CHALMERS

Department of Computer Science and Engineering

Dally, Harting and Aamodt:
Digital Design Using VHDL
Kapitel 7

7.1 Vifar VHDL-koden

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;

ENTITY ex7_1 IS
PORT (Xx:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_1;

ARCHITECTURE arch_ex7_1 OF ex7_1 IS
BEGIN
fibonacci_proc:
PROCESS(X)
BEGIN
CASE x IS
WHEN 0000 => y<="1"%;
WHEN "0001" => y<="1F
WHEN "0010" => y<="1F
WHEN ""0011" => y<="1°
WHEN "'0101" => y<="1°*
WHEN ''1000" => y<="1"
WHEN ''1101" => y<="1";
WHEN OTHERS => y<="0"%;
END CASE;
END PROCESS fibonacci_proc;
END arch_ex7_1;

Som vi simulerar med do-filen

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1

Division of Computer Engineering

restart -f -nowave

view signals wave

add wave x y

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) O Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns

run 1700ns
7.2 Vi har sanningstabellen Figur 7.2a som ger Kar- s | x| x| x|y
naughdiagrammet i Figur 7.2b. olololola
0 0 0 1 1
XiXo ojoj1]of1
00, 01 11 10 5o o|o0|1]1]1
ol1l1]1]1] %% /110,010
— oj1]of[1]1
01| 0 |1] 010} yux ol1]1]0]o0
XaXz | o|l1]1]1]o
1 ojr)polo 10001
10 f“ o|lo]o 1]ojoj1]o
— 1/0|/1]0]o0
1 0 1 1 0
Figur7.2b Karnaughdiagram 1 1 0 0 0
1 1 0 1 1
Vi fér 1 1 1 0 0
1 1 1 1 0
Y= Xp Xy XoF Xy Xyt X+ X3t X Figur 7.2a Sanningatabell

Vi skriver VHDL-kod

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 2

7.2 forts.

7.3

ENTITY ex7_2 IS
PORT (X:IN STD _LOGIC VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_2;

ARCHITECTURE arch_ex7_ 2 OF ex7_2 IS
BEGIN
y<=(NOT(x(2)) AND NOT(x(1)) AND NOT(x(0))) OR
(x(2) AND x(1) AND NOT(x(0))) OR
(NOT(x(3)) AND NOT(x(2)));
END arch_ex7 _2;

Vi kan anvanda samma do-fil som i Exempel 7.1.

Vi skriver direkt VHDL-kod for sanningstabellen i Figur 7.2a

LIBRARY ieee;
USE ieee.std _logic_1164_.ALL;

ENTITY ex7_3 1S
PORT (X:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_3;

ARCHITECTURE arch_ex7_3 OF ex7_3 IS
BEGIN
y<=(NOT(X(3)) AND NOT(x(2)) AND NOT(x(1)) AND
NOT(x(0))) OR

(NOT(x(3)) AND NOT(x(2)) AND NOT(x(1)) AND x(0)) OR
(NOT(x(3)) AND NOT(x(2)) AND x(1) AND NOT(x(0))) OR
(NOT(x(3)) AND NOT(x(2)) AND x(1) AND x(0)) OR
(NOT(X(3)) AND x(2) AND NOT(x(1)) AND x(0)) OR
(x(3) AND NOT(x(2)) AND NOT(x(1)) AND NOT(x(0))) OR
(x(3) AND x(2) AND NOT(x(1)) AND x(0));

END arch_ex7_3;

Vi kan aterigen anvanda samma do-fil som i Exempel 7.1.

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 3

7.4 Vi skriver en testbank till Exempel 7.1 men da den har samma entitet som Exempel 7.2
och Exempel 7.3 sa kan en anvandas i de fallen ocksa.

LIBRARY 1eee;
USE i1eee.std_logic_1164_ALL;

ENTITY ex7_4 thb3 1S
END ex7_4 tb3;
ARCHITECTURE arch_ex7_4 tb3 OF ex7_4 th3 IS

COMPONENT ex7_1 IS
PORT (x:IN STD_LOGIC_VECTOR(3 DOWNTO 0):
y:OUT STD_LOGIC);
END COMPONENT ex7_1;

SIGNAL x_tb_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL y tb_signal :STD_LOGIC;
BEGIN
ex7_1_comp:
COMPONENT ex7_1
PORT MAP(x=>x_tb_signal,
y=>y tb signal);

x_tb_signal(0)<="0",
"1" AFTER 100 ns,
"0" AFTER 200 ns,
"1 AFTER 300 ns,
"0" AFTER 400 ns,
1" AFTER 500 ns,
0" AFTER 600 ns,
1" AFTER 700 ns,
0" AFTER 800 ns,
"1" AFTER 900 ns,
"0" AFTER 1000 ns,
"1" AFTER 1100 ns,
"0" AFTER 1200 ns,
1" AFTER 1300 ns,
"0" AFTER 1400 ns,
1" AFTER 1500 ns,

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 4

7.4 forts.

"0" AFTER 1600 ns,
1" AFTER 1700 ns,
0" AFTER 1800 ns,
1" AFTER 1900 ns,
"0" AFTER 2000 ns,
"1" AFTER 2100 ns,
"0" AFTER 2200 ns,
"1" AFTER 2300 ns,
"0" AFTER 2400 ns,
"1" AFTER 2500 ns,
0" AFTER 2600 ns,
"1" AFTER 2700 ns,
"0" AFTER 2800 ns,
1" AFTER 2900 ns,
"0" AFTER 3000 ns,
"1" AFTER 3100 ns;

x_tb_signal(1)<="0",
"1" AFTER 200 ns,
"0" AFTER 400 ns,
"1" AFTER 600 ns,
"0" AFTER 800 ns,
1" AFTER 1000 ns,
0" AFTER 1200 ns,
1" AFTER 1400 ns,
0" AFTER 1600 ns,
"1" AFTER 1800 ns,
"0" AFTER 2000 ns,
"1" AFTER 2200 ns,
"0" AFTER 2400 ns,
1" AFTER 2600 ns,
0" AFTER 2800 ns,
"1" AFTER 3000 ns;

X_tb_signal (2)<="0",
"1" AFTER 400 ns,
"0" AFTER 800 ns,
"1 AFTER 1200 ns,
"0" AFTER 1600 ns,
1" AFTER 2000 ns,
"0" AFTER 2400 ns,
1" AFTER 2800 ns;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 5

7.4 forts.

x_tb_signal(3)<="0",

1" AFTER 800 ns,
"0" AFTER 1600 ns,
"1" AFTER 2400 ns;

test_proc:
PROCESS
BEGIN
WAIT FOR 50 ns; -- 50 ns x=0 -> y=0

ASSERT (y_tb_signal="1%)

REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 150 ns x=1 ->
ASSERT (y_tb_signal="1"%)

REPORT "Error for x=1 150ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 250 ns x=2 ->
ASSERT (y_tb_signal="1%)

REPORT "Error for x=2 250ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 350 ns x=3 ->
ASSERT (y_tb_signal="1"%)

REPORT "Error for x=3 350ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 450 ns x=4 ->
ASSERT (y_tb_signal="0%)

REPORT "Error for x=4 450ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 550 ns x=5 ->
ASSERT (y_tb_signal="1"%)

REPORT "Error for x=5 550ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 650 ns x=6 ->
ASSERT (y_tb_signal="0%)

REPORT "Error for x=6 650ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 750 ns x=7 ->
ASSERT (y_tb_signal="0%)

REPORT "Error for x=7 750ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 850 ns x=8 ->
ASSERT (y_tb_signal="1%)

REPORT "Error for x=8 850ns"

y=0

y=0

y=0

Dally, Harting, Aamodt: Digital design Using VHDL

Losningar till uppgifter
Kapitel 7
Sida 6

7.4 forts.

SEVERITY ERROR;

WAIT FOR 100 ns; -- 950 ns x=9 -> y=1

ASSERT (y_tb_signal="0"%)

REPORT "Error for x=9 950ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1050 ns x=10 ->
ASSERT (y_tb_signal="0%)

REPORT "Error for x=10 1050ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1150 ns x=11 ->
ASSERT (y_tb_signal="0%)

REPORT "Error for x=11 1150ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1250 ns x=12 ->
ASSERT (y_tb_signal="0%)

REPORT "Error for x=12 1250ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1350 ns x=13 ->
ASSERT (y_tb_signal="1"%)

REPORT "Error for x=13 1350ns"
SEVERITY ERROR;

y=0

y=0

WAIT FOR 100 ns; -- 1450 ns x=14-> y=0

ASSERT (y_tb_signal="0%)

REPORT "Error for x=14 1450ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1550 ns x=15 ->
ASSERT (y_tb_signal="0"%)

REPORT "Error for x=15 1550ns"
SEVERITY ERROR;

END PROCESS test_proc;

END arch_ex7_4 tb3;

Vi skriver ocksd en do-fil

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 7

y=0

restart -t -nowave
view signals wave
add wave x_tb_signal y_ tb_signal

run 1650ns
7.5 Syntes lamnas till Iasaren

7.6 Vi gor tva losningar. Forst en l16sning som anvdnder en CASE-sats och sedan en 16sning
som anvander ett litet minne, en LUT (Look Up Table).
Vi borjar med CASE-satsen.

ENTITY ex7_6 case IS
PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_6_case;

ARCHITECTURE arch_ex7_6 _case OF ex7_6 case 1S
BEGIN
case_proc:
PROCESS(x)
BEGIN
CASE x IS
WHEN *00001™ | "00011' | 00101 | ™00111" |
01011 | 01101 | 10001 | 10111 |
11101 | 11111 =>
y<="1%;
WHEN OTHERS =>
y<="0";
END CASE;
END PROCESS case_proc;
END arch_ex7_6_case;

Och tar sedan LUT-I6sningen dar vi lagger alla utvarden i en datavektor och anvander
invektorn som adress till positioner i data vektorn.

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 8

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;
USE i1eee.numeric_std.ALL;

ENTITY ex7_6_LUT IS
PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_6_LUT;

ARCHITECTURE arch_ex7 6 LUT OF ex7_6 LUT IS
CONSTANT value:STD_LOGIC_VECTOR(O TO
31):="00110101000101000101000100000101"";
BEGIN
y<=value(TO_INTEGER(UNSIGNED(X))):;
END arch_ex7 6 LUT;

Lagg marke till att vi inte direkt kan anvanda invektorn som adress till vektorn utan
maste typomvandla den binara vektorn till ett heltal via kommandot TO_INTEGER.
Detta kommando kraver i sin tur att vi anger om den binara vektorn skall tolkas som ett
tal med eller utan tecken. Da adressen ar ett positivt tal sa tolkar vi vektorn som ett tal
utan tecken via typningen UNSIGNED. Notera att detta inte ar en typomvandling utan
bara anger hur talet skall tolkas. For att kunna dessa omvandlinar sa maste vi inkuudera
IEEE-biblioteket numeric_std.

Da de tva l6sningarna har samma entitet sa kan vi anvdnda samma do-fil fér bada si-
muleringarna. Vi skriver en do-fil dar vi raknar igenom alla 32 majliga invarden. Notera
att vi genom att definiera bitarna som upprepande signaler enkelt kan ga igenom all
mojliga invarden.

restart -f -nowave

view signals wave

add wave -radix unsigned X y

force x(0) 0 Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 9

7.6 forts.

force x(3) 0 Ons, 1 800ns -repeat 1600ns
force x(4) 0 Ons, 1 1600ns -repeat 3200ns
run 3250ns

Notera att vi anvander —rad i X for att visa varden pa lite mer lasbar form

7.7 Vianvander samma metoder som i Exempel 7.6 men nu for en fyra bitars invektor.
Forst CASE-fallet

LIBRARY ieee;
USE ieee.std_logic_1164_.ALL;

ENTITY ex7_7 case IS
PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_7 case;

ARCHITECTURE arch_ex7_7 _case OF ex7_7 case 1S
BEGIN
case_proc:
PROCESS(X)
BEGIN
CASE x 1S
WHEN *"0011' | 0110 | 1001 |
1100 | "M1111" =>
y<="1";
WHEN OTHERS =>
y<="0";
END CASE;
END PROCESS case_proc;
END arch_ex7_7_case;

Och sedan LUT-fallet

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 10

7.7 forts.

7.8

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;
USE 1eee.numeric_std.ALL;

ENTITY ex7_7_LUT IS
PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_7_LUT;

ARCHITECTURE arch_ex7_ 7 LUT OF ex7_7_LUT 1S
CONSTANT value:STD LOGIC VECTOR(O TO
15):=""0001001001001001"";
BEGIN
y<=value(TO_INTEGER(UNSIGNED(X)));
END arch_ex7_7 LUT;

Vi simulerar pa samma satt som i Exempel 7.6

restart -f -nowave

view signals wave

add wave -radix unsigned X y

force x(0) 0 Ons, 1 100ns -repeat 200ns
force x(1) O Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
run 1650ns

Vi har en do-fil redan i Exempel 7.7 men vi skriver ocksa en testbank dar vi anvander
LUT-varianten av Exempel 7.7 men vi hade lika garna kunnat anvanda CASE-formen.

LIBRARY ieee;
USE ieee.std _logic 1164 _.ALL;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 11

7.8 forts.
ENTITY ex7_7_tb3 1S
END ex7_7_tb3;
ARCHITECTURE arch_ex7 7 tb3 OF ex7_7 tb3 IS

COMPONENT ex7_7_LUT IS
PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END COMPONENT ex7_7_LUT;

SIGNAL x_tb_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL y tb _signal :STD_LOGIC;
BEGIN
ex’7_7_comp:
COMPONENT ex7_7_LUT
PORT MAP(x=>x_tb_signal,
y=>y tb signal);

X_tb_signal (0)<="0",
"1" AFTER 100 ns,
"0" AFTER 200 ns,
1" AFTER 300 ns,
0" AFTER 400 ns,
1" AFTER 500 ns,
"0" AFTER 600 ns,
"1" AFTER 700 ns,
"0" AFTER 800 ns,
"1" AFTER 900 ns,
"0" AFTER 1000 ns,
1" AFTER 1100 ns,
"0" AFTER 1200 ns,
1" AFTER 1300 ns,
0" AFTER 1400 ns,
"1" AFTER 1500 ns;

x_tb_signal(1)<="0",
"1" AFTER 200 ns,
0" AFTER 400 ns,
1" AFTER 600 ns,
0" AFTER 800 ns,
1" AFTER 1000 ns,
"0" AFTER 1200 ns,

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 12

7.8 forts.

"1" AFTER 1400 ns;
x_tb_signal(2)<="0",

"1" AFTER 400 ns,

"0" AFTER 800 ns,

"1" AFTER 1200 ns;
x_tb _signal(3)<="0",

1" AFTER 800 ns;

test_proc:
PROCESS
BEGIN
WAIT FOR 50 ns; -- 50 ns x=0 -> y=0
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 150 ns x=1 -> y=0
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 250 ns x=2 -> y=0
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 350 ns x=3 -> y=1
ASSERT (y_tb_signal="1%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 450 ns x=4 -> y=0
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 550 ns x=5 -> y=0
ASSERT (y_tb_signal="0"%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 650 ns x=6 -> y=1
ASSERT (y_tb_signal="1"%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;
WAIT FOR 100 ns; -- 750 ns x=7 -> y=0
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 13

7.8 forts.

WAIT FOR 100 ns; -- 850 ns x=8 -> y=0

ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 950 ns x=9 -> y=1

ASSERT (y_tb_signal="1%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1050 ns
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1150 ns
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1250 ns
ASSERT (y_tb_signal="1%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1250 ns
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1350 ns
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1450 ns
ASSERT (y_tb_signal="1%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

WAIT FOR 100 ns; -- 1550 ns
ASSERT (y_tb_signal="0%)
REPORT "Error for x=0 50ns"
SEVERITY ERROR;

END PROCESS test_proc;

END arch_ex7_7_ tb3;

med tillhérande do-fil

x=10 ->

x=11 ->

y=0

x=12 ->

x=13 ->

y=0

x=14-> y=0

x=15 -> y=0

x=0 -> y=1

Dally, Harting, Aamodt: Digital design Using VHDL

Losningar till uppgifter

Kapitel 7
Sida 14

restart -f -nowave
view signals wave
add wave -radix unsigned x_tb_signal y tb signal

run 1625ns

7.9 Vi skriver aven har en CASE- och en LUT-I6sning. Notera att utsignalen ar satt till don’t
care for invardena 10-15.
Forst CASE-fallet

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;

ENTITY ex7_9 case IS
PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_9 case;

ARCHITECTURE arch_ex7_ 9 case OF ex7_9 case IS
BEGIN
case_proc:
PROCESS(X)
BEGIN
CASE x 1S
WHEN *0000' | '0001' | '0010" |
0011 | 0101 | 1000 =>
y<="1%;
WHEN 0100 | ''0110" | '0111™ | '"1001" =>
y<="0";
WHEN OTHERS =>
y<="-%;
END CASE;
END PROCESS case_ proc;
END arch_ex7_9 case;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 15

7.9 forts.

Och sedan LUT-16sningen

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;
USE 1eee.numeric_std.ALL;

ENTITY ex7_9 LUT IS
PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_9 LUT;

ARCHITECTURE arch_ex7_ 9 LUT OF ex7_9 LUT IS

CONSTANT value:STD_LOGIC_VECTOR(O TO 15):="1111010010--
BEGIN

y<=value(TO_INTEGER(UNSIGNED(X)));
END arch_ex7_9 LUT;

Vi kan ater anvidnda samma do-fil i de tva fallen

restart -f -nowave

view signals wave

add wave -radix unsigned X y

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
run 1650ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 16

7.10 Viloser det pa samma satt som i tidigare uppgifter och gér en CASE- och en LUT-I6sning.
Forst CASE-fallet

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;

ENTITY ex7_10 case IS
PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7 10 case;

ARCHITECTURE arch_ex7_10 case OF ex7_10 case 1S
BEGIN
case_proc:
PROCESS(x)
BEGIN
CASE x 1S
WHEN *00000™ | "00101' | '01010™ | ™"O1111" |
10100 | 11001 | 11110 =>
y<="1%;
WHEN OTHERS =>
y<="0%;
END CASE;
END PROCESS case_proc;
END arch_ex7_ 10 case;

och sedan LUT-l6sningen

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;
USE 1eee.numeric_std.ALL;

ENTITY ex7_10 LUT IS
PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_10_LUT;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 17

7.10 forts.

ARCHITECTURE arch_ex7_10_LUT OF ex7_10_LUT 1S
CONSTANT value:STD_LOGIC_VECTOR(O TO 31)
:=""10000100001000010000100001000010";
BEGIN
y<=value(TO_INTEGER(UNSIGNED(X)));
END arch_ex7_10_LUT;

Och vi anvander samma do-fil for bada I6sningarna

restart -t -nowave

view signals wave

add wave -radix unsigned X y

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
force x(4) 0 Ons, 1 1600ns -repeat 3200ns
run 3250ns

7.11 Vi loser det pa samma satt som i tidigare uppgifter men da det blir lite jobbigt att halla
ratt pa en LUT med 256 varden vilket ar vad vi far fran en 8 bitars invektor sa nojer vi
oss med en CASE-I6sning.

For att gora koden mer lattlast sa typomvandlar vi invektorn till ett positivt heltal innan
vi anvander den i CASE-satsen.

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;
USE 1eee.numeric_std.ALL;

ENTITY ex7_11 IS
PORT(x:STD_LOGIC_VECTOR(7 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_11;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 18

7.11 forts.

ARCHITECTURE arch_ex7_11 OF ex7_11 IS
SIGNAL x_int_signal:INTEGER RANGE O TO 255;

BEGIN
x_int_signal<=TO_INTEGER(UNSIGNED(X));
case_proc:

PROCESS(x_int_signal)
BEGIN

CASE x_int_signal 1S
WHEN 1 | 4] 9) 16 | 25]| 36 | 49 | 64 | 81 |
100 | 121 | 144 | 169 | 196 | 225 =>
y<="1%;
WHEN OTHERS =>
y<="0";
END CASE;
END PROCESS case_proc;
END arch_ex7_11;

Och vi skriver en do-fil

restart - -nowave
view signals wave
add wave -radix unsigned X y

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) O Ons, 1 800ns -repeat 1600ns
force x(4) 0 Ons, 1 1600ns -repeat 3200ns
force x(5) 0 Ons, 1 3200ns -repeat 64000ns
force x(6) O Ons, 1 6400ns -repeat 12800ns
force x(7) 0 Ons, 1 12800ns -repeat 25600ns

run 25650ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 19

7.12 Losningen blir av samma form som i Exempel 7.11

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;
USE i1eee.numeric_std.ALL;

ENTITY ex7_12 IS
PORT(x:STD_LOGIC_VECTOR(7 DOWNTO 0);
y:OUT STD_LOGIC);
END ex7_12;

ARCHITECTURE arch_ex7_12 OF ex7_12 IS
SIGNAL x_int_signal:INTEGER RANGE O TO 255;
BEGIN
x_int_signal<=TO_INTEGER(UNSIGNED(X));
case_proc:
PROCESS(x_int_signal)
BEGIN
CASE x_int_signal 1S
WHEN 1 | 8] 27 | 64 | 125 | 216 =>
y<="1";
WHEN OTHERS =>
y<="0";
END CASE;
END PROCESS case_ proc;
END arch_ex7_12;

Som vi simulerar med en do-fil

restart -f -nowave

view signals wave

add wave -radix unsigned x y

force x(0) 0 Ons, 1 100ns -repeat 200ns
force x(1) O Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
force x(4) 0 Ons, 1 1600ns -repeat 3200ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 20

7.12 forts.

7.13

force x(5) 0 Ons, 1 3200ns -repeat 64000ns
force x(6) 0 Ons, 1 6400ns -repeat 12800ns
force x(7) 0 Ons, 1 12800ns -repeat 25600ns
run 25650ns

Vi gor forst en CASE-I6sning. Losningen ar inte sa bra da den saknar all flexibilitet

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;

ENTITY ex7_13 IS
PORT(X:STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7 13;

ARCHITECTURE arch_ex7_13 OF ex7_13 IS

BEGIN
case_proc:
PROCESS(x)
BEGIN
CASE x IS
WHEN *"00000™" => --0
y<=""00000"";
WHEN *00001™" => --1
y<=""10000"";
WHEN '00010" => --2
y<="'01000";
WHEN "00011" => --3
y<=""11000";
WHEN ''00100" => --4
y<="00100"";
WHEN *00101" => --5
y<="10100";
WHEN '00110" => --6
y<="01100"";
WHEN ""00111" => --7
y<="11100";
WHEN *"01000" => --8
y<="00010";

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 21

7.13 forts.

WHEN "01001" => --9

y<="10010";

WHEN ''01010" => --10
y<="01010"";

WHEN ""01011" => --11
y<="11010"";

WHEN 01100 => --12
y<="00110"";

WHEN 01101 => --13
y<="10110";

WHEN 01110 => --14
y<="01110";

WHEN "01111" => --15
y<="11110";

WHEN *'10000" => --16
y<="00001"";

WHEN 10001 => --17
y<="10001";

WHEN "'10010" => --18
y<="01001"";

WHEN "'10011" => --19
y<="11001"";

WHEN *'10100" => --20
y<="00101"";

WHEN 10101 => --21
y<="10101"";

WHEN '"10110" => --22
y<="01101"";

WHEN 10111 => --23
y<="11101"";

WHEN 11000 => --24
y<="00011"";

WHEN 11001 => --25
y<="10011"";

WHEN "'11010" => --26
y<="01011"";

WHEN *'11011" => --27
y<="11011"";

WHEN 11100 => --28
y<="00111"";

WHEN 11101 => --29
y<="10111"";

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 22

7.13 forts.

WHEN "11110" => --30

y<="01111"";
WHEN 11111 => --31
y<="11111"";

WHEN OTHERS =>
y<=(OTHERS=>"0");
END CASE;
END PROCESS case_proc;
END arch_ex7_13;

Vi simulerar med en do-fil

restart -f -nowave

view signals wave

add wave -radix binary x y

add wave -radix unsigned X y

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
force x(4) 0 Ons, 1 1600ns -repeat 3200ns
run 3250ns

7.14 | uppgiften begars att vi skal 16sa med hjalp av konkatenering men vi ger ocksa en
[6sning som anvander en loop.
Forst konkateneringen

LIBRARY ieee;
USE ieee.std _logic 1164 _.ALL;

ENTITY ex7_14 conc IS
PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7_14 conc;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 23

7.14 forts.

ARCHITECTURE arch_ex7_14 conc OF ex7_14 conc 1S
BEGIN

y<=x(0) & x(1) & x(2) & x(3) & x(4);
END arch_ex7_14 conc;

Sedan loopldsningen som ar mer flexibel da den via GENERICS Iatt kan anpassas till
vektorer av olika langd. Detta kan till och med ske néar vi anvdander koden sa allt som
behover andras ar vardet pa GENERIC.

LIBRARY ieee;
USE 1eee.std_logic_1164_ALL;

ENTITY ex7_14 loop IS
GENERIC(WIDTH:NATURAL:=5);
PORT(x:STD_LOGIC_VECTOR(4 DOWNTO 0);

y:0OUT STD_LOGIC_VECTOR(4 DOWNTO 0));

END ex7_14 loop;

ARCHITECTURE arch_ex7_14 loop OF ex7_14 loop IS
BEGIN
loop_proc:
PROCESS(x)
BEGIN
FOR 1 IN O TO WIDTH-1 LOOP
y(1) <= xX(WIDTH-1-1);
END LOOP;
END PROCESS loop_proc;
END arch_ex7_14 loop;

Vi kan anvanda samma do-fil i bada fallen och det &r samma do-fil som i Exempel 7.13

restart - -nowave

view signals wave

add wave -radix binary x y
add wave -radix unsigned X y

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 24

7.14 forts.

7.15

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
force x(4) 0 Ons, 1 1600ns -repeat 3200ns
run 3250ns

Uppgiften ar lite oklar. Vi kan skriva en oflexibel I6sning som bara anvander de angivna
vardena eller ocksa kan vi gora en mer flexibel [6sning dar vi later koden rakna ut till-
rackligt manga Fibonaccivarden. Vi visar har den statiska I6sningen. Lagg marke till att
du uppgiften sager att vi bara kan ha Fibonaccital som insignal sa utsignalen satt till
don’t care i Ovriga fall

LIBRARY ieee;
USE i1eee.std_logic_1164_ALL;

ENTITY ex7_15 IS
PORT(x:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0));
END ex7_15;

ARCHITECTURE arch_ex7_15 OF ex7_15 1S
BEGIN
fibo_proc:
PROCESS(X)
BEGIN
CASE x IS
WHEN "'0001" =>
y<="00011";
WHEN "'0011" =>
y<="00101";
WHEN *'0101" =>
y<="01000";
WHEN *1000" =>
y<="01101"";
WHEN "'1101" =>
y<=""10101";

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 25

7.15 forts.
WHEN OTHERS =>

END CASE;
END PROCESS fibo_proc;
END arch_ex7_15;

Och vi simulerar med en do-fil

restart -t -nowave

view signals wave

add wave -radix binary x y

add wave -radix unsigned X y

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) 0 Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns
run 1650ns

7.16 Vi uppdaterar koden fran Exempel 7.15 med en val 1d-signal. Lagg marke till att i pro-
cessen har valid-signalen fatt ett defaultvarde i bérjan av processen so vi bara andrar i
det fall nar signalen behdver ha ett annat varde.

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;

ENTITY ex7_16 IS
PORT(Xx:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
valid:OUT STD LOGIC);
END ex7 _16;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 26

7.16 forts.

ARCHITECTURE arch_ex7_16 OF ex7_16 IS

BEGIN
fibo_proc:
PROCESS(X)
BEGIN
valid<="1";
CASE x 1S
WHEN *'0001" =>
y<=""00011";
WHEN *'0011" =>
y<=""00101";
WHEN *'0101" =>
y<="01000";
WHEN ""1000"" =>
y<="01101";
WHEN *'1101" =>
y<="10101";
WHEN OTHERS =>
y<="---—- "3
valid<="0";
END CASE;

END PROCESS fibo_proc;
END arch_ex7_16;

do-filen blir likadan som i Exempel 7.15 bortsett fran att vi ocksa vill visa val 1d-signa-
len

7.17 Vifortsatter modifiera Fibonacci-koden

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;

ENTITY ex7_17 IS
PORT(rst:IN STD_LOGIC;
ivalid:IN STD_LOGIC;
X:STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
valid:OUT STD_LOGIC);
END ex7_17;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 27

7.17 forts.

ARCHITECTURE arch_ex7_17 OF ex7_17 IS
SIGNAL y signal:STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL valid_signal:STD_LOGIC;
BEGIN
fibo_proc:
PROCESS(X)
BEGIN
valid_signal<="1";
CASE x 1S
WHEN *'0001" =>
y_signal<="00011";
WHEN *'0011" =>
y_signal<="00101";
WHEN "0101" =>
y_signal<="01000";
WHEN *'1000"" =>
y_signal<="01101";
WHEN *'1101" =>
y_signal<="10101";
WHEN OTHERS =>
y_signal<="---—- "
valid_signal<="0";
END CASE;
END PROCESS fibo_proc;
y<=(OTHERS=>"0") WHEN rst="1" ELSE
y_signal;
valid<=(ivalid AND NOT(rst)) AND valid_signal;
END arch_ex7_17;

Som vi simulerar med en do-fil dar vi kor samma simulering som tidigare men vi kér den
fyra ganger sa att vi kan testa alla fyra mojliga kombinationer av de nya insignalerna
rstoch ivalid

7.18 Vibehandlar inte implementeringen

7.19 Vi far komplettera segmentkonstanterna fran Figur 7.23 sidan 149 med koder for A-F.
Vi far

7b’0001000’;
7b”0001011”;
7b°1000110”;
7b0100001”’;
7b”0000110;

constant SS_A :© sseg_type :
constant SS_ B : sseg_type :
constant SS_C : sseg_type :
D
E

constant SS D : sseg_type :
constant SS_E : sseg_type :

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 28

7.19 forts.

constant SS F : sseg type := 7b’0001110”;

Vi far ocksa komplettera case- satsen i Figur 7.24 sidan 150

When x”A”
When Xx’B”
When x°C”
When x’D”’
When XxE”
When X’F”

segs <= SS_A;
segs <= SS B;
segs <= SS C;
segs <= SS _D;
segs <= SS_E;
segs <= SS_F;

V VVVYVYV

7.20 Vi behover komplettera med kod for den alternativa nian
constant SS_ 9 alt : sseg _type := 7b”00110007’;
och sedan komplettera case-satsen i Figur 7.25 sidan 151 med
when SS 9 alt => valid >= ”17; bin <= x797;

7.21 Vi modifierar processen i Figur 7.18, sidan 144

PROCESS
BEGIN
isprime_signal <= ~1”
FOR 1 IN O TO 15 LOOP
Input <= STD_LOGIC_VECTOR(TO_UNSIGNED(i ,4));
WAIT FOR 10 ns;
IF isprim = “0” THEN
isprime_signal <= “07;
END LOOP;

Notera att isprime_signal har defaultvardet 1 som indikerar att det &r ett primtal.
Har vi i ndgot loopvarv inte ett primtal sa kommer signalen att bli O och da den inte
aterstélls inne i loopen sa kommer den da att ligga kvar lag dnda till slutet. Da alla tal O-
15 inte ar primtal s kommer denna process alltid att indikera fel men vi kommer via
signalen Isprime_signal att se vid vilket varde pa i det forsta felet dyker upp.

7.22 Det hér ar en klumpig mutiplikationsldsning men det &r ju vad som begars. Vi konkati-
nerar de tva intalen, a och b, till envektor som vi kan anvanda som selektionselement i
case-satsen

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 29

7.22 forts.

LIBRARY ieee;
USE i1eee.std_logic_1164_ALL;

ENTITY ex7_22 IS
PORT(a:STD_LOGIC_VECTOR(1 DOWNTO 0);
b:STD_LOGIC_VECTOR(1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));
END ex7_22;

ARCHITECTURE arch_ex7_22 OF ex7_22 IS
SIGNAL 1n_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
in_signal<=a&b;
mult_proc:
PROCESS(i1n_signal)
BEGIN
CASE i1n_signal IS
WHEN 0000 =>
y<=""0000"";
WHEN *'0001" =>
y<=""0000"";
WHEN *'0010™" =>
y<=""0000"";
WHEN *'0011" =>
y<=""0000";
WHEN ""0100"" =>
y<=""0000"";
WHEN *'0101" =>
y<="0001"";
WHEN *'0110" =>
y<="'0010"";
WHEN "'0111" =>
y<="0011"";
WHEN ""1000"" =>
y<=""0000"";
WHEN *'1001" =>
y<="0010"";
WHEN *'1010™" =>
y<="0100";

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 30

7.22 forts.

WHEN "1011" =>

y<="0110"";
WHEN "'1100" =>

y<=""0000"";
WHEN 1101 =>

y<="0011"";
WHEN *1110" =>

y<="0110"";
WHEN "'1111" =>

y<=""1001"";
WHEN OTHERS =>

y<="-—-="

END CASE;

END PROCESS mult_proc;
END arch_ex7_22;

Vi simulerar genom att ga igenom alla majliga insignaler

restart -t -nowave

view signals wave

add wave a b y

add wave -radix unsigned a b y

force a(0) O Ons, 1 100ns -repeat 200ns
force a(l) 0 Ons, 1 200ns -repeat 400ns
force b(0) O Ons, 1 400ns -repeat 800ns
force b(1l) 0 Ons, 1 800ns -repeat 1600ns
run 1650 ns

7.23 For att kunna anvdnda don’t care-varden i insignalerna sa maste vi anvanda den alter-
nativa case-funktionen case?. Denna stods tyvarr inte i 2002-ars VHDL vilket &r vad
som ar deafult i QuestaSim utan det kravs version 2008. Vi kan dock ga forbi detta.

Vi har koden

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 31

7.23 forts.

LIBRARY ieee;
USE i1eee.std_logic_1164_ALL;

ENTITY ex7_23 IS
PORT(Xx:STD_LOGIC_VECTOR(15 DOWNTO 0);
y:OUT STD LOGIC_VECTOR(3 DOWNTO 0);
no_ones:0UT STD_LOGIC);
END ex7_23;

ARCHITECTURE arch_ex7 23 OF ex7 23 1S
BEGIN
one_proc:
PROCESS(X)
BEGIN
no_ones<="0";
CASE? x IS
] = Nl — TR
y<="1111";
WHEN "01--——— e TR
y<="1110";
WHEN "001-- - - - ———————— "=
y<="1101";
WHEN *0001-==—=——————~ TR
y<="1100";
WHEN ""00001--————————- =
y<="1011"";
WHEN ""000001--—--——-———- "=
y<="1010";
WHEN "'O000001----—----—- "o
y<="1001";
WHEN *"00000001---—---—- L
y<="'1000";
WHEN ''000000001------- "o=>
y<="0111"";
WHEN "*0000000001------ o=
y<="0110";
WHEN "*00000000001----- o=
y<="0101"";

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 32

7.23 forts.

y<="0100";

WHEN **0000000000001---"" =>
y<="0011";

WHEN *00000000000001--"" =>
y<="0010"";

WHEN **000000000000001-"" =>
y<="0001";

WHEN *0000000000000001" =>
y<="'0000";

WHEN OTHERS =>
y<=(OTHERS=>"0");
no_ones<="1";

END CASE?;
END PROCESS one_proc;
END arch_ex7_23;

Forsoker vi kompilera detta i QuestaSim sa far vi felet i Figur ex7.23

. e _23/ex7_23wvhdl -- Unsuccessful Compile >

woom -work work -2002 -explicit -vopt -stats=none Z:/EDA/EDR322/1718/exercises/Kapitel 7/ex7_23/ex7 23.vhdl
QuestaSim-64 vecom 10.&6c Compiler 2017.07 Jul 26 2017

-- Loading package STANDARD

—-- Loading package TEXTIO

-- Loading package std_logic 1164

-- Compiling entity ex7_23

-- Compiling architecture arch_ex7_23 of ex7_23

+** Errpor: Z:/EDA/EDA322/1718/exercises/Kapitel 7/ex7_23/ex7_23.vhdl(20): (vcom-1441) MATCHING CASE STATEMENT
iz not defined for this wersion of the language.

#* Error: Z:/EDR/EDA322/1718/exercises/Kapitel 7/ex7_23/ex7_23.vhdl (58): VHDL Compiler exiting

Close

Figur ex7.23

Pa den forsta raden i rutan ser vi det kommando som kors. Har ser vi bland annat kom-
mandot -2002 som anger vilken version av VHDL som ska anvandas. Vi kan kopiera
denna rad till QuestaSims kommandorad i Transcript-fonstret och andra -2002 till -2008

vcom -work work -2008 -explicit -vopt -stats=none
Z:/EDA/EDA322/1718/exercises/Kapitel _7/ex7 _23/ex7_23.vhdl

Detta kommer att kompilera koden till version 2008 och vi kan simulera den pa vanligt
satt med en do-fil

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 33

7.23 forts.

restart - -nowave
view signals wave

add wave -radix binary x y

add wave -radix unsi
add wave no_ones

force x(0) 0 Ons, 1
force x(1) 0 Ons, 1
force x(2) 0 Ons, 1
force x(3) 0 Ons, 1
force x(4) 0 Ons, 1
force x(5) 0 Ons, 1
force x(6) 0 Ons, 1
force x(7) 0 Ons, 1
force x(8) 0 Ons, 1
force x(9) 0 Ons, 1
force x(10) 0 Ons, 1
force x(11) 0 Ons, 1
force x(12) 0 Ons, 1
force x(13) 0 Ons, 1
force x(14) 0 Ons, 1
force x(15) 0 Ons, 1

run 6553650 ns

7.24 Vi skriver koden. Ater igen lag
satsen

LIBRARY ieee;
USE ieee.std logic_1

gned y

100ns -repeat 200ns

200ns -repeat 400ns

400ns -repeat 800ns

800ns -repeat 1600ns

1600ns -repeat 3200ns

3200ns -repeat 6400ns

6400ns -repeat 12800ns
12800ns -repeat 25600ns
25600ns -repeat 51200ns
51200ns -repeat 102400ns
102400ns -repeat 204800ns
204800ns -repeat 409600ns
409600ns -repeat 819200ns
819200ns -repeat 1638400ns
1638400ns -repeat 3276800ns
3276800ns -repeat 6553600ns

ger vi i default-varden pa utsignalerna i borjan av case-

164 .ALL;

Dally, Harting, Aamodt: Digital design Using VHDL

Losningar till uppgifter
Kapitel 7
Sida 34

7.24 forts.

ENTITY ex7_24 1S
PORT(Xx:IN STD_LOGIC_VECTOR(3 DOWNTO 0)

two:0OUT STD _LOGIC;
three:OUT STD_LOGIC;
five:0OUT STD LOGIC;
seven:OUT STD_LOGIC;
eleven:0OUT STD LOGIC;
thirteen:OUT STD_LOGIC);

END ex7_24;

ARCHITECTURE arch_ex7_24 OF ex7_24 1S
BEGIN
one_proc:
PROCESS(x)
BEGIN
two<="0";
three<="0";
five<="0";
seven<="0";
eleven<="0";
thirteen<="0";
CASE x IS
WHEN "'0000"" =>

WHEN "0001" =>

WHEN "0010" =>
two<="1";
WHEN "0011" =>

three<="1";
WHEN *"0100" =>
two<="1";
WHEN *0101" =>
five<="1";
WHEN **0110" =>
two<="1";
three<="1";
WHEN "'0111" =>
seven<="1";
WHEN *1000" =>
two<="1";
WHEN *1001" =>
three<="1";

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 35

7.24 forts.

WHEN ""1010" =>
two<="1";
five<="1";

WHEN ""1011" =>
eleven<="1";

WHEN "*1100"" =>
two<="1";
three<="1";

WHEN ""1101" =>
thirteen<="1";

WHEN ""1110" =>
two<="1";
seven<="1";

WHEN ""1111" =>
three<="1";
five<="1";

WHEN OTHERS =>

END CASE;
END PROCESS one_proc;
END arch_ex7_24;

Som vi simulerar med en do-fil

restart -f -nowave

view signals wave

add wave -radix binary Xx

add wave -radix unsigned Xx

add wave two three five seven eleven thirteen

force x(0) O Ons, 1 100ns -repeat 200ns
force x(1) O Ons, 1 200ns -repeat 400ns
force x(2) 0 Ons, 1 400ns -repeat 800ns
force x(3) 0 Ons, 1 800ns -repeat 1600ns

run 1650 ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 7
Sida 36

