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Outline	of	Lecture	13

• System	Design	process
• Interfaces
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System	Design	– a	process
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
– Overall	timing	– use	a	table
– Timing	of	each	interface	– use	a	simple	convention	(e.g.,	valid	– ready)

• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.
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Specification
• Write	the	user’s	manual	first

• Putting it	on	paper	means	that	there	are	no	misunderstandings	
about	operation
– In	practice,	this	also	serves	to	validate	the	specification	with	users/customers

• Spec	includes
– Inputs	and	outputs
– Operating	modes
– Visible	state
– Discussion	of	“edge	cases”

• Most	of	design	is	done	writing	English-language	documents	– with	
associated	drawings.		Coding	comes	later.
– Don’t	start	coding	until	your	design	is	complete.
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Divide	and	Conquer	–common	
themes

• Task
– Divide	system	into	a	network	of	tasks
– One	module	per	task
– Model-view-controller:	tasks	are:	

• The	‘guts’	(model)
• Output	modules	that	‘view’	the	model
• Input	modules	that	affect	the	model

• State
– Divide	system	by	state
– Separate	module	for	each	set	of	state	variables

• Interface
– Module	for	each	external	interface
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Divide	and	Conquer

• Example	1	– Pong
– Model-view-controller
– Model	– ball	and	paddle	position	FSMs,	score
– View	– VGA	display	and	sound
– Controller	– inputs	to	control	paddles
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Pong	Decomposition	
Pong

RGBSyncButtons
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Pong	Decomposition	
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Horizontally partitioned by task
Model partitions also vertically by state
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Each	block	is	now	small	enough	to	
design

• Example,	Ball	FSM
– State:		x,	y,	vx,	vy
– Serve:		{x,	y}	=	middle,	vy	=	0,	vx	=	dir	;
– Bounce	off	top/bottom:		vy	=	-vy	;
– Bounce	off	paddle:	vx	=	-vx	;	adjust	vy	;
– Otherwise:	x	=	x+vx,	y	=	y+vy	;

• Simple	datapath	FSM
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Divide	and	Conquer

• Example	2	– DES	Cracker
– Task	pipeline:

• Generate	keys
• Sequence	ciphertext
• Decrypt	plaintext
• Check	plaintext
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Divide	and	Conquer

• Example	3	– Music	Synthesizer
– State	x	task

• Tone	generator
– Generate	harmonics,	generate	addresses,	lookup	sine	wave,	
weight	for	each	harmonic

• Envelope	generator
– Generate	envelopes,	multiply	by	samples

• Combiner
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Simple	Music	Synthesizer

• Note	FSM:	determines	the	next	note	to	play
• Note-to-Freq:	converts	the	note	into	a	frequency
• Sine-wave	synthesizer	FSM:	synthesizes	sine	wave	of	the	

specified	frequency
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With	Harmonics	and	Attack/Decay

• 2	new	FSMs	to	compute	harmonics	&	an	attenuation	envelope
• Harmonic	
• Harmonic	FSM	receives	from	synthesizer	FSM	series	of	S0.15	waveform	values
• It	combines	these	waves	as	input	to	the	envelope	FSM
• Envelope	FSM	attenuates	the	wave	with	an	attack-decay	envelope	using	the	

current	time-step
• Time-counter	resets	when	“NextNote”
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Define	Interfaces
• For	standard	modules,	already	defined	for	you

– DES	module	(from	OpenCores	library)
– AC97	CODEC

• For	your	own	modules,	interfaces	must	specify	every	signal
– Each	Data	“Port”:

• Data	signals	– how	wide,	what	representation,	when	valid
• Flow	control	– specifies	when	data	transfers	take	place

– Other	control	and	status
– Example	– Sine	Wave	Generator	

• Next	(in)	– goes	high	one	clock	each	data	sample
• Freq	(in)	– 16-bits	– u0.16	specifies	an	interval	between	samples	in	the	sine	table.		

A	value	of	1	specifies	an	interval	of	pi.
• Value	(out)	– 16-bits	s0.15	format,	on	sample	pulse
• NextNote	(out)	– goes	high	when	current	note	has	been	held	for	100ms
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Example	decision
• Suppose	we	need	15	sine-wave	generators

– 3	notes	x	5	harmonics	each

• Do	we	share	a	single	quarter	sine	table	or	use	15	tables?

• In	favor	of	sharing
– We	have	time

• Sample	rate	is	48KHz,	clock	is	100MHz.
• 2,083	cycles	per	sample

– It	will	take	less	chip	area

• Opposed	to	sharing
– Dedicated	BRAMs	are	simpler
– We	have	lots	of	BRAMs.

Which	would	you	do?
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System	Design	– a	process	(reminder)
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.
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Timing	and	Sequencing

• Work	out	exactly	when	and	in	what	order	
things	happen

• Account	for	pipeline	delays
• Account	for	multi-cycle	operations
• Draw	a	timing	diagram	(or	a	table)
• Example:	DES	Cracker
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Example,	DES	Cracker	Timing
Cycle KeyGen CT Seq DES Check
0 firstKey firstBlock
1 Key0 CT Block 0 Round 1
2 Round 2
… …
16 nextBlock Round 16
17 CT Block 1 Round 1 PT Block 0
18 Round 2
… …
32 nextBlock Round 16
33 CT Block 2 Round 1 PT Block 1
… …
112 nextBlock Round 16
113 CT Block 7 Round 1 PT Block 6
… …
128 nextKey firstBlock Round 16
129 Key1 CT Block 0 PT Block 7
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Example,	DES	Cracker	Timing	–
if	a	PT	block	fails,	go	on	to	next	key

Cycle KeyGen CT Seq DES Check
0 firstKey firstBlock
1 Key0 CT Block 0 Round 1
2 Round 2
… …
16 nextBlock Round 16
17 CT Block 1 Round 1 PT Block 0
18 nextKey firstBlock ---
19 Key1 CT Block 0 Round 1

Round 2
… …
34 nextBlock Round 16
35 CT Block 1 Round 1 PT Block 0
… …
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Example	timing	–
Music	Synthesizer	with	Harmonics

Cycle NextNote NextSample NextHarmonic Ready Comment
0 1 1 Start – look up note, convert to freq
1 1 Freq valid this cycle, read value
2 1 1 Value of fundamental
3 1 Read 2nd harmonic
4 1 1 Value of 2nd harmonic (2x freq)
5 1 Read 3rd harmonic
6 1 1 Value of 3rd harmonic (3x freq)
… Idle until next 48KHz request
2084 1 Read fundamental for next sample
2085 1 1 Value of fundamental
2086 1 Read 2nd harmonic
2087 1 1 Value of 2nd harmonic (2x freq)
2088 1 Read 3rd harmonic
2089 1 1 Value of 3rd harmonic (3x freq)
… Repeat above 4800 times per note
X+0 1 1 Read next note
X+2 1 Freq valid, read value
X+3 1 1 Value of fundamental
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With	Harmonics	and	Attack/Decay
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System	Design	– a	process	(reminder)
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.
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Basic	principle

Keep	it	simple	(KIS)
• Add	complexity	only	when	your	design	
absolutely	needs	it

A	corollary:
• If	its	not	broken,	don’t	fix	it
• Don’t	optimize	something	unless	there	is	
something	wrong	with	the	simple	design
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System	Design	– a	process	(reminder)
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.
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Some	comments	on	Coding
• Don’t	start	coding	until	your	design	is	done.
• Don’t	even	think	about	coding	until	your	design	is	done

• Code	a	separate	module	for	every	block	in	your	block	diagrams

• Unit	test	each	module	before	moving	on	to	the	next	module

• Follow	good	VHDL	coding	practice
– Don’t	forget	its	hardware
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Verification

• Basic	principle
– If	you	didn’t	test	it,	it	doesn’t	work

• All	modules
• All	states
• All	transitions	between	states
• All	“edge”	conditions

• Accelerate	tests
– Initialize	to	just	before	the	state	you’re	testing
– Shorten	counters	(for	testing,	don’t	forget	to	lengthen	for	real	

operation)
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Debugging
• Thinking	your	design	through	ahead	of	time	will	avoid	most	bugs

– Work	out	timing
– Keep	it	simple

• Be	a	detective	to	track	down	the	few	bugs	that	slip	through
– Start	with	known	working	logic
– Follow	signals	to	the	point	where	something	first goes	wrong
– Run	simplest	possible	test	case
– Unit	test	modules

• Make	sure	you	don’t	have	compilation	or	simulation	warnings
– Check	that	your	logic	meets	timing

• Do	not	just	randomly	change	Verilog	code	- stop	and	think
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System	Design	– Overview
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

– Debug

Iterate	back	to	the	top	at	any	step	as	needed.
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Interface	Timing
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Interface	Timing

• How	do	you	pass	data	from	one	module	to	
another?
– Open	loop
– Flow	control
– Serialized
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Always	Valid	Timing
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Periodically	Valid	Timing
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Flow	Control

36EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Flow-control

• Valid	– Tx	has	data	available
• Ready	– Rx	able	to	take	data
• Push	flow	control	– assume	Rx	always	Ready
• Pull	flow	control	– assume	Tx	always	Valid
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Serialization

Sender Receiver
clk

data

frame

frame

a2a3

cycle 1 2 3 4 5 6 7 8

data
16

a1 a0 b2 b1 b0 c2c3 c1 c0b3

9 10 11 12 13

Frame signals start of new serial frame (in this case 4 words)
Flow control can be at frame granularity or word granularity
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Serialization	with	word	granularity	
FC

Sender Receiver

clk

bus

frame

frame

cont

cycle 1

bus
8

addrH addrL data3 data2 data1 data0
ready

ready

data1

2 3 4 5 6 7 8
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Summary
• Interface	timing

– Convention	about	when	data	is	transferred
• When	valid,	when	accepted
• Open	loop	– always	valid	or	periodic
• Ready-valid	flow-control,	both	ways,	push,	or	pull

– Serialization
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Summary	of	Lecture	13

• System	Design
• Interfaces

• Reading
– Book	chapters	21,	22,

• Next	Lecture	14:
– Memory	and	

interconnects
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