EDA321
Digital Design

Lecture 10:
Testbenches - VHDL

loannis Sourdis

Outline of Lecture 10

Introduction to Testbenches
Structure of a testbench

Time, wait statements, Processes
Simple testbenches

Advanced testbenches
Test-vectors, Asserts & Reports
Records and variables

File IO

Testbenches

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

Testbench Defined

Testbench = VHDL entity that applies stimuli (drives the
inputs) to the Design Under Test (DUT) and (optionally)
verifies expected outputs.

The results can be viewed in a waveform window or
written to a file.

Since Testbench is written in VHDL, it is not restricted to
a single simulation tool (portability).

The same Testbench can be easily adapted to test
different implementations (i.e. different architectures)
of the same design.

Simple Testbench

Processes
Generating

Stimuli

\/

Design Under
Test (DUT)

Observed Outputs

Possible sources of expected results
used for comparison

Testbench

actual results
» VHDL Design - _ >

A

Manual Calculations

— or
expected results

Reference Software
Implementation
(C, Java, Matlab)

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

Testbench

The same testbench can be used to

test multiple imp

&

Architecture 1

ementations of the same circuit

(multiple architectures)

testbench

design ent

ity

4

\

Architecture 2

Architecture N

Testbench Anatomy

ENTITY my entity tb IS
--TB entity has no ports
END my entity tb;

ARCHITECTURE behavioral OF tb IS

--Local signals and constants

COMPONENT TestComp --All Design Under Test component declarations
PORT ();
END COMPONENT;
BEGIN
DUT:TestComp PORT MAP (—-— Instantiations of DUTs

) ;
testSequence: PROCESS
-— Input stimuli

END PROCESS;

END behavioral;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

Testbench for XOR3 (1)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY xor3_tb IS
END xor3_tb;

ARCHITECTURE behavioral OF xor3_tb IS

-- Component declaration of the tested unit
COMPONENT xor3

PORT(

A :IN STD_LOGIC;

B:INSTD_LOGIC;

C:INSTD_LOGIC;

Result : OUT STD_LOGIC);

END COMPONENT;

-- Stimulus signals - signals mapped to the input and inout ports of tested entity
SIGNAL test_vector: STD _LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL test_result : STD_LOGIC;

Testbench for

XOR3 (2)

BEGIN
UUT : xor3
PORT MAP (
A => test_vector(2),
B => test_vector(1),
C => test_vector(0),
Result => test_result);
);
Testing: PROCESS
BEGIN
test_vector <="000";
WAIT FOR 10 ns;
test_vector <="001";
WAIT FOR 10 ns;
test_vector <="010";
WAIT FOR 10 ns;
test_vector <="011";
WAIT FOR 10 ns;
test_vector <="100";
WAIT FOR 10 ns;
test_vector <="101";
WAIT FOR 10 ns;
test_vector <="110";
WAIT FOR 10 ns;
test_vector <="111"
WAIT FOR 10 ns;
END PROCESS;
END behavioral;

VHDL Design Styles

VHDL Design
Styles
dataflow structural |/ | pehavioral
Concurrent Components and Sequential statements
statements interconnects

. * Testbenches

Process without Sensitivity List
and its use In Testbenches

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

12

What is a PROCESS?

— A process is a sequence of instructions referred to as sequential
statements.
The keyword PROCESS
L

»Testing: PROCESS
BEGIN

A process can be given a uniqgue name
using an optional LABEL

This is followed by the keyword test_vector<="007;
PROCESS WAIT FOR 10 ns;

test vector<="017;
The keyword BEGIN is used to indicate < WAIT FOR 10 ns;
the start of the process test_vector<="10";

WAIT FOR 10 ns;
All statements within the process are test_vector<=*11";
executed SEQUENTIALLY. Hence, - WAIT FOR 10 ns;

order of statements is important. END PROCESS;

A process must end with the keywords
END PROCESS.

Execution of statements in a PROCESS

Testing: PROCESS

BEGIN

test_vector<="“00";
WAIT FOR 10 ns;
test_vector<=“01";
WAIT FOR 10 ns;
test_vector<=“10";
WAIT FOR 10 ns;
test_vector<=“11";
WAIT FOR 10 ns;
END PROCESS;

* The execution of statements
continues sequentially till the last
statement in the process.

e After execution of the last
statement, the control is again
passed to the beginning of the
process.

[
el
S

=

[}

@

X

o
—

o

—

[}
©

S
o

Program control is passed to the
first statement after BEGIN

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 14

PROCESS with a WAIT Statement

* The last statement in the Testing: PROCESS
PROCESS is a WAIT instead of BEGIN
WAIT FOR 10 ns.

* This will cause the PROCESS to
suspend indefinitely when the
WAIT statement is executed.

* This form of WAIT can be used WAIT FOR 10 ns;
in a process included in a test_vector<="10";
testbench when all possible WAIT FOR 10 ns;
combinations of inputs have
been tested or a non-periodical
signal has to be generated.

/

Program execution stops here

test_vector<="“00";
WAIT FOR 10 ns;
test_vector<=“01";

Order of execution

test_vector<=“11";
WAIT;
END PROCESS;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

WAIT FOR vs. WAIT

WAIT FOR: waveform will keep repeating
itself forever

XXX XKD -+

WAIT : waveform will keep its state after
the last wait instruction.

XXX

Specifying time in VHDL

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

17

Time values (physical literals) - Examples

unit of time
7N < most commonly
1 min used in simulation
min
10.65 us
/10.65fi\
Numeric value Space Unit of time
(required)

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 18

Units of time

Unit Definition

Base Unit

fs femtoseconds (101> seconds)
Derived Units

pS picoseconds (101? seconds)
ns nanoseconds (10 seconds)

us microseconds (10° seconds)
ms miliseconds (1073 seconds)
sec seconds

min minutes (60 seconds)

hr hours (3600 seconds)

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

19

EDA321 Digital Design,
2017-2018, Lecture 10

Simple Testbenches

I. Sourdis, CSE, Chalmers

20

Generating selected values of one input

SIGNAL test vector: STD_LOGIC_VECTOR(2 downto 0);

testing: PROCESS

BEGIN
test_vector <="000";
WAIT FOR 10 ns;
test_vector <="001";
WAIT FOR 10 ns;
test_vector <="010";
WAIT FOR 10 ns;
test_vector <="011";
WAIT FOR 10 ns;
test_vector <="100";
WAIT FOR 10 ns;

END PROCESS;

END behavioral;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

21

Generating all values of one input

SIGNAL test_vector : STD_LOGIC_VECTOR(3 downto 0):="0000";

testing: PROCESS
BEGIN

WAIT FOR 10 ns;

test_vector <= test_vector + 1;
end process TESTING;

END behavioral;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

22

Arithmetic Operators in VHDL (1)

To use basic arithmetic operations involving
std logic_vectors you need to include the
following library packages:

LIBRARY ieee;

USE ieee.std logic_1164.all;

USE ieee.std_logic_unsigned.all;
or

USE ieee.std logic_signed.all;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

23

Arithmetic Operators in VHDL (2)

You can use standard +, - operators
to perform addition and subtraction:

signal A: STD_LOGIC_VECTOR(3 downto 0);
sighal B: STD_LOGIC_VECTOR(3 downto 0);
sighal C: STD_LOGIC_VECTOR(3 downto 0);

Different ways of performing the same operation

signal count: std_logic_vector(7 downto 0);
You can use:

count <= count + “00000001”;
or

count <= count + 1;

or

count <= count + ‘1’;

Different declarations for the same operator

Declarations in the package ieee.std logic_unsigned:

function “+” (L: std_logic_vector;
R:std_logic_vector)
return std_logic_vector;
function “+” (L: std_logic_vector;
R: integer)
return std_logic_vector;
function “+” (L: std_logic_vector;
R:std_logic)
return std_logic_vector;

Operator overloading

* Operator overloading allows different argument types
for a given operation (function)

 The VHDL tools resolve which of these functions to
select based on the types of the inputs

* This selection is transparent to the user as long as the
function has been defined for the given argument
types.

Generating all possible values of two inputs

SIGNAL test_ab : STD_LOGIC_VECTOR(1 downto 0);
SIGNAL test_sel : STD_LOGIC_VECTOR(1 downto 0);

BEGIN

double_loop: PROCESS
BEGIN
test_ab <="00";
test_sel <="00";
forlin 0 to 3 loop
for Jin 0 to 3 loop
wait for 10 ns;
test_ab <=test_ab + 1;
end loop;
test_sel <= test_sel + 1;
end loop;
END PROCESS;

END behavioral;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

28

Generating periodical signals, such as clocks

CONSTANT clk1_period : TIME := 20 ns;
CONSTANT clk2_period : TIME := 200 ns;
SIGNAL clk1 : STD _LOGIC;

SIGNAL clk2 : STD _LOGIC :=‘0’;

clk1_generator: PROCESS
clk1 <= ‘0’;
WAIT FOR clk1_period/2;
clk1 <= *“1’;
WAIT FOR clk1_period/2;
END PROCESS;

clk2 <= not clk2 after clk2_period/2;

END behavioral;

Generating one-time signals, such as resets

CONSTANT reset1_width : TIME := 100 ns;
CONSTANT reset2_width : TIME := 150 ns;
SIGNAL reset1 : STD _LOGIC;

SIGNAL reset2 : STD _LOGIC := “1;

reset1_generator: PROCESS
reset1 <= ‘1’;
WAIT FOR reset1_width;
reset1 <=10’;
WAIT;

END PROCESS;

reset2_generator: PROCESS
WAIT FOR reset2_width;
reset2 <= ‘0’;
WAIT;

END PROCESS;

END behavioral;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 30

Typical error

SIGNAL test_vector : STD _LOGIC VECTOR(2 downto 0);
SIGNAL reset : STD_LOGIC;

generator1: PROCESS
reset <=‘1";
WAIT FOR 100 ns
m\\reset <=0’ .
test_vector <="000";
WAIT:.. e
END PROCESS; ...~

generator2; PROCESS ™.
_WWAIT FOR 200 ns
' test_vector <="001";
WAIT FOR 600 ns
test_vector <="011";
END PROCESS;

END behavioral;

EDA321 Digital Design, .
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

Advanced Testbenches

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

32

Simple Testbench

Processes
Generating
Input
Stimuli

N/

Design Under
Test (DUT)

NS

Outputs Observed
as Timing Waveforms

Advanced Testbench

Processes
Generating
Input
Stimuli

Design Under
Test (DUT)

)

Process
Comparing
Actual

Outputs
VS.

Expected

Outputs

Yes/No

Correct/Incorrect

Design

Possible Sources of Expected Outputs

» VHDL Design

Actual Outputs

Manual
. Calculations

IﬂpUtS or

Reference
Software
Implementation

(C, Java, Matlab)

>:«7
A

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

Expected Outputs

35

Test vectors

Set of pairs: {lnput i, Expected Output i}

Input 1, Expected Output 1
Input 2, Expected Output 2

Input N, Expected Output N

Test vectors can be:

- defined in the testbench source file
- stored in a data file

EDA321 Digital Design,
2017-2018, Lecture 10

Asserts & Reports

I. Sourdis, CSE, Chalmers

37

Assert

Assert is a non-synthesizable statement
whose purpose is to write out messages
on the screen when problems are found
during simulation.

Depending on the severity of the problem,
The simulator is instructed to continue
simulation or halt.

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

38

Assert - syntax

ASSERT condition
[REPORT "message”]
[SEVERITY severity level |;

The message is written when the condition
is FALSE!!!

Severity_level can be:

Note, Warning, Error (default), or Failure.

EDA321 Digital Design, :
2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

39

Assert - Examples

assert initial _value <= max_value
report "initial value too large"
severity error;

assert packet_length /=0
report "empty network packet received"
severity warning;

assert false
report "Initialization complete"
severity note;

Report - syntax

REPORT "message”
SEVERITY severity level |;

The message is always written.

Severity level can be:
Note (default), Warning, Error, or Failure.

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

41

Report - Examples

report "Initialization complete";

report "Current time =" & time'image(now);

report "Incorrect branch" severity error;

Report - Examples

library IEEE;
use IEEE.STD _LOGIC 1164.all;

entity example_1_tbis
end example_1_tb;

architecture behavioral of example_1 tb s
signal clk : std_logic :="'0";
begin
clk <= not clk after 100 ns;
process
begin
wait for 1000 ns;
report "Initialization complete";
report "Current time =" & time'image(now);
wait for 1000 ns;
report "SIMULATION COMPLETED" severity failure;
end process;
end behavioral;

Generating reports in the message window

reports: process(clk trigger) begin
if (clk_trigger = '0" and clk_trigger'EVENT) then
case segments is
when seg_0 => report time'image(now) & ": 0 is displayed” ;
when seg_1 => report time'image(now) & ": 1 is displayed” ;
when seg_2 => report time'image(now) & ": 2 is displayed” ;
when seg_3 => report time'image(now) & ": 3 is displayed” ;
when seg_4 => report time'image(now) & ": 4 is displayed” ;
when seg_5 => report time'image(now) & ": 5 is displayed” ;
when seg 6 => report time'image(now) & ": 6 is displayed” ;
when seg_ 7 => report time'image(now) & ": 7 is displayed” ;
when seg_8 => report time'image(now)
when seg 9 => report time'image(now)
end case;
end if;
end process;

& ": 8 is displayed” ;
& ": 9 is displayed” ;

EDA321 Digital Design,
2017-2018, Lecture 10

Records

I. Sourdis, CSE, Chalmers

45

Records

type opcodes is (add, sub, and, or);
type reg_number is range O to 8;

type instruction is record
opcode : opcodes;
source_regl :reg_number;
source_reg2 :reg_number;
dest_reg : reg_number;
end record instruction;

constant add_instr_1_3: instruction:=
(opcode => add,
source_regl | dest _reg =>1,
source_reg2 => 3);

EDA321 Digital Design,
2017-2018, Lecture 10

Variables

I. Sourdis, CSE, Chalmers

47

Variable — Example (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all;

ENTITY Numbits IS
PORT (X :IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Count :OUT INTEGER RANGEOTO 16);
END Numbits ;

Variable — Example (2)

ARCHITECTURE Behavior OF Numbits IS
BEGIN

PROCESS(X) — count the number of bits in X equal to 1
VARIABLE Tmp: INTEGER;

BEGIN
Tmp :=0;
FORiIN 15 DOWNTO 0 LOOP
IF X(i) = 1’ THEN
Tmp :=Tmp + 1;
END IF;
END LOOP;

Count <= Tmp;
END PROCESS;

END Behavior ;

Variables - features

* Can only be declared within processes and subprograms
(functions & procedures)

* Initial value can be explicitly specified in the declaration
 When assigned take an assigned value immediately

* Variable assignments represent the desired behavior,
not the structure of the circuit

 Should be avoided, or at least used with caution in a
synthesizable code

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers 50

Using Arrays of Test Vectors
In Testbenches

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

51

| Testbench (1)

USE ieee.std_logic_1164.all;

ENTITY sevenSegmentTB is
END sevenSegmentTB;

ARCHITECTURE testbench OF sevenSegmentTB IS

COMPONENT sevenSegment

PORT (
bcdinputs . IN STD_LOGIC_VECTOR (3 DOWNTO 0);
seven_seg_outputs : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

);
end COMPONENT:

CONSTANT PropDelay: time := 40 ns;
CONSTANT SimLoopDelay: time := 10 ns;

Testbench (2)

bcdStimulus: STD_LOGIC_VECTOR(3 downto 0);
sevSegOut: STD_LOGIC_VECTOR(6 downto 0);
END RECORD;

CONSTANT NumVectors: INTEGER:= 10;
TYPE vectorArray is ARRAY (0 TO NumVectors - 1) OF vector;

CONSTANT vectorTable: vectorArray := (
(bcdStimulus => "0000", sevSegOut => "0000001"),
(bcdStimulus =>"0001", sevSegOut => "1001111"),
(bcdStimulus =>"0010", sevSegOut => "0010010"),
(bcdStimulus =>"0011", sevSegOut => "0000110"),
(bcdStimulus =>"0100", sevSegOut => "1001100"),
(bcdStimulus =>"0101", sevSegOut => "0100100"),
(bcdStimulus =>"0110", sevSegOut => "0100000"),
(bcdStimulus =>"0111", sevSegOut =>"0001111"),
(bcdStimulus => "1000", sevSegOut => "0000000"),
(bcdStimulus =>"1001", sevSegOut => "0000100")

Testbench (3)

SIGNAL Stimlnputs: STD LOGIC_VECTOR(3 downto 0);
SIGNAL CaptureQOutputs: STD_LOGIC_VECTOR(6 downto 0);

BEGIN
ul: sevenSegment PORT MAP (

bedIinputs => StimInputs,
seven_seg _outputs => CaptureOutputs);

Testbench (4)

LoopStim: PROCESS
BEGIN

FORiin O TO NumVectors-1 LOOP

StimInputs <= vectorTable(i).bcdStimulus;

WAIT FOR PropDelay;

ASSERT CaptureOutputs == vectorTable(i).sevSegOut

REPORT “Incorrect Output”
SEVERITY error;

WAIT FOR SimLoopDelay;

END LOOP;
WAIT;
END PROCESS;

END testbench;

EDA321 Digital Design,
2017-2018, Lecture 10

I. Sourdis, CSE, Chalmers

Verify outputs!

55

EDA321 Digital Design,
2017-2018, Lecture 10

File 1/O

I. Sourdis, CSE, Chalmers

56

File /0O Example

* Example of file input/output using a counter

* Text file is vectorfile.txt
— Has both input data and EXPECTED output data

— Will compare VHDL output data with EXPECTED
output data!

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

57

Design Under Test (1)

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.std logic_unsigned.all;

ENTITY loadCnt IS

PORT (
data: INSTD _LOGIC_VECTOR (7 DOWNTO 0);
load: IN STD_LOGIC;
clk: IN STD_LOGIC;
rst: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);

END loadCnt;

ARCHITECTURE rtl OF loadCnt IS

D es | g N U N d @[SIGNAL cnt: STD_LOGIC_VECTOR (7 DOWNTO 0);
Test (2) BEGIN

counter: PROCESS (clk, rst)
BEGIN
IF (rst="1") THEN
cnt <= (OTHERS =>"'0');
ELSIF (clk'event AND clk ='1") THEN
IF (load ='1') THEN
cnt <= data;
ELSE
cnt<=cnt + 1;
END IF;
END IF;
END PROCESS;

q <=cnt;

END rtl;

Test vector file (1)

#Format is Rst, Load, Data, Q
#load the counter to all 1s
0111111111 11111111
#reset the counter
1010101010 00000000
#now perform load/increment for each bit
011111111011111110
0011111110111111112

#

011111110111111101
001111110111111110

#

0111111011 11111011
001111101111111100

#

011111011111110111
0011110111 11111000

Test vector file (2)

#
011110111111101111
0011101111 11110000
#
011101111111011111
0011011111 11100000
#

0110111111 10111111
0010111111 11000000
#
010111111101111111
0001111111 10000000
#

#check roll-over case
0111111111111111112
0011111111 00000000
#

End vectors

Methodology to test vectors from

fl I S Verify output is as expected:
compare Qout (the output of the VHDL

counter)
with Qexpected (the expected value of Q

from the test file)

clk

1

I

I

I

. e

v Apply input data to counter

(i.e. rst <= vRst,

load <= vLoad,
reset <=vReset,
data <= vData)

read vector from text file
into variables
(vRst, vLoad, vData, vQ)

LIBRARY ieee;

Testbench (1)

USE ieee.std logic 1164.all;
USE ieee.std logic textio.all;

LTBRARY std;
USE std. textio.all;

ENTITY loadCntTB IS
END loadCntTB;

ARCHITECTURE testbench OF loadCntTB IS

COMPONENT loadCnt
PORT (
data:
load:
clk:
rst:
g:
) ;
END COMPONENT;

EDA321 Digital Design,
2017-2018, Lecture 10

IN STD LOGIC VECTOR (7 DOWNTO 0) ;
IN STD LOGIC;

IN STD LOGIC;

IN STD LOGIC;

OUT STD LOGIC VECTOR (7 DOWNTO 0)

I. Sourdis, CSE, Chalmers 63

Testbench (2)

FILE vectorFile: TEXT OPEN READ MODE is "vectorfile. txt";

SIGNAL Data: STD LOGIC VECTOR (/7 DOWNTO O0) ;
SIGNAL Load: STD LOGIC;
SIGNAL Rst: STD LOGIC;
SIGNAL Qout: STD LOGIC VECTOR (7 DOWNTO O0) ;

SIGNAL Qexpected: STD LOGIC_ VECTOR (7 DOWNTO O) ;

SIGNAL TestClk: STD LOGIC := '0"';
CONSTANT ClkPeriod: TIME := 100 ns;
BEGIN

-- Free running test clock
TestClk <= NOT TestClk AFTER ClkPeriod/2;

—-—- Instance of design being tested
ul: loadCnt PORT MAP (Data => Data,
load => Load,
clk => TestClk,
rst => Rst,
g => Qout
) ;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

64

Testbench (3)

-— File reading and stimulus application

readVec: PROCESS

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

EDA321 Digital Design,
2017-2018, Lecture 10

VectorLine: LINE;

VectorValid: BOOLEAN;

VRst: STD LOGIC;

vLoad: STD LOGIC;

vData: STD LOGIC VECTOR (7 DOWNTO O0) ;
vQ: STD LOGIC VECTOR (7 DOWNTO 0) ;
Space: CHARACTER;

I. Sourdis, CSE, Chalmers

65

Testbench (4)

WHILE NOT ENDFILE (vectorFile) LOOP
readline (vectorFile, VectorLine); -- put file data into line

read (VectorLine, vRst, good => VectorValid) ;
NEXT WHEN NOT VectorValid; -- “next” causes goes to the next

--iteration of the while loop

read (VectorLine, space)
read (VectorLine, vLoad);
read (VectorLine, space);
read (VectorLine, vData);
read (VectorLine, space);
read (VectorLine, vQ);

WAIT FOR ClkPeriod/4;
Rst <= vRst;

Load <= vLoad;

Data <= vData;
Qexpected <= vQ;

WAIT FOR (ClkPeriod/4) * 3;
END LOOP;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

66

Testbench (5)

REPORT "Simulation complete"
SEVERITY NOTE;
WAIT;
END PROCESS;

-— Process to verify outputs
verify: PROCESS (TestClk)
variable ErrorMsg: LINE;
BEGIN
IF (TestClk'event AND TestClk = '0') THEN
IF Qout /= Qexpected THEN
write (ErrorMsg, STRING' ("Vector failed ")) ;
write (ErrorMsg, now) ;
writeline (output, ErrorMsg) ;
END IF;
END IF;
END PROCESS;
END testbench;

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

Simulation Waveform

Verify output is as expected:

compare Q (the output of the VHDL
counter)

with Qexpected
(the expected value of vQ from the test file)

Name Value SHi. EREE -2.00/ e e s e e e 635,115 |
wr TestChk 1 S
+ 0 data 11111101 K ¥10101010 K110 Kto1
™ |oad A ' I [I | I |
arorst o i Ee--- 1 | [
+ & Qout 11111110 UULULUUL - X111 £00000000 Kttt A Ktiion)
+ o Qexpected 11111110 Kt 00000000 Kttt (I Kot K111
t
|
|
|
1,7
v Apply input data to counter
read vector from text file (i.e. rst <= vRst,
into variables load <= vLoad,
(VRst, vLoad, vData, vQ) reset <=vReset,
B | data <= vData)
ng;-zzl()%gf?cgﬁzl%%’ I. Sourdis, CSE, Chalmers 68

Hex format

In order to read/write data in the hexadecimal
notation, replace
read with hread, and
write with hwrite

EDA321 Digital Design,

2017-2018, Lecture 10 I. Sourdis, CSE, Chalmers

69

Note on test file

* This example showed a test file that had both
the control commands (i.e. load, reset), and
the actual data itself

e Often the test file just has the input and
output vectors (and no load, reset, etc.)

Example2 for File I/O

library IEEE; VALUE——IILE‘L ADDER ;LﬂESl.I.T
use IEEE.std_logic_1164.all; VALUE__Z,LE, | OVERFLOW
use IEEE.std_logic_unsigned.all;
entity ADDER is
port(VALUE_1 :in std_logic_vector(7 downto 0); * ADDER mOdUIe
VALUE_2 :in std_logic_vector(7 downto 0); — Adds two 8 bit vectors and
OVERFLOW : out std_logic; provides an 8 bit result vector
RESULT :outstd_logic_vector(7 downto 0)); — Generates an overflow signal
end ADDER,;

architecture RTL of ADDER is ’ Entlty and architecture of

signal INT_RES :std_logic_vector(8 downto 0); the ADDER module

signal INT_VAL 1 :std_logic_vector(8 downto 0);

| | * std_logic_unsigned package
signal INT_VAL 2 :std_logic_vector(8 downto 0); - -

— overloaded mathematical

Begin
INT_VAL_1 <='0'& VALUE_1; operators where
INT_VAL 2 <='0'& VALUE_2; std_logic_vector is treated as
INT_RES <=INT_VAL_1+INT_VAL 2; unsigned number

RESULT <= INT_RES(7 downto 0);
OVERFLOW <= INT_RES(8);
end RTL;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std _logic_unsigned.all;
use IEEE.std_logic_textio.all;
use STD.textio.all;

entity TB_ADDER is
end TB_ADDER,;

architecture BEH of TB_ADDER is

component ADDER
port(VALUE_1 :in std_logic_vector(7 downto 0);
VALUE_2 :in std_logic_vector(7 downto 0);
OVERFLOW : out std_logic;
RESULT :outstd_logic_vector(7 downto 0));
end component;

signal W_VALUE_1 :std logic_vector(7 downto 0);
signal W_VALUE_2 :std_logic_vector(7 downto 0);
signal W_OVERFLOW : std_logic;

signal W_RESULT :std_logic_vector(7 downto 0);

begin
DUT : ADDER
port map(VALUE_1 =>W _VALUE_1,
VALUE 2 =>W_VALUE_2,

OVERFLOW => W_OVERFLOW,
RESULT =>W_RESULT);

Example2 for File I/0

Add package std.textio and
IEEE.std_logic_textio for
file 1/O functions and
procedures

Common testbench
structure

— Empty entity; no external
interface

— Component declaration and
instantiation

— Definition of internal signals to
connect the input/output ports
with the stimuli/response
analysis processes

STMUL: procss Example2 for File I/O

variable CHAR : character;

variable DATA 1 : std_logic_vector(7 downto 0); e STIMULI process

variable DATA 2 : std_logic_vector(7 downto 0);

file STIM_IN : text open read_mode is "stim_in.txt"; — File access is limited to only
begin one line at a certain time

W_VALUE_1 <= (others =>'0");
W_VALUE_2 <= (others =>"'0'");
wait for PERIOD;

while not endfile (STIM_IN) loop

— Only variables are allowed
for the parameters of the
read functions

readline (STIM_IN, L_IN); — The function hread(...) is
hread (L_IN, DATA_1); defined in the
W_VALUE_1 <= DATA_1; IEEE.std_logic_textio

read (L_IN, CHAR);
hread (L_IN, DATA 2);
W_VALUE_2 <= DATA_2;
wait for PERIOD;

end loop;

wait;

: el e |
end process STIMULI; e Stimuli file "stim_in.txt
e —— — Each line contains two hex

package; it reads hex values
and transforms them into a
binary vector

FF 01 values to stimulate the

FF 00 inputs of the ADDER module
1155

OF 01

RESPONSE : process(W_RESULT)
variable L_OUT : line;

variable CHAR_SPACE : character :="';
file STIM_OUT : text open write_mode is "stim_out.txt";

begin

write (L_OUT, now);
write (L_OUT, CHAR_SPACE);
write (L_OUT, W_RESULT);
write (L_OUT, CHAR_SPACE);
hwrite (L_OUT, W_RESULT);
write (L_OUT, CHAR_SPACE);
write (L_OUT, W_OVERFLOW);
writeline (STIM_OUT, L_OUT);

end process RESPONSE;

0 ns XXXXXXXX 00 X

0 ns 00000000 000
20 ns 10100001 A1 0
40 ns 0000000000 1
60ns 11111111 FFO
80 ns 01100110660
100 ns 00010000 100
120 ns 00100100 24 0
140 ns 10011101 9D 1

EDA321 Digital Design, 2017-2018,
Lecture 10

Example2 for File I/0

* Response process of the
testbench

— 'NOW!'is a function returning the
current simulation time

— Several write commands
assemble a line

— Writeline saves this line in the file

— The function hwrite(...) is defined
in the IEEE.std_logic_textio
package; it transforms a binary
vector to a hex value and stores it
in the line

Response file "stim_out.txt"
— 4 columns containing:
e Simulation time

e 8 bit result value (binary and
hex)

* Overflow bit

I. Sourdis, CSE, Chalmers 74

Summary of Lecture 10

Introduction to Testbenches * The book does not

Structure of a testbench cover any parts of this
Time, wait statements, lecture

Processes

Simple testbenches Next Lecture 11:
Advanced testbenches — FPGA Technology

Test-vectors, Asserts &
Reports

Records and variables
File 10

