EDA322
Digital Design

Lecture 13:
System Design and Interfaces,

loannis Sourdis

Outline of Lecture 13

e System Design process
e Interfaces

System Designh — a process

e Specification
— Understand what you need to build
* Divide and conquer
— Break it down into manageable pieces
* Define interfaces
— Clearly specify every signal between pieces
— Hide implementation
— Choose representations
* Timing and sequencing
— Overall timing — use a table
— Timing of each interface — use a simple convention (e.g., valid — ready)
* Add parallelism as needed (pipeline or duplicate units)
 Timing and sequencing (of parallel structures)
* Design each module
e Code
* \Verify

Iterate back to the top at any step as needed.

Specification

Write the user’s manual first

Putting it on paper means that there are no misunderstandings
about operation
— In practice, this also serves to validate the specification with users/customers

Spec includes
— Inputs and outputs
— Operating modes
— Visible state
— Discussion of “edge cases”

Most of design is done writing English-language documents — with
associated drawings. Coding comes later.
— Don’t start coding until your design is complete.

Divide and Conquer —common

themes
e Task

— Divide system into a network of tasks
— One module per task

— Model-view-controller: tasks are:
* The ‘guts’ (model)
* Output modules that ‘view’ the model
* Input modules that affect the model

* State
— Divide system by state
— Separate module for each set of state variables

* |nterface

— Module for each external interface

Divide and Conquer

* Example 1 —Pong
— Model-view-controller
— Model — ball and paddle position FSMs, score
— View — VGA display and sound
— Controller — inputs to control paddles

Pong Decomposition
Pong

Buttons RGBSync

Z

7

Pong

TTTTTTTITITIT I TITT]
| e OO

© Cambridge University Press 2015

EDA322 Digital Design, 2017-

2018, Lecture 13 l. Sourdis, CSE, Chalmers 8

Pong Decomposition

RGBSync

i
I
I 7 .
I serve,start Main mode
I 7 FSM
I score ,
I 7
: left pad
I eftpady
I _ v Ball ball pos |
— ht pad <
Buttons | = el eely FSM 7 S
2 | © mode >
7 l = I o
I g »
@) O
1 «Q left pad —
i = left uo/down// Paddle . pady A kS
I right up/down, FSM rightpady
I 7 7
I
I
I mode
I Score | seore ,
| ball pos , FSM ~
I controler 7
o model_ _ _ _ ______ viewer _

Horizontally partitioned by task
Model partitions also vertically by state

Each block is now small enough to
design
 Example, Ball FSM

— State: x,y, vx, vy

— Serve: {x, y} = middle, vy =0, vx = dir;
— Bounce off top/bottom: vy = -vy ;

— Bounce off paddle: vx = -vx ; adjust vy ;
— Otherwise: X = x+vx, y = y+vy ;

* Simple datapath FSM

Divide and Conquer

* Example 2 — DES Cracker
— Task pipeline:

* Generate keys

* Sequence ciphertext
* Decrypt plaintext

* Check plaintext

DES Example

firstKey
Key key
nextKey Generator
firstBlock
Ciphertext | cipherTextBlock
Storage
nextBlock J startDES
start firstKey
nextKey
DESdone Master firstBlock
FSM nextBlock
iIsPlainT ext startDES

Master-slave partitioning

DES
Decrypt

plainTextBlock

DESdone

Text
Checker

isPlainText

Divide and Conquer

 Example 3 — Music Synthesizer
— State x task

* Tone generator

— Generate harmonics, generate addresses, lookup sine wave,
weight for each harmonic

* Envelope generator
— Generate envelopes, multiply by samples

e Combiner

start

Simple Music Synthesizer

note
Note — »| Note to

FSM |[— Frequency

ol

Song
RAM

| freq || Sine Wave
ready Synthesizer
FSM
ol
Quarter
Sine
RAM

Note FSM: determines the next note to play
Note-to-Freq: converts the note into a frequency
Sine-wave synthesizer FSM: synthesizes sine wave of the

specified frequency

value

next
<

CODEC

start

note Note to freq
Frequency
Note duration note
FSM
nextNote
Song
RAM

Sine Wave
Synthesizer
FSM
w/ Harmonics

value

value

ready

O F
(T
y

Quarter
Sine
RAM

»
nextHarmonic
—

nextSample

Harmonics
FSM

next

nextNote

2 new FSMs to compute harmonics & an attenuation envelope

Harmonic

Harmonic FSM receives from synthesizer FSM series of S0.15 waveform values

It combines these waves as input to the envelope FSM

Envelope FSM attenuates the wave with an attack-decay envelope using the
current time-step

Time-counter resets when “NextNote”

ready
—

Envelope

value

With Harmonics and Attack/Decay

ready

next

CODEC

Define Interfaces

* For standard modules, already defined for you
— DES module (from OpenCores library)
— AC97 CODEC

* For your own modules, interfaces must specify every signal

— Each Data “Port”:
e Data signals — how wide, what representation, when valid

* Flow control — specifies when data transfers take place

— Other control and status

— Example — Sine Wave Generator
* Next (in) — goes high one clock each data sample
* Freq (in) — 16-bits — u0.16 specifies an interval between samples in the sine table.
A value of 1 specifies an interval of pi.
e Value (out) — 16-bits s0.15 format, on sample pulse
* NextNote (out) — goes high when current note has been held for 100ms

Example decision

* Suppose we need 15 sine-wave generators
— 3 notes x 5 harmonics each

Do we share a single quarter sine table or use 15 tables?

* |n favor of sharing

— We have time
* Sample rate is 48KHz, clock is 100MHz.
» 2,083 cycles per sample

— It will take less chip area

 Opposed to sharing
— Dedicated BRAMs are simpler
— We have lots of BRAMs.

Which would you do?

System Design — a process (reminder)

 Timing and sequencing

* Add parallelism as needed (pipeline or duplicate units)
* Timing and sequencing (of parallel structures)

e Design each module

* Code

* \Verify

Iterate back to the top at any step as needed.

Timing and Sequencing

Work out exactly when and in what order
things happen

Account for pipeline delays
Account for multi-cycle operations
Draw a timing diagram (or a table)
Example: DES Cracker

Example, DES Cracker Timing

Cycle KeyGen CT Seq DES Check

0 firstkey firstBlock

1 KeyO CT Block 0 Round 1

2 Round 2

16 nextBlock Round 16

17 CTBlock1 |Round 1 PT Block 0
18 Round 2

32 nextBlock Round 16

33 CT Block 2 Round 1 PT Block 1
112 nextBlock Round 16

113 CT Block 7 Round 1 PT Block 6
128 nextKey firstBlock Round 16

129 Key1 CT Block 0 PT Block 7

EDA322 Digital Design, 2017-
2018, Lecture 13

l. Sourdis, CSE, Chalmers

20

DES Example

firstKey
Key key
nextKey Generator
firstBlock
Ciphertext | cipherTextBlock
Storage
nextBlock J startDES
start firstKey
nextKey
DESdone Master firstBlock
FSM nextBlock
iIsPlainT ext startDES

EDA322 Digital Design, 2017-

2018, Lecture 13

DES
Decrypt

plainTextBlock

DESdone

Text
Checker

isPlainText

l. Sourdis, CSE, Chalmers

21

Example, DES Cracker Timing —
if a PT block fails, go on to next key

Cycle [KeyGen CT Seq DES Check
0 firstKey firstBlock
1 KeyO CT Block O Round 1
2 Round 2
16 nextBlock Round 16
17 CT Block 1 Round 1 PT Block 0O
18 nextkey firstBlock -
19 Key1 CT Block 0O Round 1
Round 2
34 nextBlock Round 16
35 CT Block 1 Round 1 PT Block 0

EDA322 Digital Design, 2017-

2018, Lecture 13

l. Sourdis, CSE, Chalmers

22

Example timing —
Music Synthesizer with Harmonics

Cycle [NextNote NextSample ~ [NextHarmonic Ready [Comment
D 1 1 Start — look up note, convert to freq
1 1 Freq valid this cycle, read value
P 1 1 Malue of fundamental
3 1 Read 2"d harmonic
4 1 1 [alue of 2" harmonic (2x freq)
5 1 Read 3 harmonic
§ 1 1 Malue of 3" harmonic (3x freq)
: Idle until next 48KHz request
084 1 Read fundamental for next sample
085 1 1 Malue of fundamental
086 1 Read 2" harmonic
2087 1 1 Malue of 2" harmonic (2x freq)
088 1 Read 3™ harmonic
2089 1 1 Malue of 3" harmonic (3x freq)
Repeat above 4800 times per note
X+0 1 1 Read next note
X+2 1 Freq valid, read value
X+3 1 1 alue of fundamental

FDA3ZZ Digitar vesign, 2017-

2018, Lecture 13 l. Sourdis, CSE, Chalmers

With Harmonics and Attack/Decay

note Note to freq
sart Frequency
» Note duration note
FSM
nextNote
Song
RAM

Sine Wave
Synthesizer
FSM
w/ Harmonics

value

value

ready

O F
(T
y

Quarter
Sine
RAM

»
nextHarmonic
—

nextSample

Harmonics
FSM

ready

next

nextNote

Envelope

value

ready

next

CODEC

System Design — a process (reminder)

* Design each module
e Code
e Verify

Iterate back to the top at any step as needed.

Basic principle

Keep it simple (KIS)

* Add complexity only when your design
absolutely needs it

A corollary:
* If its not broken, don’t fix it

* Don’t optimize something unless there is
something wrong with the simple design

System Design — a process (reminder)

* Design each module
e Code
e Verify

Iterate back to the top at any step as needed.

Some comments on Coding

Don’t start coding until your design is done.
Don’t even think about coding until your design is done

Code a separate module for every block in your block diagrams
Unit test each module before moving on to the next module

Follow good VHDL coding practice
— Don’t forget its hardware

Verification

e Basic principle
— |f you didn’t test it, it doesn’t work
e All modules
* All states
 All transitions between states
* All “edge” conditions

* Accelerate tests
— Initialize to just before the state you're testing

— Shorten counters (for testing, don’t forget to lengthen for real
operation)

Debugging

Thinking your design through ahead of time will avoid most bugs
— Work out timing
— Keep it simple
Be a detective to track down the few bugs that slip through
— Start with known working logic
— Follow signals to the point where something first goes wrong
— Run simplest possible test case
— Unit test modules

Make sure you don’t have compilation or simulation warnings
— Check that your logic meets timing

Do not just randomly change Verilog code - stop and think

System Design — Overview

e Specification
— Understand what you need to build
* Divide and conquer
— Break it down into manageable pieces
* Define interfaces
— Clearly specify every signal between pieces
— Hide implementation
— Choose representations
 Timing and sequencing
* Add parallelism as needed (pipeline or duplicate units)
 Timing and sequencing (of parallel structures)
e Design each module

e Code
* \Verify
— Debug

Iterate back to the top at any step as needed.

Interface Timing

Interface Timing

* How do you pass data from one module to
another?

— Open loop
— Flow control
— Serialized

data .
Sender | Receiver

Always Valid Timing

Sender

data

Receiver

EDA322 Digital Design, 2017-

2018, Lecture 13

l. Sourdis, CSE, Chalmers

34

Periodically Valid Timing

data .
Sender |} Receiver

EDA322 Digital Design, 2017-

2018, Lecture 13 l. Sourdis, CSE, Chalmers

Flow Control

valid

ready |
Sender Receiver

data

cycIe12345678
CIk/\/\I\l\l\/_\/\l\/
data A) @—(CXD)

\ I

aid [

ready | [\ B &
transfer @ @ @

EDA322 Digital Design, 2017-
2018, Lecture 13

l. Sourdis, CSE, Chalmers

36

Flow-control

Valid — Tx has data available

Ready — Rx able to take data

Push flow control — assume Rx always Ready
Pull flow control —assume Tx always Valid

cycle 1 2 3 4 5 6 7 8

CIk/\/\/\l\/\l\/\/\/
data A) D—(C)D)
vaIidj \ /__/ 1

ready / \ | |
transfer @ @ @

Serialization

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

C”</\/\/\l\l\l\l\l\l\/\/\l\l\/
data(a3XaZXa1XaoXb3Xb2Xb1Xb0:)—;(c3XCZXC1XCO)
o e N

Frame signals start of new serial frame (in this case 4 words)
Flow control can be at frame granularity or word granularity

Serialization with word granularity
FC

cycle 122 3 4 5 6 7 8

clk [| | o

Summary

* |nterface timing

— Convention about when data is transferred
 When valid, when accepted
* Open loop — always valid or periodic
* Ready-valid flow-control, both ways, push, or pull

— Serialization

Summary of Lecture 13

* Reading
— Book chapters 21, 22,

* Next Lecture 14:

— Memory and
interconnects

* System Design
* |nterfaces

EDA322 Digital Design, 2017-

2018, Lecture 13 l. Sourdis, CSE, Chalmers 41

