
ENM060 Power Electronic Converters  Electric Power Engineering 
Demonstration 8 – HT2017  Chalmers University of Technology 

   

1 

 

 

Solution of demonstration 8 

 
Problem 1 (P8-7 in Undeland book) 

 

Consider the problem of ripple in the output current of a three-phase square-wave inverter. 𝑉𝐿𝐿(1) = 200𝑉 

at a frequency of 52Hz and the load is a three-phase ac motor with 𝐿 = 100𝑚𝐻. Assume the back-emf 

has the same amplitude and phase as the output fundamental voltage. 
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Calculate the peak ripple current. 

 

 

Solution 

 

We should calculate the peak current ripple through the inductances due to the fact that it is the voltage 

over the inductor that forms the current. To be able to do this we must first start by finding the voltage 

over respective inductor: 𝑉𝐿𝐴(𝑡), 𝑉𝐿𝐵(𝑡) and 𝑉𝐿𝐶(𝑡). 
 

Therefore it can be a good idea to start by finding the voltage over the phases of the load 

(𝑉𝐴𝑛(𝑡), 𝑉𝐵𝑛(𝑡) and 𝑉𝐶𝑛(𝑡)). We start by drawing the voltages between the phases and N. Since the 

converter is operating as a square-wave inverter we know that the switches connected to P are on 50% of 

the period and the switches connected to N are on for the rest of the period. We also know that it is a 

three-phase inverter, which means that there is a 120º phase shift between the phases. 

 

We know that in a three-phase system, the sum of all currents and voltage must be equal to zero. If the 

sum of the currents are zero, the sum of the current derivatives must also be zero.  

 

0 CBA iii              (1) 

 

and 

 

0
)(




dt

iiid CBA           (2) 

 

The voltage in each phase leg (𝑉𝐴𝑁 , 𝑉𝐵𝑁 and 𝑉𝐶𝑁) can be drawn as: 
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The load is assumed to be balanced (𝐿𝐴 = 𝐿𝐵 = 𝐿𝐶), which gives that the sum of the back-emf’s must be 

equal to zero: 

 

𝑒𝐴 + 𝑒𝐵 + 𝑒𝐶 = 0.      (3) 

 

From the figure it can be seen that the phase-to-neutral voltage in each phase can be expressed as: 

 

{

𝑣𝐴𝑛 = 𝑣𝐴𝑁 − 𝑣𝑛𝑁
𝑣𝐵𝑛 = 𝑣𝐵𝑁 − 𝑣𝑛𝑁
𝑣𝐶𝑛 = 𝑣𝐶𝑁 − 𝑣𝑛𝑁

}           (4) 

 

The voltage over the load is also the sum of the voltage over the load inductor plus the back-emf. 

 

{
 
 

 
 𝑣𝐴𝑛 = 𝐿

𝑑𝑖𝐴

𝑑𝑡
+ 𝑒𝐴

𝑣𝐵𝑛 = 𝐿
𝑑𝑖𝐵

𝑑𝑡
+ 𝑒𝐵

𝑣𝐶𝑛 = 𝐿
𝑑𝑖𝐶

𝑑𝑡
+ 𝑒𝐶}

 
 

 
 

        (5) 

 

We now sum up the phase voltages over the load (equation (5) are summed together): 

 

𝑣𝐴𝑛 + 𝑣𝐵𝑛 + 𝑣𝐶𝑛 = 𝐿
𝑑𝑖𝐴
𝑑𝑡
+ 𝑒𝐴 + 𝐿

𝑑𝑖𝐵
𝑑𝑡
+ 𝑒𝐵 + 𝐿

𝑑𝑖𝐶
𝑑𝑡
+ 𝑒𝐶 = 𝑒𝐴 + 𝑒𝐵 + 𝑒𝐶 + 𝐿 (

𝑑𝑖𝐴
𝑑𝑡
+
𝑑𝑖𝐵
𝑑𝑡

+
𝑑𝑖𝐶
𝑑𝑡
) = 0 

 

Hence, it is proven that the sum of all phase-to-neutral voltages equals to zero. If equation (4) is solved 

for 𝑣𝑛𝑁 and summed together, it is concluded that:  

 

3𝑣𝑛𝑁 = 𝑣𝐴𝑁 − 𝑣𝐴𝑛 + 𝑣𝐵𝑁 − 𝑣𝐵𝑛 + 𝑣𝐶𝑁 − 𝑣𝐶𝑛 = 𝑣𝐴𝑁 + 𝑣𝐵𝑁 + 𝑣𝐶𝑁 − (𝑣𝐴𝑛 + 𝑣𝐵𝑛 + 𝑣𝐶𝑛)⏟            
=0

= 

 3𝑣𝑛𝑁 = 𝑣𝐴𝑁 + 𝑣𝐵𝑁 + 𝑣𝐶𝑁      (6) 
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We can now calculate the voltage over one phase of the load as (equations (4) and (6) together gives) 

 

𝑣𝐴𝑛 = 𝑣𝐴𝑁 − 𝑣𝑛𝑁 = 𝑣𝐴𝑁 −
𝑣𝐴𝑁 + 𝑣𝐵𝑁 + 𝑣𝐶𝑁

3
=
2

3
𝑣𝐴𝑁 −

1

3
(𝑣𝐵𝑁 + 𝑣𝐶𝑁) 

 

We now plot the voltage over the load for phase A and the fundamental of it 
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We know that the back-emf voltage (𝑒𝐴 = 𝑒𝐵 = 𝑒𝐶) is a sinusoidal voltage with the same frequency as 

the fundamental. We also know that: 

 

𝑣𝐴𝑛 = 𝐿
𝑑𝑖𝐴
𝑑𝑡
+ 𝑒𝐴 

 

The equation above is a linear equation which can be separated into two components; the fundamental 

component and the ripple component. This gives: 

 

𝑣𝐴𝑛 = 𝑣𝐴𝑛(1) + 𝑣𝐴𝑛(𝑟𝑖𝑝𝑝𝑙𝑒) = 𝐿
𝑑(𝑖𝐴(1) + 𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒))

𝑑𝑡
+ 𝑒𝐴 = 𝐿

𝑑𝑖𝐴(1)

𝑑𝑡
+ 𝑒𝐴 + 𝐿

𝑑𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)

𝑑𝑡
   

 

The fundamental voltage can then be expressed as: 

 

𝑣𝐴𝑛(1) = 𝐿
𝑑𝑖𝐴(1)

𝑑𝑡
+ 𝑒𝐴 

 

Or expressed with vectors: 

 

𝑉̅𝐴𝑛 = 𝑗𝜔1𝐿𝐼𝐴̅ + 𝐸̅𝐴 
 

The ripple component can be expressed as: 

 

𝑣𝐴𝑛(𝑟𝑖𝑝𝑝𝑙𝑒) = 𝑣𝐴𝑛 − 𝑣𝐴𝑛(1) = 𝐿
𝑑𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)

𝑑𝑡
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If the fundamental is known, the differential equation above can be solved for the ripple current. So we 

have to calculate the fundamental. The figure gives us that the function is odd and half-wave (an=0 for all 

values of n) which gives: 
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The fundamental is sinusoidal and can be expressed as: 

 

𝑉𝐴𝑛(1) =
2

𝜋
𝑉𝑑 sin(𝜃) 

 

We also know that the solution for the differential equation can be written as: 

 

𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)(𝑡) = 𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)(𝑡0) +
1

𝐿
∫ 𝑣𝐴𝑛(𝑟𝑖𝑝𝑝𝑙𝑒)

𝑡

𝑡0

(𝜉)𝑑𝜉 

 

By performing a variable substitution from time to angle, the integral can be written as: 

 

𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)(𝜃) = 𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)(𝜃0) +
1

𝜔𝐿
∫𝑣𝐴𝑛(𝑟𝑖𝑝𝑝𝑙𝑒)

𝜃

𝜃0

(𝜉)𝑑𝜉

= 𝑖𝐴(𝑟𝑖𝑝𝑝𝑙𝑒)(𝜃0) +
1

𝜔𝐿
∫ (𝑣𝐴𝑛(𝜉) − 𝑣𝐴𝑛(1)(𝜉)) 𝑑𝜉

𝜃

𝜃0

 

 

The next step is to figure out how the ripple current will look like. We know that the average of the ripple 

current must be zero. This due to the fact that the phase currents will have the same shape with a phase 

shift of 120° between them.  
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But due to the symmetry of the phases 0,,,  rippleCrippleBrippleA III  

 

We know that 𝑉𝐿𝐿(1) = 200𝑉 with a frequency of 52Hz. This gives:  
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𝑉𝐴𝑛(1) =
1

√3
𝑉𝐿𝐿(1) =

1

√3
∙ 200𝑉 = 115.5𝑉 

 

𝑣𝐴𝑛(1) =
2

𝜋
𝑉𝑑 sin(𝜔𝑡)     →      𝑉𝑑 =

𝜋

2
𝑣𝐴𝑛(1) =

𝜋

2
√2𝑉𝐴𝑛(1) =

𝜋

2
√2

1

√3
𝑉𝐿𝐿(1) =

𝜋

√6
200𝑉 = 256.5𝑉 

 

The ripple voltage can now be plotted: 

 

𝑣𝐴𝑛(𝑟𝑖𝑝𝑝𝑙𝑒) = 𝑣𝐴𝑛 − 𝑣𝐴𝑛(1) 

 

 
 

                    
 

From the figures we see that we have symmetry lines at 90°, 180° and 270°. We see that the ripple voltage 

is odd around 180° ( 0),180()180( ,,   rippleAnrippleAn vv ). This leads to a ripple current that is 

Once the ripple 

voltage is known, 

the ripple current 

can be sketched.  

 

When the ripple 

voltage is positive 

we have an 

increasing ripple 

current and when 

the ripple voltage is 

negative we have a 

decreasing ripple 

current. 

 

60° 

 

120° 

 

180° 

 

240° 

 

300° 

 

360° 

 

iA,ripple 
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an even function around 180° ( 0),180()180( ,,   rippleArippleA ii ). The areas around 180° show 

symmetry which give a current that will have the same shape. 

 

 

 

We see that the ripple voltage is even around 90° ( 090),90()90( ,,   rippleAnrippleAn vv ). This 

gives that the ripple current will be odd around 90° ( 090),90()90( ,,   rippleArippleA ii ). This 

gives that the ripple current must be zero at 90°, due to that the average of the ripple current is zero. 

 

Another way of getting the starting point in this problem is by using Fig.8-26a where the peak ripple 

current is defined. What we have done so far is basically a derivation of this figure.  

 

 
 

Now we know a starting point for solving the differential equation (𝑖𝐴,𝑟𝑖𝑝𝑝𝑙𝑒(90°) = 0𝐴) and we also 

know that the maximum ripple current occurs at 𝜃 = 180°. We now calculate the peak ripple current: 
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Problem 2 (P8-10 in Undeland book) 

 

In the three-phase, square-wave inverter (see Fig 8-24a in Undeland), consider the load to be balanced 

and purely resistive with a load-neutral point n.   
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Draw the steady state waveforms for Anv , Ai , DAi  and di , where DAi  is the current through diode AD . 

 

 

Solution 

 

Each leg in the inverter is operated in square wave operation. This means that the switches connected to P 

are on 50% of the period and the switches connected to N are on for the rest of the period. We also know 

that it is a three-phase inverter, which means that there is a 120º phase shift between the phases. 
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From the previous problem (8-7) we know that the voltage in each phase to the neutral point can be 

expressed as:: 
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With help by the voltage in each leg (𝑉𝐴𝑛(𝑡), 𝑉𝐵𝑛(𝑡) and 𝑉𝐶𝑛(𝑡)), the voltage over the load in each phase 

can be drawn (e.g. the voltage between A and n).  
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Note that the voltage in each phase has the same amplitude, but with the only difference that they are 

120° phase shifted. Since we have a purely resistive load, the current has the same shape as the voltage.  
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The current 𝑖𝑑 is the sum of the parts of the phase-currents when the switches connected to P are on. This 

gives a current that is constant. The current through diode DA+ is zero since the phase voltage is in phase 

with the current due to the purely resistive load.  
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