
EDA322
Digital	Design

Lecture	13:	
System	Design	and	Interfaces,	

Ioannis	Sourdis



Outline	of	Lecture	13

• System	Design	process
• Interfaces

EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers 2



System	Design	– a	process
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
– Overall	timing	– use	a	table
– Timing	of	each	interface	– use	a	simple	convention	(e.g.,	valid	– ready)

• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.

3EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Specification
• Write	the	user’s	manual	first

• Putting it	on	paper	means	that	there	are	no	misunderstandings	
about	operation
– In	practice,	this	also	serves	to	validate	the	specification	with	users/customers

• Spec	includes
– Inputs	and	outputs
– Operating	modes
– Visible	state
– Discussion	of	“edge	cases”

• Most	of	design	is	done	writing	English-language	documents	– with	
associated	drawings.		Coding	comes	later.
– Don’t	start	coding	until	your	design	is	complete.

4EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Divide	and	Conquer	–common	
themes

• Task
– Divide	system	into	a	network	of	tasks
– One	module	per	task
– Model-view-controller:	tasks	are:	

• The	‘guts’	(model)
• Output	modules	that	‘view’	the	model
• Input	modules	that	affect	the	model

• State
– Divide	system	by	state
– Separate	module	for	each	set	of	state	variables

• Interface
– Module	for	each	external	interface

5EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Divide	and	Conquer

• Example	1	– Pong
– Model-view-controller
– Model	– ball	and	paddle	position	FSMs,	score
– View	– VGA	display	and	sound
– Controller	– inputs	to	control	paddles

6EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Pong	Decomposition	
Pong

RGBSyncButtons

7EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



©	Cambridge	University	Press	2015

Pong

EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers 8



Pong	Decomposition	

9EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers

Horizontally partitioned by task
Model partitions also vertically by state

Pong

RGBSyncButtons
VG

A D
isplay

Input Logic

Main
FSM

Ball
FSM

Paddle
FSM

Score
FSM

left pad y
right pad y

ball pos

mode

left pad y
right pad y
mode

ball pos

mode

ball pos

score

score

serve,start

left up/down
right up/down

model
controler

viewer



Each	block	is	now	small	enough	to	
design

• Example,	Ball	FSM
– State:		x,	y,	vx,	vy
– Serve:		{x,	y}	=	middle,	vy	=	0,	vx	=	dir	;
– Bounce	off	top/bottom:		vy	=	-vy	;
– Bounce	off	paddle:	vx	=	-vx	;	adjust	vy	;
– Otherwise:	x	=	x+vx,	y	=	y+vy	;

• Simple	datapath	FSM

10EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Divide	and	Conquer

• Example	2	– DES	Cracker
– Task	pipeline:

• Generate	keys
• Sequence	ciphertext
• Decrypt	plaintext
• Check	plaintext

11EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



DES	Example
Key

Generator
key

Ciphertext
Storage

cipherTextBlock

firstKey

firstBlock

nextBlock

DES
Decrypt

plainTextBlock

startDES DESdone

Text
Checker

nextKey

isPlainText

Master
FSM

firstKey

firstBlock
nextBlock

nextKey

startDES

DESdone

isPlainText

start

12EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers

Master-slave partitioning



Divide	and	Conquer

• Example	3	– Music	Synthesizer
– State	x	task

• Tone	generator
– Generate	harmonics,	generate	addresses,	lookup	sine	wave,	
weight	for	each	harmonic

• Envelope	generator
– Generate	envelopes,	multiply	by	samples

• Combiner

13EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Simple	Music	Synthesizer

• Note	FSM:	determines	the	next	note	to	play
• Note-to-Freq:	converts	the	note	into	a	frequency
• Sine-wave	synthesizer	FSM:	synthesizes	sine	wave	of	the	

specified	frequency
EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers 14

Note
FSM

Song
RAM

start
ad

dr

da
ta

note
Note to

Frequency

Quarter
Sine
RAM

ad
dr

da
ta

freq

ready

Sine Wave
Synthesizer

FSM

value

next CODEC



With	Harmonics	and	Attack/Decay

• 2	new	FSMs	to	compute	harmonics	&	an	attenuation	envelope
• Harmonic	
• Harmonic	FSM	receives	from	synthesizer	FSM	series	of	S0.15	waveform	values
• It	combines	these	waves	as	input	to	the	envelope	FSM
• Envelope	FSM	attenuates	the	wave	with	an	attack-decay	envelope	using	the	

current	time-step
• Time-counter	resets	when	“NextNote”
EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers 15

Note
FSM

Song
RAM

start

ad
dr

da
ta

note Note to
Frequency

Quarter
Sine
RAM

ad
dr

da
ta

freq

nextNote

Sine Wave
Synthesizer

FSM
w/ Harmonics

value

nextHarmonic Harmonics
FSM Envelope

value

next

ready ready

value

next

ready CODEC

nextNote

nextSample

duration note



Define	Interfaces
• For	standard	modules,	already	defined	for	you

– DES	module	(from	OpenCores	library)
– AC97	CODEC

• For	your	own	modules,	interfaces	must	specify	every	signal
– Each	Data	“Port”:

• Data	signals	– how	wide,	what	representation,	when	valid
• Flow	control	– specifies	when	data	transfers	take	place

– Other	control	and	status
– Example	– Sine	Wave	Generator	

• Next	(in)	– goes	high	one	clock	each	data	sample
• Freq	(in)	– 16-bits	– u0.16	specifies	an	interval	between	samples	in	the	sine	table.		

A	value	of	1	specifies	an	interval	of	pi.
• Value	(out)	– 16-bits	s0.15	format,	on	sample	pulse
• NextNote	(out)	– goes	high	when	current	note	has	been	held	for	100ms

16EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Example	decision
• Suppose	we	need	15	sine-wave	generators

– 3	notes	x	5	harmonics	each

• Do	we	share	a	single	quarter	sine	table	or	use	15	tables?

• In	favor	of	sharing
– We	have	time

• Sample	rate	is	48KHz,	clock	is	100MHz.
• 2,083	cycles	per	sample

– It	will	take	less	chip	area

• Opposed	to	sharing
– Dedicated	BRAMs	are	simpler
– We	have	lots	of	BRAMs.

Which	would	you	do?
17EDA322	Digital	Design,	2017-

2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



System	Design	– a	process	(reminder)
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.
18EDA322	Digital	Design,	2017-

2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Timing	and	Sequencing

• Work	out	exactly	when	and	in	what	order	
things	happen

• Account	for	pipeline	delays
• Account	for	multi-cycle	operations
• Draw	a	timing	diagram	(or	a	table)
• Example:	DES	Cracker

19EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Example,	DES	Cracker	Timing
Cycle KeyGen CT Seq DES Check
0 firstKey firstBlock
1 Key0 CT Block 0 Round 1
2 Round 2
… …
16 nextBlock Round 16
17 CT Block 1 Round 1 PT Block 0
18 Round 2
… …
32 nextBlock Round 16
33 CT Block 2 Round 1 PT Block 1
… …
112 nextBlock Round 16
113 CT Block 7 Round 1 PT Block 6
… …
128 nextKey firstBlock Round 16
129 Key1 CT Block 0 PT Block 7

20EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



DES	Example
Key

Generator
key

Ciphertext
Storage

cipherTextBlock

firstKey

firstBlock

nextBlock

DES
Decrypt

plainTextBlock

startDES DESdone

Text
Checker

nextKey

isPlainText

Master
FSM

firstKey

firstBlock
nextBlock

nextKey

startDES

DESdone

isPlainText

start

21EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Example,	DES	Cracker	Timing	–
if	a	PT	block	fails,	go	on	to	next	key

Cycle KeyGen CT Seq DES Check
0 firstKey firstBlock
1 Key0 CT Block 0 Round 1
2 Round 2
… …
16 nextBlock Round 16
17 CT Block 1 Round 1 PT Block 0
18 nextKey firstBlock ---
19 Key1 CT Block 0 Round 1

Round 2
… …
34 nextBlock Round 16
35 CT Block 1 Round 1 PT Block 0
… …

22EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Example	timing	–
Music	Synthesizer	with	Harmonics

Cycle NextNote NextSample NextHarmonic Ready Comment
0 1 1 Start – look up note, convert to freq
1 1 Freq valid this cycle, read value
2 1 1 Value of fundamental
3 1 Read 2nd harmonic
4 1 1 Value of 2nd harmonic (2x freq)
5 1 Read 3rd harmonic
6 1 1 Value of 3rd harmonic (3x freq)
… Idle until next 48KHz request
2084 1 Read fundamental for next sample
2085 1 1 Value of fundamental
2086 1 Read 2nd harmonic
2087 1 1 Value of 2nd harmonic (2x freq)
2088 1 Read 3rd harmonic
2089 1 1 Value of 3rd harmonic (3x freq)
… Repeat above 4800 times per note
X+0 1 1 Read next note
X+2 1 Freq valid, read value
X+3 1 1 Value of fundamental

23EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



With	Harmonics	and	Attack/Decay

Note
FSM

Song
RAM

start

ad
dr

da
ta

note Note to
Frequency

Quarter
Sine
RAM

ad
dr

da
ta

freq

nextNote

Sine Wave
Synthesizer

FSM
w/ Harmonics

value

nextHarmonic Harmonics
FSM Envelope

value

next

ready ready

value

next

ready CODEC

nextNote

nextSample

duration note

24EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



System	Design	– a	process	(reminder)
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.
25EDA322	Digital	Design,	2017-

2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Basic	principle

Keep	it	simple	(KIS)
• Add	complexity	only	when	your	design	
absolutely	needs	it

A	corollary:
• If	its	not	broken,	don’t	fix	it
• Don’t	optimize	something	unless	there	is	
something	wrong	with	the	simple	design

26EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



System	Design	– a	process	(reminder)
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

Iterate	back	to	the	top	at	any	step	as	needed.

27EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Some	comments	on	Coding
• Don’t	start	coding	until	your	design	is	done.
• Don’t	even	think	about	coding	until	your	design	is	done

• Code	a	separate	module	for	every	block	in	your	block	diagrams

• Unit	test	each	module	before	moving	on	to	the	next	module

• Follow	good	VHDL	coding	practice
– Don’t	forget	its	hardware

28EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Verification

• Basic	principle
– If	you	didn’t	test	it,	it	doesn’t	work

• All	modules
• All	states
• All	transitions	between	states
• All	“edge”	conditions

• Accelerate	tests
– Initialize	to	just	before	the	state	you’re	testing
– Shorten	counters	(for	testing,	don’t	forget	to	lengthen	for	real	

operation)

29EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Debugging
• Thinking	your	design	through	ahead	of	time	will	avoid	most	bugs

– Work	out	timing
– Keep	it	simple

• Be	a	detective	to	track	down	the	few	bugs	that	slip	through
– Start	with	known	working	logic
– Follow	signals	to	the	point	where	something	first goes	wrong
– Run	simplest	possible	test	case
– Unit	test	modules

• Make	sure	you	don’t	have	compilation	or	simulation	warnings
– Check	that	your	logic	meets	timing

• Do	not	just	randomly	change	Verilog	code	- stop	and	think

30EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



System	Design	– Overview
• Specification

– Understand	what	you	need	to	build
• Divide	and	conquer	

– Break	it	down	into	manageable	pieces
• Define	interfaces

– Clearly	specify	every	signal	between	pieces
– Hide	implementation
– Choose	representations

• Timing	and	sequencing
• Add	parallelism	as	needed	(pipeline	or	duplicate	units)
• Timing	and	sequencing	(of	parallel	structures)
• Design	each	module
• Code
• Verify

– Debug

Iterate	back	to	the	top	at	any	step	as	needed.

31EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Interface	Timing

32EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Interface	Timing

• How	do	you	pass	data	from	one	module	to	
another?
– Open	loop
– Flow	control
– Serialized

33EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Always	Valid	Timing

34EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Periodically	Valid	Timing

35EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Flow	Control

36EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Flow-control

• Valid	– Tx	has	data	available
• Ready	– Rx	able	to	take	data
• Push	flow	control	– assume	Rx	always	Ready
• Pull	flow	control	– assume	Tx	always	Valid

37EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Serialization

Sender Receiver
clk

data

frame

frame

a2a3

cycle 1 2 3 4 5 6 7 8

data
16

a1 a0 b2 b1 b0 c2c3 c1 c0b3

9 10 11 12 13

Frame signals start of new serial frame (in this case 4 words)
Flow control can be at frame granularity or word granularity

38EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Serialization	with	word	granularity	
FC

Sender Receiver

clk

bus

frame

frame

cont

cycle 1

bus
8

addrH addrL data3 data2 data1 data0
ready

ready

data1

2 3 4 5 6 7 8

39EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Summary
• Interface	timing

– Convention	about	when	data	is	transferred
• When	valid,	when	accepted
• Open	loop	– always	valid	or	periodic
• Ready-valid	flow-control,	both	ways,	push,	or	pull

– Serialization

40EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers



Summary	of	Lecture	13

• System	Design
• Interfaces

• Reading
– Book	chapters	21,	22,

• Next	Lecture	14:
– Memory	and	

interconnects

EDA322	Digital	Design,	2017-
2018,	Lecture	13 I.	Sourdis,	CSE,	Chalmers 41


