

Department of Computer Science and Engineering

CH ALMERS UNIV ERSI TY OF TEC HNO LO GY
Department of Co mputer Science and Engineerin g page 1
Division of Co mputer Engineering

Dally, Harting and Aamodt:
Digital Design Using VHDL

Kapitel 8
 8.1 Vi tecknar sanningstabellen,

Figur 8.1a och skriver VHDL-
kod

-- ex8_1.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ex8_1 IS
 PORT (x:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END ex8_1;

ARCHITECTURE arch_ex8_1 OF ex8_1 IS
BEGIN
 y(0)<=NOT(x(2)) AND NOT(x(1)) AND NOT(x(0));
 y(1)<=NOT(x(2)) AND NOT(x(1)) AND x(0);
 y(2)<=NOT(x(2)) AND x(1) AND NOT(x(0));
 y(3)<=NOT(x(2)) AND x(1) AND x(0);
 y(4)<=x(2) AND NOT(x(1)) AND NOT(x(0));
 y(5)<=x(2) AND NOT(x(1)) AND x(0);
 y(6)<=x(2) AND x(1) AND NOT(x(0));
 y(7)<=x(2) AND x(1) AND x(0);
END arch_ex8_1;

x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

Figur 8.1a

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 2

 8.1 forts.

som vi simulerar med en do-fil

-- ex8_1.do --

restart -f -nowave
view signals wave
add wave x -radix unsigned x
add wave -binary y
force x(0) 0 0ns, 1 50ns -repeat 100ns
force x(1) 0 0ns, 1 100ns -repeat 200ns
force x(2) 0 0ns, 1 200ns -repeat 400ns
run 400ns

 8.4 Vi skall använda en 2->4 dekoder och en 3->8 dekoder för att bygga en 5->32 dekoder.

Vi kan använda 2->4 dekodern för att dela in de 32 utgångarna i fyra block medan vi
använder 3->8 dekodern för att välja utgång inom blocket.
Vi börjar med att skapa en generisk dekoder

-- decoder.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

ENTITY decoder IS
 GENERIC(n_in:NATURAL:=2);
 PORT (x:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
END decoder;

ARCHITECTURE arch_decoder OF decoder IS
 SIGNAL one:UNSIGNED(2**n_in-1 DOWNTO 0);
BEGIN
 one <= TO_UNSIGNED(1,2**n_in);
 y <=
STD_LOGIC_VECTOR(SHIFT_LEFT(one,TO_INTEGER(UNSIGNED(x))));
END arch_decoder;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 3

 8.4 forts.

Notera hur antalet bitar in (n_in) används för att ange antalet bitar ut. Vi simulerar
dekodern

-- decoder --

restart -f -nowave
view signals wave
add wave x y
add wave -binary x y
force x(0) 0 0ns, 1 50ns -repeat 100ns
force x(1) 0 0ns, 1 100ns -repeat 200ns
run 200ns

och vi sedan använder dekodern som komponent i lösningen av exemplet

-- ex8_4.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8_4 IS
 PORT (x:IN STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END ex8_4;

ARCHITECTURE arch_ex8_4 OF ex8_4 IS
 COMPONENT decoder IS
 GENERIC(n_in:NATURAL:=2);
 PORT (x:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
 END COMPONENT decoder;
 SIGNAL bit_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL block_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
 decoder3_8:
 COMPONENT decoder
 GENERIC MAP(n_in => 3)
 PORT MAP(x=>x(2 DOWNTO 0),
 y=>bit_signal);

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 4

 8.4 forts.

 decoder2_4:
 COMPONENT decoder
 GENERIC MAP(n_in => 2)
 PORT MAP(x=>x(4 DOWNTO 3),
 y=>block_signal);
 y(31 DOWNTO 24)<=bit_SIGNAL AND (7 DOWNTO 0 =>
 block_signal(3));
 y(23 DOWNTO 16)<=bit_SIGNAL AND (7 DOWNTO 0 =>
 block_signal(2));
 y(15 DOWNTO 8)<=bit_SIGNAL AND (7 DOWNTO 0 =>
 block_signal(1));
 y(7 DOWNTO 0)<=bit_SIGNAL AND (7 DOWNTO 0 =>
 block_signal(0));
END arch_ex8_4;

Notera hur vi via GENERIC-argumentet kan använda samma komponent för att instan-
tiera två dekodrar av olika storlek.
Vi kan lika gärna kunnat dela in de 32 utgångarna i åtta block med 3->8 dekodern och
sedan använda 2->4 dekodern för att välja utgång inom blocket

-- ex8_4_v2.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8_4_v2 IS
 PORT (x:IN STD_LOGIC_VECTOR(4 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END ex8_4_v2;

ARCHITECTURE arch_ex8_4_v2 OF ex8_4_v2 IS
 COMPONENT decoder IS
 GENERIC(n_in:NATURAL:=2);
 PORT (x:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
 END COMPONENT decoder;
 SIGNAL bit_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL block_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 5

 8.4 forts.

BEGIN
 decoder3_8:
 COMPONENT decoder
 GENERIC MAP(n_in => 2)
 PORT MAP(x=>x(1 DOWNTO 0),
 y=>bit_signal);
 decoder2_4:
 COMPONENT decoder
 GENERIC MAP(n_in => 3)
 PORT MAP(x=>x(4 DOWNTO 2),
 y=>block_signal);
 y(31 DOWNTO 28)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(7));
 y(27 DOWNTO 24)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(6));
 y(23 DOWNTO 20)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(5));
 y(19 DOWNTO 16)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(4));
 y(15 DOWNTO 12)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(3));
 y(11 DOWNTO 8)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(2));
 y(7 DOWNTO 4)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(1));
 y(3 DOWNTO 0)<=bit_SIGNAL AND (3 DOWNTO 0 =>
 block_signal(0));
END arch_ex8_4_v2;

Vi kan simulera med samma do-fil som I den första lösningen.

 8.5 Vi skall två stycken 3->8 dekodrar för att bygga en 6->64 dekoder. Vi kan använda
samma modell som i Exempel 8.4 och använda 3->8 dekodern för att dela in de 64 ut-
gångarna i fyra block medan vi använder den andra 3->8 dekodern för att välja utgång
inom blocket

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 6

 8.5 forts.

-- ex8_5.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8_5 IS
 PORT (x:IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(63 DOWNTO 0));
END ex8_5;

ARCHITECTURE arch_ex8_5 OF ex8_5 IS
 COMPONENT decoder IS
 GENERIC(n_in:NATURAL:=2);
 PORT (x:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
 END COMPONENT decoder;
 SIGNAL bit_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL block_signal:STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
 decoder3_8_0:
 COMPONENT decoder
 GENERIC MAP(n_in => 3)
 PORT MAP(x=>x(2 DOWNTO 0),
 y=>bit_signal);
 decoder3_8_1:
 COMPONENT decoder
 GENERIC MAP(n_in => 3)
 PORT MAP(x=>x(5 DOWNTO 3),
 y=>block_signal);
 y(63 DOWNTO 56) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(7));
 y(55 DOWNTO 48) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(6));
 y(47 DOWNTO 40) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(5));
 y(39 DOWNTO 32) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(4));
 y(31 DOWNTO 24) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(3));

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 7

 8.5 forts.

 y(23 DOWNTO 16) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(2));
 y(15 DOWNTO 8) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(1));
 y(7 DOWNTO 0) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block_signal(0));

END arch_ex8_5;

Vi simulerar med en do-fil som är likadan som i Exempel 8.4 bortsett från att insignalen
har en bit till och vi får köra dubbelt så lång simuleringstid

-- ex8_5.do --

restart -f -nowave
view signals wave
add wave x -radix unsigned x
add wave -binary y
force x(0) 0 0ns, 1 50ns -repeat 100ns
force x(1) 0 0ns, 1 100ns -repeat 200ns
force x(2) 0 0ns, 1 200ns -repeat 400ns
force x(3) 0 0ns, 1 400ns -repeat 800ns
force x(4) 0 0ns, 1 800ns -repeat 1600ns
force x(5) 0 0ns, 1 800ns -repeat 3200ns
run 3200ns

 8.6 Vi skall lösa samma uppgift som i Exempel 8.5 men med hjälp av 2->4 dekodrar. Det

kräver att vi delar upp utsignalerna i fyra semiblock om fyra utgångar som vi i sin tur
delar upp i fyra block. Vi får

-- ex8_6.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8_6 IS
 PORT (x:IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(63 DOWNTO 0));
END ex8_6;

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 8

 8.6 forts.

ARCHITECTURE arch_ex8_6 OF ex8_6 IS
 COMPONENT decoder IS
 GENERIC(n_in:NATURAL:=2);
 PORT (x:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
 y:OUT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
 END COMPONENT decoder;
 SIGNAL bit_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL semi_block_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL block_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
 decoder2_4_0:
 COMPONENT decoder
 GENERIC MAP(n_in => 2)
 PORT MAP(x=>x(1 DOWNTO 0),
 y=>bit_signal);
 decoder2_4_1:
 COMPONENT decoder
 GENERIC MAP(n_in => 2)
 PORT MAP(x=>x(3 DOWNTO 2),
 y=>semi_block_signal);
 decoder2_4_2:
 COMPONENT decoder
 GENERIC MAP(n_in => 2)
 PORT MAP(x=>x(5 DOWNTO 4),
 y=>block_signal);

 y(63 DOWNTO 60)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(3)) AND
 (3 DOWNTO 0=>block_signal(3));
 y(59 DOWNTO 56)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(2)) AND
 (3 DOWNTO 0=>block_signal(3));
 y(55 DOWNTO 52)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(1)) AND
 (3 DOWNTO 0=>block_signal(3));
 y(51 DOWNTO 48)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(0)) AND
 3 DOWNTO 0=>block_signal(3));
 y(47 DOWNTO 44)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(2)) AND
 (3 DOWNTO 0=>block_signal(3));

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8

Sida 9

 8.6 forts.

 y(43 DOWNTO 40)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(2)) AND
 (3 DOWNTO 0=>block_signal(2));
 y(39 DOWNTO 36)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(2)) AND
 (3 DOWNTO 0=>block_signal(1));
 y(35 DOWNTO 32)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(2)) AND
 (3 DOWNTO 0=>block_signal(0));
 y(31 DOWNTO 28)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(1)) AND
 (3 DOWNTO 0=>block_signal(3));

 y(27 DOWNTO 24)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(1)) AND
 (3 DOWNTO 0=>block_signal(2));
 y(23 DOWNTO 20)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(1)) AND
 (3 DOWNTO 0=>block_signal(1));
 y(19 DOWNTO 16)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(0)) AND
 (3 DOWNTO 0=>block_signal(1));
 y(15 DOWNTO 12)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(3)) AND
 (3 DOWNTO 0=>lock_signal(0));
 y(11 DOWNTO 8)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(2)) AND
 (3 DOWNTO 0=>block_signal(0));
 y(7 DOWNTO 4)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(1)) AND
 (3 DOWNTO 0=>block_signal(0));
 y(3 DOWNTO 0)<=bit_SIGNAL AND
 (3 DOWNTO 0=>semi_block_signal(0)) AND
 (3 DOWNTO 0=>block_signal(0));
END arch_ex8_6;

Som vi kan simulera med samma do-fil som i Exempel 8.5

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8
Sida 10

 8.21 Vi har sanningstabellen i Figur 8.21. Vi har fyra inbitar som leder
till ett minne med 16 adresser och på varje minnesposition lagrar
vi en bit som indikerar om det aktuella invärdet är ett primtal.
Vi skriver VHDL-kod

-- ex8_21.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8_21 IS
 PORT (address:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 y:OUT STD_LOGIC);
END ex8_21;

ARCHITECTURE arch_ex8_21 OF ex8_21 IS
 TYPE ROM_TABLE IS ARRAY (0 to 15) OF STD_LOGIC;
 CONSTANT ROM: ROM_TABLE :=
 ROM_TABLE'('0','1','1','1','0','1','0',’1’,
 '0','0','0','1','0','1','0','0');
BEGIN
 y<= ROM(TO_INTEGER(UNSIGNED(address)));
END arch_ex8_21;

Vi simulerar med en do-fil

-- ex8_21.do --

restart -f -nowave
view signals wave
add wave address -radix unsigned address
add wave y
force address(0) 0 0ns, 1 50ns -repeat 100ns
force address(1) 0 0ns, 1 100ns -repeat 200ns

Address y
0000 0
0001 1
0010 1
0011 1
0100 0
0101 1
0110 0
0111 1
1000 0
1001 0
1010 0
1011 1
1100 0
1101 1
1110 0
1111 0

Figur 8.21 Primtal

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8
Sida 11

 8.21 forts.

force address(2) 0 0ns, 1 200ns -repeat 400ns
force address(3) 0 0ns, 1 400ns -repeat 800ns
run 800ns

 8.22 Vi har en hex-siffra i
fyra inbitar och sju
segmentsignaler ut.
Vi har sanningsta-
bellen i Figur 8.22.
Vi behöver ett
minne med 16
adresser och på
varje minnesposi-
tion lagrar vi sju bi-
tar för segmenten.
Vi skriver VHDL-kod

-- ex8_22.vhdl --

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8_22 IS
 PORT (hex_digit:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 segments:OUT STD_LOGIC_VECTOR(0 TO 6));
END ex8_22;

Input Segment
𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0 𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4 𝑠𝑠5 𝑠𝑠6
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 0 1 1 1 0 1 1 1
1 0 1 1 0 0 1 1 1 1 1
1 1 0 0 1 0 0 1 1 1 0
1 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 0 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1

Figur 8.12 Sanningstabell för 7-segmentdisplay

Dally, Harting, Aamodt: Digital design Using VHDL

Lösningar till uppgifter
Kapitel 8
Sida 12

 8.22 forts.

ARCHITECTURE arch_ex8_22 OF ex8_22 IS
 TYPE ROM_TABLE IS ARRAY (0 to 15) OF
 STD_LOGIC_VECTOR(0 TO 6);
 CONSTANT ROM: ROM_TABLE := ROM_TABLE'("1111110",
 "0110000",
 "1101101",
 "1111001",
 "0110011",
 "1011011",
 "1011111",
 "1110000",
 "1111111",
 "1110011",
 "1110111",
 "0011111",
 "1001110",
 "0111101",
 "1001111",
 "1100111");
BEGIN
 segments<= ROM(TO_INTEGER(UNSIGNED(hex_digit)));
END arch_ex8_22;

Och simulerar med en do-fil

-- ex8_22.do --

restart -f -nowave
view signals wave
add wave hex_digit
add wave segments -radix binary segments
force hex_digit(0) 0 0ns, 1 50ns -repeat 100ns
force hex_digit(1) 0 0ns, 1 100ns -repeat 200ns
force hex_digit(2) 0 0ns, 1 200ns -repeat 400ns
force hex_digit(3) 0 0ns, 1 400ns -repeat 800ns
run 800ns

