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Solution of demonstration 8

Problem 1 (P8-7 in Undeland book)

Consider the problem of ripple in the output current of a three-phase square-wave inverter. V;; 1y = 200V

at a frequency of 52Hz and the load is a three-phase ac motor with L = 100mH. Assume the back-emf
has the same amplitude and phase as the output fundamental voltage.
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Calculate the peak ripple current.

Solution

We should calculate the peak current ripple through the inductances due to the fact that it is the voltage
over the inductor that forms the current. To be able to do this we must first start by finding the voltage
over respective inductor: V, 4 (t), Vyg(t) and V. (t).

Therefore it can be a good idea to start by finding the voltage over the phases of the load
(VAn(t),VBn(t) and VCn(t)). We start by drawing the voltages between the phases and N. Since the
converter is operating as a square-wave inverter we know that the switches connected to P are on 50% of
the period and the switches connected to N are on for the rest of the period. We also know that it is a
three-phase inverter, which means that there is a 120° phase shift between the phases.

We know that in a three-phase system, the sum of all currents and voltage must be equal to zero. If the
sum of the currents are zero, the sum of the current derivatives must also be zero.

iy +ig+ic =0 (1)
and

d(i, +ig +ic)

dt 0 @)

The voltage in each phase leg (V4u, Vgy and V) can be drawn as:
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The load is assumed to be balanced (L, = Lg = L), which gives that the sum of the back-emf’s must be
equal to zero:

eA+eB+eC:0. (3)

From the figure it can be seen that the phase-to-neutral voltage in each phase can be expressed as:

Van = UaN — Unn
Vpn = VBN — Unn 4)

VUen = Ven — UnnN

The voltage over the load is also the sum of the voltage over the load inductor plus the back-emf.

dlB

=L—"+ep ®)
kUCn = Ldlc ec}

We now sum up the phase voltages over the load (equation (5) are summed together):

dic
+eB+L

diy dig
vAn+an+an=L +eA+L dt

dlA dlB dlc) 0
dt dt

C e =e,+ep+ +L( +
c=efTepTec dt ' dt ' dt

Hence, it is proven that the sum of all phase-to-neutral voltages equals to zero. If equation (4) is solved
for v,y and summed together, it is concluded that:

3VnN = Vany — Van + Vpn — Vpn + Ven — Ven = Van + Vpy + Ven — (Van + Vgn + Ven) =
=0
3Uny = Van + Upy + Ven (6)
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We can now calculate the voltage over one phase of the load as (equations (4) and (6) together gives)

. . vAN+vBN+vCN_2
Van = Van — UnN = Van — 3 = §vAN ~3 (vpn + ven)

We now plot the voltage over the load for phase A and the fundamental of it
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We know that the back-emf voltage (e, = ez = e.) is a sinusoidal voltage with the same frequency as
the fundamental. We also know that:

di,
UAn = LE + eA

The equation above is a linear equation which can be separated into two components; the fundamental
component and the ripple component. This gives:

d(iacry + tawrippie)) dia) diacripple)
Van = Van(1) t Van(ripple) = dt +e,=1L dt t+ey+ LT

The fundamental voltage can then be expressed as:

diA(l)
vAn(l) =1L dt + ey

Or expressed with vectors:
Van = jwiLI; + E,
The ripple component can be expressed as:

diA(ripple)
Van(ripple) = Van — Van(1) = T
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If the fundamental is known, the differential equation above can be solved for the ripple current. So we
have to calculate the fundamental. The figure gives us that the function is odd and half-wave (a,=0 for all
values of n) which gives:

™/ ™/ ™/
2 3 2

4 , 4V, 4 (27,
b, = —f V4, (0) sin(0) dO = —f —sin(0)do + — f ——sin(0) db

s s 3 s 3

0 0 T/

4, n, 8V m, 4Vgl 11 21\ 4V, 27,
= g [ cos@L, + - cos@ =2 (37334557 0) = 3 =

The fundamental is sinusoidal and can be expressed as:

2
Vana) = T Vg sin(6)

We also know that the solution for the differential equation can be written as:

. . 1t
lA(ripple)(t) = lA(ripple)(tO) + Zj Van(ripple) (&)d¢
to

By performing a variable substitution from time to angle, the integral can be written as:

6

. . 1
Lao(ripple) (9) = la(ripple) (90) + E j- Van(ripple) (E)df
6o

]
1
= iA(ripple) (90) + H f (vAn(E) — Van(1) (f)) df
)

The next step is to figure out how the ripple current will look like. We know that the average of the ripple
current must be zero. This due to the fact that the phase currents will have the same shape with a phase
shift of 120° between them.

Iy +lg +1. =0=

T T
I T & S . .
0= ?J.IA + IB + IC t= ?JIAJ + IB,l + IC,l + IA,ripple + IB,ripple + IC,ripple t=
0 0

T 1%, 1°F. 1.
IIA,l + IB,l + IC,l dt + ?E[IA,rippledt + ?_{':IB,rippledt + ?!IC,rippledt =1 A,ripple +1 B,ripple + IC,ripple

0 three— phasesystem =0

_1
=

But due to the symmetry of the phases 1, ;1. = lg rippie = I c.ripple = 0

We know that V;; 1y = 200V with a frequency of 52Hz. This gives:
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1 1
VAn(l) = ﬁvLL(l) = ﬁ * ZOOV = 1155V
2 . T T s 1 s
Van(a) = —Va sin(@t) > Vo =5 0ma) = Ex/EVAn(l) = E\/E EVLL(D = ﬁzoov = 256.5V

The ripple voltage can now be plotted:

Van(ripple) = Van — Van(1)
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Once the ripple A [Aripple
voltage is known,
the ripple current
can be sketched.
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From the figures we see that we have symmetry lines at 90°, 180° and 270°. We see that the ripple voltage
is odd around 180° (v (180—-60) =—v (A80+@), ©=0). This leads to a ripple current that is

An,ripple An,ripple
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an even function around 180° (i (180—0) =i 1ipp(180+6), ©=0). The areas around 180° show

symmetry which give a current that will have the same shape.

A,ripple

We see that the ripple voltage is even around 90° (v, ;,,(90—6) =V (90+60), 90=0=0). This
gives that the ripple current will be odd around 90° (i (90—0) = =iy ippe(90+6), 90=6=0). This
gives that the ripple current must be zero at 90°, due to that the average of the ripple current is zero.

An,ripple

Aripple

Another way of getting the starting point in this problem is by using Fig.8-26a where the peak ripple
current is defined. What we have done so far is basically a derivation of this figure.
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Now we know a starting point for solving the differential equation (is,ippie(90°) = 04) and we also
know that the maximum ripple current occurs at & = 180°. We now calculate the peak ripple current:

i\A,ripple = iA,ripple(ﬂ.) = iA,ripple(%) + iIVAH,ripple(g)dg = ijvm (5) - VAn,l (g)dg =

2 2
2,
132 2 . 1 71 2 .
=— |=V, ——V, sin(&dE+— | =V, ——V, sin(&)dE =
a)L;[Bd T ° (f)waJBd T ¢ (£)ds
2 3"
V

= |

—T

d[gg —cos(é)} +—[ §+—COS(§)} =
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Problem 2 (P8-10 in Undeland book)

In the three-phase, square-wave inverter (see Fig 8-24a in Undeland), consider the load to be balanced
and purely resistive with a load-neutral point n.
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Draw the steady state waveforms for v, , i,, iy, and iy, where iy, is the current through diode D,, .

Solution

Each leg in the inverter is operated in square wave operation. This means that the switches connected to P
are on 50% of the period and the switches connected to N are on for the rest of the period. We also know
that it is a three-phase inverter, which means that there is a 120° phase shift between the phases.
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From the previous problem (8-7) we know that the voltage in each phase to the neutral point can be
expressed as::

2 1
Van ZEVAN _E(VBN +Ven)

With help by the voltage in each leg (V,(t), Vs, (t) and V¢, (£) ), the voltage over the load in each phase
can be drawn (e.g. the voltage between A and n).
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Note that the voltage in each phase has the same amplitude, but with the only difference that they are
120° phase shifted. Since we have a purely resistive load, the current has the same shape as the voltage.
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The current i, is the sum of the parts of the phase-currents when the switches connected to P are on. This
gives a current that is constant. The current through diode Da+ is zero since the phase voltage is in phase
with the current due to the purely resistive load.
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