
2017‐02‐16

1

EDA322 Digital konstruktion

Övningar

Övning 15 VHDL och testbänk

Vi ritar tillståndsgraf

Övning 15

S0 S1

S5S6

0

1

S2

S4

1

S7

z=000

S3

z=001
0

0

0

00

0

0
1 1

z=010

z=011

z=100

z=101

z=110

z=111

1

1

1
1

1

2017‐02‐16

2

Och översätter till tillståndstabell

Övning 15

Tidigare har vi realiserat systemet med D‐vippor.
Låt oss nu skriva VHDL‐kod

Vi kan göra det som
• strukturell kod
• beteendemässig kod
• tillståndsmaskin

Övning 15

Låt oss börja med strukturell kod.

Vi har från tidigare en realisering
med tre D‐vippor.

0121212012122 QQQwQQwQQwQQQQQwD 

010111 QQwQQQwD 

0000 QwQwQwD 

2017‐02‐16

3

Vi har entiteten

Övning 15

ENTITY ex_15_VHDL_structurell IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
Q2:OUT STD_LOGIC;
Q1:OUT STD_LOGIC;
Q0:OUT STD_LOGIC);

END ex_15_VHDL_structurell;

Vi arkitekturen så behöver vi ett
antalsignaler för att koppla ihop D‐
vipporna

Övning 15

SIGNAL D2_signal:STD_LOGIC;
SIGNAL D1_signal:STD_LOGIC;
SIGNAL D0_signal:STD_LOGIC;
SIGNAL Q2_signal:STD_LOGIC;
SIGNAL Q1_signal:STD_LOGIC;
SIGNAL Q0_signal:STD_LOGIC;
SIGNAL Q_vector_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);

Q_vector_signal är till för att kunna se den
samlade utsignalen från de tre vipporna

2017‐02‐16

4

Vi behöver D‐vippor som
komponenter.

Övning 15

ENTITY D_flipflop IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD_LOGIC;
D:IN STD_LOGIC;
Q:OUT STD_LOGIC);

END D_flipflop;
ARCHITECTURE arch_D_flipflop OF D_flipflop IS
BEGIN

D_proc:
PROCESS(Resetn,Clock)
BEGIN

IF (Resetn='0') THEN
Q <= '0';

ELSIF rising_edge(Clock) THEN
IF (D='1') THEN

Q <= '1';
ELSE

Q <= '0';
END IF;

END IF;
END PROCESS D_proc;

END arch_D_flipflop;

Vi deklarerar komponenten
D_flipflop.

Övning 15

COMPONENT D_flipflop IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD_LOGIC;
D:IN STD_LOGIC;
Q:OUT STD_LOGIC);

END COMPONENT D_flipflop;

2017‐02‐16

5

Vi instantierar tre D‐vippor

Övning 15

D_flipflop_comp_2:
D_flipflop
PORT MAP(Clock => Clock,

Resetn =>Resetn,
D => D2_signal,
Q => Q2_signal);

D_flipflop_comp_1:
D_flipflop
PORT MAP(Clock => Clock,

Resetn =>Resetn,
D => D1_signal,
Q => Q1_signal);

D_flipflop_comp_0:
D_flipflop
PORT MAP(Clock => Clock,

Resetn =>Resetn,
D => D0_signal,
Q => Q0_signal);

Vi skapar våra styrsignaler

Övning 15

D2_signal <=(NOT(w) AND Q2_signal AND Q1_signal) OR
(Q2_signal AND NOT(Q1_signal) AND0_signal) OR
(w AND Q2_signal AND NOT(Q1_signal)) OR
(w AND NOT(Q2_signal) AND Q1_signal) OR
(NOT(w) AND NOT(Q2_signal) AND

NOT(Q1_signal) AND NOT(Q0_signal));
D1_signal <= (w AND NOT(Q1_signal)) OR

(NOT(Q1_signal) AND NOT(Q0_signal)) OR
(NOT(w) AND Q1_signal AND Q0_signal);

D0_signal <= w XNOR Q0_signal;

Q_vector_signal <= Q2_signal & Q1_signal & Q0_signal;

Q2 <= Q2_signal;
Q1 <= Q1_signal;
Q0 <= Q0_signal;

Och vår design är klar

0121212012122 QQQwQQwQQwQQQQQwD 

010111 QQwQQQwD 

0000 QwQwQwD 

2017‐02‐16

6

Vi simulerar med en do‐fil och behöver då först
skapa ett testmönster

Övning 15

Och så en do‐fil

Övning 15

restart -f -nowave
view signals wave
add wave Clock Resetn w
add wave count_signal count
add wave -radix binary count
add wave -unsigned count
force Clock 0 0, 1 50ns -repeat
100ns
force Resetn 1
force w 0
run 125ns
force Resetn 0
run 200ns
force Resetn 1
run 1300ns
force w 1
run 800ns
force w 0
run 500ns
force w 1
run 500ns

Formatkon‐
verteringar

2017‐02‐16

7

Vi övergår till beteendemässig kod

Övning 15

Anslutningarna ändras inte så vi har
samma entitet som tidigare

ENTITY ex_15_VHDL_behavioral IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END ex_15_VHDL_behavioral;

Övning 15
Så arkitekturen

ARCHITECTURE arch_ex_15_VHDL_behavioral OF
ex_15_VHDL_behavioral IS

SIGNAL count_signal:INTEGER RANGE 0 TO 7;
BEGIN

count_proc:
PROCESS(Resetn,Clock)
BEGIN

IF (Resetn='0') THEN
count_signal<=0;

ELSIF rising_edge(Clock) THEN
IF (w='1') THEN

IF (count_signal = 6) THEN
count_signal <= 0;

ELSIF (count_signal = 7) THEN
count_signal <= 1;

ELSE
count_signal <= count_signal + 2;

END IF;
ELSE

IF (count_signal = 0) THEN
count_signal <= 7;

ELSE
count_signal <= count_signal -1;

END IF;
END IF;

END IF;
END PROCESS count_proc;

count <= STD_LOGIC_VECTOR(TO_UNSIGNED(count_signal,3));
END arch_ ex_15_VHDL_behavioral;

Vi använder
INTEGER RANGE
som räknarvariabel

2017‐02‐16

8

Övning 15

Vi kan använda samma do‐fil

restart -f -nowave
view signals wave
add wave Clock Resetn w
add wave count_signal count
add wave -radix binary count
add wave -unsigned count
force Clock 0 0, 1 50ns -repeat 100ns
force Resetn 1
force w 0
run 125ns
force Resetn 0
run 200ns
force Resetn 1
run 1300ns
force w 1
run 800ns
force w 0
run 500ns
force w 1
run 500ns

Vi övergår till som tillståndsmaskinkod

Övning 15

Anslutningarna ändras inte så vi har
samma entitet som tidigare

ENTITY ex_15_VHDL_FSM IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END ex_15_VHDL_FSM;

2017‐02‐16

9

I arkitekturen har vi normalt tre processer

Övning 15

• En process som styr övergången
mellan tillstånden

• En process där vi bestämmer nästa
tillstånd

• En process där vi tilldelar
utsignalerna värden

Vi börjar med processen som styr övergången
mellan tillstånden.
Denna process ser alltid likadan ut.

Övning 15

state_transition_proc:
PROCESS(Resetn,Clock)
BEGIN

IF (Resetn='0') THEN
state_signal<=S0;

ELSIF rising_edge(Clock) THEN
state_signal<=next_state_signal;

END IF;
END PROCESS state_transition_proc;

2017‐02‐16

10

I processen som bestämmer nästa tillstånd följer vi
tillståndstabellen.

Övning 15

flow_proc:
PROCESS(state_signal,w)
BEGIN

CASE state_signal IS
WHEN S0 =>
IF w = '1' THEN

next_state_signal <= S2;
ELSE

next_state_signal <= S7;
END IF;

WHEN S1 =>
IF w = '1' THEN

next_state_signal <= S3;
ELSE

next_state_signal <= S0;
END IF;

WHEN S2 =>
...

Här visar vi bara
några av tillstånden.

Oftast deklarerar vi tillståndsvariablerna som en
uppräknande typ som vi sedan skapar signaler från.

Övning 15

TYPE state_type IS (S0,S1,S2,S3,S4,S5,S6,S7);
SIGNAL state_signal:state_type;
SIGNAL next_state_signal:state_type;

I det här fallet har vi dock ett unikt räknevärde som
utsignal i varje tillstånd och vi kan då ge
tillståndsvariabeln precis samma värde som
utsignalen skall ha i detta tillstånd.

Vi deklarerar tillståndsvariablerna som konstanter.

2017‐02‐16

11

Övning 15

CONSTANT S0:STD_LOGIC_VECTOR(2 DOWNTO 0):="000";
CONSTANT S1:STD_LOGIC_VECTOR(2 DOWNTO 0):="001";
CONSTANT S2:STD_LOGIC_VECTOR(2 DOWNTO 0):="010";
CONSTANT S3:STD_LOGIC_VECTOR(2 DOWNTO 0):="011";
CONSTANT S4:STD_LOGIC_VECTOR(2 DOWNTO 0):="100";
CONSTANT S5:STD_LOGIC_VECTOR(2 DOWNTO 0):="101";
CONSTANT S6:STD_LOGIC_VECTOR(2 DOWNTO 0):="110";
CONSTANT S7:STD_LOGIC_VECTOR(2 DOWNTO 0):="111";
SIGNAL state_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL next_state_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);

Övning 15

Genom att göra på detta sätt behöver vi inga
speciella utsignaler utan kan helt enkelt lägga
tillståndssignalen state_signal på utgångarna.

count<=state_signal;

2017‐02‐16

12

Övning 15

Låt oss nu övergå till att skapa testbänkar till
vår konstruktion

• Typ 3 – vi inför meddelanden som anger
när något gått fel och vi kan lägga in
meddelanden som förklarar felen

Det finns tre typer av testbänkar

• Typ 1 – vi anger bara instimuli som i en do‐fil
och får själva utvärdera resultatet

• Typ 2 – vi inför en testsignal som signalerar
när något har gått fel men vi får själva
utreda vad som gick fel och när det hände

Övning 15

I alla tre testbänkstyperna skapar vi en
överliggande konstruktion där vi använder vår
design som en komponent.

Vi genererar också instimuli som skall testa
vår design.

Testbänken använder sig bara av vår designs
in‐ och utgångar, dvs entiteten till vår
testbänk skall fungera all de designer vi gjort.

Låt oss använda namnen från vår
beteendemässiga design.

2017‐02‐16

13

Övning 15

Alla testbänkarna har samma entitet som är
tom. Vi har inga in‐ eller utportar

ENTITY ex_15_VHDL_behavioral_tb1 IS

END ex_15_VHDL_behavioral_tb1;

Övning 15

I arkitekturen instantierar vi vår design som
en komponent.

COMPONENT ex_15_VHDL_behavioral IS
PORT(Clock:IN STD_LOGIC;

Resetn:IN STD_LOGIC;
w:IN STD_LOGIC;
count:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END COMPONENT ex_15_VHDL_behavioral;

SIGNAL Resetn_tb_signal:STD_LOGIC;
SIGNAL Clock_tb_signal:STD_LOGIC:='0';
SIGNAL w_tb_signal:STD_LOGIC;
SIGNAL count_tb_signal:STD_LOGIC_VECTOR(2 DOWNTO 0);
BEGIN
counter_integer_comp:
COMPONENT ex_15_VHDL_behavioral

PORT MAP(Clock=>Clock_tb_signal,
Resetn=>Resetn_tb_signal,
w=>w_tb_signal,
count=>count_tb_signal);

Anslutningar
till kompo‐
nenten

2017‐02‐16

14

Övning 15

Vi genererar nu instimuli till vår design enligt
vår tidigare graf.

Resetn_tb_signal<='1',
'0' AFTER 125 ns,
'1' AFTER 325 ns;

w_tb_signal<='0',
'1' AFTER 1625 ns,
'0' AFTER 2425 ns,
'1' AFTER 2925 ns;

Övning 15

Vi genererar också en klocka.

clock_process:
PROCESS
BEGIN

WAIT FOR 50 ns;
Clock_tb_signal<=NOT(Clock_tb_signal);

END PROCESS clock_process;

En symmetrisk klocka med periodtiden 100 ns.
Den börjar låg då vi initierat signalen till noll (0).

SIGNAL Clock_tb_signal:STD_LOGIC:='0';

Notera att det här är tillåtet att använda
initialvärden då signalen bara används vid
simulering och aldrig blir hårdvara.

2017‐02‐16

15

Övning 15

Vad vi nu gjort är en testbänk av typ 1.

• Vi skapar en testbänk
• Vi instantierar vår design som en

komponent
• Vi skapar instimuli
• Vi skapar en klocka

Övning 15

Även här behöver vi en do‐fil men den skall
bara ange vilka signaler vi vill se och hur lång
simuleringstid som skall köras, inte ge några
signaler.

restart -f -nowave
view signals wave
add wave Resetn_tb_signal Clock_tb_signal
add wave w_tb_signal count_tb_signal
run 3500ns

2017‐02‐16

16

Övning 15

Om vi övergår till testbänk typ 2 så innehåller
även den ovanstående delar men vi
kompletterar med en test av resultatet.

Vi inför en signal som skall vara ett (1) då
testen är klar om allt har gått som det skall.
Är något fel så har den vid den tid då felet
kom gått ner till noll (0).

SIGNAL test_OK_signal:STD_LOGIC;

Övning 15

Vi inför en testprocess där vi efter varje signal‐
förändring som vi vill testa gör halt (WAIT) och gör
testen.
test_process:
PROCESS
BEGIN

test_OK_signal<='1';
WAIT FOR 210 ns; -- 210 ns
IF (Resetn_tb_signal/='0' OR

count_tb_signal/="000") THEN
test_OK_signal<='0';

END IF;
WAIT FOR 200 ns; -- 410 ns
IF (Resetn_tb_signal/='1' OR

count_tb_signal/="111") THEN
test_OK_signal<='0';

END IF;
WAIT FOR 100 ns; -- 510 ns
IF count_tb_signal/="110" THEN

test_OK_signal<='0';
END IF;
WAIT FOR 1000 ns; -- 1510 ns
IF count_tb_signal/="100" THEN

test_OK_signal<='0';
END IF;
...

Här visar vi bara
några av alla tester.

Lägg märke till test‐
signalen test_-
OK_signal från
början ges de‐
faultvärdet ett (1)
och att den kommer
att ligga kvar på noll
(0) efter ett fel även
om efterföljande
tester är OK

Vi lägger våra
tester vid tider
då vi inte har
någon föränd‐
ring av något
instimuli

2017‐02‐16

17

Övning 15

do‐filen blir den samma som för testbänk typ 1
med den skillnaden att vi lägger till att vi vill se
signalen test_OK_signal i vågformfönstret.

Tack vare testsignalen kan vi nu i vågformfönstret
se när något blev fel men vi får själva analysera
vågformerna för att ta rätt på vad som hänt.

Övning 15

I testbänk typ 3 har ersätter vi den tidigare
testprocessen med en ny sådan.

Här gör vi motsvarande test som i testbänk typ 2
men vi markerar inte via en signal att nå´t är fel
utan vi kan i stället få utskrivet tiden då felet
skedde och en beskrivande text som kan förklara
felet.

2017‐02‐16

18

Övning 15

test_proc:
PROCESS
BEGIN

WAIT FOR 210 ns; -- 210 ns
ASSERT (count_tb_signal="000")
REPORT "count_tb_signal/=000"
SEVERITY ERROR;
ASSERT (Resetn_tb_signal='0')
REPORT "Resetn_tb_signal/=0"
SEVERITY ERROR;
...
WAIT FOR 100 ns; -- 510 ns
ASSERT (count_tb_signal="110")
REPORT "count_tb_signal/=110"
SEVERITY ERROR;
...

ASSERT reagerar om
villkoret inom parentes
INTE är uppfyllt

REPORT används för att
skriva ut meddelande

SEVERITY anger felets
svårighetsgrad

Återigen bara några
av testerna.

Kommentar

Två tester
vid tiden
210 ns

En test
vid tiden
510 ns

Övning 15

Vi har alltså fyra olika svårighetsgrader som vi kan
ange för felet.
I de tre första fallen kommer simuleringen att
fortsätta efter meddelandet

• NOTE är egentligen inget fel
utan bara en kommentar

• WARNING är som namnet anger
inget fel utan en varning

• ERROR anger ett fel men
simuleringen kan fortsätta

• FALIURE är ett fel som gör fortsatt
simulering meningslös så simuleringen
stannar vid denna tidpunkt

