EDA322
Digital Design

Lecture 16:
Pipelining
loannis Sourdis

Outline of Lecture 16

Pipelining

Latency & Throughput
Examples

— Ripple carry adder

— Microprocessor

— Graphics

— Network processing

Load balancing
Stalling

Two ways to make things faster:
pipeline and parallel

Pipelines

EDA 0

2018, Lecture 16 . 0urdis, , Chalmers

More Like an Assembly Line

o

v £
. ’
-— =~ - A .
EPARTHMENT OF THE INTERIOR, NATIONAL FARK SERYICE, EDISON NATIONAL HISTORIC SITE

-~ "'
Uu.s. D

. Sourdis, CSE, Chalmers

EDA322 Digital design, 2017-
2018, Lecture 16

Analogy: doing laundry

* Doing laundry:

— Wash .
— Dry O
— Irong

 Can we do any better?

colored .

displayed

O
whites . O
sweaters
: : : - - . - - - - ——>
t0 t1 2 13 t4 t5 t6 {7 t8 19 ...time
=DA322 Digital design, l. Sourdis, CSE, Chalmers 6

2017-2018, Lecture 16

Pipelines

* Like an assembly line — each pipeline stage does part of
the work and passes the ‘workpiece’ to the next stage

A
90}
o

b31

* Example 1: Pipelined 32b Adder . FA 531

c31
[X X J

c2

b1

FA si

al

c1

b0

FA s0

a0

cO

Split into 4 8-bit adders

AN
3
b[31:24]
s[23:16]
a[31:24] [Add
-
S
b[23:16]
S[23:16]
a[23:16] |Add
©
b[15:8] —
s[15:8]
a[15:8] [|Add
(0 0]
o
b[7:0]
S[7:0]
a7 |Add

cO

b[31:24]

Split into stages
4 problems ‘in process’ at once

a[31:24]

b[23:16]

a[23:16]

b[15:8]

c16

a[15:8]

Add

b[7:0]

a[7:0]

cO

c8

Add

c32 c32
I
Add s[23:16]
c24 |
Add s[23:16]
|
s[15:8]
s[7:0]

Pipeline Diagram

Illustrates
pipeline timing

Problems

PO
P
P2
P3
P4

c32 c32
b[31:24] I
a[31:24] Add 22T
c24 |
b[23:16] I
a[23:16] Add =
c16 |
b[15:8] |
a[15:8] Add A1)
c8 |
b[7:0] |
70 Add s[7:0]
0 A A A A
Cycle
0 1 2 3 4) 6 7
7:0 15:8 | 23:16 | 31:24
70 15:8 | 23:16 | 31:24
7:0 15:8 | 23:16 | 31:24
7:0 15:8 | 23:16 | 31:24
70 15:8 | 23:16 | 31:24
Time

b[31:24]

Movie

a[31:24]

b[23:16]

a[23:16]

b[15:8]

c16

a[15:8]

b[7:0]

a[7:0]

cO

c8

Add

Add

c32

c32

c24

Add

s[23:16]

Add

s[23:16]

s[15:8]

s[7:0]

b[31:24]

a[31:24]

b[23:16]

a[23:16]

b[15:8]

a[15:8]

b[7:0]

a[7:0]

cO

c8

Add

Cycle

1

c32

c32

c24

Add

s[23:16]

Add

c16

S[23:16]

Add

s[15:8]

SO

s[7:0]

b[31:24]

Cycle 2

a[31:24]

b[23:16]

a[23:16]

b[15:8]

c16

a[15:8]

b[7:0]

a[7:0]

cO

c8

Add

EDA322 Digital design, 2017-

2018, Lecture 16

Add

c32

c32

c24

Add

s[23:16]

Add

S[23:16]

SO

s[15:8]

s[7:0]

. Sourdis, CSE, Chalmers

13

b[31:24]

a[31:24]

b[23:16]

a[23:16]

b[15:8]

a[15:8]

b[7:0]

c8

a[7:0]

cO

Add

Cycle 3

c32

c32

c24

Add

c16

Add

S2

Add

s[23:16]

S[23:16]

s[15:8]

s[7:0]

EDA322 Digital design, 2017-
2018, Lecture 16

. Sourdis, CSE, Chalmers

14

b[31:24]

a[31:24]

b[23:16]

a[23:16]

b[15:8]

a[15:8]

b[7:0]

c8

a[7:0]

cO

Add

S2

Cycle 4

c16

Add

S2

EDA322 Digital design, 2017-
2018, Lecture 16

c32

c24

Add

Add

c32

s[23:16]

S[23:16]

s[15:8]

s[7:0]

. Sourdis, CSE, Chalmers

15

Latency and Throughput of a
Pipeline

e Suppose before pipelining the delay of our 32b adder is 3200ps
(100ps per bit) and this adder can do one problem each
3200ps for a throughput of 1/3200ps = 312 Millions of

operations (additions) per second (Mops)

 Whatis the delay (latency, t
adder with pipelining?
Suppose tdq = 120ps, t

pipe) and throughput (®) of the

= 80ps, (200ps Overhead)

setup

e = NMtstage + tacq + ts)=4(800 +200) = 4000
O = 1/(tsz0e + tycq + ts) = 1/1000 = 1Gops

Example 2: Processor Pipeline

Data)
Cache
— — 1 Mux Regs
A A
Regs >ALU >
A A
— —
A
Inst x < = =
O > > i / / |
o Cache = "1 & o g
JAN JAN JAN JAN JAN
Inst1 Fetch Read ALU Mem Write
Inst2 Fetch Read ALU Mem Write
Inst3 Fetch Read ALU Mem Write
Inst4 Fetch Read ALU Mem Write

Example 3: Graphics rendering
pipeline

triangle pipeline fragment pipeline
A A
s N r N

triangles Xform p—»| Clip p—»{ Light [—»|Rasterize}—»| Shade |—»] Composite

v | v |

Textures Z-buffer

Frame
Buffer

triangle

/ fragment

// T ”%

Example 4 — Packet Processing
Pipeline

Route

Framer |—»{ Policing —» Lookup

Switch
Schedulingl

And each of these modules is internally pipelined

You get the idea. Lots of systems are organized this way.

X

Queue
Mgt

Output
Scheduler

Framer

Issues with pipelines
(all deal with time per stage)

e Load balance (across stages)

— one stage takes longer to process each input than the others — becomes
a ‘bottleneck’

— Example

* Rasterizing an ‘average’ triangle in a graphics pipeline takes more time than
‘lighting’ its vertices.

e Variable load (across data)

— A given stage takes more time on some inputs than others

— Example

* The the time needed to rasterize a triangle is proportional to the number
of fragments in the triangle. The average triangle may contain 20
fragments, but triangles range from 0 to over 1M

* Long latency
— A stage may require a long latency operation (e.g., texture access)

Load Balancing Pipelines

e Suppose transform takes 2 cycles and clip 4 cycles
* Clip is a ‘bottleneck’ pipeline stage

e Xform unit is busy only half the time

Xform Clip

Xform Stall Clip

Load Balancing Solutions
1 — Parallel copies of slow unit

P Clip (1) N

Xform p—»Distribute Join }+—»

\ Clip (2) el

Xform Clip (1)

Xform Clip (2)

Xform Clip (1)

Xform Clip (2)

Load Balancing Solutions
2 — Split slow pipeline stage

Xform |—»1 ClipA —» ClipB >

Xform ClipA | ClipB

Xform ClipA | ClipB

Xform Clip A Clip B

Xform ClipA | ClipB

When is it better to split? To copy?
Throughput and latency are the same

Xform |—»1 ClipA —» ClipB >

Clip (1)

Xform p—»Distribute

\ .
_

vl
\ Clip (2)

Variable load
Stage A always takes 10 cycles.
Stage B takes 5 or 15 cycles — averages 10 cycles
Pipeline averages cycles per element

—> A —> B —
10 cycles 5 or 15 cycles
S: stall
|: idle
A B
A "S“ B "IHE
A B
A |s B

Elastic Pipelines

A FIFO between stages decouples timing
Allows stages to operate at their ‘average’ speed

—> A — FIFO |—» B —
10 cycles 5 or 15 cycles
B
A B
A [B]T:
A B
A B

A B

10 cycles 5or 15 cycles

(@)

Variable D

0|5 |10]/15|20|25 |30 (35|40 |45 |50|55|60]|65]| 70

Load ‘ A e

A Fls | E:
—m-- coaal
A B
A F B
A F B E: 3
- caaal
(b)
A B
A B
A B
A B
A B
. .) ()
EDA322 Digital design, 2017 I. Sourdis, CSE, Chalmers 27

2018, Lecture 16

Timing of an elastic pipeline

3 Entry FIFO
d
A at‘: > B data > 5
> A A valid B_ready 1 | >
2 cycles A_ready B valid + cycles
<
[full] [lempty]

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

avatatatalalalalalalalalalabal

A data< 1 X X X X)4 X 7

A_valid I Jj [\ J i 8 / |

A_ready \ R
>_

g2
d1

Jo <I>_<
B_valid /—_/
B_ready /__\ /__\ /

EDA322 Digital design, 2017-
2018, Lecture 16

2 3 4 3 6

L~
(9]

N N
w

S>>
w

e
Al

. Sourdis, CSE, Chalmers 28

Resource Sharing
Suppose two pipeline stages need to
access the same memory

Mux Arb

@® ©

Memory

How would you set the priority on the arbiter?

valid

-< ready

Stalling a rigid pipeline
A stall in any stage halts all stages upstream of
the stall point instantly (on the next clock)

>

int read

y

2@

valid

< ready

o

y

int_read

2@

valid

< ready

@)

int read

y

2@

valid

ready

What if we stopped all stages, not just upstream stages?
How does the delay of this structure scale with the

number of stages?

Stalling a
rigid
pipeline

EDA322 Digital design, 2017-
2018, Lecture 16

readyR; (

dataR;

valid

Stage

readyR,

. Sourdis, CSE, Chalmers

rR, rRs d
<—ersl l ‘_II'Rsz l l<—ersg i
€ dR2 € dR3 € dR4
S1 —» |—> S2 — | —> S3 —| —»
LA LA
VR VRe VR[o VRas[) VR VRa
LAl ” (A ” A
(a)
ready;
-
— 0
dR,, validR,
Mux =
dRi.l, Va”dRi.l 1
A
(b)
Time
=
0 1 2 3 4 5 6 7
A B A @ A C A C A D E F
A B B B C D E
3 T[lA TIlA T||Aa T|| B & D
4 Xa Xa A B &
ready
(c)
31

Double Buffer
Add an extra buffer to each stage that
is filled during the first cycle of a stall.

B

— Mux

y

nt_read

Full
s ~ Validb validd
l—/

validu

readyb _<
readyu
<_y_<l: readyd

|

What is the logic equation for
“next_full”? “next_buf”?

“mux_sel”?

N

1 Mux
H /
>
O
©
o
Full _ = |
id I s ~ Validb validd
validu >
readyb _(— |

readyu
<_y_‘<i: readyd

Double Buffering

readyR; <p_rR\2_ rR; <pﬁrR3 rRs ‘pﬁrRA_ readyR,
4—< -
<_ersl A <_ersz <_|rRs3
dR dR
dataR, 51 |b» 2 = 3 3 |» dR,
N A A
valid __ VRaly) Rl y—\vr, [T Rl —\vr, VRe
N L N — I
(a)
g’ev_readyi
int_readyR,;
readyR; - .
(=
prev_readyi,,
‘1o RegB
dRiy, validR;, 0 dR, validR.
o RegA ' >
A ux
1
A

EDA322 Digital design, 2017-
2018, Lecture 16

. Sourdis, CSE, Chalmers

34

Double Buffer Timing

Time
0 1 . : - 5
1| A i ¢ °
% 5 A B C 1
by : A C,;Ti?
- A“
. W XA A

EDA322 Digital design, 2017- . Sourdis, CSE, Chalmers

2018, Lecture 16

36

Double Buffer Timing

Time
-
0 2 3 4 5
A c [o [e ettt
& D oA|lD
80 F T 0
N N
A SNE cAlB A B
SIA S TJA T
PrevReady=1
Cycle 2 prev_ready,
Ready=1
— int_readyR;
P
prev_ready;,;
X
: RegB
C dR;., validR;, 0 ReBA dRi, validRi>
A Mux g
1
A
EDA322 Digital design, 2017- Stage'z regiﬁgﬁﬁﬁs, CSE, Chalmers 37

2018, Lecture 16

Double Buffer Timing

Time
-
0 i § Z 3 4 5 6
1 A B C c T E- = TIE =3
. AD -
¥ 2 A B ETHetEi D
)
3 AT i 8 | c
PrevReady=1
Cycle 3 prev_ready,
Ready=0
— int_readyR;
EE
prev_ready;,;
X
: RegB s
D dR;., validR;, 0 R(e:A dRi, validRi>
A Mux g
1
A
EDA322 Digital design, 2017- Stage'z regiﬁgﬁﬁﬁs, CSE, Chalmers 38

2018, Lecture 16

Double Buffer Timing

Time
-
0 1 2 3 4 5 6 7
F w
1 A B - I — F
)
&a
3 C D
Y 4 Xa Xa A B G
PrevReady=0
Cycle 4 prev_ready,
Ready=0

—_— int_readyR,;

P e

prev_ready;,;

D
: RegB
E dRi,, validR;, 0 RC dRi, validRi
Mux egA >
A
1
A
EDA322 Digital design, 2017- Stage'z regiﬁgﬁﬁﬁs, CSE, Chalmers 39

2018, Lecture 16

Double Buffer Timing

Time
0 1 2 3 4 5 6

1 A B € D |E T

" D
gl 2 A B |C ‘ET =L
i 3 A HT B cn" B 0
SHA S TTA *

PrevReady=0
Cycle 5 prev_ready,
Ready=1
int_readyR,;
readyR; D —
4{ P
prev_ready;,;
D
E dRy, validR;; HeES 0 c dR, validR
Mux RegA - >
A
i |
A

EDA322 Digital design, 2017- Stage'z reg'ﬁ;&Fﬁs CSE, Chalmers
2018, Lecture 16 ' S

Double Buffer Timing

Time
B
0 2 3 4 5
A c | o [e zHEeHET
Q D A D —
§o B C cﬁT C T C ©
3 R [
PrevReady=1
Cycle 6 prev_ready,
Ready=1
int_readyR,;
readyR; D —
4{ P
prev_ready;,;
D
: RegB
E dRiy validRi, 0 RDA dR, validR,
A Mux €€ >
1
A
EDA322 Digital design, 2017- Stage-2 regiﬁggj;as, CSE, Chalmers 41

2018, Lecture 16

Double Buffer Timing

Time
B
0 2 3 4 5
A ¢ D |E ‘ET E T
Q D A D —
ép B & cﬁT C T C ©
3 A uT ",_3\ C-i? i ':!- B s D
v 4 XA XA A B C
PrevReady=1
Cycle 7 prev_ready,
Ready=1
int_readyR,;
readyR; D R—
4< P
prev_ready;,;
D
: RegB
F dRi4, validR; 4 0 REA dR, validR,
A Mux €8 N
1
A
EDA322 Digital design, 2017- Stage-2 regiﬁggj;gs’ CSE, Chalmers 42

2018, Lecture 16

Pipeline overview

Divide large problem into stages assembly-line style

Divide evenly or load imbalance will occur

— Fix by splitting or copying bottleneck stage
Variable load results in stalls and idle cycles on a rigid
pipeline

— Make pipeline elastic by adding FIFOs between key stages
Rigid pipelines have no extra storage between stages

— A stall on any stage halts all upstream stages

— Hard to stop 100 stages at once
* Make this scalable with double-buffering

Quiz- 18-1
http://m.socrative.com/student/#joinRoom
room number: 713113

* |f washing takes 30 min, drying takes 2 hours and ironing takes 1 hour, how
fast can you prepare 3 portions of cloths if | pipeline?

a. 7.5h
b. 45h
c. 10h
d. 10.5h
* Answer: 30min~ +2h +2h +2h +1h =7.5h

A A A | |
I | IR | | I | | I | | I | 1

N0
colored ' O —
whites .

O
(i)
sweaters . Ol =

EDA322 Digital design, .
2017-2018, Lecture 16 . Sourdis, CSE, Chalmers

44

Summary

* Pipelining * Reading:
* Latency & Throughput — Chapter 23
* Examples * Next Lecture:

— Ripple carry adder — Timing, Delay, Power

— Microprocessor
— Graphics
— Network processing

* Load balancing
* Stalling

EDA322 Digital design, 2017-

2018, Lecture 16 l. Sourdis, CSE, Chalmers

45

