CHALMERS

Department of Computer Science and Engineering

Dally, Harting and Aamodt:
Digital Design Using VHDL

Kapitel 8
8.1 Vi tecknar sanningstabellen,

. 1 h skri VHDL- X2 [ X1 [ Xo JVY7 [ Ye|VYs|VYa|VY3|VY2]|VY1]|VYo
Figur 8.1a och skriver 0 0 0 lo lolololo o lol1
kod 0O |0 |12 |O |O|O|O|O|O|1]O

0 1 0 0 o(ojofo0j1(0]oO0
0 1 1 0 o(ojof1|0(0]oO
1 0 0 0 o010 |0|0]O
1 0 1 0O (01 (0|00 |0 ]|O
1 1 0 0 1(/0(0(0|0 |0 ]|O
1 1 1 1 |00 |0 |O0O|O0O]|O]O
Figur 8.1a
-—- ex8 1.vhdl --

LIBRARY ieee;
USE ieee.std _logic_1164_.ALL;

ENTITY ex8 1 IS
PORT (Xx:IN STD_LOGIC_VECTOR(2 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END ex8 1;

ARCHITECTURE arch_ex8 1 OF ex8_1 IS

BEGIN
y(0)<=NOT(x(2)) AND NOT(x(1)) AND NOT(x(0));
y(1)<=NOT(x(2)) AND NOT(x(1)) AND x(0);
y(2)<=NOT(x(2)) AND x(1) AND NOT(x(0));
y(3)<=NOT(x(2)) AND x(1) AND x(0);
y(4)<=x(2) AND NOT(x(1)) AND NOT(x(0));
y(5)<=x(2) AND NOT(x(1)) AND x(0);
y(6)<=x(2) AND x(1) AND NOT(x(0));
y(7)<=x(2) AND x(1) AND x(0);

END arch_ex8 1;

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering page 1
Division of Computer Engineering




8.1

8.4

forts.

som vi simulerar med en do-fil

restart -f -nowave

view signals wave

add wave x -radix unsigned Xx

add wave -binary y

force x(0) O Ons, 1 50ns -repeat 100ns
force x(1) O Ons, 1 100ns -repeat 200ns
force x(2) 0 Ons, 1 200ns -repeat 400ns
run 400ns

Vi skall anvanda en 2->4 dekoder och en 3->8 dekoder for att bygga en 5->32 dekoder.
Vi kan anvdanda 2->4 dekodern for att dela in de 32 utgangarna i fyra block medan vi
anvander 3->8 dekodern for att valja utgang inom blocket.

Vi borjar med att skapa en generisk dekoder

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;
USE ITEEE.NUMERIC_STD.ALL;

ENTITY decoder 1S
GENERIC(n_in:NATURAL:=2);
PORT (X:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
y:OUT STD _LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
END decoder;

ARCHITECTURE arch_decoder OF decoder IS

SIGNAL one:UNSIGNED(2**n_in-1 DOWNTO 0);
BEGIN

one <= TO_UNSIGNED(1,2**n_in);

y <=
STD_LOGIC_VECTOR(SHIFT_LEFT(one,TO_INTEGER(UNSIGNED(X))));
END arch_decoder;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 2



8.4 forts.

Notera hur antalet bitar in (n_1In) anvands for att ange antalet bitar ut. Vi simulerar
dekodern

restart -f -nowave

view signals wave

add wave x y

add wave -binary X y

force x(0) 0 Ons, 1 50ns -repeat 100ns
force x(1) O Ons, 1 100ns -repeat 200ns
run 200ns

och vi sedan anvander dekodern som komponent i [6sningen av exemplet

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8 4 IS
PORT (X:IN STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD _LOGIC_VECTOR(31 DOWNTO 0));
END ex8 4;

ARCHITECTURE arch_ex8 4 OF ex8 4 IS
COMPONENT decoder IS
GENERIC(n_in:NATURAL:=2);
PORT (x:IN STD LOGIC_VECTOR(n_in-1 DOWNTO 0);
y:0UT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
END COMPONENT decoder;
SIGNAL bit_signal:STD _LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL block signal:STD _LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
decoder3_8:
COMPONENT decoder
GENERIC MAP(n_in => 3)
PORT MAP(x=>x(2 DOWNTO 0),
y=>bit_signal);

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 3



8.4 forts.

decoder2_4:
COMPONENT decoder
GENERIC MAP(n_in => 2)
PORT MAP(x=>x(4 DOWNTO 3),
y=>block_signal);
y(31 DOWNTO 24)<=bit_SIGNAL AND (7 DOWNTO 0 =>
block _signal(3));
y(23 DOWNTO 16)<=bit_SIGNAL AND (7 DOWNTO O =>
block_signal(2));
y(15 DOWNTO 8)<=bit_SIGNAL AND (7 DOWNTO O =>
block_signal(1));
y(7 DOWNTO O)<=bit_SIGNAL AND (7 DOWNTO O =>
block _signal(0));
END arch_ex8 4;

Notera hur vi via GENER I C-argumentet kan anvanda samma komponent for att instan-
tiera tva dekodrar av olika storlek.

Vi kan lika gdrna kunnat dela in de 32 utgangarna i atta block med 3->8 dekodern och
sedan anvanda 2->4 dekodern for att vdlja utgang inom blocket

LIBRARY 1ieee;
USE i1eee.std_logic_1164_ALL;
USE i1eee.numeric_std.ALL;

ENTITY ex8 4 v2 IS
PORT (X:IN STD_LOGIC_VECTOR(4 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END ex8 4 v2;

ARCHITECTURE arch_ex8 4 v2 OF ex8 4 v2 IS
COMPONENT decoder 1S
GENERIC(n_in:NATURAL:=2);
PORT (X:IN STD_LOGIC _VECTOR(n_in-1 DOWNTO 0);
y:OUT STD LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
END COMPONENT decoder;
SIGNAL bit_signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL block_signal :STD_LOGIC_VECTOR(7 DOWNTO 0);

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 4



8.4 forts.

BEGIN
decoder3 8:
COMPONENT decoder
GENERIC MAP(n_in => 2)
PORT MAP(x=>x(1 DOWNTO 0),
y=>bit_signal);
decoder2_4:
COMPONENT decoder
GENERIC MAP(n_in => 3)
PORT MAP(x=>x(4 DOWNTO 2),
y=>block_signal);
y(31 DOWNTO 28)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block _signal(7));
y(27 DOWNTO 24)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block _signal(6));
y(23 DOWNTO 20)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block _signal(5));
y(19 DOWNTO 16)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block_signal(4));
y(15 DOWNTO 12)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block _signal(3));
y(11 DOWNTO 8)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block _signal(2));
y(7 DOWNTO 4)<=bit_SIGNAL AND (3 DOWNTO 0 =>
block_signal(1));
y(3 DOWNTO 0)<=bit_SIGNAL AND (3 DOWNTO 0O =>
block _signal(0));
END arch_ex8 4 v2;

Vi kan simulera med samma do-fil som | den forsta |6sningen.

8.5 Vi skall tva stycken 3->8 dekodrar for att bygga en 6->64 dekoder. Vi kan anvanda
samma modell som i Exempel 8.4 och anvanda 3->8 dekodern for att dela in de 64 ut-
gangarna i fyra block medan vi anvander den andra 3->8 dekodern for att vélja utgang
inom blocket

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 5



8.5 forts.

LIBRARY ieee;
USE ieee.std_logic_1164_ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8 5 IS
PORT (x:IN STD LOGIC _VECTOR(5 DOWNTO 0);
y:OUT STD _LOGIC_VECTOR(63 DOWNTO 0));
END ex8 5;

ARCHITECTURE arch_ex8_ 5 OF ex8_ 5 IS
COMPONENT decoder 1S
GENERIC(n_in:NATURAL:=2);
PORT (x:IN STD LOGIC_VECTOR(n_in-1 DOWNTO 0);
y:0UT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
END COMPONENT decoder;
SIGNAL bit_signal :STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL block_signal :STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN
decoder3 8 O:
COMPONENT decoder
GENERIC MAP(n_in => 3)
PORT MAP(x=>x(2 DOWNTO 0),
y=>bit_signal);
decoder3 8 1:
COMPONENT decoder
GENERIC MAP(n_in => 3)
PORT MAP(x=>x(5 DOWNTO 3),
y=>block_signal);
y(63 DOWNTO 56) <= bit_SIGNAL AND (7 DOWNTO O =>
block_signal (7));
y(55 DOWNTO 48) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block _signal(6));
y(47 DOWNTO 40) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block _signal(5));
y(39 DOWNTO 32) <= bit_SIGNAL AND (7 DOWNTO O =>
block _signal(4));
y(31 DOWNTO 24) <= bit_SIGNAL AND (7 DOWNTO 0O =>
block _signal(3));

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 6



8.5

8.6

forts.

y(23 DOWNTO 16) <= bit_SIGNAL AND (7 DOWNTO O =>
block_signal(2));

y(15 DOWNTO 8) <= bit_SIGNAL AND (7 DOWNTO O =>
block _signal(1));

y(7 DOWNTO 0) <= bit_SIGNAL AND (7 DOWNTO 0 =>
block _signal(0));

END arch_ex8 5;

Vi simulerar med en do-fil som ar likadan som i Exempel 8.4 bortsett fran att insignalen
har en bit till och vi far kora dubbelt sa lang simuleringstid

restart - -nowave

view signals wave

add wave x -radix unsigned Xx
add wave -binary y

force x(0) O Ons, 1 50ns -repeat 100ns
force x(1) 0 Ons, 1 100ns -repeat 200ns
force x(2) 0 Ons, 1 200ns -repeat 400ns
force x(3) 0 Ons, 1 400ns -repeat 800ns
force x(4) 0 Ons, 1 800ns -repeat 1600ns
force x(5) 0 Ons, 1 800ns -repeat 3200ns
run 3200ns

Vi skall 16sa samma uppgift som i Exempel 8.5 men med hjdlp av 2->4 dekodrar. Det
krdver att vi delar upp utsignalerna i fyra semiblock om fyra utgangar som vi i sin tur
delar upp i fyra block. Vi far

LIBRARY ieee;
USE ieee.std _logic 1164 _ALL;
USE ieee.numeric_std.ALL;

ENTITY ex8 6 IS
PORT (X:IN STD_LOGIC_VECTOR(5 DOWNTO 0);
y:OUT STD _LOGIC_VECTOR(63 DOWNTO 0));
END ex8 _6;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 7



8.6 forts.

ARCHITECTURE arch_ex8 6 OF ex8 6 1S
COMPONENT decoder 1S
GENERIC(n_in:NATURAL:=2);
PORT (X:IN STD_LOGIC_VECTOR(n_in-1 DOWNTO 0);
y:OUT STD_LOGIC_VECTOR(2**n_in-1 DOWNTO 0));
END COMPONENT decoder;
SIGNAL bit _signal:STD _LOGIC _VECTOR(3 DOWNTO 0);
SIGNAL semi_block signal:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL block_signal :STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
decoder2_4 O:
COMPONENT decoder
GENERIC MAP(n_in => 2)
PORT MAP(x=>x(1 DOWNTO 0),
y=>bit_signal);
decoder2_4 1:
COMPONENT decoder
GENERIC MAP(n_in => 2)
PORT MAP(x=>x(3 DOWNTO 2),
y=>semi_block_signal);
decoder2_4 2:
COMPONENT decoder
GENERIC MAP(n_in => 2)
PORT MAP(x=>x(5 DOWNTO 4),
y=>block_signal);

y(63 DOWNTO 60)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(3)) AND
(3 DOWNTO O=>block_signal(3));
y(59 DOWNTO 56)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(2)) AND
(3 DOWNTO O=>block _signal(3));
y(55 DOWNTO 52)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal (1)) AND
(3 DOWNTO O=>block _signal(3));
y(51 DOWNTO 48)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(0)) AND
3 DOWNTO O=>block _signal(3));
y(47 DOWNTO 44)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(2)) AND
(3 DOWNTO O=>block _signal(3));

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 8



8.6 forts.

y(43

y(39

y(35

y(31

y(27

y(23

y(19

y(15

y(11

DOWNTO 40)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(2))
(3 DOWNTO O=>block_signal(2));
DOWNTO 36)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(2))
(3 DOWNTO O=>block _signal(l));
DOWNTO 32)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(2))
(3 DOWNTO O=>block _signal(0));
DOWNTO 28)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal (1))
(3 DOWNTO O=>block_signal(3));

DOWNTO 24)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal (1))
(3 DOWNTO O=>block_signal(2));
DOWNTO 20)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal (1))
(3 DOWNTO O=>block_signal(1));
DOWNTO 16)<=bit _SIGNAL AND
(3 DOWNTO O=>semi_block_signal (0))
(3 DOWNTO O=>block _signal(l));
DOWNTO 12)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(3))
(3 DOWNTO O=>lock_signal(0));
DOWNTO 8)<=bit_SIGNAL AND

AND

AND

AND

AND

AND

AND

AND

AND

(3 DOWNTO O=>semi_block_signal(2)) AND

(3 DOWNTO O=>block _signal(0));

y(7 DOWNTO 4)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(1)) AND

(3 DOWNTO O=>block _signal(0));

y(3 DOWNTO 0O)<=bit_SIGNAL AND
(3 DOWNTO O=>semi_block_signal(0)) AND

(3 DOWNTO O=>block _signal(0));

END arch_ex8 6;

Som vi kan simulera med samma do-fil som i Exempel 8.5

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 9



8.21 Vi har sanningstabellen i Figur 8.21. Vi har fyra inbitar som leder Address
till ett minne med 16 adresser och pa varje minnesposition lagrar 0000
vi en bit som indikerar om det aktuella invardet ar ett primtal. 0001
Vi skriver VHDL-kod 0010
0011
0100
0101
0110
0111
1000
1001
1010
————————————————— 1011
-—- ex8 21.vhdl -- 1100
————————————————— 1101
1110
LIBRARY ieee; 1111
USE i1eee.std_logic_1164_ALL;
USE i1eee.numeric_std.ALL;

O|O|rRrOFRP|IO|I0C|IO|FR|O|FR|O(FR(FR(FR|O]|x

Figur 8.21 Primtal

ENTITY ex8_21 IS
PORT (address:IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y:OUT STD_LOGIC);
END ex8 21;

ARCHITECTURE arch_ex8 21 OF ex8 21 IS
TYPE ROM_TABLE 1S ARRAY (O to 15) OF STD_LOGIC;
CONSTANT ROM: ROM_TABLE :=
ROM_TABLE®("O","1","1","1%,"0","1","0","1",
.O.’.O.’.O.’.1.’.0.’.1.’.0.’.0.);
BEGIN
y<= ROM(TO_INTEGER(UNSIGNED(address)));
END arch_ex8 21;

Vi simulerar med en do-fil

-- ex8 21.do --

restart -f -nowave

view signals wave

add wave address -radix unsigned address

add wave y

force address(0) 0 Ons, 1 50ns -repeat 100ns
force address(l) 0 Ons, 1 100ns -repeat 200ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 10



8.21

8.22

forts.

force address(2) 0 Ons, 1 200ns -repeat 400ns
force address(3) 0 Ons, 1 400ns -repeat 800ns

run 800ns

Vi har en hex-siffra i
fyra inbitar och sju
segmentsignaler ut.
Vi har sanningsta-
bellen i Figur 8.22.
Vi  behover ett
minne med 16
adresser och pa
varje minnesposi-
tion lagrar vi sju bi-
tar for segmenten.

Vi skriver VHDL-kod

Input Segment
X3 | X2 | X3 | Xo So S1 S2 S3 S4 Sg S6
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 0 1 1 1 0 1 1 1
1 0 1 1 0 0 1 1 1 1 1
1 1 0 0 1 0 0 1 1 1 0
1 1 0 1 0 1 1 1 1 0 1
1 1 1 0 1 0 0 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1

Figur 8.12 Sanningstabell fér 7-segmentdisplay

LIBRARY 1eee;

USE 1eee.std_logic_1164_ALL;

USE i1eee.numeric_std.ALL;

ENTITY ex8_22

PORT (hex_digit:IN STD_LOGIC_VECTOR(3

1S

DOWNTO 0);

segments:0OUT STD _LOGIC _VECTOR(O TO 6));

END ex8 22;

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter

Kapitel 8

Sida 11




8.22 forts.

ARCHITECTURE arch_ex8 22 OF ex8 22 IS
TYPE ROM_TABLE IS ARRAY (O to 15) OF
STD_LOGIC_VECTOR(O TO 6);
CONSTANT ROM: ROM_TABLE := ROM_TABLE®('1111110",
*0110000",
1101101",
1111001",
"0110011"",
"1011011",
"1011111",
""1110000",
"1111111",
"1110011",
"1110111",
"0011111"",
"1001110",
"0111101",
""1001111",
"1100111");
BEGIN
segments<= ROM(TO_INTEGER(UNSIGNED(hex_digit)));
END arch_ex8 22;

Och simulerar med en do-fil

restart -t -nowave

view signals wave

add wave hex digit

add wave segments -radix binary segments

force hex_digit(0) 0 Ons, 1 50ns -repeat 100ns
force hex_digit(l) 0 Ons, 1 100ns -repeat 200ns
force hex _digit(2) 0 Ons, 1 200ns -repeat 400ns
force hex _digit(3) 0 Ons, 1 400ns -repeat 800ns
run 800ns

Dally, Harting, Aamodt: Digital design Using VHDL
Losningar till uppgifter
Kapitel 8
Sida 12



