
EDA322 Lab 2 D&IT, Chalmers 2016

1

EDA322 Digital Design Lab

LAB2

Designed by: Angelos Arelakis; Stavros Tzilis, Anurag Negi, Ioannis Sourdis

The goal of this lab is to design an Arithmetic Logic Unit (ALU) for an8-bit processor, using the

tools you get familiar with in the previous lab. Before starting the lab, please do the preparation

as described below.

For this and all other labs it is important that you do not share code with other groups. Your code

will be checked for plagiarism at the end of the course.

Preparation

Preparing for the second lab requires to:

1. Complete lab1.

2. Study introduction and paragraph “Arithmetic and Logic Unit (ALU)” at Section 1, in the

provided processor’s specification document (processor.pdf).

3. Study the lecture material of up to the previous study week.

4. Prepare in a document the following:

a. Write the VHDL implementation of a 4-to-1 mux (multiplexer) using 2-to-1 muxes

as components. Show the component definition and instantiation (port map).

b. Referring to the code of file “sample.vhdl” (download it from pingpong), answer

the following question: At time t=0, input "in1" takes the value "00" and keeps it

for a long time. Given the signal assignments of lines 19 and 20, what are the values

of signal 'a' and output "out1" during this time (as long as "in1" remains "00")?

5. Read through the Lab PM before starting to do each task.

Introduction

The ALU is one of the most important components in a processor, as it does all the necessary

calculations between the operands. It normally does arithmetic operations such as addition,

multiplication, division as well as logic operation such as and, or, etc. However, the Chalmers

Accumulator (ChAcc) processor that is going to make use of the ALU, has a reduced set of

EDA322 Lab 2 D&IT, Chalmers 2016

2

instructions, thus the ALU operations are limited to only add, sub, and, not and cmp. Furthermore,

our ALU supports arithmetic operations only between unsigned numbers.

The block diagram of the ALU is depicted in Figure 1. The interface was already presented in

processor.pdf. There are four sub-components:

• “Adder”: It performs addition/subtraction between the two ALU input data operands

• “And”: It performs an AND operation between the two ALU input data operands

• “Not”: It performs a Not operation of ALU_inA only

• “Comparator (cmp)”: It compares the two ALU input data operands. Compare is always

active irrespective of operation.

adder and not

00 01 10 1100 01 10 11

cmp

ALU_inBALU_inA

NotEqALU_outCarry EqisOutZero

88 88

88 88 88
SUMCOUT

andOut
notOut EQ NEQ

operation

2

==0
8

88

?

?

CIN

Logic

needed

for sub

A B

A B
A B A

adder and not

00 01 10 11

cmp

ALU_inBALU_inA

NotEqALU_outCarry EqisOutZero

8 8

8 8 8
SUMCOUT

andOut
notOut EQ NEQ

operation

2

==0
8

8

?

?

CIN

Logic

needed

for sub

A B

A B
A B A

Figure 1: Block diagram of the ALU

This lab requires you to do the following tasks:

1. Implement a ripple carry adder (RCA) using smaller components such full adders (FA) and

verify its correct operation.

2. Implement the comparison operation cmp.

3. Task 3 includes the following sub-tasks:

a. Implement the AND and NOT operations.

b. Add subtraction functionality to the implemented adder.

c. Integrate the implemented sub-components(adder, and, not, cmp) into one ALU unit.

d. Verify the correct operation of the ALU using the provided test file.

The lab also contains the following optional tasks:

• Implement a faster adder, i.e. a carry look-ahead adder (CLA), using smaller components

such as generate and propagate functions and verify its correct operation.

EDA322 Lab 2 D&IT, Chalmers 2016

3

• Integrate the CLA with the rest of components in a second ALU unit version.

Start by opening ModelSim (or QuestaSim) and create a new project with name, e.g., Lab2.

Arithmetic operations (Adder) – Task 1

In this part, you are going to implement the unit that performs arithmetic operations (add, sub).

As you have seen in the lecture, there are many different types of adders. For instance, the ripple

carry adder is simple enough to design. On the other hand, the carry look-ahead adder is relatively

more complicated but can perform much better. In this task, you are going to implement in VHDL

a ripple carry adder (RCA) only, using the dataflow and the structural design styles. You have

already seen in the lecture how to design an adder using the behavioral design style.

The ripple-carry adder, which is going to be implemented, is designed as a chain of Full Adders

(FA),as is depicted in Figure 2. Each FA has three inputs(𝑐𝑖, a, b) and two outputs(𝑐𝑖+1, s), as

presented in Figure 2. The third input (𝑐𝑖) is the carry-in and is generated by a previous full adder.

Draw the data-flow diagram of a FA, based on the truth table of Table 1. You first need to write

down the Boolean expressions that describe the functionality of the FA. Then write the VHDL for

the FA in a file with name FA.vhdl.

Figure 2: An 8-bit Ripple Carry Adder using FAs

Table 1: Truth table for a FA

𝒄𝒊 𝒂𝒊 𝒃𝒊 𝒄𝒊+𝟏 𝒔𝒊

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Alternatively, the FA can be decomposed into even smaller units that are called half adders

(HAs). The HA has only two inputs, as is depicted in Figure 3, while its outputs are the sum (s)

EDA322 Lab 2 D&IT, Chalmers 2016

4

and the carry (c).A number of HAs plus logic is needed to build a FA. How is the FA built using

the alternative design option based on the HA as components? Draw the block diagram.

a

b
s

c

Figure 3: HA adder

A ripple carry adder (RCA) is simply a chain of connected full adders where the carry out of a

FA at bit position, say i, is the carry in (cin) of the full adder at the bit position i+1. Write now the

description of the RCA in VHDL using the FAs as components. You must make use of port

maps(structural design style) to make the connections between the FAs. The entity of the ripple

carry adder must have the name RCA while the entity’s inputs/outputs are given in Table

2.Verify the correctness of your ripple carry adder using ModelSim. Write a do file, where you

check the result for some inputs.

Table 2: RCA entity

Name input/output Width (bits)

A Input 8

B Input 8

CIN In§put 1

SUM Output 8

COUT Output 1

Comparison operation (cmp) – Task 2

The cmp compares two operands and determines whether they are equal or not, asserting the

respective flag:1) Equal (EQ) or 2)Not Equal (NEQ). These flags may be checked by a subsequent

instruction, which is a branch instruction (JEQ, JNE) as you will see in the next labs.

There are (at least) two alternatives to implement the above cmp operation, using dataflow or

structural design style. Which are they? Select one and implement it. You should not use a

behavioral design style, e.g., “if (A=B) then EQ=’1’”.

Implement the comparator cmp in a new file and name the entity “cmp”. The inputs of cmp are

the two ALU data input operands while the outputs are two 1-bit signals: EQ and NEQ, as

depicted in Figure 1.

EDA322 Lab 2 D&IT, Chalmers 2016

5

Finalize the ALU design – Task 3

The goal of the final task is to finalize the design of some components and connect all the different

modules into one ALU unit. First, create a new file that is called alu_wRCA.vhdl. Create the entity

for the ALU by defining the inputs/outputs and their width, as they are shown in Table 3.This is

the top level entity of the ALU or in other words the entity that contains all the functional units

of the ALU. See processor.pdf for more details about the ALU inputs/outputs.

Table 3: Input and output signals of the ALU top entity

Name input/output Width (bits)

ALU_inA Input 8

ALU_inB Input 8

Operation Input 2

ALU_out output 8

Carry output 1

NotEq output 1

Eq output 1

isOutZero output 1

Follow the steps, to complete this task:

1. Write in dataflow VHDL the implementation for the rest of two operations AND and NOT

inside the file alu_wRCA.vhdl. The AND is performed between ALU_inA and ALU_inB,

while NOT has only one input (ALU_inA), according to Figure 1.

2. The current implementation of the adder supports addition only. Extra logic is needed to

support subtraction, as also depicted in Figure 1 in the grey box. Derive the functionality

of this box and write dataflow and/or structural VHDL code in alu_wRCA.vhdl. Don’t

modify the design of your RCA. Use only one instance of the RCA as component to

support both addition and subtraction. Hint: Based on 2’s complement representation,

subtraction is performed as an addition but we have to modify some of the inputs. What

modification is needed? How do we select the correct input set for the RCA, provided that

we know whether we are going to perform addition or subtraction? The latter is revealed

by the Operation input (see Table 4)?

3. Write in VHDL, inside the file alu_wRCA.vhdl, the implementation for the multiplexor

(mux) 4-to-1 using dataflow design style, as you learned in the lecture. The ALU input

operation helps to determine the mux’s output, based on Table 4.

4. Integrate all the different units that you have implemented so far into one ALU using

structural VHDL (using components), inside file alu_wRCA.vhdl. Use the block diagram

of the ALU in Figure 1 to observe how the implemented components are connected.

EDA322 Lab 2 D&IT, Chalmers 2016

6

Table 4: Selected operation based on operation

Operation Operation

00 Add

01 Sub

10 AND

11 NOT

After completing the implementation above, verify the correct functionality of your ALU running

the provided testbench (alu_testbench.vhdl) for 2010ns. If it fails to pass the testbench, debug

your design. In order to do this, use the waveform to find where the simulation has stopped.

Check the value of the various signals to see if they take the value you expected based on the

inputs. You can also add extra signals like intermediate signals from the test top level design

component or the various sub-components.

Design a Carry Lookahead Adder – Optional

The ripple carry adder is simple enough to design it but suffers from long delays due to the carry

propagation. In the previous 8-bit RCA, the delay (critical path) from the carry in 𝑐0tothe carry

out is 17 gates. Why is this number correct? Generalize for the case ofan n-bit adder. Obviously,

if the adder is 32 bits or 64 bits the delay of the critical path is linearly increased.

One improvement that may have a significant effect in performance is to quickly evaluate if the

carry in from a previous stage has a value 0 or 1 [1]. Using the truth table of Table 1, we can easily

derive the Boolean equation: 𝑐𝑖+1 = 𝑥𝑖𝑦𝑖 + (𝑥𝑖 + 𝑦𝑖)𝑐𝑖, which can be re-written as: 𝑐𝑖+1 = 𝑔𝑖 + 𝑝𝑖𝑐𝑖,

where 𝑔𝑖 = 𝑥𝑖𝑦𝑖 and 𝑝𝑖 = 𝑥𝑖 + 𝑦𝑖. In this stage i, the generate function g generates a carry out if

both x and y are 1 and no matter whether there is a carry in. On the other hand, the carry in will

be propagated through the function p (propagate function) if at least one of the x or y is 1. See the

book or the lecture notes for more information about the working of the carry look-ahead adder.

Using the above equations, we can quickly derive the formula for the carry out of the 1-bit, 2-bit

and 3-bit CLA respectively:

𝑐1 = 𝑔0 + 𝑝0𝑐0

𝑐2 = 𝑔1 + 𝑝1𝑐1 = 𝑔1 + 𝑝1𝑔0 + 𝑝1𝑝0𝑐0

𝑐3 = 𝑔2 + 𝑝2𝑐2 = 𝑔2 + 𝑝2𝑔1 + 𝑝2𝑝1𝑔0 + 𝑝2𝑝1𝑝0𝑐0

Surprisingly the critical path for c3, c2 and c1 is the same (3 gates) assuming gates with fan-in of

4. Assuming gates with this fan-in, what is the critical path of the respective 8-bit CLA in gate

levels? Explain your answer. Generalize the case for an n-bit CLA.

EDA322 Lab 2 D&IT, Chalmers 2016

7

Then write the VHDL to describe the hardware for this 8-bit carry look-ahead adder. You first

need to derive the Boolean expressions. Moreover, the CLA entity (names of inputs/outputs)

must be the same as the RCA entity (except for the entity name). Verify the correctness of your

design using ModelSim as you did for the RCA.

Copy the previous alu_wRCA.vhdl into a new file alu_wCLA.vhdl and replace the RCA

component with the CLA one. Verify the correct operation of the ALU with the new adder.

Demonstrations

Tasks to be done for successfully completing this lab:

1. Write a VHDL module which implements the ripple carry adder (RCA). Add it to your

ModelSim project and simulate using a “do” file.

2. Write a VHDL module that implements the cmp operation. Add it to your ModelSim project

and simulate using a “do” file.

3. Write a VHDL module that implements the ALU of 5 operations (add, sub, and, not, cmp) by

connecting the RCA adder and the rest of modules into one ALU unit. Simulate using ModelSim

and by running the provided test file for 2010ns. Show the results to your instructor.

Evaluation:

The instructor will check for the following:

Task# Coding style Simulation

1 X

2 X

3 X X

Make sure that when you are done with the lab, you have demonstrated all checked aspects of

each task. This is necessary for successful completion of the lab.

Lab report:

In the section “ALU design” of the final lab report, describe briefly what you did in this lab and

what you have learnt. In addition, discuss your findings and observations during this lab.

Summarize your answers to the questions in the lab PM and present the block diagrams that you

have to draw. Remember to always explain your design choices and mention any assumptions.

Finally, make use of figures and tables.

Learning outcome:

After completing this lab, you should be able to:

• Implement simple components using dataflow and structural VHDL.

• Implement a ripple carry adder using smaller sub-modules, like FA.

EDA322 Lab 2 D&IT, Chalmers 2016

8

• Verify and debug a combinatorial circuit in VHDL using a provided testbench.

Hints and Tips:

For….. Generate

A very useful concurrent VHDL statement for instantiating several copies of a component is

 “for … generate”. Try to think how you can use it to design the ripple-carry adder with FA components.

Assigning a value to a vector

In VHDL it is possible to assign a value to each bit of a vector. Also, some other forms of value assignments

are available for convenience (e.g. using syntaxes like others, downtoor upto)

For example:

Q <= “00000001”;  Q <= (0 => ’1’, others => ’0’);

Q <= “10000010”;  Q <= (7|1 => ’1’, others => ’0’);

Q <= “00011110”;  Q <= (4 downto 1 =>’1’, others=>’0’);

Q <= “00000000”;  Q <= (others=>’0’);

Component Instantiation

In VHDL-93, an entity-architecture may be directly instantiated inside another entity-architecture without

the need of declaration. This is more compact way especially for cases that several components are needed.

In this case all the files should be in a same folder. The syntax in this method is as follows:

U1: entitywork.nameOfComponent(nameOfArch)

Generic map(

…..)

Port map (

……

);

 Where U1 is the label, nameOfComponent is the entity and nameOfArch is the architecture of the component.

Putting nameOfArch is optional.

or_reduce and and_reduce

Depending on the way you decide to implement your design, you might find it useful to use

or_reduce and and_reducewhich are basically employed to or/and all the bits of one vector. This is possible in

VHDL-2008insideieee.numeric_std library for signed and unsigned vectors. You can change the VHDL

version in the properties of each .vhd file you have.

Example:

allBitsAnded <= andmySignal;

allBitsOred <= or mySignal;

EDA322 Lab 2 D&IT, Chalmers 2016

9

References

[1]: Brown S. and Vranesic Z., “Fundamentals of digital logic with VHDL design”, Second Edition, ISBN 007-

124482-4.

