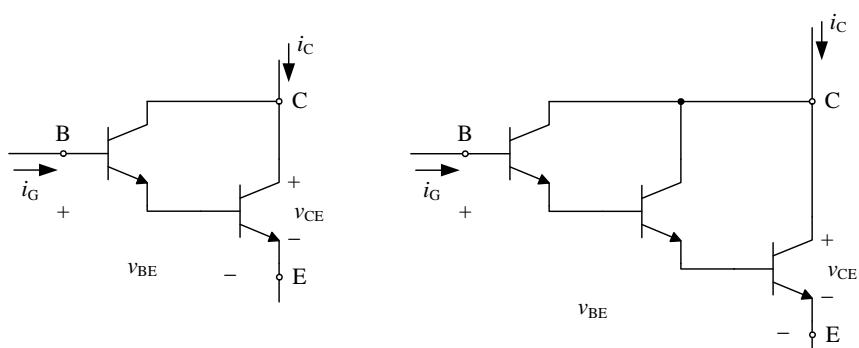


- After a thyristor has been switched off by forced commutation, a time delay (t_q) must elapse before it can be positively biased again.
- If the time interval is too short, the thyristor can self-trigger by the remaining charge carriers that have not yet recombined.

Undeland, Power Electronics
Figure 2-4, page 19


ENM061 – 2017

Lecture 2 – 17/32

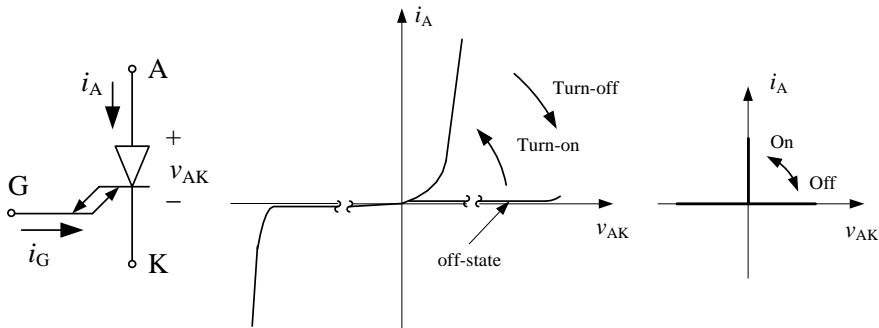
The BJT


i-v characteristic

idealized characteristic

Undeland, Power Electronics
Figure 2-7, page 24

The BJT - Darlington connection

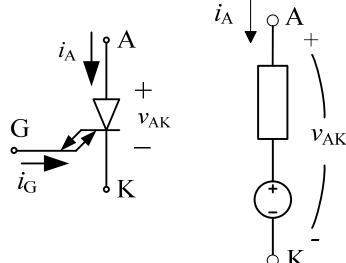


- Used commonly in the past
- Now used in specific applications
- Replaced by MOSFETs and IGBTs

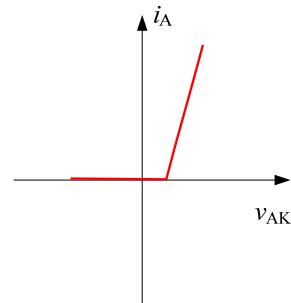
Undeland, Power Electronics
Figure 2-8, page 25

The GTO

- A thyristor that can be turned off by applying a current to the gate in the reverse direction to that required to turn it on.


Undeland, Power Electronics
Figure 2-10, page 26

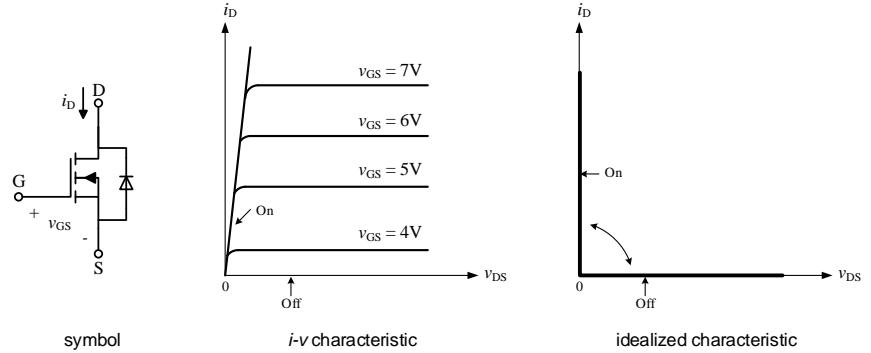
ENM061 – 2017


Lecture 2 – 20/32

The GTO

Equivalent circuit when conducting

simplified i/v -characteristics

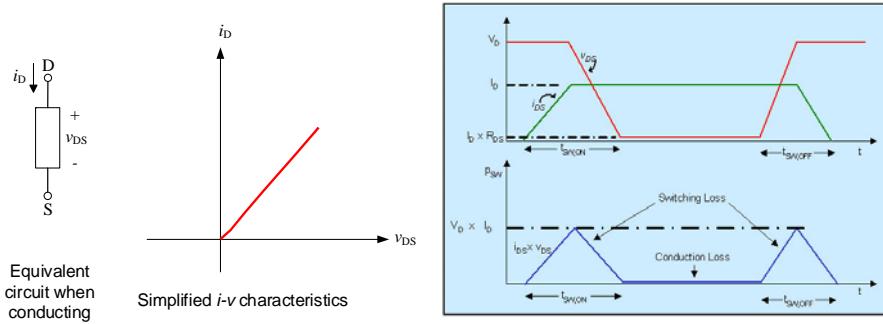

- Slow switching speeds
- Used at very high power levels
- Require elaborate gate control circuitry and a turn-off snubber

ENM061 – 2017

Lecture 2 – 21/32

The MOSFET

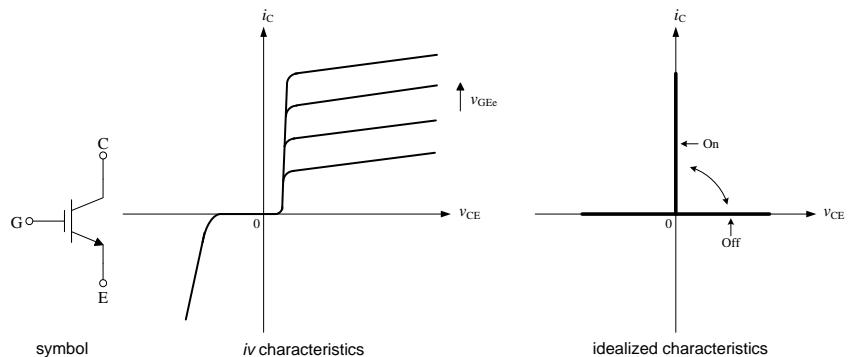
- The power MOSFET behaves as a voltage controlled switch



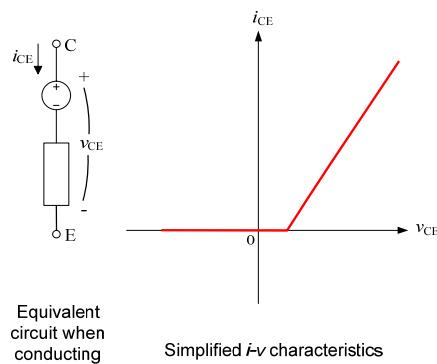
Undeland, Power Electronics
Figure 2-9, page 25

- Easy to control by the gate-source voltage
- Optimal for low-voltage (low power)/high switching frequency applications
- On-state resistance a concern at higher voltages

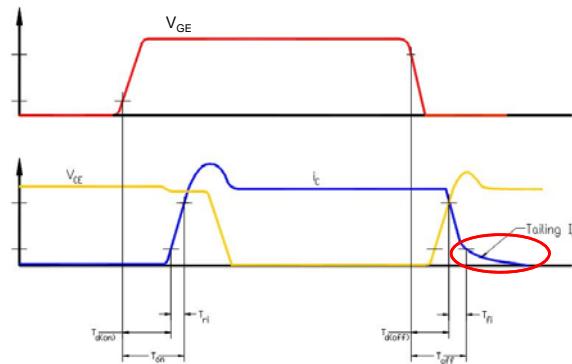
The MOSFET


- When conducting, the power MOSFET can be represented with a resistance ($R_{DS(on)}$)
- Fast switching and relatively simple gate drive circuitry

Undeland, Power Electronics
Figure 2-6, page 21

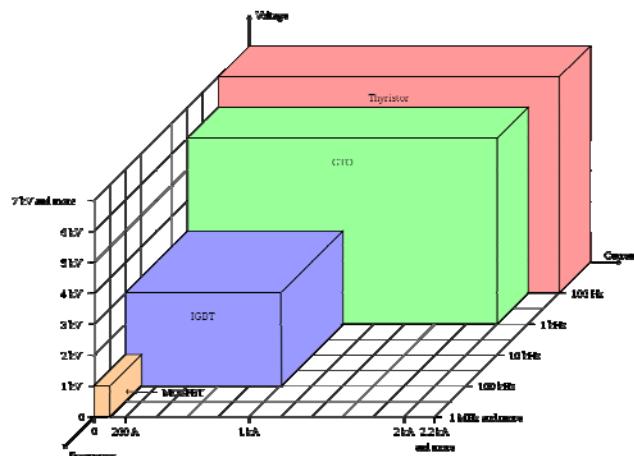

The IGBT

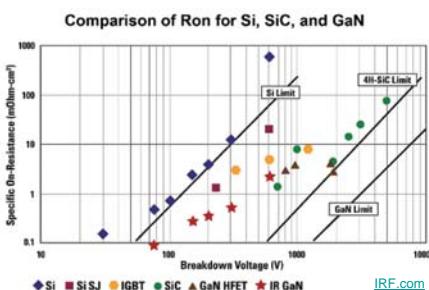
- A bipolar junction transistor with an insulated gate that facilitates the control of the component


The IGBT

- A bipolar junction transistor with an insulated gate that facilitates the control of the component

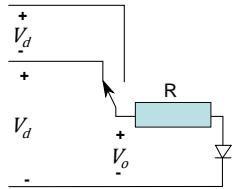
The IGBT

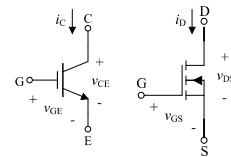

- Simple switching behavior but with a tail current that increases the turn-off losses


Component Selection – application

Device	Power level	Switching speed	control
Diode	variable	variable	None
Thyristor	High	Slow	Semi (current)
BJT	Medium	Medium	Full (current)
GTO	High	Slow	Full (current)
MOSFET	Low	Fast	Full (voltage)
IGBT	Medium	Medium	Full (voltage)

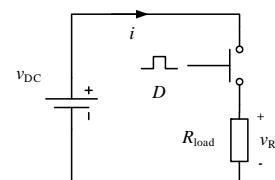
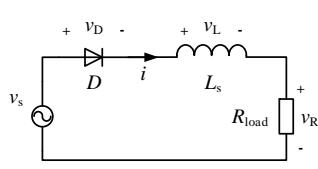
Component Selection – Power Handling


Component Selection – Upcoming Technologies


- GaN – in telecom and computer applications
- SiC - in industrial applications that require higher voltages and current.
- Manufacturing costs of GaN and SiC are expected to come down

- Si (Silicon)
- SiC (Silicon Carbide)
- GaN (Gallium Nitride)

Tutorial 2



$V_d = 15V$
 $f_{sw} = 20\text{kHz}$
 $D = 0.6$ (duty cycle)
 $v_f = 0.82V$ (diode forward voltage drop)
 $R = 5 \text{ ohms}$ (load)

- Average diode current, average output voltage, power dissipation over the resistor and the diode
- V_{CE} and V_{DS} waveforms in terms of i_C and i_D as well as expressions to calculate conduction losses

PSpice 1

Power electronic circuits and Fourier analysis in Cadence PSpice

- Waveforms
- Phasor methods
- AVG vs RMS values
- Fourier calculation
- AVG vs RMS values
- Harmonic components

Summary

- What does the on-state and Switching losses represent?
- Can you differentiate between a diode and a thyristor?
- Can you differentiate between a BJT and a GTO?
- Can you differentiate between a MOSFET and an IGBT?
- Can you differentiate in the applications of the active components?
- Can you sketch and differentiate the steady-state current-voltage characteristics of the active components?
- Learning outcome:
 - ❖ Operating principles of the most common active components (e.g. diode, thyristor, BJT, GTO, MOSFET, and IGBT)