
EDA321
Digital	Design

Lecture	10:	
Testbenches - VHDL

Ioannis	Sourdis

Outline	of	Lecture	10

• Introduction	to	Testbenches
• Structure	of	a	testbench
• Time,	wait	statements,	Processes
• Simple	testbenches
• Advanced	testbenches
• Test-vectors,	Asserts	&	Reports
• Records	and	variables
• File	IO

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 2

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 3

Testbenches

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 4

Testbench	Defined
• Testbench =	VHDL	entity	that	applies	stimuli	(drives	the	
inputs)	to	the	Design	Under	Test	(DUT)	and	(optionally)	
verifies	expected	outputs.

• The	results	can	be	viewed	in	a	waveform	window	or	
written	to	a	file.	

• Since	Testbench	is	written	in	VHDL,	it	is	not	restricted	to	
a	single	simulation	tool	(portability).	

• The	same Testbench	can	be	easily	adapted	to	test	
different	implementations	(i.e.	different	architectures)	
of	the	same	design.

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 5

Simple	Testbench

Processes

Generating

Stimuli

Design Under
Test (DUT)

Observed Outputs

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 6

Representative
Inputs

VHDL Design

Manual Calculations
or

Reference Software
Implementation

(C, Java, Matlab)

expected results

Testbench

actual results
= ?

Possible sources of expected results
used for comparison

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 7

Testbench

testbench

design entity

Architecture 1 Architecture 2 Architecture N. . . .

The same testbench can be used to
test multiple implementations of the same circuit

(multiple architectures)

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 8

Testbench	Anatomy
ENTITY my_entity_tb IS

--TB entity has no ports
END my_entity_tb;

ARCHITECTURE behavioral OF tb IS

--Local signals and constants

COMPONENT TestComp --All Design Under Test component declarations
PORT ();

END COMPONENT;

BEGIN

DUT:TestComp PORT MAP(-- Instantiations of DUTs
);

testSequence: PROCESS
-- Input stimuli

END PROCESS;

END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 9

Testbench	for	XOR3 (1)
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY	xor3_tb IS
END xor3_tb;

ARCHITECTURE behavioral OF xor3_tb IS
-- Component	declaration	of	the	tested	unit
COMPONENT xor3
PORT(
A	:	IN STD_LOGIC;
B	:	IN STD_LOGIC;
C	:	IN STD_LOGIC;
Result :	OUT STD_LOGIC);
END	COMPONENT;

-- Stimulus	signals	- signals	mapped	to	the	input	and	inout	ports	of	tested	entity
SIGNAL test_vector: STD_LOGIC_VECTOR(2	DOWNTO 0);
SIGNAL test_result	:	STD_LOGIC;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 10

Testbench	for	
XOR3	(2)

BEGIN
UUT	:	xor3
PORT	MAP (

A	=>	test_vector(2),
B	=>	test_vector(1),
C	=>	test_vector(0),
Result =>	test_result);

);
Testing:	PROCESS
BEGIN
test_vector <= "000";
WAIT	FOR 10	ns;
test_vector <= "001";
WAIT	FOR 10	ns;
test_vector <= "010";
WAIT	FOR 10	ns;
test_vector <= "011";
WAIT	FOR 10	ns;
test_vector <= "100";
WAIT	FOR 10	ns;
test_vector <= "101";
WAIT	FOR 10	ns;
test_vector <= "110";
WAIT	FOR 10	ns;
test_vector <= "111";
WAIT	FOR 10	ns;

END	PROCESS;
END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 11

VHDL	Design	Styles

Components and
interconnects

structural

VHDL Design
Styles

dataflow

Concurrent
statements

behavioral

• Testbenches

Sequential statements

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 12

Process without Sensitivity List
and its use in Testbenches

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 13

– A	process	is	a	sequence	of	instructions	referred	to	as	sequential	
statements.

What	is	a	PROCESS?

• A process can be given a unique name
using an optional LABEL

• This is followed by the keyword
PROCESS

• The keyword BEGIN is used to indicate
the start of the process

• All statements within the process are
executed SEQUENTIALLY. Hence,
order of statements is important.

• A process must end with the keywords
END PROCESS.

Testing: PROCESS
BEGIN

test_vector<=“00”;
WAIT FOR 10 ns;
test_vector<=“01”;
WAIT FOR 10 ns;
test_vector<=“10”;
WAIT FOR 10 ns;
test_vector<=“11”;
WAIT FOR 10 ns;

END PROCESS;

The keyword PROCESS

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 14

Execution	of	statements	in	a	PROCESS

• The	execution	of	statements	
continues	sequentially till	the	last	
statement	in	the	process.

• After	execution	of	the	last	
statement,	the	control	is	again	
passed	to	the	beginning	of	the	
process.	

Testing:	PROCESS
BEGIN

test_vector<=“00”;
WAIT	FOR	10	ns;
test_vector<=“01”;
WAIT	FOR	10	ns;
test_vector<=“10”;
WAIT	FOR	10	ns;
test_vector<=“11”;
WAIT	FOR	10	ns;

END	PROCESS;

O
rd

er
 o

f e
xe

cu
tio

n
Program control is passed to the

first statement after BEGIN

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 15

PROCESS	with	a	WAIT	Statement

• The	last	statement	in	the	
PROCESS	is	a	WAIT instead	of	
WAIT	FOR	10	ns.

• This	will	cause	the	PROCESS	to	
suspend	indefinitely when	the	
WAIT	statement	is	executed.	

• This	form	of	WAIT	can	be	used	
in	a	process	included	in	a	
testbench	when	all	possible	
combinations	of	inputs	have	
been	tested	or	a	non-periodical	
signal	has	to	be	generated.

Testing:	PROCESS
BEGIN

test_vector<=“00”;
WAIT	FOR	10	ns;
test_vector<=“01”;
WAIT	FOR	10	ns;
test_vector<=“10”;
WAIT	FOR	10	ns;
test_vector<=“11”;
WAIT;

END	PROCESS;

Program execution stops here
O

rd
er

 o
f e

xe
cu

tio
n

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 16

WAIT	FOR	vs.	WAIT

WAIT FOR: waveform will keep repeating
itself forever

WAIT : waveform will keep its state after
the last wait instruction.

0 1 2 3

…

0 1 2 3 …

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 17

Specifying time in VHDL

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 18

Time	values	(physical	literals)	- Examples

7	ns
1	min
min

10.65	us
10.65	fs

Unit of timeSpace
(required)

Numeric value

unit of time
most commonly
used in simulation

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 19

Units	of	time
Unit Definition
Base	Unit
fs femtoseconds	(10-15 seconds)
Derived	Units
ps picoseconds	(10-12 seconds)
ns nanoseconds	(10-9 seconds)
us microseconds	(10-6 seconds)
ms miliseconds	(10-3 seconds)
sec seconds
min minutes	(60	seconds)
hr hours	(3600	seconds)

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 20

Simple Testbenches

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 21

Generating	selected	values	of	one	input
SIGNAL test_vector : STD_LOGIC_VECTOR(2 downto 0);

BEGIN
.......

testing: PROCESS
BEGIN

test_vector <= "000";
WAIT FOR 10 ns;
test_vector <= "001";
WAIT FOR 10 ns;
test_vector <= "010";
WAIT FOR 10 ns;
test_vector <= "011";
WAIT FOR 10 ns;
test_vector <= "100";
WAIT FOR 10 ns;

END PROCESS;
........
END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 22

Generating	all	values	of	one	input

SIGNAL test_vector : STD_LOGIC_VECTOR(3 downto 0):="0000";

BEGIN
.......

testing: PROCESS
BEGIN

WAIT FOR 10 ns;
test_vector <= test_vector + 1;

end process TESTING;

........
END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 23

Arithmetic	Operators in	VHDL	(1)

To	use	basic	arithmetic	operations	involving	
std_logic_vectors	you	need	to	include	the
following	library	packages:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
or
USE ieee.std_logic_signed.all;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 24

Arithmetic	Operators in	VHDL	(2)
You	can	use	standard	+,	- operators
to	perform	addition	and	subtraction:

signal	A	:		STD_LOGIC_VECTOR(3	downto	0);
signal	B	:		STD_LOGIC_VECTOR(3	downto	0);
signal	C	:		STD_LOGIC_VECTOR(3	downto	0);
……

C	<=	A	+	B;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 25

Different	ways	of	performing	the	same	operation

signal	count:	std_logic_vector(7	downto	0);

You	can	use:

count	<=	count	+	“00000001”;
or
count	<=	count	+	1;
or
count	<=	count	+	‘1’;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 26

Different	declarations	for	the	same	operator

Declarations	in	the	package	ieee.std_logic_unsigned:

function	“+”	(L:	std_logic_vector;	
R:std_logic_vector)

return	std_logic_vector;
function	“+”	(L:	std_logic_vector;	

R:	integer)
return	std_logic_vector;

function	“+”	(L:	std_logic_vector;	
R:std_logic)

return	std_logic_vector;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 27

Operator	overloading

• Operator	overloading	allows	different	argument	types	
for	a	given	operation	(function)

• The	VHDL	tools	resolve	which	of	these	functions to	
select	based	on	the	types	of	the	inputs

• This	selection	is	transparent	to	the	user	as	long	as	the	
function	has	been	defined	for	the	given	argument	
types.

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 28

SIGNAL test_ab : STD_LOGIC_VECTOR(1 downto 0);
SIGNAL test_sel : STD_LOGIC_VECTOR(1 downto 0);

BEGIN
.......

double_loop: PROCESS
BEGIN

test_ab <="00";
test_sel <="00";
for I in 0 to 3 loop

for J in 0 to 3 loop
wait for 10 ns;
test_ab <= test_ab + 1;

end loop;
test_sel <= test_sel + 1;

end loop;
END PROCESS;

........
END behavioral;

Generating all possible values of two inputs

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 29

Generating	periodical	signals,	such	as	clocks

CONSTANT clk1_period : TIME := 20 ns;
CONSTANT clk2_period : TIME := 200 ns;
SIGNAL clk1 : STD_LOGIC;
SIGNAL clk2 : STD_LOGIC := ‘0’;

BEGIN
.......
clk1_generator: PROCESS

clk1 <= ‘0’;
WAIT FOR clk1_period/2;
clk1 <= ‘1’;
WAIT FOR clk1_period/2;

END PROCESS;

clk2 <= not clk2 after clk2_period/2;
.......

END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 30

Generating	one-time	signals,	such	as	resets
CONSTANT reset1_width : TIME := 100 ns;
CONSTANT reset2_width : TIME := 150 ns;
SIGNAL reset1 : STD_LOGIC;
SIGNAL reset2 : STD_LOGIC := ‘1’;

BEGIN
.......
reset1_generator: PROCESS

reset1 <= ‘1’;
WAIT FOR reset1_width;
reset1 <= ‘0’;
WAIT;

END PROCESS;

reset2_generator: PROCESS
WAIT FOR reset2_width;
reset2 <= ‘0’;
WAIT;

END PROCESS;
.......

END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 31

Typical	error
SIGNAL test_vector : STD_LOGIC_VECTOR(2 downto 0);
SIGNAL reset : STD_LOGIC;

BEGIN
.......
generator1: PROCESS

reset <= ‘1’;
WAIT FOR 100 ns
reset <= ‘0’;
test_vector <="000";
WAIT;

END PROCESS;

generator2: PROCESS
WAIT FOR 200 ns
test_vector <="001";
WAIT FOR 600 ns
test_vector <="011";

END PROCESS;
.......

END behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 32

Advanced Testbenches

Simple	Testbench

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 33

Processes
Generating

Input
Stimuli

Design Under
Test (DUT)

Outputs Observed
as Timing Waveforms

Advanced	Testbench

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 34

Processes
Generating

Input
Stimuli

Design Under
Test (DUT)

Process
Comparing

Actual
Outputs

vs.
Expected

Outputs

Design
Correct/Incorrect

Yes/No

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 35

Source

of

Representative

Inputs

VHDL Design

Manual
Calculations

or

Reference
Software

Implementation
(C, Java, Matlab)

Expected Outputs

Actual Outputs
= ?

Inputs

Possible Sources of Expected Outputs

EDA321 Digital Design, 2017-
2018, Lecture 10 I. Sourdis, CSE, Chalmers 36

Test vectors

Set of pairs: {Input i, Expected Output i}

Input 1, Expected Output 1
Input 2, Expected Output 2
……………………………
Input N, Expected Output N

Test vectors can be:
- defined in the testbench source file
- stored in a data file

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 37

Asserts & Reports

Assert

Assert	is	a	non-synthesizable statement
whose	purpose	is	to	write	out	messages
on	the	screen	when	problems	are	found
during	simulation.

Depending	on	the	severity	of	the	problem,
The	simulator	is	instructed	to	continue
simulation	or	halt.
EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 38

Assert	- syntax

ASSERT		condition
[REPORT	"message“]
[SEVERITY	severity_level];

The	message	is	written	when	the	condition	
is	FALSE!!!

Severity_level	can	be:		
Note,	Warning,	Error	(default),	or	Failure.

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 39

Assert	- Examples
assert	initial_value	<=	max_value	
report	"initial	value	too	large"
severity	error;

assert	packet_length	/=	0
report	"empty	network	packet	received"
severity	warning;

assert	false
report	"Initialization	complete"
severity	note;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 40

Report	- syntax

REPORT	"message"
[SEVERITY	severity_level];

The	message	is	always	written.

Severity_level	can	be:		
Note	(default),	Warning,	Error,	or	Failure.

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 41

Report	- Examples

report	"Initialization	complete";

report		"Current	time	=	" &	time'image(now);

report		"Incorrect	branch"		severity	error;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 42

Report	- Examples
library	IEEE;
use	IEEE.STD_LOGIC_1164.all;

entity	example_1_tb	is
end	example_1_tb;

architecture	behavioral	of	example_1_tb	is
signal	clk	:	std_logic	:=	'0';

begin	
clk	<=	not	clk	after	100	ns;
process

begin
wait	for	1000	ns;
report	"Initialization	complete";
report		"Current	time	=	"	&	time'image(now);			
wait	for	1000	ns;
report	"SIMULATION	COMPLETED"		severity	failure;

end	process;
end	behavioral;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 43

Generating	reports	in	the	message	window

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 44

reports: process(clk_trigger) begin
if (clk_trigger = '0' and clk_trigger'EVENT) then

case segments is
when seg_0 => report time'image(now) & ": 0 is displayed" ;
when seg_1 => report time'image(now) & ": 1 is displayed" ;
when seg_2 => report time'image(now) & ": 2 is displayed" ;
when seg_3 => report time'image(now) & ": 3 is displayed" ;
when seg_4 => report time'image(now) & ": 4 is displayed" ;
when seg_5 => report time'image(now) & ": 5 is displayed" ;
when seg_6 => report time'image(now) & ": 6 is displayed" ;
when seg_7 => report time'image(now) & ": 7 is displayed" ;
when seg_8 => report time'image(now) & ": 8 is displayed" ;
when seg_9 => report time'image(now) & ": 9 is displayed" ;

end case;
end if;

end process;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 45

Records

Records
type opcodes	is (add,	sub,	and,	or);
type reg_number	is	range 0	to 8;

type instruction	is	record
opcode										:	opcodes;
source_reg1		:	reg_number;
source_reg2		:	reg_number;
dest_reg								:	reg_number;

end	record instruction;

constant add_instr_1_3	:		instruction:=
(opcode	=>	add,
source_reg1	|	dest_reg	=>	1,
source_reg2	=>	3);

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 46

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 47

Variables

Variable	– Example	(1)
LIBRARY	ieee	;
USE	ieee.std_logic_1164.all	;

ENTITY	Numbits	IS
PORT	(X	 :	IN						STD_LOGIC_VECTOR(15	DOWNTO	0)	;

Count				:	OUT		INTEGER	RANGE	0	TO	16)	;
END	Numbits	;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 48

Variable	– Example	(2)
ARCHITECTURE	Behavior	OF	Numbits	IS

BEGIN

PROCESS(X)	– count	the	number	of	bits	in	X	equal	to	1
VARIABLE	Tmp:	INTEGER;

BEGIN
Tmp	:=	0;
FOR	i	IN	15	DOWNTO	0	LOOP

IF	X(i)	=	‘1’	THEN
Tmp	:=	Tmp	+	1;

END	IF;
END	LOOP;
Count	<=	Tmp;

END	PROCESS;

END	Behavior	;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 49

Variables	- features

• Can	only	be	declared	within	processes	and	subprograms	
(functions	&	procedures)

• Initial	value	can	be	explicitly	specified	in	the	declaration
• When	assigned	take	an	assigned	value	immediately
• Variable	assignments	represent	the	desired	behavior,	

not	the	structure	of	the	circuit
• Should	be	avoided,	or	at	least	used	with	caution	in	a	

synthesizable	code

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 50

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 51

Using Arrays of Test Vectors
In Testbenches

Testbench	(1)
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sevenSegmentTB	is
END sevenSegmentTB;

ARCHITECTURE testbench	OF sevenSegmentTB	IS

COMPONENT	sevenSegment	
PORT (
bcdInputs	 :	IN STD_LOGIC_VECTOR (3	DOWNTO 0);
seven_seg_outputs :	OUT STD_LOGIC_VECTOR(6	DOWNTO	0);
);
end	COMPONENT;

CONSTANT PropDelay:	time	:=	40	ns;
CONSTANT SimLoopDelay:	time	:=	10	ns;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 52

Testbench	(2)
TYPE vector	IS RECORD
bcdStimulus:	 STD_LOGIC_VECTOR(3	downto	0);
sevSegOut:	 STD_LOGIC_VECTOR(6	downto	0);
END	RECORD;

CONSTANT NumVectors:	INTEGER:=	10;

TYPE vectorArray	is	ARRAY (0	TO NumVectors	- 1)	OF vector;

CONSTANT vectorTable:	vectorArray	:=	(
(bcdStimulus	=>	"0000",	sevSegOut	=>	"0000001"),
(bcdStimulus	=>	"0001",	sevSegOut	=>	"1001111"),
(bcdStimulus	=>	"0010",	sevSegOut	=>	"0010010"),
(bcdStimulus	=>	"0011",	sevSegOut	=>	"0000110"),
(bcdStimulus	=>	"0100",	sevSegOut	=>	"1001100"),
(bcdStimulus	=>	"0101",	sevSegOut	=>	"0100100"),
(bcdStimulus	=>	"0110",	sevSegOut	=>	"0100000"),
(bcdStimulus	=>	"0111",	sevSegOut	=>	"0001111"),
(bcdStimulus	=>	"1000",	sevSegOut	=>	"0000000"),
(bcdStimulus	=>	"1001",	sevSegOut	=>	"0000100")
);

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 53

Testbench	(3)

SIGNAL StimInputs:	 STD_LOGIC_VECTOR(3	downto	0);
SIGNAL CaptureOutputs:	 STD_LOGIC_VECTOR(6	downto	0);

BEGIN

u1:	sevenSegment	PORT	MAP (
bcdInputs	=>	StimInputs,
seven_seg_outputs =>	CaptureOutputs);

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 54

Testbench	(4)
LoopStim:	PROCESS
BEGIN
FOR i	in	0	TO	NumVectors-1 LOOP
StimInputs	<=	vectorTable(i).bcdStimulus;
WAIT FOR PropDelay;

ASSERT	CaptureOutputs	==	vectorTable(i).sevSegOut	
REPORT “Incorrect	Output”
SEVERITY error;

WAIT	FOR SimLoopDelay;

END	LOOP;
WAIT;

END	PROCESS;
END testbench;
EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 55

Verify outputs!

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 56

File I/O

File	I/O	Example

• Example	of	file	input/output	using	a	counter
• Text	file	is	vectorfile.txt

– Has	both	input	data	and	EXPECTED	output	data
– Will	compare	VHDL	output	data	with	EXPECTED	
output	data!

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 57

Design	Under	Test	(1)
LIBRARY	ieee;
USE	ieee.std_logic_1164.all;
USE	ieee.std_logic_unsigned.all;

ENTITY	loadCnt	IS	
PORT	(
data:	 IN	STD_LOGIC_VECTOR	(7	DOWNTO	0);
load:	 IN	STD_LOGIC;
clk:	 IN	STD_LOGIC;
rst:	 IN	STD_LOGIC;
q:	 OUT	STD_LOGIC_VECTOR	(7	DOWNTO	0)
);
END	loadCnt;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 58

Design	Under	
Test	(2)

ARCHITECTURE rtl	OF loadCnt	IS

SIGNAL cnt:	STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

counter:	PROCESS (clk,	rst)	
BEGIN

IF (rst	=	'1')	THEN
cnt	<=	(OTHERS =>	'0');

ELSIF	(clk'event	AND clk	=	'1')	THEN
IF (load	=	'1')	THEN

cnt	<=	data;
ELSE

cnt	<=	cnt	+	1;
END IF;

END	IF;
END	PROCESS;

q	<=	cnt;

END rtl;
EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 59

Test	vector	file	(1)
#Format	is	Rst,	Load,	Data,	Q
#load	the	counter	to	all	1s
0 1 11111111 11111111
#reset	the	counter
1 0 10101010 00000000
#now	perform	load/increment	for	each	bit
0 1 11111110 11111110
0 0 11111110 11111111
#
0 1 11111101 11111101
0 0 11111101 11111110
#
0 1 11111011 11111011
0 0 11111011 11111100
#
0 1 11110111 11110111
0 0 11110111 11111000

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 60

Test	vector	file	(2)
#
0 1 11101111 11101111
0 0 11101111 11110000
#
0 1 11011111 11011111
0 0 11011111 11100000
#
0 1 10111111 10111111
0 0 10111111 11000000
#
0 1 01111111 01111111
0 0	01111111 10000000
#
#check	roll-over	case
0 1 11111111 11111111
0 0 11111111 00000000
#
#	End	vectors

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 61

Methodology	to	test	vectors	from	
file

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 62

clk

read vector from text file
into variables

(vRst, vLoad, vData, vQ)

Apply input data to counter
(i.e. rst <= vRst,

load <= vLoad,
reset <=vReset,
data <= vData)

Verify output is as expected:
compare Qout (the output of the VHDL
counter)
with Qexpected (the expected value of Q
from the test file)

Testbench	(1)
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_textio.all;

LIBRARY std;
USE std.textio.all;

ENTITY loadCntTB IS
END loadCntTB;
ARCHITECTURE testbench OF loadCntTB IS

COMPONENT loadCnt
PORT (

data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
load: IN STD_LOGIC;
clk: IN STD_LOGIC;
rst: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END COMPONENT;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 63

Testbench	(2)
FILE vectorFile: TEXT OPEN READ_MODE is "vectorfile.txt";

SIGNAL Data: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL Load: STD_LOGIC;
SIGNAL Rst: STD_LOGIC;
SIGNAL Qout: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL Qexpected: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL TestClk: STD_LOGIC := '0';
CONSTANT ClkPeriod: TIME := 100 ns;
BEGIN

-- Free running test clock
TestClk <= NOT TestClk AFTER ClkPeriod/2;

-- Instance of design being tested
u1: loadCnt PORT MAP (Data => Data,

load => Load,
clk => TestClk,
rst => Rst,
q => Qout

);
EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 64

Testbench	(3)

-- File reading and stimulus application

readVec: PROCESS
VARIABLE VectorLine: LINE;
VARIABLE VectorValid: BOOLEAN;
VARIABLE vRst: STD_LOGIC;
VARIABLE vLoad: STD_LOGIC;
VARIABLE vData: STD_LOGIC_VECTOR(7 DOWNTO 0);
VARIABLE vQ: STD_LOGIC_VECTOR(7 DOWNTO 0);
VARIABLE space: CHARACTER;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 65

Testbench	(4)
BEGIN

WHILE NOT ENDFILE (vectorFile) LOOP
readline(vectorFile, VectorLine); -- put file data into line

read(VectorLine, vRst, good => VectorValid);
NEXT WHEN NOT VectorValid; -- “next” causes goes to the next

--iteration of the while loop
read(VectorLine, space);
read(VectorLine, vLoad);
read(VectorLine, space);
read(VectorLine, vData);
read(VectorLine, space);
read(VectorLine, vQ);

WAIT FOR ClkPeriod/4;
Rst <= vRst;
Load <= vLoad;
Data <= vData;
Qexpected <= vQ;

WAIT FOR (ClkPeriod/4) * 3;
END LOOP;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 66

Testbench	(5)
ASSERT FALSE

REPORT "Simulation complete"
SEVERITY NOTE;

WAIT;
END PROCESS;

-- Process to verify outputs
verify: PROCESS (TestClk)
variable ErrorMsg: LINE;
BEGIN

IF (TestClk'event AND TestClk = '0') THEN
IF Qout /= Qexpected THEN

write(ErrorMsg, STRING'("Vector failed "));
write(ErrorMsg, now);
writeline(output, ErrorMsg);

END IF;
END IF;

END PROCESS;
END testbench;

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 67

Simulation	Waveform

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 68

read vector from text file
into variables

(vRst, vLoad, vData, vQ)

Apply input data to counter
(i.e. rst <= vRst,
load <= vLoad,
reset <=vReset,
data <= vData)

Verify output is as expected:
compare Q (the output of the VHDL
counter)
with Qexpected
(the expected value of vQ from the test file)

Hex	format

In	order	to	read/write	data	in	the	hexadecimal
notation,	replace			

read with	hread,	and
write with	hwrite

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 69

Note	on	test	file

• This	example	showed	a	test	file	that	had	both	
the	control	commands	(i.e.	load,	reset),	and	
the	actual	data	itself

• Often	the	test	file	just	has	the	input	and	
output	vectors	(and	no	load,	reset,	etc.)

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 70

Example2	for	File	I/O
library	IEEE;
use	IEEE.std_logic_1164.all;
use	IEEE.std_logic_unsigned.all;

entity	ADDER	is
port(VALUE_1	 :	in	 std_logic_vector(7	downto	0);

VALUE_2	 :	in	 std_logic_vector(7	downto	0);
OVERFLOW	:	out	std_logic;
RESULT	 :	out	std_logic_vector(7	downto	0));

end	ADDER;

architecture	RTL	of	ADDER	is
signal	INT_RES :	std_logic_vector(8	downto	0);
signal	INT_VAL_1	:	std_logic_vector(8	downto	0);
signal	INT_VAL_2	:	std_logic_vector(8	downto	0);
Begin
INT_VAL_1 <=	'0'	&	VALUE_1;
INT_VAL_2 <=	'0'	&	VALUE_2;
INT_RES <=	INT_VAL_1	+	INT_VAL_2;
RESULT <=	INT_RES(7	downto	0);
OVERFLOW	<=	INT_RES(8);
end	RTL;	

• ADDER	module	
– Adds	two	8	bit	vectors	and	

provides	an	8	bit	result	vector	
– Generates	an	overflow	signal	

• Entity	and	architecture	of	
the	ADDER	module	

• std_logic_unsigned	package	
– overloaded	mathematical	

operators	where	
std_logic_vector	is	treated	as	
unsigned	number	

EDA321 Digital Design, 2017-
2018, Lecture 10 I. Sourdis, CSE, Chalmers 71

Example2	for	File	I/Olibrary	IEEE;
use	IEEE.std_logic_1164.all;
use	IEEE.std_logic_unsigned.all;
use	IEEE.std_logic_textio.all;
use	STD.textio.all;	

entity	TB_ADDER	is
end	TB_ADDER;

architecture	BEH	of	TB_ADDER	is

component	ADDER
port(VALUE_1	 :	in	 std_logic_vector(7	downto	0);

VALUE_2	 :	in	 std_logic_vector(7	downto	0);
OVERFLOW	:	out	std_logic;
RESULT	 :	out	std_logic_vector(7	downto	0));

end	component;

signal	W_VALUE_1 :	std_logic_vector(7	downto	0);
signal	W_VALUE_2 :	std_logic_vector(7	downto	0);
signal	W_OVERFLOW	:	std_logic;
signal	W_RESULT :	std_logic_vector(7	downto	0);

begin
DUT	:	ADDER
port	map(VALUE_1 =>	W_VALUE_1,

VALUE_2 =>	W_VALUE_2,
OVERFLOW =>	W_OVERFLOW,
RESULT =>	W_RESULT);	

• Add	package	std.textio	and	
IEEE.std_logic_textio	for
file I/O	functions	and	
procedures	

• Common	testbench	
structure	
– Empty	entity;	no	external	

interface	
– Component	declaration	and	

instantiation	
– Definition	of	internal	signals	to	

connect	the	input/output	ports
with	the	stimuli/response	
analysis	processes	

EDA321 Digital Design, 2017-
2018, Lecture 10 I. Sourdis, CSE, Chalmers 72

Example2	for	File	I/OSTIMULI	:	process
variable	L_IN : line;
variable	CHAR : character;
variable	DATA_1 : std_logic_vector(7	downto	0);
variable	DATA_2 : std_logic_vector(7	downto	0);
file STIM_IN : text	open	read_mode	is "stim_in.txt";

begin
W_VALUE_1	<=	(others	=>	'0');
W_VALUE_2	<=	(others	=>	'0');
wait	for	PERIOD;
while	not	endfile (STIM_IN)	loop

readline (STIM_IN,	L_IN);
hread (L_IN,	DATA_1);
W_VALUE_1	<=	DATA_1;
read (L_IN,	CHAR);
hread (L_IN,	DATA_2);
W_VALUE_2	<=	DATA_2;
wait	for	PERIOD;

end	loop;
wait;

end	process	STIMULI;	
===================

FF	01
FF	00
11	55
0F	01
1F	05

• STIMULI	process	
– File	access	is	limited	to	only	

one	line	at	a	certain	time	
– Only	variables	are	allowed	

for	the	parameters	of	the	
read	functions	

– The	function	hread(...)	is	
defined	in	the	
IEEE.std_logic_textio	
package;	it	reads	hex	values	
and	transforms	them	into	a	
binary	vector	

• Stimuli	file	"stim_in.txt"	
– Each	line	contains	two	hex	

values	to	stimulate	the	
inputs	of	the	ADDER	module	

EDA321 Digital Design, 2017-
2018, Lecture 10 I. Sourdis, CSE, Chalmers 73

Example2	for	File	I/O
RESPONSE	:	process(W_RESULT)

variable	L_OUT	:	line;
variable	CHAR_SPACE	:	character	:=	'	';
file	STIM_OUT	:	text	open	write_mode	is	"stim_out.txt";
begin

write (L_OUT,	now);
write (L_OUT,	CHAR_SPACE);
write (L_OUT,	W_RESULT);
write (L_OUT,	CHAR_SPACE);
hwrite (L_OUT,	W_RESULT);
write (L_OUT,	CHAR_SPACE);
write (L_OUT,	W_OVERFLOW);
writeline (STIM_OUT,	L_OUT);

end	process	RESPONSE;	

==================
0 ns XXXXXXXX 00 X
0 ns 00000000 00 0
20 ns 10100001 A1 0
40 ns 00000000 00 1
60 ns 11111111 FF 0
80 ns 01100110 66 0
100 ns 00010000 10 0
120 ns 00100100 24 0
140 ns 10011101 9D 1	

• Response	process	of	the	
testbench	
– 'NOW'	is	a	function	returning	the	

current	simulation	time	
– Several	write	commands	

assemble	a	line	
– Writeline	saves	this	line	in	the	file	
– The	function	hwrite(...)	is	defined	

in	the	IEEE.std_logic_textio	
package;	it	transforms	a	binary	
vector	to	a	hex	value	and	stores	it	
in	the	line	

• Response	file	"stim_out.txt"	
– 4	columns	containing:

• Simulation	time
• 8	bit	result	value	(binary	and	

hex)
• Overflow	bit	

EDA321 Digital Design, 2017-2018,
Lecture 10 I. Sourdis, CSE, Chalmers 74

Summary	of	Lecture	10

• Introduction	to	Testbenches
• Structure	of	a	testbench
• Time,	wait	statements,	

Processes
• Simple	testbenches
• Advanced	testbenches
• Test-vectors,	Asserts	&	

Reports
• Records	and	variables
• File	IO

• The	book	does	not	
cover	any	parts	of	this	
lecture

• Next	Lecture	11:
– FPGA	Technology

EDA321 Digital Design,
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 75

