EDA322 Digital konstruktion

Ovningar
Ovning 15 VHDL och testbink

Ovning 15

Vi ritar tillstandsgraf

2017-02-16

Ovning 15

Och oversatter till tillstandstabell

Present Next state Count
state w=0 w=1
50 S7 52 0
51 S0 53 1
52 51 54 2
53 52 55 3
54 53 56 4
55 54 57 5
56 55 S0 6
57 56 51 7

Tidigare har vi realiserat systemet med D-vippor.

Lat oss nu skriva VHDL-kod

Ovning 15

Vi kan gora det som

e strukturell kod

* beteendemadssig kod
* tillstandsmaskin

Lat oss borja med strukturell kod.

Vi har fran tidigare en realisering
med tre D-vippor.

w=1

D,=wQQ+QQQ+WQQ+WQQ+wQQQ

D, =w-Q +Q-Q, +W-Q-Q,

D, =w-Q, +W-Q, =w®Q,

2017-02-16

Ovning 15

Vi har entiteten

ENTITY ex_15 VHDL_structurell IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
w2 IN STD_LOGIC;
Q2:0UT STD_LOGIC;
Q1:0UT STD_LOGIC;
QO0:0UT STD_LOGIC);
END ex_15 VHDL_structurell;

Present
stote

Next state

w=0

w=1

S0

Ovning 15

Vi arkitekturen sa behdver vi ett
antalsignaler for att koppla ihop D-
vipporna

SIGNAL D2_signal :STD_LOGIC;
SIGNAL D1_signal :STD_LOGIC;
SIGNAL DO_signal :STD_LOGIC;
SIGNAL Q2_signal :STD_LOGIC;
SIGNAL Q1_signal :STD_LOGIC;
SIGNAL QO0_signal :STD_LOGIC;

w=1

SIGNAL Q_vector_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);

Q_vector_signal ar till for att kunna se den
samlade utsignalen fran de tre vipporna

2017-02-16

2017-02-16

Ovning 15

Vi behéver D-vippor som
komponenter.

ENTITY D_flipflop 1S
PORT(Clock: IN STD_LOGIC;
Resetn:IN STD_LOGIC;

D:IN STD_LOGIC; present | Nextstate | Count
Q:O0UT STD_LOGIC); e
END D_flipflop; o1 0 = T
ARCHITECTURE arch_D_flipflop OF D_flipflop IS s2 s1 B 2
BEGIN 53 s2 S5 3
D_proc: A
PROCESS(Resetn,Clock) % 55 S0 5
BEGIN 57 S6 51 7
IF (Resetn="0") THEN
Q <= "07;

ELSIF rising_edge(Clock) THEN
IF (D="1") THEN

Q<= "1%;
ELSE
Q <= 70%;
END IF;
END IF;

END PROCESS D_proc;
END arch_D_flipflop;

Ovning 15

Vi deklarerar komponenten

D_flipflop.
A N
~ 51 S0 53 1
COMPONENT D_flipflop IS 2 sL | s 2
PORT(Clock: IN STD_LOGIC; S N
Resetn:IN STD_LOGIC; e
D:IN STD_LOG IC; s7 S6 s1 7

Q:0UT STD_LOGIC);
END COMPONENT D_flipflop;

2017-02-16

Ovning 15

Vi instantierar tre D-vippor

D_flipflop_comp_2:
D_flipflop
PORT MAP(Clock => Clock,
Resetn =>Resetn,

D => D2_signal, Present | Nextstate | Count
Q => Q2_signal); stote | w=0 | w=l

o

D_flipflop_comp_1: i
D_flipflop 3
PORT MAP(Clock => Clock, 54 53 56 4
5

6

=

Resetn =>Resetn, 5 54 57
D => D1_signal,
Q => Q1_signal);

D_flipflop_comp_0:

D_flipflop

PORT MAP(Clock => Clock,
Resetn =>Resetn,
D => DO_signal,
Q => QO_signal);

Ovning 15 D, =w-Q,-Q +Q,:QQ +W-Q,-Q +W-Q,-Q +W-Q,-Q-Q,
DI = W'al + 6160 + ;VQ1 'Qo

Vi skapar vara styrsignaler S —
P yrsig D, =w-Q, +W-Q, =w®Q,

D2_signal <=(NOT(w) AND Q2_signal AND Q1_signal) OR
(Q2_signal AND NOT(Q1_signal) ANDO_signal) OR
(w AND Q2_signal AND NOT(Q1l_signal)) OR
(w AND NOT(Q2_signal) AND Q1_signal) OR
(NOT(w) AND NOT(Q2_signal) AND
NOT(Q1_signal) AND NOT(QO_signal));
D1_signal <= (w AND NOT(Q1_signal)) OR
(NOT(Q1_signal) AND NOT(QO_signal)) OR
(NOT(w) AND Q1_signal AND QO_signal);
DO_signal <= w XNOR QO_signal;

Q_vector_signal <= Q2_signal & Q1_signal & QO_signal;
Q2 <= Q2_signal;

Q1 <= Q1_signal;
Q0 <= QO_signal;

Och var design ar klar

Ovning 15

Vi simulerar med en do-fil och behéver da forst
skapa ett testmonster

ons
500 ns
1000 ns
1500 ns
2000 ns
2500 s
3000 ns
3500 ns

Ovning 15

Och sa en do-fil

restart -f -nowave

view signals wave

add wave Clock Resetn w Formatkon-
add wave counF_signal count verteringar
add wave -radix binary count
add wave -unsigned count

force Clock 0 0, 1 50ns -repeat
100ns

force Resetn 1

force w 0

run 125ns

force Resetn 0

run 200ns

force Resetn 1

run 1300ns

force w 1

run 800ns

force w 0

run 500ns

force w 1

run 500ns

2017-02-16

Ovning 15

Vi overgar till beteendemassig kod

Anslutningarna andras inte sa vi har
samma entitet som tidigare

ENTITY ex_15_VHDL_behavioral 1S
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;

count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));
END ex_15 VHDL_behavioral;

Ovning 15
Sa arkitekturen

ARCHITECTURE arch_ex_15_VHDL_behavioral OF
ex_15_VHDL_behavioral IS

SIGNAL count_signal: INTEGER RANGE 0 TO 7;

BEGIN Vi anvander
count_proc: INTEGER RANGE
PROCESS(Resetn,Clock) .. .
BEGIN som raknarvariabel

IF (Resetn="0") THEN
count_signal<=0;
ELSIF rising_edge(Clock) THEN
IF (w="1") THEN
IF (count_signal = 6) THEN
count_signal <= 0;
ELSIF (count_signal = 7) THEN
count_signal <= 1;
ELSE
count_signal <= count_signal + 2;
END IF;
ELSE
IF (count_signal = 0) THEN
count_signal <= 7;
ELSE
count_signal <= count_signal -1;
END IF;
END IF;
END IF;
END PROCESS count_proc;

count <= STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,3));
END arch_ ex_15_VHDL_behavioral;

2017-02-16

Ovning 15
Vi kan anvianda samma do-fil
restart -f -nowave
view signals wave
add wave Clock Resetn w
add wave count_signal count
add wave -radix binary count
add wave -unsigned count
force Clock 0 0, 1 50ns -repeat 100ns
force Resetn 1
force w O
run 125ns
force Resetn O
run 200ns
force Resetn 1
run 1300ns
force w 1
run 800ns
force w O
run 500ns
force w 1
run 500ns
Ovning 15

Vi 6vergar till som tillstandsmaskinkod

Anslutningarna dandras inte sa vi har
samma entitet som tidigare

ENTITY ex_15 VHDL_FSM IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
count:0UT STD_LOGIC_VECTOR(2 DOWNTO 0));
END ex_15 VHDL_FSM;

2017-02-16

Ovning 15

| arkitekturen har vi normalt tre processer

* En process som styr 6vergangen
mellan tillstanden

* En process dar vi bestimmer nasta
tillstand

* En process dar vi tilldelar
utsignalerna varden

Ovning 15

Vi borjar med processen som styr dvergangen
mellan tillstanden.
Denna process ser alltid likadan ut.

state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN
IF (Resetn="0") THEN
state_signal<=S0;
ELSIF rising_edge(Clock) THEN

state_signal<=next_state_signal;

END IF;
END PROCESS state_transition_proc;

2017-02-16

Ovning 15

| processen som bestammer nasta tillstand foljer vi

tillstandstabellen.

flow_proc:
PROCESS(state_signal ,w)
BEGIN
CASE state_signal IS
WHEN SO =>
IF w = "1" THEN
next_state_signal
ELSE
next_state_signal
END IF;
WHEN S1 =>
IF w = "1" THEN
next_state_signal
ELSE
next_state_signal
END IF;
WHEN S2 =>

<=

<=

<=

<=

state w=0 w=1

Present Next stote Count

wo|o|e|wn]e]|o

S2;

Har visar vi bara
S7;

S3;

SO;

nagra av tillstanden.

Ovning 15

Oftast deklarerar vi tillstandsvariablerna som en
uppraknande typ som vi sedan skapar signaler fran.

TYPE state_type 1S (S0,S1,S2,S3,S4,S5,S6,S7);
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;

| det har fallet har vi dock ett unikt raknevarde som
utsignal i varje tillstand och vi kan da ge
tillstandsvariabeln precis samma varde som
utsignalen skall ha i detta tillstand.

Vi deklarerar tillstandsvariablerna som konstanter.

2017-02-16

10

Ovning 15

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

SIGNAL state_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL next_state signal :STD_LOGIC_VECTOR(2 DOWNTO 0);

S0:STD_LOGIC_VECTOR(2
S1:STD_LOGIC_VECTOR(2
S2:STD_LOGIC_VECTOR(2
S3:STD_LOGIC_VECTOR(2
S4:STD_LOGIC_VECTOR(2
S5:STD_LOGIC_VECTOR(?2
S6:STD_LOGIC_VECTOR(2
S7:STD_LOGIC_VECTOR(2

DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

0):="000";
0):="001";
0):="010";
0):="011";
0):="100";
0):="101";
0):="110";
0):="111";

Ovning 15

Genom att gora pa detta satt behover vi inga
speciella utsignaler utan kan helt enkelt lagga

tillstandssignalen state_signal pa utgangarna.

count<=state_signal;

2017-02-16

11

Ovning 15

Lat oss nu 6verga till att skapa testbankar till
var konstruktion

Det finns tre typer av testbankar

* Typ 1-vianger bara instimuli som i en do-fil
och far sjalva utvardera resultatet

* Typ 2 —viinfor en testsignal som signalerar
nar nagot har gatt fel men vi far sjalva
utreda vad som gick fel och nar det hande

* Typ 3 —viinfor meddelanden som anger
nar nagot gatt fel och vi kan lagga in
meddelanden som forklarar felen

Ovning 15

| alla tre testbankstyperna skapar vi en
overliggande konstruktion dar vi anvander var
design som en komponent.

Vi genererar ocksa instimuli som skall testa
var design.

Testbanken anvander sig bara av var designs
in- och utgangar, dvs entiteten till var
testbank skall fungera all de designer vi gjort.

Lat oss anvanda namnen fran var
beteendemadssiga design.

2017-02-16

12

Ovning 15
Alla testbankarna har samma entitet som ar
tom. Vi har inga in- eller utportar
ENTITY ex_15 VHDL_behavioral_tbl 1S
END ex_15 VHDL_ behavioral_tbl;
Ovning 15

| arkitekturen instantierar vi var design som
en komponent.

COMPONENT ex_15 VHDL_behavioral IS
PORT(Clock:IN STD_LOGIC;
Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));
END COMPONENT ex_15 VHDL_behavioral;

SIGNAL Resetn_tb_signal:STD_LOGIC; .
SIGNAL Clock_tb_signal :STD_LOGIC:="0"; Anslutningar
SIGNAL w_tb_signal :STD_LOGIC; till kompo-
SIGNAL count_tb_signal :STD_LOGIC_VECTOR(2 DOWNTO 0); nenten
BEGIN -
counter_integer_comp:
COMPONENT ex_15 VHDL_behavioral
PORT MAP(Clock=>Clock_tb_signal,

Resetn=>Resetn_tb_signal,

w=>w_tb_signal,

count=>count_tb_signal);

2017-02-16

13

Ovning 15

Vi genererar nu instimuli till var design enligt
var tidigare graf.

1500 ns
2000 ns
2500 ns
3000 ns

ons
500ns
1000 ns

Resetn_tb_signal<="1",
0" AFTER 125 ns,
"1" AFTER 325 ns;

w_tb_signal<="0",
"1" AFTER 1625 ns,
"0" AFTER 2425 ns,
"1" AFTER 2925 ns;

Ovning 15

Vi genererar ocksa en klocka.

clock_process:
PROCESS
BEGIN
WAIT FOR 50 ns;
Clock_tb_signal<=NOT(Clock_tb_signal);
END PROCESS clock_process;

En symmetrisk klocka med periodtiden 100 ns.
Den borjar l1ag da vi initierat signalen till noll (0).

SIGNAL Clock_tb_signal:STD_LOGIC:="0";

Notera att det har ar tillatet att anvanda
initialvarden da signalen bara anvands vid
simulering och aldrig blir hardvara.

2017-02-16

14

Ovning 15

Vad vi nu gjort ar en testbank av typ 1.

* Viskapar en testbank

* Viinstantierar var design som en
komponent

* Viskapar instimuli

* Viskapar en klocka

Ovning 15

Aven hir behéver vi en do-fil men den skall
bara ange vilka signaler vi vill se och hur lang
simuleringstid som skall koras, inte ge nagra
signaler.

restart -f -nowave

view signals wave

add wave Resetn_tb_signal Clock_tb_signal
add wave w_tb_signal count_tb_signal

run 3500ns

2017-02-16

15

Ovning 15

Om vi 6vergar till testbank typ 2 sa innehaller

dven den ovanstaende delar men vi

kompletterar med en test av resultatet.

Vi infor en signal som skall vara ett (1) da
testen ar klar om allt har gatt som det skall.
Ar nagot fel s& har den vid den tid da felet

kom gatt ner till noll (0).

SIGNAL test OK signal:STD_LOGIC;

Ovning 15

Vi infor en testprocess dar vi efter varje signal-
forandring som vi vill testa gor halt (WAIT) och gor

testen.

test_process:
PROCESS
BEGIN
test_OK_signal<="1";
WAIT FOR 210 ns; -- 210 ns
IF (Resetn_tb_signal/="0" OR
count_tb_signal/="000"") THEN
Vi |agger vara test_OK_signal<="0";
. . END IF;
tester vid tider WAIT FOR 200 ns; —- 410 ns
da vi inte har IF (Resetn_tb_signal/="1" OR
. - count_tb_signal/="111") THEN
nagon forénd test_OK_signal<="0";

ring av nagot END IF;
instimuli WAIT FOR 100 rjs; -- 510 ns
IF count_tb_signal/="110" THEN
test_OK_signal<="0";
END IF;
WAIT FOR 1000 ns; -- 1510 ns

IF count_tb_signal/="100" THEN
test_OK_signal<="0";
END IF;

Har visar vi bara
nagra av alla tester.

Lagg marke till test-
signalen test_-
OK_signal fran
borjan ges de-
faultvardet ett (1)
och att den kommer
att ligga kvar pa noll
(0) efter ett fel aven
om efterféljande
tester ar OK

2017-02-16

16

Ovning 15

do-filen blir den samma som for testbank typ 1
med den skillnaden att vi lagger till att vi vill se
signalen test_OK_signal ivagformfonstret.

Tack vare testsignalen kan vi nu i vagformfonstret
se nar nagot blev fel men vi far sjalva analysera
vagformerna for att ta ratt pa vad som hant.

Ovning 15
| testbank typ 3 har ersatter vi den tidigare
testprocessen med en ny sadan.

Héar gor vi motsvarande test som i testbank typ 2
men vi markerar inte via en signal att na’t ar fel
utan vi kan i stéllet fa utskrivet tiden da felet
skedde och en beskrivande text som kan forklara
felet.

2017-02-16

17

2017-02-16

Ovning 15
Kommentar
test_proc: Aterigen bara nagra
PROCESS av testerna.
BEGIN v

WAIT FOR 210 ns; -- 210 ns
. ASSERT (count_tb_signal="000")
Tva tester REPORT “‘count_th_signal/=000"

vid tiden SEVERITY ERROR: ASSERT reagerar om
210 ns ASSERT (Resetn_tb_signal="0") villkoret inom parentes
REPORT "'Resetn_tb_signal/=0" INTE ar uppfyllt
SEVERITY ERROR;
. REPORT anvéands for att
En test WAIT FOR 100 ns; -- 510 ns skriva ut meddelande
vid tiden ASSERT (count_tb_signal="110")
510 ns REPORT "count_tb_signal/=110" SEVERITY anger felets
SEVERITY ERROR; svarighetsgrad
Ovning 15

Vi har alltsa fyra olika svarighetsgrader som vi kan
ange for felet.

| de tre forsta fallen kommer simuleringen att
fortsatta efter meddelandet

* NOTE éar egentligen inget fel
utan bara en kommentar

* WARNING &r som namnet anger
inget fel utan en varning

* ERROR anger ett fel men
simuleringen kan fortsatta

* FALIURE &r ett fel som gor fortsatt
simulering meningslos sa simuleringen
stannar vid denna tidpunkt

18

