

Department of Computer Science and Engineering

CH ALMERS UNIV ERSI TY OF TEC HNO LO GY
Department of Co mputer Science and Engineerin g page 1
Division of Co mputer Engineering

Dally, Harting and Aamodt:
Digital Design Using VHDL

Kapitel 16
 16.1 Vi har uttrycket

nxt <= ”0000” WHEN rst = ’1’ ELSE
 state(2 DOWNTO 0) & NOT(state(3));

som leder till sekvensen i Figur 16.1, dvs
vi går upprepande genom en sekvens av
åtta olika 4-bits värden.
I uppgiften står det fel och reset-värdet
anges med bara tre bitar

 16.2 Vi har uttrycket

nxt <= ”0001” WHEN rst = ’1’ ELSE
 state(2 DOWNTO 0) & ((state(3) XOR state(2));

som leder till sekvensen i Figur 16.2, dvs vi går upprepande genom en sekvens av 15
olika 4-bits värden, dvs alla möjliga värden utom 0000.

0000 - 0001 0011

0111

111111101100

1000

-

-

-

--

-

-

rst

Figur 16.1

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 2

 16.2 forts.

 16.3 Vi har uttrycket

nxt <= ”00001” WHEN rst = ’1’ ELSE
 state(3 DOWNTO 0) & ((state(3) XOR state(2));

som leder till sekvensen i Figur 16.3, dvs vi går upprepande genom en sekvens av 21
olika 4-bits värden.

0000 - 0001 0011

1000

-

--

-

-

rst 0000 - 0001 0011- 0011

0000 - 0001 0011- 0000 - 0001 0011- 0011

-

-

--

Figur 16.2

00001
-

00010 00100
-rst 01000

-
10001-

00011
-

00110 01100
-

11001
-

10010-

00101
-

01010 10101
-

-

01011
-

10111-

11000
-

11100 11110
-

11111
-

01111-

10000

-

-

-

Figur 16.3

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 3

16.4 I bokens uppgifter gör man på flera ställen så att man först ritar blockschema och sedan
skriver VHDL-kod för att koppla ihop blocken till ett system. Om blocken är små och
bara beskriver grundfunktioner och inte specialiserade delsystem så är det inte befogat
att göra så utan då är det bättre att direkt skriva VHDL-kod och det är vad jag gör i dessa
lösningar.

16.5Vi skriver VHDL-kod. Koden är generisk vilket betyder at den kan konfigureras om genom

att ändra en GENERIC-parameter i entiteten. Här ändrar vi räknarens storlek genom
att via en GENERIC sätta antalet bitar i räknevärdet.
I arkitekturen används en decimal räknarvariabel i ställe för ett bitvärde bara för att det
känns naturligare att jobba med decimaltal. Den resulterande koden kommer att bli den
samma i båda fallen

-- ex16_5.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
USE ieee.math_real.ALL;

ENTITY ex16_5 IS
 GENERIC(WIDTH:NATURAL:=6);
 PORT (clk:IN STD_LOGIC;
 reset_n:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 load:IN STD_LOGIC;
 count_max:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
 count:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_5;

ARCHITECTURE arch_ex16_5 OF ex16_5 IS
 SIGNAL count_signal:NATURAL RANGE 0 TO 2**WIDTH-1;
BEGIN
 count_process:
 PROCESS(reset_n,clk)
 BEGIN
 IF (reset_n='0') THEN
 count_signal<=0;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 4

16.5forts.

 ELSIF RISING_EDGE(clk) THEN
 IF (load = '1') THEN
 count_signal <=
 TO_INTEGER(UNSIGNED(count_max));
 ELSIF (up_down='1') THEN
 IF (count_signal <
 TO_INTEGER(UNSIGNED(count_max))) THEN
 count_signal <= count_signal + 1;
 END IF;
 ELSE
 IF (count_signal > 0) THEN
 count_signal <= count_signal - 1;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;

count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,WIDTH));
END arch_ex16_5;

Vi simulerar med en do-fil

-- ex16_5.do --

restart -f -nowave
view signals wave
add wave reset_n clk load up_down
add wave count count_max count
force clk 1 0ns, 0 50ns -repeat 100ns
force count_max 6'b001100
force up_down 1
force load 0
force reset_n 1
run 125ns
force reset_n 0
run 200ns
force reset_n 1
run 1700ns
force up_down 0
run 2000ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 5

 16.5 forts.

force up_down 1
run 900ns
force count_max 6'b000011
run 400ns

 16.6 Vi utökar koden från Exempel 16.5. Tyvärr tillåter inte VHDL att man deklarerar en sig-

naltyp vars värdeområde styrs av en GENERIC. Vi har två alternativ, att låta området
vara fixt eller tillåta alla värden på räknevärdet. Jag har valt det senare även om det då
leder till 32 bitar breda signaler

-- ex16_6.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
USE ieee.math_real.ALL;

ENTITY ex16_6 IS
 GENERIC(WIDTH:NATURAL:=6);
 PORT (clk:IN STD_LOGIC;
 reset_n:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 load:IN STD_LOGIC;
 reg:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 count_max:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
 count:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_6;

ARCHITECTURE arch_ex16_6 OF ex16_6 IS
 TYPE count_array IS ARRAY (0 TO 3) OF NATURAL;
 SIGNAL count_signal:count_array;
 SIGNAL reg_int:NATURAL RANGE 0 TO 3;
BEGIN
 reg_int <= TO_INTEGER(UNSIGNED(reg));
 count_process:
 PROCESS(reset_n,clk)
 BEGIN
 IF (reset_n='0') THEN
 FOR index IN 0 TO 3 LOOP
 count_signal(index) <= 0;
 END LOOP;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 6

 16.6 forts.

 ELSIF RISING_EDGE(clk) THEN
 IF (load = '1') THEN
 count_signal(reg_int) <=
 TO_INTEGER(UNSIGNED(count_max));
 ELSIF (up_down='1') THEN
 IF (count_signal(reg_int) <
 TO_INTEGER(UNSIGNED(count_max))) THEN
 count_signal(reg_int) <=
 count_signal(reg_int) + 1;
 END IF;
 ELSE
 IF (count_signal(reg_int) > 0) THEN
 count_signal(reg_int) <=
 count_signal(reg_int) - 1;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count<=STD_LOGIC_VECTOR(
 TO_UNSIGNED(count_signal(reg_int),WIDTH));
END arch_ex16_6;

Återigen använder vi en do-fil

-- ex16_6.do --

restart -f -nowave
view signals wave
add wave reset_n clk load up_down reg
add wave count count_max count_signal count
force clk 1 0ns, 0 50ns -repeat 100ns
force count_max 6'b001100
force up_down 1
force reg 2'b00
force load 0
force reset_n 1
run 125ns
force reset_n 0
run 200ns
force reset_n 1
run 1700ns

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 7

 16.6 forts.

force up_down 0
run 2000ns
force up_down 1
run 900ns
force reg 2'b01
run 400ns

 16.7 Det är inte fullt klart hur det är tänkt att applikationen skall fungera så lösningen är en
tolkning som inte är speciellt funktionell

-- ex16_7.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
USE ieee.math_real.ALL;

ENTITY ex16_7 IS
 GENERIC(WIDTH:NATURAL:=6);
 PORT (clk:IN STD_LOGIC;
 reset_n:IN STD_LOGIC;
 up_down:IN STD_LOGIC;
 load:IN STD_LOGIC;
 rs:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 rd:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 count_max:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
 count:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_7;

ARCHITECTURE arch_ex16_7 OF ex16_7 IS
 TYPE count_array IS ARRAY (0 TO 3) OF NATURAL;
 SIGNAL count_signal:count_array;
 SIGNAL rs_int:NATURAL RANGE 0 TO 3;
 SIGNAL rd_int:NATURAL RANGE 0 TO 3;
BEGIN
 rs_int <= TO_INTEGER(UNSIGNED(rs));
 rd_int <= TO_INTEGER(UNSIGNED(rd));

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 8

 16.7 forts.

 count_process:
 PROCESS(reset_n,clk)
 BEGIN
 IF (reset_n='0') THEN
 FOR index IN 0 TO 3 LOOP
 count_signal(index) <= 0;
 END LOOP;
 ELSIF RISING_EDGE(clk) THEN
 IF (load = '1') THEN
 count_signal(rs_int) <=
 TO_INTEGER(UNSIGNED(count_max));
 ELSIF (up_down='1') THEN
 IF (count_signal(rd_int) <
 TO_INTEGER(UNSIGNED(count_max))) THEN
 count_signal(rd_int) <=
 count_signal(rs_int) + 1;
 END IF;
 ELSE
 IF (count_signal(rs_int) > 0) THEN
 count_signal(rd_int) <=
 count_signal(rs_int) - 1;
 END IF;
 END IF;
 END IF;
 END PROCESS count_process;
 count<=STD_LOGIC_VECTOR(
 TO_UNSIGNED(count_signal(rd_int),WIDTH));
END arch_ex16_7;

och vi simulerar

-- ex16_7.do --

restart -f -nowave
view signals wave
add wave reset_n clk load up_down rs rd
add wave count count_max count_signal count
force clk 1 0ns, 0 50ns -repeat 100ns
force count_max 6'b001100
force up_down 1
force rs 2'b00

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 9

 16.7 forts.

force rd 2'b10
force load 0
force reset_n 1
run 125ns
force reset_n 0
run 200ns
force reset_n 1
run 1700ns
force up_down 0
run 2000ns
force up_down 1
run 900ns
force rs 2'b01
run 400ns

 16.8 Vi utelämnar detta och går direkt på VHDL i Exempel 16.9

 16.9 Vi skriver VHDL-kod

-- ex16_9.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex16_9 IS
 PORT(reset_n:IN STD_LOGIC;
 clk:IN STD_LOGIC;
 fibonacci:OUT STD_LOGIC_VECTOR(16 DOWNTO 0);
 to_high:OUT STD_LOGIC);
END ex16_9;

ARCHITECTURE arch_ex16_9 OF ex16_9 IS
 SIGNAL old_fibonacci_signal:NATURAL RANGE 0 TO 2**17-1;
 SIGNAL fibonacci_signal:NATURAL RANGE 0 TO 2**17-1;
BEGIN

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 16

Sida 10

 16.9 forts.

 fibonacci_process:
 PROCESS(reset_n,clk)
 BEGIN
 IF (reset_n='0') THEN
 old_fibonacci_signal <= 0;
 fibonacci_signal <= 1;
 to_high <= '0';
 ELSIF RISING_EDGE(clk) THEN
 IF (fibonacci_signal < 2**16) THEN
 old_fibonacci_signal <= fibonacci_signal;
 fibonacci_signal <=
 old_fibonacci_signal + fibonacci_signal;
 ELSE
 to_high <= '1';
 END IF;
 END IF;
 END PROCESS fibonacci_process;
 fibonacci <=
STD_LOGIC_VECTOR(TO_UNSIGNED(fibonacci_signal,17));
END arch_ex16_9;

Som vi simulerar

-- ex16_9.do --

restart -f -nowave
view signals wave
add wave reset_n clk to_high
add wave -radix unsigned old_fibonacci_signal
add wave -radix unsigned fibonacci_signal
add wave fibonacci
add wave -radix unsigned fibonacci
force clk 1 0ns, 0 50ns -repeat 100ns
force reset_n 1
run 125ns
force reset_n 0
run 200ns
force reset_n 1
run 3500ns

 16.10 Den lösning vi gav i Exempel 14.20 uppfyller redan detta villkor

