

Department of Computer Science and Engineering

2017-01-11

CH ALMERS UNIV ERSI TY OF TEC HNO LO GY
Department of Co mputer Science and Engineerin g page 1
Division of Co mputer Engineering

EDA322 Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
Uppgifterna är hämtade ur Brown, Vranesic: Fundamentals of Digital Logic with VHDL Design ed 3,
kapitel 8.

1 Ta fram en krets uppbyggd av D-vippor som imple-

menterar tillståndstabellen i Figur E1. Skriv VHDL-kod
för implementeringen

Vi ritar en tillståndsgraf, Figur S1a

Vi skall implementera med hjäp av D-vippor så vi
tecknar D-vippans tillståndstabell, Figur S1b

Vi inför D-vippor i tillståndtabellen utifrån D-vippans
sanningstabell i Figur S1a och får, Figur S1c

Present
state

Next state Output
w=0 w=1

y2 y1 y2 y1 y2 y1 z
0 0 1 0 1 1 0
0 1 0 1 0 0 0
1 0 1 1 0 0 0
1 1 1 0 0 1 1

Figur E1 Tillståndstabell

00 01

0

01

z=0z=0

z=1
1011
z=0

0 1

0

0

1

Figur S1a Tillståndgraf från Figur E1

Present
state

D-flipflop Next
state D

0 0 0
0 1 1
1 0 0
1 1 1

Figur S1b D-vippans tillståndstabell

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 2

1 forts.

Vi använder Karnaughdiagram för att bestämma villkoren för D-ingångarna, Figur S1d-f

Vi får

12121212121 yywxywyywyywyywD ⊕⊕=⋅⋅+⋅⋅+⋅⋅+⋅⋅=

12 yyz ⋅=

Låt oss skriva VHDL-kod och testa resultatet.
Vi börjar med att skapa en D-flipflop som vi kan använda som komponent.

y2y1

w

00 11 1001

0

1

0

0

010

0 01

z

y2y1

Figur S1f Karnaughdiagram för z

y2y1

w

00 11 1001

0

1

1

1

110

0 00

D2

y2y1

wy2

Figur S1d Karnaughdiagram för D2

y2y1

w

00 11 1001

0

1

0

1

101

0 01

D1

wy2y1

wy2y1

wy2y1

wy2y1

Figur S1e Karnaughdiagram för D1

2122 ywyyD ⋅+⋅=

Present
state

D flipflops Next state Output
w=0 w=1 w=0 w=1

Q2 Q1 D2 D1 D2 D1 Q2 Q1 Q2 Q1 z
0 0 1 0 1 1 1 0 1 1 0
0 1 0 1 0 0 0 1 0 0 0
1 0 1 1 0 0 1 1 0 0 0
1 1 0 0 0 1 1 0 0 1 1

Figur S1c Tillståndstabell med D-vippor

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 3

1 forts.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY D_flipflop IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 D:IN STD_LOGIC;
 Q:OUT STD_LOGIC);
END D_flipflop;

ARCHITECTURE arch_D_flipflop OF
 D_flipflop IS
BEGIN
 D_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 Q <= '0';
 ELSIF rising_edge(Clock) THEN
 IF (D='1') THEN
 Q <= '1';
 ELSE
 Q <= '0';
 END IF;
 END IF;
 END PROCESS D_proc;
END arch_D_flipflop;

Vi simulerar ned en do-fil

restart -f -nowave
view signals wave
add wave Clock Resetn D Q
force Clock 0 0, 1 50ns -repeat 100ns
force D 0
force Resetn 0
run 225ns
force Resetn 1
run 200ns
force D 1
run 200ns
force D 0
run 200ns
force D 1
run 200ns
force Resetn 0

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 4

1 forts.

run 200ns
force Resetn 1
run 200ns

Nu kan vi skriva kod för tillståndsmaskinen

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S1 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S1;

ARCHITECTURE arch_S1 OF S1 IS
 COMPONENT D_flipflop IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 D:IN STD_LOGIC;
 Q:OUT STD_LOGIC);
 END COMPONENT D_flipflop;
 SIGNAL D1_signal:STD_LOGIC;
 SIGNAL D2_signal:STD_LOGIC;
 SIGNAL Q1_signal:STD_LOGIC;
 SIGNAL Q2_signal:STD_LOGIC;
 SIGNAL D_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
 SIGNAL Q_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
 D_flipflop_comp_1:
 D_flipflop
 PORT MAP(Clock => Clock,
 Resetn =>Resetn,
 D => D1_signal,
 Q => Q1_signal);

 D_flipflop_comp_2:
 D_flipflop
 PORT MAP(Clock => Clock,
 Resetn =>Resetn,
 D => D2_signal,
 Q => Q2_signal);

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 5

 1 forts.

 D1_signal <= w XOR (Q2_signal XOR Q1_signal);
 D2_signal <= (NOT(Q2_signal) AND NOT(Q1_signal)) OR
 (NOT(w) AND Q2_signal);
 D_vector_signal <= D2_signal & D1_signal;
 Q_vector_signal <= Q2_signal & Q1_signal;

 z <= Q2_signal AND Q1_signal;

END arch_S1;

I koden har vi lagt in vektorerna D_vector_signal och Q_vector_signal för att lättare se
tillstånden.
Vi simulerar med en ny do-fil

restart -f -nowave
view signals wave
add wave Clock Resetn w D2_signal D1_signal Q2_signal
add wave Q1_signal -radix binary D_vector_signal Q_vector_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force w 0
force Resetn 0
run 225ns
force Resetn 1
run 400ns
force w 1
run 400ns
force w 0
run 400ns

2 Upprepa uppgift 1 med hjälp av JK-vippor

Vi har samma tillståndstabell som i uppgift 1 men ska nu
implementera med JK-vippor.
Figur S2a ger JK-vippornas tillståndstabell

Present
state

JK-flipflop Next
state J K

0 0 x 0
0 1 x 1
1 x 1 0
1 x 0 1

Figur S2a JK-vippans tillståndstabell

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 6

2 forts.

Vi kompletterar nu tillståndstabellen i Figur E1 med JK-vippor, Figur S2b

Vi använder Karnaughdiagram för att ta fram de logiska villkoren, Figur S2c-f

Vi får

12 yJ =

wK =2

2221 ywywywJ ⊕=⋅+⋅=

22211 ywywywJK ⊕=⋅+⋅==

Utsignalen z påverkas inte av vilka vippor vi väljer utan blir den samma som i exempel 1 dvs

Present
state

D flipflops Next state Output
w=0 w=1 w=0 w=1

Q2 Q1 J2 K2 J1 K1 J2 K2 J1 K1 Q2 Q1 Q2 Q1 z
0 0 1 x 0 x 1 x 1 x 1 0 1 1 0
0 1 x 0 x 0 0 x x 1 0 1 0 0 0
1 0 x 0 1 x x 1 0 x 1 1 0 0 0
1 1 x 0 x 1 x 1 x 0 1 0 0 1 1

Figur S2b Tillståndstabell med D-vippor

y2y1

w

00 11 1001

0

1

1

1

xxx

0 xx

J2

y1

Figur S2c Karnaughdiagram för J2

y2y1

w

00 11 1001

0

1

x

x

000

x 11

K2

w

Figur Sd Karnaughdiagram för K2

y2y1

w

00 11 1001

0

1

0

1

1xx

x 0x

J1
wy2

wy2

Figur S2e Karnaughdiagram för J1

y2y1

w

00 11 1001

0

1

x

x

x10

1 x0

K1
wy2

wy2

Figur S2f Karnaughdiagram för K1

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 7

2 forts.

12 xxz ⋅=

Låt oss åter skriva VHDL-kod och börjar då med en JK-vippa.

ENTITY JK_flipflop IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 J:IN STD_LOGIC;
 K:IN STD_LOGIC;
 Q:OUT STD_LOGIC);
END JK_flipflop;

ARCHITECTURE arch_JK_flipflop OF JK_flipflop IS
 SIGNAL Q_signal:STD_LOGIC;
 SIGNAL JK_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
 JK_signal <= J&K;
 JK_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 Q_signal <= '0';
 ELSIF rising_edge(Clock) THEN
 CASE JK_signal IS
 WHEN "00" =>
 Q_signal <= Q_signal;
 WHEN "01" =>
 Q_signal <= '0';
 WHEN "10" =>
 Q_signal <= '1';
 WHEN "11" =>
 Q_signal <= NOT(Q_signal);
 WHEN OTHERS =>
 END CASE;
 END IF;
 END PROCESS JK_proc;
 Q <= Q_signal;
END arch_JK_flipflop;

Som vi simulerar med en do-fil.

restart -f -nowave
view signals wave
add wave Clock Resetn J K
add wave -radix binary JK_signal Q_signal Q
force Clock 0 0, 1 50ns -repeat 100ns

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 8

2 forts.

force J 0
force K 0
force Resetn 0
run 225ns
force Resetn 1
run 200ns
force J 1
run 200ns
force K 1
run 200ns
force J 0
run 200ns
force Resetn 0
run 200ns
force Resetn 1
run 200ns

och nu över till tillståndsmaskinen

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S2 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S2;

ARCHITECTURE arch_S2 OF S2 IS
 COMPONENT JK_flipflop IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 J:IN STD_LOGIC;
 K:IN STD_LOGIC;
 Q:OUT STD_LOGIC);
 END COMPONENT JK_flipflop;
 SIGNAL J1_signal:STD_LOGIC;
 SIGNAL K1_signal:STD_LOGIC;
 SIGNAL J2_signal:STD_LOGIC;
 SIGNAL K2_signal:STD_LOGIC;
 SIGNAL Q1_signal:STD_LOGIC;
 SIGNAL Q2_signal:STD_LOGIC;
 SIGNAL JK1_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
 SIGNAL JK2_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
 SIGNAL Q_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 9

2 forts.

BEGIN
 JKflipflop_comp_1:
 JK_flipflop
 PORT MAP(Clock => Clock,
 Resetn =>Resetn,
 J => J1_signal,
 K => K1_signal,
 Q => Q1_signal);

 JK_flipflop_comp_2:
 JK_flipflop
 PORT MAP(Clock => Clock,
 Resetn =>Resetn,
 J => J2_signal,
 K => K2_signal,
 Q => Q2_signal);

 J2_signal <= NOT(Q1_signal);
 K2_signal <= w;
 J1_signal <= w XOR Q2_signal;
 K1_signal <= J1_signal;
 JK1_vector_signal <= J1_signal & K1_signal;
 JK2_vector_signal <= J2_signal & K2_signal;
 Q_vector_signal <= Q2_signal & Q1_signal;
 z <= Q2_signal AND Q1_signal;
END arch_S2;

Vi har åter knutit ihop signaler i vektorer för att lättare se dom i simuleringen som vi gör med en do-
fil.

restart -f -nowave
view signals wave
add wave Clock Resetn w J1_signal K1_signal
add wave J2_signal K2_signal Q1_signal Q2_signal
add wave -radix binary JK1_vector_signal
add wave Q_vector_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force w 0
force Resetn 0
run 225ns
force Resetn 1
run 400ns
force w 1
run 400ns
force w 0
run 400ns

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 10

3 Upprepa uppgift 1 med hjälp av T-vippor

Vi skall implementera med hjäp av T-vippor så vi teck-
nar T-vippans tillståndstabell, Figur S3a

Vi inför D-vippor i
tillståndtabellen
utifrån D-vippans
sanningstabell i Fi-
gur E1 och får,
Figur S3b

Vi använder Karnaughdiagram för att bestämma villkoren för D-ingångarna, Figur S1c-e

Vi får

221 ywywT ⋅+⋅=

12 yyz ⋅=

Låt oss åter skriva VHDL-kod och börjar då med en T-vippa.

y2y1

w

00 11 1001

0

1

0

0

010

0 01

z

y2y1

Figur S3e Karnaughdiagram för z

y2y1

w

00 11 1001

0

1

1

1

000

0 11

T2

wy2

y2y1

Figur S3c Karnaughdiagram för T2

y2y1

w

00 11 1001

0

1

0

1

110

1 00

T1

wy2

wy2

Figur S3d Karnaughdiagram för T1

2122 ywyyT ⋅+⋅=

Present
state

T-flipflop Next
state D

0 0 0
0 1 1
1 0 1
1 1 0

Figur S3a T-vippans tillståndstabell

Present
state

T flipflops Next state Output
w=0 w=1 w=0 w=1

Q2 Q1 T2 T1 T2 T1 Q2 Q1 Q2 Q1 z
0 0 1 0 1 1 1 0 1 1 0
0 1 0 0 0 1 0 1 0 0 0
1 0 0 1 1 0 1 1 0 0 0
1 1 0 1 1 0 1 0 0 1 1

Figur S3b Tillståndstabell med D-vippor

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 11

3 forts.

-- T_flipflop.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY T_flipflop IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 T:IN STD_LOGIC;
 Q:OUT STD_LOGIC);
END T_flipflop;

ARCHITECTURE arch_T_flipflop OF T_flipflop IS
 SIGNAL Q_signal:STD_LOGIC;
BEGIN
 T_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 Q_signal <= '0';
 ELSIF rising_edge(Clock) THEN
 IF (T='1') THEN
 Q_signal <= NOT(Q_signal);
 ELSE
 Q_signal <= Q_signal;
 END IF;
 END IF;
 END PROCESS T_proc;
 Q <= Q_signal;
END arch_T_flipflop;

som vi simulerar med en do-fil

-- T_flipflop.do
restart -f -nowave
view signals wave
add wave Clock Resetn T Q_signal Q
force Clock 0 0, 1 50ns -repeat 100ns
force T 0
force Resetn 0
run 225ns
force Resetn 1
run 200ns
force T 1
run 200ns
force T 0

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 12

3 forts.

run 200ns
force T 1
run 200ns
force Resetn 0
run 200ns
force Resetn 1
run 200ns

och nu över till tillståndsmaskinen

-- S3.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S3 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S3;

ARCHITECTURE arch_S3 OF S3 IS
 COMPONENT T_flipflop IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 T:IN STD_LOGIC;
 Q:OUT STD_LOGIC);
 END COMPONENT T_flipflop;
 SIGNAL T1_signal:STD_LOGIC;
 SIGNAL T2_signal:STD_LOGIC;
 SIGNAL Q1_signal:STD_LOGIC;
 SIGNAL Q2_signal:STD_LOGIC;
 SIGNAL T_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
 SIGNAL Q_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
 T_flipflop_comp_1:
 T_flipflop
 PORT MAP(Clock => Clock,
 Resetn =>Resetn,
 T => T1_signal,
 Q => Q1_signal);

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 13

3 forts.

 T_flipflop_comp_2:
 T_flipflop
 PORT MAP(Clock => Clock,
 Resetn =>Resetn,
 T => T2_signal,
 Q => Q2_signal);

 T1_signal <= (NOT(w) AND Q2_signal) OR
 (w AND NOT(Q2_signal));
 T2_signal <= (NOT(Q2_signal) AND NOT(Q1_signal)) OR
 (w AND Q2_signal);
 T_vector_signal <= T2_signal & T1_signal;
 Q_vector_signal <= Q2_signal & Q1_signal;
 z <= Q2_signal AND Q1_signal;

END arch_S3;

som vi simulerar med en do-fil

-- ex8_1_logic_T.do
restart -f -nowave
view signals wave
add wave Clock Resetn w T2_signal T1_signal Q2_signal
add wave Q1_signal -radix binary T_vector_signal Q_vector_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force w 0
force Resetn 0
run 225ns
force Resetn 1
run 400ns
force w 1
run 400ns
force w 0
run 400ns

4 Lös uppgift 1 med beteendemässig VHDL-kod

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 14

4 forts.

Då vi skall använda beteendemässig kod så återgår vi till
vår ursprungliga tillståndstabell som vi upprepar i Figur
S4a. Vi ersätter tillståndsvariablerna y2 och y1 med till-
ståndsnamn, Figur S4b.
Om vi använder tre processer så får vi koden

-- S4.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S4 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S4;

ARCHITECTURE arch_S4 OF S4 IS
 TYPE state_type IS (A,B,C,D);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
BEGIN
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=A;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,w)
 BEGIN
 CASE state_signal IS
 WHEN A =>
 IF w = '1' THEN
 next_state_signal <= D;
 ELSE
 next_state_signal <= C;
 END IF;
 WHEN B =>
 IF w = '1' THEN
 next_state_signal <= B;

Present
state

Next state Output
w=0 w=1

y2 y1 y2 y1 y2 y1 z
0 0 1 0 1 1 0
0 1 0 1 0 0 0
1 0 1 1 0 0 0
1 1 1 0 0 1 1

Figur S4a Tillståndstabell

Tillstånds-
variabler

Tillstånd

y2 y1
0 0 A
0 1 B
1 0 C
1 1 D

Figur S4b Tillstånds-
tilldelning

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 15

4 forts.
 ELSE
 next_state_signal <= B;
 END IF;
 WHEN C =>
 IF w = '1' THEN
 next_state_signal <= A;
 ELSE
 next_state_signal <= D;
 END IF;
 WHEN D =>
 IF w = '1' THEN
 next_state_signal <= B;
 ELSE
 next_state_signal <= C;
 END IF;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,w)
 BEGIN
 IF (state_signal=D) THEN
 z <= '1';
 ELSE
 z <= '0';
 END IF;
 END PROCESS assignment_proc;
END arch_S4;

med do-filen

-- S4.do
restart -f -nowave
view signals wave
add wave Clock Resetn w
add wave state_signal next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force w 0
force Resetn 0
run 225ns
force Resetn 1
force w 0
run 100ns
force w 1
run 100ns
force w 0
run 100ns

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 16

4 forts.

force w 1
run 400ns
force w 0
run 200ns
force w 1
run 200ns
force w 0
run 200ns
force w 1
run 400ns

5 Ta fram en tillståndsdiagrammet för en tillståndsmaskin av Mooretyp som ger utsignalen z värdet
ett (1) om vi via ingången w har detekterat någon av sekvenserna 110 eller 101. Sekvenserna kan
vara överlappande

Vi skall få en etta (1) ut från vår tillstånds-
maskin om vi har identifierat någon av seri-
erna 110 eller 101 hos insignalen. Serierna
får vara överlappande. Vi ritar tillstånds-
graf för en lämplig Mooremaskin, Figur S5a
och tecknar tillståndstabellen, Figur S5b.

Låt oss skriva VHDL-kod

-- ex8_5.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S5 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S5;

ARCHITECTURE arch_S5 OF S5 IS
 TYPE state_type IS (A,B,C,D,E,F);
 SIGNAL state_signal:state_type;
 SIGNAL nextState_signal:state_type;
BEGIN
 state_transition_proc:

A B C D

E F

1

0

1 0

1

0

0
z=0

z=1

z=0

z=0
0

1

1

z=1z=0

0

1

Figur S5a Tillståndsgraf för Mooremaskin

Present

state
Next state Output

w=0 w=1 z
A A B 0
B E C 0
C D C 0
D A F 1
E A F 0
F E C 1

Figur S5b Tillståndstabell för
Mooremaskin

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 17

5 forts.

 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=A;
 ELSIF rising_edge(Clock) THEN
 state_signal<=nextState_signal;
 END IF;
 END PROCESS state_transition_proc;

 flow_proc:
 PROCESS(state_signal,w)
 BEGIN
 CASE state_signal IS
 WHEN A =>
 IF w = '1' THEN
 nextState_signal <= B;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN B =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= E;
 END IF;
 WHEN C =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= D;
 END IF;
 WHEN D =>
 IF w = '1' THEN
 nextState_signal <= F;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN E =>
 IF w = '1' THEN
 nextState_signal <= F;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN F =>
 IF w = '1' THEN
 nextState_signal <= C;

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 18

5 forts.

 ELSE
 nextState_signal <= E;
 END IF;
 WHEN OTHERS =>
 END CASE;
 END PROCESS flow_proc;

 signal_assignment_proc:
 PROCESS(state_signal)
 BEGIN
 IF ((state_signal=D) OR
 (state_signal=F)) THEN
 z <= '1';
 ELSE
 z <= '0';
 END IF;
 END PROCESS signal_assignment_proc;
END arch_S5;

Vi skriver en do-fil för simulering

-- S5.do
restart -f -nowave
view signals wave
add wave Clock Resetn w state_signal nextState_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force w 0
force Resetn 0

run 225ns
force Resetn 1
force w 0
run 100ns
force w 1
run 100ns
#1
force w 0
run 100ns
#10
force w 1
run 400ns
#101111
force w 0
run 100ns
#1011110->1
force w 1

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 19

5 forts.

run 200ns
#101111011
force w 0
run 100ns
#1011110110->1
force w 1
run 400ns
#101111011001111->1000

6 Upprepa uppgift 5 med hjälp av en tillståndsmaskin av Mealytyp

Vi ritar tilståndsgraf, Figur S6a och översätter till
tillståndstabell, Figur S6b

Vi skriver VHDL-kod

-- S6a.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S6a IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S6a;

ARCHITECTURE arch_ S6a OF S6a IS
 TYPE state_type IS (A,B,C,E,F);
 SIGNAL state_signal:state_type;
 SIGNAL
nextState_signal:state_type;
BEGIN
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=A;
 ELSIF rising_edge(Clock) THEN
 state_signal<=nextState_signal;
 END IF;
 END PROCESS state_transition_proc;

 flow_proc:

A B C

E F

1

0

1

0

0

w=0/1->
z=1/0

z=0

z=0
0

1

1

z=0

1

w=0/1->
z=0/1

0

Figur S6a Tillståndsgraf för Mealymaskin

Preset
state

Next state Output z
w=0 w=1 w=0 w=1

A A B 0 0
B E C 0 0
C E C 1 0
E A F 0 1
F E C 0 0

Figur S6b Tillståndstabell för
Mealymaskin

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 20

6 forts.

PROCESS(state_signal,w)
 BEGIN
 CASE state_signal IS
 WHEN A =>
 IF w = '1' THEN
 nextState_signal <= B;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN B =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= E;
 END IF;
 WHEN C =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= E;
 END IF;
 WHEN E =>
 IF w = '1' THEN
 nextState_signal <= F;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN F =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= E;
 END IF;
 WHEN OTHERS =>

 END CASE;
 END PROCESS flow_proc;

 signal_assignment_proc:
 PROCESS(state_signal,w)
 BEGIN
 IF (((state_signal=C) AND (w='0'))OR
 ((state_signal=E) AND (w='1'))) THEN
 z <= '1';
 ELSE
 z <= '0';
 END IF;

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 21

5 forts.

 END PROCESS signal_assignment_proc;
END arch_ S6a;

Vi ser ur tabellen i Figur S66b att tillstånd B och F
är likadana varför vi kan slå ihop dem till ett enda
tillstånd. Vi behåller tillstånd B och tar bort till-
stånd E och får Figur S6c som ger tillståndsgrafen
i Figur S6d som vi åter skriver VHDL-kod för

-- St.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY S6 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S6;

ARCHITECTURE arch_S6 OF 6 IS
 TYPE state_type IS (A,B,C,E);
 SIGNAL
state_signal:state_type;
 SIGNAL
nextState_signal:state_type;
BEGIN
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=A;

 ELSIF rising_edge(Clock) THEN
 state_signal<=nextState_signal;
 END IF;
 END PROCESS state_transition_proc;

A B C

E

1

0

1

0

w=0/1->
z=1/0

z=0

z=0
0 1

1

w=0/1->
z=0/1

0

Figur S6cdModifierad tillståndsgraf för
Mealymaskin

Present
state

Next state Output z
w=0 w=1 w=0 w=1

A A B 0 0
B E C 0 0
C E C 1 0
E A B 0 1

Figur S6c Modifierad tillståndsgraf för
Mealymaskin

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 22

6 forts.

 flow_proc:
 PROCESS(state_signal,w)
 BEGIN
 CASE state_signal IS
 WHEN A =>
 IF w = '1' THEN
 nextState_signal <= B;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN B =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= E;
 END IF;
 WHEN C =>
 IF w = '1' THEN
 nextState_signal <= C;
 ELSE
 nextState_signal <= E;
 END IF;
 WHEN E =>
 IF w = '1' THEN
 nextState_signal <= B;
 ELSE
 nextState_signal <= A;
 END IF;
 WHEN OTHERS =>

 END CASE;
 END PROCESS flow_proc;

 signal_assignment_proc:
 PROCESS(state_signal,w)
 BEGIN
 IF (((state_signal=C) AND (w='0')) OR
 ((state_signal=E) AND (w='1'))) THEN
 z <= '1';
 ELSE
 z <= '0';
 END IF;
 END PROCESS signal_assignment_proc;
END arch_ex8_6_v2;

Vi kan åter simulera med samma do-fil som i exempel S5.

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 23

7 Minimera tillståndstabellen i Fi-
gur E7 med de två insignalerna D
och N och utsignalen z

Vi ritar tillstådsgraf, Figur S7a

Present
state

Next state Output
DN

00 01 10 11 z
S1 S1 S3 S2 - 0
S2 S2 S4 S5 - 0
S3 S3 S6 S7 - 0
S4 S1 - - - 1
S5 S3 - - - 1
S6 S6 S8 S9 0
S7 S1 - - - 1
S8 S1 - - - 1
S9 S3 - - - 1

Figur E7

S1

S2

00

z=0

z=1S4

S3

S5S6

S7

z=1

S8

S9

10

01

z=0

z=0

z=0

z=1

z=1

z=1
00

01

10

00

01

10

00

00

00

01

10

00

00
00

Figur S7a Tillståndsgraf för Figur E7

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 24

7 forts.

Vi börjar med att ställa upp
en tabell över alla möjliga
tillståndsekvivalenter, Figur
S7b

I tabellen dimmar vi alla
tillståndsekvivalenter som
är omöjliga på grund av att
tillstånden har olika
utsignaler, Figur S7c

För att två tillstånd skall
vara ekvivalenta så
måste även de efter-
följande tillstånden, dvs
de tillstånd till vilka vi
går från aktuellt tillstånd
vara ekvivalenta. Vi
skriveri de odimmade
rutorna in de par av
efterföljande tillstånd
som måste vara
ekvivalenta för att de två
aktuella tillstånden skall
vara ekvivalenta. Ingår
de två aktuella tillstån-
den i paret av efterföljande tillstånd så behöver vi inte skriva in dem eftersom det är dessa som vi
vill slå ihop. Vi behöver inte heller skriva in ett par som redan är en ekvivalens, dvs är ett och samma
tillstånd, Figur S7d.

S2
S3
S4
S5
S6
S7
S8
S9
 S1 S2 S3 S4 S5 S6 S7 S8

Figur S7c Tabell 2 för tillståndsminimering

S2 S3,S4
S2,S5

S3 S3,S6
S2,S7

S4,S6
S5,S7

S4
S5 S1,S3
S6 S3,S8

S2,S9
S4,S8
S5,S9

S6,S8
S7,S9

S7 S1,S3
S8 S1,S3
S9 S1,S3 S1,S3 S1,S3
 S1 S2 S3 S4 S5 S6 S7 S8

Figur S7d Tabell 2 för tillståndsminimering

S2
S3
S4
S5
S6
S7
S8
S9
 S1 S2 S3 S4 S5 S6 S7 S8

Figur S7b Tabell 1 för tillståndsminimering med alla möjliga
tillståndsekvivalenter

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 25

7 forts.

Vi fortsätter ge-
nom att dimma ut
ekvivalenter där vi
har skrivit in till-
ståndspar som vi
redan har dömt
som inte ekviva-
lenta genom att vi
har dimmat ut
dem, Figur S7e.
Detta har nu givit
upphov till nya
dimningar, dvs till-
stånd som inte
kan vara ekviva-
lenter och vi kan
upprepa föregå-
ende uteslutning
av ekvivalenter
med hjälp av de
nya dimningarna,
Figur S7f.Vi
kommer inte
längre och vi ritar
relationsgraf,
Figur S7g.
Vi ser att vi kan slå
ihop tillstånd S4,
S7 och S8 samt till-
stånd S5 och S9. Låt oss behålla tillstånd S4 och
S5. Efter dessa sammanslagningar ser vi också att
vi kan slå ihop tillstånd S2 och S6, vi behåller S2
och tecknar den minimerade tillståndstabellen,
Figur S7h.
Låt oss först rita upp den nya tillståndsgrafen,
Figur S7i

S2 S3,S4
S2,S5

S3 S3,S6
S2,S7

 S4,S6
S5,S7

S4
S5 S1,S3
S6 S3,S8

S2,S9
 S4,S8

S5,S9
S6,S8
S7,S9

S7 S1,S3
S8 S1,S3
S9 S1,S3 S1,S3 S1,S3
 S1 S2 S3 S4 S5 S6 S7 S8

Figur S7e Tabell 2 för tillståndsminimering

S1 S2

S3

S4

S5

S6

S7

S8

S9

Figur S7g Relationsgraf

S2 S3,S4
S2,S5

S3 S3,S6
S2,S7

S4,S6
S5,S7

S4
S5 S1,S3
S6 S3,S8

S2,S9
S4,S8
S5,S9

S6,S8
S7,S9

S7 S1,S3
S8 S1,S3
S9 S1,S3 S1,S3 S1,S3
 S1 S2 S3 S4 S5 S6 S7 S8

Figur S7f Tabell 2 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 26

7 forts.

Låt oss göra en implementering med D-vippor

Vi ger tillstånden värden samt inför D-vippor, Figur S7j

Här har vi fem
variabler så det är
hanterligt att logik-
minimera med hjälp
av Karnaughdiagram,
Figur S7k-n

02 QDD ⋅=

Present
state

D-flipflops Next state

Output
012 DDD 012 QQQ

012 QQQ
DN DN

00 01 10 11 00 01 10 11 z

000 000 010 001 --- 000 010 001 --- 0
001 001 011 100 --- 001 011 100 --- 0
010 010 001 011 --- 010 001 011 --- 0
011 000 --- --- --- 000 --- --- --- 1
100 010 --- --- --- 010 --- --- --- 1

Figur S7j Tillståndstabell

0

0

0x0

0 1x

0

0

xxx

0 0x

0

x

xxx

x xx

x

x

xxx

x xx

DN
00 11 1001

00

11

10

01
Q1Q0

Q2=0 DN
00 11 1001

00

11

10

01
Q1Q0

Q2=1

D2

DQ0

Figur S7k Karnaughdiagram för D2

Present
state

Next state Output
DN

00 01 10 11 z
S1 S1 S3 S2 - 0
S2 S2 S4 S5 - 0
S3 S3 S2 S4 - 0
S4 S1 - - - 1
S5 S3 - - - 1

Figur S7h Minimerad tillståndstabell

S1

S2 00

z=0

S4 S3

S5

10

01

00

z=0

z=0

z=1

01

10

00

z=1

01

10

00
00

Figur S7i Minimerad tillståndsgraf

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 27

7 forts.

01121 QQNQNQD ⋅⋅+⋅+=

010100 QQDQQNQDD ⋅⋅+⋅⋅+⋅=

0

1

1x0

1 0x

0

0

xxx

1 1x

0

x

xxx

x xx

x

x

xxx

x xx

DN
00 11 1001

00

11

10

01
Q1Q0

Q2=0 DN
00 11 1001

00

11

10

01
Q1Q0

Q2=1

D0

NQ1Q0

DQ0DQ1Q0

Figur S7m Karnaughdiagram för D0

0

0

0x1

1 0x

0

1

xxx

0 1x

1

x

xxx

x xx

x

x

xxx

x xx

DN
00 11 1001

00

11

10

01
Q1Q0

Q2=0 DN
00 11 1001

00

11

10

01
Q1Q0

Q2=1

D1

NQ1

NQ1Q0 Q2
Figur S7l Karnaughdiagram för D1

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 28

7 forts.

012 QQQz ⋅+=

För att kunna testa kretsen så måste vi se vad våra logik har gjort av don´t care-tillstånden. Vi upp-
daterar tillståndstabellen, Figur S7o.

Det är möjligt att en annan tilldelning av värden till tillstånden skulle ge en enklare implementering.
Vi går inte in på detta

8 Skriv VHDL-kod för både den ominimerade och den minimerade tillståndstabellen i uppgift 7

Vi börjar med den ominimerade tillståndsmaskinen från figur S7a

-- S8_omin.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

0

0

0x0

0 0x

1

0

xxx

0 0x

1

x

xxx

x xx

x

x

xxx

x xx

DN
00 11 1001

00

11

10

01
Q1Q0

Q2=0 DN
00 11 1001

00

11

10

01
Q1Q0

Q2=1

z

Q1Q0 Q2
Figur S7n Karnaughdiagram för utsignalen z

Present
state

D-flipflops Next state

Output
012 DDD 012 QQQ

012 QQQ
DN DN

00 01 10 11 00 01 10 11 z

000 000 010 001 011 000 010 001 011 0
001 001 011 100 110 001 011 100 110 0
010 010 001 011 001 010 001 011 001 0
011 000 000 100 100 000 000 100 100 1
100 010 010 011 011 010 010 011 011 1
101 011 011 110 110 011 011 110 110 1
110 010 011 011 011 010 011 011 011 1
111 010 010 110 110 010 010 110 110 1

Figur S7o Tillståndstabell med realiserade värden för don´t care-tillstånd

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 29

8 forts.

ENTITY S8_omin IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 D:IN STD_LOGIC;
 N:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S8_omin;

ARCHITECTURE arch_ S8_omin OF S8_omin IS
 TYPE state_type IS (S1,S2,S3,S4,S5,S6,S7,S8,S9);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 SIGNAL DN_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
 DN_vector_signal <= D & N;
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=S1;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,DN_vector_signal)
 BEGIN
 CASE state_signal IS
 WHEN S1 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S1;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S3;
 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S2;
 END IF;
 WHEN S2 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S2;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S4;
 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S5;
 END IF;

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 30

8 forts.
 WHEN S3 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S3;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S6;
 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S7;
 END IF;
 WHEN S4 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S1;
 END IF;
 WHEN S5 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S3;
 END IF;
 WHEN S6 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S6;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S8;
 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S9;
 END IF;
 WHEN S7 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S1;
 END IF;
 WHEN S8 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S1;
 END IF;
 WHEN S9 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S3;
 END IF;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,DN_vector_signal)
 BEGIN
 IF ((state_signal=S4) OR
 (state_signal=S5) OR
 (state_signal=S7) OR
 (state_signal=S8) OR
 (state_signal=S9)) THEN
 z <= '1';

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 31

8 forts.
 ELSE
 z <= '0';
 END IF;
 END PROCESS assignment_proc;
END arch_S8_omin;

Vi simulerar med en do-fil

-- S8_omin.do
restart -f -nowave
view signals wave
add wave Clock Resetn D N
add wave -radix binary DN_vector_signal
add wave state_signal next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force D 0
force N 0
force Resetn 0
run 225ns
force Resetn 1
force D 0
run 400ns
force D 1
run 400ns
force D 0
run 400ns
force N 1
run 400ns
force N 0
run 400ns
force D 1
run 400ns
force D 0
run 400ns
force N 1
run 400ns

Vi övergår till den minimerade tillståndsmaskinen

-- S8_min.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 32

8 forts.

ENTITY S8_min IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 D:IN STD_LOGIC;
 N:IN STD_LOGIC;
 z:OUT STD_LOGIC);
END S8_min;

ARCHITECTURE arch_S8_min OF S8_min IS
 TYPE state_type IS (S1,S2,S3,S4,S5);
 SIGNAL state_signal:state_type;
 SIGNAL next_state_signal:state_type;
 SIGNAL DN_vector_signal:STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN
 DN_vector_signal <= D & N;
 state_transition_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 state_signal<=S1;
 ELSIF rising_edge(Clock) THEN
 state_signal<=next_state_signal;
 END IF;
 END PROCESS state_transition_proc;

 stateflow_proc:
 PROCESS(state_signal,DN_vector_signal)
 BEGIN
 CASE state_signal IS
 WHEN S1 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S1;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S3;
 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S2;
 ELSE
 next_state_signal <= S1;
 END IF;
 WHEN S2 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S2;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S4;
 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S5;

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 33

8 forts.
 ELSE
 next_state_signal <= S1;
 END IF;
 WHEN S3 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S3;
 ELSIF (DN_vector_signal = "01") THEN
 next_state_signal <= S2;

 ELSIF (DN_vector_signal = "10") THEN
 next_state_signal <= S4;
 ELSE
 next_state_signal <= S1;
 END IF;
 WHEN S4 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S1;
 ELSE
 next_state_signal <= S1;
 END IF;
 WHEN S5 =>
 IF (DN_vector_signal = "00") THEN
 next_state_signal <= S3;
 ELSE
 next_state_signal <= S1;
 END IF;
 END CASE;
 END PROCESS stateflow_proc;

 assignment_proc:
 PROCESS(state_signal,DN_vector_signal)
 BEGIN
 IF ((state_signal=S4) OR
 (state_signal=S5)) THEN
 z <= '1';
 ELSE
 z <= '0';
 END IF;
 END PROCESS assignment_proc;
END arch_S8_min;

Vi simulerar åter med en do-fil

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 34

8 forts.

-- S8_min.do
restart -f -nowave
view signals wave
add wave Clock Resetn D N
add wave -radix binary DN_vector_signal
add wave state_signal next_state_signal z
force Clock 0 0, 1 50ns -repeat 100ns
force D 0
force N 0
force Resetn 0
run 225ns
force Resetn 1
force D 0
run 400ns
force D 1
run 400ns
force D 0
run 400ns
force N 1
run 400ns
force N 0
run 400ns
force D 1
run 400ns
force D 0
run 400ns
force N 1
run 400ns

9 Ta fram tillståndstabellen för en tillståndsmaskin som skall detektera en sekvens av fyra värden på
ingången w. Utsignalen z ska bli ett (1) om sekvensen är 0010 eller 1110. I övriga fall ska utsignalen
bli noll (0). Efter en sekvens om fyra värden ska tillståndsmaskenen börja om med en ny sekvens,
dvs sekvenserna kan inte vara överlappande. Minimera tillståndstabellen

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 35

9 forts.

Vi översätter funktionsbeskriv-
ningen, att vi skall få en etta (1)
som utsignal om vi har haft
pulssekvensen 0010 eller puls-
sekvensen 1110 och i annat fall
en nolla (0), till tillståndsgrafen
för en tillståndsmaskin av
Mooretyp, Figur S9a. Efter fyra
klockpulser skall vi alltid återgå
till starttillståndet

Från tillståndsgrafen tecknar vi tillståndstabellen, Figur S9b,
som vi även skriver som ett partionsuttryck

()JIHGFEDCBAP ,,,,,,,,,1 =

A B C D E

F

0
z=1

G

H

1

JI
1

1 1

0 0

1

-

0

-
-

-

z=0

z=0
z=0

z=0

z=0

z=0

z=0

z=0

z=0

0
1

0

Figur S9a Tillståndsgraf

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F G H 0
G I D 0
H I I 0
I J J 0
J A A 0

Figur S9b Tillståndstabell

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 36

9 forts.

Vi börjar tillståndsminimeringen med att dela in tabellen
i tillstånd som skiljer sig genom att de ger olika utsignal.
Vi ser att här är det tillstånd E som skiljer sig från de öv-
riga och vi får ett nytt partionsuttryck samt en ny tabell,
Figur S9c

()()EJIHGFDCBAP ,,,,,,,,2 =

Vi fortsätter med att titta på vilka tillstånd vi går till från
nuvarande tillstånd då w=0 respektive då w=1. För att vi
skall kunna slå ihop tillstånden så måste efterföljande
tillstånd vid respektive insignal tillhöra samma partion. Vi
ser att tillstånd D skiljer sig från de andra tillstånden i den
första gruppen genom att ge en övergång till den andra
gruppen. Vi får ett nytt partionsuttryck och en ny tabell,
Figur S9d

()()()EDIHGFDCBAP ,,,,,,,,3 =

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
F G H 0
G I D 0
H I I 0
I J J 0
J A A 0
E A A 1

Figur S9c minimeringstabell 1

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
F G H 0
G I D 0
H I I 0
I J J 0
J A A 0
D E J 0
E A A 1

Figur S9d minimeringstabell 2

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 37

9 forts.

Vi har nu fått nya partioner som vi kan granska på samma
sätt. Vi ser att tillstånden C och G går till en annan partion
än de andra tillstånden i den första gruppen. De går dock
till samma grupp vilket innebär att de har en egen part-
ion. Vi får ett nytt partionsuttryck och en ny tabell, Figur
S9e

()()()()EDGCJHFBAP ,,1,,,,4 =

Vi fortsätter på samma sätt och ser att i den första
partionen går tillstånd B och F till andra partioner, de
går dock inte till samma partioner så de får var och en
läggas i en egen ny partion. Vi får ett nytt part-
ionsuttryck och en ny tabell, Figur S9f

()()()()()()FEDGCBJIHAP ,,,,5 =

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
F G H 0
H I I 0
I J J 0
J A A 0
C I D 0
G I D 0
D E J 0
E A A 1

Figur S9e minimeringstabell 3

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
H I I 0
I J J 0
J A A 0
B H C 0
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0

Figur S9f minimeringstabell 4

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 38

9 forts.

Vi fortsätter och ser att tillstånd A går till en annan part-
ion än vad övriga tillstånd i den första partionen går. A
får alltså en egen partion och vi får ett nytt
partionsuttryck och en ny tabell, Figur S9g

()()()()()()()JIHFEDGCBAP ,,,5 =

Vi ser nu att i den sista partionen går tillstånd J till en
annan partion än övriga tillstånd och den får en egen
partion. Vi får ett nytt partionsuttryck och en ny tabell,
Figur S9h

()()()()()()()()JIHFEDGCBAP ,,6 =

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0
H I I 0
I J J 0
J A A 0

Figur S9g minimeringstabell 5

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0
H I I 0
I J J 0
J A A 0

Figur S9 minimeringstabell 6

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 39

9 forts.

Vi kan nu se att tillstånd H och I går till olika partioner så
de får delas upp i två partioner. Vi skriver ett nytt part-
ionsuttryck och tecknar en ny tabell, Figur S9i

()()()()()()()()()JIHFEDGCBAP ,7 =

Vi kommer nu inte längre och kan konstatera att vi kan
slå samman tillstånd C med tillstånd G. Behåller vi
tillstånd C så får vi tillståndstabellen i Figur S9j

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F C H 0
H I I 0
I J J 0
J A A 0

Figur S9j Minimerad
tillståndstabell

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
G I D 0
D E J 0
E A A 1
F G H 0
H I I 0
I J J 0
J A A 0

Figur S9i minimeringstabell 7

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 40

9 forts.
Vi skall nu se på en annan metod för tillståndsminimering
som är lite enklare att hantera med penna och papper. Vi
upprepar den ursprungliga tillståndstabellen för att ha
den tillgänglig, Figur S9k.

Vi ställer upp en tabell över alla möjliga tillståndsekvivalenter, Figur S9l

I tabellen dimmar vi alla tillståndsekvivalenter som är omöjliga på grund av att tillstånden har
olika utsignaler, vi ser enkelt att tillstånd E har avvikande utsignal från de andra tillstånden, Figur
S9m

B
C
D
E
F
G
H
I
J
 A B C D E F G H I

Figur S9l Tabell 1 för tillståndsminimering med alla möjliga
tillståndsekvivalenter

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F G H 0
G I D 0
H I I 0
I J J 0
J A A 0

Figur S9k Tillståndstabell

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 41

9 forts.

För att två tillstånd skall vara ekvivalenta så måste även de efterföljande tillstånden, dvs de till-
stånd till vilka vi går från aktuellt tillstånd vara ekvivalenta. Vi skriver i de odimmade rutorna in
de par av efterföljande tillstånd som måste vara ekvivalenta för att de två aktuella tillstånden
skall vara ekvivalenta. Ingår de två aktuella tillstånden i paret av efterföljande tillstånd så
behöver vi inte skriva in dem eftersom det är dessa som vi vill slå ihop. Vi behöver inte heller
skriva in ett par som redan är en ekvivalens, dvs är ett och samma tillstånd, Figur S9n

Vi fortsätter genom att dimma ut ekvivalenter där vi har skrivit in tillståndspar som vi redan har
dömt som inte ekvivalenta genom att vi har dimmat ut dem, Figur S9o

B
C
D
E
F
G
H
I
J
 A B C D E F G H I

Figur S9m Tabell 2 för tillståndsminimering

B B,C
F,H

C B,D
F,I

C,D
H,I

D B,J
E,F

C,J
E,H

D,J
E,I

E
F B,H

F,G
C,H
G,H

D,H
G,I

E,G
H,J

G B,D
F,I

C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur S9n Tabell 3 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 42

9 forts.

Detta har nu givit upphov till nya dimningar, dvs tillstånd som inte kan vara ekvivalenter och vi
kan upprepa föregående uteslutning av ekvivalenter med hjälp av de nya dimningarna, Figur S9p

B B,C
F,H

C B,D
F,I

C,D
H,I

D B,J
E,F

C,J
E,H

D,J
E,I

E
F B,H

F,G
C,H
G,H

D,H
G,I

E,G
H,J

G B,D
F,I

C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur s9o Tabell 4 för tillståndsminimering

B B,C
F,H

C B,D
F,I

 C,D
H,I

D B,J
E,F

 C,J
E,H

D,J
E,I

E
F B,H

F,G
 C,H

G,H
D,H
G,I

E,G
H,J

G B,D
F,I

 C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

 C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

 C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

 A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur E8.11p Tabell 5 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 43

9 forts.

Detta ger upphov till ytterligare tillstånd som inte kan vara ekvivalenter och vi kör ett varv till,
Figur S9q

Detta ger upphov till ytterligare nya icke-ekvivalenta tillstånd, Figur S9r

B B,C
F,H

C B,D
F,I

C,D
H,I

D B,J
E,F

C,J
E,H

D,J
E,I

E
F B,H

F,G
C,H
G,H

D,H
G,I

E,G
H,J

G B,D
F,I

C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur S9q Tabell 6 för tillståndsminimering

B B,C
F,H

C B,D
F,I

C,D
H,I

D B,J
E,F

C,J
E,H

D,J
E,I

E
F B,H

F,G
C,H
G,H

D,H
G,I

E,G
H,J

G B,D
F,I

C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur S9r Tabell 7 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 44

9 forts.

Vi kör ett varv till, Figur S9s

och ett varv till, Figur S9t

B B,C
F,H

C B,D
F,I

C,D
H,I

D B,J
E,F

C,J
E,H

D,J
E,I

E
F B,H

F,G
C,H
G,H

D,H
G,I

E,G
H,J

G B,D
F,I

C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur S9s Tabell 8 för tillståndsminimering

B B,C
F,H

C B,D
F,I

C,D
H,I

D B,J
E,F

C,J
E,H

D,J
E,I

E
F B,H

F,G
C,H
G,H

D,H
G,I

E,G
H,J

G B,D
F,I

C,D
H,I

 D,J
E,I

 D,H
G,I

H B,I
F,I

C,I
H,I

D,I E,I
I,J

 G,I
H,I

D,I

I B,J
F,J

C,J
H,J

D,J
I,J

E,J G,J
H,J

D,J
I,J

I,J

J A,B
A,F

A,C
A,H

A,D
A,I

A,E
A,J

 A,G
A,H

A,D
A,I

A,I A,J

 A B C D E F G H I

Figur S9t Tabell 9 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 45

9 forts.

eftersom det enda
kvarstående möj-
liga ekvivalenspa-
ret saknar
efterföljande par
som måste vara ek-
vivalenter så
kommer vi inte
längre och kan dra
slutsats att vi kan
slå ihop tillstånd C
och tillstånd G och
vi får den
minimerade
tillståndstabellen,
Figur S9u, som är
likadan som Figur S9j som vi fick från den första
metoden.
Låt oss rita upp den förenklade tillståndsgrafen, Figur
Sv

10 Ta fram och minimera tillståndstabellen för en tillståndsmaskin som detekterar om antalet ettor

(1) i en trebitars sekvens på ingången w är udda eller jämnt. Udda antal ettor skall sätta utsignalen
z till ett (1). Trebitarssekvenserna är kan inte vara överlappande

Pre-
sent
state

Next state Out-
put

w=0 w=1 z
A F B 0
B H C 0
C I D 0
D E J 0
E A A 1
F C H 0
H I I 0
I J J 0
J A A 0

Figur S9u Minimerad
tillståndstabell

A B C D E

F

0
z=1

H

1

JI
1

1 1

0

-

0

-
-

-

z=0

z=0
z=0

z=0

z=0

z=0

z=0

z=0

0
1

0

Figur S9v Förenklad tillståndsgraf

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 46

10 forts.

Vi får tillståndsdiagrammet i Figur
S10a

Från tillståndsgrafen tecknar vi tillståndstabel-
len, Figur S10b, och börjar till-
ståndsmimimeringen med att ställa upp en
tabell över alla möjliga tillståndsekvivalenter,
Figur E8.12c

B
C
D
E
F
 A B C D E

Figur S10c Tabell för tillståndsminimering
med alla möjliga tillståndsekvivalenter

A C

E

D

F

0

z=0
z=0

B
1 1 1

0

z=0 z=0

z=0

z=1

1
00

0

10

1

Figur S10a Tillståndsdiagram

Present
state

Next state Output
w=0 w=1 z

A E B 0
B F C 0
C A D 0
D E B 1
E C F 0
F D A 0

Figur S10b Tillståndstabell

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 47

10 forts.

I tabellen dimmar vi alla ekvivalenter som är
omöjliga på grund av att tillstånden har olika
utsignaler, vi ser enkelt att tillstånd D har
enutsignal som avviker från övriga tillstånd,
Figur S10d

För att två tillstånd skall vara ekvivalenta så
måste även de efterföljande tillstånden, dvs de
tillstånd till vilka vi går från aktuellt tillstånd
vara ekvivalenta. Vi skriver i de odimmade
rutorna in de par av efterföljande tillstånd som
måste vara ekvivalenta för att de två aktuella
tillstånden skall vara ekvivalenta. Ingår de två
aktuella tillstånden i paret av efterföljande
tillstånd så behöver vi inte skriva in dem
eftersom det är dessa som vi vill slå ihop. Vi
behöver inte heller skriva in ett par som redan
är en ekvivalens, dvs är ett och samma till-
stånd, Figur S10e.
Vi fortsätter genom att dimma ut ekvivalenter
där vi har tillståndspar som vi redan har dömt
som inte ekvivalenta genom att vi har dimmat
ut dem, Figur S10f

B
C
D
E
F
 A B C D E

Figur S10d Tabell 2 för tillståndsminimering

B B,C
E,F

C A,E
B,D

A,F
C,D

D
E B,F

C,E
C,F A,C

D,F

F A,B
D,E

A,C
D,F

A,D A,F
C,D

 A B C D E

Figur S10e Tabell 3 för tillståndsminimering

B B,C
E,F

C A,E
B,D

A,F
C,D

D
E B,F

C,E
C,F A,C

D,F

F A,B
D,E

A,C
D,F

A,D A,F
C,D

 A B C D E

Figur S10f Tabell 4 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 48

10 forts.

Detta har nu givit upphov till nya dimningar,
dvs tillstånd som inte är ekvivalenter och vi kan
upprepa föregående uteslutning av ekvivalen-
ter med hjälp av de nya dimningarna, Figur
S10g.
Vi ser att alla möjliga ekvivalenter är bort-
dimmade och vi kan dra slutsatsen att vi hade
en minimal tillståndstabell från början

11 Minimera

tillståndstabellen i figur
E11

B B,C
E,F

C A,E
B,D

A,F
C,D

D
E B,F

C,E
C,F A,C

D,F

F A,B
D,E

A,C
D,F

A,D A,F
C,D

 A B C D E

Figur E8.12g Tabell 5 för
tillståndsminimering

Present
state

Next state Output
w1=0 w1=1 w1=0 w1=1

A B C 0 0
B D - 0 0
C F E 0 1
D B G 0 0
E F C 0 1
F E D 0 1
G F - 0 1

Figur E11 Modifierad tillståndstabell

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 49

11 forts.

Låt oss först rita tillståndsdiagram, Figur S11a

Vi börjar vår tillståndsminimering
med att ställa upp en tabell över alla
möjliga tillståndsekvivalenter, Figur
S11b

I tabellen dimmar vi alla ekvivalenter
som är omöjliga på grund av att till-
stånden har olika utsignal, Figur S11c

För att två tillstånd skall vara ekvivalenta så måste även de efterföljande tillstånden, dvs de tillstånd
till vilka vi går från aktuellt tillstånd vara ekvivalenta. Vi skriver i de odimmade rutorna in de par av
efterföljande tillstånd som måste vara ekvivalenta för att de två aktuella tillstånden skall vara
ekvivalenta.

11 forts.

B
C
D
E
F
G
 A B C D E F

Figur S11b Tabell för tillståndsminimering

B
C
D
E
F
G
 A B C D E F

Figur S11c Tabell 2 för tillståndsminimering

A

B

C

DE

F

G

0

1

z=0/0

z=0/1

z=0/0

z=0/0z=0/1

z=0/1

z=0/1

00

1

0
1

0

1

1
0

0

Figur S11a Tillståndsgraf

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 50

Ingår de två aktuella tillstånden i
paret av efterföljande tillstånd så
behöver vi inte skriva in dem
eftersom det är dessa som vi vill slå
ihop. Vi behöver inte heller skriva in
ett par som redan är en ekvivalens,
dvs är ett och samma tillstånd, Figur
S11d.
Vi fortsätter genom att dimma ut par
som vi redan har dömt som icke
ekvivalenta genom att vi har dimmat
ut dem, Figur S11e.

Vi fortsätter på samma sätt, Figur
S11f.

B B,D
C
D C,G
E
F E,F

D,E
 C,D

G E,F
 A B C D E F

Figur S11d Tabell 3 för tillståndsminimering

B B,D
C
D C,G
E
F E,F

D,E
 C,D

G E,F
 A B C D E F

Figur S11e Tabell 4 för tillståndsminimering

B B,D
C
D C,G
E
F E,F

D,E
 C,D

G E,F
 A B C D E F

Figur S11f Tabell 5 för tillståndsminimering

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 51

11 forts.

Vi kommer inte längre i minimeringen och ritar relations-
graf, Figur S11g.

Vi ser att vi kan slå ihop tillstånd A och B eller tillstånd B och
D samt tillstånd C, E och G. Då vi har slagit ihop tillstånd C
och G så ser vi att även A och D kan slås ihop och vi slår ihop
tillstånd A, B och D till ett tillstånd.
Låt oss behålla tillstånd A och C. Vi får den minimerade
tillståndstabellen, Figur S11h.

Vi ritar ny tillståndsgraf, Figur S11i.

12 Använd D-vippor för att konstruera en modulo-6-räknare med sekvensen 0, 1, 2, 3, 4, 5, 0, 1,….

Räknaren räknar klockpulser men bara då ingången w är ett (1).

A

C

F

G

E

B

D

Figur S11g Relationsgraf

Present
state

Next state Output
w1=0 w1=1 w1=0 w1=1

A A C 0 0
C F C 0 1
F C A 0 1

Figur S11h Minimerad tillståndstabell

A C

F

0

1
z=0/0

z=0/1

0

1

01

z=0/1

Figur S11i Minimerad tillståndsgraf

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 52

12 forts.

Vi har tillståndsgrafen i Figur S12a.

För detta behöver vi tre (3) utsignaler (23=8) och även tre (3) vippor. Vi ställer upp tillståndstabel-
len, Figur S12b

Då vi skall använda D-vippor ställer vi upp tillståndstabellen för dessa, Figur S12c, och använder
denna tabell för att införa D-vippor i vår tillståndstabell, S12d

12 forts.

Present
state

Next state Output
w=0 w=1 z2 z1 z0

A A B 0 0 0
B B C 0 0 1
C C D 0 1 0
D D E 0 1 1
E E F 1 0 0
F F A 1 0 1

Figur S12b Tillståndstabell

Present
state

D-
flipflop

Next
state

D
0 0 0
0 1 1
1 0 0
1 1 1

Figur S12c Tillståndstabell för
JK-vippa

Present state D-flipflops Next state Output
w=0 w=1 w=0 w=1

Q2 Q1 Q0 D2 D1 D0 D2 D1 D0 Q2 Q1 Q0 Q2 Q1 Q0 z2 z1 z0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0
0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1
1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0
1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

Figur S12d Tillståndstabell med D-vippor

A B

EF

10

0

0

0

1

1

1

z=000

z=001

z=100

z=101

C

D

0

0

1

z=010

z=011

1

1

Figur S12a Tillståndsgraf

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 53

12 forts.

I tabellen behöver vi egentligen inte ha med D-ingångarna eftersom dom har samma värden som
Q-utgångarna i Next state.
Vi använder Karnaughdiagram för att bestämma villkoren för våra tre insignaler, Figur S12e-g

012022 QQwQwQQD ⋅⋅+⋅+⋅=

0121011 QQQwQwQQD ⋅⋅⋅+⋅+⋅=

0000 QwQwQwD ⊕=⋅+⋅=

Utsignalerna är de samma som vippornas utsignaler.
Det är möjligt att någon annan tilldelning av värden till tillstånden skulle ge en enklare
implementering men vi går inte in på detta

13 Upprepa uppgift 12 med JK-vippor

Vi har tillståndstabellen för en JK-vippa i Figur S13a och
skriver om tillståndstabellen i Figur S12a men för att få
plats så utelämnar vi kolumnerna med utsignaler då
dessa har samma värden som vippornas utsignaler. Vi
får Figur S13b

0 000

Q1Q0
00 11 1001

00

11

10

01
wQ2

1 xx0

1 xx1

0 010

wQ2

Q2Q0

wQ1Q0

D2

Figur S12e Karnaughdiagram för D2

0 110

Q1Q0
00 11 1001

00

11

10

01
wQ2

0 xx0

0 xx0

0 101

wQ1

Q1Q0

D1

wQ2Q1Q0

Figur S12f Karnaughdiagram för D1

0 011

Q1Q0
00 11 1001

00

11

10

01
wQ2

1 xx0

0 xx1

1 100

wQ0

D0

wQ0

Figur S12g Karnaughdiagram för D0

Present
state

JK-flipflop Next
state J K

0 0 x 0
0 1 x 1
1 x 1 0
1 x 0 1

Figur S13a Tillståndstabell för JK-
vippa

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 54

13 forts.

Vi ställer upp Karnaughdiagram för våra insignaler J och K till de tre vipporna, Figur S13c-h

012 QQwJ ⋅⋅=

022 QQwK ⋅⋅=

Present state JK-flipflops Next state
w=0 w=1 w=0 w=1

Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 J2 K2 J1 K1 J0 K0 Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 x 0 x 0 x 0 x 0 x 1 x 0 0 0 0 0 1
0 0 1 0 x 0 x x 0 0 x 1 x x 1 0 0 1 0 1 0
0 1 0 0 x x 0 0 x 0 x x 0 1 x 0 1 0 0 1 1
0 1 1 0 x x 0 x 0 1 x x 1 x 1 0 1 1 1 0 0
1 0 0 x 0 0 x 0 x x 0 0 x 1 x 1 0 0 1 0 1
1 0 1 x 0 0 x x 0 x 1 0 x x 1 1 0 1 0 0 0

Figur S13b Tillståndstabell med D-vippor

0 000

Q1Q0
00 11 1001

00

11

10

01
wQ2

x xxx

x xxx

0 010

wQ1Q0

J2

Figur S13c Karnaughdiagram för J2

x xxx

Q1Q0
00 11 1001

00

11

10

01
wQ2

0 xx1

0 xx0

x x00

wQ2Q0

K2

Figur S13d Karnaughdiagram för K2

0 xx0

Q1Q0
00 11 1001

00

11

10

01
wQ2

0 xx0

0 xx0

0 xx1

J1

wQ2Q0

Figur S13e Karnaughdiagram för J1

x 00x

Q1Q0
00 11 1001

00

11

10

01
wQ2

x xxx

x xxx

x 01x

wQ0

K1

Figur S13f Karnaughdiagram för K1

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 55

13 forts.

021 QQwJ ⋅⋅=

01 QwK ⋅=

wKJ == 00

Och utsignalerna z2, z1 och z0 är alltså de samma som JK-vippornas utsignaler Q2, Q1 respektive
Q0.
Det är möjligt att någon annan tilldelning av värden till tillstånden skulle ge en enklare implemen-
tering men vi går inte in på detta

14 Upprepa uppgift 12 med T-vippor

Vi har tillståndstabellen för en T-vippa i Figur S14a och skriver
om tillståndstabellen i Figur S12a med T-vippor och får Figur
S14b

0 0xx

Q1Q0
00 11 1001

00

11

10

01
wQ2

1 xxx

0 xxx

1 1xx

w

J0

Figur S13 Karnaughdiagram för J0

x x00

Q1Q0
00 11 1001

00

11

10

01
wQ2

x xx1

x xx0

x x11

K0

w

Figur S13 Karnaughdiagram för K0

Present
state

T-
flipflop

Next
state

T
0 0 0
0 1 1
1 1 0
1 0 1

Figur S14a Tillståndstabell för
JK-vippa

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 56

14 forts.

Vi använder Karnaughdiagram för att ta fram de logiska uttrycken för T-signalerna, Figur S15c-e.
Då utsignalerna har samma värden som tillståndsvärdena så behöver vi inte bestämma dessa för
sig.

02012 QQwQQwT ⋅⋅+⋅⋅=

021 QQwT ⋅⋅=

wT =0

Present state T-flipflops Next state Output
w=0 w=1 w=0 w=1

Q2 Q1 Q0 T2 T1 T0 T2 T1 T0 Q2 Q1 Q0 Q2 Q1 Q0 z2 z1 z0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0
0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1
1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0
1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1

Figur S14b Tillståndstabell med D-vippor

0 000

Q1Q0
00 11 1001

00

11

10

01
wQ2

0 xx1

0 xx0

0 010

T2

wQ1Q0

wQ2Q0

Figur S14c Karnaughdiagram för T2

0 000

Q1Q0
00 11 1001

00

11

10

01
wQ2

0 xx0

1 xx0

0 011

T1

wQ2Q0

Figur S14d Karnaughdiagram för T1

0 000

Q1Q0
00 11 1001

00

11

10

01
wQ2

1 xx1

0 xx0

1 111

T0

w

Figur S14e Karnaughdiagram för T0

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 57

15 Ta fram tillståndsgraf och tillståndstabell för en räknarliknande krets med åtta (8) tillstånd 0-7. Är
ingången w ett (1) så skall kretsen räkna uppåt med steget två (2). Då den har mått maxvärde så
skall den göra wrap around, dvs är värdet åtta (8) så skall nästa värde bli noll (0) medan nästa värde
skall bli ett (1) om nuvarande värde är nio (9). Är w noll (0) så skall kretsen fungera som en vanlig
nedräknare med steget ett som gör wrap around då den når noll (0).
Implementera kretsen med hjälp av D-vippor

Vi ritar tillståndsgraf, Figur S15a och tecknar tillståndstabell, Figur S15b, där vi har givit tillstånden
bokstavsbeteckningar

Vi har tillståndstabellen för en D-vippa i Figur S16c.
Värden 0 – 7 innebär at vi behöver tre (3) D-vippor (23=8). Vi
skriver om tillståndstabellen med tilldelade värden på tillstånden
och med D-ingångarnas värden, Figur S16d

Present
state

Next state Count
w=0 w=1

S0 S7 S2 0
S1 S0 S3 1
S2 S1 S4 2
S3 S2 S5 3
S4 S3 S6 4
S5 S4 S7 5
S6 S5 S0 6
S7 S6 S1 7

Figur S15b Tillståndstabell

Present
state

D-
flipflop

Next
state

D
0 0 0
0 1 1
1 0 0
1 1 1

Figur S15c Tillståndstabell för
JK-vippa

S0 S1

S5S6

0

1

S2

S4

1

S7

z=000

S3

z=001
0

0

0

00

0

0
1 1

z=010

z=011

z=100
z=101

z=110

z=111

1

1

1
1

1

Figur S15a Tillståndsgraf

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 58

15 forts.

Vi använder Karnaughdiagram för att söka de logiska villkoren för D-vipporna, Figur S15e-g. Ef-
tersom räknarutgångarna har samma värden som våra vippors utgångar så behöver vi inga egna
uttryck för dessa

0121212012122 QQQwQQwQQwQQQQQwD ⋅⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=

010111 QQwQQQwD ⋅⋅+⋅+⋅=

0000 QwQwQwD ⊕=⋅+⋅=

1 100

Q1Q0
00 11 1001

00

11

10

01
wQ2

0 011

1 100

0 011

D0

wQ0

wQ0

Figur S15g Karnaughdiagram för D0

1 000

Q1Q0
00 11 1001

00

11

10

01
wQ2

1 001

0 111

0 110

D2

Q2Q1Q0

wQ2Q1Q0

wQ2Q1

wQ2Q1

wQ2Q1

Figur S15e Karnaughdiagram för D2

1 010

Q1Q0
00 11 1001

00

11

10

01
wQ2

1 001

1 010

1 001

D1

Q1Q0

wQ1

wQ1Q0

Figur S15f Karnaughdiagram för D1

Present state D-flipflops Next state Output
w=0 w=1 w=0 w=1

Q2 Q1 Q0 D2 D1 D0 D2 D1 D0 Q2 Q1 Q0 Q2 Q1 Q0 z2 z1 z0
0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1
1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0
1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1
1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0
1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1

Figur S15d Tillståndstabell med D-vippor

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 59

16 Skriv VHDL-kod för tillståndstabellen framtagen i uppgift 15

Vi får koden

-- S16.vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

16 forts.

ENTITY S16 IS
 PORT(Clock:IN STD_LOGIC;
 Resetn:IN STD_LOGIC;
 w:IN STD_LOGIC;
 count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));
END S16;

ARCHITECTURE arch_S16 OF S16 IS

 SIGNAL count_signal:INTEGER RANGE 0 TO 7;
BEGIN
 count_proc:
 PROCESS(Resetn,Clock)
 BEGIN
 IF (Resetn='0') THEN
 count_signal<=0;
 ELSIF rising_edge(Clock) THEN
 IF (w='1') THEN
 IF (count_signal = 6) THEN
 count_signal <= 0;
 ELSIF (count_signal = 7) THEN
 count_signal <= 1;
 ELSE
 count_signal <= count_signal + 2;
 END IF;
 ELSE
 IF (count_signal = 0) THEN
 count_signal <= 7;
 ELSE
 count_signal <= count_signal -1;
 END IF;
 END IF;
 END IF;
 END PROCESS count_proc;

EDA322

Digital konstruktion
Några uppgifter om tillståndsmaskiner

Lösningar
page 60

 count <= STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,3));

END arch_S16;

Vi simulerar med en do-fil

-- S16.do
restart -f -nowave
view signals wave
add wave Clock Resetn w
add wave count_signal count
add wave -radix binary count
add wave -unsigned count
force Clock 0 0, 1 50ns -repeat 100ns
force Resetn 0
force w 0
run 225ns
force Resetn 1
run 1500ns
force w 1
run 1500ns
force w 0
run 500ns
force w 1
run 500ns

