
ModelSim®
SE

Command Reference
V e r s i o n 5 . 6 d

P u b l i s h e d : 6 / A u g / 0 2
T h e w o r l d ’ s m o s t p o p u l a r H D L s i m u l a t o r

ii

Mod
ModelSim/VHDL, ModelSim/VLOG, ModelSim/LNL, and ModelSim/PLUS are
produced by Model Technology™ Incorporated. Unauthorized copying,
duplication, or other reproduction is prohibited without the written consent of Model
Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark and Signal Spy, TraceX, and ChaseX are
trademarks of Model Technology Incorporated. Model Technology is a trademark
of Mentor Graphics Corporation. PostScript is a registered trademark of Adobe
Systems Incorporated. UNIX is a registered trademark of AT&T in the USA and
other countries. FLEXlm is a trademark of Globetrotter Software, Inc. IBM, AT, and
PC are registered trademarks, AIX and RISC System/6000 are trademarks of
International Business Machines Corporation. Windows, Microsoft, and MS-DOS
are registered trademarks of Microsoft Corporation. OSF/Motif is a trademark of
the Open Software Foundation, Inc. in the USA and other countries. SPARC is a
registered trademark and SPARCstation is a trademark of SPARC International,
Inc. Sun Microsystems is a registered trademark, and Sun, SunOS and
OpenWindows are trademarks of Sun Microsystems, Inc. All other trademarks and
registered trademarks are the properties of their respective holders.

Copyright (c) 1990 -2002, Model Technology Incorporated.
All rights reserved. Confidential. Online documentation may be printed by licensed
customers of Model Technology Incorporated for internal business purposes only.

Model Technology Incorporated
10450 SW Nimbus Avenue / Bldg. R-B
Portland OR 97223-4347 USA

phone: 503-641-1340
fax: 503-526-5410
e-mail: support@model.com, sales@model.com
home page: http://www.model.com
support page: http://www.model.com/support
elSim SE Command Reference

mailto:support@model.com
mailto:sales@model.com
http://www.model.com

 iii
Technical support and updates

The Model Technology web site includes links to support, software updates, and many
other information sources.

Support

www.model.com/support/default.asp

Customers in Europe should contact their distributor for support. See
www.model.com/contact_us.asp for distributor contact information.

Updates

www.model.com/products/release.asp

Latest version email

Place your name on our list for email notification of news and updates.
www.model.com/support/register_news_list.asp
ModelSim SE Command Reference

http://www.model.com/support/default.asp
http://www.model.com/contact_us.asp
http://www.model.com/products/release.asp
http://www.model.com/support/register_news_list.asp

iv

ModelSim SE Command Reference

 CR-5
Table of Contents
Syntax and conventions (CR-9)

Documentation conventions CR-10

Command return values CR-11

Command shortcuts CR-11

Command history shortcuts CR-11

Numbering conventions CR-12

File and directory pathnames CR-13

HDL item pathnames CR-14

Wildcard characters CR-16

ModelSim variables CR-17

Simulation time units CR-17

Comments in argument files CR-17

GUI_expression_format CR-18

Commands (CR-27)

Command reference table CR-28

.main clear CR-37

.wave.tree interrupt CR-38

.wave.tree zoomfull CR-39

.wave.tree zoomin CR-40

.wave.tree zoomlast CR-41

.wave.tree zoomout CR-42

.wave.tree zoomrange CR-43

abort CR-44

add button CR-45

add dataflow CR-47

add list CR-48

add_menu CR-51

add_menucb CR-53

add_menuitem CR-54

add_separator CR-55

add_submenu CR-56

add wave CR-57

alias CR-61

batch_mode CR-62

bd CR-63

bookmark add wave CR-64

bookmark delete wave CR-65

bookmark goto wave CR-66

bookmark list wave CR-67

bp CR-68

cd CR-71

change CR-72

change_menu_cmd CR-73

check contention add CR-74

check contention config CR-75

check contention off CR-76

check float add CR-77

check float config CR-78

check float off CR-79

check stable off CR-80

check stable on CR-81

checkpoint CR-82

compare add CR-83

compare annotate CR-86

compare clock CR-87

compare configure CR-89

compare continue CR-90

compare delete CR-91

compare end CR-92

compare info CR-93

compare list CR-95

compare options CR-96

compare reload CR-99

compare reset CR-100

compare run CR-101

compare savediffs CR-102

compare saverules CR-103

compare see CR-104

compare start CR-106

compare stop CR-108

compare update CR-109

configure CR-110
ModelSim SE Command Reference

CR-6 Table of Contents

Model
context CR-114

coverage clear CR-116

coverage exclude clear CR-117

coverage exclude disable CR-118

coverage exclude enable CR-119

coverage exclude load CR-120

coverage reload CR-121

coverage report CR-122

dataset alias CR-123

dataset clear CR-124

dataset close CR-125

dataset info CR-126

dataset list CR-127

dataset open CR-128

dataset rename CR-129

dataset save CR-130

dataset snapshot CR-131

delete CR-133

describe CR-134

disablebp CR-135

disable_menu CR-136

disable_menuitem CR-137

do CR-138

down CR-139

drivers CR-141

dumplog64 CR-142

echo CR-143

edit CR-144

enablebp CR-145

enable_menu CR-146

enable_menuitem CR-147

environment CR-148

examine CR-149

exit CR-152

find CR-153

force CR-156

getactivecursortime CR-159

getactivemarkertime CR-160

help CR-161

history CR-162

lecho CR-163

left CR-164

log CR-166

lshift CR-168

lsublist CR-169

macro_option CR-170

modelsim CR-171

next CR-172

noforce CR-173

nolog CR-174

notepad CR-176

noview CR-177

nowhen CR-178

onbreak CR-179

onElabError CR-180

onerror CR-181

pause CR-182

play CR-183

power add CR-184

power report CR-185

power reset CR-186

printenv CR-187

profile clear CR-188

profile interval CR-189

profile off CR-190

profile on CR-191

profile option CR-192

profile report CR-193

project CR-194

property list CR-195

property wave CR-196

pwd CR-197

quietly CR-198

quit CR-199

radix CR-200

record CR-201
Sim SE Command Reference

 CR-7
report CR-202

restart CR-204

restore CR-206

resume CR-207

right CR-208

run CR-210

search CR-212

searchlog CR-214

seetime CR-216

shift CR-217

show CR-218

simstats CR-219

splitio CR-220

status CR-221

step CR-222

stop CR-223

tb CR-224

toggle add CR-225

toggle report CR-226

toggle reset CR-227

transcribe CR-228

transcript CR-229

tssi2mti CR-230

up CR-231

vcd add CR-233

vcd checkpoint CR-234

vcd comment CR-235

vcd dumpports CR-236

vcd dumpportsall CR-238

vcd dumpportsflush CR-239

vcd dumpportslimit CR-240

vcd dumpportsoff CR-241

vcd dumpportson CR-242

vcd file CR-243

vcd files CR-245

vcd flush CR-247

vcd limit CR-248

vcd off CR-249

vcd on CR-250

vcd2wlf CR-251

vcom CR-252

vdel CR-258

vdir CR-259

verror CR-260

vgencomp CR-261

view CR-263

virtual count CR-265

virtual define CR-266

virtual delete CR-267

virtual describe CR-268

virtual expand CR-269

virtual function CR-270

virtual hide CR-273

virtual log CR-274

virtual nohide CR-276

virtual nolog CR-277

virtual region CR-279

virtual save CR-280

virtual show CR-281

virtual signal CR-282

virtual type CR-285

vlib CR-287

vlog CR-288

vmake CR-296

vmap CR-297

vsim CR-298

vsim<info> CR-312

vsource CR-313

when CR-314

where CR-318

wlf2log CR-319

wlfrecover CR-321

write cell_report CR-322

write format CR-323

write list CR-325

write preferences CR-326
ModelSim SE Command Reference

CR-8 Table of Contents

Model
write report CR-327

write transcript CR-328

write tssi CR-329

write wave CR-331

Licensing Agreement (CR-333)

Index (CR-337)
Sim SE Command Reference

 CR-9
Syntax and conventions

Chapter contents
Documentation conventions CR-10

Command return values CR-11

Command shortcuts CR-11

Command history shortcuts CR-11

Numbering conventions CR-12

File and directory pathnames CR-13

HDL item pathnames CR-14

Wildcard characters CR-16

ModelSim variables CR-17

Simulation time units CR-17

Comments in argument files CR-17

GUI_expression_format CR-18
ModelSim SE Command Reference

CR-10 Syntax and conventions

Model
Documentation conventions

This manual uses the following conventions to define ModelSim command syntax.

Syntax notation Description

< > angled brackets surrounding a syntax item indicate a user-
defined argument; do not enter the brackets in commands

[] square brackets generally indicate an optional item; if the
brackets surround several words, all must be entered as a group;
the brackets are not entereda

a. One exception to this rule is when you are using Verilog syntax to designate
an array slice. For example,

add wave {vector1[4:0]}

The square brackets in this case denote an index. The braces prevent the Tcl interpreter
from treating the text within the square brackets as a Tcl command.

{ } braces indicate that the enclosed expression contains one or
more spaces yet should be treated as a single argument, or that
the expression contains square brackets for an index; for either
situation, the braces are entered

... an ellipsis indicates items that may appear more than once; the
ellipsis itself does not appear in commands

| the vertical bar indicates a choice between items on either side
of it; do not include the bar in the command

monospaced type monospaced type is used in command examples

comments included with commands are preceded by the number
sign (#); useful for adding comments to DO files (macros)

Note: Neither the prompt at the beginning of a line nor the <Enter> or <Return> key that
ends a line is shown in the command examples.
Sim SE Command Reference

Command return values CR-11
Command return values

All simulator commands are invoked using Tcl. For most commands that write information
to the Main window, that information is also available as a Tcl result. By using command
substitution the results can be made available to another command or assigned to a Tcl
variable. For example:

set aluinputs [find -in alu/*]

sets variable "aluinputs" to the result of the find command (CR-153).

Command shortcuts

You may abbreviate command syntax, but there’s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as we
add new commands some of the old shortcuts may not work. For this reason ModelSim
does not allow command name abbreviations in macro files. This minimizes your need to
update macro files as new commands are added.

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the ModelSim/VSIM prompt:

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt number (e.g.,
for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

^xyz^ab^ replaces "xyz" in the last command with "ab"

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt left-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt to the active
cursor

his or history shows the last few commands (up to 50 are kept)
ModelSim SE Command Reference

CR-12 Syntax and conventions

Model
Numbering conventions

Numbers in ModelSim can be expressed in either VHDL or Verilog style. Two styles can
be used for VHDL numbers, one for Verilog.

VHDL numbering conventions

The first of two VHDL number styles is:

[-] [radix #] value [#]

Examples

16#FFca23#
2#11111110
-23749

The second VHDL number style is:

base "value"

Examples

B"11111110"
X"FFca23"

Element Description

- indicates a negative number; optional

radix can be any base in the range 2 through 16 (2, 8, 10, or 16); by default,
numbers are assumed to be decimal; optional

value specifies the numeric value, expressed in the specified radix; required

is a delimiter between the radix and the value; the first # sign is
required if a radix is used, the second is always optional

Note: A ‘-’ can also be used to designate a "don’t care" element when you search for a
signal in the List or Wave window. If you want the ‘-’ to be read as a "don’t care"
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to -0110--. If you don’t include the
double quotes, ModelSim will read the ‘-’ as a negative sign.

Element Description

base specifies the base; binary: B, octal: O, hex: X; required

value specifies digits in the appropriate base with optional underscore
separators; default is decimal; required
Sim SE Command Reference

File and directory pathnames CR-13
Verilog numbering conventions

Verilog numbers are expressed in the style:

[-] [size] [base] value

Examples

’b11111110 8’b11111110
’Hffca23 21’H1fca23
-23749

File and directory pathnames

Several ModelSim commands have arguments that point to files or directories. For
example, the -y argument to vlog specifies the Verilog source library directory to search for
undefined modules. Spaces in file pathnames must be escaped or the entire path must be
enclosed in quotes. For example:

vlog top.v -y C:/Documents\ and\ Settings/mcarnes/simprims

or

vlog top.v -y "C:/Documents and Settings/mcarnes/simprims"

Element Description

- indicates a negative number; optional

size the number of bits in the number; optional

base specifies the base; binary: ‘b or ‘B, octal: ‘o or ‘O, decimal: ‘d or ‘D,
hex: ‘h or ‘H; optional

value specifies digits in the appropriate base with optional underscore
separators; default is decimal, required

Note: A ‘-’ can also be used to designate a "don’t care" element when you search for a
signal in the List or Wave windows. If you want the ‘-’ to be read as a "don’t care"
element, rather than a negative sign, be sure to enclose the number in double quotes. For
instance, you would type "-0110--" as opposed to 7'b-0110--. If you don’t include the
double quotes, ModelSim will read the ‘-’ as a negative sign.
ModelSim SE Command Reference

CR-14 Syntax and conventions

Model
HDL item pathnames

VHDL and Verilog items are organized hierarchically. Each of the following HDL items
creates a new level in the hierarchy:

• VHDL
component instantiation statement, block statement, and package

• Verilog
module instantiation, named fork, named begin, task and function

Each level in the hierarchy is also known as a "region."

Multiple levels in a pathname

Multiple levels in a pathname are separated by the character specified in the PathSeparator
variable. The default is "/", but it can be set to any single character, such as "." for Verilog
naming conventions, or ":" for VHDL IEEE 1076-1993 naming conventions. See the
PathSeparator (UM-449) variable for more information.

Absolute pathnames

Absolute pathnames begin with the path separator character. The first name in the path
should be the name of a top-level entity or module, but if you leave it off then the first top-
level entity or module will be assumed. VHDL designs only have one top level, so it doesn't
matter if it is included in the pathname. For example, if you are referring to the signal clk
in the top-level entity named top, then both of the following pathnames are correct:

/top/clk
/clk

Relative pathnames

Relative pathnames do not start with the path separator, and are relative to the current
environment. The current environment defaults to the first top-level entity or module and
may be changed by the environment command or by clicking on hierarchy levels in the
Structure window. Each new level in the pathname is first searched downwards relative to
the current environment, but if not found is then searched for upwards (same search rules
used in Verilog hierarchical names).

Environment variables and pathnames

You can substitute environment variables for pathnames in any argument that requires a
pathname. For example:

vlog -v $lib_path/und1

Assuming you have defined $lib_path on your system, vlog will locate the source library
file und1 and search it for undefined modules. See "Environment variables" (UM-441) for
more information.

Note: Since Verilog designs may contain multiple top-level modules, a path name may
be ambiguous if you leave off the top-level module name.
Sim SE Command Reference

HDL item pathnames CR-15
Indexing signals, memories, and nets

VHDL array signals, and Verilog memories and vector nets can be sliced or indexed.
Indexes must be numeric, since the simulator does not know the actual index types. Slice
ranges may be represented in either VHDL or Verilog syntax, irrespective of the setting of
the PathSeparator (UM-449).

Name case sensitivity

Name case sensitivity is different for VHDL and Verilog. VHDL names are not case
sensitive except for extended identifiers in VHDL 1076-1993. In contrast, all Verilog
names are case sensitive.

Names in ModelSim commands are case sensitive when matched against case sensitive
identifiers, otherwise they are not case sensitive.

Extended identifiers

The following are supported formats for extended identifiers for any command that takes
an identifier.

{\ext ident!\ } # Note trailing space.

\\ext\ ident\!\\ # All non-alpha characters escaped

Naming fields in VHDL signals

Fields in VHDL record signals can be specified using the form:

signal_name.field_name
ModelSim SE Command Reference

CR-16 Syntax and conventions

Model
Example pathnames

Wildcard characters

Wildcard characters can be used in HDL item names in some simulator commands.
Conventions for wildcards are as follows:

The WildcardFilter Tcl preference variable filters matching items for the add wave, add
log, add list, and find commands.

Syntax Description

clk specifies the item clk in the current environment

/top/clk specifies the item clk in the top-level design unit.

/top/block1/u2/clk specifies the item clk, two levels down from the
top-level design unit

block1/u2/clk specifies the item clk, two levels down from the
current environment

array_sig(4) specifies an index of an array item

{array_sig(1 to 10)} specifies a slice of an array item in VHDL syntax

{mysignal[31:0]} specifies a slice of an array item in Verilog syntax

record_sig.field specifies a field of a record

Syntax Description

* matches any sequence of characters

? matches any single character
Sim SE Command Reference

ModelSim variables CR-17
ModelSim variables

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the ModelSim GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation.

ModelSim variables can be referenced in simulator commands by preceding the name of
the variable with the dollar sign ($) character. ModelSim uses global Tcl variables for
simulator state variables, simulator control variables, simulator preference variables and
user-defined variables (See http://www.model.com/resources/pref_variables/frameset.htm
for a list of Tcl preference variables.)

See Appendix A - ModelSim variables in the User’s Manual for more information on
variables.

Variable settings report

The report command (CR-202) returns a list of current settings for either the simulator state,
or simulator control variables.

Simulation time units

You can specify the time unit for delays in all simulator commands that have time
arguments:

force clk 1 50 ns, 1 100 ns -repeat 1 us
run 2 ms

Note that all the time units in a ModelSim command need not be the same.

Unless you specify otherwise as in the examples above, simulation time is always
expressed using the resolution units that are specified by the UserTimeUnit variable. See
UserTimeUnit (UM-450).

By default, the specified time units are assumed to be relative to the current time unless the
value is preceded by the character @, which signifies an absolute time specification.

Comments in argument files
Argument files may be loaded with the -f <filename> argument of the vcom, vlog, and
vsim commands. The -f <filename> argument specifies a file that contains more command
line arguments.

Comments within the argument files follow these rules:

• All text in a line beginning with // to its end is treated as a comment.

• All text bracketed by /* ... */ is treated as a comment.

Also, program arguments can be placed on separate lines in the argument file, with the
newline characters treated as space characters. There is no need to put '\' at the end of each
line.
ModelSim SE Command Reference

http://www.model.com/resources/pref_variables/frameset.htm

CR-18 Syntax and conventions

Model
GUI_expression_format

The GUI_expression_format is an option of several simulator commands that operate
within ModelSim’s GUI environment. The expressions help you locate and examine HDL
items within the List and Wave windows (expressions may also be used through the Edit >
Search menu in both windows). The commands that use the expression format are:

compare add (CR-83), compare clock (CR-87), compare configure (CR-89), configure (CR-

110), down (CR-139), examine (CR-149), left (CR-164), right (CR-208), searchlog (CR-214),
up (CR-231), virtual function (CR-270), and virtual signal (CR-282)

Expressions may be typed directly on the VSIM command line, or you can use the "The
GUI Expression Builder" (UM-305).

Expression typing

GUI expressions are typed. The supported types consist of six scalar types and two array
types.

Scalar types

The scalar types are as follows: boolean, integer, real, time (64-bit integer), enumeration,
and signal state. Signal states are represented by the nine VHDL std_logic states: ’U’ ’X’
’0’ ’1’ ’Z’ ’H’ ’L’ ’W’ and ’-’. Verilog states 0, 1, x, and z are mapped into these states and
the Verilog strengths are ignored. Conversion is done automatically when referencing
Verilog nets or registers.

Array types

The array types supported are signed and unsigned arrays of signal states. This would
correspond to the VHDL std_logic_array type. Verilog registers are automatically
converted to these array types. The array type can be treated as either UNSIGNED or
SIGNED, as in the IEEE std_logic_arith package. Normally, referencing a signal array
causes it to be treated as UNSIGNED by the expression evaluator; to cause it to be treated
as SIGNED, use casting as described below. Numeric operations supported on arrays are
performed by the expression evaluator via ModelSim’s built-in numeric_standard (and
similar) package routines. The expression evaluator selects the appropriate numeric routine
based on SIGNED or UNSIGNED properties of the array arguments and the result.

The enumeration types supported are any VHDL enumerated type. Enumeration literals
may be used in the expression as long as some variable of that enumeration type is
referenced in the expression. This is useful for sub-expressions of the form:

(/memory/state == reading)
Sim SE Command Reference

GUI_expression_format CR-19
Signal and subelement naming conventions

ModelSim supports naming conventions for VHDL and Verilog signal pathnames, VHDL
array indexing, Verilog bit selection, VHDL subrange specification, and Verilog part
selection.

Examples in Verilog and VHDL syntax:

top.chip.vlogsig
/top/chip/vhdlsig
vlogsig[3]
vhdlsig(9)
vlogsig[5:2]
vhdlsig(5 downto 2)

Concatenation of signals or subelements

Elements in the concatenation that are arrays are expanded so that each element in the array
becomes a top-level element of the concatenation. But for elements in the concatenation
that are records, the entire record becomes one top-level element in the result. To specify
that the records be broken down so that their subelements become top-level elements in the
concatenation, use the concat_flatten directive. Currently we do not support leaving full
arrays as elements in the result. (Please let us know if you need that option.)

If the elements being concatenated are of incompatible base type, a VHDL-style record will
be created. The record object can be expanded in the Signals and Wave windows just like
an array of compatible type elements.

Concatenation syntax for VHDL

<signalOrSliceName1> & <signalOrSliceName2> & ...

Concatenation syntax for Verilog

&{<signalOrSliceName1>, <signalOrSliceName2>, ... }
&{<count>{<signalOrSliceName1>}, <signalOrSliceName2>, ... }

Note that the concatenation syntax begins with "&{" rather than just "{". Repetition
multipliers are supported, as illustrated in the second line. The repetition element itself may
be an arbitrary concatenation subexpression.

Concatenation directives

The concatenation directive (as illustrated below) can be used to constrain the resulting
array range of a concatenation or influence how compound objects are treated. By default,
the concatenation will be created with descending index range from (n-1) downto 0, where
n is the number of elements in the array. The concat_range directive completely specifies
the index range. The concat_ascending directive specifies that the index start at zero and
increment upwards. The concat_flatten directive flattens the signal structure hierarchy.
The concat_sort_wild_ascending directive gathers signals by name in ascending order
(the default is descending).

(concat_range 31:0)<concatenationExpr> # Verilog syntax
(concat_range (31:0))<concatenationExpr> # Also Verilog syntax
(concat_range (31 downto 0))<concatenationExpr> # VHDL syntax
(concat_ascending) <concatenationExpr>
(concat_flatten) <concatenationExpr> # no hierarchy
(concat_sort_wild_ascending) <concatenationExpr>
ModelSim SE Command Reference

CR-20 Syntax and conventions

Model
Examples

&{ "mybusbasename*" }

Gathers all signals in the current context whose names begin with "mybusbasename",
sorts those names in descending order, and creates a bus with index range (n-1) downto
0, where n is the number of matching signals found. (Note that it currently does not derive
the index name from the tail of the one-bit signal name.)

(concat_range 13:4)&{ "mybusbasename*" }

Specifies the index range to be 13 downto 4, with the signals gathered by name in
descending order.

(concat_ascending)&{ "mybusbasename*" }

Specifies an ascending range of 0 to n-1, with the signals gathered by name in descending
order.

(concat_ascending)((concat_sort_wild_ascending)&{"mybusbasename*" })

Specifies an ascending range of 0 to n-1, with the signals gathered by name in ascending
order.

VHDL record field support

Arbitrarily-nested arrays and records are supported, but operators will only operate on one
field at a time. That is, the expression {a == b} where a and b are records with multiple
fields, is not supported. This would have to be expressed as:

{(a.f1 == b.f1) && (a.f2 == b.f2)...}

Examples:

vhdlsig.field1
vhdlsig.field1.subfield1
vhdlsig.(5).field3
vhdlsig.field4(3 downto 0)

Grouping and precedence

Operator precedence generally follows that of the C language, but we recommend liberal
use of parentheses.
Sim SE Command Reference

GUI_expression_format CR-21
Searching for binary signal values in the GUI

When you use the GUI to search for signal values displayed in 4-state binary radix, you
should be aware of how ModelSim maps between binary radix and std_logic. The issue
arises because there is no "uninitialized" value in binary, while there is in std_logic
(designated by the letter "U"). Consequently, ModelSim relies on mapping tables to
determine whether a match occurs between the displayed binary signal value and the
underlying std_logic value.

For comparing VHDL std_logic/std_ulogic objects, ModelSim uses the table shown below.
An entry of "0" in the table is "no match"; an entry of "1" is a "match"; an entry of "2" is a
match only if you set the Tcl variable STDLOGIC_X_MatchesAnything to 1. Note that
X will match a U, and - will match anything.

For comparing Verilog net values, ModelSim uses the table shown below. An entry of "2"
is a match only if you set the Tcl variable "VLOG_X_MatchesAnything" to 1.

Search
Entry

Matches as follows:

U X 0 1 Z W L H -

U 1 1 0 0 0 0 0 0 1

X 1 1 2 2 2 2 2 2 1

0 0 2 1 0 0 0 1 0 1

1 0 2 0 1 0 0 0 1 1

Z 0 2 0 0 1 0 0 0 1

W 0 2 0 0 0 1 0 0 1

L 0 2 1 0 0 0 1 0 1

H 0 2 0 1 0 0 0 1 1

- 1 1 1 1 1 1 1 1 1

Search
Entry

Matches as follows:

0 1 Z X

0 1 0 0 2

1 0 1 0 2

Z 0 0 1 2

X 2 2 2 1

Note: This matching algorithm applies only to searching via the GUI; it does not apply
to VHDL or Verilog testbenches.
ModelSim SE Command Reference

CR-22 Syntax and conventions

Model
Expression syntax

GUI expressions generally follow C-language syntax, with both VHDL-specific and
Verilog-specific conventions supported. These expressions are not parsed by the Tcl parser,
and so do not support general Tcl; parentheses should be used rather than curly braces.
Procedure calls are not supported.

A GUI expression can include the following elements: Tcl macros, constants, array
constants, variables, array variables, signal attributes, operators and casting.

Tcl macros

Macros are useful for pre-defined constants or for entire expressions that have been
previously saved. The substitution is done only once, when the expression is first parsed.
Macro syntax is:

$<name>

Substitutes the string value of the Tcl global variable <name>.

Constants

Type Values

boolean value true false TRUE FALSE

integer [0-9]+

real number <int>|([<int>].<int>[exp]) where the optional [exp] is: (e|E)[+|-][0-
9]+

time integer or real optionally followed by time unit

enumeration VHDL user-defined enumeration literal

single bit constants expressed as any of the following:
0 1 x X z Z U H L W ’U’ ’X’ ’0’ ’1’ ’Z’ ’H’ ’L’ ’W’ ’-’ 1’b0 1’b1
Sim SE Command Reference

GUI_expression_format CR-23
Array constants, expressed in any of the following formats

Variables

Array variables

Type Values

VHDL # notation <int>#<alphanum>[#]
Example: 16#abc123#

VHDL bitstring "(U|X|0|1|Z|L|H|W|-)*"
Example: "11010X11"

VLOG notation [-][<int>]’(b|B|o|O|d|D|h|H) <alphanum>
(where <alphanum> includes 0-9, a-f, A-F and ’-’)
Example: 12’hc91 (This is the preferred notation because it removes
the ambiguity about the number of bits.)

Based notation 0x..., 0X..., 0o..., 0O..., 0b..., OB...
ModelSim automatically zero fills unspecified upper bits.

Variable Type

Name of a signal The name may be a simple name, a VHDL or VLOG style extended
identifier, or a VHDL or VLOG style path. The signal must be one
of the following types:
-- VHDL signal of type INTEGER, REAL or TIME
-- VHDL signal of type std_logic or bit
-- VHDL signal of type user-defined enumeration
-- VLOG net, VLOG register, VLOG integer, or VLOG real

NOW Returns the value of time at the current location in the WLF file as
the WLF file is being scanned (not the most recent simulation time).

Variable Type

Name of a signal -- VHDL signals of type bit_vector or std_logic_vector
-- VLOG register
-- VLOG net array
A subrange or index may be specified in either VHDL or VLOG
syntax. Examples: mysignal(1 to 5), mysignal[1:5], mysignal (4),
mysignal [4]
ModelSim SE Command Reference

CR-24 Syntax and conventions

Model
Signal attributes

<name>’event
<name>’rising
<name>’falling
<name>’delayed()
<name>’hasX

The ’delayed attribute lets you assign a delay to a VHDL signal. To assign a delay to a
signal in Verilog, use "#" notation in a subexpression (e.g., #-10 /top/signalA).

The hasX attribute lets you search for signals, nets, or registers that contains an X
(unknown) value.

See "Examples" (CR-25) below for further details on ’delayed and ’hasX.

Operators

Operator Description Operator Description

&& boolean and sll/SLL shift left logical

|| boolean or sla/SLA shift left arithmetic

! boolean not srl/SRL shift right logical

== equal sra/SRA shift right
arithmetic

!= not equal ror/ROR rotate right

=== exact equal rol/ROL rotate left

!== exact not equal + arithmetic add

< less than - arithmetic subtract

<= less than or equal * arithmetic multiply

> greater than / arithmetic divide

>= greater than or equal mod/MOD arithmetic modulus

not/NOT or ~ unary bitwise
inversion

rem/REM arithmetic
remainder

and/AND/& bitwise and |<vector_expr> OR reduction

nand/NAND bitwise nand ^<vector_expr> XOR reduction

or/OR/| bitwise or

nor/NOR bitwise nor

xor/XOR bitwise xor

xnor/XNOR bitwise xnor
Sim SE Command Reference

GUI_expression_format CR-25
Casting

Examples

/top/bus & $bit_mask

This expression takes the bitwise AND function of signal /top/bus and the array constant
contained in the global Tcl variable bit_mask.

clk’event && (/top/xyz == 16’hffae)

This expression evaluates to a boolean true when signal clk changes and signal /top/xyz
is equal to hex ffae; otherwise is false.

clk’rising && (mystate == reading) && (/top/u3/addr == 32’habcd1234)

Evaluates to a boolean true when signal clk just changed from low to high and signal
mystate is the enumeration reading and signal /top/u3/addr is equal to the specified 32-bit
hex constant; otherwise is false.

(/top/u3/addr and 32’hff000000) == 32’hac000000

Evaluates to a boolean true when the upper 8 bits of the 32-bit signal /top/u3/adder equals
hex ac.

/top/signalA'delayed(10ns)

This expression returns /top/signalA delayed by 10 ns.

/top/signalA'delayed(10 ns) && /top/signalB

This expression takes the logical AND of a delayed /top/signalA with the undelayed
/top/signalB.

Note: Arithmetic operators use the std_logic_arith package.

Casting Description

(bool) convert to boolean

(boolean) convert to boolean

(int) convert to integer

(integer) convert to integer

(real) convert to real

(time) convert to 64-bit integer

(std_logic) convert to 9-state signal value

(signed) convert to signed vector

(unsigned) convert to unsigned vector

(std_logic_vector) convert to unsigned vector
ModelSim SE Command Reference

CR-26 Syntax and conventions

Model
virtual function { (#-10 /top/signalA) && /top/signalB}
mySignalB_AND_DelayedSignalA

This evaluates /top/signalA at 10 simulation time steps before the current time, and takes
the logical AND of the result with the current value of /top/signalB. The ’#’ notation uses
positive numbers for looking into the future, and negative numbers for delay. This
notation does not support the use of time units.

((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)

Evaluates to a boolean true when WLF file time is between 23 and 54 microseconds, clk
just changed from low to high, and signal mode is enumeration writing.

searchlog -expr {dbus'hasX} {0 ns} dbus

Searches for an ’X’ in dbus. This is equivalent to the expression: {dbus(0) == ’x’ ||
dbus(1) == ’x’} This makes it possible to search for X values without having to write
a type specific literal.
Sim SE Command Reference

 CR-27
Commands

Chapter contents
Command reference table CR-28

The commands here are entered either in macro files or on the command line of the Main
window. Some commands are automatically entered on the command line when you use
the ModelSim graphical user interface.

Note that in addition to the simulation commands documented in this section, you can use
the Tcl commands described in the Tcl man pages (use the Main window menu selection:
Help > Tcl Man Pages).

Note: ModelSim commands are case sensitive. Type them as they are shown in this
reference.
ModelSim SE Command Reference

CR-28 Commands

Model
Command reference table

The following table provides a brief description of each ModelSim command. Command
details, arguments and examples can be found at the page numbers given in the Command
name column.

Command name Action

.main clear (CR-37) clears the Main window transcript

.wave.tree interrupt (CR-38) halts the drawing of waves in the Wave window

.wave.tree zoomfull (CR-39) zooms the Wave window from time zero to the current simulation time

.wave.tree zoomin (CR-40) zooms in the Wave window by the specified factor

.wave.tree zoomlast (CR-41) zooms the Wave window to the setting of the last zoom change

.wave.tree zoomout (CR-42) zooms out the Wave window by the specified factor

.wave.tree zoomrange (CR-43) zooms the Wave to the specified range

abort (CR-44) halts the execution of a macro file interrupted by a breakpoint or error

add button (CR-45) adds a user-defined button to the Main window button bar

add dataflow (CR-47) adds the specified item to the Dataflow window

add list (CR-48) lists VHDL signals and variables, and Verilog nets and registers, and their
values in the List window

add log also known as the log command; see log (CR-166)

add_menu (CR-51) adds a menu to the menu bar of the specified window, using the specified
menu name

add_menucb (CR-53) creates a checkbox within the specified menu of the specified window

add_menuitem (CR-54) creates a menu item within the specified menu of the specified window

add_separator (CR-55) adds a separator as the next item in the specified menu path in the specified
window

add_submenu (CR-56) creates a cascading submenu within the specified menu_path of the specified
window

add wave (CR-57) adds VHDL signals and variables, and Verilog nets and registers to the Wave
window

alias (CR-61) creates a new Tcl procedure that evaluates the specified commands

batch_mode (CR-62) returns a 1 if ModelSim is operating in batch mode, otherwise returns a 0

bd (CR-63) deletes a breakpoint

bookmark add wave (CR-64) adds a bookmark to the specified Wave window
Sim SE Command Reference

Command reference table CR-29
bookmark delete wave (CR-65) deletes bookmarks from the specified Wave window

bookmark goto wave (CR-66) zooms and scrolls a Wave window using the specified bookmark

bookmark list wave (CR-67) displays a list of available bookmarks

bp (CR-68) sets a breakpoint

cd (CR-71) changes the ModelSim local directory to the specified directory

change (CR-72) modifies the value of a VHDL variable or Verilog register variable

change_menu_cmd (CR-73) changes the command to be executed for a specified menu item label, in the
specified menu, in the specified window

check contention add (CR-74) enables contention checking for the specified nodes

check contention config (CR-75) writes checking messages to a file

check contention off (CR-76) disables contention checking for the specified nodes

check float add (CR-77) enables float checking for the specified nodes

check float config (CR-78) writes checking messages to a file

check float off (CR-79) disables float checking for the specified nodes

check stable off (CR-80) disables stability checking

check stable on (CR-81) enables stability checking on the entire design

checkpoint (CR-82) saves the state of your simulation

compare add (CR-83) compares signals in a reference design against signals in a test design

compare annotate (CR-86) marks a compare difference as "ignore" or tags it with a text message

compare clock (CR-87) defines a clock to be used with clocked-mode comparisons

compare configure (CR-89) modifies options for compare signals or regions

compare continue (CR-90) continues difference computation that had been suspended

compare delete (CR-91) deletes a signal or region from the current comparison

compare end (CR-92) closes the currently open comparison

compare info (CR-93) lists the results of the comparison

compare list (CR-95) lists all the compare add commands currently in effect

compare options (CR-96) sets defaults for options used in other compare commands

compare reload (CR-99) reloads a comparison previously saved with the compare savediffs command

compare reset (CR-100) clears the current compare differences

compare run (CR-101) runs the comparison on selected signals

Command name Action
ModelSim SE Command Reference

CR-30 Commands

Model
compare savediffs (CR-102) saves comparison differences to a file that can be reloaded later

compare saverules (CR-103) saves comparison setup information to a file that can be reloaded later

compare see (CR-104) displays a comparison difference in the Wave window

compare start (CR-106) starts a new dataset comparison

compare stop (CR-108) halts active difference computation

compare update (CR-109) updates the comparison differences

configure (CR-110) invokes the List or Wave widget configure command for the current default
List or Wave window

context (CR-114) provides several operations on a context’s name

coverage clear (CR-116) clears all coverage data obtained during previous run commands

coverage reload (CR-121) seeds the coverage statistics with the output of a previous coverage report
command

coverage exclude clear (CR-117) unloads the current exclusion filter file

coverage exclude disable (CR-

118)

disables the current exclusion filter file

coverage exclude enable (CR-

119)

enables a previously disabled exclusion filter file

coverage exclude load (CR-120) loads an exclusion filter file

coverage report (CR-122) produces a textual output of the coverage statistics that have been gathered up
to this point

dataset alias (CR-123) assigns an additional name to a dataset

dataset clear (CR-124) clears the current simulation WLF file

dataset close (CR-125) closes a dataset

dataset info (CR-126) reports information about the specified dataset

dataset list (CR-127) lists the open dataset(s)

dataset open (CR-128) opens a dataset and references it by a logical name

dataset rename (CR-129) changes the logical name of an opened dataset

dataset save (CR-130) saves data from the current WLF file to a specified file

dataset snapshot (CR-131) saves data from the current WLF file at a specified interval

delete (CR-133) removes HDL items from either the List or Wave window

describe (CR-134) displays information about the specified HDL item

Command name Action
Sim SE Command Reference

Command reference table CR-31
disablebp (CR-135) turns off breakpoints and when commands

disable_menu (CR-136) disables the specified menu within the specified window

disable_menuitem (CR-137) disables the specified menu item within the specified menu_path of the
specified window

do (CR-138) executes commands contained in a macro file

down (CR-139) searches for signal transitions or values in the specified List window

drivers (CR-141) displays in the Main window the current value and scheduled future values
for all the drivers of a specified VHDL signal or Verilog net

dumplog64 (CR-142) dumps the contents of the vsim.wlf file in a readable format

echo (CR-143) displays a specified message in the Main window

edit (CR-144) invokes the editor specified by the EDITOR environment variable

enablebp (CR-145) turns on breakpoints and when commands turned off by the disablebp
command (CR-135)

enable_menu (CR-146) enables a previously-disabled menu

enable_menuitem (CR-147) enables a previously-disabled menu item

environment (CR-148) displays or changes the current dataset and region environment

examine (CR-149) examines one or more HDL items, and displays current values (or the values
at a specified previous time) in the Main window

exit (CR-152) exits the simulator and the ModelSim application

find (CR-153) displays the full pathnames of all HDL items in the design whose names
match the name specification you provide

force (CR-156) allows you to apply stimulus to VHDL signals and Verilog nets and registers,
interactively

getactivecursortime (CR-159) gets the time of the active cursor in the Wave window

getactivemarkertime (CR-160) gets the time of the active marker in the List window

help (CR-161) displays in the Main window a brief description and syntax for the specified
command

history (CR-162) lists the commands executed during the current session

lecho (CR-163) takes one or more Tcl lists as arguments and pretty-prints them to the Main
window

left (CR-164) searches left (previous) for signal transitions or values in the specified Wave
window

Command name Action
ModelSim SE Command Reference

CR-32 Commands

Model
log (CR-166) creates a wave log format (WLF) file containing simulation data for all HDL
items whose names match the provided specifications

lshift (CR-168) takes a Tcl list as argument and shifts it in-place one place to the left,
eliminating the 0th element

lsublist (CR-169) returns a sublist of the specified Tcl list that matches the specified Tcl glob
pattern

macro_option (CR-170) controls the speed and delay of macro (DO file) playback, plus the level of
debugging feedback

modelsim (CR-171) starts the ModelSim GUI without prompting you to load a design; valid only
for Windows platforms

next (CR-172) continues a search; see the search command (CR-212)

noforce (CR-173) removes the effect of any active force (CR-156) commands on the selected
HDL items

nolog (CR-174) suspends writing of data to the WLF file for the specified signals

notepad (CR-176) opens a simple text editor

noview (CR-177) closes a window in the ModelSim GUI

nowhen (CR-178) deactivates selected when (CR-314) commands

onbreak (CR-179) specifies command(s) to be executed when running a macro that encounters
a breakpoint in the source code

onElabError (CR-180) specifies one or more commands to be executed when an error is encountered
during elaboration

onerror (CR-181) specifies one or more commands to be executed when a running macro
encounters an error

pause (CR-182) interrupts the execution of a macro

play (CR-183) plays a sequence of keyboard and mouse actions, which were previously
saved to a file with the record command (CR-201)

power add (CR-184) specifies the signals or nets to track for power information

power report (CR-185) writes out the power information for the specified signals or nets

power reset (CR-186) resets power information to zero for the signals or nets specified with the
power add command (CR-184)

printenv (CR-187) echoes to the Main window the current names and values of all environment
variables

profile clear (CR-188) clears any data that has been gathered during previous run commands

Command name Action
Sim SE Command Reference

Command reference table CR-33
profile interval (CR-189) selects the frequency with which the profiler collects samples during a run
command

profile off (CR-190) discontinues runtime profiling

profile on (CR-191) enables runtime analysis of where your simulation is spending its time

profile option (CR-192) allows various profiling options to be changed

profile report (CR-193) produces a textual output of the profiling statistics that have been gathered up
to this point

project (CR-194) performs common operations on new projects

property list (CR-195) changes one or more properties of the specified signal, net or register in the
List window (UM-204)

property wave (CR-196) changes one or more properties of the specified signal, net or register in the
Wave window (UM-246)

pwd (CR-197) displays the current directory path in the Main window

quietly (CR-198) turns off transcript echoing for the specified command

quit (CR-199) exits the simulator

radix (CR-200) specifies the default radix to be used

record (CR-201) starts recording a replayable trace of all keyboard and mouse actions

report (CR-202) displays the value of all simulator control variables, or the value of any
simulator state variables relevant to the current simulation

restart (CR-204) reloads the design elements and resets the simulation time to zero

restore (CR-206) restores the state of a simulation that was saved with a checkpoint command
(CR-82) during the current invocation of vsim

resume (CR-207) resumes execution of a macro file after a pause command (CR-182), or a
breakpoint

right (CR-208) searches right (next) for signal transitions or values in the specified Wave
window

run (CR-210) advances the simulation by the specified number of timesteps

search (CR-212) searches the specified window for one or more items matching the specified
pattern(s)

searchlog (CR-214) searches one or more of the currently open logfiles for a specified condition

seetime (CR-216) scrolls the List or Wave window to make the specified time visible

shift (CR-217) shifts macro parameter values down one place

show (CR-218) lists HDL items and subregions visible from the current environment

Command name Action
ModelSim SE Command Reference

CR-34 Commands

Model
simstats (CR-219) reports performance-related statistics about active simulations

splitio (CR-220) operates on a VHDL inout or out port to create a new signal having the same
name as the port suffixed with "__o"

status (CR-221) lists all currently interrupted macros

step (CR-222) steps to the next HDL statement

stop (CR-223) stops simulation in batch files; used with the when command (CR-314)

tb (CR-224) displays a stack trace for the current process in the Main window

toggle add (CR-225) enables collection of toggle statistics for the specified nodes

toggle report (CR-226) displays to the screen a list of all nodes that have not transitioned to both 0
and 1 at least once

toggle reset (CR-227) resets the toggle counts to zero for the specified nodes

transcribe (CR-228) displays a command in the Main window, then executes the command

transcript (CR-229) controls echoing of commands executed in a macro file; also works at top
level in batch mode

tssi2mti (CR-230) converts a vector file in Fluence Technology (formerly TSSI) Standard
Events Format into a sequence of force (CR-156) and run (CR-210) commands

up (CR-231) searches for signal transitions or values in the specified List window

vcd add (CR-233) adds the specified items to the VCD file

vcd checkpoint (CR-234) dumps the current values of all VCD variables to the VCD file

vcd comment (CR-235) inserts the specified comment in the VCD file

vcd dumpports (CR-236) creates a VCD file that captures port driver data

vcd dumpportsall (CR-238) creates a checkpoint in the VCD file that shows the current value of all
selected ports

vcd dumpportsflush (CR-239) flushes the VCD buffer to the VCD file

vcd dumpportslimit (CR-240) specifies the maximum size of the VCD file

vcd dumpportsoff (CR-241) turns off VCD dumping and records all dumped port values as x

vcd dumpportson (CR-242) turns on VCD dumping and records the current value of all selected ports

vcd file (CR-243) specifies the filename and state mapping for the VCD file created by a vcd
add command (CR-233)

vcd files (CR-245) specifies the filename and state mapping for the VCD file created by a vcd
add command (CR-233); supports multiple VCD files

vcd flush (CR-247) flushes the contents of the VCD file buffer to the VCD file

Command name Action
Sim SE Command Reference

Command reference table CR-35
vcd limit (CR-248) specifies the maximum size of the VCD file

vcd off (CR-249) turns off VCD dumping and records all VCD variable values as x

vcd on (CR-250) turns on VCD dumping and records the current values of all VCD variables

vcd2wlf (CR-251) translates VCD files into WLF files

vcom (CR-252) compiles VHDL design units

vdel (CR-258) deletes a design unit from a specified library

vdir (CR-259) lists the contents of a design library

verror (CR-260) prints a detailed description of a message number

vgencomp (CR-261) writes a Verilog module’s equivalent VHDL component declaration to
standard output

view (CR-263) opens a ModelSim window and brings it to the front of the display

virtual count (CR-265) counts the number of currently defined virtuals that were not read in using a
macro file

virtual define (CR-266) prints the definition of the virtual signal or function in the form of a command
that can be used to re-create the object

virtual delete (CR-267) removes the matching virtuals

virtual describe (CR-268) prints a complete description of the data type of one or more virtual signals

virtual expand (CR-269) produces a list of all the non-virtual objects contained in the virtual signal(s)

virtual function (CR-270) creates a new signal that consists of logical operations on existing signals and
simulation time

virtual hide (CR-273) sets a flag in the specified real or virtual signals so that the signals do not
appear in the Signals window

virtual log (CR-274) causes the sim-mode dependent signals of the specified virtual signals to be
logged by the simulator

virtual nohide (CR-276) resets the flag set by a virtual hide command

virtual nolog (CR-277) stops the logging of the specified virtual signals

virtual region (CR-279) creates a new user-defined design hierarchy region

virtual save (CR-280) saves the definitions of virtuals to a file

virtual show (CR-281) lists the full path names of all the virtuals explicitly defined

virtual signal (CR-282) creates a new signal that consists of concatenations of signals and
subelements

virtual type (CR-285) creates a new enumerated type

Command name Action
ModelSim SE Command Reference

CR-36 Commands

Model
vlib (CR-287) creates a design library

vlog (CR-288) compiles Verilog design units

vmake (CR-296) creates a makefile that can be used to reconstruct the specified library

vmap (CR-297) defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file

vsim (CR-298) loads a new design into the simulator

vsim<info> (CR-312) returns information about the current vsim executable

vsource (CR-313) specifies an alternative file to use for the current source file

when (CR-314) instructs ModelSim to perform actions when the specified conditions are met

where (CR-318) displays information about the system environment

wlf2log (CR-319) translates a ModelSim WLF file(vsim.wlf) to a QuickSim II logfile

wlfrecover (CR-321) attempts to repair incomplete WLF files

write cell_report (CR-322) creates a report of cell instances in the design that are optimized (-fast)

write format (CR-323) records the names and display options in a file of the HDL items currently
being displayed in the List or Wave window

write list (CR-325) records the contents of the most recently opened or specified List window in
a list output file

write preferences (CR-326) saves the current GUI preference settings to a Tcl preference file

write report (CR-327) prints a summary of the design being simulated

write transcript (CR-328) writes the contents of the Main window transcript to the specified file

write tssi (CR-329) records the contents of the default or specified List window in a “TSSI
format” file

write wave (CR-331) records the contents of the most currently opened or specified Wave window
in PostScript format

Command name Action
Sim SE Command Reference

.main clear CR-37
.main clear

The .main clear command clears the transcript. The behavior is the same as the Main
window File > Transcript > Clear Transcript menu selection.

Syntax

.main clear

Arguments

None.

See also

Main window (UM-173)
ModelSim SE Command Reference

CR-38 Commands

Model
.wave.tree interrupt

The .wave.tree interrupt command halts the drawing of waves in the Wave window. This
command can be useful when you have a large WLF file that is taking a long time to
display.

Syntax

.wave.tree interrupt

Arguments

None.
Sim SE Command Reference

.wave.tree zoomfull CR-39
.wave.tree zoomfull

The .wave.tree zoomfull command redraws the Wave window to show the entire
simulation from time 0 to the current simulation time. The behavior is the same as the Wave
window (UM-246) View > Zoom > Zoom Full menu selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomfull

Arguments

None.

See also

.wave.tree zoomin (CR-40), .wave.tree zoomlast (CR-41), .wave.tree zoomout (CR-42),

.wave.tree zoomrange (CR-43)

Example

.wave.tee zoomfull
{0 ns}{2310 ns}
ModelSim SE Command Reference

CR-40 Commands

Model
.wave.tree zoomin

The .wave.tree zoomin command allows you to zoom in the Wave window by some factor.
The behavior is similar to the Wave window (UM-246) View > Zoom > Zoom In menu
selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomin
<factor>

Arguments

<factor>

A number that specifies how much you want to zoom in the Wave window. Required.

See also

.wave.tree zoomfull (CR-39), .wave.tree zoomlast (CR-41), .wave.tree zoomout (CR-42),

.wave.tree zoomrange (CR-43)

Example

.wave.tee zoomin 2
{577 ns}{1733 ns}
Sim SE Command Reference

.wave.tree zoomlast CR-41
.wave.tree zoomlast

The .wave.tree zoomlast command zooms the Wave window to the setting prior to the
most recent zoom change. The behavior is the same as the Wave window (UM-246) View >
Zoom > Zoom Last menu selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomlast

Arguments

None.

See also

.wave.tree zoomfull (CR-39), .wave.tree zoomin (CR-40), .wave.tree zoomout (CR-42),

.wave.tree zoomrange (CR-43)

Example

.wave.tee zoomlast
{0 ns}{2310 ns}
ModelSim SE Command Reference

CR-42 Commands

Model
.wave.tree zoomout

The .wave.tree zoomout command allows you to zoom out the Wave window by some
factor. The behavior is similar to the Wave window (UM-246) View > Zoom > Zoom Out
menu selection.

Returns the zoom range as two time values.

Syntax

.wave.tree zoomout
<factor>

Arguments

<factor>

A number that specifies how much you want to zoom out the Wave window. Required.

See also

.wave.tree zoomfull (CR-39), .wave.tree zoomin (CR-40), .wave.tree zoomlast (CR-41),

.wave.tree zoomrange (CR-43)

Example

.wave.tee zoomout 2
{865 ns}{1445 ns}
Sim SE Command Reference

.wave.tree zoomrange CR-43
.wave.tree zoomrange

The .wave.tree zoomrange command lets you set the zoom range for the Wave window.
The behavior is the same as the Wave window (UM-246) View > Zoom > Zoom Range
menu selection.

Returns the zoom range as two time values.

Syntax
.wave.tree zoomrange

[<time1> [<time2>]]

Arguments

<time1>

<time2>

time1 and time2 are floating point numbers that specify a zoom range. If neither number
is specified, the command returns the current zoom range. If only time1 is specified, then
the zoom range is set to start at 0 and end at time1.

Either range number may include an optional VHDL resolution time-unit. The resolution
and range number must be enclosed in either quotes or curly brackets (see the example
below). If not specified the resolution defaults to the UserTimeUnit (UM-450) set in the
modelsim.ini file.

Examples

.wave.tree zoomrange {.5 us} {1.75 us}
{500 ns} {1750 ns}

Zooms the Wave window between .5 us and 1.75 us and returns the zoom range in current
simulator time units.

See also

.wave.tree zoomfull (CR-39), .wave.tree zoomin (CR-40), .wave.tree zoomlast (CR-41),

.wave.tree zoomout (CR-42)
ModelSim SE Command Reference

CR-44 Commands

Model
abort

The abort command halts the execution of a macro file interrupted by a breakpoint or error.
When macros are nested, you may choose to abort the last macro only, abort a specified
number of nesting levels, or abort all macros. The abort command may be used within a
macro to return early.

Syntax

abort
[<n> | all]

Arguments

<n> | all

An integer giving the number of nested macro levels to abort; all aborts all levels.
Optional. Default is 1.

See also

onbreak (CR-179), onElabError (CR-180), onerror (CR-181)
Sim SE Command Reference

add button CR-45
add button

The add button command adds a user-defined button to the Main window button bar. New
buttons are added to the right end of the bar. You can also add buttons with a ModelSim
tool: "The Button Adder" (UM-310).

Returns the path name of the button widget created.

Syntax

add button
<Text> <Cmd> [Disable | NoDisable] [{<option> <value> ...}]

Arguments

<Text>

The label to appear on the face of the button. Required.

<Cmd>

The command to be executed when the button is clicked with the left mouse button. To
echo the command and display the return value in the Main window, prefix the command
with the transcribe command (CR-228). Transcribe will also echo the results to the
transcript window. Required.

Disable | NoDisable

If Disable, the button will be grayed-out during a run and not active. If NoDisable, the
button will continue to be active during a run. Optional. The default is Disable.

{<option> <value> ...}

A list of option-value pairs that will be applied to the button widget. Optional. Any
properties belonging to Tk button widgets may be set. Useful options are foreground
color (-fg), background color (-bg), width (-width) and relief (-relief).

For a complete list of available options, use the configure command addressed to the
newly-created widget. For example:

.controls.tb.button_7 config

Note: Because the arguments are positional, a Disable | NoDisable option must be
specified in order to use the options argument.
ModelSim SE Command Reference

CR-46 Commands

Model
Examples

add button pwd {transcribe pwd} NoDisable

Creates a button labeled "pwd" that invokes the transcribe command (CR-228) with the
pwd Tcl command, and echoes the command and its results to the Main window (see
graphic below). The button remains active during a run.

add button date {transcribe exec date} Disable {-fg blue -bg yellow \
-activebackground red}

Creates a button labeled "date" that echoes the system date to the Main window. The
button is disabled during a run; its colors are: blue foreground, yellow background, and
red active background.

add button doit {run 1000 ns; echo did it} Disable {-underline 1}

Creates a "doit" button and underlines the second character of the label, the "o" of "doit".

.controls.tb.button_7 config -command {run 10000} -bg red

Changes the button command to "run 10000" and changes the button background color
to red.

See also

transcribe (CR-228), "The Button Adder" (UM-310) tool
Sim SE Command Reference

add dataflow CR-47
add dataflow

The add dataflow command adds the specified process, signal, net, or register to the
Dataflow window. Wildcards are allowed.

Syntax

add dataflow

<item> [-window <wname>]

<item>

Specifies a process, signal, net, or register that you want to add to the Dataflow window.
Required. Multiple items separated by spaces may be specified. Wildcards are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.)

-window <wname>

Adds the items to the specified Dataflow window <wname> (e.g., dataflow2). Optional.
Used to specify a particular window when multiple instances of that window type exist.
Selects an existing window; does not create a new window. Use the view command (CR-

263) with the -new option to create a new window.

See also

Dataflow window (UM-186)
ModelSim SE Command Reference

CR-48 Commands

Model
add list

The add list command lists VHDL signals and variables and Verilog nets and registers in
the List window, along with their associated values. User-defined buses may also be added
for either language.

If no port mode is specified, add list will display all items in the selected region with names
matching the item name specification.

Limitations: VHDL variables and Verilog memories can be listed using the variable’s full
name only (no wildcards).

Syntax

add list
[-allowconstants] [-in] [-inout] [-internal]
[[<item_name> | {<item_name> {sig1 sig2 sig3 ...}}] ...] ...
[-label <name>] [-notrigger | -trigger] [-out] [-ports] [-<radix>]
[-recursive] [-width <n>] [-window <wname>]

Arguments

-allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the List window. Optional. By default, constants are ignored because
they do not change.

-in

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode IN if they match the item_name specification. Optional.

-inout

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wildcard searches. Specifies that the scope of the search is to include
internal items (non-port items) if they match the item_name specification. VHDL
variables are not selected. Optional.

<item_name>

Specifies the name of the item to be listed. Optional. Wildcard characters are allowed.
(Note that the WildcardFilter Tcl preference variable identifies types to ignore when
matching items with wildcard patterns.) Variables may be added if preceded by the
process name. For example,

add list myproc/int1

{<item_name> {sig1 sig2 sig3 ...}}

Creates a user-defined bus in place of item_name; ‘sigi’ are signals to be concatenated
within the user-defined bus. Optional. Specified items may be either scalars or various
sized arrays as long as they have the same element enumeration type.
Sim SE Command Reference

add list CR-49
-label <name>

Specifies an alternative signal name to be displayed as a column heading in the listing.
Optional. This alternative name is not valid in a force (CR-156) or examine (CR-149)
command; however, it can be used in a search command (CR-212) with the list option.

-nodelta

Specifies that the delta column not be displayed when adding signals to the List window.
Optional. Identical to configure list -delta none.

-notrigger

Specifies that items are to be listed, but does not cause the List window to be updated
when the item changes. Optional.

-out

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode OUT if they match the item_name specification. Optional.

-ports

For use with wildcard searches. Specifies that the scope of the search is to include all
ports. Optional. Has the same effect as specifying -in, -out, and -inout together.

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid entries (or
unique abbreviations) are:

binary
octal
decimal (or signed)
unsigned
hexadecimal
ascii
symbolic
default

If no radix is specified for an enumerated type, the default representation is used. You
can change the default radix for the current simulation using the radix command (CR-

200). You can change the default radix permanently by editing the DefaultRadix (UM-447)
variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X.

-recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-trigger

Specifies that items are to be listed and causes the List window to be updated when the
items change. Optional. Default.

-width <n>

Specifies the column width in characters. Optional.

-window <wname>

Adds HDL items to the specified List window <wname> (e.g., list2). Optional. Used to
specify a particular window when multiple instances of that window type exist. Selects
an existing window; does not create a new window. Use the view command (CR-263) with
the -new option to create a new window.
ModelSim SE Command Reference

CR-50 Commands

Model
Examples

add list -r /*

Lists all items in the design.

add list *

Lists all items in the region.

add list -in *

Lists all input ports in the region.

add list a -label sig /top/lower/sig {array_sig(9 to 23)}

Displays a List window containing three columns headed a, sig, and array_sig(9 to 23).

add list clk -notrigger a b c d

Lists clk, a, b, c, and d only when clk changes.

config list -strobeperiod {100 ns} -strobestart {0 ns} -usestrobe 1
add list -notrigger clk a b c d

Lists clk, a, b, c, and d every 100 ns.

add list -hex {mybus {msb {opcode(8 downto 1)} data}}

Creates a user-defined bus named "mybus" consisting of three signals; the bus is
displayed in hex.

add list vec1 -hex vec2 -dec vec3 vec4

Lists the item vec1 using symbolic values, lists vec2 in hexadecimal, and lists vec3 and
vec4 in decimal.

See also

add wave (CR-57), log (CR-166), "Extended identifiers" (CR-15)
Sim SE Command Reference

add_menu CR-51
add_menu

The add_menu command adds a menu to the menu bar of the specified window, using the
specified menu name. Use the add_menuitem (CR-54), add_separator (CR-55),
add_menucb (CR-53), and add_submenu (CR-56) commands to complete the menu.

Returns the full Tk pathname of the new menu.

Color and other Tk properties of the menu may be changed, after creating the menu, using
the Tk menu widget configure command.

Syntax

add_menu
<window_name> <menu_name> [<shortcut> [-hide_menubutton]]

Arguments

<window_name>

Tk path of the window to contain the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_name>

Name to be given to the Tk menu widget. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut. Numbering starts
with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.). Optional unless you
specify -hide_menubutton, in which case <shortcut> is required. Default is "-1", which
indicates no shortcut is to be used.

-hide_menubutton

Causes the new menu not to be displayed. Optional. You can add the menu later by
calling tk_popup on the menu path widget. Note that you must specify <shortcut> if
you specify -hide_menubutton.

Examples

The following Tcl code is an example of creating user-customized menus. It adds a menu
containing a top-level item labeled "Do My Own Thing...", which prints
"my_own_thing.signals", and adds a cascading submenu labeled "changeCase" with two
entries, "To Upper" and "To Lower", which echo "my_to_upper" and "my_to_lower"
respectively. A checkbox that controls the value of myglobalvar (.signals:one) is also
added.

view signals
set myglobalvar(.signals:one) 0
set myglobalvar(.signals:two) 1
proc AddMyMenus {wname} {

global myglobalvar
set cmd1 "echo my_own_thing $wname"
set cmd2 "echo my_to_upper $wname"
set cmd3 "echo my_to_lower $wname"
ModelSim SE Command Reference

CR-52 Commands

Model
WindowName Menu MenuItem label Command
---------- ---- -------------------- -------
add_menu $wname mine 0;# 0th letter (M) is underlined
add_menuitem $wname mine "Do My Own Thing..." $cmd1
add_separator $wname mine ;#----------------------------
add_submenu $wname mine changeCase
add_menuitem $wname mine.changeCase "To Upper" $cmd2
add_menuitem $wname mine.changeCase "To Lower" $cmd3
add_submenu $wname mine vars
add_menucb $wname mine.vars "Feature One" -variable

myglobalvar($wname:one)
-onvalue 1 -offvalue 0 -indicatoron 1

}
AddMyMenus .signals

This example is available in the following DO file: <install_dir>/modeltech/examples/
addmenu.do. You can run the DO file to add the "Mine" menu shown in the illustration, or
modify the file for different results.

To execute the DO file, select Tools > Execute Macro (Main window), or use the do
command (CR-138).

See also

add_menucb (CR-53), add_menuitem (CR-54), add_separator (CR-55), add_submenu
(CR-56), change_menu_cmd (CR-73)
Sim SE Command Reference

add_menucb CR-53
add_menucb

The add_menucb command creates a checkbox within the specified menu of the specified
window. A checkbox is a small box with a label. Clicking on the box will toggle the state,
from on to off or the reverse. When the box is "on", the Tcl global variable <var> is set to
<onval>. When the box is "off", the global variable is set to <offval>. Also, if something
else changes the global variable, its current state is reflected in the state of the checkbox.
Returns nothing.

Syntax

add_menucb
<window_name> <menu_name> <Text> -variable <var> -onvalue <onval>
-offvalue <offval> [-indicatoron <val>]

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_name>

Name of the Tk menu widget. Required.

<Text>

Text to be displayed next to the checkbox. Required.

-variable <var>

Global Tcl variable to be reflected and changed. Required.

-onvalue <onval>

Value to set the global Tcl variable to when the box is "on". Required.

-offvalue <offval>

Value to set the global Tcl variable to when the box is "off". Required.

-indicatoron <val>

0 or 1. If 1, the status indicator is displayed. Otherwise it is not displayed. Optional. The
default is 1.

Examples
add_menucb $wname mine.vars "Feature One" -variable myglobalvar($wname:one) \

-onvalue 1 -offvalue 0 -indicatoron 1

See also

add_menu (CR-51), add_menuitem (CR-54), add_separator (CR-55), add_submenu (CR-

56), change_menu_cmd (CR-73)

The add_menucb command is also used as part of the add_menu (CR-51) example.
ModelSim SE Command Reference

CR-54 Commands

Model
add_menuitem

The add_menuitem command creates a menu item within the specified menu of the
specified window. May be used within a submenu. Returns nothing.

Syntax

add_menuitem
<window_name> <menu_path> <Text> <Cmd> [<shortcut>]

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

<Text>

Text to be displayed. Required.

<Cmd>

The command to be executed when the menu item is selected with the left mouse button.
To echo the command and display the return value in the Main window, prefix the
command with the transcribe command (CR-228). Transcribe will also echo the results
to the transcript window. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut. Numbering starts
with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.). Optional. Default is
"-1", which indicates no shortcut is to be used.

Examples

add_menuitem $wname user "Save Results As..." $my_save_cmd

See also

add_menu (CR-51), add_menucb (CR-53), add_separator (CR-55), add_submenu (CR-56),
change_menu_cmd (CR-73)

The add_menuitem command is also used as part of the add_menu (CR-51) example.
Sim SE Command Reference

add_separator CR-55
add_separator

The add_separator command adds a separator as the next item in the specified menu path
in the specified window. Returns nothing.

Syntax

add_separator
<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

Examples

add_separator $wname user

See also

add_menu (CR-51), add_menucb (CR-53), add_menuitem (CR-54), add_submenu (CR-

56), change_menu_cmd (CR-73)

The add_separator command is also used as part of the add_menu (CR-51) example.
ModelSim SE Command Reference

CR-56 Commands

Model
add_submenu

The add_submenu command creates a cascading submenu within the specified menu_path
of the specified window. May be used within a submenu.

Returns the full Tk path to the new submenu widget.

Syntax

add_submenu
<window_name> <menu_path> <name> [<shortcut>]

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of the Tk menu widget plus submenu path. Required.

<name>

Name to be displayed on the submenu. Required.

<shortcut>

Number of the letter in the menu name that is to be used as the shortcut. Numbering starts
with 0 (i.e., first letter = 0, second letter = 1, third letter = 2, etc.). Optional. Default is
"-1", which indicates no shortcut is to be used.

See also

add_menu (CR-51), add_menucb (CR-53), add_menuitem (CR-54), add_separator (CR-

55), change_menu_cmd (CR-73)

The add_submenu command is also used as part of the add_menu (CR-51) example.
Sim SE Command Reference

add wave CR-57
add wave

The add wave command adds VHDL signals and variables and Verilog nets and registers
to the Wave window. It also allows specification of user-defined buses.

If no port mode is specified, add wave will display all items in the selected region with
names matching the item name specification.

Limitations: VHDL variables and Verilog memories can be listed using the variable’s full
name only (no wildcards).

Syntax

add wave

[-allowconstants] [-color <standard_color_name>] [-expand <signal_name>]

[-<format>] [-height <pixels>] [-in] [-inout] [-internal]

[[-divider <divider_name>...] | [<item_name> | {<item_name> {sig1 sig2 sig3

...}}] ...] [-label <name>] [-noupdate] [-offset <offset>] [-out] [-ports]

[-<radix>] [-recursive] [-scale <scale>] [-window <wname>]

Arguments

-allowconstants

For use with wildcard searches. Specifies that constants matching the wildcard search
should be added to the Wave window. Optional. By default, constants are ignored
because they do not change.

-color <standard_color_name>

Specifies the color used to display a waveform. Optional. These are the standard
X Window color names, or rgb value (e.g., #357f77); enclose 2-word names (“light
blue”) in quotes.

-divider <divider_name>

Adds a divider with the specified name. Optional. You can specify one or more names.
All names listed after -divider are taken to be names.

-expand <signal_name>

Causes a compound signal to be expanded immediately, but only one level down.
Optional. The <signal_name> is required, and may include wildcards.

-<format>

Specifies the display format of the items:

literal
logic
analog-step
analog-interpolated
analog-backstep

Optional. Literal waveforms are displayed as a box containing the item value. Logic
signals may be U, X, 0, 1, Z, W, L, H, or ‘-’.

The way each state is displayed is specified by the logic type display preferences, see
"Preference variables located in INI files" (UM-444). Analog signals are sized by -scale
and by -offset. Analog-step changes to the new time before plotting the new Y.
Analog-interpolated draws a diagonal line. Analog-backstep plots the new Y before
ModelSim SE Command Reference

CR-58 Commands

Model
moving to the new time. See "Editing and formatting HDL items in the Wave window"
(UM-261).

-height <pixels>

Specifies the height (in pixels) of the waveform. Optional.

-in

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode IN if they match the item_name specification. Optional.

-inout

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode INOUT if they match the item_name specification. Optional.

-internal

For use with wildcard searches. Specifies that the scope of the search is to include
internal items (non-port items) if they match the item_name specification. Optional.

<item_name>

Specifies the names of HDL items to be included in the Wave window display. Optional.
Wildcard characters are allowed. Note that the WildcardFilter Tcl preference variable
identifies types to ignore when matching items with wildcard patterns. Variables may be
added if preceded by the process name. For example,

add wave myproc/int1

{<item_name> {sig1 sig2 sig3 ...}}

Creates a user-defined bus with the name <item_name>; ‘sigi’ are signals to be
concatenated within the user-defined bus. Optional. The following option is available:

-label <name>

Specifies an alternative name for the signal being added to the Wave window. Optional.
For example,

add wave -label c clock

adds the clock signal, labeled as "c", to the Wave window.

This alternative name is not valid in a force (CR-156) or examine (CR-149) command;
however, it can be used in a search command (CR-212) with the wave option.

-noupdate

Prevents the Wave window from updating when a series of add wave commands are
executed in series. Optional.

-offset <offset>

Modifies an analog waveform’s position on the display. Optional. The offset value is part
of the wave positioning equation (see -scale below).

-out

For use with wildcard searches. Specifies that the scope of the search is to include ports
of mode OUT if they match the item_name specification. Optional.

Note: You can also select Tools > Combine Signals (Wave window) to create a
user-defined bus.
Sim SE Command Reference

add wave CR-59
-ports

For use with wildcard searches. Specifies that the scope of the listing is to include ports
of modes IN, OUT, or INOUT. Optional.

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid entries (or
any unique abbreviation) are:

binary
octal
decimal (or signed)
unsigned
hexadecimal
ascii
symbolic
default

If no radix is specified for an enumerated type, the default representation is used. You
can change the default radix for the current simulation using the radix command (CR-

200). You can change the default radix permanently by editing the DefaultRadix (UM-447)
variable in the modelsim.ini file.

If you specify a radix for an array of a VHDL enumerated type, ModelSim converts each
signal value to 1, 0, Z, or X. See also, "Preference variables located in Tcl files" (UM-454).

-recursive

For use with wildcard searches. Specifies that the scope of the search is to descend
recursively into subregions. Optional; if omitted, the search is limited to the selected
region.

-scale <scale>

Scales analog waveforms. Optional. The scale value is part of the wave positioning
equation shown below.

The position and size of the waveform is given by:

(signal_value + <offset>) * <scale>

If signal_value + <offset> = 0, the waveform will be aligned with its name. The <scale>
value determines the height of the waveform, 0 being a flat line.

-window <wname>

Adds HDL items to the specified window <wname> (e.g., wave2). Optional. Used to
specify a particular window when multiple instances of that window type exist. Selects
an existing window; does not create a new window. Use the view command (CR-263) with
the -new option to create a new window.
ModelSim SE Command Reference

CR-60 Commands

Model
Examples

add wave -logic -color gold out2

Displays an item named out2. The item is specified as being a logic item presented in
gold.

add wave -hex {address {a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0}}

Displays a user-defined, hex formatted bus named address.

add wave -r /*

Waves all items in the design.

add wave *

Waves all items in the region.

add wave -in *

Waves all input ports in the region.

add wave -hex {mybus {scalar1 vector1 scalar2}

Creates a user-defined bus named "mybus" consisting of three signals. Scalar1 and
scalar2 are of type std_logic and vector1 is of type std_logic_vector (7 downto 1). The
bus is displayed in hex.

Slices and arrays may be added to the bus using either VHDL or Verilog syntax. For
example:

add wave {vector3(1)}

add wave {vector3[1]}

add wave {vector3(4 downto 0)}

add wave {vector3[4:0]}

add wave vec1 -hex vec2 -dec vec3 vec4

Adds the item vec1 to the Wave window using symbolic values, adds vec2 in
hexadecimal, and adds vec3 and vec4 in decimal.

See also

add list (CR-48), log (CR-166), "Extended identifiers" (CR-15), "Concatenation directives"
(CR-19)
Sim SE Command Reference

alias CR-61
alias

The alias command displays or creates user-defined aliases. Any arguments passed on
invocation of the alias will be passed through to the specified commands. Returns nothing.
Existing ModelSim commands (e.g., run, env, etc.) cannot be aliased.

Syntax

alias

[<name> ["<cmds>"]]

Arguments

<name>

Specifies the new procedure name to be used when invoking the commands.

"<cmds>"

Specifies the command or commands to be evaluated when the alias is invoked.

Examples

alias

Lists all aliases currently defined.

alias <name>

Lists the alias definition for the specified name if one exists.

alias <name>

Lists the alias definition for the specified name if one exists.

alias myquit "write list ./mylist.save; quit -f"

Creates a Tcl procedure, "myquit", that when executed, writes the contents of the List
window to the file mylist.save by invoking write list (CR-325), and quits ModelSim by
invoking quit (CR-199).
ModelSim SE Command Reference

CR-62 Commands

Model
batch_mode

The batch_mode command returns a 1 if ModelSim is operating in batch mode, otherwise
it returns a 0. It is typically used as a condition in an if statement.

Syntax

batch_mode

Arguments

None

Examples

Some GUI commands do not exist in batch mode. If you want to write a script that will
work in or out of batch mode, you can use the batch_mode command to determine which
command to use. For example:

if [batch_mode] {

log /*

} else {

add wave /*

}

See also

"Running command-line and batch-mode simulations" (UM-490)
Sim SE Command Reference

bd CR-63
bd

The bd command deletes a breakpoint. You must specify a filename and line number, or a
specific breakpoint id#. Multiple filename/line number pairs and id#s may be specified.

Syntax

bd
<filename> <line_number> | <id#>

Arguments

<filename>

Specifies the name of the source file in which the breakpoint is to be deleted. Required if
an id# is not specified. The filename must match the one used previously to set the
breakpoint, including whether a full pathname or a relative name was used.

<line_number>

Specifies the line number of the breakpoint to be deleted. Required if an id# is not
specified.

<id#>

Specifies the id number of the breakpoint to be deleted. Required if a filename and line
number are not specified.

Examples

bd alu.vhd 127

Deletes the breakpoint at line 127 in the source file named alu.vhd.

bd 5

Deletes the breakpoint with id# 5.

bd 6 alu.vhd 234

Deletes the breakpoint with id# 6 and the breakpoint at line 234 in the source file named
alu.vhd.

See also

bp (CR-68), onbreak (CR-179)
ModelSim SE Command Reference

CR-64 Commands

Model
bookmark add wave

The bookmark add wave command creates a named reference to a specific zoom range
and scroll position in the specified Wave window. Bookmarks are saved in the wave format
file and are restored when the format file is read (see write format command (CR-323).

Syntax

bookmark add wave
<label> <zoomrange> <topindex> [-window <window_name>]

Arguments

<label>

Specifies the name for the bookmark. Required.

<zoomrange>

Specifies a list of two times with optional units. Required. These two times must be
enclosed in braces ({}) or quotation marks ("").

<topindex>

Specifies the vertical scroll position of the window. Required. The number identifies
which item the window should be scrolled to. For example, specifying 20 means the
Wave window will be scrolled down to show the 20th item.

-window <window_name>

Specifies the window to which the bookmark will be added. Optional. If this argument is
omitted, the bookmark is added in the current default Wave window.

Examples

bookmark add wave foo {{10 ns} {1000 ns}} 20

Adds a bookmark named "foo" to the current default Wave window. The bookmark
marks a zoom range from 10ns to 1000ns and a scroll position of the 20th item in the
window.

See also

bookmark delete wave (CR-65), bookmark goto wave (CR-66), bookmark list wave (CR-

67), write format (CR-323)
Sim SE Command Reference

bookmark delete wave CR-65
bookmark delete wave

The bookmark delete wave command deletes bookmarks from the specified Wave
window.

Syntax

bookmark delete wave
<label> [-all] [-window <window_name>]

Arguments

<label>

Specifies the name of the bookmark to delete. Required unless the -all switch is used.

-all

Specifies that all bookmarks in the window be deleted. Optional.

-window <window_name>

Specifies the window from which bookmark(s) will be deleted. Optional. If this argument
is omitted, bookmark(s) in the current default Wave window are deleted.

Examples

bookmark delete wave foo

Deletes the bookmark named "foo" from the current default Wave window.

bookmark delete wave -all -window wave1

Deletes all bookmarks from the Wave window named "wave1".

See also

bookmark add wave (CR-64), bookmark goto wave (CR-66), bookmark list wave (CR-67),
write format (CR-323)
ModelSim SE Command Reference

CR-66 Commands

Model
bookmark goto wave

The bookmark goto wave command zooms and scrolls a Wave window using the
specified bookmark.

Syntax

bookmark goto wave
<label> [-window <window_name>]

Arguments

<label>

Specifies the bookmark to go to. Required.

-window <window_name>

Specifies the Wave window to which the bookmark applies. Optional. Bookmarks can be
used only in the windows in which they were originally created.

See also

bookmark add wave (CR-64), bookmark delete wave (CR-65), bookmark list wave (CR-

67), write format (CR-323)
Sim SE Command Reference

bookmark list wave CR-67
bookmark list wave

The bookmark list wave command displays a list of available bookmarks in the Main
window transcript.

Syntax

bookmark list wave
 [-window <window_name>]

Arguments

-window <window_name>

Specifies the Wave window for which you want a list of bookmarks. Optional. If this
argument is omitted, ModelSim lists the bookmarks for the current default Wave
window.

See also

bookmark add wave (CR-64), bookmark delete wave (CR-65), bookmark goto wave (CR-

66), write format (CR-323)
ModelSim SE Command Reference

CR-68 Commands

Model
bp

The bp or breakpoint command either sets a file-line breakpoint or returns a list of currently
set breakpoints. A set breakpoint affects every instance in the design unless the
-inst <region> argument is used.

Syntax

bp

<filename> <line_number> [-id <id#>] [-inst <region>] [-disable]

[-cond {<condition_expression>}] [{<command>...}] | [-query <filename>

[<line_number> [line_number]]]

Arguments

<filename>

Specifies the name of the source file in which to set the breakpoint. Required.

<line_number>

Specifies the line number at which the breakpoint is to be set. Required.

-id <id#>

Attempts to assign this id number to the breakpoint. Optional. If the id number you
specify is already used, ModelSim will return an error.

-inst <region>

Sets the breakpoint so it applies only to the specified region. Optional.

-disable

Sets the breakpoint in a disabled state. Optional. You can enable the breakpoint later
using the enablebp command (CR-145). By default, breakpoints are enabled when they
are set.

-cond {<condition_expression>}

Specifies condition(s) that determine whether the breakpoint is hit. Optional. If the
condition is true, the simulation stops at the breakpoint. If false, the simulation bypasses
the breakpoint.

The condition can be an expression with these operators:

Note: Ids for breakpoints are assigned from the same pool as those used for the when
command (CR-314). So, even if you haven’t used an id number for a breakpoint, it’s
possible it is used for a when command.

 Name Operator

equals ==, =

not equal !=, /=

AND &&, AND

OR ||, OR
Sim SE Command Reference

bp CR-69
The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ’ EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals; i.e., Name = Name is not possible.

{<command>...}

Specifies one or more commands that are to be executed at the breakpoint. Optional.
Multiple commands must be separated by semicolons (;) or placed on multiple lines. The
entire command must be placed in curly braces.

Any commands that follow a run (CR-210) or step (CR-222) command will be ignored. A
run or step command terminates the breakpoint sequence. This applies if macros are
used within the bp command string as well. A restore (CR-206) command should not be
used.

If many commands are needed after the breakpoint, they can be placed in a macro file.

-query <filename> [<line_number> [line_number]]

Returns information about the breakpoints set in the specified file. The information
returned varies depending on which arguments you specify. See the examples below for
details.

Examples

bp

Lists all existing breakpoints in the design, including the source file names, line numbers,
breakpoint id#s, and any commands that have been assigned to breakpoints.

bp alu.vhd 147

Sets a breakpoint in the source file alu.vhd at line 147.

bp alu.vhd 147 {do macro.do}

Executes the macro.do macro file after the breakpoint.

bp -disable test.vhd 22 {echo [exa var1]; echo [exa var2]}

Sets a breakpoint at line 22 of the file test.vhd and examines the values of the two
variables var1 and var2. This breakpoint is initially disabled. It can be enabled with the
enablebp command (CR-145).
ModelSim SE Command Reference

CR-70 Commands

Model
bp test.vhd 14 {if {$now /= 100} then {cont}}

Sets a breakpoint in every instantiation of the file test.vhd at line 14. When that
breakpoint is executed, the command is run. This command causes the simulator to
continue if the current simulation time is not 100.

bp -query testadd.vhd

Lists the line number and enabled/disabled status (1 = enabled, 0 = disabled) of all
breakpoints in testadd.vhd.

bp -query testadd.vhd 48

Lists details about the breakpoint on line 48. The output comprises six pieces of
information: the first item (0 or 1) designates whether a breakpoint exists on the
line (1 = exists, 0 = doesn’t exist); the second item is always 1; the third item is the file
name in the compiled source; the fourth item is the breakpoint line number; the fifth item
is the breakpoint id; and the sixth item (0 or 1) designates whether the breakpoint is
enabled (1) or disabled (0).

bp -query testadd.vhd 2 59

Lists all executable lines in testadd.vhd between lines 2 and 59.

See also

add button (CR-45), bd (CR-63), disablebp (CR-135), enablebp (CR-145), onbreak (CR-179),
when (CR-314)

Note: Any breakpoints set in VHDL code and called by either resolution functions or
functions that appear in a port map are ignored.
Sim SE Command Reference

cd CR-71
cd

The Tcl cd command changes the ModelSim local directory to the specified directory. See
the Tcl man pages (Help > Tcl Man Pages) for any cd command options. Returns nothing.

Syntax

cd

[<dir>]

Arguments

<dir>

The directory to which to change. Optional. If no directory is specified, ModelSim
changes to your home directory.

Description

After you change the directory with cd, ModelSim continues to write the vsim.wlf file in
the directory where the first add wave (CR-57), add list (CR-48) or log (CR-166) command
was executed. After completing simulation of one design, you can use the cd command to
change to a new design, then use the vsim command (CR-298) to load a new design.

Use the where command (CR-318) or the Tcl pwd command to confirm the current
directory.

See also

where (CR-318), vsim (CR-298), and the Tcl man page for the cd, pwd and exec commands

ModelSim SE Command Reference

CR-72 Commands

Model
change

The change command modifies the value of a VHDL variable or Verilog register variable.

Syntax

change
<variable> <value>

Arguments

<variable>

Specifies the name of a variable. Required. The variable name must specify a scalar type
or a one-dimensional array of character enumeration. You may also specify a record
subelement, an indexed array, a sliced array, or a bit or slice of a register, as long as the
type is one of the above.

<value>

Defines a value for the variable. Required. The specified value must be appropriate for
the type of the variable.

Examples

change count 16#FFFF

Changes the value of the variable count to the hexadecimal value FFFF.

change rega[16] 0

Changes the value of rega that is specified by the index (i.e., 16).

change foo[20:22] 011

Changes the value of foo that is specified by the slice (i.e., 20:22).

See also

force (CR-156)
Sim SE Command Reference

change_menu_cmd CR-73
change_menu_cmd

The change_menu_cmd command changes the command to be executed for a specified
menu item label, in the specified menu, in the specified window. The menu_path and label
must already exist for this command to function. Returns nothing.

Syntax

change_menu_cmd

<window_name> <menu_path> <label> <Cmd>

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.).

<menu_path>

Name of an existing Tk menu widget plus any submenu path. Required.

<label>

Current label on the menu item. Required.

<Cmd>

New Tcl command to be executed when selected. Required.

See also

add_menu (CR-51), add_menucb (CR-53), add_menuitem (CR-54), add_separator (CR-

55), add_submenu (CR-56)
ModelSim SE Command Reference

CR-74 Commands

Model
check contention add

The check contention add command enables contention checking for the specified nodes.
The allowed nodes are Verilog nets and VHDL signals of types std_logic and
std_logic_vector. Any other node types and nodes that don’t have multiple drivers are
silently ignored by the command.

Syntax

check contention add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that contention checking is enabled recursively into subregions. Optional. If
omitted, contention check enabling is limited to the current region.

-in

Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-inout

Enables checking on nodes of mode INOUT. Optional.

-internal

Enables checking on internal items. Optional.

-ports

Enables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

See also

"Bus contention checking" (UM-498)
Sim SE Command Reference

check contention config CR-75
check contention config

The check contention config command allows you to write checking messages to a file
(messages display on your screen by default). You may also configure the contention time
limit.

Syntax

check contention config
[-file <filename>] [-time <limit>]

Arguments

-file <filename>

Specifies a file to which to write contention messages. Optional. If this option is selected,
the messages are not displayed to the screen.

-time <limit>

Specifies a time limit that a node may be in contention. Optional. Contention is detected
if a node is in contention for as long as or longer than the limit. The default limit is 0.

See also

"Bus contention checking" (UM-498)
ModelSim SE Command Reference

CR-76 Commands

Model
check contention off

The check contention off command disables contention checking for the specified nodes.

Syntax

check contention off
[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-all

Disables contention checking for all nodes that have checking enabled. Optional.

-r

Specifies that contention checking is disabled recursively into subregions. Optional. If
omitted, contention check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-inout

Disables checking on nodes of mode INOUT. Optional.

-internal

Disables checking on internal items. Optional.

-ports

Disables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

"Bus contention checking" (UM-498)
Sim SE Command Reference

check float add CR-77
check float add

The check float add command enables float checking for the specified nodes. The allowed
nodes are Verilog nets and VHDL signals of type std_logic and std_logic_vector (other
types are silently ignored).

Note that you can set a time limit (the default is zero) for float checking using the -time
<limit> argument to the check float config command (CR-78). If you choose to modify the
limit, you should do so prior to invoking any check float add commands.

Syntax

check float add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that float checking is enabled recursively into subregions. Optional. If omitted,
float check enabling is limited to the current region.

-in

Enables checking on nodes of mode IN. Optional.

-out

Enables checking on nodes of mode OUT. Optional.

-inout

Enables checking on nodes of mode INOUT. Optional.

-internal

Enables checking on internal items. Optional.

-ports

Enables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables checking for the named node(s). Required.

See also

"Bus float checking" (UM-498)
ModelSim SE Command Reference

CR-78 Commands

Model
check float config

The check float config command allows you to write checking messages to a file
(messages display on your screen by default). You may also configure the float time limit.

Syntax

check float config
[-file <filename>] [-time <limit>]

Arguments

-file <filename>

Specifies a file to which to write float messages. Optional. If this option is selected, the
messages are not displayed to the screen.

-time <limit>

Specifies a time limit that a node may be floating. Optional. An error is detected if a node
is floating for as long as or longer than the limit. The default limit is 0. Note that you
should configure the time limit prior to invoking any check float add commands.

See also

"Bus float checking" (UM-498)
Sim SE Command Reference

check float off CR-79
check float off

The check float off command disables float checking for the specified nodes.

Syntax

check float off
[-all] [-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-all

Disables float checking for all nodes that have checking enabled. Optional.

-r

Specifies that float checking is disabled recursively into subregions. Optional. If omitted,
float check disabling is limited to the current region.

-in

Disables checking on nodes of mode IN. Optional.

-out

Disables checking on nodes of mode OUT. Optional.

-inout

Disables checking on nodes of mode INOUT. Optional.

-internal

Disables checking on internal items. Optional.

-ports

Disables checking on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Disables checking for the named node(s). Required.

See also

"Bus float checking" (UM-498)
ModelSim SE Command Reference

CR-80 Commands

Model
check stable off

The check stable off command disables stability checking. You may later enable it with
check stable on (CR-81), and meanwhile, the clock cycle numbers and boundaries are still
tracked.

Syntax

check stable off

Arguments

None.

See also

"Design stability checking" (UM-499)
Sim SE Command Reference

check stable on CR-81
check stable on

The check stable on command enables stability checking on the entire design. Design
stability checking detects when circuit activity has not settled within a user-defined period
for synchronous designs.

Syntax

check stable on
[-file <filename>] [-period <time>] [-strobe <time>]

Arguments

-file <filename>

Specifies a file to which to write the error messages. If this option is selected, the
messages are not displayed to the screen. Optional.

-period <time>

Specifies the clock period (which is assumed to begin at the time the check stable on
command is issued). Optional. This option is required the first time you invoke the check
stable on command. It is not required if you later enable checking after it was disabled
with the check stable off command (CR-80).

-strobe <time>

Specifies the elapsed time within each clock cycle that the stability check is performed.
Optional. The default strobe time is the period time. If the strobe time falls on a period
boundary, then the check is actually performed one timestep earlier. Normally the strobe
time is specified as less than or equal to the period, but if it is greater than the period, then
the check will skip cycles.

Examples

check stable on -period "100 ps" -strobe "199 ps"

Performs a stability check 99 ps into each even numbered clock cycle (cycle numbers
start at 1).

See also

"Design stability checking" (UM-499)
ModelSim SE Command Reference

CR-82 Commands

Model
checkpoint

The checkpoint command saves the state of your simulation. The checkpoint command
saves the simulation kernel state, the vsim.wlf file, the list of the HDL items shown in the
List and Wave windows, the file pointer positions for files opened under VHDL and the
Verilog $fopen system task, and the states of foreign architectures. Changes you made
interactively while running vsim are not saved; for example, macros, virtual objects,
command-line interface additions like user-defined commands, and states of graphical user
interface windows are not saved. Also, toggle statistics (see the toggle report command
(CR-226)) are not saved.

Once saved, a checkpoint file may be used with the restore command (CR-206) during the
same simulation to restore the simulation to a previous state. A VSIM session may also be
started with a checkpoint file by using the vsim -restore command (CR-298).

Compression of the checkpoint file is controlled either by the CheckpointCompressMode
variable in the modelsim.ini file or by the -nocompress argument to vsim.

Syntax

checkpoint
<filename>

Arguments

<filename>

Specifies the name of the checkpoint file. Required.

See also

restore (CR-206), restart (CR-204), vsim (CR-298), "The difference between checkpoint/
restore and restarting" (UM-489)
Sim SE Command Reference

compare add CR-83
compare add

The compare add command compares signals in a reference design against signals in a test
design. You can specify whether to compare two signals, all signals in the region, or just
ports or a subset of ports. Constant signals such as parameters and generics are ignored. See
Chapter 11 - Waveform Comparison for a general overview of waveform comparisons.

Syntax

compare add

-clock <name> [-help] [-label <label>] [-list] [-<mode>] [-nowin]

[-rebuild] [-recursive] [<referencePath>] [<testPath>]

[-separator <string>] [-tol <delay>] [-tolLead <delay>]

[-tolTrail <delay>] [-verbose] [-wavepane <n>] [-wave]

[-when {<expression>}] [-win <wname>]

Arguments

-clock <name>

Specifies the clock definition to use when sampling the specified regions. Required for a
clocked comparison; not used for asynchronous comparisons.

-help

Lists the description and syntax for the compare add command in the Main window
transcript. Optional.

-label <label>

Specifies a name for the comparison when it is displayed in the Wave window. Optional.

-list

Causes specified comparisons to be displayed in the default List window. Optional.

-<mode>

Specifies the mode of signal types that are compared. Optional. The actual values the
option may take are -in, -out, -inout, -internal, -port, and -all. You can use more than one
mode option in the same command.

-nowin

Specifies that compare signals shouldn’t be added to any window. Optional. By default,
compare signals are added to the default Wave window. See -wave below.

-rebuild

Rebuilds a fragmented bus in the test design region and compares it with the
corresponding bus in the reference design region. Optional. If a signal is found having
the same name as the reference signal, the -rebuild option is ignored. When rebuilding
the test signal, the name of the reference signal is used as the wildcard prefix.

-recursive

Specifies that signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

<referencePath>

A full path to the reference signal, region, or glob expression. Optional. If not specified,
ModelSim uses the top region of the reference dataset. If the reference path is a region or
ModelSim SE Command Reference

CR-84 Commands

Model
glob expression, then the test path must be a region (or left blank). If the reference path
is a signal, the test path can be a signal or a region.

<testPath>

A full path to the test signal or region. Optional if the test path is the same as the reference
path except for the dataset name.

-separator <string>

Used with the -rebuild option. When a bus has been broken into bits (bit blasted) by a
synthesis tool, ModelSim expects a separator between the base bus name and the bit
indication. This option identifies that separator. The default is "_". For example, the
signal "mybus" might be broken down into "mybus_0", "mybus_1", etc.

-tol <delay>

Specifies the maximum time a test signal edge is allowed to lead or trail a reference edge
in an asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with
the time value, the time must be placed in curly braces.

-tolLead <delay>

Specifies the maximum time a test signal edge is allowed to lead a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the
time value, the time must be placed in curly braces.

-tolTrail <delay>

Specifies the maximum time a test signal edge is allowed to trail a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit is used (e.g., ps) with the
time value, the time must be placed in curly braces.

Graphical representation of tolLead and tolTrail

-verbose

Prints information in the Main window confirming the signals selected for comparison
and any type conversions employed. Optional.

-wavepane <n>

Specifies the pane of the Wave window in which the differences will be viewed.
Optional.

-wave

Specifies that compare signals be added automatically to the default Wave window.
Optional. Default.

Reference Signal

Test Signal

tolLead
tolTrail
Sim SE Command Reference

compare add CR-85
-when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for differences to
be reported. Optional. The expression is evaluated at the start of an observed difference.
See "GUI_expression_format" (CR-18) for legal expression syntax.

-win <wname>

Specifies a particular window to which to add items. Optional. Used to specify a
particular window when multiple instances of that window type exist.

Examples

compare add

Selects signals in the reference and test dataset top region according to the default mode.
Uses asynchronous comparison with the default tolerances. Assumes that the top regions
of the reference and test datasets have the same name and contain the same signals with
the same names.

compare add -port -clock myclock10 gold:.test_ringbuf.ring_inst

Selects port signals of instance .test_ringbuf.ring_inst in both datasets to be compared
and sampled on strobe myclock10.

compare add -all -r gold:/top/cpu test:/testbench/cpu

Selects all signals in the cpu region to be compared asynchronously using the default
tolerances. Requires that the reference and test relative hierarchies and signal names
within the cpu region be identical, but they need not be the same above the cpu region.

compare add -clock clock12 gold:.top.s1

Specifies that signal gold:.top.s1 should be sampled at clock12 and compared with
test:.top.s1, also sampled at clock12.

compare add -tolLead {3 ns} -tolTrail {5 ns} gold:/asynch/abc/s1 sim:/flat/
sigabc

Specifies that signal gold:/asynch/abc/s1 should be compared asynchronously with
signal sim:/flat/sigabc using a leading tolerance of 3 ns and a trailing tolerance of 5 ns.

compare add -rebuild gold:.counter1.count test:.counter2.cnt

Causes signals test:.counter2.cnt_dd to be rebuilt into bus test:.counter2.cnt[...] and
compared against gold:.counter1.count.

See also

compare annotate (CR-86), compare clock (CR-87), compare configure (CR-89), compare
continue (CR-90), compare delete (CR-91), compare end (CR-92), compare info (CR-93),
compare list (CR-95), compare options (CR-96), compare reload (CR-99), compare reset
(CR-100), compare run (CR-101), compare savediffs (CR-102), compare saverules (CR-

103), compare see (CR-104), compare start (CR-106), compare stop (CR-108), compare
update (CR-109), and Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-86 Commands

Model
compare annotate

The compare annotate command either flags a comparison difference as "ignore" or adds
a text string annotation to the difference. The text string appears when the difference is
viewed in error message info popups or in the output of a compare info command (CR-93).

Syntax

compare annotate

[-ignore] [-noignore] [-text <message>] <idNum1> [<idNum2>...]

Arguments

-ignore

Flags the specified difference as "ignore." Optional.

-noignore

Undoes a previous -ignore command. Optional.

-text <message>

Adds a text string annotation to the difference that is shown wherever the difference is
viewed. Optional.

<idNum1>

Identifies the difference number to annotate. Required. You can obtain a difference’s
number using the compare start command (CR-106) or a popup dialog. Difference
numbers are ordered by time of the difference start, but there may be more than one
difference starting at a given time.

<idNum2>...

Identifies a second, third, etc. difference number to be annotated in the same way as
idNum1. Optional. These are individual references; ranges of numbers cannot be
specified.

Examples

compare annotate -ignore diff0001 diff0002 diff0010

Flags difference numbers 1, 2, and 10 as "ignore."

compare annotate -text "THIS IS A CRITICAL PROBLEM" diff0012

Annotates difference number 12 with the message "THIS IS A CRITICAL PROBLEM."

See also

compare add (CR-83), compare info (CR-93), and Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare clock CR-87
compare clock

The compare clock command defines a clock that can then be used for clocked-mode
comparisons. In clocked-mode comparisons, signals are sampled and compared on a
specified strobe.

Syntax

compare clock

[-rising | -falling | -both] [-delete] [-offset <delay>]

[-when {<expression>}] [-wavewindow <name>] [-wavepane <n>] <clock_name>

<signal_path>

Arguments

-rising

Specifies that the rising edge of the specified signal should be used. Optional. This is the
default.

-falling

Specifies that the falling edge of the specified signal should be used. Optional. The
default is rising.

-both

Specifies that both the rising and the falling edge of the specified signal should be used.
Optional. The default is rising.

-delete

Deletes an existing compare clock. Optional.

-offset <delay>

Specifies a time value for delaying the sample time beyond the specified signal edge.
Optional. The default is 0. If a unit (e.g., ps) is used with the time value, the time must
be placed in curly braces.

-when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for that clock edge
to be used as a strobe. Optional. The expression is evaluated at the time of the clock edge,
rather than after the delay has been applied. See "GUI_expression_format" (CR-18) for
legal expression syntax.

-wavewindow <name>

Specifies the name of the Wave window in which the strobe will be viewed. Optional.

-wavepane <n>

Specifies the pane of the Wave window in which the strobe will be viewed. Optional.

<clock_name>

A name for this clock definition. Required. This name will be used with the compare add
command when doing a clocked-mode comparison.

<signal_path>

A full path to the signal whose edges are to be used as the strobe trigger. Required.
ModelSim SE Command Reference

CR-88 Commands

Model
Examples

compare clock -rising strobe gold:.top.clock

Defines a clocked compare strobe named "strobe" that samples signals on the rising edge
of signal gold:.top.clock.

compare clock -rising -delay {12 ns} clock12 gold:/mydesign/clka

Defines a clocked compare strobe named "clock12" that samples signals 12 ns after the
rising edge of signal gold:/mydesign/clka.

See also

compare add (CR-83), Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare configure CR-89
compare configure

The compare configure command modifies options for compare signals and regions. The
modified options are applied to all items in the specified compare path.

Syntax

compare configure

[-clock <name>] [-recursive] [-tol <delay>] [-tolLead <delay>]

[-tolTrail <delay>] [-when {<expression>}] <comparePath>

Arguments

-clock <name>

Changes the strobe signal for the comparison. Optional. If the comparison is currently
asynchronous, it will be changed to clocked. This switch may not be used with the -tol,
-tolLead, and -tolTrail options.

-recursive

Specifies that signals should also be selected in all nested subregions, and subregions of
those, etc. Optional.

-tol <delay>

Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If a unit is
used (e.g., ps) with the time value, the time must be in curly braces.

-tolLead <delay>

Specifies the maximum time a test signal edge is allowed to lead a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used with the
time value, the time must be placed in curly braces.

-tolTrail <delay>

Specifies the maximum time a test signal edge is allowed to trail a reference edge in an
asynchronous comparison. Optional. The default is 0. If a unit is used (e.g., ps) with the
time value, the time must be placed in curly braces.

-when {<expression>}

Specifies a conditional expression that must evaluate to "true" or "1" for differences to
be reported. Optional. The expression is evaluated at the start of an observed difference.
See "GUI_expression_format" (CR-18) for legal expression syntax.

<comparePath>

Identifies the path of a compare signal, region, or glob expression. Required.

See also

compare add (CR-83), Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-90 Commands

Model
compare continue

This command is used to continue with comparison difference computations that were
suspended using the compare stop button or Control-C. If the comparison was not
suspended, compare continue has no effect.

Syntax

compare continue

Arguments

None

See also

compare stop (CR-108), Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare delete CR-91
compare delete

The compare delete command deletes a signal or region from the current open comparison.

Syntax

compare delete

[-recursive] <objectPath>

Arguments

-recursive

Deletes a region recursively. Optional.

<objectPath>

Path in the reference design to the signal or region to be deleted. Required. The dataset
prefix is not needed.

See also

compare add (CR-83), Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-92 Commands

Model
compare end

The compare end command closes the active comparison without saving any information.

Syntax

compare end

Arguments

None

See also

compare add (CR-83), Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare info CR-93
compare info

The compare info command lists the results of the comparison in the Main window
transcript. To save the information to a file, use the -write argument.

Syntax

compare info

[-all] [-count] [<endNum>] [-primaryonly] [-signals] [-secondaryonly]

[<startNum>] [-summary] [-write <filename>]

Arguments

-all

Lists all differences (even those marked as "ignore") in the output. Optional. By default,
ignored differences are not listed in the output of a compare info command.

-count

Returns the total number of primary differences found.

<endNum>

Specifies the difference number to end with. Optional. If omitted ModelSim ends the
listing with the last difference.

-primaryonly

Lists only differences on individual bits, ignoring aggregate values such as a bus.
Optional.

-signals

Returns a Tcl list of compare signal names that have at least one difference.

-secondaryonly

Lists only aggregate value differences such as a bus, ignoring the individual bits.

<startNum>

Specifies the difference number to start with. Optional. If omitted ModelSim starts the
listing with the first difference.

-summary

Lists only summary information. Optional.

-write <filename>

Saves the summary information to <filename> rather than the Main window transcript.
Optional.

Examples

compare info

Lists all errors in the Main window transcript.

compare info -summary

Lists only an error summary in the Main window transcript.

compare info -write myerrorfile 20 50

Writes errors 20 through 50 to the file named "myerrorfile".
ModelSim SE Command Reference

CR-94 Commands

Model
See also

compare add (CR-83), compare annotate (CR-86), Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare list CR-95
compare list

Displays in the Main window a list of all the compare add commands currently in effect.

Syntax

compare list

[-expand]

Arguments

-expand

Expands groups specified by the compare add command to individual signals. Optional.

See also

compare add (CR-83), Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-96 Commands

Model
compare options

The compare options command sets defaults for various waveform comparison
commands. Those defaults are used when other compare commands are invoked during the
current session. To set defaults permanently, edit the appropriate PrefCompare() Tcl
variable in the pref.tcl file (see "Preference variables located in Tcl files" (UM-454) for
details).

If no arguments are used, compare options returns the current setting for all options. If one
option is given that requires a value, and if that value is not given, compare options returns
the current value of that option.

Syntax

compare options

[-addwave] [-hide] [-noaddwave] [-show] [-ignoreVlogStrengths]

[-noignoreVlogStrengths] [-maxsignal <n>] [-maxtotal <n>] [-listwin

<name>] [-<mode>] [-separator <string>] [-tol <delay>] [-tolLead <delay>]

[-tolTrail <delay>] [-track] [-notrack] [-vhdlxmatches] [-vhdlzmatches]

[-vlogxmatches] [-vlogzmatches] [-wavepane <n>] [-wavewin <name>]

Arguments

-addwave

Specifies that new comparison objects are added automatically to the Wave window.
Optional. Default. You can specify that objects aren’t added automatically using the
-noaddwave argument.

-hide

Hides all comparisons except those that have at least one difference. Optional.

-noaddwave

Specifies that new comparison objects are not added automatically to the Wave window.
Optional. The default is to add comparison objects automatically.

-show

Shows all comparisons even if they don’t have any differences. Optional.

-ignoreVlogStrengths

Specifies that Verilog net strengths should be ignored when comparing two Verilog nets.
Optional. Related Tcl variable is PrefCompare(defaultIgnoreVerilogStrengths).

-noignoreVlogStrengths

Specifies that Verilog net strengths should not be ignored when comparing two Verilog
nets. Optional. Related Tcl variable is PrefCompare(defaultIgnoreVerilogStrengths).

-listwin <name>

Causes specified comparisons to be displayed in the specified List window. Optional.

-maxsignal <n>

Specifies an upper limit for the total differences encountered on any one signal. When
that limit is reached, ModelSim stops computing differences on that signal. Optional. The
default is 100. Related Tcl variable is PrefCompare(defaultMaxSignalErrors).
Sim SE Command Reference

compare options CR-97
-maxtotal <n>

Specifies an upper limit for the total differences encountered. When that limit is reached,
ModelSim stops computing differences. Optional. The default is 1000. Related Tcl
variable is PrefCompare(defaultMaxTotalErrors).

-<mode>

Specifies the default mode of signal types that are compared with the compare add
command (CR-83). Optional. The actual values the option may take are -in, -out, -inout,
-internal, -port, and -all. More than one mode option may be used in the same compare
options command.

-separator <string>

Used with the -rebuild option of the compare add command (CR-83). When a bus has
been broken into bits (bit blasted) by a synthesis tool, ModelSim expects a separator
between the base bus name and the bit indication. This option identifies that separator.
The default is "_". For example, the signal "mybus" might be broken down into
"mybus_0", "mybus_1", etc. Optional. Related Tcl variable is
PrefCompare(defaultRebuildSeparator).

-tol <delay>

Specifies the default maximum time the test signal edge is allowed to trail or lead the
reference edge in an asynchronous comparison. Optional. The default is 0. If a unit is
used (e.g., ps) with the time value, the time must be in curly braces.

-tolLead <delay>

Specifies the default maximum time the test signal edge is allowed to lead the reference
edge in an asynchronous comparison. Optional. The default is 0. If a unit (e.g., ps) is used
with the time value, the time must be in curly braces. Related Tcl variable is
PrefCompare(defaultLeadTolerance).

-tolTrail <delay>

Specifies the default maximum time the test signal edge is allowed to trail the reference
edge in an asynchronous comparison. Optional. The default is 0. If a unit is used
(e.g., ps) with the time value, the time must be in curly braces. Related Tcl variable is
PrefCompare(defaultTrailTolerance).

Graphical representation of tolLead and tolTrail

-track

Specifies that the waveform comparison should track the current simulation. Optional.
The differences will be updated at the end of each "run" command, so if you want to see
differences soon after they occur, use many relatively short run commands. Related Tcl
variable is PrefCompare(defaultTrackLiveSim).

Reference Signal

Test Signal

tolLead
tolTrail
ModelSim SE Command Reference

CR-98 Commands

Model
-notrack

Specifies that the waveform comparison should not track the current simulation.
Optional. Related Tcl variable is PrefCompare(defaultTrackLiveSim).

-vhdlxmatches

Specifies those VHDL signal states that should be considered a match with a std_logic
"X". Optional. Related Tcl variable is PrefCompare(defaultVHDLXMatches).

-vhdlzmatches

Specifies those VHDL signal states that should be considered a match with a std_logic
"Z". Optional. Related Tcl variable is PrefCompare(defaultVHDLZMatches).

-vlogxmatches

Specifies those Verilog signal states that should be considered a match with a Verilog
"X". Optional. Related Tcl variable is PrefCompare(defaultVLOGXMatches).

-vlogzmatches

Specifies those Verilog signal states that should be considered a match with a Verilog
"Z". Optional. Related Tcl variable is PrefCompare(defaultVLOGZMatches).

-wavepane <n>

Specifies the default pane of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWavePane).

-wavewin <name>

Specifies the default name of the Wave window in which compare differences will be
viewed. Optional. Related Tcl variable is PrefCompare(defaultWaveWindow).

Examples

compare options

Returns the current value of all options.

compare options -maxtotal 2000

Sets the maxtotal option to 2000 differences.

compare options -maxtotal

Returns the current value of the maxtotal option.

compare options -ignoreVlogStrengths

Sets the option to ignore Verilog net strengths.

compare options -vlogxmatches XZ0

Verilog X will now match X, Z, or 0.

compare options -vhdlx UXW-

VHDL std_logic X will now match ’U’, ’X’, ’W’, or ’-’.

compare options -to1Lead {300 ps}

Sets the leading tolerance for asynchronous comparisons to 300 picoseconds.

compare options -to1Trail {250 ps}

Sets the trailing tolerance for asynchronous comparisons to 250 picoseconds.

See also

compare add (CR-83), compare clock (CR-87), Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare reload CR-99
compare reload

The compare reload command reloads comparison differences to allow their viewing
without recomputation. Prior to invoking compare reload, you must open the relevant
datasets with the same names that were used during the original comparison.

Syntax

compare reload

<rulesFilename> <diffsFilename>

Arguments

<rulesFilename>

Specifies the name of the file that was previously saved using the "compare saverules"
command. Required. Must be the first argument.

<diffsFilename>

Specifies the name of the file that was previously saved using the "compare savediffs"
command. Required.

See also

compare add (CR-83), compare savediffs (CR-102), compare saverules (CR-103),
compare run (CR-101), compare start (CR-106), Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-100 Commands

Model
compare reset

Clears the current compare differences, allowing another compare run command to be
executed. Does not modify any of the compare options or any of the signals selected for
comparison. This allows you to re-run the comparison with different options or with a
modified signal list.

Syntax

compare reset

Arguments

None

See also

compare add (CR-83), compare run (CR-101), and Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare run CR-101
compare run

The compare run command runs the difference computation on the signals selected via a
compare add command. Reports in the Main window the total number of errors found.

Syntax

compare run

[<startTime>] [<endTime>]

Arguments

<startTime>

Specifies when to start computing differences. Optional. Default is zero. If a unit (e.g.,
ps) is used with the time value, the time must be in curly braces. The default units are
determined by the simulation resolution. (Default simulation resolution is nanoseconds.
Simulation resolution can be changed with the -t argument of the vsim command (CR-

298)).

<endTime>

Specifies when to end computing differences. Optional. Default is the end of the dataset
simulation run that ends earliest. If a unit (e.g., ps) is used with the time value, the time
must be placed in curly braces.

Examples

compare run

Computes differences over the entire time range.

compare run {5.3 ns} {57 ms}

Computes differences from 5.3 nanoseconds to 57 milliseconds.

See also

compare add (CR-83), compare end (CR-92), compare start (CR-106), Chapter 11 -
Waveform Comparison
ModelSim SE Command Reference

CR-102 Commands

Model
compare savediffs

The compare savediffs command saves the comparison results to a file that can be
reloaded later. To be able to reload the file later, you must also save the comparison setup
using the compare saverules command.

Syntax

compare savediffs

<diffsFilename>

Arguments

<diffsFilename>

Specifies the name of the file to create. Required. To load the file at a later time, use the
compare reload command (CR-99).

See also

compare add (CR-83), compare reload (CR-99), compare saverules (CR-103), Chapter 11
- Waveform Comparison
Sim SE Command Reference

compare saverules CR-103
compare saverules

The compare saverules command saves the comparison setup information (or "rules") to
a file that can be re-executed later. The command saves compare options, clock definitions,
and region and signal selections.

Syntax

compare saverules

[-expand] <rulesFilename>

Arguments

-expand

Expands groups specified by the compare add (CR-83) command to individual signals.
Optional. If you added a region with the compare add command and then deleted signals
from that region, you must use the "-expand" argument or the rules will not reflect the
signal deletions.

<rulesFilename>

Specifies the name of the file to which you want to save the rules. Required. To load the
file at a later time, use the compare reload command (CR-99).

See also

compare add (CR-83), compare reload (CR-99), compare savediffs (CR-102), Chapter 11 -
Waveform Comparison
ModelSim SE Command Reference

CR-104 Commands

Model
compare see

The compare see command displays the specified comparison difference in the Wave
window using whatever horizontal and vertical scrolling are necessary. The signal
containing the specified difference will be highlighted, and the active cursor will be
positioned at the starting time of the difference.

Syntax

compare see

[-first] [-last] [-next] [-nextanno] [-previous] [-prevanno]

[-wavepane <n>] [-wavewin <name>]

Arguments

-first

Shows the first difference, ordered by time. Optional. Performs the same action as the
Find First Difference button in the Wave window.

-next

Shows the next difference (in time) after the currently selected difference. Optional.
Performs the same action as the Find Next Difference button in the Wave window.

-nextanno

Shows the next annotated difference (in time) after the currently selected difference.
Optional. Performs the same action as the Next Annotated Difference button in the Wave
window.

-last

Shows the last difference, ordered by time. Optional. Performs the same action as the
Find Last Difference button in the Wave window.

-previous

Shows the previous difference (in time) before the currently selected difference.
Optional. Performs the same action as the Previous Difference button in the Wave
window.

-prevanno

Shows the previous annotated difference (in time) before the currently selected
difference. Optional. Performs the same action as the Previous Annotated Difference
button in the Wave window.

-wavepane <n>

Specifies the pane of the Wave window in which the difference should be shown.
Optional.

-wavewin <name>

Specifies the name of the Wave window in which the difference should be shown.
Optional.
Sim SE Command Reference

compare see CR-105
Examples

compare see -first

Shows the earliest difference (in time) in the default Wave window.

compare see -next

Shows the next difference (in time) in the default Wave window.

See also

compare add (CR-83), compare run (CR-101), Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-106 Commands

Model
compare start

The compare start command begins a new dataset comparison. The datasets that you’ll be
comparing must already be open.

Syntax

compare start

[-batch] [-hide] [-show] [-maxsignal <n>] [-maxtotal <n>]

[-refDelay <delay>] [-testDelay <delay>] <reference_dataset>

[<test_dataset>]

Arguments

-batch

Specifies that comparisons will not be automatically inserted into the wave window.
Optional.

-hide

Hides all comparisons except those that have at least one difference. Optional.

-show

Shows all comparisons even if they don’t have any differences. Optional.

-maxsignal <n>

Specifies an upper limit for the total differences encountered on any one signal. When
that limit is reached, ModelSim stops computing differences on that signal. Optional. The
default limit is 100. You can change the default using the compare options command
(CR-96) or by editing the PrefCompare(defaultMaxSignalErrors) variable in the pref.tcl
file.

-maxtotal <n>

Specifies an upper limit for the total differences encountered. When that limit is reached,
ModelSim stops computing differences. Optional. The default limit is 1000. You can
change the default using the compare options command (CR-96) or by editing the
PrefCompare(defaultMaxTotalErrors) variable in the pref.tcl file.

-refDelay <delay>

Delays the reference dataset relative to the test dataset. Optional. If <delay> contains a
unit, it must be enclosed in curly braces. Delays are applied to signals specified with the
compare add command (CR-83). For each signal compared, a delayed virtual signal is
created with "_d" appended to the signal name, and these are the signals viewed in the
wave window comparison objects. The delay is not applied to signals specified in
compare "when" expressions.

-testDelay <delay>

Delays the test dataset relative to the reference dataset. Optional. If <delay> contains a
unit, it must be enclosed in curly braces. Delays are applied to signals specified with the
compare add command (CR-83). For each signal compared, a delayed virtual signal is
created with "_d" appended to the signal name, and these are the signals viewed in the
wave window comparison objects. The delay is not applied to signals specified in
compare "when" expressions.
Sim SE Command Reference

compare start CR-107
<reference_dataset>

The dataset to be used as the comparison reference. Required.

<test_dataset>

The dataset to be tested against the reference. Optional. If not specified, ModelSim uses
the current simulation. The reference and test datasets may be the same.

Examples

compare start gold

Begins a waveform comparison between a dataset named "gold" and the current
simulation. Assumes the gold dataset was already opened.

dataset open gold_typ.wlf gold
dataset open bad_typ.wlf test
compare start -maxtotal 5000 -maxsignal 1000 gold test

This command sequence opens two datasets and starts a comparison between the two
using greater than default limits for total differences encountered.

See also

compare add (CR-83), compare options (CR-96), compare stop (CR-108), Chapter 11 -
Waveform Comparison
ModelSim SE Command Reference

CR-108 Commands

Model
compare stop

This command is used internally by the compare stop button to suspend comparison
computations in progress. If a compare run execution has returned to the VSIM prompt,
compare stop has no effect. Under Unix, entering a Control-C character in the window that
invoked ModelSim has the same effect as compare stop.

Syntax

compare stop

Arguments

None

See also

compare run (CR-101), compare start (CR-106), Chapter 11 - Waveform Comparison
Sim SE Command Reference

compare update CR-109
compare update

This command is primarily used internally to update the comparison differences when
comparing a live simulation against a .wlf file. The compare update command is called
automatically at the completion of each simulation run if the "-track" compare option is in
effect.

The user can also call compare update periodically during a long simulation run to cause
difference computations to catch up with the simulation. This command does nothing if the
-track compare option was not in effect when the compare run command (CR-101) was
executed.

Syntax

compare update

Arguments

None

See also

compare run (CR-101), Chapter 11 - Waveform Comparison
ModelSim SE Command Reference

CR-110 Commands

Model
configure

The configure (config) command invokes the List or Wave widget configure command for
the current default List or Wave window. To change the default window, use the view
command (CR-263).

Syntax

configure
list|wave [-window <wname>] [<option> <value>]

[-delta [all | collapse | none]] [-gateduration [<duration_open>]]
[-gateexpr [<expression>]] [-usegating [<value>]]
[-strobeperiod [<period>]] [-strobestart [<start_time>]]
[-usesignaltriggers [<value>]] [-usestrobe [<value>]]

[-childrowmargin [<pixels>]] [-gridcolor [<color>]] [-namecolwidth
[<width>]] [-rowmargin [<pixels>]] [-signalnamewidth [<value>]]
[-timecolor [<color>]] [-valuecolwidth [<width>]] [-vectorcolor [<color>]]

Description

The command works in three modes:

• without options or values it returns a list of all attributes and their current values

• with just an option argument (without a value) it returns the current value of that attribute

• with one or more option-value pairs it changes the values of the specified attributes to the
new values

The returned information has five fields for each attribute:

• the command-line switch

• the Tk widget resource name

• the Tk class name

• the default value

• and the current value

Arguments

list|wave

Specifies either the List or Wave widget to configure. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the configure command.
(The view command (CR-263) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-263).
Sim SE Command Reference

configure CR-111
<option> <value>

-bg <color>

Specifies the window background color. Optional.

-fg <color>

Specifies the window foreground color. Optional.

-selectbackground <color>

Specifies the window background color when selected. Optional.

-selectforeground <color>

Specifies the window foreground color when selected. Optional.

-font

Specifies the font used in the widget. Optional.

-height <pixels>

Specifies the height in pixels of each row. Optional.

Arguments, List window only

-delta [all | collapse | none]

The all option displays a new line for each time step on which items change; collapse
displays the final value for each time step; and none turns off the display of the delta
column. To use -delta, -usesignaltriggers must be set to 1 (on). Optional.

-gateduration [<duration_open>]

The duration for gating to remain open beyond when -gateexpr (below) becomes false,
expressed in x number of timescale units. Extends gating beyond the back edge (the last
list row in which the expression evaluates to true). Optional. The default value for normal
synchronous gating is zero. If -gateduration is set to a non-zero value, a simulation value
will be displayed after the gate expression becomes false (if you don’t want the values
displayed, set -gateduration to zero).

-gateexpr [<expression>]

Specifies the expression for trigger gating. Optional. (Use the -usegating argument to
enable trigger gating.) The expression is evaluated when the List window would
normally have displayed a row of data. See the "GUI_expression_format" (CR-18) for
information on expression syntax.

-usegating [<value>]

Enables triggers to be gated on (a value of 1) or off (a value of 0) by an overriding
expression. Default is off. Optional. (Use the -gatexpr argument to specify the
expression.) See "Setting List window display properties" (UM-211) for additional
information on using gating with triggers.

-strobeperiod [<period>]

Specifies the period of the list strobe. (When using a time unit, the time value and unit
must be placed in curly braces.) Optional.

-strobestart [<start_time>]

Specifies the start time of the list strobe. Optional.

-usesignaltriggers [<value>]

If 1, uses signals as triggers; if 0, not. Optional.
ModelSim SE Command Reference

CR-112 Commands

Model
-usestrobe [<value>]

If 1, uses the strobe to trigger; if 0, not. Optional.

Arguments, Wave window only

-childrowmargin [<pixels>]

Specifies the distance in pixels between child signals. Optional.

-gridcolor [<color>]

Specifies the background grid color; the default is grey50. Optional.

-namecolwidth [<width>]

Specifies in pixels the width of the name column in the Wave window. Optional.

-rowmargin [<pixels>]

Specifies the distance in pixels between top-level signals.

-signalnamewidth [<value>]

Controls the number of hierarchical regions displayed as part of a signal name shown in
the pathname pane of the Wave window. Optional. Default of 0 displays the full path. 1
displays only the leaf path element, 2 displays the last two path elements, and so on.

-timecolor [<color>]

Specifies the time axis color; the default is green. Optional.

-valuecolwidth [<width>]

Specifies in pixels the width of the value column in the Wave window.

-vectorcolor [<color>]

Specifies the vector waveform color; the default is #b3ffb3. Optional.

-waveselectcolor [<color>]

Specifies the waveform color of a selected item.

-waveselectenable [<value>]

Specifies whether the waveform highlights when an item is selected. The default of 1
enables highlighting. 0 disables highlighting.

Examples

config list -strobeperiod

Displays the current value of the strobeperiod attribute.

config list -strobeperiod {50 ns} -strobestart 0 -usestrobe 1

Sets the strobe waveform and turns it on.

config wave -vectorcolor blue

Sets the wave vector color to blue.

config wave -signalnamewidth 1

Sets the display in the current Wave window to show only the leaf path of each signal.

Note: To get a more readable listing of all attributes and current values, use the lecho
(CR-163) command, which pretty-prints a Tcl list.
Sim SE Command Reference

configure CR-113
See also

view (CR-263)
ModelSim SE Command Reference

CR-114 Commands

Model
context

The context command provides several operations on a context’s name. The option you
specify determines the operation.

Syntax

context dataset | exists | isInst | isNet | isProc | isVar | join | parent |
split | tail | type
<name>

Arguments

context dataset <name>

Return the dataset name from the name.

context exists <name>

Returns 1 if context name is valid, 0 otherwise.

context isInst <name>

Returns 1 if context name is an instance pathname, 0 otherwise.

context isNet <name>

Returns 1 if context name is a Signal or Net pathname, 0 otherwise.

context isProc <name>

Returns 1 if context name is a Process pathname, 0 otherwise.

context isVar <name>

Returns 1 if context name is a VHDL Variable pathname, 0 otherwise.

context join <name> <name> ...

Takes one or more context names and combines them, using the correct path separator.

context parent <name>

Returns the parent path of name by removing the tail (see context tail).

context path <name>

Returns the pathname portion of name, removing the dataset name.

context split <name>

Returns a list whose elements are the path components in name. The first element of the
list will be the dataset name if one is present in name, including the dataset separator. For
example:

context split /foo/bar/baz

returns

/ foo bar baz .
Sim SE Command Reference

context CR-115
context tail <name>

Returns all of the characters in name after the last path separator. If name contains no
separators then returns name. Any trailing path separator is discarded.

context type <name>

Returns a string giving the acc type of context name.

<name>

Name of a context object or region. Required. Does not have to be a valid object name
unless the specified option requires this (i.e., exists or isInst).
ModelSim SE Command Reference

CR-116 Commands

Model
coverage clear

The coverage clear command is used to clear all coverage data obtained during previous
run commands. After this command is executed all line number execution count data will
be reset.

Syntax

coverage clear

Arguments

None.

See also

coverage reload (CR-121), coverage report (CR-122)
Sim SE Command Reference

coverage exclude clear CR-117
coverage exclude clear

The coverage exclude clear command unloads a currently loaded exclusion filter file.
Exclusion filter files specify files and line numbers that you wish to exclude from Code
Coverage statistics (see "Excluding lines and files" (UM-335) for more details).}

Syntax

coverage exclude clear

Arguments

None.

See also

coverage reload (CR-121), coverage report (CR-122)
ModelSim SE Command Reference

CR-118 Commands

Model
coverage exclude disable

The coverage exclude disable command disables a currently loaded exclusion filter file.
Exclusion filter files specify files and line numbers that you wish to exclude from Code
Coverage statistics (see "Excluding lines and files" (UM-335) for more details).}

Syntax

coverage exclude disable

Arguments

None.

See also

coverage reload (CR-121), coverage report (CR-122)
Sim SE Command Reference

coverage exclude enable CR-119
coverage exclude enable

The coverage exclude enable command enables a previously disabled exclusion filter file.
Exclusion filter files specify files and line numbers that you wish to exclude from Code
Coverage statistics (see "Excluding lines and files" (UM-335) for more details).}

Syntax

coverage exclude enable

Arguments

None.

See also

coverage reload (CR-121), coverage report (CR-122)
ModelSim SE Command Reference

CR-120 Commands

Model
coverage exclude load

The coverage exclude load command loads an exclusion filter file. Exclusion filter files
specify files and line numbers that you wish to exclude from Code Coverage statistics (see
"Excluding lines and files" (UM-335) for more details).}

Syntax

coverage exclude load
<filename>

Arguments

<filename>

Specifies the file name of the exclusion filter you wish to load. Required. See "Excluding
lines and files" (UM-335) for filter file syntax.

See also

coverage reload (CR-121), coverage report (CR-122)
Sim SE Command Reference

coverage reload CR-121
coverage reload

The coverage reload command is used to seed the coverage statistics with the output of a
previous coverage report command. This allows you (for example) to gather statistics
from multiple simulation runs into a single report.

Syntax

coverage reload
<filename> [-incremental] [-keep]

Arguments

<filename>

Specifies the file containing data to reload. Required. This file should be the output of a
previous coverage report -lines command.

-incremental

Adds loaded coverage data to current data. Optional. Without this switch, loading
coverage data overwrites existing data.

-keep

By default, source files listed in the file being reloaded that do NOT exist in the current
design will have their coverage data discarded. By specifying the -keep option, the data
will be kept, even though it does not correspond to any file or line in the current design.

The coverage reload command allows the accumulation of coverage statistics for
multiple simulation invocations.

By doing a coverage report -lines at the end of each simulation, and then a coverage
reload -keep at the start of each subsequent invocation of the simulator, one can
accumulate coverage data for a suite of different designs.

See also

coverage clear (CR-116), coverage report (CR-122)
ModelSim SE Command Reference

CR-122 Commands

Model
coverage report

The coverage report command produces textual output of coverage statistics. (Select
Tools > Source Coverage (Main window) to view this data more interactively.) You can
choose from a variety of report output using the arguments listed below.

Syntax

coverage report
[-file <filename>] [-excluded | -lines | -total | -zeroes]

Arguments

-file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Main
window.

-excluded

Writes out the files and lines that are currently being excluded by the user from the
coverage analysis. Optional. This is the same information that is shown in the "Excluded
tab" (UM-332).

-lines

Writes out the source file summary data and after each file it writes out the details for
each executable line in the file. Optional. This is the most detailed report.

If you are intending to use the coverage reload command, you should specify this
switch.

-total

Writes out a one line summary of the total files, lines, hits and overall percentage for the
current analysis. Optional. Useful for tracking if anything has changed.

-zeroes

Writes out a detailed report like the -lines option but only reports on the lines that do not
have any coverage. Optional.

See also

coverage clear (CR-116), coverage reload (CR-121), vsim (CR-298) -coverage option
Sim SE Command Reference

dataset alias CR-123
dataset alias

The dataset alias command assigns an additional name (alias) to a dataset. The dataset can
then be referenced by that alias. A dataset can have any number of aliases, but all dataset
names and aliases must be unique.

Syntax

dataset alias
<dataset_name> <alias_name>

Arguments

<dataset_name>

Specifies the name of the dataset to which to assign the alias. Required.

<alias_name>

Specifies the alias name to assign to the dataset. Optional. If you don’t specify an
alias_name, ModelSim lists current aliases for the specified dataset_name.

See also

dataset list (CR-127), dataset open (CR-128), dataset save (CR-130)
ModelSim SE Command Reference

CR-124 Commands

Model
dataset clear

The dataset clear command removes all event data from the current simulation WLF file
while keeping all currently logged signals logged. Subsequent run commands will continue
to accumulate data in the WLF file.

Syntax

dataset clear

Example

add wave *
run 100000ns
dataset clear
run 100000ns

Clears data in the WLF file from time 0ns to 100000ns, then logs data into the WLF file
from time 100000ns to 200000ns.

See also

"WLF files (datasets)" (UM-154), log (CR-166)
Sim SE Command Reference

dataset close CR-125
dataset close

The dataset close command closes an active dataset. To open a dataset, use the dataset
open command.

Syntax

dataset close
<logicalname> | [-all]

Arguments

<logicalname>

Specifies the logical name of the dataset or alias you wish to close. Required if -all isn’t
used.

-all

Closes all open datasets including the simulation. Optional.

See also

dataset open (CR-128)
ModelSim SE Command Reference

CR-126 Commands

Model
dataset info

The dataset info command reports a variety of information about a dataset.

Syntax

dataset info
<option> <dataset_name>

Arguments

<option>

Identifies what information you want reported. Required. Only one option per command
is allowed. The current options include:

name - Returns the actual name of the dataset. Useful for identifying the real dataset name
of an alias.

file - Returns the name of the WLF file associated with the dataset.

exists - Returns "1" if the dataset exists; "0" if it doesn’t.

<dataset_name>

Specifies the name of the dataset or alias for which you want information. Required.

See also

dataset alias (CR-123), dataset list (CR-127), dataset open (CR-128)
Sim SE Command Reference

dataset list CR-127
dataset list

The dataset list command lists all active datasets.

Syntax

dataset list
-long

Arguments

-long

Lists the filename corresponding to each dataset’s or alias’ logical name. Optional.

See also

dataset alias (CR-123), dataset save (CR-130)
ModelSim SE Command Reference

CR-128 Commands

Model
dataset open

The dataset open command opens a WLF file (representing a prior simulation) and assigns
it the logical name that you specify. To close a dataset, use dataset close.

Syntax

dataset open
<filename> [<logicalname>]

Arguments

<filename>

Specifies the WLF file to open as a view-mode dataset. Required.

<logicalname>

Specifies the logical name for the dataset. Optional. This is a prefix that will identify the
dataset in the current session. By default the dataset prefix will be the name of the
specified WLF file.

Examples

dataset open last.wlf test

Opens the dataset file last.wlf and assigns it the logical name test.

See also

dataset alias (CR-123), dataset list (CR-127), dataset save (CR-130), vsim (CR-298) -view
option
Sim SE Command Reference

dataset rename CR-129
dataset rename

The dataset rename command changes the logical name of a dataset to the new name you
specify.

Syntax

dataset rename
<logicalname> <newlogicalname>

Arguments

<logicalname>

Specifies the existing logical name of the dataset. Required.

<newlogicalname>

Specifies the new logical name for the dataset. Required.

Examples

dataset rename test test2

Renames the dataset file "test" to "test2".

See also

dataset alias (CR-123), dataset list (CR-127), dataset open (CR-128)
ModelSim SE Command Reference

CR-130 Commands

Model
dataset save

The dataset save command writes data from the current WLF file to a specified file. This
lets you save simulation data while the simulation is still in progress.

Syntax

dataset save
<logicalname> <newlogicalname>

Arguments

<datasetname>

Specifies the name of the dataset you want to save. Required.

<filename>

Specifies the name of the file to save. Required.

Examples

dataset save sim gold.wlf

Saves all current log data in the sim dataset to the file "gold.wlf".

See also

dataset snapshot (CR-131)
Sim SE Command Reference

dataset snapshot CR-131
dataset snapshot

The dataset snapshot command saves data from the current WLF file (vsim.wlf by default)
at a specified interval. This lets you take sequential or cumulative "snapshots" of your
simulation data.

Syntax

dataset snapshot
[-dir <directory>] [-disable] [-enable] [-file <filename>] [-filemode
overwrite | increment] [-mode cumulative | sequential] [-report] [-reset]
-size <file size> | -time <simulation time>

Arguments

-dir <directory>

Specifies a directory into which the files should be saved. Optional. Default is to save into
the directory where ModelSim is writing the current WLF file.

-disable

Turns snapshotting off. Optional. All other options are ignored if you specify -disable.

-enable

Turns snapshotting on. Optional. Default.

-file <filename>

Specifies the name of the file to save. Optional. Default is "vsim_snapshot". ".wlf" will
be appended to the file and possibly an incrementing suffix if -filemode is set to
"increment".

-filemode overwrite | increment

Specifies whether to overwrite the snapshot file each time a snapshot occurs. Optional.
Default is "overwrite". If you specify "increment", a new file is created for each snapshot.
An incrementing suffix (0 to n) is added to each new file (e.g., vsim_snapshot_0.wlf).

-mode cumulative | sequential

Specifies whether to keep all data from the time signals are first logged. Optional. Default
is "cumulative". If you specify "sequential", the current WLF file is cleared every time a
snapshot is taken. See the examples for further details.

-report

Lists current snapshot settings in the Main window transcript. Optional. All other options
are ignored if you specify -report.

-reset

Resets values back to defaults. Optional. The behavior is to reset to default, then apply
remainder of arguments on command line. See examples below. If specified by itself
without any other arguments, -reset disables dataset snapshot.

-size <file size>

Specifies that a snapshot occurs based on WLF file size. You must specify either -size or
-time. See examples below.

-time <simulation time>

Specifies that a snapshot occurs based on simulation time. You must specify either -time
or -size. See examples below.
ModelSim SE Command Reference

CR-132 Commands

Model
Examples

dataset snapshot -size 10

Creates the file vsim_snapshot.wlf that is written to every time the current WLF file
reaches a multiple of 10 MB (i.e., at 10 MB, 20 MB, 30 MB, etc.).

dataset snapshot -size 10 -mode sequential

Similar to the previous example but in this case the current WLF file is cleared every time
it reaches 10 MB.

dataset snapshot -time 1000000 -file gold.wlf -mode sequential -filemode
increment

Assuming simulator time units are ps, this command saves a file called "gold_n.wlf"
every 1000000 ps. If you ran for 3000000 ps, you’d have three files: gold_0.wlf with data
from 0 to 1000000 ps, gold_1.wlf with data from 1000001 to 2000000, and gold_2.wlf
with data from 2000001 to 3000000.

dataset snapshot -reset -time 10000

Enables snapshotting with time=10000 and default mode (cumulative) and default
filemode (overwrite).

See also

dataset save (CR-130)

Note: Because this example uses "sequential" mode, if you ran the simulation for
3500000 ps, the resulting vsim.wlf (the default log file) file will contain data only from
3000001 to 3500000 ps.
Sim SE Command Reference

delete CR-133
delete

The delete command removes HDL items from either the List or Wave window.

Syntax

delete
list|wave [-window <wname>] <item_name>

Arguments

list|wave

Specifies the target window for the delete command. Required.

-window <wname>

Specifies the name of the List or Wave window to target for the delete command (the
view command (CR-263) allows you to create more than one List or Wave window).
Optional. If no window is specified the default window is used; the default window is
determined by the most recent invocation of the view command (CR-263).

<item_name>

Specifies the name of an item. Required. Must match an item name used in an add list
(CR-48) or add wave (CR-57) command. Multiple item names may be specified. Wildcard
characters are allowed.

Examples

delete list -window list2 vec2

Removes the item vec2 from the list2 window.

See also

add list (CR-48), add wave (CR-57), and "Wildcard characters" (CR-16)
ModelSim SE Command Reference

CR-134 Commands

Model
describe

The describe command displays information about the specified HDL item. The
description is displayed in the Main window (UM-173). The following kinds of items can be
described:

• VHDL
signals, variables, and constants

• Verilog
nets and registers

All but VHDL variables and constants may be specified as hierarchical names. VHDL
variables and constants can be described only when visible from the current process that is
either selected in the Process window or is the currently executing process (at a breakpoint
for example).

Syntax

describe
<name>

Arguments

<name>

Specifies the name of an HDL item. Wildcards are accepted. Required.
Sim SE Command Reference

disablebp CR-135
disablebp

The disablebp command turns off breakpoints and when commands. To turn the
breakpoints or when statements back on again, use the enablebp command.

Syntax

disablebp [<id#>]

Arguments

<id#>

Specifies a breakpoint or when command id to disable. No other breakpoints or when
commands are affected. Optional.

See also

bd (CR-63), bp (CR-68), enablebp command (CR-145), onbreak (CR-179), resume (CR-207),
when (CR-314)
ModelSim SE Command Reference

CR-136 Commands

Model
disable_menu

The disable_menu command disables the specified menu within the specified window.
The disabled menu will become grayed-out, and nonresponsive. Returns nothing.

Syntax

disable_menu
<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required. The path for the Main window
must be expressed as "". All other window pathnames begin with a period (.) as shown
in the example below.

<menu_path>

Name of the Tk menu-widget path. Required.

Examples

disable_menu "" File

Disables the file menu of the Main window.

disable_menu .mywindow File

Disables the file menu of the mywindow window.

See also

add_menu (CR-51), enable_menu (CR-146)
Sim SE Command Reference

disable_menuitem CR-137
disable_menuitem

The disable_menuitem command disables a specified menu item within the specified
menu_path of the specified window. The menu item will become grayed-out, and
nonresponsive. Returns nothing.

Syntax

disable_menuitem
<window_name> <menu_path> <label>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. The path may include a submenu as shown in the
example below. Required.

<label>

Menu item text. Required.

Examples

disable_menuitem .mywindow file.save "Save Results As..."

This command locates the mywindow window, and disables the Save Results As... menu
item in the save submenu of the file menu.

See also

add_menuitem (CR-54), enable_menuitem (CR-147)
ModelSim SE Command Reference

CR-138 Commands

Model
do

The do command executes commands contained in a macro file. A macro file can have any
name and extension. An error encountered during the execution of a macro file causes its
execution to be interrupted, unless an onerror command (CR-181), onbreak command (CR-

179), or the OnErrorDefaultAction Tcl variable has specified the resume command (CR-

207).

Syntax

do
<filename> [<parameter_value>]

Arguments

<filename>

Specifies the name of the macro file to be executed. Required. The name can be a
pathname or a relative file name.

Pathnames are relative to the current working directory if the do command is executed
from the command line. If the do command is executed from another macro file,
pathnames are relative to the directory of the calling macro file. This allows groups of
macro files to be moved to another directory and still work.

<parameter_value>

Specifies values that are to be passed to the corresponding parameters $1 through $9 in
the macro file. Optional. Multiple parameter values must be separated by spaces.

If you want to make the parameters optional (i.e., specify fewer parameter values than
the number of parameters actually used in the macro), you must use the argc (UM-456)
simulator state variable in the macro. See "Making macro parameters optional" (UM-436).

Note that there is no limit on the number of parameters that can be passed to macros, but
only nine values are visible at one time. You can use the shift command (CR-217) to see
the other parameters.

Examples

do macros/stimulus 100

This command executes the file macros/stimulus, passing the parameter value 100 to $1
in the macro file.

do testfile design.vhd 127

If the macro file testfile contains the line bp $1 $2, this command would place a
breakpoint in the source file named design.vhd at line 127.

See also

See "Command-line mode" (UM-491). ModelSim can search for DO files based on the path
list specified by the DOPATH (UM-441) environment variable. A DO file can also be called
by modelsim.ini at startup (see "Using a startup file" (UM-452)). The Main window transcript
can be saved as a macro (see the write transcript command (CR-328)).
Sim SE Command Reference

down CR-139
down

The down command searches for signal transitions or values in the specified List window.
It executes the search on signals currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a signal
takes on a particular value, or an expression of multiple signals evaluates to true. See the
up command (CR-231) for related functionality.

The procedure for using down includes three steps: click on the desired signal; click on the
desired starting location; issue the down command. (The seetime command (CR-216) can
initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

down
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced List window. A signal may be specified
either by its full path or by the shortcut label displayed in the List window.

See "GUI_expression_format" (CR-18) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Specifies that delta-width glitches are to be ignored. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specifies a value of the signal to match. Optional. Must be specified in the same radix
that the selected signal is displayed. Case is ignored, but otherwise the value must be an
exact string match -- don’t-care bits are not yet implemented.

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-263) to change the default
window.
ModelSim SE Command Reference

CR-140 Commands

Model
<n>

Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with a warning message, and the marker is positioned at the last match.

Examples

down -noglitch -value FF23

Finds the next time at which the selected vector transitions to FF23, ignoring glitches.

down

Goes to the next transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-18) and can be built with the aid of the "The GUI Expression
Builder" (UM-305).

down -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches down for an expression that evaluates to a boolean 1 when signal clk just
changed from low to high and signal mystate is the enumeration reading and signal
/top/u3/addr is equal to the specified 32-bit hex constant.

down -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches down for an expression that evaluates to a boolean 1 when the upper 8 bits of
the 32-bit signal /top/u3/adder equals hex ac.

down -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

Searches down for an expression that evaluates to a boolean 1 when logfile time is
between 23 and 54 microseconds, and clock just changed from low to high and signal
mode is enumeration writing.

See also

"GUI_expression_format" (CR-18), view (CR-263), seetime (CR-216), up (CR-231)
Sim SE Command Reference

drivers CR-141
drivers

The drivers command displays in the Main window the current value and scheduled future
values for all the drivers of a specified VHDL signal or Verilog net. The driver list is
expressed relative to the top-most design signal/net connected to the specified signal/net. If
the signal/net is a record or array, each subelement is displayed individually. This
command reveals the operation of transport and inertial delays and assists in debugging
models.

Syntax

drivers
<item_name>

Arguments

<item_name>

Specifies the name of the signal or net whose values are to be shown. Required. All signal
or net types are valid. Multiple names and wildcards are accepted.
ModelSim SE Command Reference

CR-142 Commands

Model
dumplog64

The dumplog64 command dumps the contents of the specified WLF file in a readable
format to stdout. The WLF file cannot be opened for writing in a simulation when you use
this command.

The dumplog64 command cannot be used in a DO file.

Syntax

dumplog64
<filename>

Arguments

<filename>

The name of the WLF file to be read. Required.
Sim SE Command Reference

echo CR-143
echo

The echo command displays a specified message in the Main window.

Syntax

echo
[<text_string>]

Arguments

<text_string>

Specifies the message text to be displayed. Optional. If the text string is surrounded by
quotes, blank spaces are displayed as entered. If quotes are omitted, two or more adjacent
blank spaces are compressed into one space.

Examples

echo “The time is $now ns.”

If the current time is 1000 ns, this command produces the message:

The time is 1000 ns.

If the quotes are omitted, all blank spaces of two or more are compressed into one space.

echo The time is $now ns.

If the current time is 1000ns, this command produces the message:

The time is 1000 ns.

echo can also use command substitution, such as:

echo The hex value of counter is [examine -hex counter].

If the current value of counter is 21 (15 hex), this command produces:

The hex value of counter is 15.
ModelSim SE Command Reference

CR-144 Commands

Model
edit

The edit command invokes the editor specified by the EDITOR environment variable.

Syntax

edit
[<filename>]

Arguments

<filename>

Specifies the name of the file to edit. Optional. If the <filename> is omitted, the editor
opens the current source file. If you specify a non-existent filename, it will open a new
file.

See also

notepad (CR-176), and the EDITOR (UM-441) environment variable
Sim SE Command Reference

enablebp CR-145
enablebp

The enablebp command turns on breakpoints and when commands that were turned off by
the disablebp command (CR-135).

Syntax

enablebp [<id#>]

Arguments

<id#>

Specifies a breakpoint or when statement id to enable. No other breakpoints or when
commands are affected. Optional.

See also

bd (CR-63), bp (CR-68), disablebp command (CR-135), onbreak (CR-179), resume (CR-207),
when (CR-314)
ModelSim SE Command Reference

CR-146 Commands

Model
enable_menu

The enable_menu command enables a previously-disabled menu. The menu will be
changed from grayed-out to normal and will become responsive. Returns nothing.

Syntax

enable_menu
<window_name> <menu_path>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. Required.

Examples

enable_menu "" File

Enables the previously-disabled file menu of the Main window.

enable_menu .mywindow File

Enables the previously-disabled file menu of the mywindow window.

See also

add_menu (CR-51), disable_menu (CR-136)
Sim SE Command Reference

enable_menuitem CR-147
enable_menuitem

The enable_menuitem command enables a previously-disabled menu item. The menu
item will be changed from grayed-out to normal, and will become responsive. Returns
nothing.

Syntax

enable_menuitem
<window_name> <menu_path> <label>

Arguments

<window_name>

Tk path of the window containing the menu. Required.

Note that the path for the Main window must be expressed as "". All other window
pathnames begin with a period (.) as shown in the example below.

<menu_path>

Name of the Tk menu-widget path. The path may include a submenu as shown in the
example below. Required.

<label>

Menu item text. Required.

Examples

enable_menuitem .mywindow file.save "Save Results As..."

This command locates the mywindow window, and enables the previously-disabled Save
Results As... menu item in the save submenu of the file menu.

See also

add_menuitem (CR-54), disable_menuitem (CR-137)
ModelSim SE Command Reference

CR-148 Commands

Model
environment

The environment, or env command, allows you to display or change the current dataset
and region/signal environment.

Syntax

environment
[-dataset] [-nodataset] [<dataset_prefix>[<pathname>]]

Arguments

-dataset

Displays the specified environment pathname with a dataset prefix. Optional. Dataset
prefixes are displayed by default if more than one dataset is open during a simulation
session.

-nodataset

Displays the specified environment pathname without a dataset prefix. Optional.

<dataset_prefix>

Changes all unlocked windows to the specified dataset context. Optional. The prefix is
the logical name of the dataset followed by a colon (e.g., "sim:"). If the <pathname>
argument is specified as well, it will change the environment to that specified context. If
<pathname> is omitted, the environment reflects the previously set context.

<pathname>

Specifies the pathname to which the current region/signal environment is to be changed.
Optional. If omitted the command causes the pathname of the current region/signal
environment to be displayed.

Multiple levels of a pathname must be separated by the character specified in the
PathSeparator (UM-449). A single path separator character can be entered to indicate the
top level. Two dots (..) can be entered to move up one level.

Examples

env

Displays the pathname of the current region/signal environment.

env -dataset test

Changes all unlocked windows to the context of the "test" dataset.

env test:/top/foo

Changes all unlocked windows to the context "test: /top/foo".

env blk1/u2

Moves down two levels in the design hierarchy.

env /

Moves to the top level of the design hierarchy.
Sim SE Command Reference

examine CR-149
examine

The examine, or exa command, examines one or more HDL items, and displays current
values (or the values at a specified previous time) in the Main window (UM-173). It
optionally can compute the value of an expression of one or more items.

 The following items can be examined at any time:

• VHDL
signals, shared variables, process variables, and generics

• Verilog
nets and register variables

To display a previous value, specify the desired time using the -time option. To compute
an expression, use the -expr option. The -expr and the -time options may be used together.

Virtual signals and functions may also be examined within the GUI (actual signals are
examined in the kernel).

Syntax

examine
[-delta <delta>] [-env <path>] [-in] [-out] [-inout] [-internal] [-ports]
[-expr <expression>] [-name] [-<radix>] [-time <time>] [-time <time>]
<name>...

Arguments

-delta <delta>

Specifies a simulation cycle at the specified time from which to fetch the value. The
default is to use the last delta of the time step. The items to be examined must be logged
via the add list, add wave, or log command in order for the examine command to be able
to return a value for a requested delta. Optional.

-env <path>

Specifies a path to look for a signal name. Optional.

-expr <expression>

Specifies an expression to be evaluated. Optional. The items to be examined must be
logged via the add list, add wave, or log command in order for the examine command to
be able to evaluate the specified expression. If the -time argument is present, the
expression will be evaluated at the specified time, otherwise it will be evaluated at the
current simulation time. See "GUI_expression_format" (CR-18) for the format of the
expression. The expression must be placed within curly braces.

-in

Specifies that <name> include ports of mode IN. Optional.

-out

Specifies that <name> include ports of mode OUT. Optional.

-inout

Specifies that <name> include ports of mode INOUT. Optional.

-internal

Specifies that <name> include internal (non-port) signals. Optional.
ModelSim SE Command Reference

CR-150 Commands

Model
-ports

Specifies that <name> include all ports. Optional. Has the same effect as specifying -in,
-inout, and -out together.

-name

Displays signal name(s) along with the value(s). Optional. Default is -value behavior
(see below).

The lecho command (CR-163) will return the output of an examine command in
pretty-print format. For example,

lecho [examine -name clk prw pstrb]

-<radix>

Specifies the radix for the items that follow in the command. Optional. Valid entries
(including unique abbreviations) are:

binary
octal
decimal (default for integers) or signed
hexadecimal
unsigned
ascii
symbolic
default

Entries may be truncated to any length, for example, -binary could be expressed as -b or
-bin, etc. You can change the default radix for the current simulation using the radix
command (CR-200). You can change the default radix permanently by editing the
DefaultRadix (UM-447) variable in the modelsim.ini file.

-time <time>

Specifies the time value between 0 and $now for which to examine the items. If an
expression is specified it will be evaluated at that time. The items to be examined must
be logged via the add list, add wave, or log command in order for the examine command
to be able to return a value for a requested time. Optional.

If the <time> field uses a unit, the value and unit must be placed in curly braces. For
example, the following are equivalent for ps resolution:

exa -time {3.6 ns} signal_a
exa -time 3600 signal_a

-value

Returns value(s) as a curly-braces separated Tcl list. Default. Use to toggle off a previous
use of -name.

<name>...

Specifies the name of any HDL item. Required (except when the -expr option is used).
All item types are allowed, except those of the type file. Multiple names and wildcards
are accepted. To examine a VHDL variable you can add a process label to the name. For
example (make certain to use two underscore characters):

exa line__36/i
Sim SE Command Reference

examine CR-151
Examples

examine rega[16]

Returns the value of rega that is specified by the index (i.e., 16).

examine foo[20:22]

Returns the value of foo specified by the slice (i.e., 20:22).

examine -time {3450 us} -expr {/top/bus and $bit_mask}

In this example the -expr option specifies a signal path and user-defined Tcl variable.
The expression will be evaluated at 3450us.

examine -expr {clk’event && (/top/xyz == 16’hffae)}

Because -time is not specified, this expression will be evaluated at the current simulation
time. Note the signal attribute and array constant specified in the expression.

Commands like find (CR-153) and examine return their results as a Tcl list (just a blank-
separated list of strings). You can do things like:

foreach sig [find ABC*] {echo "Signal $sig is [exa $sig]" ...}

if {[examine -bin signal_12] == “11101111XXXZ”} {...}

examine -hex [find *]

See also

"GUI_expression_format" (CR-18)

Note: The Tcl variable array, $examine (), can also be used to return values. For
example, $examine (/clk). You can also examine an item in the Source window (UM-229)
by selecting it with the right mouse button.
ModelSim SE Command Reference

CR-152 Commands

Model
exit

The exit command exits the simulator and the ModelSim application.

Syntax

exit
[-force]

Argument

-force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim
asks you for confirmation before exiting.

Note: If you want to stop the simulation using a when command (CR-314), you must use
a stop command (CR-223) within your when statement. DO NOT use an exit command
or a quit command (CR-199). The stop command acts like a breakpoint at the time it is
evaluated.
Sim SE Command Reference

find CR-153
find

The find command locates items in the design whose names match the name specification
you provide. You must specify the type of item you want to find. When searching for nets
and signals, the find command returns the full pathname of all nets, signals, register
variables, and named events that match the name specification.

When searching for nets and signals, the order in which arguments are specified is
unimportant. When searching for virtuals, however, all optional arguments must be
specified before any item names.

You can also use the find command to locate incrTcl classes and objects. See "incrTcl
commands" in the Tcl Man Pages for more information.

Syntax

find nets | signals
[-in] [-inout] [-internal] <item_name> ... [-nofilter] [-out] [-ports]
[-recursive]

find virtuals
[-kind <kind>] [-unsaved] <item_name> ...

find classes
[<class_name>]

find objects
[-class <class_name>] [-isa <class_name>] [<object_name>]

Arguments for nets and signals

-in

Specifies that the scope of the search is to include ports of mode IN. Optional.

-inout

Specifies that the scope of the search is to include ports of mode INOUT. Optional.

-internal

Specifies that the scope of the search is to include internal items. Optional.

<item_name> ...

Specifies the net or signal for which you want to search. Required. Multiple nets and
signals and wildcard characters are allowed. Wildcard characters are accepted for
primary names only. Wildcards in index and record filed names are not supported. Note
that the WildcardFilter Tcl preference variable identifies types to ignore when matching
items with wildcard characters unless you use the -nofilter argument.

-nofilter

Specifies that the WildcardFilter Tcl preference variable be ignored when finding
signals or nets. Optional.

-out

Specifies that the scope of the search is to include ports of mode OUT. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional. Has the same effect
as specifying -in, -out, and -inout together.
ModelSim SE Command Reference

CR-154 Commands

Model
-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

Arguments for virtuals

-kind <kind>

Specifies the kind of virtual object for which you want to search. Optional. <kind> can
be one of designs, explicits, functions, implicits, or signals.

-unsaved

Specifies that ModelSim find only virtuals that have not been saved to a format file.

<item_name> ...

Specifies the virtual object for which you want to search. Required. Multiple virtuals and
wildcard characters are allowed.

Arguments for classes

<class_name>

Specifies the incrTcl class for which you want to search. Optional. Wildcard characters
are allowed. The options for class_name include nets, objects, signals, and virtuals. If you
do not specify a class name, the command returns all classes in the current namespace
context. See "incrTcl commands" in the Tcl Man Pages for more information.

Arguments for objects

-class <class_name>

Restricts the search to objects whose most-specific class is class_name. Optional.

-isa <class_name>

Restricts the search to those objects that have class_name anywhere in their heritage.
Optional.

<object_name>

Specifies the incrTcl object for which you want to search. Optional. Wildcard characters
are allowed. If you do not specify an object name, the command returns all objects in the
current namespace context. See "incrTcl commands" in the Tcl Man Pages for more
information.

Examples

find signals -r /*

Finds all signals in the entire design.

find nets -in /top/xy*

Finds all input signals in region /top that begin with the letters "xy".

Additional search options

To search for HDL items within a specific display window, use the search command (CR-

212) or select Edit > Find.
Sim SE Command Reference

find CR-155
See also

"Wildcard characters" (CR-16)
ModelSim SE Command Reference

CR-156 Commands

Model
force

The force command allows you to apply stimulus interactively to VHDL signals and
Verilog nets and registers. Since force commands (like all commands) can be included in
a macro file, it is possible to create complex sequences of stimuli.

You can force Virtual signals (UM-161) if the number of bits corresponds to the signal value.
You cannot force virtual functions. In VHDL and mixed models, you cannot force an input
port that is mapped at a higher level or that has a conversion function on the input.

You cannot force Verilog register variables – reg, integer, time, real (or realtime). These
must be changed. See the change command (CR-72).

Syntax

force
[-freeze | -drive | -deposit] [-cancel <time>] [-repeat <time>] <item_name>
<value> [<time>] [, <value> <time> ...]

Arguments

-freeze

Freezes the item at the specified value until it is forced again or until it is unforced with
a noforce command (CR-173). Optional.

-drive

Attaches a driver to the item and drives the specified value until the item is forced again
or until it is unforced with a noforce command (CR-173). Optional.

This option is illegal for unresolved signals.

-deposit

Sets the item to the specified value. The value remains until there is a subsequent driver
transaction, or until the item is forced again, or until it is unforced with a noforce
command (CR-173). Optional.

If one of the -freeze, -drive, or -deposit options is not used, then -freeze is the default
for unresolved items and -drive is the default for resolved items.

If you prefer -freeze as the default for resolved and unresolved VHDL signals, change
the default force kind in the DefaultForceKind (UM-447) preference variable.

-cancel <time>

Cancels the force command at the specified <time>. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @.
Cancellation occurs at the last simulation delta cycle of a time unit. A value of zero
cancels the force at the end of the current time period. Optional.

-repeat <time>

Repeats the force command, where <time> is the time at which to start repeating the
cycle. The time is relative to the current time. A repeating force command will force a
value before other non-repeating force commands that occur in the same time step.
Optional.
Sim SE Command Reference

force CR-157
<item_name>

Specifies the name of the HDL item to be forced. Required. A wildcard is permitted only
if it matches one item. See "HDL item pathnames" (CR-14) for the full syntax of an item
name. The item name must specify a scalar type or a one-dimensional array of character
enumeration. You may also specify a record subelement, an indexed array, or a sliced
array, as long as the type is one of the above. Required.

<value>

Specifies the value to which the item is to be forced. The specified value must be
appropriate for the type. Required.

A VHDL one-dimensional array of character enumeration can be forced as a sequence of
character literals or as a based number with a radix of 2, 8, 10 or 16. For example, the
following values are equivalent for a signal of type bit_vector (0 to 3):

<time>

Specifies the time to which the value is to be applied. The time is relative to the current
time unless an absolute time is specified by preceding the value with the character @. If
the time units are not specified, then the default is the resolution units selected at
simulation start-up. Optional.

A zero-delay force command causes the change to occur in the current (rather than the
next) simulation delta cycle.

Examples

force input1 0

Forces input1 to 0 at the current simulator time.

force bus1 01XZ 100 ns

Forces bus1 to 01XZ at 100 nanoseconds after the current simulator time.

force bus1 16#f @200

Forces bus1 to 16#F at the absolute time 200 measured in the resolution units selected at
simulation start-up.

Value Description

1111 character literal sequence

2#1111 binary radix

10#15 decimal radix

16#F hexadecimal radix

Note: For based numbers in VHDL, ModelSim translates each 1 or 0 to the appropriate
value for the number’s enumerated type. The translation is controlled by the translation
table in the pref.tcl file. If ModelSim cannot find a translation for 0 or 1, it uses the left
bound of the signal type (type’left) for that value.
ModelSim SE Command Reference

CR-158 Commands

Model
force input1 1 10, 0 20 -r 100

Forces input1 to 1 at 10 time units after the current simulation time and to 0 at 20 time
units after the current simulation time. This cycle repeats starting at 100 time units after
the current simulation time, so the next transition is to 1 at 100 time units after the current
simulation time.

force input1 1 10 ns, 0 {20 ns} -r 100ns

Similar to the previous example, but also specifies the time units. Time unit expressions
preceding the "-r" must be placed in curly braces.

force s 1 0, 0 100 -repeat 200 -cancel 1000

Forces signal s to alternate between values 1 and 0 every 100 time units until time 1000.
Cancellation occurs at the last simulation delta cycle of a time unit. So,

force s 1 0 -cancel 0

will force signal s to 1 for the duration of the current time period.

See also

noforce (CR-173), change (CR-72)

Note: You can configure defaults for the force command by setting the
DefaultForceKind variable in the modelsim.ini file. See "Force command defaults" (UM-

453).
Sim SE Command Reference

getactivecursortime CR-159
getactivecursortime

The getactivecursortime command gets the time of the active cursor in the Wave window.

Returns the time value.

Syntax

getactivecursortime
[-window <wname>]

Arguments

-window <wname>

Specifies an instance of the Wave window that is not the default. Otherwise, the default
Wave window is used. Optional. Use the view command (CR-263) to change the default
window.

Examples

getactivecursortime

Returns:

980 ns

See also

left (CR-164), right (CR-208)
ModelSim SE Command Reference

CR-160 Commands

Model
getactivemarkertime

The getactivemarkertime command gets the time of the active marker in the List window.

Returns the time value. If -delta is specified, returns time and delta.

Syntax

getactivemarkertime
[-window <wname>] [-delta]

Arguments

-window <wname>

Specifies an instance of the List window that is not the default. Otherwise, the default List
window is used. Optional. Use the view command (CR-263) to change the default
window.

-delta

Returns the delta value. Optional. Default is to return only the time.

Examples

getactivemarkertime -delta

Returns:

980 ns, delta 0

See also

down (CR-139), up (CR-231)
Sim SE Command Reference

help CR-161
help

The help command displays in the Main window a brief description and syntax for the
specified command.

Syntax

help
[<command> | <topic>]

Arguments

<command>

Specifies the command for which you want help. The entry is case and space sensitive.
Optional.

<topic>

Specifies a topic for which you want help. The entry is case and space sensitive. Optional.
Specify one of the following six topics:

Topic Description

commands Lists all available commands and topics

debugging Lists debugging commands

execution Lists commands that control execution of
your simulation.

Tcl Lists all available Tcl commands.

Tk Lists all available Tk commands

incrTCL Lists all available incrTCL commands
ModelSim SE Command Reference

CR-162 Commands

Model
history

The history command lists the commands you have executed during the current session.
History is a Tcl command. For more information, consult the Tcl Man Pages.

Syntax

history
[clear] [keep <value>]

Arguments

clear

Clears the history buffer. Optional.

keep <value>

Specifies the number of executed commands to keep in the history buffer. Optional. The
default is 50.
Sim SE Command Reference

lecho CR-163
lecho

The lecho command takes one or more Tcl lists as arguments and pretty-prints them to the
Main window. Returns nothing.

Syntax

lecho
<args> ...

Arguments

<args> ...

Any Tcl list created by a command or user procedure.

Examples

lecho [configure wave]

Prints the Wave window configuration list to the Main window.
ModelSim SE Command Reference

CR-164 Commands

Model
left

The left command searches left (previous) for signal transitions or values in the specified
Wave window. It executes the search on signals currently selected in the window, starting
at the time of the active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a
waveform takes on a particular value, or an expression of multiple signals evaluates to true.
See the right command (CR-208) for related functionality.

The procedure for using left entails three steps: click on the desired waveform; click on the
desired starting location; issue the left command. (The seetime command (CR-216) can
initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

left
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced Wave window. A signal may be specified
either by its full path or by the shortcut label displayed in the Wave window.

See "GUI_expression_format" (CR-18) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Looks at signal values only on the last delta of a time step. For use with -value option
only. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specifies a value of the signal to match. Must be specified in the same radix in which the
selected waveform is displayed. Case is ignored, but otherwise the value must be an exact
string match — don't-care bits are not yet implemented. Only one signal may be selected,
but that signal may be an array. Optional.

-window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-263) to change the default
window.
Sim SE Command Reference

left CR-165
<n>

Specifies to find the nth match. If less than n are found, the number found is returned with
a warning message, and the cursor is positioned at the last match. Optional. The default
is 1.

Examples

left -noglitch -value FF23 2

Finds the second time to the left at which the selected vector transitions to FF23, ignoring
glitches.

left

Goes to the previous transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-18) and can be built with the aid of the "The GUI Expression
Builder" (UM-305).

left -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches left for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
is equal to the specified 32-bit hex constant; otherwise is 0.

left -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches left for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/adder equals hex ac.

left -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

Searches left for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, and clock just changed from low to high and signal mode is
enumeration writing.

See also

"GUI_expression_format" (CR-18), right (CR-208), seetime (CR-216), view (CR-263)

Note: Wave window mouse and keyboard shortcuts (UM-274) are also available for next
and previous edge searches. Tab searches right (next) and shift-tab searches left
(previous).
ModelSim SE Command Reference

CR-166 Commands

Model
log

The log command creates a wave log format (WLF) file containing simulation data for all
HDL items whose names match the provided specifications. Items (VHDL signals and
variables, and Verilog nets and registers) that are displayed using the add list (CR-48) and
add wave (CR-57) commands are automatically recorded in the WLF file. The log is stored
in a WLF file (formerly a WAV file) in the working directory. By default the file is named
vsim.wlf. You can change the default name using the -wlf option of the vsim (CR-298)
command.

If no port mode is specified, the WLF file contains data for all items in the selected region
whose names match the item name specification.

The WLF file is the source of data for the List and Wave windows. An item that has been
logged and is subsequently added to the List or Wave window will have its complete
history back to the start of logging available for listing and waving.

Limitations: Verilog memories and VHDL variables can be logged using the variable’s full
name only (no wildcards).

Syntax

log
[-flush] [-howmany] [-in] [-inout] [-internal] [-out] [-ports]
[-recursive] <item_name> ...

Arguments

-flush

Adds region data to the WLF file after each individual log command. Optional. Default
is to add region data to the log file only when a command that advances simulation time
is executed (e.g., run, step, etc.) or when you quit the simulation.

-howmany

Returns an integer indicating the number of signals found. Optional.

-in

Specifies that the WLF file is to include data for ports of mode IN whose names match
the specification. Optional.

-inout

Specifies that the WLF file is to include data for ports of mode INOUT whose names
match the specification. Optional.

-internal

Specifies that the WLF file is to include data for internal items whose names match the
specification. Optional.

-out

Specifies that the WLF file is to include data for ports of mode OUT whose names match
the specification. Optional.

-ports

Specifies that the scope of the search is to include all ports. Optional.
Sim SE Command Reference

log CR-167
-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional;
if omitted, the search is limited to the selected region.

<item_name>

Specifies the item name which you want to log. Required. Multiple item names may be
specified. Wildcard characters are allowed. (Note that the WildcardFilter Tcl preference
variable identifies types to ignore when matching items with wildcard patterns.)

Examples

log -r /*

Logs all items in the design.

log -out *

Logs all output ports in the current design unit.

See also

add list (CR-48), add wave (CR-57), nolog (CR-174), and "Wildcard characters" (CR-16)

Note: The log command is also known as the "add log" command.
ModelSim SE Command Reference

CR-168 Commands

Model
lshift

The lshift command takes a Tcl list as an argument and shifts it in-place, one place to the
left, eliminating the 0th element. The number of shift places may also be specified. Returns
nothing.

Syntax

lshift
<list> [<amount>]

Arguments

<list>

Specifies the Tcl list to target with lshift. Required.

<amount>

Specifies the number of places to shift. Optional. Default is 1.

Examples
proc myfunc args {

 # throws away the first two arguments

 lshift args 2

 ...

 }

See also

See the Tcl man pages (Help > Tcl Man Pages) for details.
Sim SE Command Reference

lsublist CR-169
lsublist

The lsublist command returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern.

Syntax

lsublist
<list> <pattern>

Arguments

<list>

Specifies the Tcl list to target with lsublist. Required.

<pattern>

Specifies the pattern to match within the <list> using Tcl glob-style matching. Required.

Examples

In the example below, variable ‘t’ returns "structure signals source".
set window_names "structure signals variables process source wave list
dataflow"

set t [lsublist $window_names s*]

See also

The set command is a Tcl command. See the Tcl man pages (Help > Tcl Man Pages) for
details.
ModelSim SE Command Reference

CR-170 Commands

Model
macro_option

This command is available for UNIX only (excluding Linux).

The macro_option command controls the speed and delay of macro (DO file) playback,
plus the level of debugging feedback. If invoked without any options, macro_option
returns all current settings; returns a specific setting if invoked with an option and no
argument; returns the previous setting if invoked with both an option and an argument.

Syntax

macro_option
[speed fast | demo] | [delay <delay_time>] | [debug <level>]

Arguments

speed fast | demo

Set the macro playback speed to fast or demo. Optional.

delay <delay_time>

Set the delay time in milliseconds; delay is the time between events in demo mode.
Optional.

debug <level>

Set the debug level from 1 to 9; 9 giving the most feedback. Optional.

See also

play (CR-183), run (CR-210)
Sim SE Command Reference

modelsim CR-171
modelsim

The modelsim command starts the ModelSim GUI without prompting you to load a design.
This command is valid only for Windows platforms, and may be invoked in one of three
ways:

from the DOS prompt
from a ModelSim shortcut
from the Windows Start > Run menu

To use modelsim arguments with a shortcut, add them to the target line of the shortcut’s
properties. (Arguments work on the DOS command line too, of course.)

The simulator may be invoked from either the MODELSIM prompt after the GUI starts or
from a DO file called by modelsim.

Syntax

modelsim
[-do <macrofile>] [-project <project file>]

Arguments

-do <macrofile>

Specifies the DO file to execute when modelsim is invoked. Optional.

-project <project file>

Specifies the modelsim.ini file to load for this session. Optional.

See also

vsim (CR-298), do (CR-138), and "Using a startup file" (UM-452)

Note: In addition to the macro called by this argument, if a DO file is specified by the
STARTUP variable in modelsim.ini, it will be called when the vsim command (CR-298)
is invoked.
ModelSim SE Command Reference

CR-172 Commands

Model
next

The next command continues a search after you have invoked the search command. See
"search" (CR-212) for more information.

Syntax

next
<win_type> [-window <wname>]

Arguments

<win_type>

Specifies structure, signals, process, variables, wave, list, source, or a unique
abbreviation thereof. Required.

-window <wname>

Specifies an instance of the window that is not the default. Optional. Otherwise, the
default window is used. Use the view command (CR-263) to change the default window.
Sim SE Command Reference

noforce CR-173
noforce

The noforce command removes the effect of any active force (CR-156) commands on the
selected HDL items. The noforce command also causes the item’s value to be re-evaluated.

Syntax

noforce
<item_name> ...

Arguments

<item_name>

Specifies the name of a item. Required. Must match an item name used in a previous
force command (CR-156). Multiple item names may be specified. Wildcard characters are
allowed.

See also

force (CR-156) and "Wildcard characters" (CR-16)
ModelSim SE Command Reference

CR-174 Commands

Model
nolog

The nolog command suspends writing of data to the wave log format (WLF) file for the
specified signals. A flag is written into the WLF file for each signal turned off, and the GUI
displays "-No Data-" for the signal(s) until logging (for the signal(s)) is turned back on.

Logging can be turned back on by issuing another log command (CR-166) or by doing a
nolog -reset.

Because use of the nolog command adds new information to the WLF file, WLF files
created when using the nolog command cannot be read by older versions of the simulator.
If you are using dumplog64.c, you will need to get an updated version.

Syntax

nolog
[-all] | [-reset] | [-recursive] [-in] [-out] [-inout] [-ports]
[-internal] [-howmany] <item_name> ...

Arguments

-all

Turns off logging for all signals currently logged. Optional. Must be used alone without
other arguments.

-reset

Turns logging back on for all signals unlogged. Optional. Must be used alone without
other arguments.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-in

Specifies that the WLF file is to turn off logging for ports of mode IN whose names match
the specification. Optional.

-out

Specifies that the WLF file is to turn off logging for ports of mode OUT whose names
match the specification. Optional.

-inout

Specifies that the WLF file is to turn off logging for ports of mode INOUT whose names
match the specification. Optional.

-ports

Specifies that the scope of the search is to turn off logging for all ports. Optional.

-internal

Specifies that the WLF file is to turn off logging for internal items whose names match
the specification. Optional.

-howmany

Returns an integer indicating the number of signals found. Optional.
Sim SE Command Reference

nolog CR-175
<item_name>

Specifies the item name which you want to unlog. Required. Multiple item names may
be specified. Wildcard characters are allowed.

Examples

nolog -r /*

Unlogs all items in the design.

nolog -out *

Unlogs all output ports in the current design unit.

See also

add list (CR-48), add wave (CR-57), log (CR-166)
ModelSim SE Command Reference

CR-176 Commands

Model
notepad

The notepad command opens a simple text editor. It may be used to view and edit ASCII
files or create new files. When a file is specified on the command line, the editor will
initially come up in read-only mode. This mode can be changed from the Notepad Edit
menu. See "Mouse and keyboard shortcuts" (UM-183) for a list of editing shortcuts.

Returns nothing.

Syntax

notepad
[<filename>] [-r | -edit]

Arguments

<filename>

Name of the file to be displayed. Optional.

-r | -edit

Selects the notepad editing mode: -r for read-only, and -edit for edit mode. Optional.
Read-only is the default.
Sim SE Command Reference

noview CR-177
noview

The noview command closes a window in the ModelSim GUI. To open a window, use the
view command.

Syntax

noview
[*] <window_name>...

Arguments

*
Wildcards can be used, for example: l* (List window), s* (Signal, Source, and Structure
windows), even * alone (all windows). Optional.

<window_name>...

Specifies the ModelSim window type to close. Multiple window types may be used; at
least one type (or wildcard) is required. Available window types are:

dataflow, list, process, signals, source, structure, variables, and wave

Examples

noview wave1

Closes the Wave window named "wave1".

noview l*

Closes all List windows.

noview s*

Closes all Structure, Signals, and Source windows.

See also

view (CR-263)
ModelSim SE Command Reference

CR-178 Commands

Model
nowhen

The nowhen command deactivates selected when (CR-314) commands.

Syntax

nowhen
[<label>]

Arguments

<label>

Specifies an individual when command. Optional. Wildcards may be used to select more
than one when command.

Examples

when -label 99 b {echo “b changed”}
…
nowhen 99

This nowhen command deactivates the when (CR-314) command labeled 99.

nowhen *

This nowhen command deactivates all when (CR-314) commands.
Sim SE Command Reference

onbreak CR-179
onbreak

The onbreak command is used within a macro. It specifies one or more commands to be
executed when running a macro that encounters a breakpoint in the source code. Using the
onbreak command without arguments will return the current onbreak command string.
Use an empty string to change the onbreak command back to its default behavior (i.e.,
onbreak ""). In that case, the macro will be interrupted after a breakpoint occurs (after any
associated bp command (CR-68) string is executed).

onbreak commands can contain macro calls.

Syntax

onbreak
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onbreak. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. It is an error to execute any
commands within an onbreak command string following a run (CR-210), run -continue,
or step (CR-222) command. This restriction applies to any macros or Tcl procedures used
in the onbreak command string. Optional.

Examples

onbreak {exa data ; cont}

Examine the value of the HDL item data when a breakpoint is encountered. Then
continue the run command (CR-210).

onbreak {resume}

Resume execution of the macro file on encountering a breakpoint.

See also

abort (CR-44), bd (CR-63), bp (CR-68), do (CR-138), onerror (CR-181), resume (CR-207),
status (CR-221)
ModelSim SE Command Reference

CR-180 Commands

Model
onElabError

The onElabError command specifies one or more commands to be executed when an error
is encountered during elaboration. The command is used by placing it within the
modelsim.tcl file or a macro. During initial design load onElabError may be invoked from
within the modelsim.tcl file; during a simulation restart onElabError may be invoked from
a macro.

Use the onElabError command without arguments to return to a prompt.

Syntax

onElabError
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onElabError. If you want to use more than
one command, use a semicolon to separate the commands, or place them on multiple
lines. The entire command string must be placed in curly braces. Optional.

See also

do (CR-138)
Sim SE Command Reference

onerror CR-181
onerror

The onerror command is used within a macro; it specifies one or more commands to be
executed when a running macro encounters an error. Using the onerror command without
arguments will return the current onerror command string. Use an empty string to change
the onerror command back to its default behavior (i.e., onerror ""). Use onerror with a
resume command (CR-207) to allow an error message to be printed without halting the
execution of the macro file.

Syntax

onerror
{[<command> [; <command>] ...]}

Arguments

<command>

Any command can be used as an argument to onerror. If you want to use more than one
command, use a semicolon to separate the commands, or place them on multiple lines.
The entire command string must be placed in curly braces. Optional.

Example

onerror {quit -f}

Forces the simulator to quit if an error is encountered while the macro is running.

See also

abort (CR-44), do (CR-138), onbreak (CR-179), resume (CR-207), status (CR-221)

Note: You can also set the global OnErrorDefaultAction Tcl variable in the pref.tcl file
to dictate what action ModelSim takes when an error occurs. The onerror command is
invoked only when an error occurs in the macro file that contains the onerror command.
Conversely, OnErrorDefaultAction will run even if the macro does not contain a local
onerror command. This can be useful when you run a series of macros from one script,
and you want the same behavior across all macros.
ModelSim SE Command Reference

CR-182 Commands

Model
pause

The pause command placed within a macro interrupts the execution of that macro.

Syntax

pause

Arguments

None.

Description

When you execute a macro and that macro gets interrupted, the prompt will change to:

VSIM (pause)7>

This “pause” prompt reminds you that a macro has been interrupted.

When a macro is paused, you may invoke another macro, and if that one gets interrupted,
you may even invoke another — up to a nesting level of 50 macros.

If the status of nested macros gets confusing, use the status command (CR-221). It will show
you which macros are interrupted, at what line number, and show you the interrupted
command.

To resume the execution of the macro, use the resume command (CR-207). To abort the
execution of a macro use the abort command (CR-44).

See also

abort (CR-44), do (CR-138), resume (CR-207), run (CR-210)
Sim SE Command Reference

play CR-183
play

This command is available for UNIX only (excluding Linux).

The play command replays a sequence of keyboard and mouse actions that were previously
saved to a file with the record command (CR-201). Returns nothing.

Syntax

play
<filename>

Arguments

<filename>

Specifies the recorded file to replay. Required.

Playback controls

The following Tcl set commands control the playback type and speed by setting the
play_macro() global variables. The commands are invoked from the ModelSim command
line.

set play_macro(speed)

Specify the playback speed: either demo (with the delay specified below), or fast (no
delays).

set play_macro(delay)

Specifies the delay time in milliseconds. Controls the speed of playback in demo mode.

See also

macro_option (CR-170), record (CR-201)

Note: Play returns immediately; the playback proceeds in the background. Caution must
be used when putting play commands in do (macro) files.
ModelSim SE Command Reference

CR-184 Commands

Model
power add

The power add command is used prior to the power report command (CR-185). Data
produced by these commands can be translated (by a Synopsys utility) to drive the
Synopsys power analysis tools. This command specifies the signals or nets to track for
power information. Returns nothing.

Syntax

power add
[-in] [-inout] [-internal] [-out] [-ports] [-r] <signalsOrNets> ...

Arguments

-in

Specifies only inputs. Optional.

-inout

Specifies only inouts. Optional.

-internal

Specifies only design internal signals or nets. Optional.

-out

Specifies only outputs. Optional.

-ports

Specifies only design ports. Optional.

-r

Searches recursively on a wildcard specified for the signal or net. Optional.

<signalsOrNets> ...

Specifies the signal or net to track. Required. Multiple names or wildcards may be used.
Must refer to VHDL signals of type bit, std_logic, or std_logic_vector, or to Verilog nets.

When using wildcards, the -in, -inout, -internal, -out, and -ports arguments filter the
qualifying signals. If you specify more than one of these arguments, the logical OR of the
arguments is performed.

See also

power report (CR-185), power reset (CR-186)

See the Synopsys Power documentation for more information.
Sim SE Command Reference

power report CR-185
power report

The power report command is used subsequent to the power add command (CR-184). Data
produced by these commands can be translated (by a Synopsys utility) to drive the
Synopsys power analysis tools. This command writes out the power information for the
specified signals or nets. The report can be written to a file or to the Main window. Returns
nothing.

Syntax

power report
[-all] [-noheader] [-file <filename>]

Arguments

-all

Writes information on all items logged. Optional.

-noheader

Suppresses the header to aid in post processing. Optional.

-file <filename>

Specifies a filename for the power report. Optional. Default is to write the report to the
Main window.

Description

The report format for each line is:

signal path, toggle count, hazard count, time at a 1, time at a 0, time at an X

• toggle count is the number of 0->1 and 1->0 transitions

• hazard count is the number of 0/1->X, and X->0/1 transitions

Note that if a signal is initialized at X, and later transitions to 0 or 1, it is not counted as
a hazard.

• times are the times spent at each of the three respective states

You will also need to know the total simulation time.

 See also

power add (CR-184), power reset (CR-186)

See the Synopsys Power documentation for more information.
ModelSim SE Command Reference

CR-186 Commands

Model
power reset

The power reset command selectively resets power information to zero for the signals or
nets specified with the power add command (CR-184). Returns nothing.

Syntax

power reset
-all[-in] [-inout] [-out] [-internal] [-ports] [-r]
<signalsOrNets> ...

Arguments

-all

Resets all signals/nets. Optional.

-in

Resets only inputs. Optional.

-inout

Resets only inouts. Optional.

-out

Resets only outputs. Optional.

-internal

Resets only design internal signals or nets. Optional.

-ports

Resets only design ports. Optional.

-r

Searches recursively on a wildcard specified for the signal or net. Optional.

<signalsOrNets> ...

Specifies the signal or net to reset. Required. Multiple names or wildcards may be used.

See also

power add (CR-184), power report (CR-185)

See the Synopsys Power documentation for more information.
Sim SE Command Reference

printenv CR-187
printenv

The printenv command echoes to the Main window the current names and values of all
environment variables. If variable names are given as arguments, prints only the names and
values of the specified variables. Returns nothing. All results go to the Main window.

Syntax

printenv
[<var>...]

Arguments

<var>...

Specifies the name(s) of the environment variable(s) to print. Optional.

Examples

printenv

Prints all environment variable names and their current values. For example,

CC = gcc
DISPLAY = srl:0.0
...

printenv USER HOME

Prints the specified environment variables:

USER = vince
HOME = /scratch/srl/vince
ModelSim SE Command Reference

CR-188 Commands

Model
profile clear

The profile clear command is used to clear any data that has been gathered during previous
run commands. After this command is executed, all profiling data will be reset.

This command has no effect on the current profiling session. The last profile on or profile
off command will still be in effect.

Syntax

profile clear

Arguments

None

See also

profile interval (CR-189), profile off (CR-190), profile on (CR-191), profile option (CR-192),
profile report (CR-193)

Note: Profiling must be active when this command is invoked. Use the profile on
command (CR-191) to begin profiling.
Sim SE Command Reference

profile interval CR-189
profile interval

The profile interval command allows you to select the frequency with which the profiler
collects samples during a run command.

Syntax

profile interval
[<sample_frequency>]

Arguments

<sample_frequency>

An integer value from 1 to 999 that represents how many milliseconds to wait between
each sample collected during a profiled simulation run. Default is 10 ms.

If the sample-frequency is not supplied, the profile interval command returns the current
sample frequency.

See also

profile clear (CR-188), profile off (CR-190), profile on (CR-191), profile option (CR-192),
profile report (CR-193)

Note: Profiling must be active when this command is invoked. Use the profile on
command (CR-191) to begin profiling.
ModelSim SE Command Reference

CR-190 Commands

Model
profile off

The profile off command is used to discontinue runtime profiling.

Syntax

profile off

Arguments

None

See also

profile clear (CR-188), profile interval (CR-189), profile on (CR-191), profile option (CR-

192), profile report (CR-193)
Sim SE Command Reference

profile on CR-191
profile on

The profile on command is used to enable runtime analysis of where your simulation is
spending its time. After this command is executed, every subsequent run command will be
profiled.

Syntax

profile on

Arguments

None

See also

profile clear (CR-188), profile interval (CR-189), profile off (CR-190), profile option (CR-

192), profile report (CR-193)
ModelSim SE Command Reference

CR-192 Commands

Model
profile option

The profile option command changes how profiling data are reported.

Syntax

profile option
collapse_sections | raw_data

Arguments

collapse_sections

Groups profiling data by section. A section consists of regions of code such as VHDL
processes, functions or Verilog always blocks. By default all profiling data is reported on
a per line basis. Required if raw_data isn’t specified.

raw_data

Reports the raw number of samples that occurred in a line or a section. By default all
profiling results are reported on a percentage basis. Required if collapse_sections isn’t
specified.

See also

profile clear (CR-188), profile interval (CR-189), profile off (CR-190), profile on (CR-191),
profile report (CR-193)

Note: This option must be specified before the run command (CR-210) is executed.

Note: Profiling must be active when this command is invoked. Use the profile on
command (CR-191) to begin profiling.
Sim SE Command Reference

profile report CR-193
profile report

The profile report command is used to produce a textual output of the profiling statistics
that have been gathered up to this point. (Selecting Tools > Profile > View hierarchical
profile (Main window) and Tools > Profile > View ranked profile allows you to view this
data more interactively.)

Syntax

profile report
[-hierarchical | -ranked] [-file <filename>] [-cutoff <percentage>]

Arguments

-hierarchical

Report a hierarchical listing (Default). Optional.

-ranked

Report a ranked listing. Optional.

-file <filename>

Specifies a file name for the report. Optional. Default is to write the report to the Main
window.

-cutoff <percentage>

Filter entries in the report that had less than <percentage> of time spent in them.
Optional. Default is to report all entries (i.e. 0%).

See also

profile clear (CR-188), profile interval (CR-189), profile off (CR-190), profile on (CR-191),
profile option (CR-192)

Note: Profiling must be active when this command is invoked. Use the profile on
command (CR-191) to begin profiling.
ModelSim SE Command Reference

CR-194 Commands

Model
project

The project commands are used to perform common operations on projects. Use this
command outside of a simulation session.

Syntax

project
[addfile <filename>] | [close] | [compileall] | [delete <project>] | [env]
| [history] | [new <home_dir> <proj_name> <defaultlibrary>] |
[open <project>] | [removefile <filename>]

Arguments

addfile <filename>

Adds the specified file to the current open project. Optional.

close

Closes the current project. Optional.

compileall

Compiles all files in the current project. Optional.

delete <project>

Deletes a specified project file. Optional.

env

Returns the current project file. Optional.

history

Lists a history of manipulated projects. Optional.

new <home_dir> <proj_name> <defaultlibrary>

Creates a new project under a specified home directory with a specified name and a
default library. Optional.

open <project>

Opens a specified project file, making it the current project. Changes the current working
directory to the project’s directory. Optional.

removefile <filename>

Removes the specified file from the current project. Optional.

Examples

vsim> project open /user/george/design/test3/test3.mpf

Makes /user/george/design/test3 the current project and changes the current working
directory to /user/george/design/test3.

vsim> project compile all

Executes current project library build scripts.
Sim SE Command Reference

property list CR-195
property list

The property list command changes one or more properties of the specified signal, net or
register in the List window (UM-204). The properties correspond to those you can set by
selecting View > Signal Properties (List window) . At least one argument must be used.

Syntax

property list
[-window <wname>] [-label <label>] [-radix <radix>]
[-trigger <setting>] [-width <number>] <pattern>

Arguments

-window <wname>

Specifies a particular List window when multiple instances of the window exist (e.g.,
list2). Optional. If no window is specified the default window is used; the default window
is determined by the most recent invocation of the view command (CR-263).

-label <label>

Specifies the label to appear at the top of the List window column. Optional.

-radix <radix>

The listed value <radix> can be specified as: Symbolic, Bin, Oct, Dec, Hex, or Def.
Optional. Def stands for default radix which is set using the radix command (CR-200).

-trigger <setting>

Valid settings are 0 or 1. Setting trigger to 1 will enable the List window to be triggered
by changes in the items matching the specified pattern. Optional.

-width <number>

Valid numbers are 1 through 256. Specifies the desired column width for the items
matching the specified pattern. Optional.

<pattern>

Specifies a name or wildcard pattern to match the full path names of the signals, nets or
registers for which you are defining the property change. Required.

To change the time or delta column widths, use these patterns:

TIME or DELTA
ModelSim SE Command Reference

CR-196 Commands

Model
property wave

The property wave command changes one or more properties of the specified signal, net
or register in the Wave window (UM-246). The properties correspond to those you can set
by selecting View > Signal Properties (Wave window). At least one argument must be
used.

Syntax

property wave
[-window <wname>] [-color <color>] [-format <format>] [-height <number>]
[-offset <number>] [-radix <radix>] [-scale <float>] <pattern>

Arguments

-window <wname>

Specifies a particular Wave window when multiple instances of the window exist (e.g.,
wave2). Optional. If no window is specified the default window is used; the default
window is determined by the most recent invocation of the view command (CR-263).

-color <color>

Specifies the color to be used for the waveform. Optional.

-format <format>

The waveform <format> can be expressed as:

analog

Displays a waveform whose height and position is determined by the -scale and -offset
values (shown below). Optional.

literal

Displays the waveform as a box containing the item value (if the value fits the space
available). Optional.

logic

Displays values as 0, 1, X, or Z. Optional.

-height <number>

Specifies the height (in pixels) of the waveform. Optional.

-offset <number>

Specifies the waveform position offset in pixels. Valid only when -format is specified as
analog. Optional.

-radix <radix>

The <radix> can be expressed as: Symbolic, Bin, Oct, Dec, Hex, or Def. Choosing
symbolic means that item values are not translated. Optional. Def stands for default radix
which is set using the radix command (CR-200).

-scale <float>

Specifies the waveform scale relative to the unscaled size value of 1. Valid only when
-format is specified as analog. Optional.

<pattern>

Specifies a name or wildcard pattern to match the full path names of the signals, nets or
registers for which you are defining the property change. Required.
Sim SE Command Reference

pwd CR-197
pwd

The Tcl pwd command displays the current directory path in the Main window.

Syntax

pwd

Arguments

None.
ModelSim SE Command Reference

CR-198 Commands

Model
quietly

The quietly command turns off transcript echoing for the specified command.

Syntax

quietly
<command>

Arguments

<command>

Specifies the command for which to disable transcript echoing. Required. Any results
normally echoed by the specified command will not be written to the Main window
transcript. To disable echoing for all commands use the transcript command (CR-229)
with the -quietly option.

See also

transcript (CR-229)
Sim SE Command Reference

quit CR-199
quit

The quit command exits the simulator.

Syntax

quit

Arguments

-f or -force

Quits without asking for confirmation. Optional; if this argument is omitted, ModelSim
asks you for confirmation before exiting. (The -f and -force arguments are equivalent.)

-sim

Unloads the current design in the simulator without exiting ModelSim. All files opened
by the simulation will be closed including the WLF file (vsim.wlf).

Note: If you want to stop the simulation using a when command (CR-314), you must use
a stop command (CR-223) within your when statement. DO NOT use an exit command
(CR-152) or a quit command. The stop command acts like a breakpoint at the time it is
evaluated.
ModelSim SE Command Reference

CR-200 Commands

Model
radix

The radix command specifies the default radix to be used for the current simulation. The
command can be used at any time. The specified radix is used for all commands (force (CR-

156), examine (CR-149), change (CR-72), etc.) as well as for displayed values in the Signals,
Variables, Dataflow, List, and Wave windows. You can change the default radix
permanently by editing the DefaultRadix (UM-447) variable in the modelsim.ini file.

Syntax

radix
[-symbolic | -binary | -octal | -decimal | -hexadecimal |
-unsigned | -ascii]

Arguments

Entries may be truncated to any length. For example, -symbolic could be expressed as
-s or -sy, etc. Optional.

Also, -signed may be used as an alias for -decimal. The -unsigned radix will display as
unsigned decimal. The -ascii radix will display a Verilog item as a string equivalent using
8 bit character encoding.

If no arguments are used, the command returns the current default radix.
Sim SE Command Reference

record CR-201
record

This command is available for UNIX only (excluding Linux).

The record command starts recording a replayable trace of all keyboard and mouse actions.
Record and play operations may also be run from the macro-helper menu item of the macro
menu. Returns nothing.

Syntax

record
[<filename>]

Arguments

<filename>

Specifies the file for the saved recording. If <filename> is not specified, the recording
terminates.

See also

macro_option (CR-170), play (CR-183)
ModelSim SE Command Reference

CR-202 Commands

Model
report

The report command displays the value of all simulator control variables, or the value of
any simulator state variables relevant to the current simulation.

Syntax

report
simulator control | simulator state

Arguments

simulator control

Displays the current values for all simulator control variables.

simulator state

Displays the simulator state variables relevant to the current simulation.

Examples

report simulator control

Displays all simulator control variables.

UserTimeUnit = ns
RunLength = 100
IterationLimit = 5000
BreakOnAssertion = 3
DefaultForceKind = default
IgnoreNote = 0
IgnoreWarning = 0
IgnoreError = 0
IgnoreFailure = 0
CheckpointCompressMode = 1
NumericStdNoWarnings = 0
StdArithNoWarnings = 0
PathSeparator = /
DefaultRadix = symbolic
DelayFileOpen = 0

report simulator state

Displays all simulator state variables. Only the variables that relate to the design being
simulated are displayed:

now = 0.0
delta = 0
library = work
entity = type_clocks
architecture = full
resolution = 1ns
Sim SE Command Reference

report CR-203
Viewing preference variables

Preference variables have more to do with the way things look (but not entirely) rather than
controlling the simulator. You can view preference variables from the Preferences dialog
box. Select the Tools > Edit Preferences.

See also

"Preference variables located in INI files" (UM-444), and "Preference variables located in
Tcl files" (UM-454)
ModelSim SE Command Reference

CR-204 Commands

Model
restart

The restart command reloads the design elements and resets the simulation time to zero.
Only design elements that have changed are reloaded. (Note that SDF files are always
reread during a restart.) Shared libraries are handled as follows during a restart:

• Shared libraries that implement VHDL foreign architectures only are reloaded at each
restart when the architecture is elaborated (unless the -keeploaded option to the vsim
command (CR-298) is used).

• Shared libraries loaded from the command line (-foreign and -pli options) and from the
Veriuser entry in the modelsim.ini file are reloaded.

• Shared libraries that implement VHDL foreign subprograms remain loaded (they are not
reloaded) even if they also contain code for a foreign architecture.

To handle restarts with Verilog PLI applications, you need to define a Verilog user-defined
task or function, and register a misctf class of callback. See "Verilog PLI/VPI" (UM-121) for
more information on the Verilog PLI.

Syntax

restart
[-force] [-nobreakpoint] [-nolist] [-nolog] [-nowave]

Arguments

-force

Specifies that the simulation will be restarted without requiring confirmation in a popup
window. Optional.

-nobreakpoint

Specifies that all breakpoints will be removed when the simulation is restarted. Optional.
The default is for all breakpoints to be reinstalled after the simulation is restarted.

-nolist

Specifies that the current List window environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently listed HDL items and
their formats to be maintained.

-nolog

Specifies that the current logging environment will not be maintained after the
simulation is restarted. Optional. The default is for all currently logged items to continue
to be logged.

-nowave

Specifies that the current Wave window environment will not be maintained after the
simulation is restarted. Optional. The default is for all items displayed in the Wave
window to remain in the window with the same format.

Note: You can configure defaults for the restart command by setting the
DefaultRestartOptions variable in the modelsim.ini file. See "Restart command
defaults" (UM-453).
Sim SE Command Reference

restart CR-205
See also

checkpoint (CR-82), restore (CR-206), vsim (CR-298), "How to use checkpoint/restore" (UM-

488), "The difference between checkpoint/restore and restarting" (UM-489)
ModelSim SE Command Reference

CR-206 Commands

Model
restore

The restore command restores the state of a simulation that was saved with a checkpoint
command (CR-82) during the current invocation of VSIM (called a "warm restore").

The items restored are: simulation kernel state, vsim.wlf file, HDL items listed in the List
and Wave windows, file pointer positions for files opened under VHDL and under Verilog
$fopen, and the saved state of foreign architectures.

If you want to restore while running VSIM, use this command. If you want to start up
VSIM and restore a previously-saved checkpoint, use the -restore switch with the vsim
command (CR-298) (called a "cold restore").

Syntax

restore
[-nocompress] <filename>

Arguments

-nocompress

Specifies that the checkpoint file was not compressed when saved. Optional.
Compression of the checkpoint file is controlled either by the
CheckpointCompressMode variable in the modelsim.ini file or by the -nocompress
argument to vsim.

<filename>

Specifies the name of the checkpoint file. Required.

See also

checkpoint (CR-82), vsim (CR-298), "The difference between checkpoint/restore and
restarting" (UM-489)

Note: Checkpoint/restore allows a cold restore, followed by simulation activity,
followed by a warm restore back to the original cold-restore checkpoint file. Warm
restores to checkpoint files that were not created in the current run are not allowed except
for this special case of an original cold restore file.
Sim SE Command Reference

resume CR-207
resume

The resume command is used to resume execution of a macro file after a pause command
(CR-182), or a breakpoint. It may be input manually or placed in an onbreak (CR-179)
command string. (Placing a resume command in a bp (CR-68) command string does not
have this effect.) The resume command can also be used in an onerror (CR-181) command
string to allow an error message to be printed without halting the execution of the macro
file.

Syntax

resume

Arguments

None.

See also

abort (CR-44), do (CR-138), onbreak (CR-179), onerror (CR-181), pause (CR-182)
ModelSim SE Command Reference

CR-208 Commands

Model
right

The right command searches right (next) for signal transitions or values in the specified
Wave window. It executes the search on signals currently selected in the window, starting
at the time of the active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a
waveform takes on a particular value, or an expression of multiple signals evaluates to true.
See the left command (CR-164) for related functionality.

The procedure for using right entails three steps: click on the desired waveform; click on
the desired starting location; issue the right command. (The seetime command (CR-216)
can initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

right
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The waveform display will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced Wave window. A signal may be specified
either by its full path or by the shortcut label displayed in the Wave window.

See "GUI_expression_format" (CR-18) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Looks at signal values only on the last delta of a time step. For use with the -value option
only. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Species a value of the signal to match. Must be specified in the same radix that the
selected waveform is displayed. Case is ignored, but otherwise the value must be an exact
string match -- don’t-care bits are not yet implemented. Only one signal may be selected,
but that signal may be an array. Optional.

-window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-263) to change the default
window.
Sim SE Command Reference

right CR-209
<n>

Specifies to find the nth match. If less than n are found, the number found is returned with
a warning message, and the cursor is positioned at the last match. Optional. The default
is 1.

Examples

right -noglitch -value FF23 2

Finds the second time to the right at which the selected vector transitions to FF23,
ignoring glitches.

right

Goes to the next transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-18) and can be built with the aid of the "The GUI Expression
Builder" (UM-305).

right -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches right for an expression that evaluates to a boolean 1 when signal clk just
changed from low to high and signal mystate is the enumeration reading and signal
/top/u3/addr is equal to the specified 32-bit hex constant; otherwise is 0.

right -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches right for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/adder equals hex ac.

right -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode ==
writing)}

Searches right for an expression that evaluates to a boolean 1 when logfile time is
between 23 and 54 microseconds, and clock just changed from low to high and signal
mode is enumeration writing.

See also

"GUI_expression_format" (CR-18), left (CR-164), seetime (CR-216), view (CR-263)

Note: Wave window mouse and keyboard shortcuts (UM-274) are also available for next
and previous edge searches. Tab searches right (next) and shift-tab searches left
(previous).
ModelSim SE Command Reference

CR-210 Commands

Model
run

The run command advances the simulation by the specified number of timesteps.

Syntax

run
[<timesteps>[<time_units>]] | -all | -continue | -next | -step |
-stepover

Arguments

<timesteps>[<time_units>]

Specifies the number of timesteps for the simulation to run. The number may be
fractional, or may be specified absolute by preceding the value with the character @.
Optional. In addition, optional <time_units> may be specified as:

fs, ps, ns, us, ms, or sec

The default <timesteps> and <time_units> specifications can be changed during a
ModelSim session by selecting Simulate > Simulation Options (Main window). See
"Setting default simulation options" (UM-297). Time steps and time units may also be set
with the RunLength (UM-449) and UserTimeUnit (UM-450) variables in the modelsim.ini
file.

-all

Causes the simulator to run the current simulation forever, or until it hits a breakpoint or
specified break event. Optional.

-continue

Continues the last simulation run after a step (CR-222) command, step -over command or
a breakpoint. A run -continue command may be input manually or used as the last
command in a bp (CR-68) command string. Optional.

-next

Causes the simulator to run to the next event time. Optional.

-step

Steps the simulator to the next HDL statement. Optional.

-stepover

Specifies that VHDL procedures, functions and Verilog tasks are to be executed but
treated as simple statements instead of entered and traced line by line. Optional.
Sim SE Command Reference

run CR-211
Examples

run 1000

Advances the simulator 1000 timesteps.

run 10.4 ms

Advances the simulator the appropriate number of timesteps corresponding to 10.4
milliseconds.

run @8000

Advances the simulator to timestep 8000.

See also

step (CR-222)
ModelSim SE Command Reference

CR-212 Commands

Model
search

The search command searches the specified window for one or more items matching the
specified pattern(s). The search starts at the item currently selected, if any; otherwise it
starts at the window top. The default action is to search downward until the first match, then
move the selection to the item found, and return the index of the item found. The search can
be continued using the next command.

Returns the index of a single match, or a list of matching indices. Returns nothing if no
matches are found.

Syntax

search
<win_type> [-window <wname>] [-all] [-field <n>] [-toggle]
[-forward | -backward] [-wrap | -nowrap] [-exact] [-regexp] [-nocase]
[-count <n>] <pattern>

Arguments for all windows

<win_type>

Specifies structure, signals, process, variables, wave, list, source, or a unique
abbreviation thereof. Required.

-window <wname>

Specifies an instance of the window that is not the default. Optional. Otherwise, the
default window is used. Use the view command (CR-263) to change the default window.

-forward

Search in the forward direction. Optional. This is the default.

-backward

Search in the reverse direction. Optional. Default is forward.

<pattern>

String or glob-style wildcard pattern. Required. Must be the last argument specified.

Arguments, for all EXCEPT the Source window

-all

Finds all matches and returns a list of the indices of all items that match. Optional.

-field <n>

Selects different fields to test, depending on the window type:

Window n=1 n=2 n=3 default

structure instance entity/
module

architecture instance

signals name - cur. value name

process status process
label

fullpath fullpath
Sim SE Command Reference

search CR-213
Default behavior for the List window is to attempt to match the label and if that fails, try
to match the full signal name.

-toggle

Adds signals found to the selection. Does not do an initial clear selection. Optional.
Otherwise deselects all and selects only one item.

-wrap

Specifies that the search continue from the top of the window after reaching the bottom.
Optional. This is the default.

-nowrap

Specifies that the search stop at the bottom of the window and not continue searching at
the top. Optional. The default is to wrap.

Arguments, Source window only

-exact

Search for an exact match. Optional.

-regexp

Use the pattern as a Tcl regular expression. Optional.

-nocase

Ignore case. Optional. Default is to use case.

-count <n>

Search for the nth match. Optional. Default is to search for the first match.

Description

With the -all option, the entire window is searched, the last item matching the pattern is
selected, and a Tcl list of all corresponding indices is returned.

With the -toggle option, items found are selected in addition to the current selection.

For the List window, the search is done on the names of the items listed, that is, across the
header. To search for values of signals in the List window, use the down command (CR-139)
and up command (CR-231). Likewise, in the Wave window, the search is done on signal
names. To search for signal values in the Wave window, use the right command (CR-208)
and the left command (CR-164). You can also select Edit > Search in both windows.

See also

find (CR-153), next (CR-172), view (CR-263)

variables name - cur. value name

wave name - cur. value name

list label fullname - label

Window n=1 n=2 n=3 default
ModelSim SE Command Reference

CR-214 Commands

Model
searchlog

The searchlog command searches one or more of the currently open logfiles for a specified
condition. It can be used to search for rising or falling edges, for signals equal to a specified
value, or for when a generalized expression becomes true.

Syntax

searchlog
[-count <n>] [-deltas] [-env <path>] [-expr {<expr>}] [-reverse]
[-rising | -falling | -anyedge] [-startDelta <num>] <startTime>
[-value <string>] <pattern>

If at least one match is found, it returns the time (and optionally delta) at which the last
match occurred and the number of matches found, in a Tcl list:

{{<time>} <matchCount>}

where <time> is in the format <number> <unit>. If the -deltas option is specified, the
delta of the last match is also returned:

{{<time>} <delta> <matchCount>}

If no matches are found, a TCL_ERROR is returned. If one or more matches are found,
but less than the number requested, it is not considered an error condition, and the time
of the farthest match is returned, with the count of the matches found.

Arguments

-count <n>

Specifies to search for the <n>-th occurrence of the match condition, where <n> is a
positive integer. Optional.

-deltas

Indicates to test for match on simulation delta cycles. Otherwise, matches are only tested
for at the end of each simulation time step. Optional.

-env <path>

Provides a design region in which to look for the signal names. Optional.

-expr {<expr>}

Specifies a general expression of signal values and simulation time. Optional. searchlog
will search until the expression evaluates to true. The expression must have a boolean
result type. See "GUI_expression_format" (CR-18) for the format of the expression.

-reverse

Specifies to search backwards in time from <startTime>. Optional.

-rising | -falling | -anyedge

Specifies an edge to look for on a scalar signal. Optional. This option is ignored for
compound signals. If no options are specified, the default is -anyedge.

-startDelta <num>

Indicates a simulation delta cycle on which to start. Optional.
Sim SE Command Reference

searchlog CR-215
<startTime>

Specifies the simulation time at which to start the search. Required. The time may be
specified as an integer number of simulation units, or as {<num> <timeUnit>}, where
<num> can be integer or with a decimal point, and <timeUnit> is one of the standard
VHDL time units (fs, ps, ns, us, ms, sec).

-value <string>

Specifies to search until a single scalar or compound signal takes on this value. Optional.

<pattern>

Specifies one or more signal names or wildcard patterns of signal names to search on.
Required (unless the -expr option is used).

See also

virtual signal (CR-282), virtual log (CR-274), virtual nolog (CR-277)
ModelSim SE Command Reference

CR-216 Commands

Model
seetime

The seetime command scrolls the List or Wave window to make the specified time visible.
For the List window, a delta can be optionally specified as well.

Returns nothing

Syntax

seetime
list|wave [-window <wname>] [-select] [-delta <num>] <time>

Arguments

list|wave

Specifies the target window type. Required.

-window <wname>

Specifies an instance of the Wave or List window that is not the default. Optional.
Otherwise, the default Wave or List window is used. Use the view command (CR-263) to
change the default window.

-select

Also move the active cursor or marker to the specified time (and optionally, delta).
Optional. Otherwise, the window is only scrolled.

-delta <num>

For the List window when deltas are not collapsed, this option specifies a delta. Optional.
Otherwise, delta 0 is selected.

<time>

Specifies the time to be made visible. Required.
Sim SE Command Reference

shift CR-217
shift

The shift command shifts macro parameter values left one place, so that the value of
parameter $2 is assigned to parameter $1, the value of parameter $3 is assigned to $2, etc.
The previous value of $1 is discarded.

The shift command and macro parameters are used in macro files. If a macro file requires
more than nine parameters, they can be accessed using the shift command.

To determine the current number of macro parameters, use the argc (UM-456) variable.

Syntax

shift

Arguments

None.

Description

For a macro file containing nine macro parameters defined as $1 to $9, one shift command
shifts all parameter values one place to the left. If more than nine parameters are named,
the value of the tenth parameter becomes the value of $9 and can be accessed from within
the macro file.

See also

do (CR-138)
ModelSim SE Command Reference

CR-218 Commands

Model
show

The show command lists HDL items and subregions visible from the current environment.
The items listed include:

• VHDL
signals and instances

• Verilog
nets, registers, tasks, functions, instances and memories

The show command returns its results as a formatted Tcl string; to eliminate formatting,
use the Show command.

Syntax

show
[-all] [<pathname>]

Arguments

-all

Display all names at and below the specified path recursively. Optional.

<pathname>

Specifies the pathname of the environment for which you want the items and subregions
to be listed. Optional; if omitted, the current environment is assumed.

Examples

show

List the names of all the items and subregion environments visible in the current
environment.

show /uut

List the names of all the items and subregions visible in the environment named /uut.

show sub_region

List the names of all the items and subregions visible in the environment named
sub_region which is directly visible in the current environment.

See also

environment (CR-148), find (CR-153)
Sim SE Command Reference

simstats CR-219
simstats

The simstats command returns performance-related statistics about the simulation.

If executed without arguments, the command returns a list of pairs like the following:

{memory 57376} {{working set} 56152} {time 0} {{cpu time} 0} {context 0} /
{{page faults} 0}

See the arguments below for descriptions of each pair.

Syntax

simstats
[memory | working | time | cpu | context | faults]

Arguments

memory

Returns the amount of virtual memory that the OS has allocated for vsim. Optional.

working

Returns the portion of allocated virtual memory that is currently being used by all vsim
processes. Optional. If this number exceeds memory size, you will encounter
performance degradation.

time

Returns the cumulative "wall clock time" of the run commands. Optional.

cpu

Returns the cumulative processor time of the run commands. Optional. Processor time
differs from wall clock time in that processor time is only counted when the cpu is
actually running vsim. If vsim is swapped out for another process, cpu time does not
increase.

context

Returns the number of context swaps (vsim being swapped out for another process) that
have occurred during the run commands. Optional.

faults

Returns the number of page faults that have occurred during the run commands.
Optional.

Note: Some of the values may not be available on all platforms and other values may be
approximates. Different operating systems report these numbers differently.
ModelSim SE Command Reference

CR-220 Commands

Model
splitio

The splitio command operates on a VHDL inout or out port to create a new signal having
the same name as the port suffixed with "__o". The new signal mirrors the output driving
contribution of the port.

Syntax

splitio
[-outalso | -outonly] [-r] <signal_name>...

Arguments

-outalso

Allows splitio to work on out ports as well as inout ports. Optional.

-outonly

Allows splitio to work only on out ports. Optional.

-r

Specifies that the port selection occurs recursively into subregions. Optional; if omitted,
included ports are limited to the current region.

<signal_name>...

Specifies the VHDL port. Operates only on inout ports by default; out ports may be
specified with the options above. Separate multiple port names with spaces. Required.
Wildcards can be used.

Examples

The splitio command operates on inout or out ports and silently ignores any other signals
specified. The new signals created may be specified in any vsim (CR-298) commands that
operate on signals. These signals appear to be out ports to the signal selection options on
vsim commands. For example,

splitio /data

creates signal data__o if data is an inout port.
Sim SE Command Reference

status CR-221
status

The status command lists all currently interrupted macros. The listing shows the name of
each interrupted macro, the line number at which it was interrupted, and prints the
command itself. It also displays any onbreak (CR-179) or onerror (CR-181) commands that
have been defined for each interrupted macro.

Syntax

status

Arguments

None.

Examples

The transcript below contains examples of resume (CR-207), and status commands.

VSIM (pause) 4> status
Macro resume_test.do at line 3 (Current macro)
command executing: “pause”
is Interrupted
ONBREAK commands: “resume”
Macro startup.do at line 34
command executing: “run 1000"
processing BREAKPOINT
is Interrupted
ONBREAK commands: “resume”
VSIM (pause) 5> resume
Resuming execution of macro resume_test.do at line 4

See also

abort (CR-44), do (CR-138), pause (CR-182), resume (CR-207)
ModelSim SE Command Reference

CR-222 Commands

Model
step

The step command steps to the next HDL statement. Current values of local variables may
be observed at this time using the Variables window. VHDL procedures and functions and
Verilog tasks and functions can optionally be skipped over. When a wait statement or end
of process is encountered, time advances to the next scheduled activity. The Process and
Source windows will then be updated to reflect the next activity.

Syntax

step
[-over] [<n>]

Arguments

-over

Specifies that VHDL procedures and functions and Verilog tasks and functions should
be executed but treated as simple statements instead of entered and traced line by line.
Optional.

<n>

Any integer. Optional. Will execute ‘n’ steps before returning.

See also

run (CR-210)
Sim SE Command Reference

stop CR-223
stop

The stop command is used with the when command (CR-314) to stop simulation in batch
files. The stop command has the same effect as hitting a breakpoint. The stop command
may be placed anywhere within the body of the when command.

Syntax

stop

Arguments

None.

Use the run command (CR-210) with the -continue option to continue the simulation run,
or the resume command (CR-207) to continue macro execution. If you want macro
execution to resume automatically, put the resume command at the top of your macro file:

onbreak {resume}

See also

bp (CR-68), resume (CR-207), run (CR-210), when (CR-314)

Note: If you want to stop the simulation using a when command (CR-314), you must use
a stop command within your when statement. DO NOT use an exit command (CR-152)
or a quit command (CR-199). The stop command acts like a breakpoint at the time it is
evaluated.
ModelSim SE Command Reference

CR-224 Commands

Model
tb

The tb (traceback) command displays a stack trace for the current process in the Main
window. This lists the sequence of HDL function calls that have been entered to arrive at
the current state for the active process.

Syntax

tb

Arguments

None.
Sim SE Command Reference

toggle add CR-225
toggle add

The toggle add command enables collection of toggle statistics for the specified nodes. The
allowed nodes are Verilog nets and VHDL signals of type bit, bit_vector, std_logic, and
std_logic_vector (other types are silently ignored).

Syntax

toggle add
[-r] [-in] [-out] [-inout] [-internal] [-ports] <node_name>

Arguments

-r

Specifies that toggle statistic collection is enabled recursively into subregions. Optional;
if omitted, toggle statistic collection is limited to the current region.

-in

Enables toggle statistic collection on nodes of mode IN. Optional.

-out

Enables toggle statistic collection on nodes of mode OUT. Optional.

-inout

Enables toggle statistic collection on nodes of mode INOUT. Optional.

-internal

Enables toggle statistic collection on internal items. Optional.

-ports

Enables toggle statistic collection on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Enables toggle statistic collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

toggle report (CR-226), toggle reset (CR-227)
ModelSim SE Command Reference

CR-226 Commands

Model
toggle report

The toggle report command displays a list of all nodes that have not transitioned to both 0
and 1 at least once. Also displayed is a summary of the number of nodes checked, the
number that toggled, the number that didn’t toggle, and a percentage that toggled.

Syntax

toggle report
[-file <filename>] [-summary] [-all]

Arguments

-file <filename>

Specifies a file to which to write the report. By default the report is displayed in the Main
window. Optional.

-summary

Selects only the summary portion of the report. Optional.

-all

Lists all nodes checked along with their individual transition to 0 and 1 counts. Optional.

See also

toggle add (CR-225), toggle reset (CR-227)
Sim SE Command Reference

toggle reset CR-227
toggle reset

The toggle reset command resets the toggle counts to zero for the specified nodes.

Syntax

toggle reset
[-all] | [-r] [-in] [-out] [-inout] [-internal]
[-ports] <node_name>

Arguments

-all

Resets toggle statistic collection for all nodes that have toggle checking enabled.
Optional. Must be used alone without other arguments.

-r

Specifies that toggle statistic collection is reset recursively into subregions. Optional; if
omitted, the reset is limited to the current region.

-in

Resets toggle statistic collection on nodes of mode IN. Optional.

-out

Resets toggle statistic collection on nodes of mode OUT. Optional.

-inout

Resets toggle statistic collection on nodes of mode INOUT. Optional.

-internal

Resets toggle statistic collection on internal items. Optional.

-ports

Resets toggle statistic collection on nodes of modes IN, OUT, or INOUT. Optional.

<node_name>

Resets toggle statistic collection for the named node(s). Required. Multiple names and
wildcards are accepted.

See also

toggle add (CR-225), toggle report (CR-226)
ModelSim SE Command Reference

CR-228 Commands

Model
transcribe

The transcribe command displays a command in the Main window, then executes the
command. The transcribe command is normally used to direct commands to the Main
window from an external event such as a menu pick or button selection. The add button
(CR-45) and add_menuitem (CR-54) commands can utilize transcribe. Returns nothing.

Syntax

transcribe
<command>

Arguments

<command>

Specifies the command to execute. Required.

Examples

add button pwd {transcribe pwd} NoDisable

Creates a button labeled "pwd" that invokes transcribe with the pwd Tcl command, and
echoes the command and its results to the Main window. The button remains active
during a run.

See also

add button (CR-45), add_menuitem (CR-54)
Sim SE Command Reference

transcript CR-229
transcript

The transcript command controls echoing of commands executed in a macro file; it also
works at top level in batch mode. If no option is specified, the current setting is reported.

Syntax

transcript
[on | off | -q | quietly]

Arguments

on

Specifies that commands in a macro file will be echoed to the Main window as they are
executed. Optional.

off

Specifies that commands in a macro file will not be echoed to the Main window as they
are executed. Optional. The transcribe command (CR-228) can be used to force a
command to be echoed.

-q

Returns "0" if transcripting is turned off or "1" if transcripting is turned on. Useful in a
Tcl conditional expression. Optional.

quietly

Turns off the transcript echo for all commands. To turn off echoing for individual
commands see the quietly command (CR-198). Optional.

Examples

transcript on

Commands within a macro file will be echoed to the Main window as they are executed.

transcript

If issued immediately after the previous example, the message:

Macro transcripting is turned on.

appears in the Main window.

See also

echo (CR-143), transcribe (CR-228)
ModelSim SE Command Reference

CR-230 Commands

Model
tssi2mti

The tssi2mti command is used to convert a vector file in Fluence Technology (formerly
TSSI) Standard Events Format into a sequence of force (CR-156) and run (CR-210)
commands. The stimulus is written to the standard output.

The source code for tssi2mti is provided in the file tssi2mti.c in the examples directory.

Syntax

tssi2mti
<signal_definition_file> [<sef_vector_file>]

Arguments

<signal_definition_file>

Specifies the name of the Fluence Technology signal definition file describing the format
and content of the vectors. Required.

<sef_vector_file>

Specifies the name of the file containing vectors to be converted. If none is specified,
standard input is used. Optional.

Examples

tssi2mti trigger.def trigger.sef > trigger.do

The command will produce a do file named trigger.do from the signal definition file
trigger.def and the vector file trigger.sef.

tssi2mti trigger.def < trigger.sef > trigger.do

This example is exactly the same as the previous one, but uses the standard input instead.

See also

force (CR-156), run (CR-210), write tssi (CR-329)
Sim SE Command Reference

up CR-231
up

The up command searches for signal transitions or values in the specified List window. It
executes the search on signals currently selected in the window, starting at the time of the
active cursor. The active cursor moves to the found location.

Use this command to move to consecutive transitions or to find the time at which a signal
takes on a particular value, or an expression of multiple signals evaluates to true. See the
down command (CR-139) for related functionality.

The procedure for using up includes three steps: click on the desired signal; click on the
desired starting location; issue the up command. (The seetime command (CR-216) can
initially position the cursor from the command line, if desired.)

Returns: <number_found> <new_time> <new_delta>

Syntax

up
[-expr {<expression>}] [-falling] [-noglitch] [-rising]
[-value <sig_value>] [-window <wname>] [<n>]

Arguments

-expr {<expression>}

The List window will be searched until the expression evaluates to a boolean true
condition. Optional. The expression may involve more than one signal, but is limited to
signals that have been logged in the referenced List window. A signal may be specified
either by its full path or by the shortcut label displayed in the List window.

See "GUI_expression_format" (CR-18) for the format of the expression. The expression
must be placed within curly braces.

-falling

Searches for a falling edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-noglitch

Specifies that delta-width glitches are to be ignored. Optional.

-rising

Searches for a rising edge on the specified signal if that signal is a scalar signal. If it is
not a scalar signal, the option will be ignored. Optional.

-value <sig_value>

Specifies a value of the signal to match. Optional. Must be specified in the same radix
that the selected signal is displayed. Case is ignored, but otherwise must be an exact
string match -- don’t-care bits are not yet implemented.

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-263) to change the default
window.
ModelSim SE Command Reference

CR-232 Commands

Model
<n>

Specifies to find the nth match. Optional. If less than n are found, the number found is
returned with a warning message, and the marker is positioned at the last match.

Examples

up -noglitch -value FF23

Finds the last time at which the selected vector transitions to FF23, ignoring glitches.

up

Goes to the previous transition on the selected signal.

The following examples illustrate search expressions that use a variety of signal attributes,
paths, array constants, and time variables. Such expressions follow the
"GUI_expression_format" (CR-18) and can be built with the aid of the "The GUI Expression
Builder" (UM-305).

up -expr {clk’rising && (mystate == reading) && (/top/u3/addr ==
32’habcd1234)}

Searches up for an expression that evaluates to a boolean 1 when signal clk just changed
from low to high and signal mystate is the enumeration reading and signal /top/u3/addr
is equal to the specified 32-bit hex constant.

up -expr {(/top/u3/addr and 32’hff000000) == 32’hac000000}

Searches up for an expression that evaluates to a boolean 1 when the upper 8 bits of the
32-bit signal /top/u3/adder equals hex ac.

up -expr {((NOW > 23 us) && (NOW < 54 us)) && clk’rising && (mode == writing)}

Searches up for an expression that evaluates to a boolean 1 when logfile time is between
23 and 54 microseconds, and clock just changed from low to high and signal mode is
enumeration writing.

See also

"GUI_expression_format" (CR-18), view (CR-263), seetime (CR-216), down (CR-139)
Sim SE Command Reference

vcd add CR-233
vcd add

The vcd add command adds the specified items to a VCD file. The allowed items are
Verilog nets and variables and VHDL signals of type bit, bit_vector, std_logic, and
std_logic_vector (other types are silently ignored).

All vcd add commands must be executed at the same simulation time. The specified items
are added to the VCD header and their subsequent value changes are recorded in the
specified VCD file.

By default all port driver changes and internal variable changes are captured in the file. You
can filter the output using arguments detailed below.

Related Verilog tasks: $dumpvars, $fdumpvars

Syntax

vcd add
[-r] [-in] [-out] [-inout] [-internal] [-ports] [-file <filename>]
<item_name>

Arguments

-r

Specifies that signal and port selection occurs recursively into subregions. Optional. If
omitted, included signals and ports are limited to the current region.

-in

Includes only port driver changes from ports of mode IN. Optional.

-out

Includes only port driver changes from ports of mode OUT. Optional.

-inout

Includes only port driver changes from ports of mode INOUT. Optional.

-internal

Includes only internal variable or signal changes. Excludes port driver changes. Optional.

-ports

Includes only port driver changes. Excludes internal variable or signal changes. Optional.

-file <filename>

Specifies the name of the VCD file. This option should be used only when you have
created multiple VCD files using the vcd files command (CR-245).

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple items
may be specified by separating names with spaces. Wildcards are accepted.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim SE Command Reference

CR-234 Commands

Model
vcd checkpoint

The vcd checkpoint command dumps the current values of all VCD variables to the
specified VCD file. While simulating, only value changes are dumped.

Related Verilog tasks: $dumpall, $fdumpall

Syntax

vcd checkpoint
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-243) or "dump.vcd" if vcd file was not
invoked.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd comment CR-235
vcd comment

The vcd comment command inserts the specified comment in the specified VCD file.

Syntax

vcd comment
<comment string> [<filename>]

Arguments

<comment string>

Comment to be included in the VCD file. Required. Must be quoted by double quotation
marks or curly braces.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-243) or "dump.vcd" if vcd file was not
invoked.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-236 Commands

Model
vcd dumpports

The vcd dumpports command creates a VCD file that includes port driver data.

By default all port driver changes and internal variable changes are captured in the file. You
can filter the output using arguments detailed below.

Related Verilog task: $dumpports

Syntax

vcd dumpports
[-direction] [-map <mapping pairs>] [-nomap] [-in] [-out] [-inout]
[-internal] [-ports] [-file <filename>] <item_name>

Arguments

-direction

Affects both VHDL and Verilog ports. Optional. Specifies that the port/variable type
recorded in the VCD header for VHDL and Verilog ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. Overrides the default mappings.
The mapping is specified as a list of character pairs. The first character in a pair must be
one of the std_logic characters (U,X,0,1,Z,W,L,H,-), and the second character is the
character you wish to be recorded in the VCD file. For example, to map L and H to z:

vcd dumpports -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

-nomap

Affects only VHDL signals of type std_logic. Optional. Specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of
(U,X,0,1,Z,W,L,H,-). This option results in a non-standard VCD file because VCD
values are limited to the four-state character set "x01z". By default, the std_logic
characters are mapped as follows.

Note: The -direction argument is obsolete in ModelSim versions 5.5c and later. It is
supported for backwards compatibility only. See http://www.model.com/products/
documentation/resim_vcd.pdf for information regarding its use in earlier versions.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x
Sim SE Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

vcd dumpports CR-237
-in

Includes ports of mode IN. Optional.

-out

Includes ports of mode OUT. Optional.

-inout

Includes ports of mode INOUT. Optional.

-internal

Includes internal items. Excludes port driver changes. Optional.

-ports

Includes all ports of modes IN, OUT, or INOUT. Excludes internal variable or signal
changes. Optional.

-file <filename>

Specifies the path and name of a VCD file to create. Optional. Defaults to the current
working directory and the filename dumpports.vcd. Multiple filenames can be opened
during a single simulation.

<item_name>

Specifies the Verilog or VHDL item to add to the VCD file. Required. Multiple items
may be specified by separating names with spaces. Wildcards are accepted.

Examples

vcd dumpports -in -file counter.vcd /test_counter/dut/*

Creates a VCD file named counter.vcd of all IN ports in the region /test_counter/dut/.

vcd dumpports -file addern.vcd /testbench/uut/*
vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

These two commands resimulate a design from a VCD file. See "Resimulating a design
from a VCD file" (UM-395) for further details.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.

Z z

VHDL VCD VHDL VCD
ModelSim SE Command Reference

CR-238 Commands

Model
vcd dumpportsall

The vcd dumpportsall command creates a checkpoint in the VCD file which shows the
value of all selected ports at that time in the simulation, regardless of whether the port
values have changed since the last timestep.

Related Verilog task: $dumpportsall

Syntax

vcd dumpportsall
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd dumpportsflush CR-239
vcd dumpportsflush

The vcd dumpportsflush command flushes the contents of the VCD file buffer to the
specified VCD file.

Related Verilog task: $dumpportsflush

Syntax

vcd dumpportsflush
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-240 Commands

Model
vcd dumpportslimit

The vcd dumpportslimit command specifies the maximum size of the VCD file (by
default, limited to available disk space). When the size of the file exceeds the limit, a
comment is appended to the file and VCD dumping is disabled.

Related Verilog task: $dumpportslimit

Syntax

vcd dumpportslimit
<dumplimit> [<filename>]

Arguments

<dumplimit>

Specifies the maximum VCD file size in bytes. Required.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd dumpportsoff CR-241
vcd dumpportsoff

The vcd dumpportsoff command turns off VCD dumping and records all dumped port
values as x.

Related Verilog task: $dumpportsoff

Syntax

vcd dumpportsoff
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
ModelSim SE Command Reference

CR-242 Commands

Model
vcd dumpportson

The vcd dumpportson command turns on VCD dumping and records the current values of
all selected ports. This command is typically used to resume dumping after invoking vcd
dumpportsoff.

Related Verilog task: $dumpportson

Syntax

vcd dumpportson
[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on all
open VCD files.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Sim SE Command Reference

vcd file CR-243
vcd file

The vcd file command specifies the filename and state mapping for the VCD file created
by a vcd add command (CR-233). The vcd file command is optional. If used, it must be
issued before any vcd add commands.

Related Verilog task: $dumpfile

Syntax

vcd file
[-direction] [-dumpports] [<filename>] [-map <mapping pairs>] [-nomap]

Arguments

-direction

Affects only VHDL ports. Optional. It specifies that the port/variable type recorded in
the VCD header for VHDL ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

-dumpports

Capture detailed port driver data for Verilog ports and VHDL std_logic ports. Optional.
This option works only on ports, and subsequent vcd add command (CR-233) will accept
only qualifying ports (silently ignoring all other specified items).

<filename>

Specifies the name of the VCD file that is created (the default is dump.vcd). Optional.

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping is specified as a list of character pairs. The first character
in a pair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
to z:

vcd file -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

Note: vcd file is included for backward compatibility. Use the vcd files command (CR-

245) if you want to use multiple VCD files during a single simulation.

Note: The -direction argument is obsolete in ModelSim versions 5.5c and later. It is
supported for backwards compatibility only. See http://www.model.com/products/
documentation/resim_vcd.pdf for information regarding its use in earlier versions.
ModelSim SE Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

CR-244 Commands

Model
-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-.
This option results in a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z
Sim SE Command Reference

vcd files CR-245
vcd files

The vcd files command specifies a filename and state mapping for a VCD file created by a
vcd add command (CR-233). The vcd files command is optional. If used, it must be issued
before any vcd add commands.

Related Verilog task: $fdumpfile

Syntax

vcd files
[-direction] <filename> [-map <mapping pairs>] [-nomap]

Arguments

-direction

Affects both VHDL and Verilog ports. Optional. It specifies that the port/variable type
recorded in the VCD header for VHDL and Verilog ports shall be one of the following:

in, out, inout, internal, ports (includes in, out, and inout); the default is all ports

<filename>

Specifies the name of a VCD file to create. Required. Multiple files can be opened during
a single simulation.

-map <mapping pairs>

Affects only VHDL signals of type std_logic. Optional. It allows you to override the
default mappings. The mapping is specified as a list of character pairs. The first character
in a pair must be one of the std_logic characters UX01ZWLH- and the second character
is the character you wish to be recorded in the VCD file. For example, to map L and H
to z:

vcd files -map "L z H z"

Note that the quotes in the example above are a Tcl convention for command strings that
include spaces.

Note: The -direction argument is obsolete in ModelSim versions 5.5c and later. It is
supported for backwards compatibility only. See http://www.model.com/products/
documentation/resim_vcd.pdf for information regarding its use in earlier versions.
ModelSim SE Command Reference

http://www.model.com/products/documentation/resim_vcd.pdf
http://www.model.com/products/documentation/resim_vcd.pdf

CR-246 Commands

Model
-nomap

Affects only VHDL signals of type std_logic. Optional. It specifies that the values
recorded in the VCD file shall use the std_logic enumeration characters of UX01ZWLH-.
This option results in a non-standard VCD file because VCD values are limited to the
four state character set of x01z. By default, the std_logic characters are mapped as
follows.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.

VHDL VCD VHDL VCD

U x W x

X x L 0

0 0 H 1

1 1 - x

Z z
Sim SE Command Reference

vcd flush CR-247
vcd flush

The vcd flush command flushes the contents of the VCD file buffer to the specified VCD
file. This command is useful if you want to create a complete vcd file without ending your
current simulation.

Related Verilog tasks: $dumpflush, $fdumpflush

Syntax

vcd flush

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-243) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim SE Command Reference

CR-248 Commands

Model
vcd limit

The vcd limit command specifies the maximum size of a VCD file (by default, limited to
available disk space). When the size of the file exceeds the limit, a comment is appended
to the file and VCD dumping is disabled.

Related Verilog tasks: $dumplimit, $fdumplimit

Syntax

vcd limit
<filesize> [<filename>]

Arguments

<filesize>

Specifies the maximum VCD file size in bytes. Required.

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-243) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
Sim SE Command Reference

vcd off CR-249
vcd off

The vcd off command turns off VCD dumping to the specified file and records all VCD
variable values as x.

Related Verilog tasks: $dumpoff, $fdumpoff

Syntax

vcd off

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-243) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog tasks are documented in the IEEE 1364 standard.
ModelSim SE Command Reference

CR-250 Commands

Model
vcd on

The vcd on command turns on VCD dumping to the specified file and records the current
values of all VCD variables. By default, vcd on is automatically performed at the end of
the simulation time that the vcd add (CR-233) commands are performed.

Related Verilog tasks: $dumpon, $fdumpon

Syntax

vcd on

[<filename>]

Arguments

<filename>

Specifies the name of the VCD file. Optional. If omitted the command is executed on the
file designated by the vcd file command (CR-243) or dump.vcd if vcd file was not
invoked.

See also

See Chapter 14 - Value Change Dump (VCD) Files for more information on VCD files.
Verilog system tasks are documented in the IEEE 1364 standard.
Sim SE Command Reference

vcd2wlf CR-251
vcd2wlf

vcd2wlf is a utility that translates a VCD (Value Change Dump) file into a WLF file that
can be displayed in ModelSim using the vsim -view argument.

Syntax

vcd2wlf

<vcd filename> <wlf filename>

Arguments

<vcd filename>

Specifies the name of the VCD file you want to translate into a WLF file. Required.

<wlf filename>

Specifies the name of the output WLF file. Required.
ModelSim SE Command Reference

CR-252 Commands

Model
vcom

The vcom command is used to invoke VCOM, the Model Technology VHDL compiler.
Use VCOM to compile VHDL source code into a specified working library (or to the work
library by default).

This command may be invoked from within ModelSim or from the operating system
command prompt. This command may also be invoked during simulation.

Syntax

vcom
[-87] [-93] [-check_synthesis] [-debugVA] [-defercheck]
[-explicit] [-f <filename>] [-force_refresh] [-help]
[-ignoredefaultbinding] [-ignorevitalerrors] [-just abcep] [-skip abcep]
[-line <number>] [-no1164] [-noaccel <package_name>] [-nocasestaticerror]
[-nocheck] [-nodebug[=ports]] [-noindexcheck] [-nologo]
[-noothersstaticerror]
[-norangecheck] [-novital] [-novitalcheck][-nowarn <number>] [-O0 | -O1 |
-O4 | -O5]
[-pedanticerrors]
[-performdefaultbinding] [-quiet] [-rangecheck]
[-refresh] [-s] [-source] [-time]
[-version] [-work <library_name>] <filename>

Arguments

-87

Disables support for VHDL 1076-1993. This is the VCOM default. Optional. See
additional discussion in the examples. Note that the default can be changed with the
modelsim.ini file; see "Preference variables located in INI files" (UM-444).

-93

Specifies that the simulator is to support VHDL 1076-1993. Optional. Default is -87. See
additional discussion in the examples.

-check_synthesis

Turns on limited synthesis rule compliance checking; specifically, it checks to see that
signals read by a process are in the sensitivity list. Optional. The checks understand only
combinational logic, not clocked logic. Edit the CheckSynthesis (UM-445) variable in the
modelsim.ini file to set a permanent default.

-debugVA

Prints a confirmation if a VITAL cell was optimized, or an explanation of why it was not,
during VITAL level-1 acceleration. Optional.

-defercheck

Defers until run-time all compile-time range checking on constant index and slice
expressions . As a result, index and slice expressions with invalid constant ranges that are
never evaluated will not cause compiler error messages to be issued. Optional.

-explicit

Directs the compiler to resolve ambiguous function overloading by favoring the explicit
function definition over the implicit function definition. Optional. Strictly speaking, this
behavior does not match the VHDL standard. However, the majority of EDA tools
Sim SE Command Reference

vcom CR-253
choose explicit operators over implicit operators. Using this switch makes ModelSim
compatible with common industry practice.

-f <filename>

Specifies a file with more command line arguments. Allows complex arguments to be
reused without retyping. Optional.

-force_refresh

Forces the refresh of a module. Optional. When the compiler refreshes a design unit, it
checks each dependency to ensure its source has not been changed and recompiled. If a
dependency has been changed and recompiled, the compiler will not refresh the
dependent design unit (unless you use -force_refresh). To avoid potential errors or
mismatches caused by the dependency recompilation, you should recompile the
dependent design unit’s source rather than use this switch.

-help

Displays the command’s options and arguments. Optional.

-ignoredefaultbinding

Instructs the compiler not to generate a default binding during compilation. Optional.
You must explicitly bind all components in the design to use this switch.

-ignorevitalerrors

Directs the compiler to ignore VITAL compliance errors. Optional. The compiler still
reports that VITAL errors exist, but it will not stop the compilation. You should exercise
caution in using this switch; as part of accelerating VITAL packages, we assume that
compliance checking has passed.

-just abcep

Directs the compiler to “just” include:
a - architectures

b - bodies

c - configurations

e - entities

p - packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

-skip abcep

Directs the compiler to skip all:
a - architectures

b - bodies

c - configurations

e - entities

p - packages

Any combination in any order can be used, but one choice is required if you use this
optional switch.

-line <number>

Starts the compiler on the specified line in the VHDL source file. Optional. By default,
the compiler starts at the beginning of the file.
ModelSim SE Command Reference

CR-254 Commands

Model
-no1164

Causes the source files to be compiled without taking advantage of the built-in version
of the IEEE std_logic_1164 package. Optional. This will typically result in longer
simulation times for VHDL programs that use variables and signals of type std_logic.

-noaccel <package_name>

Turns off acceleration of the specified package in the source code using that package.

-nocasestaticerror

Suppresses case static warnings. Optional. VHDL standards require that case alternative
choices be static at compile time. However, some expressions which are globally static
are allowed. This switch prevents the compiler from warning on such expressions. If the
-pedanticerrors switch is specified, this switch is ignored.

-nocheck

Disables index and range checks. Optional. You can disable these individually using the
-noindexcheck and -norangecheck arguments, respectively.

-nodebug[=ports]

Hides the internal data of the compiled design unit. Optional. The design unit’s source
code, internal structure, signals, processes, and variables will not display in ModelSim’s
windows. In addition, none of the hidden objects may be accessed through the Dataflow
window or with commands. This also means that you cannot set breakpoints or single
step within this code. Don’t compile with this switch until you’re done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.

The optional =ports switch hides the ports for the lower levels of your design; it should
only be used to compile the lower levels of the design. If you hide the ports of the top
level you will not be able to simulate the design.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

See additional discussion in "Source code security and -nodebug" (UM-492).

-noindexcheck

Disables checking on indexing expressions to determine whether indices are within
declared array bounds. Optional.

-nologo

Disables startup banner. Optional.

-noothersstaticerror

Disables warnings that result from array aggregates with multiple choices having
"others" clauses that are not locally static. Optional. If the -pedanticerrors switch is
specified, this switch is ignored.

-norangecheck

Disables run time range checking. In some designs, this results in a 2X speed increase.
Range checking is enabled by default or, once disabled, can be enabled using
-rangecheck.

Note: -nodebug provides protection for proprietary model information. The Verilog
‘protect compiler directive provides similar protection, but uses a Cadence encryption
algorithm that is unavailable to Model Technology.
Sim SE Command Reference

vcom CR-255
-novital

Causes VCOM to use VHDL code for VITAL procedures rather than the accelerated and
optimized timing and primitive packages built into the simulator kernel. Optional.

-novitalcheck

Disables VITAL 2000 compliance checking if you are using VITAL 2.2b. Optional.

-nowarn <number>

Selectively disables an individual warning message. Optional. Multiple -nowarn
switches are allowed. Warnings may be disabled for all compiles via the modelsim.ini file
(see the "[vcom] VHDL compiler control variables" (UM-445)).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages

-O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional. Note that changing from the default
-O4 to -O1 may cause event order differences in your simulation.

Enable standard SE optimizations with -O4. Default. The main differences between -O4
and -O1 is that ModelSim attempts to improve memory management for vectors and
accelerate VITAL Level 1 modules with -O4.

Enable maximum optimization with -O5. Optional. The main difference between -O5
and -O4 is ModelSim attempts to optimize loops with -O5. We recommend use of this
switch with large sequential blocks only; other uses may significantly increase compile
times.

-pedanticerrors
Forces ModelSim to error (rather than warn) on two conditions: 1) when a choice in a
case statement is not a locally static expression; 2) when an array aggregate with multiple
choices doesn’t have a locally static "others" choice. Optional. This argument overrides
-nocasestaticerror and -noothersstaticerror (see above).

-performdefaultbinding
Enables default binding when it has been disabled via the
RequireConfigForAllDefaultBinding option in the modelsim.ini file. Optional.

-quiet

Disable 'loading' messages. Optional.

-rangecheck

Enables run time range checking. Default. Range checking can be disabled using the
-norangecheck argument.
ModelSim SE Command Reference

CR-256 Commands

Model
-refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library> to update a different library. See vcom "Examples" (CR-257) for more
information.

-s

Instructs the compiler not to load the standard package. Optional. This argument should
only be used if you are compiling the standard package itself.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-time

Reports the "wall clock time" vcom takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vcom.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim SE vcom 5.5 Compiler 2000.01 Jan 29 2000".

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

<filename>

Specifies the name of a file containing the VHDL source to be compiled. One filename
is required; multiple filenames can be entered separated by spaces or wildcards may be
used (e.g., *.vhd).
Sim SE Command Reference

vcom CR-257
Examples

vcom example.vhd

Compiles the VHDL source code contained in the file example.vhd.

vcom -87 o_units1.vhd o_units2.vhd
vcom -93 n_unit91.vhd n_unit92.vhd

ModelSim supports designs that use elements conforming to both the 1993 and the 1987
standards. Compile the design units separately using the appropriate switches.

Note that in the example above, the -87 switch on the first line is redundant since the
VCOM default is to compile to the 1987 standard.

vcom -nodebug example.vhd

Hides the internal data of example.vhd. Models compiled with -nodebug cannot use any
of the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vcom -nodebug=ports level3.vhd levle2.vhd
vcom -nodebug top.vhd

The first line compiles and hides the internal data, plus the ports, of the lower-level
design units, level3.vhd and level2.vhd. The second line compiles the top-level unit,
top.vhd, without hiding the ports. It is important to compile the top level without =ports
because top-level ports must be visible for simulation.

See "Source code security and -nodebug" (UM-492) for more details.

vcom -noaccel numeric_std example.vhd

When compiling source that uses the numeric_std package, this command turns off
acceleration of the numeric_std package, located in the ieee library.

vcom -explicit example.vhd

Although it is not obvious, the = operator is overloaded in the std_logic_1164 package.
All enumeration data types in VHDL get an “implicit” definition for the = operator. So
while there is no explicit = operator, there is an implicit one. This implicit declaration can
be hidden by an explicit declaration of = in the same package (LRM Section 10.3).
However, if another version of the = operator is declared in a different package than that
containing the enumeration declaration, and both operators become visible through use
clauses, neither can be used without explicit naming.

ARITHMETIC.”=”(left, right)

To eliminate that inconvenience, the VCOM command has the -explicit option that
allows the explicit = operator to hide the implicit one. Allowing the explicit declaration
to hide the implicit declaration is what most VHDL users expect.

vcom -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains Verilog design units be sure to regenerate the library with vlog
(CR-288) and -refresh as well. See "Regenerating your design libraries" (UM-55) for more
information.
ModelSim SE Command Reference

CR-258 Commands

Model
vdel

The vdel command deletes a design unit from a specified library.

Syntax

vdel
[-help] [-verbose] [-lib <library_name>] [-all | <design_unit>
[<arch_name>]]

Arguments

-help

Displays the command’s options and arguments. Optional.

-verbose

Displays progress messages. Optional.

-lib <library_name>

Specifies the logical name or pathname of the library that holds the design unit to be
deleted. Optional; by default, the design unit is deleted from the work library.

-all

Deletes an entire library. Optional. BE CAREFUL! Libraries cannot be recovered once
deleted, and you are not prompted for confirmation.

<design_unit>

Specifies the entity, package, configuration, or module to be deleted. Required unless -all
is used.

<arch_name>

Specifies the name of an architecture to be deleted. Optional; if omitted, all of the
architectures for the specified entity are deleted. Invalid for a configuration or a package.

Examples

vdel -all

Deletes the work library.

vdel -lib synopsys -all

Deletes the synopsys library.

vdel xor

Deletes the entity named xor and all its architectures from the work library.

vdel xor behavior

Deletes the architecture named behavior of the entity xor from the work library.

vdel base

Deletes the package named base from the work library.
Sim SE Command Reference

vdir CR-259
vdir

The vdir command selectively lists the contents of a design library.

This command can also be used to check compatibility of a vendor library. If vdir cannot
read a vendor-supplied library, the library may not be ModelSim compatible.

Syntax

vdir
[-help] [-l] [-r] [-lib <library_name>] [<design_unit>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-l

Prints the version of vcom or vlog that each design unit was compiled under. Also prints
the object-code version number that indicates which versions of vcom/vlog and
ModelSim are compatible. This example was printed by vdir -l for the counter module
in the work library:

MODULE counter

Verilog Version: OzO;ZAVlR1jO;>KYTg2kY2

Source directory: ..\examples\projects\mixed

Source modified time: 944001078

Source file: ../examples/projects/verilog/counter.v

Opcode format: 5.4 Beta 4; VLOG EE Object version 17

Version number: e:VQh7zF_VJYN9MbEXUG_3

Optimized Verilog design root: 1

Language standard: 1

-r

Prints architecture information for each entity in the output.

-lib <library_name>

Specifies the logical name or the pathname of the library to be listed. Optional; by
default, the contents of the work library are listed.

<design_unit>

Indicates the design unit to search for within the specified library. If the design unit is a
VHDL entity, its architectures are listed. Optional; by default, all entities, configurations,
modules, and packages in the specified library are listed.

Example

vdir -lib design my_asic

Lists the architectures associated with the entity named my_asic that reside in the HDL
design library called design.
ModelSim SE Command Reference

CR-260 Commands

Model
verror

The verror command prints a detailed description about a message number. It may also
point to additional documentation related to the error.

Syntax

verror
<msgNum>...

Arguments

<msgNum>

Specifies the message number of a ModelSim message. Required. This number can be
obtained from messages that have the format:

** <Level>: ([<Tool>-[<Group>-]]<MsgNum>) <FormattedMsg>

Example

Say you see the following message in the transcript:

** Error (vsim-3601) foo.v(22): Too many Verilog port connections.

You would type:

verror 3061

and receive the following output:

Message # 3061:

Too many Verilog ports were specified in a mixed VHDL/Verilog instantiation.
Verify that the correct VHDL/Verilog connection is being made and that the
number of ports matches.

[DOC: ModelSim User’s Manual - Mixed VHDL and Verilog Designs Chapter]
Sim SE Command Reference

vgencomp CR-261
vgencomp

Once a Verilog module is compiled into a library, you can use the vgencomp command to
write its equivalent VHDL component declaration to standard output. Optional switches
allow you to generate bit or vl_logic port types; std_logic port types are generated by
default.

Syntax

vgencomp
[-help] [-lib <library_name>] [-b] [-s] [-v] <module_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-lib <library_name>

Specifies the pathname of the working library. If not specified, the default library work
is used. Optional.

-b

Causes vgencomp to generate bit port types. Optional.

-s

Used for the explicit declaration of default std_logic port types. Optional.

-v

Causes vgencomp to generate vl_logic port types. Optional.

<module_name>

Specifies the name of the Verilog module to be accessed. Required.

Examples

This example uses a Verilog module that is compiled into the work library. The module
begins as Verilog source code:

module top(i1, o1, o2, io1);
parameter width = 8;
parameter delay = 4.5;
parameter filename = "file.in";

input i1;
output [7:0] o1;
output [4:7] o2;
inout [width-1:0] io1;

endmodule

After compiling, vgencomp is invoked on the compiled module:

vgencomp top

and writes the following to stdout:

component top

 generic(
ModelSim SE Command Reference

CR-262 Commands

Model
width : integer := 8;
delay : real := 4.500000;
filename : string := "file.in"

);
port(

i1 : in std_logic;
o1 : out std_logic_vector(7 downto 0);
o2 : out std_logic_vector(4 to 7);
io1 : inout std_logic_vector
);

end component;
Sim SE Command Reference

view CR-263
view

The view command will open a ModelSim window and bring that window to the front of
the display. If multiple instances of a window exist, view will change the default window
of that type to the specified window. Using the -new option, view will create an additional
instance of the specified window type and set it to be the default window for that type.

Names for windows are generated as follows:

• The first window name (automatically created without using -new) has the same name as
the window type.

• Additional window names created by -new append an integer to the window type, starting
with 1.

To remove a window, use the noview command (CR-177).

Syntax

view
[*] [-height <n>] [-icon] [-new] [-title {New Window Title} <window_type>]
[-width <n>] [-x <n>] [-y <n>]
<window_type>...

Arguments

*
Specifies that all windows be opened. Optional.

-height <n>

Specifies the window height in pixels. Optional.

-icon

Toggles the view between window and icon. Optional.

-new

Creates a new instance of the window type specified with the <window_type> argument.
Optional. New window names are created by appending an integer to the window type,
starting with 1, then incrementing the integer.

-title {New Window Title} <window_type>

Specifies the window title of the designated window. Curly braces are only needed for
titles that include spaces. Double quotes can be used in place of braces, for example
"New Window Title". If the new window title does not include spaces, no braces or
quotes are needed. For example: -title new_wave wave assigns the title new_wave to the
Wave window.

-width <n>

Specifies the window width in pixels. Optional.

<window_type>...

Specifies the ModelSim window type to view. Required. You do no need to type the full
type (see examples below); implicit wildcards are accepted; multiple window types may
be used. Available window types are:

dataflow, list, process, signals, source, structure, variables, and wave
ModelSim SE Command Reference

CR-264 Commands

Model
Also creates a new instance of the specified window type when used with the -new
option. You may also specify the window(s) to view when multiple instances of that
window type exist (e.g., wave2, structure1).

-x <n>

Specifies the window upper-left-hand x-coordinate in pixels. Optional.

-y <n>

Specifies the window upper-left-hand y-coordinate in pixels. Optional.

Examples

view d

Opens the Dataflow window.

view si pr

Opens the Signals and Process windows.

view s

Opens the Signals, Source, and Structure windows.

view -title {My Wave Window} wave

Opens a new wave window with My Wave Window as its title.

view wave
view -new wave

The first command creates a window named ’wave’. The second command creates a
window named ‘wave1’. Its full Tk path is ‘.wave1’. Wave1 is now the default Wave
window. Any add wave command (CR-57) would add items to wave1.

view wave

Changes the default Wave window back to ‘wave’.

add wave -win .wave1 mysig

Will override the default Wave window and add mysig to wave1.

See also

noview (CR-177)
Sim SE Command Reference

virtual count CR-265
virtual count

The virtual count command counts the number of currently defined virtuals that were not
read in using a macro file.

Syntax

virtual count
[-kind <kind>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-unsaved

Specifies that the count include only those virtuals that have not been saved. Optional.

See also

virtual define (CR-266), virtual save (CR-280), virtual show (CR-281), "Virtual Objects
(User-defined buses, and more)" (UM-161)
ModelSim SE Command Reference

CR-266 Commands

Model
virtual define

The virtual define command prints to the Main window the definition of the virtual signal
or function in the form of a command that can be used to re-create the object.

Syntax

virtual define
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) for which you want definitions. Required. Wildcards
can be used.

Examples

virtual define -kind explicits *

Shows the definitions of all the virtuals you have explicitly created.

See also

virtual describe (CR-268), virtual show (CR-281), "Virtual Objects (User-defined buses,
and more)" (UM-161)
Sim SE Command Reference

virtual delete CR-267
virtual delete

The virtual delete command removes the matching virtuals.

Syntax

virtual delete
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) you want to delete. Required. Wildcards can be used.

Examples

virtual delete -kind explicits *

Deletes all of the virtuals you have explicitly created.

See also

virtual signal (CR-282), virtual function (CR-270), "Virtual Objects (User-defined buses,
and more)" (UM-161)
ModelSim SE Command Reference

CR-268 Commands

Model
virtual describe

The virtual describe command prints to the Main window a complete description of the
data type of one or more virtual signals. Similar to the existing describe command.

Syntax

virtual describe
[-kind <kind>] <pathname>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

<pathname>

Specifies the path to the virtual(s) for which you want descriptions. Required. Wildcards
can be used.

Examples

virtual describe -kind explicits *

Describes the data type of all virtuals you have explicitly created.

See also

virtual define (CR-266), virtual show (CR-281), "Virtual Objects (User-defined buses, and
more)" (UM-161)
Sim SE Command Reference

virtual expand CR-269
virtual expand

The virtual expand command produces a list of all the non-virtual objects contained in the
specified virtual signal(s). This can be used to create a list of arguments for a command that
does not accept or understand virtual signals.

Syntax

virtual expand
[-base] <pathname>

Arguments

-base

Causes the root signal parent to be output in place of a subelement. Optional. For
example:

vcd add [virtual expand -base myVirtualSignal]

the resulting command after substitution would be:

vcd add signala signalb signalc

<pathname>

Specifies the path to the signals and virtual signals to expand. Required. Wildcards can
be used. Any number of paths can be specified.

Examples

vcd add [virtual expand myVirtualSignal]

Adds the elements of a virtual signal to the VCD file.

In the Tcl language, the square brackets specify that the enclosed command should be
executed first ("virtual expand ..."), then the result substituted into the surrounding
command. So if myVirtualSignal is a concatenation of signala, signalb.rec1 and signalc(5
downto 3), the resulting command after substitution would be:

vcd add signala signalb.rec1 {signalc(5 downto 3)}

The slice of signalc is quoted in curly braces, because it contains spaces.

See also

virtual signal (CR-282), "Virtual Objects (User-defined buses, and more)" (UM-161)
ModelSim SE Command Reference

CR-270 Commands

Model
virtual function

The virtual function command creates a new signal, known only by the GUI (not the
kernel), that consists of logical operations on existing signals and simulation time, as
described in <expressionString>. It cannot handle bit selects and slices of Verilog
registers. Please see "Syntax and conventions" (CR-9) for more details on syntax.

If the virtual function references more than a single scalar signal, it will display as an
expandable object in the Wave and Signals windows. The children correspond to the inputs
of the virtual function. This allows the function to be "expanded" in the Wave window to
see the values of each of the input waveforms, which could be useful when using virtual
functions to compare two signal values.

Virtual functions can also be used to gate the List window display.

Syntax

virtual function
[-env <path>] [-install <path>] [-implicit] [-delay <time>]
{<expressionString>} <name>

Arguments

Arguments for virtual function are the same as those for virtual signal, except for the
contents of the expression string.

-env <path>

Specifies a hierarchical context for the signal names in <expressionString> so they don’t
all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region
virtuals:/Functions. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <time>

Specifies a value by which the virtual function will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}

A text string expression in the MTI GUI expression format. Required. See
"GUI_expression_format" (CR-18) for more information.
Sim SE Command Reference

virtual function CR-271
<name>

The name you define for the virtual signal. Required. Case is ignored unless installed in
a Verilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.

Examples

virtual function { not /chip/section1/clk } clk_n

Creates a signal /chip/section1/clk_n that is the inverse of /chip/section1/clk.

virtual function -install /chip { (std_logic_vector) chip.vlog.rega }
rega_slv

Creates a std_logic_vector equivalent of a verilog register rega and installs it as /chip/
rega_slv.

virtual function { /chip/addr[11:0] == 0xfab } addr_eq_fab

Creates a boolean signal /chip/addr_eq_fab that is true when /chip/addr[11:0] is equal
to hex "fab", and false otherwise. It is acceptable to mix VHDL signal path notation with
Verilog part-select notation.

virtual function { gate:/chip/siga XOR rtl:/chip/siga) } siga_diff

Creates a signal that is high only during times when signal /chip/siga of the gate-level
version of the design does not match /chip/siga of the rtl version of the design. Because
there is no common design region for the inputs to the expression, siga_diff is installed
in region virtuals:/Functions. The virtual function siga_diff can be added to the Wave
window, and when expanded will show the two original signals that are being compared.

virtual function -delay {10 ns} {/top/signalA AND /top/signalB} myDelayAandB

Creates a virtual signal consisting of the logical "AND" function of /top/signalA with
/top/signalB, and delays it by 10 ns.

virtual function { | (gate:/chip/outbus XOR rtl:/chip/outbus) } outbus_diff

Creates a one-bit signal outbus_diff which is non-zero during times when any bit of /chip/
outbus in the gate-level version doesn’t match the corresponding bit in the rtl version.

This expression uses the "OR-reduction" operator, which takes the logical OR of all the
bits of the vector argument.

Commands fully compatible with virtual functions

add list (CR-48) add log /log (CR-166) add wave (CR-57)

checkpoint (CR-82) and restore (CR-

206)

delete (CR-133) describe (CR-134) ("virtual describe" is
a little faster)

down (CR-139) / up (CR-231) examine (CR-149) find (CR-153)

restart (CR-204) left (CR-164) / right (CR-208) search (CR-212)

searchlog (CR-214) show (CR-218)
ModelSim SE Command Reference

CR-272 Commands

Model
Commands not currently compatible with virtual functions

See also

check contention add (CR-74) check contention config (CR-75) check contention off (CR-76)

check float add (CR-77) check float config (CR-78) check float off (CR-79)

check stable on (CR-81) check stable off (CR-80) drivers (CR-141)

force (CR-156) noforce (CR-173) power add (CR-184)

power report (CR-185) power reset (CR-186) toggle add (CR-225)

toggle reset (CR-227) toggle report (CR-226) vcd add (CR-233)

when (CR-314)

virtual count (CR-265) virtual define (CR-266) virtual delete (CR-267)

virtual describe (CR-268) virtual expand (CR-269) virtual hide (CR-273)

virtual log (CR-274) virtual nohide (CR-276) virtual nolog (CR-277)

virtual region (CR-279) virtual save (CR-280) virtual show (CR-281)

virtual signal (CR-282) virtual type (CR-285) Virtual Objects (User-defined
buses, and more) (UM-161)
Sim SE Command Reference

virtual hide CR-273
virtual hide

The virtual hide command sets a flag in the specified real or virtual signals, so those
signals do not appear in the Signals window. This is used when you want to replace an
expanded bus with a user-defined bus. You make the signals reappear using the virtual
nohide command.

Syntax

virtual hide
[-kind <kind>]|[-region <path>] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to hide. Required. Any number of names or wildcard patterns may be used.

See also

virtual nohide (CR-276), "Virtual Objects (User-defined buses, and more)" (UM-161)
ModelSim SE Command Reference

CR-274 Commands

Model
virtual log

The virtual log command causes the simulation-mode dependent signals of the specified
virtual signals to be logged by the kernel. If wildcard patterns are used, it will also log any
normal signals found, unless the -only option is used. You unlog the signals using the
virtual nolog command.

Syntax

virtual log
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
log. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be logged. Optional.

-in

Specifies that the kernal log data for ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel log data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel log data for ports of mode INOUT whose names match the
specification. Optional.

-internal

Specifies that the kernel log data for internal items whose names match the specification.
Optional.

-ports

Specifies that the kernel log data for all ports. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to log. Required. Any number of names or wildcard patterns may be used.
Sim SE Command Reference

virtual log CR-275
See also

virtual nolog (CR-277), "Virtual Objects (User-defined buses, and more)" (UM-161)
ModelSim SE Command Reference

CR-276 Commands

Model
virtual nohide

The virtual nohide command reverses the effect of a virtual hide command. It resets the
flag in the specified real or virtual signals, so those signals reappear in the Signals window.

Syntax

virtual nohide
[-kind <kind>]|[-region <path>] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for the signal
names. Optional.

<pattern>

Indicates which signal names or wildcard patterns should be used in finding the signals
to expose. Required. Any number of names or wildcard patterns may be used.

See also

virtual hide (CR-273), "Virtual Objects (User-defined buses, and more)" (UM-161)
Sim SE Command Reference

virtual nolog CR-277
virtual nolog

The virtual nolog command reverses the effect of a virtual log command. It causes the
simulation-dependent signals of the specified virtual signals to be excluded ("unlogged")
by the kernel. If wildcard patterns are used, it will also unlog any normal signals found,
unless the -only option is used.

Syntax

virtual nolog
[-kind <kind>]|[-region <path>] [-recursive] [-only] [-in] [-out] [-inout]
[-internal] [-ports] <pattern>

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-region <path>

Used in place of -kind to specify a region of design space in which to look for signals to
unlog. Optional.

-recursive

Specifies that the scope of the search is to descend recursively into subregions. Optional.
If omitted, the search is limited to the selected region.

-only

Can be used with a wildcard to specify that only virtual signals (as opposed to all signals)
found by the wildcard should be unlogged. Optional.

-in

Specifies that the kernel exclude data for ports of mode IN whose names match the
specification. Optional.

-out

Specifies that the kernel exclude data for ports of mode OUT whose names match the
specification. Optional.

-inout

Specifies that the kernel exclude data for ports of mode INOUT whose names match the
specification. Optional.

-internal

Specifies that the kernel exclude data for internal items whose names match the
specification. Optional.

-ports

Specifies that the kernel exclude data for all ports. Optional.

<pattern>

Indicates which signal names or wildcard pattern should be used in finding the signals to
unlog. Required. Any number of names or wildcard patterns may be used.
ModelSim SE Command Reference

CR-278 Commands

Model
See also

virtual log (CR-274), "Virtual Objects (User-defined buses, and more)" (UM-161)
Sim SE Command Reference

virtual region CR-279
virtual region

The virtual region command creates a new user-defined design hierarchy region.

Syntax

virtual region
<parentPath> <regionName>

Arguments

<parentPath>

The full path to the region that will become the parent of the new region. Required.

<regionName>

The name you want for the new region. Required.

See also

virtual function (CR-270), virtual signal (CR-282), "Virtual Objects (User-defined buses,
and more)" (UM-161)

Note: Virtual regions cannot be used in the when (CR-314) command.
ModelSim SE Command Reference

CR-280 Commands

Model
virtual save

The virtual save command saves the definitions of virtuals to a file.

Syntax

virtual save
[-kind <kind>] [-append] [<filename>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

-append

Specifies to save only virtuals that are not already saved or weren’t read in from a macro
file. These unsaved virtuals are then appended to the specified or default file. Optional.

<filename>

Used for writing the virtual definitions. Optional. If you don’t specify <filename>, the
default virtual filename (virtuals.do) will be used. You can specify a different default in
the pref.tcl file.

See also

virtual count (CR-265), "Virtual Objects (User-defined buses, and more)" (UM-161)
Sim SE Command Reference

virtual show CR-281
virtual show

The virtual show command lists the full path names of all explicitly defined virtuals.

Syntax

virtual show
[-kind <kind>]

Arguments

-kind <kind>

Specifies a subset of virtuals to look at. Optional. <kind> can be any of the following:
signals, functions, designs, implicits, and explicits. Unique abbreviations are accepted.

See also

virtual define (CR-266), virtual describe (CR-268), "Virtual Objects (User-defined buses,
and more)" (UM-161)
ModelSim SE Command Reference

CR-282 Commands

Model
virtual signal

The virtual signal command creates a new signal, known only by the GUI (not the kernel),
that consists of concatenations of signals and subelements as specified in
<expressionString>. It cannot handle bit selects and slices of Verilog registers. Please see
"Syntax and conventions" (CR-9) for more details on syntax.

Syntax

virtual signal
[-env <path>] [-install <path>] [-implicit] [-delay <time>]
{<expressionString>} <name>

Arguments

-env <path>

Specifies a hierarchical context for the signal names in <expressionString>, so they
don’t all have to be full paths. Optional.

-install <path>

Causes the newly-created signal to become a child of the specified region. If -install is
not specified, the newly-created signal becomes a child of the nearest common ancestor
of all objects appearing in <expressionString>. If the expression references more than
one WLF file (dataset), the virtual signal will automatically be placed in region virtuals:/
Signals. Optional.

-implicit

Used internally to create virtuals that are automatically saved with the List or Wave
format. Optional.

-delay <time>

Specifies a value by which the virtual signal will be delayed. Optional. You can use
negative values to look forward in time. If units are specified, the <time> option must be
enclosed in curly braces. See the examples below for more details.

{<expressionString>}

A text string expression in the MTI GUI expression format that defines the signal and
subelement concatenation. Can also be a literal constant or computed subexpression.
Required. For details on syntax, please see "Syntax and conventions" (CR-9).

<name>

The name you define for the virtual signal. Required. Case is ignored unless installed in
a Verilog region. Use alpha, numeric, and underscore characters only, unless you are
using VHDL extended identifier notation. If using VHDL extended identifier notation,
<name> needs to be quoted with double quotes or with curly braces.
Sim SE Command Reference

virtual signal CR-283
Examples

virtual signal -env sim:/chip/alu { (concat_range (4 downto 0))(a_04 & a_03
& a_02 & a_01 & a_00) } a

Reconstructs a bus sim:/chip/alu/a(4 downto 0), using VHDL notation, assuming that
a_ii are scalars all of the same type.

virtual signal -env sim:chip.alu { (concat_range [4:0])&{a_04, a_03, a_02,
a_01, a_00} } a

Reconstructs a bus sim:chip.alu.a[4:0], using Verilog notation. Note that the
concatenation notation starts with "&{" rather than "{".

virtual signal -install sim:/testbench { /chipa/alu/a(19 downto 13) &
/chipa/decode/inst & /chipa/mode } stuff

Creates a signal sim:/testbench/stuff which is a record type with three fields
corresponding to the three specified signals. The example assumes /chipa/mode is of type
integer, /chipa/alu/a is of type std_logic_vector, and /chipa/decode/inst is a user-defined
enumeration.

virtual signal -delay {10 ps} {/top/signalA} myDelayedSignalA

Creates a virtual signal that is the same as /top/signalA except it is delayed by 10 ps.

virtual signal { chip.instruction[23:21] } address_mode

Creates a three-bit signal, chip.address_mode, as an alias to the specified bits.

virtual signal {a & b & c & 3’b000} myextendedbus

Concatenates signals a, b, and c with the literal constant ’000’.

virtual signal {num & "000"} fullbus
add wave -unsigned fullbus

Adds three missing bits to the bus num, creates a virtual signal fullbus, and then adds that
signal to the wave window.

virtual signal { num31 & num30 & num29 & ... & num4 & num3 & "000" } fullbus
add wave -unsigned fullbus

Reconstructs a bus that was fragmented by synthesis and is missing the lower three bits.
Note that you would have to type in the actual bit names (i.e. num28, num27, etc.)
represented by the ... in the syntax above.

virtual signal {(aold == anew) & (bold == bnew)} myequalityvector

Creates a two-bit signal (with an enumerated type) based on the results of the
subexpressions. For example, if aold equals anew, then the first bit is true (1).
Alternatively, if bold does not equal c, the second bit is false (0). Each subexpression is
evaluated independently.
ModelSim SE Command Reference

CR-284 Commands

Model
Commands fully compatible with virtual signals

Commands compatible with virtual signals using [virtual expand <signal>]

Commands not currently compatible with virtual signals

when (CR-314)

See also

add list (CR-48) add log / log (CR-166) add wave (CR-57)

checkpoint (CR-82) and restore (CR-

206)

delete (CR-133) describe (CR-134) ("virtual
describe" is a little faster)

down (CR-139) / up (CR-231) examine (CR-149) find (CR-153)

force (CR-156)/noforce (CR-173) restart (CR-204) left (CR-164) / right (CR-208)

search (CR-212) searchlog (CR-214) show (CR-218)

check contention add (CR-74) check contention config (CR-75) check contention off (CR-76)

check float add (CR-77) check float config (CR-78) check float off (CR-79)

check stable on (CR-81) check stable off (CR-80) drivers (CR-141)

power add (CR-184) power report (CR-185) power reset (CR-186)

toggle add (CR-225) toggle reset (CR-227) toggle report (CR-226)

vcd add (CR-233)

virtual count (CR-265) virtual define (CR-266) virtual delete (CR-267)

virtual describe (CR-268) virtual expand (CR-269) virtual function (CR-270)

virtual hide (CR-273) virtual log (CR-274) virtual nohide (CR-276)

virtual nolog (CR-277) virtual region (CR-279) virtual save (CR-280)

virtual show (CR-281) virtual type (CR-285) Virtual Objects (User-defined
buses, and more) (UM-161)
Sim SE Command Reference

virtual type CR-285
virtual type

The virtual type command creates a new enumerated type, known only by the GUI, not the
kernel. Virtual types are used to convert signal values to character strings. The command
works with signed integer values up to 64 bits.

Syntax

virtual type
{<list_of_strings>} <name>

Arguments

{<list_of_strings>}

A list of values and their associated character strings. Required. Values can be expressed
in decimal or based notation. Three kinds of based notation are supported: Verilog,
VHDL, and C-language styles. The values are interpreted without regard to the size of
the bus to be mapped. Bus widths up to 64 bits are supported.

There is currently no restriction on the contents of each string, but if strings contain
spaces they would need to be quoted, and if they contain characters treated specially by
Tcl (square brackets, curly braces, backslashes...), they would need to be quoted with
curly braces.

See the examples below for further syntax.

<name>

The user-defined name of the virtual type. Required. Case is not ignored. Use alpha,
numeric, and underscore characters only, unless you are using VHDL extended identifier
notation. If using VHDL extended identifier notation, <name> needs to be quoted with
double quotes or with curly braces.

Examples

virtual type {state0 state1 state2 state3} mystateType
virtual function {(mystateType)mysignal} myConvertedSignal
add wave myConvertedSignal

Using positional notation, associates each string with an enumeration index, starting at
zero and increasing by one in the positive direction.When myConvertedSignal is
displayed in the Wave, List or Signals window, the string "state0" will appear when
mysignal == 0, "state1" when mysignal == 1, "state2" when
mysignal == 2, etc.

virtual type {{0 NULL_STATE} {1 st1} {2 st2} {0x04 st3} {16’h08 st4} \
{’h10 st5} {16#20 st6} {0b01000000 st7} {0x80 st8} \
{default BAD_STATE}} myMappedType

virtual function {(myMappedType)mybus} myConvertedBus
add wave myConvertedBus

Uses sparse mapping of bus values to alphanumeric strings for an 8-bit, one-hot
encoding. It shows the variety of syntax that can be used for values. The value "default"
has special meaning and corresponds to any value not explicitly specified.
ModelSim SE Command Reference

CR-286 Commands

Model
See also

virtual function (CR-270), "Virtual Objects (User-defined buses, and more)" (UM-161)

Note: Virtual types cannot be used in the when (CR-314) command.
Sim SE Command Reference

vlib CR-287
vlib

The vlib command creates a design library. You must use vlib rather than operating system
commands to create a library directory or index file. If the specified library already exists
as a valid ModelSim library, the vlib command will exit with a warning message without
touching the library.

Syntax

vlib
[-help] [-dos | -short | -unix | -long] <directory_name>

Arguments

-help

Displays the command’s options and arguments. Optional.

-dos

Specifies that subdirectories in a library have names that are compatible with DOS. Not
recommended if you use the vmake (CR-296) utility. Optional. Default for ModelSim PE.

-short

Interchangeable with the -dos argument. Optional.

-unix

Specifies that subdirectories in a library may have long file names that are NOT
compatible with DOS. Optional. Default for ModelSim SE.

-long

Interchangeable with the -unix argument. Optional.

<directory_name>

Specifies the pathname of the library to be created. Required.

Examples

vlib design

Creates the design library design. You can define a logical name for the library using the
vmap command (CR-297) or by adding a line to the library section of the modelsim.ini file
that is located in the same directory.
ModelSim SE Command Reference

CR-288 Commands

Model
vlog

The vlog command is used to invoke VLOG, the Model Technology Verilog compiler. Use
vlog to compile Verilog source code into a specified working library (or to the work library
by default).

vlog may be invoked from within ModelSim or from the operating system command
prompt. It may also be invoked during simulation.

Syntax

vlog
[-93] [-help] [-compat] [-compile_uselibs[=<directory_name>]]
[-debugCellOpt] [+define+<macro_name>[=<macro_text>]]
[+delay_mode_distributed] [+delay_mode_path] [+delay_mode_unit]
[+delay_mode_zero] [-f <filename>]
[-fast[=<secondary_name>] [+acc[=<spec>] [+<module>[.]]]] [-forcecode]
[-hazards] [+incdir+<directory>] [-incr] [-keep_delta] [-L <libname>]
[-Lf <libname>] [+libext+<suffix>] [+librescan] [-line <number>] [-lint]
[+maxdelays] [+mindelays] [+nocheckALL] [+nocheckCLUP] [+nocheckDNET]
[+nocheckOPRD] [+nocheckSUDP] [-nodebug[=ports | =pli]] [-noincr]
[+nolibcell] [-nologo] [+nospecify] [+notimingchecks] [+nowarn<CODE>] [-O0
| -O1 | -O4 | -O5] [+opt+[<lib>.]<module>] [-quiet] [-R [<simargs>]]
[-refresh] [-source] [-time] [+typdelays] [-u] [-v <library_file>]
[-version] [-work <library_name>] [-y <library_directory>] <filename>

Arguments

-93

Specifies that the VHDL interface to Verilog modules use VHDL 1076-1993 extended
identifiers to preserve case in Verilog identifiers that contain uppercase letters.

-help

Displays the command’s options and arguments. Optional.

-compat

Disables optimizations that result in different event ordering than Verilog-XL. Optional.

ModelSim Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it is inefficient to do so. Using this option does not help you find event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance. See "Event ordering in Verilog designs" (UM-92) for additional information.

-compile_uselibs[=<directory_name>]

Locates source files specified in a ‘uselib directive (see "Verilog-XL `uselib compiler
directive" (UM-87)), compiles those files into automatically created libraries, and updates
the modelsim.ini file with the logical mappings to the new libraries. Optional. If a
directory_name is not specified, ModelSim uses the name specified in the
MTI_USELIB_DIR environment variable. If that variable is not set, ModelSim creates
the directory mti_uselibs in the current working directory.

-debugCellOpt

Produces Main window transcript output that identifies why certain cells within the
design were not optimized. Used only when compiling gate-level Verilog libraries with
-fast (see below). Optional.
Sim SE Command Reference

vlog CR-289
+define+<macro_name>[=<macro_text>]

Allows you to define a macro from the command line that is equivalent to the following
compiler directive:

‘define <macro_name> <macro_text>

Optional. Multiple +define options are allowed on the command line. A command line
macro overrides a macro of the same name defined with the ‘define compiler directive.

+delay_mode_distributed

Disables path delays in favor of distributed delays. Optional. See "Delay modes" (UM-

111) for details.

+delay_mode_path

Sets distributed delays to zero in favor of using path delays. Optional. See "Delay modes"
(UM-111) for details.

+delay_mode_unit

Sets path delays to zero and non-zero distributed delays to one time unit. Optional. See
"Delay modes" (UM-111) for details.

+delay_mode_zero

Sets path delays and distributed delays to zero. Optional. See "Delay modes" (UM-111) for
details.

-f <filename>

Specifies a file with more command line arguments. Optional. Allows complex
arguments to be reused without retyping. Nesting of -f options is allowed.

-fast[=<secondary_name>] [+acc[=<spec>] [+<module>[.]]]

Increases simulation speed by allowing parameter propagation and global optimizations.
Optional. To use this parameter, you must compile the source code for your entire design
in a single invocation of the compiler. The following options are available:

=secondary_name

Allows you to specify a different secondary name for the optimized code. The compiler
automatically assigns a secondary name to distinguish optimized code from unoptimized
code that may exist in the same library. The default secondary name for optimized code
is "fast"; the default secondary name for unoptimized code is "verilog".

+acc[=<spec>][+<module>[.]]

Allows you to maintain design object visibility. Note that using this option may reduce
simulation speed.

<spec> is one or more of the following characters:

b–Enable access to bits of vector nets. This is necessary for PLI applications that
require handles to individual bits of vector nets. Also, some user interface commands
require this access if you need to operate on net bits.

c–Enable access to library cells. By default any Verilog module bracketed with a
‘celldefine / ‘endcelldefine may be optimized, and debug and PLI access may be
limited. This option keeps module cell visibility.

l–Enable access to line number directives and process names.

n–Enable access to nets.

p–Enable access to ports. This disables the module inlining optimization, and is
necessary only if you have PLI applications that require access to port handles.
ModelSim SE Command Reference

CR-290 Commands

Model
r–Enable access to registers (including memories, integer, time, and real types).

If <spec> is omitted, access is enabled for all objects.

<module> is a module name, optionally followed by "." to indicate all children of the
module. Multiple modules are allowed, with each separated by a "+". If no modules are
specified, then all modules are affected.

-forcecode

Forces code generation for optimized inline modules when using the -fast switch.
Optional. Use only in conjunction with the -fast switch. By default, code is not generated
for inline modules when the -fast switch is used.

-hazards

Detects event order hazards involving simultaneous reading and writing of the same
register in concurrently executing processes. Optional. You must also specify this
argument when you simulate the design with vsim (CR-298). See "Hazard detection" (UM-

95) for more details.

+incdir+<directory>

Specifies directories to search for files included with ‘include compiler directives.
Optional. By default, the current directory is searched first and then the directories
specified by the +incdir options in the order they appear on the command line. You may
specify multiple +incdir options as well as multiple directories separated by "+" in a
single +incdir option.

-incr

Performs an incremental compile. Optional. Compiles only code that has changed, or if
compile options change.

-keep_delta

Disables optimizations that remove delta delays. Optional.

Delta delays result from zero delay events. Those events are normally processed in the
next iteration or "delta" of the current timestep. -fast and +opt implement optimizations
that can remove delta delays and process an event earlier.

-L <libname>

Searches the specified resource library for precompiled modules. Optional.

This argument can be used in tandem with -fast (see above) when you need to optimize
pre-compiled modules for which you don’t have source code. The library search options
you specify here must also be specified when you run the vsim command (CR-298).

-Lf <libname>

Same as -L but the specified library is searched before any ’uselib directives. (See
"Library usage" (UM-85) and "Verilog-XL ‘uselib compiler directive" (UM-87) for more
information). Optional.

+libext+<suffix>

Works in conjunction with the -y option. Specifies file extensions for the files in a source
library directory. Optional. By default the compiler searches for files without extensions.
If you specify the +libext option, then the compiler will search for a file with the suffix

Note: Please see additional discussion about -fast in "Compiling for faster performance"
(UM-99) . Also, see +opt argument below.
Sim SE Command Reference

vlog CR-291
appended to an unresolved name. You may specify only one +libext option, but it may
contain multiple suffixes separated by "+". The extensions are tried in the order they
appear in the +libext option.

+librescan

Scans libraries in command-line order for all unresolved modules. Optional.

-line <number>

Starts the compiler on the specified line in the Verilog source file. Optional. By default,
the compiler starts at the beginning of the file.

-lint

Instructs ModelSim to perform three lint-style checks: 1) warn when Module ports are
NULL; 2) warn when assigning to an input port; 3) warn when referencing undeclared
variables/nets in an instantiation. The warnings are reported as WARNING[8]. Can also
be enabled using the Show_Lint variable in the modelsim.ini file.

+maxdelays

Selects maximum delays from the "min:typ:max" expressions. Optional. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+mindelays

Selects minimum delays from the "min:typ:max" expressions. Optional. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

+nocheckALL

Enables all +nocheck arguments described below. Optional. Argument has an effect only
when compiling gate-level cell libraries with -fast (see above). The +nocheck switches
increase the optimizations of -fast.

+nocheckCLUP

Allows connectivity loops in a cell to be optimized. Optional. Argument has an effect
only when compiling gate-level cell libraries with -fast (see above).

+nocheckDNET

Allows both the port and the delayed port (created for negative setup/hold) to be used in
the functional section of the cell. Optional. Argument has an effect only when compiling
gate-level cell libraries with -fast (see above).

+nocheckOPRD

Allows an output port to be read internally by the cell. Optional. Argument has an effect
only when compiling gate-level cell libraries with -fast (see above). Note that if the value
read is the only value contributed to the output by the cell, and if there’s a driver on the
net outside the cell, the value read will not reflect the resolved value.

+nocheckSUDP

Allows a sequential UDP to drive another sequential UDP. Optional. Argument has an
effect only when compiling gate-level cell libraries with -fast (see above).

-nodebug[=ports | =pli]

Hides the internal data of the compiled design unit. Optional. The design unit’s source
code, internal structure, registers, nets, etc. will not display in ModelSim’s windows. In
addition, none of the hidden objects may be accessed through the Dataflow window or
ModelSim SE Command Reference

CR-292 Commands

Model
with commands. This also means that you cannot set breakpoints or single step within
this code. Don’t compile with this switch until you’re done debugging.

Note that this is not a speed switch like the “nodebug” option on many other products.
Use the -fast switch to increase simulation speed.

The optional =ports switch hides the ports for the lower levels of your design; it should
be used only to compile the lower levels of the design. If you hide the ports of the top
level you will not be able to simulate the design.

The optional =pli switch prevents the use of pli functions to interrogate individual
modules for information; this switch may be used at any level of the design. Combine
both switches with =ports+pli or =pli+ports.

See additional discussion in "Source code security and -nodebug" (UM-492).

-noincr

Disables incremental compile previously turned on with -incr. Optional.

+nolibcell

By default all modules compiled from a source library are treated as though they contain
a ‘celldefine compiler directive. This option disables this default. The ‘celldefine
directive only affects the PLI access routines acc_next_cell and acc_next_cell_load.
Optional.

-nologo

Disables the startup banner. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.

+notimingchecks

Disables all timing check system tasks completely. Optional. Note that there is no way
to disable timing checks on specific instances–it’s all or nothing.

+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example,

** WARNING: (vsim-3017) test.v(2): [TFMPC] - Too few port connections.
Expected <m>, found <n>.

This warning message can be disabled with the +nowarnTFMPC option.

-O0 | -O1 | -O4 | -O5

Lower the optimization to a minimum with -O0 (capital oh zero). Optional. Use this to
work around bugs, increase your debugging visibility on a specific cell, or when you
want to place breakpoints on source lines that have been optimized out.

Enable PE-level optimization with -O1. Optional.

Enable standard SE optimizations with -O4. Default.

Note: -nodebug provides protection for proprietary model information. The Verilog
‘protect compiler directive provides similar protection, but uses a Cadence encryption
algorithm that is unavailable to Model Technology.
Sim SE Command Reference

vlog CR-293
Enable maximum optimization with -O5. Optional. Use caution with this switch. We
recommend use of this switch with large sequential blocks only; other uses may
significantly increase compile times. Also, before using -O5 with -fast (described
above), try using both switches independently to make sure the optimized design behaves
the same as the original version.

+opt+[<lib>.]<module>

Generates optimized code for designs that have been previously compiled unoptimized
(without the -fast option; see above). Optional. The <module> specification is the name
of the top-level design module, and <lib>, which is optional, is the library in which it
resides. By default, the top-level module is searched for in the work library. If the design
has multiple top-level modules, then provide the names in a list separated by plus signs.
For example,

vlog +opt+testbench+globals

Any options that are appropriate with -fast are also appropriate with +opt. Specifically,
use the +acc option to enable PLI access, and use the -L and -Lf options to specify the
libraries to be searched.

-quiet

Disables ’loading’ messages. Optional.

-R [<simargs>]

Instructs the compiler to invoke the simulator (vsim (CR-298)) after compiling the design.
The compiler automatically determines which top-level modules are to be simulated. The
command line arguments following -R are passed to the simulator, not the compiler.
Place the -R option at the end of the command line or terminate the simulator command
line arguments with a single "-" character to differentiate them from compiler command
line arguments.

The -R option is not a Verilog-XL option, but it is used by ModelSim to combine the
compile and simulate phases together as you may be used to doing with Verilog-XL. It
is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, it is
provided to ease the transition to ModelSim.

-refresh

Regenerates a library image. Optional. By default, the work library is updated; use -work
<library_name> to update a different library. See vlog examples for more information.

-source

Displays the associated line of source code before each error message that is generated
during compilation. Optional; by default, only the error message is displayed.

-time

Reports the "wall clock time" vlog takes to compile the design. Optional. Note that if
many processes are running on the same system, wall clock time may differ greatly from
the actual "cpu time" spent on vlog.

Note: Please see additional discussion about +opt and -fast in "Compiling for faster
performance" (UM-99).
ModelSim SE Command Reference

CR-294 Commands

Model
+typdelays

Selects typical delays from the "min:typ:max" expressions. Default. If preferred, you can
defer delay selection until simulation time by specifying the same option to the simulator.

-u

Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Optional.

-v <library_file>

Specifies a source library file containing module and UDP definitions. Optional. See
"Verilog-XL compatible compiler arguments" (UM-86) for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -v option to find and compile any modules that were referenced but not yet
defined. Modules and UDPs within the file are compiled only if they match previously
unresolved references. Multiple -v options are allowed. See additional discussion in the
examples.

-version

Returns the version of the compiler as used by the licensing tools, such as "Model
Technology ModelSim SE vlog 5.5 Compiler 2000.01 Jan 28 2000".

-work <library_name>

Specifies a logical name or pathname of a library that is to be mapped to the logical
library work. Optional; by default, the compiled design units are added to the work
library. The specified pathname overrides the pathname specified for work in the project
file.

-y <library_directory>

Specifies a source library directory containing module and UDP definitions. Optional.
See "Verilog-XL compatible compiler arguments" (UM-86) for more information.

After all explicit filenames on the vlog command line have been processed, the compiler
uses the -y option to find and compile any modules that were referenced but not yet
defined. Files within this directory are compiled only if the file names match the names
of previously unresolved references. Multiple -y options are allowed. You will need to
specify a file suffix by using -y in conjunction with the +libext+<suffix> option if your
filenames differ from your module names. See additional discussion in the examples.

<filename>

Specifies the name of the Verilog source code file to compile. One filename is required.
Multiple filenames can be entered separated by spaces. Wildcards can be used.

Examples

vlog example.vlg

Compiles the Verilog source code contained in the file example.vlg.

vlog -nodebug example.v

Hides the internal data of example.v. Models compiled with -nodebug cannot use any of
the ModelSim debugging features; any subsequent user will not be able to see into the
model.

vlog -nodebug=ports level3.v level2.v
vlog -nodebug top.v

The first line compiles and hides the internal data, plus the ports, of the lower-level
design units, level3.v and level2.v. The second line compiles the top-level unit, top.v,
Sim SE Command Reference

vlog CR-295
without hiding the ports. It is important to compile the top level without =ports because
top-level ports must be visible for simulation.

vlog -nodebug=ports+pli level3.v level2.v
vlog -nodebug=pli top.v

The first command hides the internal data, and ports of the design units, level3.v and
level2.v. In addition it prevents the use of PLI functions to interrogate the compiled
modules for information (either =ports+pli or =pli+ports works fine for this command).
The second line compiles the top-level unit without hiding the ports but restricts the use
of PLI functions as well.

Note that the =pli switch may be used at any level of the design but =ports should only
be used on lower levels since you can’t simulate without visible top-level ports.

See "Source code security and -nodebug" (UM-492) for more details.

vlog -fast cpu_rtl.v

Compiles all modules in cpu_rtl.v using global optimizations. Assuming your top-level
module is named testbench, you would simulate the design as follows:

vsim -c testbench

vlog -fast=opt1 cpu_rtl.v

Compiles all modules in cpu_rtl.v using global optimizations, and assigns the secondary
name "opt1" to the optimized modules.

vlog -fast +acc=rn cpu_rtl.v

Compiles cpu_rtl.v using global optimizations, but enables net and register access in all
modules in the design.

vlog top.v -v und1

After compiling top.v, vlog will scan the file und1 for modules or primitives referenced
but undefined in top.v. Only referenced definitions will be compiled.

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vlog will scan the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions will be compiled.

vlog -work mylib -refresh

The -work option specifies mylib as the library to regenerate. -refresh rebuilds the
library image without using source code, allowing models delivered as compiled libraries
without source code to be rebuilt for a specific release of ModelSim (4.6 and later only).

If your library contains VHDL design units be sure to regenerate the library with the
vcom command (CR-252) using the -refresh option as well. See "Regenerating your
design libraries" (UM-55) for more information.

vlog module1.v -u -O0 -incr

The -incr option determines whether or not the module source or compile options have
changed as module1 is parsed. If no change is found, the code generation phase is
skipped. Differences in compile options are determined by comparing the compiler
options stored in the _info file with the compiler options given. They must match exactly.

Note: Please see additional discussion about -fast in "Compiling for faster performance"
(UM-99) in the Verilog simulation chapter.
ModelSim SE Command Reference

CR-296 Commands

Model
vmake

The vmake utility allows you to use a UNIX or Windows MAKE program to maintain
libraries. The vmake utility is run on a compiled design library, and outputs a makefile that
can be used to reconstruct the library. The resulting makefile can then be run with a version
of MAKE (not supplied with ModelSim); a MAKE program is included with Microsoft
Visual C/C++, as well as many other program development environments.

After running the vmake utility, MAKE will recompile only the design units (and their
dependencies) that have changed. Vmake needs to be run only once, then you can simply
run MAKE to rebuild your design. If you add new design units or delete old ones, you
should re-run vmake to generate a new makefile.

This command must be invoked from either the UNIX or the Windows/DOS prompt.

Syntax

vmake
[-fullsrcpath] [-help] [<library_name>] [><makefile>]

Arguments

-fullsrcpath

Produces complete source file paths within generated makefiles. Optional. By default
source file paths are relative to the directory in which compiles originally occurred. This
argument makes it possible to copy and evaluate generated makefiles within directories
that are different from where compiles originally occurred.

-help

Displays the command’s options and arguments. Optional.

<library_name>

Specifies the library name; if none is specified, then work is assumed. Optional.

><makefile>

Specifies the makefile name. Optional.

Examples

To produce a makefile for the work library:

vmake >makefile

You can also run vmake on libraries other than work:

vmake mylib >mylib.mak

To rebuild mylib, specify its makefile when you run MAKE:

make -f mylib.mak
Sim SE Command Reference

vmap CR-297
vmap

The vmap command defines a mapping between a logical library name and a directory by
modifying the modelsim.ini file. With no arguments, vmap reads the appropriate
modelsim.ini file(s) and prints the current logical library to physical directory mappings.
Returns nothing.

Syntax

vmap
[-help] [-c] [-del] [<logical_name>] [<path>]

Arguments

-help

Displays the command’s options and arguments. Optional.

-c

Copies the default modelsim.ini file from the ModelSim installation directory to the
current directory. Optional.

-del

Deletes the mapping specified by <logical_name> from the current project file. Optional.

<logical_name>

Specifies the logical name of the library to be mapped. Optional.

<path>

Specifies the pathname of the directory to which the library is to be mapped. Optional. If
omitted, the command displays the mapping of the specified logical name.
ModelSim SE Command Reference

CR-298 Commands

Model
vsim

The vsim command is used to invoke the VSIM simulator, or to view the results of a
previous simulation run (when invoked with the -view switch). You can specify a
configuration, an entity/architecture pair, or a module for simulation. If a configuration is
specified, it is invalid to specify an architecture. With no options, vsim brings up the Load
Design dialog box, allowing you to specify the design and options; the Load Design dialog
box will not be presented if you specify any options. During elaboration vsim determines
if the source has been modified since the last compile.

To manually interrupt design elaboration use the Break key or <control-c> from a shell.

The vsim command may also be invoked from the command line within ModelSim with
most of the options shown below (all except the vsim -c and -restore options).

Syntax

vsim
[-assertfile <filename>] [-c] [-compress_elab] [-coverage]
[-do “<command_string>” | <macro_file_name>] [+dumpports+direction]
[-elab <filename>] [-elab_cont <filename>] [-elab_defer_fli]
[-f <filename>] [-filemap_elab <HDLfilename>=<NEWfilename>]
[-g<Name>=<Value> ...] [-G<Name>=<Value> ...] [-gui]
[-help] [-i] [-installcolormap] [-keeploaded] [-keeploadedrestart]
[-keepstdout] [-l <filename>] [<license_option>] [-load_elab <filename>]
[-multisource_delay min | max | latest] [+multisource_int_delays]
[-nocompress] [+no_notifier] [+no_tchk_msg] [+notimingchecks] [-quiet]
[-restore <filename>]
[-sdfmin | -sdftyp | -sdfmax [<instance>=]<sdf_filename>]
[-sdfnoerror] [-sdfnowarn] [+sdf_verbose] [-t [<multiplier>]<time_unit>]
[-tag <string>] [-title <title>] [-trace_foreign <int>] [-vcdstim
<filename>]
[-version] [-view [<dataset_name>=]<WLF_filename>] [-wlf <filename>]
[-wlfcompress] [-wlfnocompress] [-wlfslim <size>] [-wlftlim <duration>]

[-absentisempty] [-foreign <attribute>] [-nocollapse] [-nofileshare]
[-noglitch] [+no_glitch_msg] [-std_input <filename>]
[-std_output <filename>] [-strictvital] [-vcdread <filename>]
[-vital2.2b]

[+alt_path_delays] [-extend_tcheck_data_limit <percent>]
[-extend_tcheck_ref_limit <percent>]
[-hazards] [+int_delays] [-L <library_name> ...] [-Lf <library_name> ...]
[+maxdelays] [+mindelays] [+no_cancelled_e_msg] [+no_neg_tchk]
[+no_notifier] [+no_path_edge] [+no_pulse_msg] [+no_show_cancelled_e]
[+nosdferror] [+nosdfwarn] [+nospecify] [+no_tchk_msg] [+nowarn<CODE>]
[+ntc_warn] [-pli "<object list>"] [+<plusarg>]
[+pulse_e/<percent>] [+pulse_e_style_ondetect] [+pulse_e_style_onevent]
[+pulse_int_e/<percent>] [+pulse_int_r/<percent>] [+pulse_r/<percent>]
[+sdf_nocheck_celltype] [+show_cancelled_e] [+transport_int_delays]
[+transport_path_delays] [+typdelays]
[-v2k_int_delays]

[<library_name>.<design_unit>]

VSIM arguments are grouped alphabetically by language:

• Arguments, VHDL and Verilog (CR-299)

• Arguments, VHDL (CR-305)
Sim SE Command Reference

vsim CR-299
• Arguments, Verilog (CR-306)

• Arguments, design-unit (CR-310)

Arguments, VHDL and Verilog

-assertfile <filename>

Designates an alternative file for recording assertion messages. Optional. By default
assertion messages are output to the file specified by the TranscriptFile variable in the
modelsim.ini file (see "Creating a transcript file" (UM-452)).

-c

Specifies that the simulator is to be run in command line mode. Optional. Also see
"Running command-line and batch-mode simulations" (UM-490) for more information.

-compress_elab

Compresses an elaboration file when it is created. Optional. See "Simulating with an
elaboration file" (UM-108) for more information.

-coverage

Allows line number execution statistics to be kept by the simulator. By default no
statistics are kept. This switch must be specified during command-line invocation of the
simulator in order to use the various coverage commands: coverage clear (CR-116),
coverage reload (CR-121), and coverage report (CR-122). Also see Chapter 10 - Code
Coverage for more information. Optional.

-do “<command_string>” | <macro_file_name>

Instructs VSIM to use the command(s) specified by <command_string> or the macro file
named by <macro_file_name> rather than the startup file specified in the .ini file, if any.
Optional.

+dumpports+direction

Modifies the format of extended VCD files to contain direction information.

-elab <filename>

Creates an elaboration file for use with -load_elab. Optional. See "Simulating with an
elaboration file" (UM-108) for more information.

-elab_cont <filename>

Creates an elaboration file for use with -load_elab and then continues the simulation.
Optional.

-elab_defer_fli

Defers the initialization of FLI models until the load of the elaboration file. Use this
argument along with -elab to create elaboration files for designs with FLI models that
don’t support checkpoint/restore. Note that FLI models sensistive to design load ordering
may still not work correctly even if you use this argument. See "Simulating with an
elaboration file" (UM-108) for more information.

-f <filename>

Specifies a file with more command line arguments. Allows complex arguments to be
reused without retyping. Optional.

-filemap_elab <HDLfilename>=<NEWfilename>

Defines a file mapping during -load_elab that lets you change the stimulus. Optional.
See "Simulating with an elaboration file" (UM-108) for more information.
ModelSim SE Command Reference

CR-300 Commands

Model
-g<Name>=<Value> ...

Assigns a value to all specified VHDL generics and Verilog parameters that have not
received explicit values in generic maps, instantiations, or via defparams (such as top-
level generics/parameters and generics/parameters that would otherwise receive their
default values). Optional. Note there is no space between -g and <Name>=<Value>.

Name is the name of the generic/parameter, exactly as it appears in the VHDL source
(case is ignored). Value is an appropriate value for the declared data type of a VHDL
generic or any legal value for a Verilog parameter. Make sure the Value you specify for
a VHDL generic is appropriate for VHDL declared data types. VHDL type mismatches
will cause the specification to be ignored (including no error messages).

No spaces are allowed anywhere in the specification, except within quotes when
specifying a string value. Multiple -g options are allowed, one for each generic/
parameter.

Name may be prefixed with a relative or absolute hierarchical path to select generics in
an instance-specific manner. For example,

Specifying -g/top/u1/tpd=20ns on the command line would affect only the tpd generic
on the /top/u1 instance, assigning it a value of 20ns.

Specifying -gu1/tpd=20ns affects the tpd generic on all instances named u1.

Specifying -gtpd=20ns affects all generics named tpd.

If more than one -g option selects a given generic the most explicit specification takes
precedence. For example,

vsim -g/top/ram/u1/tpd_hl=10ns -gtpd_hl=15ns top

This command sets tpd_hl to 10ns for the /top/ram/u1 instance. However, all other tpd_hl
generics on other instances will be set to 15ns.

Limitation: In general, generics/parameters of composite type (arrays and records)
cannot be set from the command line. However, you can set string arrays, std_logic
vectors, and bit vectors if they can be set using a quoted string. For example,

-gstrgen="This is a string"
-gslv="01001110"

The quotation marks must make it into vsim as part of the string because the type of the
value must be determinable outside of any context. Therefore, when entering this
command from a shell, put a forward tick around the string. For example:

-gstrgen=’"This is a string"’

If working within the ModelSim GUI, you would enter the command as follows:

{-gstrgen="This is a string"}

-G<Name>=<Value> ...

Same as -g (see above) except that it will also override generics/parameters that received
explicit values in generic maps, instantiations, or via defparams. Optional. Note there is
no space between -G and <Name>=<Value>.

Note: When you compile Verilog code with -fast (see vlog (CR-288)), all parameter
values are set at compile time. Therefore, the -g option has no effect on these parameters.
Sim SE Command Reference

vsim CR-301
-gui

Starts the ModelSim GUI without loading a design. Optional.

-help

Displays the command’s options and arguments. Optional.

-i

Specifies that the simulator is to be run in interactive mode. Optional.

-installcolormap

For UNIX only. Causes vsim to use its own colormap so as not to hog all the colors on
the display. This is similar to the -install switch on Netscape. Optional.

-keeploaded

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries when
it restarts or loads a new design. Optional. The shared libraries will remain loaded at their
current positions. User application code in the shared libraries must reset its internal state
during a restart in order for this to work effectively.

-keeploadedrestart

Prevents the simulator from unloading/reloading any FLI/PLI/VPI shared libraries
during a restart. Optional. The shared libraries will remain loaded at their current
positions. User application code in the shared libraries must reset its internal state during
a restart in order for this to work effectively.

We recommend using this option if you’ll be doing warm restores after a restart and the
user application code has set callbacks in the simulator. Otherwise, the callback function
pointers might not be valid if the shared library is loaded into a new position.

-keepstdout

For use with foreign programs. Instructs the simulator to not redirect the stdout stream to
the Main window. Optional.

-l <filename>

Saves the contents of the "Main window" (UM-173) transcript to <filename>. Optional.
Default is transcript. Can also be specified using the .ini (see "Creating a transcript file"
(UM-452)) file or the.tcl preference file.

<license_option>

Restricts the search of the license manager. Optional. Use one of the following options.

<license_option> Description

-lic_nomgc exclude any MGC licenses from the search

-lic_nomti exclude any MTI licenses from the search

-lic_noqueue do not wait in queue when license is unavailable

-lic_plus checks out ModelSim SE/PLUS (VHDL and Verilog)
license immediately after invocation

-lic_vhdl checks out ModelSim SE/VHDL license immediately
after invocation

-lic_vlog checks out ModelSim SE/VLOG license immediately
after invocation
ModelSim SE Command Reference

CR-302 Commands

Model
The options may also be specified with the License (UM-448) variable in the modelsim.ini
file. Note that settings made from the command line are additive to options set in the
License variable. For example, if you set the License variable to nomgc and use the
-lic_plus option from the command line, vsim will check out only MTI SE/PLUS
licenses.

-load_elab <filename>

Loads an elaboration file that was created with -elab. Optional. See "Simulating with an
elaboration file" (UM-108) for more information.

-multisource_delay min | max | latest

Controls the handling of multiple PORT or INTERCONNECT constructs that terminate
at the same port. Optional. By default, the Module Input Port Delay (MIPD) is set to the
max value encountered in the SDF file. Alternatively, you may choose the min or latest
of the values. If you have a Verilog design and want to model multiple interconnect paths
independently, use the +multisource_int_delays switch (see "Arguments, Verilog"
(CR-306)).

+multisource_int_delays

Enables multisource interconnect delay with pulse handling and transport delay
behavior. Optional. Use this argument when you have interconnect data in your SDF file
and you want the delay on each interconnect path modeled independently. Pulse handling
is configured using the +pulse_int_e and +pulse_int_r switches (described below).

-nocompress

Causes VSIM to create uncompressed checkpoint files. Optional. This option must be
used with the -restore option (below) to restore a simulation from an uncompressed
checkpoint file. This option may also be specified with the CheckpointCompressMode
(UM-447) variable in the modelsim.ini file.

+no_notifier

Disables the toggling of the notifier register argument of the timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation on timing violations.

+no_tchk_msg

Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Notifier registers are still toggled and may result in the
propagation of Xs for timing check violations.

+notimingchecks

Disables Verilog and VITAL timing checks for faster simulation. Optional. By default,
Verilog timing check system tasks ($setup, $hold,...) in specify blocks are enabled. For
VITAL, the timing check default is controlled by the ASIC or FPGA vendor, but most
default to enabled.

-quiet

Disable ’loading’ messages during batch-mode simulation. Optional.

-restore <filename>

Specifies that VSIM is to restore a simulation saved with the checkpoint command (CR-

82). Optional. Use the -nocompress switch (above) if compression was turned off when
the checkpoint command (CR-82) was used or if VSIM was initially invoked with
Sim SE Command Reference

vsim CR-303
-nocompress. See additional discussion in "How to use checkpoint/restore" (UM-488);
-nocompress is also an option of the restore command (CR-206).

-sdfmin | -sdftyp | -sdfmax [<instance>=]<sdf_filename>

Annotates VITAL or Verilog cells in the specified SDF file (a Standard Delay Format
file) with minimum, typical, or maximum timing. Optional. The use of [<instance>=]
with <sdf_filename> is also optional; it is used when the backannotation is not being
done at the top level. See "Specifying SDF files for simulation" (UM-378).

-sdfnoerror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

-sdfnowarn

Disables warnings from the SDF reader. Optional. See Chapter 4 - VHDL simulation for
an additional discussion of SDF.

+sdf_verbose

Turns on the verbose mode during SDF annotation. The Main window provides detailed
warnings and summaries of the current annotation. Optional.

-t [<multiplier>]<time_unit>

Specifies the simulator time resolution. Optional. <time_unit> must be one of the
following:

fs, ps, ns, us, ms, sec

The default is 1ns; the optional <multiplier> may be 1, 10 or 100. Note that there is no
space between the multiplier and the unit (i.e., 10fs, not 10 fs).

If you omit the -t argument, the default time resolution depends on design type: in a
Verilog design with ‘timescale directives, the minimum time precision is used (see
"Simulator resolution limit" (UM-90) for further details); in Verilog designs without any
timescale directives, or in a VHDL or mixed design, the value specified for the
Resolution (UM-449) variable in the modelsim.ini file is used.

Once you’ve begun simulation, you can determine the current simulator resolution by
invoking the report command (CR-202) with the simulator state option.

-tag <string>

Specifies a string tag to append to foreign trace filenames. Optional; used with the
-trace_foreign <int> option. Used when running multiple traces in the same directory.
See "Invoking a trace" (FLI-37).

-title <title>

Specifies the title to appear for the ModelSim Main window. Optional. If omitted the
current ModelSim version is the window title. Useful when running multiple
simultaneous simulations. Text strings with spaces must be in quotes (e.g., "my title").

Note: You must restore vsim under the same environment in which you did the
checkpoint. This means not only the same type of machine and OS and at least the same
memory size, but also the same vsim environment such as GUI vs. command line mode.
ModelSim SE Command Reference

CR-304 Commands

Model
-trace_foreign <int>

Creates two kinds of foreign interface traces: a log of what functions were called, with
the value of the arguments, and the results returned; and a set of C-language files to
replay what the foreign interface side did.

The purpose of the logfile is to aid the debugging of your FLI/PLI/VPI code. The primary
purpose of the replay facility is to send the replay file to MTI support for debugging co-
simulation problems, or debugging problems for which it is impractical to send the FLI/
PLI/VPI code. See "Invoking a trace" (FLI-37) for more information.

-vcdstim <filename>

Resimulates a design from a VCD file. Optional. The VCD file must have been created
in a previous simulation using the vcd dumpports command (CR-236). See
"Resimulating a design from a VCD file" (UM-395) for more information.

-version

Returns the version of the simulator as used by the licensing tools, such as "Model
Technology ModelSim SE vsim 5.5 Simulator 2000.01 Jan 28 2000".

-view [<dataset_name>=]<WLF_filename>

Specifies a wave log format (WLF) file for vsim to read. Allows you to use VSIM to view
the results from an earlier simulation. The Structure, Signals, Wave, and List windows
can be opened to look at the results stored in the WLF file (other ModelSim windows will
not show any information when you are viewing a dataset). See additional discussion in
"Examples" (CR-311).

-wlf <filename>

Specifies the name of the wave log format (WLF) file to create. The default is vsim.wlf.
Optional.

-wlfcompress

Creates compressed WLF files. Default. Use -wlfnocompress to turn off compression.

-wlfnocompress

Causes VSIM to create uncompressed WLF files. Optional. Beginning with version 5.5,
WLF files are compressed by default in order to reduce file size. This may slow
simulation speed by one to two percent. You may want to disable compression to speed
up simulation or if you are experiencing problems with faulty data in the resulting WLF
file. This option may also be specified with the WLFCompress (UM-450) variable in the
modelsim.ini file.

-wlfslim <size>

Specifies a size restriction in megabytes for the event portion of the WLF file. Optional.
The default is infinite size (0). The <size> must be an integer.

Note that a WLF file contains event, header, and symbol portions. The size restriction is
placed on the event portion only. When ModelSim exits, the entire header and symbol
portion of the WLF file is written. Consequently, the resulting file will be larger than the
size specified with -wlfslim.

If used in conjunction with -wlftlim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFSizeLimit (UM-450) variable in the
modelsim.ini file.
Sim SE Command Reference

vsim CR-305
-wlftlim <duration>

Specifies the duration of simulation time for WLF file recording. Optional. The default
is infinite time (0). The <duration> is an integer of simulation time at the current
resolution; you can optionally specify the resolution if you place curly braces around the
specification. For example,

{5000 ns}

sets the duration at nanoseconds regardless of the current simulator resolution.

The time range begins at current simulation time and moves back in simulation time for
the specified duration. For example,

vsim -wlftlim 5000

writes at least the last 5000ns of the current simulation to the WLF file (the current
simulation resolution in this case is ns).

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

This option may also be specified with the WLFTimeLimit (UM-450) variable in the
modelsim.ini file.

Arguments, VHDL

-absentisempty

Causes VHDL files opened for read that target non-existent files to be treated as empty,
rather than ModelSim issuing fatal error messages. Optional.

-foreign <attribute>

Specifies the foreign module to load. Optional. <attribute> is a quoted string consisting
of the name of a C function and a path to a shared library. For example,

vsim -foreign "c_init for.sl"

You can load up to ten foreign modules. Syntax for the attribute is further described in
the Introduction chapter of the ModelSim FLI Reference.

-nocollapse

Disables the optimization of internal port map connections. Optional.

-nofileshare

By default ModelSim shares a file descriptor for all VHDL files opened for write or
append that have identical names. The -nofileshare switch turns off file descriptor
sharing. Optional.

-noglitch

Disables VITAL glitch generation. Optional.

See Chapter 4 - VHDL simulation for additional discussion of VITAL.

+no_glitch_msg

Disable VITAL glitch error messages. Optional.

Note: The -wlfslim and -wlftlim switches were designed to help users limit WLF file
sizes for long or heavily logged simulations. When small values are used for these
switches, the values may be overridden by the internal granularity limits of the WLF file
format.
ModelSim SE Command Reference

CR-306 Commands

Model
-std_input <filename>

Specifies the file to use for the VHDL TextIO STD_INPUT file. Optional.

-std_output <filename>

Specifies the file to use for the VHDL TextIO STD_OUTPUT file. Optional.

-strictvital

Exactly match the VITAL package ordering for messages and delta cycles. Optional.
Useful for eliminating delta cycle differences caused by optimizations not addressed in
the VITAL LRM. Using this argument negatively impacts simulator performance.

-vcdread <filename>

Simulates the VHDL top-level design from the specified VCD file. Optional. This
argument is included for backwards compatibility. Resimulations in ModelSim versions
5.5c and newer should use the -vcdstim argument. See "Resimulating a design from a
VCD file" (UM-395) for more details.

-vital2.2b

Selects SDF mapping for VITAL 2.2b (default is VITAL 2000). Optional.

Arguments, Verilog

+alt_path_delays

Configures path delays to operate in inertial mode by default. Optional. In inertial mode,
a pending output transition is cancelled when a new output transition is scheduled. The
result is that an output may have no more than one pending transition at a time, and that
pulses narrower than the delay are filtered. The delay is selected based on the transition
from the cancelled pending value of the net to the new pending value. The
+alt_path_delays option modifies the inertial mode such that a delay is based on a
transition from the current output value rather than the cancelled pending value of the net.
This option has no effect in transport mode (see +pulse_e/<percent> and
+pulse_r/<percent>).

-extend_tcheck_data_limit <percent>

-extend_tcheck_ref_limit <percent>

Causes a one-time extension of qualifying data or reference limits in an attempt to
provide a delay net delay solution prior to any limit zeroing. Optional. (See "Negative
timing check limits" (UM-96) for related information.)

<percent> is the maximum percent of limit relaxation. A limit qualifies if it bounds a
violation region which does not overlap a related violation region.

For example,

$setuphold(posedge clk, posedge d, 45, 70, notifier,,,dclk,dd);
$setuphold(posedge clk, negedge d, 216, -68, notifier,,,dclk,dd);

are the same check type and have the same delay nets and thus are related.

The delay net delay analysis in this case does not provide a solution. The required
negative hold delay of 68 between d and dd could cause a non-violating posedge d
transition to be delayed on dd so that it could arrive after dclk for functional evaluation.
By default the -68 hold limit is set pessimistically to 0 to insure the correct functional
evaluation. Alternatively, you could use -extend_tcheck_data_limit so the regions
overlap. This can be accomplished by extending the 216, -68 region to 216, -44. You
would set -extend_tcheck_data_limit to 16 (216-68 = 148 * .16 = 24).
Sim SE Command Reference

vsim CR-307
-hazards

Enables event order hazard checking in Verilog modules. Optional. You must also
specify this argument when you compile your design with vlog (CR-288). See "Hazard
detection" (UM-95) for more details.

+int_delays

Optimizes annotation of interconnect delays for designs that have been compiled using
-fast (see vlog command (CR-288)). Optional. This argument causes vsim to insert
"placeholder" delay elements at optimized cell inputs, resulting in faster backannotation
of interconnect delay from an SDF file.

-L <library_name> ...

Specifies the library to search for design units instantiated from Verilog. See "Library
usage" (UM-85) for more information. If multiple libraries are specified, each must be
preceded by the -L option.

-Lf <library_name> ...

Same as -L but libraries are searched before ‘uselib directives. See "Library usage" (UM-

85) for more information. Optional.

+maxdelays

Selects the maximum value in min:typ:max expressions. Optional. The default is the
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+mindelays

Selects the minimum value in min:typ:max expressions. Optional. The default is the
typical value. Has no effect if you specified the min:typ:max selection at compile time.

+no_cancelled_e_msg

Disables negative pulse warning messages. Optional. By default vsim issues a warning
and then filters negative pulses on specify path delays. You can drive an X for a negative
pulse using +show_cancelled_e.

+no_neg_tchk

Disables negative timing check limits by setting them to zero. Optional. By default
negative timing check limits are enabled. This is just the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier

Disables the toggling of the notifier register argument of the timing check system tasks.
Optional. By default, the notifier is toggled when there is a timing check violation, and
the notifier usually causes a UDP to propagate an X. This argument suppresses X
propagation on timing violations.

+no_path_edge

Causes ModelSim to ignore the input edge specified in a path delay. Optional. The result
of this argument is that all edges on the input are considered when selecting the output
delay. Verilog-XL always ignores the input edges on path delays.

+no_pulse_msg

Disables the warning message for specify path pulse errors. Optional. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulse error limit set with the +pulse_r and +pulse_e options. A path pulse error
results in a warning message, and the pulse is propagated as an X. The +no_pulse_msg
option disables the warning message, but the X is still propagated.
ModelSim SE Command Reference

CR-308 Commands

Model
+no_show_cancelled_e

Filters negative pulses on specify path delays so they don’t show on the output. Default.
Use +show_cancelled_e to drive a pulse error state.

+no_tchk_msg

Disables error messages issued by timing check system tasks when timing check
violations occur. Optional. Notifier registers are still toggled and may result in the
propagation of Xs for timing check violations.

+nosdferror

Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Changes SDF errors to warnings so that the
simulation can continue. Optional.

+nosdfwarn

Disables warnings from the SDF annotator. Optional.

+nospecify

Disables specify path delays and timing checks. Optional.

+nowarn<CODE>

Disables warning messages in the category specified by <CODE>. Optional. Warnings
that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

** WARNING: (vsim-3017) test.v(2): [TFMPC] - Too few port connections.
Expected <m>, found <n>.

This warning message can be disabled with +nowarnTFMPC.

+ntc_warn

Enables warning messages from the negative timing constraint algorithm. Optional. By
default, these warnings are disabled.

This algorithm attempts to find a set of delays for the timing check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recalculates the delays. This process is repeated until a
solution is found. A warning message is issued for each negative limit set to zero.

-pli "<object list>"

Loads a space-separated list of PLI shared objects. Optional. The list must be quoted if it
contains more than one object. This is an alternative to specifying PLI objects in the
Veriuser entry in the modelsim.ini file, see "Preference variables located in INI files"
(UM-444). You can use environment variables as part of the path.

+<plusarg>

Arguments preceded with "+" are accessible by the Verilog PLI routine
mc_scan_plusargs(). Optional.

+pulse_e/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the error limit as a percentage of the path delay.
Optional.

A pulse greater than or equal to the error limit propagates to the output in transport mode
(transport mode allows multiple pending transitions on an output). A pulse less than the
error limit and greater than or equal to the rejection limit (see +pulse_r/<percent>)
Sim SE Command Reference

vsim CR-309
propagates to the output as an X. If the rejection limit is not specified, then it defaults to
the error limit. For example, consider a path delay of 10 along with a +pulse_e/80 option.
The error limit is 80% of 10 and the rejection limit defaults to 80% of 10. This results in
the propagation of pulses greater than or equal to 8, while all other pulses are filtered.
Note that you can force specify path delays to operate in transport mode by using the
+pulse_e/0 option.

+pulse_e_style_ondetect

Selects the "on detect" style of propagating pulse errors (see +pulse_e). Optional. A
pulse error propagates to the output as an X, and the "on detect" style is to schedule the
X immediately, as soon as it has been detected that a pulse error has occurred. "on event"
style is the default for propagating pulse errors (see +pulse_e_style_onevent).

+pulse_e_style_onevent

Selects the "on event" style of propagating pulse errors (see +pulse_e). Default. A pulse
error propagates to the output as an X, and the "on event" style is to schedule the X to
occur at the same time and for the same duration that the pulse would have occurred if it
had propagated through normally.

+pulse_int_e/<percent>

Analogous to +pulse_e, except it applies to interconnect delays only. Optional. Used in
conjunction with +multisource_int_delays (see above).

+pulse_int_r/<percent>

Analogous to +pulse_r, except it applies to interconnect delays only. Optional. Used in
conjunction with +multisource_int_delays (see above).

+pulse_r/<percent>

Controls how pulses are propagated through specify path delays, where <percent> is a
number between 0 and 100 that specifies the rejection limit as a percentage of the path
delay. Optional.

A pulse less than the rejection limit is suppressed from propagating to the output. If the
error limit is not specified by +pulse_e then it defaults to the rejection limit.

+sdf_nocheck_celltype

Disables error check for mismatch between the CELLTYPE name in the SDF file and the
module or primitive name for the CELL instance. It is an error if the names do not match.
Optional.

+show_cancelled_e

Drives a pulse error state (’X’) for the duration of a negative pulse on a specify path
delay. Optional. By default ModelSim filters negative pulses.

+transport_int_delays

Selects transport mode with pulse control for single-source nets (one interconnect path).
Optional. By default interconnect delays operate in inertial mode (pulses smaller than the
delay are filtered). In transport mode, narrow pulses are propagated through interconnect
delays. This option works independently from +multisource_int_delays.

+transport_path_delays

Selects transport mode for path delays. Optional. By default, path delays operate in
inertial mode (pulses smaller than the delay are filtered). In transport mode, narrow
pulses are propagated through path delays. Note that this option affects path delays only,
and not primitives. Primitives always operate in inertial delay mode.
ModelSim SE Command Reference

CR-310 Commands

Model
+typdelays

Selects the typical value in min:typ:max expressions. Default. Has no effect if you
specified the min:typ:max selection at compile time.

-v2k_int_delays

Causes interconnect delay to be visible at the load module port. Optional. If you have
$sdf_annotate() calls in your design that are not getting executed, add the Verilog task
$sdf_done() after your last $sdf_annotate() to remove any zero-delay MIPDs that may
have been created. May be used in tandem with +multisource_int_delays argument (see
above).

Arguments, design-unit

The following library/design-unit arguments may be used with vsim. If no design-unit
specification is made, VSIM will open the Load a Design dialog box. Multiple design units
may be specified for Verilog modules and mixed VHDL/Verilog configurations.

<library_name>.<design_unit>

Specifies a library and associated design unit; multiple library/design unit specifications
can be made. Optional. If no library is specified, the work library is used. Environment
variables can be used.

The <design_unit> may be one of the following:

<configuration>

Specifies the VHDL configuration to simulate.

<module> ...

Specifies the name of one or more top-level Verilog modules to be simulated. Optional.

<entity> [(<architecture>)]

Specifies the name of the top-level VHDL entity to be simulated. Optional. The entity
may have an architecture optionally specified; if omitted the last architecture compiled
for the specified entity is simulated. An entity is not valid if a configuration is specified.

Note: Most UNIX shells require arguments containing () to be single-quoted to prevent
special parsing by the shell. See the examples below.
Sim SE Command Reference

vsim CR-311
Examples

vsim -gedge=’"low high"’ -gVCC=4.75 cpu

Invokes VSIM on the entity cpu and assigns values to the generic parameters edge and
VCC. If working within the ModelSim GUI, you would enter the command as follows:

vsim {-gedge="low high"} -gVCC=4.75 cpu

vsim -view test=sim2.wlf

Instructs ModelSim to view the results of a previous simulation run stored in the WLF
file sim2.wlf. The simulation is displayed as a dataset named "test". Use the -wlf option
to specify the name of the WLF file to create if you plan to create many files for later
viewing. For example:

vsim -wlf my_design.i01 my_asic structure
vsim -wlf my_design.i02 my_asic structure

vsim -sdfmin /top/u1=sdf1

Annotates instance /top/u1 using the minimum timing from the SDF file sdf1.

Use multiple switches to annotate multiple instances:

vsim -sdfmin /top/u1=sdf1 -sdfmin /top/u2=sdf2 top

vsim ’mylib.top(only)’ gatelib.cache_set

This example searches the libraries mylib for top(only) and gatelib for cache_set. If the
design units are not found, the search continues to the work library. Specification of the
architecture (only) is optional.
ModelSim SE Command Reference

CR-312 Commands

Model
vsim<info>

The vsim<info> commands return information about the current vsim executable.

vsimAuth

Returns the authorization level (PE/SE, VHDL/Verilog/PLUS).

vsimDate

Returns the date the executable was built, such as "Apr 10 2000".

vsimId

Returns the identifying string, such as "ModelSim 5.4".

vsimVersion

Returns the version as used by the licensing tools, such as "1999.04".

vsimVersionString

Returns the full vsim version string.

This same information can be obtained using the -version argument of the vsim command
(CR-298).
Sim SE Command Reference

vsource CR-313
vsource

The vsource command specifies an alternative file to use for the current source file. This
command is used when the current source file has been moved. The alternative source
mapping exists for the current simulation only.

Syntax

vsource
[<filename>]

Arguments

<filename>

Specifies a relative or full pathname. Optional. If filename is omitted the source file for
the current design context is displayed.

Examples
vsource design.vhd
vsource /old/design.vhd
ModelSim SE Command Reference

CR-314 Commands

Model
when

The when command instructs ModelSim to perform actions when the specified conditions
are met. For example, you can use the when command to break on a signal value or at a
specific simulator time (see "Time-based breakpoints" (CR-317)). Conditions can include
the following HDL items: VHDL signals, and Verilog nets and registers. Use the nowhen
command (CR-178) to deactivate when commands.

The when command uses a when_condition_expression to determine whether or not to
perform the action. The when_condition_expression uses a simple restricted language
(that is not related to Tcl), which permits only four operators and operands that may be
either HDL item names, signame’event, or constants. ModelSim evaluates the condition
every time any item in the condition changes, hence the restrictions.

With no arguments, when will list the currently active when statements and their labels
(explicit or implicit).

Syntax

when
[[-label <label>] [-id <id#>] {<when_condition_expression>} {<command>}]

Arguments

-label <label>

Used to identify individual when commands. Optional.

-id <id#>

Attempts to assign this id number to the when command. Optional. If the id number you
specify is already used, ModelSim will return an error.

{<when_condition_expression>}

Specifies the conditions to be met for the specified <command> to be executed.
Required. The condition is evaluated in the simulator kernal and can be an item name, in
which case the curly braces can be omitted. The command will be executed when the
item changes value. The condition can be an expression with these operators:

Note: Virtual signals, functions, regions, types, etc. cannot be used in the when
command.

Note: Ids for when commands are assigned from the same pool as those used for the bp
command (CR-68). So, even if you haven’t used an id number for a when command, it’s
possible it is used for a breakpoint.

 Name Operator

equals ==, =

not equal !=, /=

AND &&, AND
Sim SE Command Reference

when CR-315
The operands may be item names, signame’event, or constants. Subexpressions in
parentheses are permitted. The command will be executed when the expression is
evaluated as TRUE or 1.

The formal BNF syntax is:

condition ::= Name | { expression }

expression ::= expression AND relation
| expression OR relation

 | relation

relation ::= Name = Literal
| Name /= Literal
| Name ’ EVENT
| (expression)

Literal ::= '<char>' | “<bitstring>” | <bitstring>

The "=" operator can occur only between a Name and a Literal. This means that you
cannot compare the value of two signals, i.e., Name = Name is not possible.

{<command>}

The command(s) for this argument are evaluated by the Tcl interpreter within the
ModelSim GUI. Any ModelSim or Tcl command or series of commands are valid with
one exception—the run command (CR-210) cannot be used with the when command.
Required. The command sequence usually contains a stop command (CR-223) that sets a
flag to break the simulation run after the command sequence is completed. Multiple-line
commands can be used.

OR ||, OR

Note: If you want to stop the simulation using a when command, you must use a stop
command (CR-223) within your when statement. DO NOT use an exit command (CR-152)
or a quit command. The stop command acts like a breakpoint at the time it is evaluated.
See "Ending the simulation with the stop command" (CR-316) for an example.

 Name Operator
ModelSim SE Command Reference

CR-316 Commands

Model
Examples

The when command below instructs the simulator to display the value of item c in binary
format when there is a clock event, the clock is 1, and the value of b is 01100111, and then
to stop.

when -label when1 {clk’event and clk=’1’ and b = “01100111”} {
echo “Signal c is [exa -bin c]"
stop}

The when command below is labeled “a” and will cause ModelSim to echo the message “b
changed” whenever the value of the item b changes.

when -label a b {echo “b changed”}

The multi-line when command below does not use a label and has two conditions. When
the conditions are met, an echo (CR-143) and a stop (CR-223) command will be executed.

when {b = 1
 and c /= 0 } {
 echo “b is 1 and c is not 0”
 stop

}

In the example below, for the declaration "wire [15:0] a;", the when command will
activate when the selected bits match a 7:

when {a(3:1) = 3'h7} {echo "matched at time" $now}

If you encounter a vectored net caused by compiling with -fast, use the ’event qualifier to
prevent the command from falsely evaluating when unrelated bits of ’a’ change:

when {a(3:1) = 3’h7 and a(3:1)’event} {echo "matched at time" $now}

Ending the simulation with the stop command

Batch mode simulations (see "How to use checkpoint/restore" (UM-488)) are often
structured as "run until condition X is true," rather than "run for X time" simulations. The
multi-line when command below sets a done condition and executes an echo (CR-143) and
a stop (CR-223) command when the condition is reached.

The simulation will not stop (even if a quit -f command is used) unless a stop command is
executed. To exit the simulation and quit ModelSim, use an approach like the following:

onbreak {resume}
when {/done_condition == ’1’}

{echo "End condition reached"
if [batch_mode] {

set DoneConditionReached 1
stop

}
}
run 1000 us
if {$DoneConditionReached == 1} {

quit -f
}

Sim SE Command Reference

when CR-317
Time-based breakpoints

You can build time-based breakpoints into a when statement with the following syntax.

For absolute time (indicated by @) use:

when {$now = @1750ns} {stop}

You can also use:

when {errorFlag = ’1’ OR $now = 2ms} {stop}

This example adds 2ms to the simulation time at which the when statement is first
evaluated, then stops.

You can also use variables, as shown in the following example:

set time 1000
when "\$now = $time" {stop}

The quotes instruct Tcl to expand the variables before calling the command. So, the when
command sees:

when "$now = 1000" stop

Note that "$now" has the $ escaped. This prevents Tcl from expanding the variable,
because if it did, you would get:

when "0 = 1000" stop

See also

bp (CR-68), disablebp (CR-135), enablebp (CR-145), nowhen (CR-178)
ModelSim SE Command Reference

CR-318 Commands

Model
where

The where command displays information about the system environment. This command
is useful for debugging problems where ModelSim cannot find the required libraries or
support files.

Syntax

where

Arguments

None.

Description

The where command displays three system settings:

current directory

This is the current directory that ModelSim was invoked from, or was specified on the
ModelSim command line. Once in vsim, the current directory cannot be changed.

current project file

This is the initialization file ModelSim is using. All library mappings are taken from here.
Window positions, and other parameters are taken from the modelsim.tcl file.
Sim SE Command Reference

wlf2log CR-319
wlf2log

The wlf2log command translates a ModelSim WLF file (vsim.wlf) to a QuickSim II logfile.
The command reads the vsim.wlf WLF file generated by the add list, add wave, or log
commands in the simulator and converts it to the QuickSim II logfile format.

Syntax

wlf2log
[-fullname] [-help] [-inout] [-input] [-internal] [-l <instance_path>]
[-lower] [-o <outfile>] [-output] [-quiet] <wlffile>

Arguments

-fullname

Shows the full hierarchical pathname when displaying signal names. Optional.

-help

Displays a list of command options with a brief description for each. Optional.

-inout

Lists only the inout ports. Optional. This may be combined with the -input, -output, or
-internal switches.

-input

Lists only the input ports. Optional. This may be combined with the -output, -inout, or
-internal switches.

-internal

Lists only the internal signals. Optional. This may be combined with the -input, -output,
or -inout switches.

-l <instance_path>

Lists the signals at or below the specified HDL instance path within the design hierarchy.
Optional.

-lower

Shows all logged signals in the hierarchy. Optional. When invoked without the -lower
switch, only the top level signals are displayed.

-o <outfile>

Directs the output to be written to the file specified by <outfile>. Optional. The default
destination for the logfile is standard out.

-output

Lists only the output ports. Optional. This may be combined with the -input, -inout, or
-internal switches.

-quiet

Disables error message reporting. Optional.

Important: This command should be invoked only after you have stopped the
simulation using quit -sim or dataset close sim.
ModelSim SE Command Reference

CR-320 Commands

Model
<wlffile>

Specifies the ModelSim WLF file that you are converting. Required.

Additional information for QuickSim II users

In some cases your original QuickHDL/ModelSim simulation results (in your vsim.wlf file)
may contain signal values that do not directly correspond to qsim_12state values. The
resulting QuickSim II logfile generated by wlf2log may contain state values that are
surrounded by single quotes, e.g. ’0’ and ’1’. To make this logfile compatible with QuickSim
models (that expect qsim_12state) you need to use a QuickSim II function named
$convert_wdb().

This function was created to convert logfiles resulting from VHDL simulation that used
std_logic and std_ulogic since these data types do not correlate to QuickSim’s 12 simulation
states. Other VHDL data types such as qsim_state or bit (2 state) do not require conversion
as they are directly compatible with qsim_12state QuickSim II Waveform Databases
(WDB).

The following procedure can be used to convert a wlf2log-generated logfile into a
compatible QuickSim WDB. The procedure below shows how to convert the logfile while
loaded into memory in QuickSim II.

1 Load the logfile (the output from wlf2log) into a WDB other than "forces". "Forces" is
the default WDB, so you need to choose a unique name for the WDB when loading the
logfile (for example, "fred").

2 Enter the following at the command prompt from within QuickSim:

$convert_wdb("fred",0)

The first argument, which is "fred", is the name of the new WDB to be created. The
second argument, which is 0, specifies the type of conversion. At this time only one type
of conversion is supported. The value 0 specifies to convert std_logic or std_ulogic into
qsim_12state.

3 Do a connect_wdb (either through the pulldown menus, the "Connect WDB" palette icon
under "Stimulus", or a function invocation). You specify the name of the WDB that you
originally loaded the logfile into (in this case, "fred").

At this point you can issue the "run" command and the stimulus in the converted logfile will
be applied. Before exiting the simulation you should save the new WDB ("fred") as a WDB
or logfile so that it can be loaded again in the future. The new WDB or logfile will contain
the correct qsim_12state values eliminating the need to re-use convert_wdb().
Sim SE Command Reference

wlfrecover CR-321
wlfrecover

The wlfrecover tool attempts to "repair" WLF files that are incomplete due to a crash or
the file being copied prior to completion of the simulation. The tool works only on WLF
files created by ModelSim versions 5.6 or later. You can run the tool from the VSIM
prompt or from a shell.

Syntax

wlfrecover
<filename> [-force] [-q]

Arguments

<filename>

Specifies the WLF file to repair. Required.

-force

Disregards file locking and attempts to repair the file. Required for PCs.

-q

Hides all messages unless there is an error while repairing the file. Optional.
ModelSim SE Command Reference

CR-322 Commands

Model
write cell_report

The write cell_report command writes to the Main window transcript or to a file a list of
optimized (-fast) cell instances in the current design.

Syntax

write cell_report
[-filter <number>] [-infile <filename>] [-nonopt]
[[-outfile] <filename>]

Arguments

-filter <number>

Excludes cells with instance counts fewer than <number>. Optional.

-infile <filename>

Specifies a previously generated write report file to use as input. Optional. If not
specified then the write report command will be run.

-nonopt

Reports only non-optimized instances. Optional.

[-outfile] <filename>

Writes the report to the specified output file rather than the Transcript. Optional.
Sim SE Command Reference

write format CR-323
write format

The write format command records the names and display options of the HDL items
currently being displayed in the List or Wave window. The file created is primarily a list of
add list (CR-48), add wave (CR-57), and configure (CR-110) commands, though a few other
commands are included (see "Output" below). This file may be invoked with the do
command (CR-138) to recreate the List or Wave window format on a subsequent simulation
run.

When you load a wave or list format file, ModelSim verifies the existence of the datasets
required by the format file. ModelSim displays an error message if the requisite datasets do
not all exist. To force the execution of the wave or list format file even if all datasets are
not present, use the -force switch with your do command. For example:

 VSIM> do wave.do -force

Note that this will result in error messages for signals referencing nonexistent datasets.
Also, -force is recognized by the format file not the do command.

Syntax

write format
list | wave [-window <window_name>] <filename>

Arguments

list | wave

Specifies that the contents of either the List or the Wave window are to be recorded.
Required.

-window <window_name>

Specifies the window for which you want contents recorded. Optional. Use when you
have more than one instance of the List or Wave window.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write format list alu_list.do

Saves the current data in the List window in a file named alu_list.do.

write format wave alu_wave.do

Saves the current data in the Wave window in a file named alu_wave.do.

Output

Below is an example of a saved Wave window format file.

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -format Logic /cntr_struct/ld
add wave -noupdate -format Logic /cntr_struct/rst
add wave -noupdate -format Logic /cntr_struct/clk
add wave -noupdate -format Literal /cntr_struct/d
add wave -noupdate -format Literal /cntr_struct/q
ModelSim SE Command Reference

CR-324 Commands

Model
TreeUpdate [SetDefaultTree]
quietly WaveActivateNextPane
add wave -noupdate -format Logic /cntr_struct/p1
add wave -noupdate -format Logic /cntr_struct/p2
add wave -noupdate -format Logic /cntr_struct/p3
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {0 ns}
WaveRestoreZoom {0 ns} {1 us}
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -signalnamewidth 0
configure wave -justifyvalue left

In the example above, five signals are added with the -noupdate argument to the default
window pane. The TreeUpdate command then refreshes all five waveforms. The second
WaveActivateNextPane command creates a second pane which contains three signals.The
WaveRestoreCursors command restores any cursors you set during the original
simulation, and the WaveRestoreZoom command restores the Zoom range you set. These
four commands are used only in saved Wave format files; therefore, they are not
documented elsewhere.

See also

add list (CR-48), add wave (CR-57)
Sim SE Command Reference

write list CR-325
write list

The write list command records the contents of the most recently opened or specified List
window in a list output file. This file contains simulation data for all HDL items displayed
in the List window: VHDL signals and variables and Verilog nets and registers.

Syntax

write list
[-events] [-window <wname>] <filename>

Arguments

-events

Specifies to write print-on-change format. Optional. Default is tabular format.

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-263) to change the default
window.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Examples

write list alu.lst

Saves the current data in the default List window in a file named alu.lst.

write list -win list1 group1.list

Saves the current data in window ‘list1’ in a file named group1.list.

See also

write tssi (CR-329)
ModelSim SE Command Reference

CR-326 Commands

Model
write preferences

The write preferences command saves the current GUI preference settings to a Tcl
preference file. Settings saved include current window locations and sizes; Wave, Signals
and Variables window column widths; Wave, Signals and Variables window value
justification; and Wave window signal name width.

Syntax

write preferences
<preference file name>

Arguments

<preference file name>

Specifies the name for the preference file. Optional. If the file is named modelsim.tcl,
ModelSim will read the file each time vsim is invoked. To use a preference file other than
modelsim.tcl you must specify the alternative file name with the MODELSIM_TCL
(UM-442) environment variable.

See also

You can modify variables by editing the preference file with the ModelSim notepad (CR-

176):

notepad <preference file name>
Sim SE Command Reference

write report CR-327
write report

The write report command prints a summary of the design being simulated including a list
of all design units (VHDL configurations, entities, and packages and Verilog modules)
with the names of their source files. If you have compiled a Verilog design using -fast (see
"Compiling for faster performance" (UM-99)), the report will also identify cells which have
been optimized.

Syntax

write report
[[<filename>] [-l | -s]] | [-tcl]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the report is written to the Main window.

-l

Generates more detailed information about the design. Default.

-s

Generates a short list of design information. Optional

-tcl

Generates a Tcl list of design unit information. Optional. This argument cannot be used
with a filename.

Examples

write report alu.rep

Saves information about the current design in a file named alu.rep.
ModelSim SE Command Reference

CR-328 Commands

Model
write transcript

The write transcript command writes the contents of the Main window Transcript to the
specified file. The resulting file can be used to replay the transcribed commands as a DO
file (macro).

Syntax

write transcript
[<filename>]

Arguments

<filename>

Specifies the name of the output file where the data is to be written. Optional. If the
<filename> is omitted, the transcript is written to a file named transcript.

See also

do (CR-138)
Sim SE Command Reference

write tssi CR-329
write tssi

The write tssi command records the contents of the default or specified List window in a
"TSSI format" file. The file contains simulation data for all HDL items displayed in the List
window that can be converted to TSSI format (VHDL signals and Verilog nets). A signal
definition file is also generated.

The List window needs to be using symbolic radix in order for write tssi to produce useful
output.

Syntax

write tssi
[-window <wname>] <filename>

Arguments

-window <wname>

Specifies an instance of the List window that is not the default. Optional. Otherwise, the
default List window is used. Use the view command (CR-263) to change the default
window.

<filename>

Specifies the name of the output file where the data is to be written. Required.

Description

“TSSI format” is documented in the Fluence TDS Software System, Chapter 2 of Volume
I, Getting Started, R11.1, dated November 15, 1999. In that document, TSSI format is
called Standard Events Format (SEF).

If the <filename> has a file extension (e.g., listfile.lst), then the definition file is given the
same file name with the extension .def (e.g., listfile.def). The values in the listfile are
produced in the same order that they appear in the List window. The directionality is
determined from the port type if the item is a port, otherwise it is assumed to be
bidirectional (mode INOUT).

Items that can be converted to SEF are VHDL enumerations with 255 or fewer elements
and Verilog nets. The enumeration values U, X, 0, 1, Z, W, L, H and - (the enumeration
values defined in the IEEE Standard 1164 std_ulogic enumeration) are converted to SEF
values according to the table below. Other values are converted to a question mark (?) and
cause an error message. Though the write tssi command was developed for use with
std_ulogic, any signal which uses only the values defined for std_ulogic (including the
VHDL standard type bit) will be converted.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional

U N X ?

X N X ?

0 D L 0
ModelSim SE Command Reference

CR-330 Commands

Model
Bidirectional logic values are not converted because only the resolved value is available.
The Fluence (TSSI) TDS ASCII In Converter and ASCII Out Converter can be used to
resolve the directionality of the signal and to determine the proper forcing or expected value
on the port. Lowercase values x, z, w, l and h are converted to the same values as the
corresponding capitalized values. Any other values will cause an error message to be
generated the first time an invalid value is detected on a signal, and the value will be
converted to a question mark (?).

See also

tssi2mti (CR-230)

1 U H 1

Z Z T F

W N X ?

L D L 0

H U H 1

- N X ?

Note: The TDS ASCII In Converter and ASCII Out Converter are part of the TDS
software from Fluence Technology. ModelSim outputs a vector file, and Fluence’s tools
determine whether the bidirectional signals are driving or not.

std_ulogic State
Characters

SEF State Characters

Input Output Bidirectional
Sim SE Command Reference

write wave CR-331
write wave

The write wave command records the contents of the most currently opened or specified
Wave window in PostScript format. The output file can then be printed on a PostScript
printer.

Syntax

write wave
[-window <wname>] [-width <real_num>] [-height <real_num>]
[-margin <real_num>] [-start <time>] [-end <time>] [-perpage <time>]
[-pagecount <n>] [-landscape] [-portrait] <filename>

Arguments

-window <wname>

Specifies an instance of the Wave window that is not the default. Optional. Otherwise,
the default Wave window is used. Use the view command (CR-263) to change the default
window.

-width <real_num>

Specifies the paper width in inches. Optional. Default is 8.5.

-height <real_num>

Specifies the paper height in inches. Optional. Default is 11.0.

-margin <real_num>

Specifies the margin in inches. Optional. Default is 0.5.

-start <time>

Specifies the start time (on the waveform time scale) to be written. Optional.

-end <time>

Specifies the end time (on the waveform time scale) to be written. Optional.

-perpage <time>

Specifies the time width per page of output. Optional.

-pagecount <n>

Specifies the number of pages to use horizontally along the time axis. Optional.

-landscape

Use landscape (horizontal) orientation. Optional. This is the default orientation.

-portrait

Use portrait (vertical) orientation. Optional. The default is landscape (horizontal).

<filename>

Specifies the name of the PostScript output file. Required.

Examples

write wave alu.ps

Saves the current data in the Wave window in a file named alu.ps.

write wave -win wave2 group2.ps

Saves the current data in window ‘wave2’ in a file named group2.ps.
ModelSim SE Command Reference

CR-332 Commands

Model
write wave -start 600ns -end 800ns -perpage 100ns top.ps

Writes two separate pages to top.ps as indicated in the illustration (the actual PostScript
print out will show all items listed in the Wave window, not just the portion in view):

To make the job of creating a PostScript waveform output file easier, use the File > Print
Postscript menu selection in the Wave window. See "Printing and saving waveforms"
(UM-276) for more information.

– page 1 starts at 600 ns
– page 2 ends at 800 ns

100 ns per page

start finish
Sim SE Command Reference

 CR-333
Licensing Agreement

IMPORTANT – USE OF THIS SOFTWARE IS SUBJECT TO LICENSE
RESTRICTIONS

CAREFULLY READ THIS LICENSE AGREEMENT BEFORE USING THE
SOFTWARE

This license is a legal “Agreement” concerning the use of Software between you,
the end user, either individually or as an authorized representative of the company
purchasing the license, and Mentor Graphics Corporation, Mentor Graphics
(Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-
owned subsidiaries (“Mentor Graphics”). USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND
CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to these
terms and conditions, promptly return or, if received electronically, certify
destruction of Software and all accompanying items within 10 days after receipt of
Software and receive a full refund of any license fee paid.

END USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading,
or have acquired with this Agreement, including any updates, modifications,
revisions, copies, and documentation (“Software”) are copyrighted, trade secret
and confidential information of Mentor Graphics or its licensors who maintain
exclusive title to all Software and retain all rights not expressly granted by this
Agreement. Mentor Graphics or its authorized distributor grants to you, subject to
payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your
internal business purposes; and (c) on the computer hardware or at the site for
which an applicable license fee is paid, or as authorized by Mentor Graphics. A site
is restricted to a one-half mile (800 meter) radius. Mentor Graphics’ then-current
standard policies, which vary depending on Software, license fees paid or service
plan purchased, apply to the following and are subject to change: (a) relocation of
Software; (b) use of Software, which may be limited, for example, to execution of
a single session by a single user on the authorized hardware or for a restricted
period of time (such limitations may be communicated and technically
implemented through the use of authorization codes or similar devices);
(c) eligibility to receive updates, modifications, and revisions; and (d) support
services provided. Current standard policies are available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software
development (“ESD”) Software, Mentor Graphics or its authorized distributor
grants to you a nontransferable, nonexclusive license to reproduce and distribute
executable files created using ESD compilers, including the ESD run-time libraries
distributed with ESD C and C++ compiler Software that are linked into a composite
program as an integral part of your compiled computer program, provided that you
distribute these files only in conjunction with your compiled computer program.
Mentor Graphics does NOT grant you any right to duplicate or incorporate copies
of Mentor Graphics' real-time operating systems or other ESD Software, except
those explicitly granted in this section, into your products without first signing a
separate agreement with Mentor Graphics for such purpose.
ModelSim SE Command Reference

CR-334 License Agreement

Model
3. BETA CODE.

3.1 Portions or all of certain Software may contain code for experimental testing
and evaluation (“Beta Code”), which may not be used without Mentor Graphics’
explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics
grants to you a temporary, nontransferable, nonexclusive license for experimental
use to test and evaluate the Beta Code without charge for a limited period of time
specified by Mentor Graphics. This grant and your use of the Beta Code shall not
be construed as marketing or offering to sell a license to the Beta Code, which
Mentor Graphics may choose not to release commercially in any form.

3.2 If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate
and test the Beta Code under normal conditions as directed by Mentor Graphics.
You will contact Mentor Graphics periodically during your use of the Beta Code to
discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the
Beta Code, including its strengths, weaknesses and recommended improvements.

3.3 You agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceives or
makes during or subsequent to this Agreement, including those based partly or
wholly on your feedback, will be the exclusive property of Mentor Graphics. Mentor
Graphics will have exclusive rights, title and interest in all such property. The
provisions of this subsection shall survive termination or expiration of this
Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably
necessary to support the authorized use. Each copy must include all notices and
legends embedded in Software and affixed to its medium and container as
received from Mentor Graphics. All copies shall remain the property of Mentor
Graphics or its licensors. You shall maintain a record of the number and primary
location of all copies of Software, including copies merged with other software, and
shall make those records available to Mentor Graphics upon request. You shall not
make Software available in any form to any person other than your employer's
employees and contractors, excluding Mentor Graphics' competitors, whose job
performance requires access. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to
Software does not disclose it or use it except as permitted by this Agreement.
Except as otherwise permitted for purposes of interoperability as specified by the
European Union Software Directive or local law, you shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive from Software any source
code. You may not sublicense, assign or otherwise transfer Software, this
Agreement or the rights under it without Mentor Graphics’ prior written consent.
The provisions of this section shall survive the termination or expiration of this
Agreement.

5. LIMITED WARRANTY.

5.1 Mentor Graphics warrants that during the warranty period Software, when
properly installed, will substantially conform to the functional specifications set forth
in the applicable user manual. Mentor Graphics does not warrant that Software will
Sim SE Command Reference

 CR-335
meet your requirements or that operation of Software will be uninterrupted or error
free. The warranty period is 90 days starting on the 15th day after delivery or upon
installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if
Software has been subject to misuse, unauthorized modification or installation.
MENTOR GRAPHICS’ ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE
PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR GRAPHICS OR (B)
MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET
THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED
WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LOANED TO
YOU FOR A LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA
CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

5.2 THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE.
NEITHER MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER
WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO SOFTWARE OR
OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER
APPLICABLE STATUTE OR REGULATION, IN NO EVENT SHALL MENTOR
GRAPHICS OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS
OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT
SHALL MENTOR GRAPHICS' OR ITS LICENSORS' LIABILITY UNDER THIS
AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT
WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR
IN CONNECTION WITH THE USE OF SOFTWARE IN ANY APPLICATION
WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT
RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY AND
HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY
CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH SUCH USE.

8. INFRINGEMENT.

8.1 Mentor Graphics will defend or settle, at its option and expense, any action
brought against you alleging that Software infringes a patent or copyright in the
United States, Canada, Japan, Switzerland, Norway, Israel, Egypt, or the
ModelSim SE Command Reference

CR-336 License Agreement

Model
European Union. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the claim, provided that you: (a) notify Mentor
Graphics promptly in writing of the action; (b) provide Mentor Graphics all
reasonable information and assistance to settle or defend the claim; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the
claim.

8.2 If an infringement claim is made, Mentor Graphics may, at its option and
expense, either (a) replace or modify Software so that it becomes noninfringing, or
(b) procure for you the right to continue using Software. If Mentor Graphics
determines that neither of those alternatives is financially practical or otherwise
reasonably available, Mentor Graphics may require the return of Software and
refund to you any license fee paid, less a reasonable allowance for use.

8.3 Mentor Graphics has no liability to you if the alleged infringement is based
upon: (a) the combination of Software with any product not furnished by Mentor
Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software
as part of an infringing process; (e) a product that you design or market; (f) any
Beta Code contained in Software; or (g) any Software provided by Mentor
Graphics’ licensors which do not provide such indemnification to Mentor Graphics’
customers.

8.4 THIS SECTION 8 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS
AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY
ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

9. TERM. This Agreement remains effective until expiration or termination. This
Agreement will automatically terminate if you fail to comply with any term or
condition of this Agreement or if you fail to pay for the license when due and such
failure to pay continues for a period of 30 days after written notice from Mentor
Graphics. If Software was provided for limited term use, this Agreement will
automatically expire at the end of the authorized term. Upon any termination or
expiration, you agree to cease all use of Software and return it to Mentor Graphics
or certify deletion and destruction of Software, including all copies, to Mentor
Graphics’ reasonable satisfaction.

10. EXPORT. Software is subject to regulation by local laws and United States
government agencies, which prohibit export or diversion of certain products,
information about the products, and direct products of the products to certain
countries and certain persons. You agree that you will not export in any manner
any Software or direct product of Software, without first obtaining all necessary
approval from appropriate local and United States government agencies.

11. RESTRICTED RIGHTS NOTICE. Software has been developed entirely at
private expense and is commercial computer software provided with
RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or
a U.S. Government subcontractor is subject to the restrictions set forth in the
license agreement under which Software was obtained pursuant to DFARS
227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial
Sim SE Command Reference

 CR-337
Computer Software - Restricted Rights clause at FAR 52.227-19, as applicable.
Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckman Road,
Wilsonville, Oregon 97070-7777 USA.

12. THIRD PARTY BENEFICIARY. For any Software under this Agreement
licensed by Mentor Graphics from Microsoft or other licensors, Microsoft or the
applicable licensor is a third party beneficiary of this Agreement with the right to
enforce the obligations set forth in this Agreement.

13. CONTROLLING LAW. This Agreement shall be governed by and construed
under the laws of Ireland if the Software is licensed for use in Israel, Egypt,
Switzerland, Norway, South Africa, or the European Union, the laws of Japan if the
Software is licensed for use in Japan, the laws of Singapore if the Software is
licensed for use in Singapore, People’s Republic of China, Republic of China,
India, or Korea, and the laws of the state of Oregon if the Software is licensed for
use in the United States of America, Canada, Mexico, South America or anywhere
else worldwide not provided for in this section.

14. SEVERABILITY. If any provision of this Agreement is held by a court of
competent jurisdiction to be void, invalid, unenforceable or illegal, such provision
shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

15. MISCELLANEOUS. This Agreement contains the entire understanding
between the parties relating to its subject matter and supersedes all prior or
contemporaneous agreements, including but not limited to any purchase order
terms and conditions, except valid license agreements related to the subject matter
of this Agreement which are physically signed by you and an authorized agent of
Mentor Graphics. This Agreement may only be modified by a physically signed
writing between you and an authorized agent of Mentor Graphics. Waiver of terms
or excuse of breach must be in writing and shall not constitute subsequent consent,
waiver or excuse. The prevailing party in any legal action regarding the subject
matter of this Agreement shall be entitled to recover, in addition to other relief,
reasonable attorneys' fees and expenses.

Rev. 03/00
ModelSim SE Command Reference

CR-338

Model
Sim SE Command Reference

 UM-339
Index
CR = Command Reference, UM = User’s Manual
Symbols

+acc option, design object visibility UM-105
+opt UM-100
+typdelays CR-294
.so, shared object file

loading PLI/VPI C applications UM-124
loading PLI/VPI C++ applications UM-127

Numerics

1076, IEEE Std UM-20
1364, IEEE Std UM-20, UM-81
64-bit ModelSim, using with 32-bit FLI apps UM-129

A

+acc option, design object visibility UM-105
deltas

explained UM-513
abort command CR-44
absolute time, using @ CR-17
ACC routines UM-137
accelerated packages UM-55
access

hierarchical items UM-357
limitations in mixed designs UM-144

add button command CR-45
add list command CR-48
add wave command CR-57
add_menu command CR-51
add_menucb command CR-53
add_menuitem simulator command CR-54
add_separator command CR-55
add_submenu command CR-56
alias command CR-61
application notes UM-24
architecture simulator state variable UM-456
argc simulator state variable UM-456
arrays

indexes CR-15
slices CR-15

AssertFile .ini file variable UM-446
AssertionFormat .ini file variable UM-447
assertions

messages, turning off UM-452
selecting severity that stops simulation UM-298

testing for using a DO file UM-494
attributes, of signals, using in expressions CR-24

B

bad magic number error message UM-155
balloon dialog, toggling on/off UM-266
base (radix), specifying in List window UM-209
batch_mode command CR-62
batch-mode simulations UM-490, UM-491

halting CR-316
bd (breakpoint delete) command CR-63
binary radix, mapping to std_logic values CR-21
blocking assignments UM-94
bookmark add wave command CR-64
bookmark delete wave command CR-65
bookmark goto wave command CR-66
bookmark list wave command CR-67
bookmarks UM-272
bp (breakpoint) command CR-68
break

on assertion UM-298
on signal value CR-314
stop simulation run UM-182, UM-234

BreakOnAssertion .ini file variable UM-447, UM-454
breakpoints

conditional CR-314, UM-228
continuing simulation after CR-210
deleting CR-63, UM-235, UM-301
listing CR-68
setting CR-68, UM-235
signal breakpoints (when statements) CR-314, UM-

228
Source window, viewing in UM-229
time-based UM-228

in when statements CR-317
.bsm file UM-202
buffered/unbuffered output UM-449
bus contention checking UM-498

configuring CR-75
disabling CR-76
enabling CR-74

bus float checking UM-498
configuring CR-78
disabling CR-79
enabling CR-77

busses
ModelSim SE Command Reference

UM-340 Index

Model
RTL-level, reconstructing UM-162
user-defined CR-58, UM-210, UM-259

Button Adder (add buttons to windows) UM-310
buttons, adding to the Main window toolbar CR-45

C

C applications
compiling and linking UM-124

C++ applications
compiling and linking UM-127

case choice, must be locally static CR-254
case sensitivity

named port associations UM-152
VHDL vs. Verilog CR-15

causality, tracing in Dataflow window UM-196
cd (change directory) command CR-71
cell libraries UM-111
change command CR-72
change_menu_cmd command CR-73
chasing X UM-197
check contention add command CR-74
check contention config command CR-75
check contention off command CR-76
check float add command CR-77
check float config command CR-78
check float off command CR-79
check stable off command CR-80
check stable on command CR-81
checkpoint command CR-82
checkpoint/restore UM-488
CheckpointCompressMode .ini file variable UM-447,
UM-454
CheckSynthesis .ini file variable UM-445
clear differences UM-352
clock change, sampling signals at UM-494
clocked comparison UM-341, UM-347
Code Coverage

coverage clear command CR-116
coverage data in Source window UM-334
coverage exclude clear command CR-117
coverage exclude disable command CR-118
coverage exclude enable command CR-119
coverage exclude load command CR-120
coverage reload command CR-121
coverage report command CR-122
coverage_summary window UM-330
enabling code coverage UM-330, UM-338
excluding lines/files UM-332, UM-335
merging report files CR-121, UM-336

miss and exclusion details UM-331
saving coverage reports UM-333
Tcl preference variables UM-338

combining signals, user-defined bus CR-58, UM-210,
UM-259
command history UM-178
command reference UM-23
CommandHistory .ini file variable UM-447
command-line mode UM-490
commands

.main clear CR-37

.wave.tree interrupt CR-38

.wave.tree zoomfull CR-39

.wave.tree zoomin CR-40

.wave.tree zoomlast CR-41

.wave.tree zoomout CR-42

.wave.tree zoomrange CR-43
abort CR-44
add button CR-45
add list CR-48
add wave CR-57
add_menu CR-51
add_menucb CR-53
add_menuitem CR-54
add_separator CR-55
add_submenu CR-56
alias CR-61
batch_mode CR-62
bd (breakpoint delete) CR-63
bookmark add wave CR-64
bookmark delete wave CR-65
bookmark goto wave CR-66
bookmark list wave CR-67
bp (breakpoint) CR-68
cd (change directory) CR-71
change CR-72
change_menu_cmd CR-73
check contention add CR-74
check contention config CR-75
check contention off CR-76
check float add CR-77
check float config CR-78
check float off CR-79
check stable off CR-80
check stable on CR-81
checkpoint CR-82
compare annotate CR-86, CR-89
compare clock CR-87
compare close CR-92
compare commands UM-355
compare delete CR-91
Sim SE Command Reference

 UM-341
compare info CR-93
compare list CR-95
compare open CR-106
compare options CR-96
compare region CR-83
compare reload CR-99
compare savediffs CR-102
compare saverules CR-103
compare see CR-104
compare start CR-101
configure CR-110
coverage clear CR-116
coverage exclude clear CR-117
coverage exclude disable CR-118
coverage exclude enable CR-119
coverage exclude load CR-120
coverage reload CR-121
coverage report CR-122
dataset alias CR-123
dataset clear CR-124
dataset close CR-125
dataset info CR-126
dataset list CR-127
dataset open CR-128
dataset rename CR-129, CR-130
dataset snapshot CR-131
delete CR-133
describe CR-134
disable_menu CR-136
disable_menuitem CR-137
disablebp CR-135
do CR-138
down CR-139
drivers CR-141
dumplog64 CR-142
echo CR-143
edit CR-144
enable_menu CR-146
enable_menuitem CR-147
enablebp CR-145
environment CR-148
examine CR-149
exit CR-152
find CR-153
force CR-156
getactivecursortime CR-159
getactivemarkertime CR-160
graphic interface commands UM-317
help CR-161
history CR-162
lecho CR-163

left CR-164
log CR-166
lshift CR-168
lsublist CR-169
macro_option CR-170
modelsim CR-171
next CR-172
noforce CR-173
nolog CR-174
notation conventions CR-10
notepad CR-176
noview CR-177
nowhen CR-178
onbreak CR-179
onElabError CR-180
onerror CR-181
pause CR-182
play CR-183
power add CR-184
power report CR-185
power reset CR-186
printenv CR-187
profile clear CR-188
profile interval CR-189
profile off CR-190
profile on CR-191
profile option CR-192
profile report CR-193
property list CR-195
property wave CR-196
pwd CR-197
quietly CR-198
quit CR-199
radix CR-200
record CR-201
report CR-202
restart CR-204
restore CR-206
resume CR-207
right CR-208
run CR-210
search CR-212
searchlog CR-214
seetime CR-216
shift CR-217
show CR-218
splitio CR-220
status CR-221
step CR-222
stop CR-223
system UM-427
ModelSim SE Command Reference

UM-342 Index

Model
tb (traceback) CR-224
toggle add CR-225
toggle report CR-226
toggle reset CR-227
transcribe CR-228
transcript CR-229
TreeUpdate CR-324
tssi2mti CR-230
up CR-231
variables referenced in CR-17
vcd add CR-233
vcd checkpoint CR-234
vcd comment CR-235
vcd dumpports CR-236
vcd dumpportsall CR-238
vcd dumpportsflush CR-239
vcd dumpportslimit CR-240
vcd dumpportsoff CR-241
vcd dumpportson CR-242
vcd file CR-243
vcd files CR-245
vcd flush CR-247
vcd limit CR-248
vcd off CR-249
vcd on CR-250
vcom CR-252
vdel CR-258
vdir CR-259
verror CR-260
vgencomp CR-261
view CR-263
virtual count CR-265
virtual define CR-266
virtual delete CR-267
virtual describe CR-268
virtual expand CR-269
virtual function CR-270
virtual hide CR-273
virtual log CR-274
virtual nohide CR-276
virtual nolog CR-277
virtual region CR-279
virtual save CR-280
virtual show CR-281
virtual signal CR-282
virtual type CR-285
vlib CR-287
vlog CR-288
vmake CR-296
vmap CR-297
vsim CR-298

VSIM Tcl commands UM-428
vsimDate CR-312
vsimId CR-312
vsimVersion CR-312
WaveActivateNextPane CR-324
WaveRestoreCursors CR-324
WaveRestoreZoom CR-324
when CR-314
where CR-318
wlf2log CR-319
wlfrecover CR-321
write cell_report CR-322
write format CR-323
write list CR-325
write preferences CR-326
write report CR-327
write transcript CR-328
write tssi CR-329
write wave CR-331

comment characters in VSIM commands CR-10
compare

add region UM-346
add signals UM-345
by signal UM-345
clear differences UM-352
clocked UM-341, UM-347
continuous UM-341, UM-348
difference markers UM-350
differences UM-353
displayed in List window UM-354
end UM-352
graphic interface UM-343
icons UM-351
limit count UM-349
menu UM-352
modes UM-341
options UM-349
pathnames UM-350
preference variables UM-355
reference dataset UM-343
reference region UM-346
reload UM-353
rules UM-353
run UM-352
save differences UM-353
show differences UM-352
specify dataset UM-343
start UM-352
startup wizard UM-352
tab UM-344
test dataset UM-343
Sim SE Command Reference

 UM-343
test region UM-346
timing differences UM-350
tolerance UM-348
tolerances UM-341
values UM-351
verilog matching UM-349
VHDL matching UM-349
wave window display UM-350
waveforms UM-339
wizard UM-352
write report UM-353

compare annotate command CR-86, CR-89
compare by region UM-346
compare clock command CR-87
compare close command CR-92
compare commands UM-355
compare delete command CR-91
compare info command CR-93
compare list command CR-95
compare open command CR-106
compare options command CR-96
compare region command CR-83
compare reload command CR-99
compare savediffs command CR-102
compare saverules command CR-103
compare see command CR-104
compare simulations UM-153
compare start command CR-101
compatibility, of vendor libraries CR-259
compile history UM-37
compile order

auto generate UM-39
changing UM-39

compiler directives UM-119
IEEE Std 1364-2000 UM-119
XL compatible compiler directives UM-120

Compiling
with the graphic interface UM-282

compiling
+opt argument UM-100
changing order in the GUI UM-39
compile history UM-37
default options, setting UM-284
-fast argument UM-99
grouping files UM-40
options, in projects UM-45
order, changing in projects UM-39
range checking in VHDL CR-255, UM-61
source errors, locating UM-283
Verilog CR-288, UM-82

incremental compilation UM-83

library components, including CR-290
optimizing performance CR-289, UM-99
XL ’uselib compiler directive UM-87
XL compatible options UM-86

VHDL CR-252, UM-61
at a specified line number CR-253
selected design units (-just eapbc) CR-253
standard package (-s) CR-256

VITAL packages UM-73
with the graphic interface UM-282

component declaration
generating VHDL from Verilog UM-150
vgencomp UM-150

concatenation
directives CR-19
of signals CR-19, CR-282

ConcurrentFileLimit .ini file variable UM-447
conditional breakpoints CR-314, UM-228
configuration simulator state variable UM-456
configurations, simulating CR-298
configure command CR-110
connectivity, exploring UM-193
constants

examining in a package UM-497
in case statements CR-254
values of, displaying CR-134, CR-149

context menus
coverage_source window UM-335
described UM-170
Library tab UM-51
Project tab UM-37
Structure pages UM-240

continuous comparison UM-341
convert real to time UM-77
convert time to real UM-76
coverage clear command CR-116
coverage exclude clear command CR-117
coverage exclude disable command CR-118
coverage exclude enable command CR-119
coverage exclude load command CR-120
coverage reload command CR-121
coverage report command CR-122
coverage_summary window UM-330
cursors

link to Dataflow window UM-187
trace events with UM-196
Wave window UM-269

customizing
adding buttons CR-45
via preference variables UM-454
ModelSim SE Command Reference

UM-344 Index

Model
D

Dataflow window UM-186
pan UM-195
zoom UM-195
see also windows, Dataflow window

dataflow.bsm file UM-202
dataset alias command CR-123
Dataset Browser UM-157
dataset clear command CR-124
dataset close command CR-125
dataset info command CR-126
dataset list command CR-127
dataset open command CR-128
dataset rename command CR-129, CR-130
Dataset Snapshot UM-159
dataset snapshot command CR-131
datasets UM-153, UM-340

environment command, specifying with CR-148
managing UM-157
reference UM-343
restrict dataset prefix display UM-158
simulator resolution UM-154
specifying for compare UM-343
test UM-343

DatasetSeparator .ini file variable UM-447
Debug Detective UM-305
declarations, hiding implicit with explicit CR-257
default compile options UM-284
default editor, changing UM-441
DefaultForceKind .ini file variable UM-447, UM-454
DefaultRadix .ini file variable UM-447, UM-454
DefaultRestartOptions variable UM-447, UM-453
defaults

restoring UM-441
window arrangement UM-170

+define+ CR-289
delay

delta delays UM-513
infinite zero-delay loops, detecting UM-500
interconnect CR-302
modes for Verilog models UM-111
SDF files UM-377
stimulus delay, specifying UM-226

+delay_mode_distributed CR-289
+delay_mode_path CR-289
+delay_mode_unit CR-289
+delay_mode_zero CR-289
’delayed CR-24
DelayFileOpen .ini file variable UM-448, UM-455
delete command CR-133

deleting library contents UM-50
delta simulator state variable UM-456
deltas

collapsing in the List window UM-212
hiding in the List window CR-111, UM-212
infinite zero-delay loops UM-500
referencing simulator iteration

as a simulator state variable UM-456
dependent design units UM-61
describe command CR-134
descriptions of HDL items UM-235
design hierarchy, viewing in Structure window UM-237
design library

creating UM-49
logical name, assigning UM-52
mapping search rules UM-53
resource type UM-48
VHDL design units UM-61
working type UM-48

design stability checking UM-499
design units UM-48

hierarchy of, viewing UM-171
report of units simulated CR-327
Verilog

adding to a library CR-288
directories

mapping libraries CR-297
moving libraries UM-53

disable_menu command CR-136
disable_menuitem command CR-137
disablebp command CR-135
distributed delay mode UM-112
dividers, in Wave window UM-257
DLL files, loading UM-124, UM-127
do command CR-138
DO files (macros) CR-138

error handling UM-437
executing at startup UM-441, UM-449
parameters, passing to UM-435
Tcl source command UM-438

documentation UM-24
DOPATH environment variable UM-441
down command CR-139
Drivers

Dataflow Window UM-193
drivers

show in Dataflow window UM-260
Wave window UM-260

drivers command CR-141
drivers, multiple on unresolved signal UM-285
dump files, viewing in ModelSim CR-251
Sim SE Command Reference

 UM-345
dumplog64 command CR-142
dumpports tasks, VCD files UM-392

E

echo command CR-143
edges, finding CR-164, CR-208
edit command CR-144
Editing

in notepad windows UM-183, UM-462
in the Main window UM-183, UM-462
in the Source window UM-183, UM-462

EDITOR environment variable UM-441
editor, default, changing UM-441
elab_defer_fli argument UM-65, UM-110
elaboration file

creating UM-63, UM-108
loading UM-64, UM-109
modifying stimulus UM-64, UM-109
resimulating the same design UM-63, UM-108
simulating with PLI or FLI models UM-65, UM-

110
elaboration, interrupting CR-298
embedded wave viewer UM-194
enable_menu command CR-146
enable_menuitem command CR-147
enablebp command CR-145
encryption, securing pre-compiled libraries UM-492
end comparison UM-352
ENDFILE function UM-69
ENDLINE function UM-69
entities, specifying for simulation CR-310
entity simulator state variable UM-456
enumerated types UM-495

user defined CR-285
environment command CR-148
environment variables UM-441

accessed during startup UM-483
license file UM-474
reading into Verilog code CR-289
referencing from ModelSim command line UM-443
referencing with VHDL FILE variable UM-443
setting in Windows UM-442
specifying library locations in modelsim.ini file

UM-444
specifying UNIX editor CR-144
transcript file, specifying location of UM-449
used in Solaris linking for FLI UM-125
using in pathnames CR-14
using with location mapping UM-501

variable substitution using Tcl UM-427
viewing current names and values with printenv

CR-187
environment, displaying or changing pathname CR-148
error messages

bad magic number UM-155
getting more information UM-466
Tcl_init error UM-470

errors
during compilation, locating UM-283
getting details about messages CR-260
onerror command CR-181

event order
changing in Verilog CR-288
in optimized designs UM-107
in Verilog simulation UM-92

event queues UM-92
events, tracing UM-196
examine command CR-149
examine tooltip

toggling on/off UM-266
examining constants in a package UM-497
exclusion filter UM-332
exit codes UM-468
exit command CR-152
expand net UM-193
Explicit .ini file variable UM-445
Expression Builder UM-305, UM-347

specify when expression UM-347, UM-348
Expression_format CR-18
extended identifiers UM-149

syntax in commands CR-15

F

-f CR-289
F8 function key UM-185, UM-464
-fast CR-289, UM-99
feature names, described UM-476
features, new UM-545
file-line breakpoints UM-235
files, grouping for compile UM-40
Find

cursors in Wave window UM-169
specified time in Wave window UM-169
time markers in List window UM-169

find command CR-153
finding

cursor in the Wave window UM-270
marker in the List window UM-216
ModelSim SE Command Reference

UM-346 Index

Model
names and values UM-169
FLEXlm license manager UM-473–UM-479

administration tools for Windows UM-479
license server utilities UM-478

FLI UM-78
folders, in projects UM-43
force command CR-156

defaults UM-453
foreign language interface UM-78
format file

List window CR-323
Wave window CR-323, UM-248

FPGA libraries, importing UM-57
frequently asked questions UM-24

G

gate-level designs, optimizing UM-101
GenerateFormat .ini file variable UM-448
generics

assigning or overriding values with -g and -G CR-
300

examining generic values CR-149
limitation on assigning composite types CR-300
VHDL UM-145

get_resolution() VHDL function UM-74
getactivecursortime command CR-159
getactivemarkertime command CR-160
graphic interface UM-165–??

UNIX support UM-19
grouping files for compile UM-40
GUI_expression_format CR-18

GUI expression builder UM-305
syntax CR-22

H

halting waveform drawing CR-38
hardware model interface UM-414
’hasX CR-24
Hazard .ini file variable (VLOG) UM-446
hazards

-hazards argument to vlog CR-290
-hazards argument to vsim CR-307
limitations on detection UM-95

HDL item UM-23
help command CR-161
hierarchical profile, Performance Analyzer UM-322
hierarchical references, mixed-language UM-144
hierarchy

driving signals in UM-359, UM-368
forcing signals in UM-75, UM-364, UM-373
referencing signals in UM-75, UM-362, UM-371
releasing signals in UM-75, UM-366, UM-375
viewing signal names without UM-265

history
of commands

shortcuts for reuse CR-11, UM-461
of compiles UM-37

history command CR-162
hm_entity UM-415
HOME environment variable UM-441
Hotkey

g - display specified time in Wave window UM-169
Hotkeys UM-274, UM-459

I

ieee .ini file variable UM-444
IEEE libraries UM-55
IEEE Std 1076 UM-20
IEEE Std 1364 UM-20, UM-81
IgnoreError .ini file variable UM-448, UM-455
IgnoreFailure .ini file variable UM-448, UM-455
IgnoreNote .ini file variable UM-448, UM-455
IgnoreVitalErrors .ini file variable UM-445
IgnoreWarning .ini file variable UM-448, UM-455
implicit operator, hiding with vcom -explicit CR-257
importing FPGA libraries UM-57
+incdir+ CR-290
incremental compilation

automatic UM-84
manual UM-84
with Verilog UM-83

index checking UM-61
indexing signals, memories and nets CR-15
$init_signal_driver UM-368
init_signal_driver UM-359
$init_signal_spy UM-371
init_signal_spy UM-75, UM-362
init_usertfs function UM-122
initial dialog box, turning on/off UM-440
initialization sequence UM-484
installation, license file, locating UM-474
instantiation in mixed-language design

Verilog from VHDL UM-149
VHDL from Verilog UM-152

instantiation label UM-238
interconnect delays CR-302, UM-388
internal signals, adding to a VCD file CR-233
Sim SE Command Reference

 UM-347
iteration_limit, infinite zero-delay loops UM-500
IterationLimit .ini file variable UM-448, UM-455

K

keyboard shortcuts
List window UM-218, UM-460
Main window UM-183, UM-462
Source window UM-462
Wave window UM-274, UM-459

L

language templates UM-307
lecho command CR-163
left command CR-164
libraries

64-bit and 32-bit in same library UM-56
design libraries, creating CR-287, UM-49
design library types UM-48
design units UM-48
group use, setting up UM-493
IEEE UM-55
importing FPGA libraries UM-57
including precompiled modules UM-293
listing contents CR-259
mapping

from the command line UM-52
from the GUI UM-52
hierarchically UM-452
search rules UM-53

modelsim_lib UM-74
moving UM-53
naming UM-52
precompiled modules, including CR-290
predefined UM-54
refreshing library images CR-256, CR-293, UM-55
resource libraries UM-48
std library UM-54
Synopsys UM-55
vendor supplied, compatibility of CR-259
Verilog CR-307, UM-85, UM-146
VHDL library clause UM-54
working libraries UM-48
working with contents of UM-50

library simulator state variable UM-456
License variable in .ini file UM-448
licensing

feature name descriptions UM-476
license file, locating UM-474

License variable in .ini file UM-448
using the FLEXlm license manager UM-473

List window UM-204
adding items to CR-48
waveform comparison UM-354
see also windows, List window

LM_LICENSE_FILE environment variable UM-441
lmdown license server utility UM-478
lmgrd license server utility UM-478
lmremove license server utility UM-479
lmreread license server utility UM-479
lmstat license server utility UM-478
lmutil license server utility UM-479
Locate

specific time in Wave window UM-169
time cursors in Wave window UM-169
time markers in List window UM-169

location maps, referencing source files UM-501
lock message UM-470
locked memory

under HP-UX 10.2 UM-503
under Solaris UM-504

LockedMemory .ini file variable UM-449
log command CR-166
log file

log command CR-166
nolog command CR-174
overview UM-153
QuickSim II format CR-319
redirecting with -l CR-301
virtual log command CR-274
virtual nolog command CR-277
see also WLF files

Logic Modeling
SmartModel

command channel UM-408
SmartModel Windows

lmcwin commands UM-409
memory arrays UM-410

LSF
app note on using with ModelSim UM-24

lshift command CR-168
lsublist command CR-169

M

macro_option command CR-170
MacroNestingLevel simulator state variable UM-456
macros (DO files) UM-435

breakpoints, executing at CR-69
ModelSim SE Command Reference

UM-348 Index

Model
creating from a saved transcript UM-174
depth of nesting, simulator state variable UM-456
error handling UM-437
executing CR-138
forcing signals, nets, or registers CR-156
parameters

as a simulator state variable (n) UM-456
passing CR-138, UM-435
total number passed UM-456

relative directories CR-138
shifting parameter values CR-217
startup macros UM-452

.main clear command CR-37
Main window UM-173

see also windows, Main window
mapping

libraries
from the command line UM-52
hierarchically UM-452

symbols
Dataflow window UM-202

Verilog states in mixed designs UM-147
math_complex package UM-55
math_real package UM-55
+maxdelays CR-291
mc_scan_plusargs()

using with an elaboration file UM-64, UM-109
mc_scan_plusargs, PLI routine CR-308
memory

enabling shared memory on Sun/Solaris UM-504
locking under HP-UX 10.2 UM-503
modeling in VHDL UM-507

menus
customizing UM-170
Dataflow window UM-187
List window UM-206
Main window UM-175
Process window UM-220
Signals window UM-223
Source window UM-230
Structure window UM-238
tearing off or pinning menus UM-170
Variables window UM-243
Wave window UM-249

messages UM-465
bad magic number UM-155
echoing CR-143
exit codes UM-468
getting more information CR-260, UM-466
lock message UM-470
ModelSim message system UM-466

redirecting UM-449
suppressing warnings from arithmetic packages

UM-453
Tcl_init error UM-470
too few port connections UM-471
turning off assertion messages UM-452
warning, suppressing UM-467

MGC_LOCATION_MAP variable UM-441
+mindelays CR-291
miss and exclusion details UM-331
mixed-language simulation UM-143

access limitations UM-144
mnemonics, assigning to signal values CR-285
MODEL_TECH environment variable UM-441
MODEL_TECH_TCL environment variable UM-441
modeling memory in VHDL UM-507
ModelSim

commands CR-27–CR-320
custom setup with daemon options UM-477
license file UM-474

modelsim command CR-171
MODELSIM environment variable UM-442
modelsim.ini

found by ModelSim UM-484
default to VHDL93 UM-453
delay file opening with UM-453
environment variables in UM-451
force command default, setting UM-453
hierarchical library mapping UM-452
opening VHDL files UM-453
restart command defaults, setting UM-453
startup file, specifying with UM-452
transcript file created from UM-452
turning off arithmetic warnings UM-453
turning off assertion messages UM-452

modelsim.tcl file UM-454
modelsim_lib UM-74

path to UM-444
MODELSIM_TCL environment variable UM-442
Modified field, Project tab UM-36
mouse shortcuts

Main window UM-183, UM-462
Source window UM-462
Wave window UM-274, UM-459

MPF file, loading from the command line UM-46
mti_cosim_trace environment variable UM-442
MTI_TF_LIMIT environment variable UM-442
multiple drivers on unresolved signal UM-285
multiple simulations UM-153
multi-source interconnect delays CR-302
Sim SE Command Reference

 UM-349
N

n simulator state variable UM-456
name case sensitivity, VHDL vs. Verilog CR-15
Name field

Project tab UM-36
negative pulses

driving an error state CR-309
negative timing

$setuphold/$recovery UM-116
algorithm for calculating delays UM-96
check limits UM-96
extending check limits CR-306

nets
adding to the Wave and List windows UM-226
Dataflow window, displaying in UM-186
drivers of, displaying CR-141
stimulus CR-156
values of

displaying in Signals window UM-222
examining CR-149
forcing UM-225
saving as binary log file UM-226

waveforms, viewing UM-246
new features UM-545
next and previous edges, finding UM-275, UM-460
next command CR-172
no space in time literal UM-285
NoCaseStaticError .ini file variable UM-445
NoDebug .ini file variable (VCOM) UM-445
NoDebug .ini file variable (VLOG) UM-446
noforce command CR-173
NoIndexCheck .ini file variable UM-445
+nolibcell CR-292
nolog command CR-174
non-blocking assignments UM-94
NoOthersStaticError .ini file variable UM-445
NoRangeCheck .ini file variable UM-445
notepad command CR-176
Notepad windows, text editing UM-183, UM-462
-notrigger argument UM-494
noview command CR-177
NoVital .ini file variable UM-445
NoVitalCheck .ini file variable UM-445
Now simulator state variable UM-456
now simulator state variable UM-456
+nowarn<CODE> CR-292
nowhen command CR-178
numeric_bit package UM-55
numeric_std package UM-55
NumericStdNoWarnings .ini file variable UM-449,

UM-455

O

onbreak command CR-179
onElabError command CR-180
onerror command CR-181
operating systems supported UM-19
+opt UM-100
optimize for std_logic_1164 UM-286
Optimize_1164 .ini file variable UM-445
optimizing Verilog designs UM-99

design object visibility UM-105
event order issues UM-107
gate-level UM-101
timing checks UM-107
without source UM-106

OptionFile entry in project files UM-287
order of events

changing in Verilog CR-288
in optimized designs UM-107

ordering files for compile UM-39
organizing projects with folders UM-43
others .ini file variable UM-445

P

packages
examining constants in UM-497
standard UM-54
textio UM-54
util UM-74
VITAL 1995 UM-71
VITAL 2000 UM-71

page setup
Dataflow window UM-201
Wave window UM-280

pan, Dataflow window UM-195
parameters

making optional UM-436
using with macros CR-138, UM-435

path delay mode UM-112
pathnames UM-350

in VSIM commands CR-14
spaces in CR-13

PathSeparator .ini file variable UM-449, UM-455
pause command CR-182
PedanticErrors .ini file variable UM-445
performance

enabling shared memory UM-504
ModelSim SE Command Reference

UM-350 Index

Model
improving for Verilog simulations UM-99
improving on HP-UX 10.2 UM-503
improving on Sun/Solaris UM-504

Performance Analyzer UM-319
%parent field UM-325
commands UM-327
getting started UM-321
hierarchical profile UM-322
in(%) field UM-324
interpreting data UM-322
name field UM-324
preferences, setting UM-327
profile report command UM-326
ranked profile UM-325
report option UM-326
results, viewing UM-322
statistical sampling UM-320
under(%) field UM-324
view_profile command UM-322
view_profile_ranked command UM-322

platforms, supported UM-19
play command CR-183
PLI

specifying which apps to load UM-122
Veriuser entry UM-122

PLI/VPI UM-121
tracing UM-140

PLIOBJS environment variable UM-122, UM-442
popup

toggling waveform popup on/off UM-266, UM-350
port driver data, capturing UM-400
ports, VHDL and Verilog UM-146
Postscript

saving a waveform in UM-276
saving the Dataflow display in UM-199

power add command CR-184
power report command CR-185
power reset command CR-186
precedence of variables UM-456
precision, simulator resolution UM-90, UM-144
pre-compilied libraries, optimizing with -fast UM-106
pref.tcl file UM-454
preference variables

.ini files, located in UM-444
code coverage UM-338
editing UM-454
Performance Analyzer UM-327
saving UM-454
set with Tcl set command UM-454
simulator control UM-454
Tcl files, located in UM-454

Waveform Compare UM-355
primitives, symbols in Dataflow window UM-202
printenv command CR-187
printing

comparison differences UM-353
Dataflow window display UM-199
waveforms in the Wave window UM-276

Process window UM-219
see also windows, Process window

processes
values and pathnames in Variables window UM-

242
without wait statements UM-285

profile clear command CR-188
profile interval command CR-189
profile off command CR-190
profile on command CR-191
profile option command CR-192
profile report command CR-193, UM-326
profiler, see Performance Analyzer UM-319
Programming Language Interface UM-121
project tab

information in UM-36
sorting UM-37

projects UM-27
accessing from the command line UM-46
adding files to UM-31
benefits UM-28
compile order UM-39

changing UM-39
compiler options in UM-45
compiling files UM-34
context menu UM-37
creating UM-30
creating simulation configurations UM-41
differences with earlier versions UM-29
folders in UM-43
grouping files in UM-40
loading a design UM-35
MODELSIM environment variable UM-442
override mapping for work directory with vcom CR-

256
override mapping for work directory with vlog CR-

294
overview UM-28

propagation, preventing X propagation CR-302
property list command CR-195
property wave command CR-196
’protect compiler directive CR-254, CR-292, UM-492
pulse error state CR-309
pwd command CR-197
Sim SE Command Reference

 UM-351
Q

QuickSim II logfile format CR-319
Quiet .ini file variable

VCOM UM-445
VLOG UM-446

quietly command CR-198
quit command CR-199

R

race condition, problems with event order UM-92
radix

changing in Signals, Variables, Dataflow, List, and
Wave windows CR-200

displaying character strings CR-285
of signals being examined CR-150
of signals in Wave window CR-59
specifying in List window UM-209

radix command CR-200
range checking UM-61

disabling CR-254
enabling CR-255

ranked profile UM-325
readers and drivers UM-193
real type, converting to time UM-77
rebuilding supplied libraries UM-55
reconstruct RTL-level design busses UM-162
record command CR-201
records, values of, changing UM-242
$recovery UM-116
redirecting messages, TranscriptFile UM-449
reference region UM-346
reference signals UM-340
refreshing library images CR-256, CR-293, UM-55
register variables

adding to the Wave and List windows UM-226
values of

displaying in Signals window UM-222
saving as binary log file UM-226

waveforms, viewing UM-246
report

simulator control UM-440
simulator state UM-440

report command CR-202
reporting

compile history UM-37
variable settings CR-17

RequireConfigForAllDefaultBinding variable UM-445
resolution

mixed designs UM-144
returning as a real UM-74
specifying with -t argument CR-303
verilog simulation UM-90
VHDL simulation UM-62

Resolution .ini file variable UM-449
resolution simulator state variable UM-456
resource library UM-48
restart command CR-204

defaults UM-453
in GUI UM-177
toolbar button UM-181, UM-234, UM-255

restore command CR-206
restoring defaults UM-441
results, saving simulations UM-153
resume command CR-207
right command CR-208
RTL-level design busses

reconstructing UM-162
run command CR-210
RunLength .ini file variable UM-449, UM-455

S

saving
simulation options in a project UM-41
Waveform Comparison differences UM-353
waveforms UM-153

ScalarOpts .ini file variable UM-445, UM-446
scope, setting region environment CR-148
SDF

errors and warnings UM-379
instance specification UM-378
interconnect delays UM-388
mixed VHDL and Verilog designs UM-388
specification with the GUI UM-379
troubleshooting UM-389
Verilog

$sdf_annotate system task UM-382
optional conditions UM-387
optional edge specifications UM-386
rounded timing values UM-387
SDF to Verilog construct matching UM-383

VHDL
resolving errors UM-381
SDF to VHDL generic matching UM-380

search command CR-212
search libraries CR-307, UM-293
searching

binary signal values in the GUI CR-21
ModelSim SE Command Reference

UM-352 Index

Model
in the source window UM-235
in the Structure window UM-241
List window

signal values, transitions, and names CR-18,
CR-139, CR-231, UM-213

next and previous edge in Wave window CR-164,
CR-208

values and names UM-169
Verilog libraries UM-85, UM-152
Wave window

signal values, edges and names CR-164, CR-
208, UM-266

searchlog command CR-214
seetime command CR-216
$setuphold UM-116
shared memory

improving performance on HP-UX 10.2 UM-503
improving performance on Sun/Solaris UM-504

shared objects
loading FLI applications

see ModelSim FLI Reference manual
loading PLI/VPI C applications UM-124
loading PLI/VPI C++ applications UM-127

shift command CR-217
Shortcuts

text editing UM-183, UM-462
shortcuts

command history CR-11, UM-461
command line caveat CR-11, UM-461
List window UM-218, UM-460
Main window UM-462
Main windows UM-183
Source window UM-462
Wave window UM-274, UM-459

show command CR-218
show differences UM-352
Show Drivers

Dataflow window UM-193
show drivers

Wave window UM-260
show source lines with errors UM-285
Show_source .ini file variable

VCOM UM-446
VLOG UM-446

Show_VitalChecksWarning .ini file variable UM-446
Show_Warning1 .ini file variable UM-446
Show_Warning2 .ini file variable UM-446
Show_Warning3 .ini file variable UM-446
Show_Warning4 .ini file variable UM-446
Show_Warning5 .ini file variable UM-446
Signal Spy UM-75, UM-362

overview UM-358
$signal_force UM-373
signal_force UM-75, UM-364
$signal_release UM-375
signal_release UM-75, UM-366
signals

adding to a WLF file UM-226
adding to the Wave and List windows UM-226
alternative names in the List window (-label) CR-49
alternative names in the Wave window (-label) CR-

58
applying stimulus to UM-225
arrays of, indexing CR-15
attributes of, using in expressions CR-24
breakpoints CR-314, UM-228
combining into a user-defined bus CR-58, UM-210,

UM-259
Dataflow window, displaying in UM-186
drivers of, displaying CR-141
driving in the hierarchy UM-359
environment of, displaying CR-148
finding CR-153
force time, specifying CR-157
hierarchy

driving in UM-359, UM-368
referencing in UM-75, UM-362, UM-371
releasing anywhere in UM-366
releasing in UM-75, UM-375

log file, creating CR-166
names of, viewing without hierarchy UM-265
pathnames in VSIM commands CR-14
radix

specifying for examine CR-150
specifying in List window CR-49
specifying in Wave window CR-59

sampling at a clock change UM-494
states of, displaying as mnemonics CR-285
stimulus CR-156
transitions, searching for UM-271
types, selecting which to view UM-225
unresolved, multiple drivers on UM-285
values of

converting to strings UM-495
displaying in Signals window UM-222
examining CR-149
forcing anywhere in the hierarchy UM-75,

UM-364, UM-373
replacing with text CR-285
saving as binary log file UM-226

waveforms, viewing UM-246
Signals window UM-222
Sim SE Command Reference

 UM-353
see also windows, Signals window
simulating

batch mode UM-490
command-line mode UM-490
comparing simulations UM-153, UM-339
default run length UM-298
delays, specifying time units for CR-17
design unit, specifying CR-298
elaboration file UM-63, UM-108
graphic interface to UM-288
iteration limit UM-298
mixed Verilog and VHDL designs

compilers UM-144
libraries UM-144
resolution limit in UM-144
Verilog parameters UM-145
Verilog state mapping UM-147
VHDL and Verilog ports UM-146
VHDL generics UM-145

optimizing Verilog performance CR-289
saving dataflow display as a Postscript file UM-199
saving options in a project UM-41
saving simulations CR-166, CR-304, UM-153,

UM-493
saving waveform as a Postscript file UM-276
speeding-up with Performance Analyzer UM-319
stepping through a simulation CR-222
stimulus, applying to signals and nets UM-225
stopping simulation in batch mode CR-316
time resolution UM-289
Verilog UM-89

delay modes UM-111
hazard detection UM-95
optimizing performance UM-99
resolution limit UM-90
XL compatible simulator options UM-98

VHDL UM-62
viewing results in List window UM-204
VITAL packages UM-73

simulation
event order in UM-92

Simulation Configuration
creating UM-41

simulations
saving results CR-130, CR-131, UM-153
saving results at intervals UM-159

simulator resolution
mixed designs UM-144
returning as a real UM-74
Verilog UM-90
VHDL UM-62

vsim -t argument CR-303
when comparing datasets UM-154

simulator state variables UM-456
simulator version CR-304, CR-312
simultaneous events in Verilog

changing order CR-288
sizetf callback function UM-134
sm_entity UM-405
SmartModels

creating foreign architectures with sm_entity UM-
405

invoking SmartModel specific commands UM-408
linking to UM-404
lmcwin commands UM-409
memory arrays UM-410
Verilog interface UM-411
VHDL interface UM-404

so, shared object file
loading PLI/VPI C applications UM-124
loading PLI/VPI C++ applications UM-127

software updates UM-25
software version UM-180
sorting

HDL items in GUI windows UM-170
source code, security UM-492
source directory, setting from source window UM-230
source errors, locating during compilation UM-283
source files, referencing with location maps UM-501
source libraries

arguments supporting UM-86
source lines with errors

showing UM-285
Source window UM-229

see also windows, Source window
spaces in pathnames CR-13
specify path delays CR-309
speeding-up the simulation UM-319
splitio command CR-220
stability checking

disabling CR-80
enabling CR-81

Standard Developer’s Kit User Manual UM-24
standards supported UM-20
startup

alternate to startup.do (vsim -do) CR-299
environment variables access during UM-483
files accessed during UM-482
macro in the modelsim.ini file UM-449
macros UM-452
startup macro in command-line mode UM-491
using a startup file UM-452
ModelSim SE Command Reference

UM-354 Index

Model
Startup .ini file variable UM-449
state variables UM-456
status bar

Main window UM-183
status command CR-221
Status field

Project tab UM-36
std .ini file variable UM-444
std_developerskit .ini file variable UM-444
Std_logic

mapping to binary radix CR-21
std_logic_arith package UM-55
std_logic_signed package UM-55
std_logic_textio UM-55
std_logic_unsigned package UM-55
StdArithNoWarnings .ini file variable UM-449,
UM-455
STDOUT environment variable UM-442
step command CR-222
stimulus

applying to signals and nets UM-225
modifying for elaboration file UM-64, UM-109

stop command CR-223
Structure window UM-237

see also windows, Structure window
support UM-25
symbol mapping

Dataflow window UM-202
symbolic link to design libraries (UNIX) UM-53
Synopsis hardware modeler UM-414
synopsys .ini file variable UM-444
Synopsys libraries UM-55
synthesis

rule compliance checking UM-285, UM-445
system calls

VCD UM-392
Verilog UM-113

system commands UM-427
system tasks

VCD UM-392
Verilog UM-113

T

tab stops, in the Source window UM-236
tb command CR-224
Tcl UM-419–UM-430

command separator UM-426
command substitution UM-425
command syntax UM-422

evaluation order UM-426
history shortcuts CR-11, UM-461
Man Pages in Help menu UM-180
preference variables UM-454
relational expression evaluation UM-426
variable substitution UM-427
VSIM Tcl commands UM-428

Tcl commands
set UM-454

Tcl_init error message UM-470
tech notes UM-24
technical support UM-25
temp files, VSOUT UM-443
test region UM-346
test signals UM-340
testbench, accessing internal items from UM-357
text and command syntax UM-23
Text editing UM-183, UM-462
TextIO package

alternative I/O files UM-70
containing hexadecimal numbers UM-69
dangling pointers UM-69
ENDFILE function UM-69
ENDLINE function UM-69
file declaration UM-66
implementation issues UM-68
providing stimulus UM-70
standard input UM-67
standard output UM-67
WRITE procedure UM-68
WRITE_STRING procedure UM-68

TF routines UM-138
TFMPC

disabling warning CR-308
explanation UM-471

time
absolute, using @ CR-17
simulation time units CR-17
time resolution as a simulator state variable UM-456

time literal, missing space UM-285
time resolution

in mixed designs UM-144
in Verilog UM-90
in VHDL UM-62
setting

with the GUI UM-289
with vsim command CR-303

time type, converting to real UM-76
time-based breakpoints UM-228
timescale directive warning, disabling CR-308
timing
Sim SE Command Reference

 UM-355
$setuphold/$recovery UM-116
annotation UM-377
differences shown by comparison UM-350
disabling checks CR-292, CR-302
negative check limits

described UM-96
extending CR-306

TMPDIR environment variable UM-442
to_real VHDL function UM-76
to_time VHDL function UM-77
toggle add command CR-225
toggle checking UM-499
toggle report command CR-226
toggle reset command CR-227
toggle statistics

enabling CR-225
merging multiple output files UM-499
reporting CR-226
resetting CR-227

toggling waveform popup on/off UM-266, UM-350
tolerance

leading edge UM-348
trailing edge UM-348

too few port connections, explanation UM-471
toolbar

Dataflow window UM-190
Main window UM-181
Wave window UM-254

tooltip, toggling waveform popup UM-266
tracing

events UM-196
source of unknown UM-197

transcribe command CR-228
transcript

clearing CR-37
file name, specifed in modelsim.ini UM-452
saving UM-174
TranscriptFile variable in .ini file UM-449
using as a DO file UM-174

transcript command CR-229
transcript file

redirecting with -l CR-301
transitions, signal, finding CR-164, CR-208
tree windows

VHDL and Verilog items in UM-171
viewing the design hierarchy UM-171

TreeUpdate command CR-324
triggers, in the List window, setting UM-212, UM-511
TSCALE, disabling warning CR-308
TSSI CR-329

in VCD files UM-400

tssi2mti command CR-230
type

converting real to time UM-77
converting time to real UM-76

Type field, Project tab UM-36

U

-u CR-294
unbound component UM-285
UnbufferedOutput .ini file variable UM-449
unit delay mode UM-112
unknowns, tracing UM-197
unresolved signals, multiple drivers on UM-285
up command CR-231
UpCase .ini file variable UM-446
updates UM-25
use 1076-1993 language standard UM-284
use clause, specifying a library UM-54
use explicit declarations only UM-285
user hook Tcl variable UM-310
user-defined bus CR-58, UM-161, UM-210, UM-259
UserTimeUnit .ini file variable UM-450, UM-455
util package UM-74

V

-v CR-294
values

describe HDL items CR-134
examine HDL item values CR-149
of HDL items UM-235
replacing signal values with strings CR-285

variable settings report CR-17
variables

environment variables UM-441
LM_LICENSE_FILE UM-441
personal preferences UM-440
precedence between .ini and .tcl UM-456
reading from the .ini file UM-451
setting environment variables UM-441
simulator control UM-454
simulator state variables

current settings report UM-440
iteration number UM-456
name of entity or module as a variable UM-456
resolution UM-456
simulation time UM-456

Variables window UM-242
see also windows, Variables window
ModelSim SE Command Reference

UM-356 Index

Model
variables, HDL
describing CR-134
value of

changing from command line CR-72
changing with the GUI UM-242
examining CR-149

variables, Tcl, user hook UM-310
vcd add command CR-233
vcd checkpoint command CR-234
vcd comment command CR-235
vcd dumpports command CR-236
vcd dumpportsall command CR-238
vcd dumpportsflush command CR-239
vcd dumpportslimit command CR-240
vcd dumpportsoff command CR-241
vcd dumpportson command CR-242
vcd file command CR-243
VCD files UM-391

adding items to the file CR-233
capturing port driver data CR-236, UM-400
case sensitivity UM-394
converting to WLF files CR-251
creating CR-233, UM-394
dumping variable values CR-234
dumpports tasks UM-392
flushing the buffer contents CR-247
from VHDL source to VCD output UM-397
inserting comments CR-235
internal signals, adding CR-233
specifying maximum file size CR-248
specifying name of CR-245
specifying the file name CR-243
state mapping CR-243, CR-245
supported TSSI states UM-400
turn off VCD dumping CR-249
turn on VCD dumping CR-250
VCD system tasks UM-392
viewing files from another tool CR-251

vcd files command CR-245
vcd flush command CR-247
vcd limit command CR-248
vcd off command CR-249
vcd on command CR-250
vcd2wlf command CR-251
vcom command CR-252
vdel command CR-258
vdir command CR-259
vector elements, initializing CR-72
vendor libraries, compatibility of CR-259
Vera, see Vera documentation
Verilog

ACC routines UM-137
capturing port driver data with -dumpports CR-243,

UM-400
cell libraries UM-111
compiler directives UM-119
compiling and linking PLI C applications UM-124
compiling and linking PLI C++ applications UM-

127
compiling design units UM-82
compiling with XL ’uselib compiler directive UM-

87
component declaration UM-150
creating a design library UM-82
event order in simulation UM-92
instantiation criteria in mixed-language design UM-

149
instantiation of VHDL design units UM-152
language templates UM-307
library usage UM-85
mapping states in mixed designs UM-147
mixed designs with VHDL UM-143
parameters UM-145
SDF annotation UM-382
sdf_annotate system task UM-382
simulating UM-89

delay modes UM-111
XL compatible options UM-98

simulation hazard detection UM-95
simulation resolution limit UM-90
SmartModel interface UM-411
source code viewing UM-229
standards UM-20
system tasks UM-113
TF routines UM-138
XL compatible compiler options UM-86
XL compatible routines UM-140
XL compatible system tasks UM-116

verilog .ini file variable UM-444
Verilog 2001, current implementation UM-20, UM-81
Verilog PLI/VPI UM-121–UM-142

64-bit support in the PLI UM-140
compiling and linking PLI/VPI C applications UM-

124
compiling and linking PLI/VPI C++ applications

UM-127
debugging PLI/VPI code UM-140
PLI callback reason argument UM-133
PLI support for VHDL objects UM-136
registering PLI applications UM-121
registering VPI applications UM-123
specifying the PLI/VPI file to load UM-130
Sim SE Command Reference

 UM-357
Veriuser .ini file variable UM-122, UM-450
Veriuser, specifying PLI applications UM-122
veriuser.c file UM-135
verror command CR-260
version

obtaining via Help menu UM-180
obtaining with vsim command CR-304
obtaining with vsim<info> commands CR-312

vgencomp command CR-261
VHDL

compiling design units UM-61
creating a design library UM-61
delay file opening UM-453
dependency checking UM-61
field naming syntax CR-15
file opening delay UM-453
foreign language interface UM-78
hardware model interface UM-414
instantiation from Verilog UM-152
instantiation of Verilog UM-145
language templates UM-307
library clause UM-54
mixed designs with Verilog UM-143
object support in PLI UM-136
simulating UM-62
SmartModel interface UM-404
source code viewing UM-229
standards UM-20
VITAL package UM-55

VHDL utilities UM-74, UM-75, UM-362, UM-371
get_resolution() UM-74
to_real() UM-76
to_time() UM-77

VHDL93 .ini file variable UM-446
view command CR-263
view_profile command UM-322
view_profile_ranked command UM-322
viewing

design hierarchy UM-171
library contents UM-50
waveforms CR-304, UM-153

virtual count commands CR-265
virtual define command CR-266
virtual delete command CR-267
virtual describe command CR-268
virtual expand commands CR-269
virtual function command CR-270
virtual hide command CR-273, UM-162
virtual log command CR-274
virtual nohide command CR-276
virtual nolog command CR-277

virtual objects UM-161
virtual functions UM-162
virtual regions UM-163
virtual signals UM-161
virtual types UM-163

virtual region command CR-279, UM-163
virtual regions

reconstruct the RTL hierarchy in gate-level design
UM-163

virtual save command CR-280, UM-162
virtual show command CR-281
virtual signal command CR-282, UM-161
virtual signals

reconstruct RTL-level design busses UM-162
reconstruct the original RTL hierarchy UM-161
virtual hide command UM-162

virtual type command CR-285
VITAL

compiling and simulating with accelerated VITAL
packages UM-73

compliance warnings UM-72
specification and source code UM-71
VITAL packages UM-71

vital95 .ini file variable UM-444
vlib command CR-287
vlog command CR-288
vlog.opt file UM-287
vmake command CR-296
vmap command CR-297
VPI, registering applications UM-123
VPI/PLI UM-121

compiling and linking C applications UM-124
compiling and linking C++ applications UM-127

vsim build date and version CR-312
vsim command CR-298
VSOUT temp file UM-443

W

warnings
exit codes UM-468
getting more information UM-466
suppressing VCOM warning messages CR-255,

UM-467
suppressing VLOG warning messages CR-292,

UM-467
suppressing VSIM warning messages CR-308, UM-

467
too few port connections UM-471
turning off warnings from arithmetic packages UM-
ModelSim SE Command Reference

UM-358 Index

Model
453
wave format file UM-248
wave log format (WLF) file CR-304, UM-153

of binary signal values CR-166
see also WLF files

wave viewer, Dataflow window UM-194
Wave window UM-246

compare waveforms UM-350
in the Dataflow window UM-194
toggling waveform popup on/off UM-266, UM-350
values column UM-351
see also windows, Wave window

wave, adding CR-57
.wave.tree interrupt command CR-38
.wave.tree zoomfull command CR-39
.wave.tree zoomin command CR-40
.wave.tree zoomlast command CR-41
.wave.tree zoomout command CR-42
.wave.tree zoomrange command CR-43
WaveActivateNextPane command CR-324
Waveform Comparison CR-83, UM-339

add region UM-346
adding signals UM-345
clear differences UM-352
clocked comparison UM-341, UM-347
compare by region UM-346
compare by signal UM-345
compare commands UM-355
compare menu UM-352
compare options UM-349
compare tab UM-344
comparison method tab UM-347
comparison modes UM-341
comparison wizard UM-352
continuous comparison UM-341, UM-348
dataset UM-340
dataset, specifying UM-343
difference markers UM-350
end UM-352
features UM-340
flattened designs UM-342
graphic interface UM-343
hierarchical designs UM-342
icons UM-351
introduction UM-340
leading edge tolerance UM-348
limit count UM-349
List window display UM-354
pathnames UM-350
preference variables UM-355
printing differences UM-353

reference dataset UM-343
reference region UM-346
reference signals UM-340
reload UM-353
rules UM-353
run comparison UM-352
save differences UM-353
show differences UM-352
specify when expression UM-347, UM-348
start UM-352
Tcl preference variables UM-355
test dataset UM-343
test region UM-346
test signals UM-340
timing differences UM-350
tolerances UM-341
trailing edge tolerance UM-348
values column UM-351
Verilog matching UM-349
VHDL matching UM-349
Wave window display UM-350
when statement UM-347
write report UM-353

waveform logfile
log command CR-166
overview UM-153
see also WLF files

waveform popup UM-266, UM-350
waveforms UM-153

halting drawing CR-38
saving and viewing CR-166, UM-154
saving and viewing in batch mode UM-493
viewing UM-246

WaveRestoreCursors command CR-324
WaveRestoreZoom command CR-324
WaveSignalNameWidth .ini file variable UM-450
welcome dialog, turning on/off UM-440
when command CR-314
when statement

setting signal breakpoints UM-228
specifying for waveform comparison UM-347
time-based breakpoints CR-317

where command CR-318
wildcard characters

for pattern matching in simulator commands CR-16
Windows

Main window
text editing UM-183, UM-462

Source window
text editing UM-183, UM-462

windows
Sim SE Command Reference

 UM-359
buttons, adding to UM-310
coverage_summary UM-330
Dataflow window UM-186

toolbar UM-190
zooming UM-195

finding HDL item names in UM-169
List window UM-204

adding HDL items UM-205
adding signals with a WLF file UM-226
display properties of UM-211
formatting HDL items UM-208
output file CR-325
saving data to a file UM-217
saving the format of CR-323
setting triggers UM-212, UM-511
time markers UM-169

Main window UM-173
adding user-defined buttons CR-45
status bar UM-183
time and delta display UM-183
toolbar UM-181

opening
from command line CR-263
multiple copies UM-170
with the GUI UM-176

Process window UM-219
displaying active processes UM-219
specifying next process to be executed UM-219
viewing processing in the region UM-219

saving position and size UM-170
searching for HDL item values in UM-169
Signals window UM-222

VHDL and Verilog items viewed in UM-222
Source window UM-229

setting tab stops UM-236
viewing HDL source code UM-229

Structure window UM-237
instance names UM-238
selecting items to view in Signals window UM-

222
VHDL and Verilog items viewed in UM-237
viewing design hierarchy UM-237

Variables window UM-242
VHDL and Verilog items viewed in UM-242

Wave window UM-246
adding HDL items to UM-248
adding signals with a WLF file UM-226
cursor measurements UM-270
display properties UM-265
display range (zoom), changing UM-271
format file, saving UM-248

path elements, changing CR-112, UM-450
searching for HDL item values UM-267
time cursors UM-269
zooming UM-271

WLF files
adding items to UM-226
comparing UM-340
creating from VCD CR-251
limiting size CR-304
log command CR-166
overview UM-154
repairing CR-321
saving CR-130, CR-131, UM-155
saving at intervals UM-159
specifying name CR-304
using in batch mode UM-493

wlf2log command CR-319
wlfrecover command CR-321
Work library UM-48
workspace UM-173
write cell_report command CR-322
write format command CR-323
write list command CR-325
write preferences command CR-326
write report command CR-327
write transcript command CR-328
write tssi command CR-329
write wave command CR-331
write, waveform comparison report UM-353

X

X
tracing unknowns UM-197

X propagation, preventing CR-302

Y

-y CR-294

Z

zero delay elements UM-513
zero delay mode UM-112
zero-delay loop, infinite UM-500
zero-delay oscillation UM-500
zero-delay race condition UM-92
zoom

Dataflow window UM-195
ModelSim SE Command Reference

UM-360 Index

Model
from Wave toolbar buttons UM-271
saving range with bookmarks UM-272
with the mouse UM-272
Sim SE Command Reference

	Bookcase
	Command Reference
	Table of Contents
	Syntax and conventions
	Documentation conventions
	Command return values
	Command shortcuts
	Command history shortcuts
	Numbering conventions
	VHDL numbering conventions
	Verilog numbering conventions

	File and directory pathnames
	HDL item pathnames
	Multiple levels in a pathname
	Absolute pathnames
	Relative pathnames
	Environment variables and pathnames
	Indexing signals, memories, and nets
	Name case sensitivity
	Extended identifiers
	Naming fields in VHDL signals
	Example pathnames

	Wildcard characters
	ModelSim variables
	Variable settings report

	Simulation time units
	Comments in argument files
	GUI_expression_format
	Expression typing
	Signal and subelement naming conventions
	Concatenation of signals or subelements
	VHDL record field support
	Grouping and precedence
	Searching for binary signal values in the GUI
	Expression syntax

	Commands
	Command reference table
	.main clear
	.wave.tree interrupt
	.wave.tree zoomfull
	.wave.tree zoomin
	.wave.tree zoomlast
	.wave.tree zoomout
	.wave.tree zoomrange
	abort
	add button
	add dataflow
	add list
	add_menu
	add_menucb
	add_menuitem
	add_separator
	add_submenu
	add wave
	alias
	batch_mode
	bd
	bookmark add wave
	bookmark delete wave
	bookmark goto wave
	bookmark list wave
	bp
	cd
	change
	change_menu_cmd
	check contention add
	check contention config
	check contention off
	check float add
	check float config
	check float off
	check stable off
	check stable on
	checkpoint
	compare add
	compare annotate
	compare clock
	compare configure
	compare continue
	compare delete
	compare end
	compare info
	compare list
	compare options
	compare reload
	compare reset
	compare run
	compare savediffs
	compare saverules
	compare see
	compare start
	compare stop
	compare update
	configure
	context
	coverage clear
	coverage exclude clear
	coverage exclude disable
	coverage exclude enable
	coverage exclude load
	coverage reload
	coverage report
	dataset alias
	dataset clear
	dataset close
	dataset info
	dataset list
	dataset open
	dataset rename
	dataset save
	dataset snapshot
	delete
	describe
	disablebp
	disable_menu
	disable_menuitem
	do
	down
	drivers
	dumplog64
	echo
	edit
	enablebp
	enable_menu
	enable_menuitem
	environment
	examine
	exit
	find
	force
	getactivecursortime
	getactivemarkertime
	help
	history
	lecho
	left
	log
	lshift
	lsublist
	macro_option
	modelsim
	next
	noforce
	nolog
	notepad
	noview
	nowhen
	onbreak
	onElabError
	onerror
	pause
	play
	power add
	power report
	power reset
	printenv
	profile clear
	profile interval
	profile off
	profile on
	profile option
	profile report
	project
	property list
	property wave
	pwd
	quietly
	quit
	radix
	record
	report
	restart
	restore
	resume
	right
	run
	search
	searchlog
	seetime
	shift
	show
	simstats
	splitio
	status
	step
	stop
	tb
	toggle add
	toggle report
	toggle reset
	transcribe
	transcript
	tssi2mti
	up
	vcd add
	vcd checkpoint
	vcd comment
	vcd dumpports
	vcd dumpportsall
	vcd dumpportsflush
	vcd dumpportslimit
	vcd dumpportsoff
	vcd dumpportson
	vcd file
	vcd files
	vcd flush
	vcd limit
	vcd off
	vcd on
	vcd2wlf
	vcom
	vdel
	vdir
	verror
	vgencomp
	view
	virtual count
	virtual define
	virtual delete
	virtual describe
	virtual expand
	virtual function
	virtual hide
	virtual log
	virtual nohide
	virtual nolog
	virtual region
	virtual save
	virtual show
	virtual signal
	virtual type
	vlib
	vlog
	vmake
	vmap
	vsim
	vsim<info>
	vsource
	when
	where
	wlf2log
	wlfrecover
	write cell_report
	write format
	write list
	write preferences
	write report
	write transcript
	write tssi
	write wave

	Licensing Agreement
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

