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Lecture outline
Converter Control and Improvements

• Control of DC/DC Converters

• Dynamic modeling of a step-down converter

• Controller design for the step-down converter

• Digital Control 

• Synchronous rectification in the step-down converter

• Interleaved step-down converters

• Summary  
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• Fourier components and total harmonic distortion (THD) for basic waveforms.

• Operating principles of the most common active components (e.g. diode, thyristor, IGBT, and MOSFET)
and passive components (e.g. capacitors, transformers and inductors).

• Operation of a pulse width modulation (PWM), the purpose of controlling the desired quantity and the need
for a controller circuit within the power electronic converter.

• Analysis of ideal DC/DC converters (e.g. buck, boost, buck-boost, flyback, the forward, the push-pull, half-
bridge and full-bridge converters) in CCM and DCM operation.

• Operating principles of single-phase and three-phase AC/DC inverters with different modulation strategies
(e.g. PWM and square wave operation).

• Operation of multilevel converters (e.g. NPC, flying capacitor and MMC topologies) using current and
voltage waveform analysis. Pros and Cons of the converter in terms of harmonics and losses.

• Operation of single- and three-phase diode rectifiers operating with voltage-stiff and current-stiff DC-side.
Investigating the impact of line impedance within the converter circuit for current commutation.

• Operation of single- and three-phase thyristor rectifiers operating with a current-stiff DC-side and the
impact of line impedance for current commutation. Investigating the use of 6/12-pulse configurations.

• Loss calculation in passive and active components. Evaluating the temperature rise in the active
components and choosing an appropriate heat-sink. Gaining a basic understanding of component life time.

• Identify simple power electronic converter schematics. Recognizing the different parts in a physical circuit
on which basic wave-shape and efficiency measurements is performed.

• Utilizing the software Cadence PSpice to simulate basic power electronic circuits and the practical labs to
have a firsthand experience of how real DC/DC converters operate.

Learning outcomes
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Control of DC/DC Converters

• The buck converter from Lecture 
4 with controller circuit

• The PWM pattern to the switch is 
obtained by comparing a control 
voltage with a saw tooth carrier
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Control of DC/DC Converters

• Voltage mode control – the output voltage is measured and 
compared to a reference value
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• The behavior or each block is analyzed with its 
transfer function and corresponding bode plot

Undeland, Power Electronics
Figure 10-19, page 323
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The Dynamic Model
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• Once each block is known, the total open-loop transfer function is used to 
determine the gain and phase margins

• The transfer function of each block depends on e.g. circuit parameters and 
accounts for the small signal variation around a specific operating point

Small signal perturbation model
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The Power Stage
State-Space Modeling

+

-
R

iL

S
id

+

-

voi

L

D

+ -vL
iC

C

io

+

-

vo

vd

RC

RL

Set the inductor
current as a state

Set the capacitor
voltage as another state

• State-space description of the 
power stage in a buck converter

• The capacitor voltage and the 
inductor current are set as states 
(x(t)) since they can be expressed 
with their time derivatives

• The system input (u(t)) is set to Vd

and the output (y) is the quantity 
that we want to control (vo)
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1. State variable description of each circuit state

2. Average the state-variables with d

then linearize the model around an operating point, i.e. describe,

The Power Stage
State-Space Modeling
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Define the different matrices using D as 

3. Transform to the Laplace domain and determine the final transfer function

The Power Stage
State-Space Modeling
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The Modulator dynamic model
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Undeland, Power Electronics
Figure 10-19, page 323
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• Once the transfer functions of the PWM controller and the Power stage are 
known, the error amplifier shall be dimensioned 

• The total open-loop transfer function (TOL(s)) shall get a suitable behavior. 

• High gain at low frequencies to minimize steady state errors

• High cross-over frequency (fcross=0.1fsw) for fast response and high filtering

• A phase margin in the range of 45o – 60o for good transient response

The Compensated Error Amplifier
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Controller Design 
Gain and Phase Margin
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Undeland, Power Electronics
Figure 10-25, page 334

• The gain margin and the phase margin (and associated frequencies ωୋ୑ and ω୔୑) indicates the relative 
stability of the closed-loop system formed by applying unity negative feedback

• The gain margin is the amount of gain increase or decrease required to make the loop gain unity at the 
frequency ωୋ୑ where the phase angle is –180 degrees

• The phase margin is the difference between the phase of the response and –180 degrees when the loop 
gain is 1. The frequency ω୔୑ at which the magnitude is 1.0 is called the gain crossover frequency. 

• Recommendation: gain margins of three or more combined with a phase margin between 30 and 60 
degrees for good transient performance and stability.
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Controller Design 
Circuit Realization
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• For small signals:
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• A zero-pole pair to give a phase boost

• Maximum phase boost of 90 deg can be provided (ω௭ and ω௣	design parameters)

• Integrator at origin gives high DC gain for good load regulation 

Controller Design Example
Integrated-compensation Network

212

21

12

21

ω

1
ω

ω

ω1
)(

CCR

CC

CR

s

s

sCR
sT

p

z

p

z
c











Undeland, Power Electronics
Figure 10-27, page 335
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Digital Control
• Can serve as an additional monitoring and control functions to an existing 

analog controller or as a complete digital control

• Boost converter: Microcontrollers, ADC/DAC, digital input-analog output 

© Microchip
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Synchronous Step-Down Converters
• The freewheeling diode is replaced by a second (low-side) MOSFET that 

freewheels the current
• Main advantage is lower voltage drop over the low-side MOSFET than a 

corresponding diode
• Synchronous rectification can also be applied to other topologies as well

© Texas Instruments
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Synchronous Step-Down Converters

• In a standard buck converter with a free-wheeling diode, the 
inductor current can only flow in one direction

• In a synchronous buck, the current through the low-side MOSFET 
can flow in both directions which will increase the losses

© Texas Instruments
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Interleaved Step-Down Converters
• By connecting several phase shifted converters in parallel, the 

resulting current and voltage ripple can be decreased
• Typically used in high current and low voltage applications 

(e.g. processor power supplies)
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Interleaved Step-Down Converters
• The inductor currents add together which gives a lower effective ripple
• The current ripple determines the resulting output voltage ripple in 

combination with the output capacitors
• The inductor in each phase can be realized with lower inductance 

which gives higher saturation current ratings

2-phases - 180°phase shift 3-phases - 120°phase shift
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PSpice 7

• Buck converter with output voltage controller. How does the controller
compensate for changes in the system such as Vo,ref and Rload changes,
both during an increase and a decrease?

Rload

iLout

iLin

+

-

vD

Lout

D

+ -vL

iCout

Cout

io

+

-

vo

Vd

S

Cin

Lin

iCin

Nominal values

Source voltage  ௗܸ 15V
Output Inductance  ܮ 2.2H

Output Capacitance  ܥ 150F

Load Resistance  ܴ௟௢௔ௗ 2

Switching frequency  ௦݂௪ 300kHz

Duty ratio steady state ܦ 0.667
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Summary
• Why a controller is needed and how it works

• The concept of controller design: bode diagram, phase and gain margins

• Digital Control

• Synchronous rectification in the step-down converter

• Interleaved step-down converters

• Learning outcome:

 Basics in dynamic modelling and control of power electronic converters


