CHALMERS

Department of Computer Science and Engineering

Dally, Harting and Aamodt:
Digital Design Using VHDL
Kapitel 16

16.1 Vi har uttrycket

nxt <= ’0000” WHEN rst = *1” ELSE
state(2 DOWNTO 0) & NOT(state(3));

som leder till sekvensen i Figur 16.1, dvs
vi gar upprepande genom en sekvens av
atta olika 4-bits varden.

| uppgiften star det fel och reset-vardet
anges med bara tre bitar

rst

Figur 16.1
16.2 Vi har uttrycket

nxt <= 0001 WHEN rst = *1” ELSE
state(2 DOWNTO 0) & ((state(3) XOR state(2));

som leder till sekvensen i Figur 16.2, dvs vi gar upprepande genom en sekvens av 15
olika 4-bits varden, dvs alla mojliga varden utom 0000.

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1
Division of Computer Engineering

16.2 forts.

Figur 16.2

16.3 Vi har uttrycket

nxt <= ’00001” WHEN rst = ”1” ELSE
state(3 DOWNTO 0) & ((state(3) XOR state(2));

som leder till sekvensen i Figur 16.3, dvs vi gar upprepande genom en sekvens av 21
olika 4-bits varden.

rst

10000

01010 10101 01011 - 10111

&
< .
.

)

11111 - 01111

11100 11110

&)
)
G

Figur 16.3

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 2

16.4 1 bokens uppgifter géor man pa flera stallen sa att man forst ritar blockschema och sedan
skriver VHDL-kod for att koppla ihop blocken till ett system. Om blocken ar sma och
bara beskriver grundfunktioner och inte specialiserade delsystem sa ar det inte befogat
att gora sa utan da &r det battre att direkt skriva VHDL-kod och det &r vad jag gor i dessa
[6sningar.

16.5Vi skriver VHDL-kod. Koden ar generisk vilket betyder at den kan konfigureras om genom
att andra en GENERIC-parameter i entiteten. Har andrar vi raknarens storlek genom
att via en GENERIC satta antalet bitar i raknevardet.
| arkitekturen anvands en decimal raknarvariabel i stalle for ett bitvarde bara for att det
kdanns naturligare att jobba med decimaltal. Den resulterande koden kommer att bli den
samma i bada fallen

LIBRARY ieee;

USE 1eee.std_logic_1164_ALL;
USE i1eee.numeric_std.ALL;
USE i1eee.math_real _ALL;

ENTITY ex16_5 IS
GENERIC(WIDTH:NATURAL:=6);
PORT (clk:IN STD_LOGIC;
reset_n:IN STD_LOGIC;
up_down:IN STD_LOGIC;
load:IN STD LOGIC;
count_max:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
count:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_5;

ARCHITECTURE arch_ex16 5 OF ex16 5 IS

SIGNAL count_signal :NATURAL RANGE O TO 2**WIDTH-1;
BEGIN

count_process:

PROCESS(reset_n,clk)

BEGIN

IF (reset_n="0") THEN
count_signal<=0;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 3

16.5forts.

ELSIF RISING_EDGE(clk) THEN
IF (load = "1") THEN
count_signal <=
TO_INTEGER(UNSIGNED(count_max));
ELSIF (up_down="1") THEN
IF (count_signal <
TO_INTEGER(UNSIGNED(count_max))) THEN
count_signal <= count_signal + 1;
END IF;
ELSE
IF (count_signal > 0) THEN
count_signal <= count_signal - 1;
END IF;
END IF;
END IF;
END PROCESS count_process;

count<=STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal ,WIDTH));
END arch_ex16 5;

Vi simulerar med en do-fil

restart -t -nowave

view signals wave

add wave reset_n clk load up_down
add wave count count_max count
force clk 1 Ons, 0 50ns -repeat 100ns
force count_max 6"b001100

force up_down 1

force load O

force reset n 1

run 125ns

force reset n O

run 200ns

force reset n 1

run 1700ns

force up_down O

run 2000ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 4

16.5

16.6

forts.

force up_down 1

run 900ns

force count _max 6"b000011
run 400ns

Vi utékar koden fran Exempel 16.5. Tyvarr tillater inte VHDL att man deklarerar en sig-
naltyp vars vardeomrade styrs av en GENERIC. Vi har tva alternativ, att lata omradet
vara fixt eller tillata alla varden pa raknevardet. Jag har valt det senare dven om det da
leder till 32 bitar breda signaler

LIBRARY ieee;

USE 1eee.std_logic_1164_ALL;
USE 1eee.numeric_std.ALL;
USE i1eee.math_real _ALL;

ENTITY ex16_6 IS
GENERIC(WIDTH:NATURAL:=6);
PORT (clk:IN STD_LOGIC;
reset_n:IN STD_LOGIC;
up_down:IN STD_LOGIC;
load:IN STD LOGIC;
reg:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
count_max:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
count:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_6;

ARCHITECTURE arch_ex16_6 OF ex16 6 IS
TYPE count_array IS ARRAY (0O TO 3) OF NATURAL;
SIGNAL count_signal:count_array;
SIGNAL reg_int:NATURAL RANGE O TO 3;

BEGIN
reg_int <= TO_INTEGER(UNSIGNED(reqg));
count_process:

PROCESS(reset_n,clk)
BEGIN
IF (reset_n="0") THEN
FOR index IN O TO 3 LOOP
count_signal(index) <= 0;
END LOOP;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 5

16.6 forts.

ELSIF RISING_EDGE(clk) THEN
IF (load = "1") THEN
count_signal(reg_int) <=
TO_INTEGER(UNSIGNED(count_max));
ELSIF (up_down="1") THEN
IF (count_signal(reg_int) <
TO_INTEGER(UNSIGNED(count_max))) THEN
count_signal(reg_int) <=
count_signal(reg_int) + 1;
END IF;
ELSE
IF (count_signal(reg_int) > 0) THEN
count_signal(reg_int) <=
count_signal(reg_int) - 1;
END IF;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(
TO_UNSIGNED(count_signal(reg_int) ,WIDTH));
END arch_ex16 6;

Aterigen anvander vi en do-fil

restart -t -nowave

view signals wave

add wave reset_n clk load up_down reg
add wave count count_max count_signal count
force clk 1 Ons, 0 50ns -repeat 100ns
force count_max 6°b001100

force up_down 1

force reg 2"b00

force load O

force reset n 1

run 125ns

force reset n O

run 200ns

force reset n 1

run 1700ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 6

16.6 forts.

force up_down O
run 2000ns
force up_down 1
run 900ns
force reg 2°b01
run 400ns

16.7 Det ar inte fullt klart hur det &r tankt att applikationen skall fungera sa I6sningen &r en
tolkning som inte ar speciellt funktionell

LIBRARY ieee;

USE ieee.std _logic 1164 _ALL;
USE 1eee.numeric_std.ALL;
USE 1eee.math_real _ALL;

ENTITY ex16_7 IS
GENERIC(WIDTH:NATURAL:=6);
PORT (clk:IN STD_LOGIC;
reset _n:IN STD_LOGIC;
up_down:IN STD LOGIC;
load:IN STD LOGIC;
rs:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
rd:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
count_max:IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
count:OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0));
END ex16_7;

ARCHITECTURE arch_ex16 7 OF ex16_7 IS
TYPE count_array 1S ARRAY (0 TO 3) OF NATURAL;
SIGNAL count_signal :count_array;
SIGNAL rs_int:NATURAL RANGE O TO 3
SIGNAL rd_int:NATURAL RANGE O TO 3
BEGIN
rs_int <= TO_INTEGER(UNSIGNED(rs));
rd_int <= TO_INTEGER(UNSIGNED(rd));

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 7

16.7 forts.

count_process:
PROCESS(reset _n,clk)
BEGIN
IF (reset_n="0") THEN
FOR index IN O TO 3 LOOP
count_signal(index) <= 0;
END LOOP;
ELSIF RISING_EDGE(clk) THEN
IF (load = "1%) THEN
count_signal(rs_int) <=
TO_INTEGER(UNSIGNED(count_max));
ELSIF (up_down="1") THEN
IF (count_signal(rd_int) <
TO_INTEGER(UNSIGNED(count_max))) THEN
count_signal(rd_int) <=
count_signal(rs_int) + 1;
END IF;
ELSE
IF (count_signal(rs_int) > 0) THEN
count_signal(rd_int) <=
count_signal(rs_int) - 1;
END IF;
END IF;
END IF;
END PROCESS count_process;
count<=STD_LOGIC_VECTOR(
TO_UNSIGNED(count_signal(rd_int) ,WIDTH));
END arch_ex16_7;

och vi simulerar

restart - -nowave

view signals wave

add wave reset_n clk load up_down rs rd

add wave count count_max count_signal count
force clk 1 Ons, 0 50ns -repeat 100ns

force count_max 6"b001100

force up_down 1

force rs 2°b00

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 8

16.7 forts.

force rd 2°b10
force load O
force reset n 1
run 125ns

force reset n O
run 200ns

force reset n 1
run 1700ns
force up_down O
run 2000ns
force up_down 1
run 900ns

force rs 2°b01
run 400ns

16.8 Vi uteldamnar detta och gar direkt pa VHDL i Exempel 16.9

16.9 Vi skriver VHDL-kod

LIBRARY ieee;
USE ieee.std _logic_1164_.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex16 9 IS
PORT(reset_n:IN STD _LOGIC;
clk:IN STD LOGIC;
fibonacci:OUT STD_LOGIC_VECTOR(16 DOWNTO 0);
to_high:0UT STD_LOGIC);
END ex16_9;

ARCHITECTURE arch_ex16 9 OF ex16 9 IS
SIGNAL old_fibonacci_signal :NATURAL RANGE O TO 2**17-1;
SIGNAL fibonacci_signal :NATURAL RANGE O TO 2**17-1;
BEGIN

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 9

16.9 forts.

fibonacci_process:
PROCESS(reset_n,clk)
BEGIN
IF (reset_n="0") THEN
old_fibonacci_signal <= 0;
fibonacci_signal <= 1;
to _high <= "0%;
ELSIF RISING_EDGE(clk) THEN
IF (fibonacci_signal < 2**16) THEN
old_fibonacci_signal <= fibonacci_signal;
Tibonacci_signal <=
old_fibonacci_signal + fibonacci_signal;
ELSE
to _high <= "1°%;
END IF;
END IF;
END PROCESS fibonacci_process;
fibonacci <=
STD_LOGIC_VECTOR(TO_UNSIGNED(fi1bonacci_signal,17));
END arch_ex16_9;

Som vi simulerar

restart - -nowave

view signals wave

add wave reset _n clk to_high

add wave -radix unsigned old_fibonacci_signal
add wave -radix unsigned fibonacci_signal
add wave fTibonacci

add wave -radix unsigned fibonacci

force clk 1 Ons, 0 50ns -repeat 100ns
force reset n 1

run 125ns

force reset n O

run 200ns

force reset_ n 1

run 3500ns

16.10 Den I6sning vi gav i Exempel 14.20 uppfyller redan detta villkor

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 16
Sida 10

