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Outline of Lecture 19

• Introduction to asynchronous circuits

• Analysis and synthesis of asynchronous circuits

• Race conditions and state assignment 

• State minimization

• Asynchronous design example

• Hazards
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Asynchronous Sequential Circuits 

• A type of circuit has state that is not synchronized 
with a clock (therefore NO flip-flops)

• They are realized by adding a feedback to the 
combinational logic that implements the next state

• State variables may change at any point in time
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Asynchronous Sequential Circuits 

• Should worry about 
– Hazards: glitches in the combinational logic may cause 

going to wrong state), and 
– Races between state bits: more than one state bits 

changing in a random order may cause going to the wrong 
state
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Definitions important for 
asynchronous circuits 

• Stability:
For a given set of inputs (i.e., values), the system is stable if the 
circuit eventually reaches steady state and the current and 
next state are equal and unchanging (secondary variables y = 
excitation variables Y), otherwise the circuit is unstable. 

• Fundamental Mode Restriction:
A circuit is operating in fundamental mode if we assume/force 
the following restrictions on how the inputs can change: 
– Only one input is allowed to change at a time,  
– The input changes only after the circuit is stable. 
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Analysis of asynchronous circuits



Example of an asynchronous circuit 
• Consider the following circuit that has combinatorial feedback 

paths (and is therefore identified as asynchronous). No 
apparent latches in the circuit: 

• Circuit has one input (x), one output (z), two current state 
variables (y1, y2) and two next state variables (Y1, Y2). 
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Example&of&an&asynchronous&circuit&

�   Consider&the&following&circuit&that&has&combinatorial&feedback&paths&(and&is&therefore&

iden<fied&as&asynchronous).&&No&apparent&latches&in&the&circuit:&

x z
Y1

Y2

y1

y2

�   Circuit&has&one&input&(x),&one&output&(z),&two&secondary&variables&(y1,&y2)&and&two&
excita<on&variables&(Y1,&Y2).&

Feedback path is 
one in which an 
output feeds back 
to its own input (it 
creates a “loop” in 
the circuit through 
combinational 
logic) 



Analysis (writing logic equations) 
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Example&of&an&asynchronous&circuit&

�   Consider&the&following&circuit&that&has&combinatorial&feedback&paths&(and&is&therefore&

iden<fied&as&asynchronous).&&No&apparent&latches&in&the&circuit:&

x z
Y1

Y2

y1

y2

�   Circuit&has&one&input&(x),&one&output&(z),&two&secondary&variables&(y1,&y2)&and&two&
excita<on&variables&(Y1,&Y2).&

Feedback path is 
one in which an 
output feeds back 
to its own input (it 
creates a “loop” in 
the circuit through 
combinational 
logic) 

• Write logic equations for the next 
state in terms of the circuit inputs 
and current state: 

• Write logic equations for circuit 
outputs in terms of the circuit 
inputs and current state: 
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Analysis&(wri<ng&logic&equa<ons)&

�   Write&logic&equa<ons&for&the&excita<on&variables&in&terms&of&the&circuit&inputs&and&
secondary&variables:&

�   Write&logic&equa<ons&for&circuit&outputs&in&terms&of&the&circuit&inputs&and&secondary&
variables:&
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Analysis&(wri<ng&logic&equa<ons)&

�   Write&logic&equa<ons&for&the&excita<on&variables&in&terms&of&the&circuit&inputs&and&
secondary&variables:&

�   Write&logic&equa<ons&for&circuit&outputs&in&terms&of&the&circuit&inputs&and&secondary&
variables:&
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Analysis&(transi<on&table)&

�   Using&these&equa<ons,&we&can&write&a&transi;on'table&that&shows&excita<on&variables&
and&outputs&as&a&func<on&of&inputs&and&secondary&variables:&

�   Note'that'stable'states'(secondary'variables'equal'to'excita;on'variables)'are'circled.'

curr state next state

00

01

10

11

x=0 x=1

Y2Y1 Y2Y1y2y1

00

00

11

11

10

01

10

01

output

x=0 x=1

z z

0

0

1

0

0

0

1

0

Analysis (transition table) 
• Using these equations, we can write a transition table that 

shows next state (Y1, Y2) and outputs (z) as a function of inputs 
(x) and current state (y1, y2): 

• Note that stable states (current state “y” equal to next state 
“Y”) are circled.  
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Analysis (flow table) 
• We can also create a flow table, which is just the transition 

table with binary numbers replaced with symbols (e.g., let a = 
00, b = 01, c = 10 and d = 11): 

• We could proceed to draw something like a state diagram from 
this information, if we choose... 
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Analysis&(flow&table)&

�   We&can&also&create&a&flow'table,&which&is&just&the&transi<on&table&with&binary&numbers&
replaced&with&symbols&(e.g.,&let&a'='00,'b'='01,'c'='10'and'd'='11):&

�   We&could&proceed&to&draw&something&like&a&state&diagram&from&this&informa<on,&if&we&
choose…&

curr state next state

a

b

c

d

x=0 x=1

Y2Y1 Y2Y1y2y1

a

a

d

d

c

b

c

b

output

x=0 x=1

z z

0

0

1

0

0

0

1

0



Primitive flow table 
• Flow table with only one stable state per row is called a 

primitive flow table. 
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Primi<ve&flow&table&

�   Flow&table&with&only&one'stable'state'per'row'is'called'a'primi;ve'flow'table.&

a

b

c

d

a

c

c

a

b

b

d

d

0 1

x

a

b a

b

a

00 01

x1x2

11 10

a a a

b b

Primitive Not primitive 
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Primi<ve&flow&table&

�   Flow&table&with&only&one'stable'state'per'row'is'called'a'primi;ve'flow'table.&

a

b

c

d

a

c

c

a

b

b

d

d

0 1

x

a

b a

b

a

00 01

x1x2

11 10

a a a

b b

Primitive Not primitive 



Flow-Table analysis

• Break the feedback path (fig. b)

• Write the equations of the next state (Y) as a function of 

current state (y) and inputs

• Make a flow table

• When multiple bits of the state are changing at the same time 

(at different order) it can cause a condition called race. The 

circuit may not reach a steady state and may oscillate 

indefinitely.
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Another analysis 
example
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Yy

Break 
the 
feedback 
loop

Make the flow table

When next state is the same as the current
state it is a stable state and is circled
Otherwise it is an unstable or transient state

A circle with transient 
states would cause 
an oscillation. 

Hardly ever desired
e.g. ab=11



Summary of analysis 

• Procedure to determine transition table and/or flow 
table from a circuit with combinatorial feedback paths: 
– Identify feedback paths. 
– Label Y (next state variables) at output and y (current state 

variables at input). 
– Derive logic expressions for Y (next state variables) in terms 

of circuit inputs and current state variables. Do the same for 
circuit outputs. 

– Create a transition table and flow table. 
– Circle stable states where Y (next state variables) are equal 

to y (current variables). 
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Revising latches 

• Latches are simply asynchronous circuits. We 
can use the previous analysis technique to see 
how latches work. 
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Analysis&of&an&SR&latch&(1)&

�   We&can&analyze&an&SR&latch&using&the&previous&technique:&

Y
R

S

y

Q

�   Equa<ons&derived&for&secondary&variable&(same&equa<on&for&output):&

�   Since&we&want&to&avoid&the&SR=11&situa<on,&we&can&write:&

Analysis of an SR latch (1) 

• Equations derived for secondary 
variable (same equation for output): 

• Since we want to avoid the SR=11 
situation, we can write: 
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�   Since&we&want&to&avoid&the&SR=11&situa<on,&we&can&write:&

• We can analyze an SR latch using the previous technique 
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Analysis&of&an&SR&latch&(1)&

�   We&can&analyze&an&SR&latch&using&the&previous&technique:&

Y
R

S

y

Q

�   Equa<ons&derived&for&secondary&variable&(same&equa<on&for&output):&

�   Since&we&want&to&avoid&the&SR=11&situa<on,&we&can&write:&

*



Analysis of an SR latch (2) 
• Can derive the transition table and the flow table: 
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Analysis&of&an&SR&latch&(2)&

�   Can&derive&the&transi<on&table&and&the&flow&table:&

SR=00 01 11 10

0

1

y

next statecurr
state output

Y Y Y Y

0

1

0

0

1

1

0

0

0

1

SR=00 01 11 10

a

b

y

next statecurr
state output

Y Y Y Y

a

b

a

a

b

b

a

a

0

1
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Y
R

S

y

Q

�   Equa<ons&derived&for&secondary&variable&(same&equa<on&for&output):&

�   Since&we&want&to&avoid&the&SR=11&situa<on,&we&can&write:&



Analysis of an SR latch (3) 

• Note: We can see the undesirable case when SR=11 and inputs 

change.  

• Depending on the various delays and assuming SR=11 changes 

to SR=00... 

– If SR=11 -> SR=10 -> SR=00, we get stable state with output of 1. 

– If SR=11 -> SR=01 -> SR=00, we get stable state with output of 0. 

• So the stable state is not predictable. 

• Conclusion is that we need to be careful if we (possibly) need 

to transition from one state to another and we (somehow) 

pass through state 11. 
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Race conditions &
State assignment



Race conditions

• when two or more binary state variables 
change value

• 00 ® 11
– 00 ® 10 ® 11 or  00 ® 01 ® 11

• a non-critical race
– if they reach the same final state
– otherwise, a critical state
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Non-critical race
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• Races may be avoided

– race-free state-assignment: only one state-bit can 

change at any one time

– insert intermediate unstable states with a unique 

state-variable change
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Race-Free State Assignment
• To avoid critical races

– only one variable changes at any given time
• Three-row flow-table example

– flow-table and transition diagram example
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• an extra row is added
• no stable state in row d
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Transition Table
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Cycles

A cycle is a unique sequence of unstable states
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Race and state assignment

• Outputs a, b can serve as the two LSbits of the state encoding
• An extra state variable c needed to distinguish between A and C states
• Transition from A (cab=000) to B (110) has 2 state bits changing

– If a changes first go to 010 and then to 110
– If c changes first go to C (100) which then takes it to D

• Racing affects the end state so it is a critical race
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Race and state assignment

• Introduce B1 (010), when input changes to 1: A->B1, B1->B

• Transient state also required for C (100) to D (001)

• Introduce D1 (101)



Race and state 
assignment

a = in*b’*c’ + in*a
b = in*a’*c + in*b
c = a + b’*c 
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• Q1: Find the stable states in 
the following transition table:

• Q2: What is the output of the 
circuit for x1x2=11

1. Logic 1

2. Logic 0

3. Consecutive logic 1s and 0s 

• Q3: Are there race conditions in 
the cases below? If not put (a), if 
there are critical ones put (b) if 
there are only non-critical put (c)
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Quiz 17-1
http://m.socrative.com/student/#joinRoom

room number: 713113

0 1 1 0

0 001

(i) (ii) (iii)

http://m.socrative.com/student/


Stability Considerations

a square-wave generator (x1x2=11)?
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Example of an unstable 
circuit



Synthesis of Asynchronous 
circuits



© Cambridge University Press 2015

Flow-Table Synthesis

• Create a flow table 

from specifications 

of a circuit

• Use flow table to 

synthesize the 

circuit that realizes 

the specification
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© Cambridge University Press 2015

Flow-Table Synthesis

• Partition the 
waveform into 
potential states

• Write down the flow 
table
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© Cambridge University Press 2015

Flow-Table Synthesis

• State assignment: Assign 
binary codes to each 
state

• If two states differ in 
more than one bit, a 
transition between them 
needs to go through a 
transient state with one 
bit change

• Careful for races 
between two state bits Redraw flow table as 

Karnaugh map showing 
the state transitions 

(trajectory map)EDA322 Digital design, 2017-
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Flow-Table Synthesis
• Redraw Karnaugh map 

replacing state symbols 
with their binary codes

• Make separate maps for 
each next state variable 
(S0, S1)

• From Karnaugh derive 
equations:
S0 = s1’*in + s0*in’ + s0*s1’
S1 = s1*in + s0*in’ + s0*s1

• Derive output equations:
a = s1’*s0
b=s1*s0’

Last implicants are put to 
avoid hazards
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State Minimization



State minimization 
in asynchronous circuits 

• Similar to the minimization we did with synchronous 
sequential circuits. 

• Lots of opportunity for state minimization in 
asynchronous flow tables: 
– Lots of don’t care outputs for unstable states (since we 

won’t stay in unstable states too long). 
– Don’t care next state information if we assume 

fundamental mode operation (some transitions will not 
occur). 
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Compatible states 

• With don’t cares, equivalency is replaced with 
compatibility.

• Two states A and B are compatible if, for every input 
combination we find: 
– A and B produce the same outputs wherever specified, AND
– A and B have compatible next states wherever specified. 

• Don’t cares match with anything... 
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Implication chart using compatible 
states (1) 

• Consider the following flow table with some unspecified next 
states and outputs (two inputs, one output, 6 states): 
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Implica9on&chart&using&compa9ble&states&(1)&

�   Consider&the&following&flow&table&with&some&unspecified&next&states&and&outputs&(two&
inputs,&one&output,&6&states):&

-

00 01

a

b

a

inputs (DG)

c

d

c

a

c

c

a

-

curr
state

11 10

e

f

output

-

0

-

-

-

1

b -

f

f

-

- - e

eb

b d

d-

eb

00 01 11 10

-

-

-

-

0

-

1

-

-

-

-

-

-

-

-

-

0

1



Implication chart using compatible 
states (2) 

• Build the implication chart (list states along left and bottom 
side – like lower triangle of a matrix): 

EDA322 Digital design, 2017-
2018, Lecture 19 I. Sourdis, CSE, Chalmers 48ECE124&Digital&Circuits&and&Systems& Page&4&

Implica9on&chart&using&compa9ble&states&(2)&

�   Build&the&implica9on&chart&(list&states&along&leS&and&boTom&side&–&like&lower&triangle&
of&a&matrix):&

b

c

d

e

f

a b c d e

-

00 01

a

b

a

inputs (DG)

c

d

c

a

c

c

a

-

curr
state

11 10

e

f

output

-

0

-

-

-

1

b -

f

f

-

- - e

eb

b d

d-

eb

00 01 11 10

-

-

-

-

0

-

1

-

-

-

-

-

-

-

-

-

0

1



Implication chart using compatible 
states (3) 

• Mark states incompatible due to different outputs with ”x” . 
• Marking definitely compatible states with “v”. 
• Marking possibly compatible states with implied decisions. 
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Implica9on&chart&using&compa9ble&states&(3)&

�   Mark&states&incompa9ble&due&to&different&outputs&with&�x�.&

�   Marking&definitely&compa9ble&states&with&�v�.&

�   Marking&possibly&compa9ble&states&with&implied&decisions.&&

b

c

d

e

f

a b c d e

(c,f)

(c,f)

(d,e)

(d,e)

(c,f)
(d,e)

(c,f)
(d,e)

-

00 01

a

b

a

inputs (DG)

c

d

c

a

c

c

a

-

curr
state

11 10

e

f

output

-

0

-

-

-

1

b -

f

f

-

- - e

eb

b d

d-

eb

00 01 11 10

-

-

-

-

0

-

1

-

-

-

-

-

-

-

-

-

0

1



Implication chart using compatible 
states (4) 

• Scan columns again and again, checking implied decisions to 
remove compatibilities... 
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Implica9on&chart&using&compa9ble&states&(4)&

�   Scan&columns&again&and&again,&checking&implied&decisions&to&remove&compa9bili9es…&

b

c

d

e

f

a b c d e

(c,f)

(c,f)

(d,e)

(d,e)

(c,f)
(d,e)

(c,f)
(d,e)

-

00 01

a

b

a

inputs (DG)

c

d

c

a

c

c

a

-

curr
state

11 10

e

f

output

-

0

-

-

-

1

b -

f

f

-

- - e
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b d

d-

eb

00 01 11 10

-

-

-

-

0

-

1

-

-

-

-

-

-

-

-

-

0
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Merger diagram with compatible 
states (1) 

• Squares with any x are not compatible; those with all “v” are 
compatible (possibly under implications). 

• Draw Merger Diagram: 
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Merger&diagram&with&compa9ble&states&(1)&

�   Squares&with&any&�x�&are&not&compa9ble;&those&with&all&�v�&are&compa9ble&(possibly&
under&implica9ons).&

�   Draw&the&Merger&Diagram:&

a

b

c

d

e

f



Merger diagram with compatible 

states (2) 
• We now look for large cliques in the graph (clique is part of the 

graph in which every node is connected to every other node)...

• We can now merge states (a,c,d) and (b,e,f). We have reduced 

6 states down to 2 states by merging. 
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Merger&diagram&with&compa9ble&states&(2)&

�   We&now&look&for&large&cliques&in&the&graph&(clique&is&part&of&the&graph&in&which&every&
node&is&connected&to&every&other&node)…&

a

b

c

d

e

f

�   We&can&now&merge&states&(a,c,d)&and&(b,e,f).&&We&have&reduced&6&states&down&to&2&

states&by&merging.&

a

b

c

d

e

f



Final Result

• We can now merge states (a,c,d) and (b,e,f). We have reduced 

6 states down to 2 states by merging. 

• Note that we still have some unspecified values in the flow 

table (which is no longer a primitive flow table). 
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Final&result&

�   Our&final&result&is:&
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c
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-
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-
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f
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-
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-
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-
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b

00 01

a

b

a

inputs (DG)

c

a

curr
state

11 10

output

0

1

b b

bb

00 01 11 10

-

0

1

- 0

1

�   Note&that&we&s9ll&have&some&unspecified&values&in&the&flow&table&(which&is&no&longer&a&

primi9ve&flow&table).&

a



Important!!! 

• Reminders: 
– We need to check that each state is included at least once. 
– We need to make sure that any implied compatibilities are 

true... 

• For our solution... 
– (a,c,d) and (b,e,f) all states are included. 
– Implied compatibilities are true. In particular, (a,c,d) and 

(b,e,f) requires no implied compatibilities. 
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Revisiting the merger diagram (1) 

• Useful to illustrate an example where we need to be careful 

about mergings in the Merger Diagram. 

• Consider the following implication chart and its merger 

diagram: 

EDA322 Digital design, 2017-

2018, Lecture 19
I. Sourdis, CSE, Chalmers 55

ECE124&Digital&Circuits&and&Systems& Page&11&

Revisi9ng&the&merger&diagram&(1)&

�   Useful&to&illustrate&an&example&where&we&need&to&be&careful&about&mergings&in&the&
Merger&Diagram.&

�   Consider&the&following&implica9on&chart&and&its&merger&diagram:&

b

c

d

e

a b c d

(b,c)

(d,e)

(b,c) (a,d)

(b,c)

a

b

cd

e
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Revisi9ng&the&merger&diagram&(1)&

�   Useful&to&illustrate&an&example&where&we&need&to&be&careful&about&mergings&in&the&
Merger&Diagram.&

�   Consider&the&following&implica9on&chart&and&its&merger&diagram:&

b

c

d

e

a b c d

(b,c)

(d,e)

(b,c) (a,d)

(b,c)

a

b

cd

e

�



Revisiting the merger diagram (2) 

• Say we consider the merging (a,b) and (c,d,e)... 

– For (a,b), (d,e) we require that (b,c) get merged. 

– For (c,d) we require that (a,d) get merged. 

• The implied compatibilities do not hold given our selected 

merging, so our merging is BAD (i.e., wrong). 
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Revisi9ng&the&merger&diagram&(2)&

�   Say&we&consider&the&merging&(a,b)&and&(c,d,e)…&

!  For&(a,b),&(d,e)&we&require&that&(b,c)&get&merged.&
!  For&(c,d)&we&require&that&(a,d)&get&merged.&

�   The&implied&compa9bili9es&do&not&hold&given&our&selected&merging,&so&our&merging&is&
BAD&(i.e.,&wrong).&

b

c

d

e

a b c d

(b,c)

(d,e)

(b,c) (a,d)

(b,c)

a

b

cd

e
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Revisi9ng&the&merger&diagram&(2)&

�   Say&we&consider&the&merging&(a,b)&and&(c,d,e)…&

!  For&(a,b),&(d,e)&we&require&that&(b,c)&get&merged.&
!  For&(c,d)&we&require&that&(a,d)&get&merged.&

�   The&implied&compa9bili9es&do&not&hold&given&our&selected&merging,&so&our&merging&is&
BAD&(i.e.,&wrong).&

b

c

d

e

a b c d

(b,c)

(d,e)

(b,c) (a,d)

(b,c)

a

b

cd

e

�



Revisiting the merger diagram (3) 

• Say we consider (a,d), (b,c), (c,d,e)... 
• The implied compatibilities do hold given our selected 

merging, so our merging is GOOD (i.e., right). 
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Revisi9ng&the&merger&diagram&(3)&

�   Say&we&consider&(a,d),&(b,c),&(c,d,e)…&

&

�   The&implied&compa9bili9es&do&hold&given&our&selected&merging,&so&our&merging&is&

GOOD&(i.e.,&right).&

b

c

d

e

a b c d

(b,c)

(d,e)

(b,c) (a,d)

(b,c)

a

b

cd

e

�



Asynchronous synthesis example 



Asynchronous design example 

• Consider a circuit with two inputs, D and G and one output, Q. 
Output Q follows D with G=1, otherwise Q holds its value. 
– Assume fundamental mode operation – only one input changes at a time. 
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Asynchronous&design&example&

�   Consider&a&circuit&with&two&inputs,&D&and&G&and&one&output,&Q.&&Output&Q&follows&D&
with&G=1,&otherwise&Q&holds&its&value.&

!  Assume&fundamental&mode&opera<on&–&only&one&input&changes&at&a&<me.'

1



Asynchronous design example 
(primitive flow table) 

• Note: Outputs depend only on one state (Moore-like):

• Note: Some unspecified entries due to the fundamental mode 
assumption (e.g., in state a, DG=01, so we never go from 
DG=01 -> DG=10)... 
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Asynchronous&design&example&(primi<ve&flow&table)&

�   Note:&Outputs&depend&only&one&state&(MooreZlike):&

curr
state

next state

DG=00 DG=01

a

b

c

d

c

-

c

c

a

a

a

-

DG=10 DG=11

-

e

d

d

b

b

-

b

e f - e b

f f a e -

output
Q

0

1

0

0

1

1

�   Note:&Some&unspecified&entries&due&to&the&fundamental&mode&assump<on&(e.g.,&in&state&
a,&DG=01,&so&we&never&go&from&DG=01&Z>&DG=10)…&



Asynchronous design example 
(reduced flow table) 
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Implica9on&chart&using&compa9ble&states&(2)&

�   Build&the&implica9on&chart&(list&states&along&leS&and&boTom&side&–&like&lower&triangle&
of&a&matrix):&

b

c

d

e

f

a b c d e

-

00 01

a

b

a

inputs (DG)

c

d

c

a

c

c

a

-

curr
state

11 10

e

f

output

-

0

-

-

-

1

b -

f

f

-

- - e

eb

b d

d-

eb

00 01 11 10

-

-

-

-

0

-

1

-

-

-

-

-

-

-

-

-

0

1
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Asynchronous&design&example&(reduced&flow&table)&

�   For&the&moment,&assume&that&the&following&flow&table&will&also&work&for&the&verbal&
problem&descrip<on&–&assume&(a,c,d)&and&(b,e,f)&can&be&merged.&

�   Original&flow&table:&
curr
state

next state

DG=00 DG=01

a

b

c

d

c

-

c

c

a

a

a

-

DG=10 DG=11

-

e

d

d

b

b

-

b

e f - e b

f f a e -

output
Q

0

1

0

0

1

1

curr
state

next state

DG=00 DG=01

a

b

a

b

a

a

DG=10 DG=11

a

b

b

b

output
Q

0

1

�   Reduced&flow&table:&

v
X

X
X

X
X
X
X X
X

v v
v
v v



Asynchronous design example 
(reduced flow table) 

• Reduced flow table:
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Implica9on&chart&using&compa9ble&states&(2)&

�   Build&the&implica9on&chart&(list&states&along&leS&and&boTom&side&–&like&lower&triangle&
of&a&matrix):&

b

c

d

e

f

a b c d e

-

00 01

a

b

a

inputs (DG)

c

d

c

a

c

c

a

-

curr
state

11 10

e

f

output

-

0

-

-

-

1

b -

f

f

-

- - e

eb

b d

d-

eb

00 01 11 10

-

-

-

-

0

-

1

-

-

-

-

-

-

-

-

-

0

1
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Asynchronous&design&example&(reduced&flow&table)&

�   For&the&moment,&assume&that&the&following&flow&table&will&also&work&for&the&verbal&
problem&descrip<on&–&assume&(a,c,d)&and&(b,e,f)&can&be&merged.&

�   Original&flow&table:&
curr
state

next state

DG=00 DG=01

a

b

c

d

c

-

c

c

a

a

a

-

DG=10 DG=11

-

e

d

d

b

b

-

b

e f - e b

f f a e -

output
Q

0

1

0

0

1

1

curr
state

next state

DG=00 DG=01

a

b

a

b

a

a

DG=10 DG=11

a

b

b

b

output
Q

0

1

�   Reduced&flow&table:& a, c, d can be merged
b, e, f, can be merged
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Asynchronous&design&example&(reduced&flow&table)&

�   For&the&moment,&assume&that&the&following&flow&table&will&also&work&for&the&verbal&
problem&descrip<on&–&assume&(a,c,d)&and&(b,e,f)&can&be&merged.&

�   Original&flow&table:&
curr
state

next state

DG=00 DG=01

a

b

c

d

c

-

c

c

a

a

a

-

DG=10 DG=11

-

e

d

d

b

b

-

b

e f - e b

f f a e -

output
Q

0

1

0

0

1

1

curr
state

next state

DG=00 DG=01

a

b

a

b

a

a

DG=10 DG=11

a

b

b

b

output
Q

0

1

�   Reduced&flow&table:&

v
X

X
X

X
X

X
X X

X
v v

v
v v



Asynchronous design example (state 
assignment and transition table) 

• We only have two states, so we can let a=0, and b=1. 
• Our transition table becomes: 
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Asynchronous&design&example&(state&assignment&and&

transi<on&table)&

�   We&only&have&two&states,&so&we&can&let&a=0,&and&b=1.&

�   Our&transi<on&table&becomes:&

curr state
(y)

next state (Y)

DG=00 DG=01

0

1

0

1

0

0

DG=10 DG=11

0

1

1

1

output
Q

0

1



Asynchronous design example 
(logic equations) 

• We can make K-Maps to determine excitation variables (Y) and 
output (Z) in terms of circuit inputs and secondary variables (y): 

• Output equal to the secondary (state) variable. 
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Asynchronous&design&example&(logic&equa<ons)&

�   We&can&make&KZMaps&to&determine&excita<on&variables&(Y)&and&output&(Z)&in&terms&of&
circuit&inputs&and&secondary&variables&(y):&

DG

00 01 11 10

0

1

y

0

1

0

0

0

1

1

1

�   Output&equal&to&the&secondary&(state)&variable.&



Asynchronous design example 

(circuit) 

• Can finally draw the circuit: 
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Asynchronous&design&example&(circuit)&

�   Can&finally&draw&the&circuit:&

D

G

y

Y
Q

Y = DG +G’y



Hazards



67

Hazards
• A hazard is a momentary unwanted switching transient at a 

logic function’s output (i.e., a glitch). 
• Hazards/glitches occur due to unequal propagation delays 

along different paths in a combinational circuit. 
• Can take steps to try and eliminate hazards. 
• There are two types of hazards; static and dynamic. 
• For asynchronous circuits in particular, hazards can cause 

problems in addition to other issues like races and non-
fundamental mode operation! 
– Momentary false logic function values in an asynchronous circuit can 

cause a transition to an incorrect stable state! 
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Static hazards 

• Static-0 Hazard:
– Occurs when output is 0 and should remain at 0, but temporarily 

switches to a 1 due to a change in an input. 

• Static-1 Hazard: 
– Occurs when output is 1 and should remain at 1, but temporarily 

switches to a 0 due to a change in an input. 
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Sta?c&hazards&

�   Sta?cL0&Hazard:&

!  Occurs&when&output&is&0&and&should&remain&at&0,&but&temporarily&switches&to&a&1&
due&to&a&change&in&an&input.&&

�   Sta?cL1&Hazard:&

!  Occurs&when&output&is&1&and&should&remain&at&1,&but&temporarily&switches&to&a&0&
due&to&a&change&in&an&input.&

0

1

static-0 hazard (0->0)

0

1

static-1 hazard (1->1)



Dynamic Hazards

• Dynamic Hazard:
– Occurs when an input changes, and a circuit output 

should change 0 -> 1 or 1 -> 0, but temporarily flips 
between values. 
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Dynamic&hazards&

0

1

dynamic hazard (1->0)

0

1

dynamic hazard (0->1)

�   Dynamic&Hazard:&

!  Occurs&when&an&input&changes,&and&a&circuit&output&should&change&0.9>.1.or.1.9>.
0,.but&temporarily&flips&between&values.&



Illustration
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Illustra?on&

�   Consider&the&following&circuit&with&
delays&where&only&one&input&(input&
b)&changes…&

�   Draw&a&?ming&diagram&to&see&what&
happens&at&output&with&delays.&

�   From&the&logic&expression,&we&see&
that&b&changing&should&result&in&the&
output&remaining&at&logic&level&1…&

�   Due&to&delay,&the&output&goes&1L>0L
>1&and&this&is&an&output&glitch;&we.
see.a.sta,c91.hazard..

a
b

c

INV

AND1

AND2

f=ab+b'c1

1

1

1

1

1

1->0
0->1

1->0

0->1
1->???

b

INV

AND1

AND2

f

OUTPUT GLITCH!!!

• Consider the following circuit 
with delays where only one input 
(input b) changes... 

• Draw a timing diagram to see 
what happens at output with 
delays. 

• From the logic expression, we 
see that b changing should result 
in the output remaining at logic 
level 1... 

• Due to delay, the output goes 1-
>0- >1 and this is an output 
glitch; we see a static-1 hazard. 



Fixing hazards (2-level circuits) (1) 
• When circuits are implemented as 2-level SOP (2-level POS), we can detect 

and remove hazards by inspecting the K-Map and adding redundant 
product (sum) terms. 

• Observe that when input b changes from 1->0 (as in the previous timing 
diagram), that we “jump” from one product term to another product term. 
– If adjacent minterms are not covered by the same product term, then 

a HAZARD EXISTS!!! 
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Fixing&hazards&(2Llevel&circuits)&(1)&

�   When&circuits&are&implemented&as&29level.SOP.(29level.POS),&we&can&detect&and&
remove&hazards&by&inspec?ng&the&KLMap&and&adding*redundant*product*(sum)*terms.&

00 01 11 10

0

1

0

0

1

1

0

1

0

1

f=ab+b'c

a

bc

�   Observe&that&when&input&b&changes&from&1L>0&(as&in&the&previous&?ming&diagram),&that&
we&�jump�&from&one&product&term&to&another&product&term.&
!  If*adjacent*minterms*are*not*covered*by*the*same*product*term,*then*a*HAZARD*

EXISTS!!!*



Fixing hazards (2-level circuits) (2) 

• The extra product term does not include the changing input 
variable, and therefore serves to prevent possible momentary 
output glitches due to this variable. 
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Fixing&hazards&(2Llevel&circuits)&(1)&

00 01 11 10

0

1

0

0

1

1

0

1

0

1

f=ab+b'c + ac

a

bc

�   The&extra&product&term&does&not&include&the&changing&input&variable,&and&therefore&
serves&to&prevent&possible&momentary&output&glitches&due&to&this&variable.&



Fixing hazards (2-level circuits) (3) 

• The redundant product term is not influenced by the changing 
input. 
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Fixing&hazards&(2Llevel&circuits)&(3)&

�   The&redundant&product&term&is&not&influenced&by&the&changing&input.&

a
b

c

INV

AND1

AND2

f=ab+b'c+ac

1

1

1->0

1->1

1->1

AND3



Fixing hazards (2-level circuits) (4) 

• For 2-level circuits, if we remove all static-1 hazards using the 
K-Map (adding redundant product terms), we are guaranteed 
that there will be no static-0 hazards or dynamic hazards. 

• If we work with Product-Of-Sums, we might find static-0 
hazards when moving from one sum term to another sum 
term. We can remove these hazards by adding redundant sum-
terms. 
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Hazards in asynchronous circuits 

• Consider our first circuit with a hazard, but assume it is not 
combinatorial, but rather asynchronous. 

• We can draw the transition table, and see that there is the 
potential to end up in an incorrect stable state. 
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Hazards&in&asynchronous&circuits&

�   Consider&our&first&circuit&with&a&hazard,&but&assume&it&is&not&combinatorial,&but&rather&
asynchronous.&

�   We&can&draw&the&transi?on&table,&and&see&that&there&is&the&poten?al&to&end&up&in&an&
incorrect&stable&state.&

a
b

Y=ab+b'y

1

1->0

y

1->0

ab=00 01 11 10

0

1

y

next statecurr
state output

Y Y Y Y

0

1

0

1

1

1

0

0

0

1



Hazards in multi-level circuits (1) 

• 2-level circuits are easy to deal with and hazards can be 
removed…

• The situation is harder with multi-level circuits in which there 
are multiple paths from an input to an output: 
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Hazards&in&mul?Llevel&circuits&(1)&

�   2Llevel&circuits&are&easy&to&deal&with&and&hazards&can&be&removed…&

�   The&situa?on&is&harder&with&mul?Llevel&circuits&in&which&there&are&mul?ple&paths&from&
an&input&to&an&output:&

a

b

c

d

w

x

y

z

f

1

0->1

1

1

1->0

1->0->1

0->1
1->0

0->1->0->1

1

1

1

1

1



Hazards in multi-level circuits (2) 

• Timing diagram shows output changing 0->1->0->1. 

• Hazards like this are hard to fix. We could always find a 2-level 

version of the previous circuit and get something hazard free... 
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Hazards&in&mul?Llevel&circuits&(2)&

�   Timing&diagram&shows&output&changing&0L>1L>0L>1.&

�   Hazards&like&this&are&hard&to&fix.&&We&could&always&find&a&2Llevel&circuit&of&the&previous&
circuit&and&get&something&hazard&free…&

a

w

x

y

z

f
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Hazards&in&mul?Llevel&circuits&(1)&

�   2Llevel&circuits&are&easy&to&deal&with&and&hazards&can&be&removed…&

�   The&situa?on&is&harder&with&mul?Llevel&circuits&in&which&there&are&mul?ple&paths&from&
an&input&to&an&output:&

a

b

c

d

w

x

y

z

f

1

0->1

1

1

1->0

1->0->1

0->1
1->0

0->1->0->1

1

1

1

1

1



Fixing hazards with latches
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• Can also fix hazards using SR (with NOR gates) or S’R’ (with 
NAND gates) Latches
– An SR Latch can tolerate momentary 0s appearing at its inputs (since we 

might momentarily move from a set or reset to a hold and then back).
– An S’R’ Latch can tolerate momentary 1s appearing at its inputs (since we 

might momentarily move from a set or reset to a hold and then back)
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Fixing&hazards&with&latches&(1)&

�   Can&also&fix&hazards&using&SR&or&S�R�&latches.&
!  An&SR&Latch&can&tolerate&momentary&0s&appearing&at&its&inputs&(since&we&might&momentarily&move&

from&a&set&or&reset&to&a&hold&and&then&back).&
!  An&S�R�&Latch&can&tolerate&momentary&1s&appearing&at&its&inputs&(since&we&might&momentarily&move&

from&a&set&or&reset&to&a&hold&and&then&back):&

Q

!Q

R (reset)

S (set)

Q

!Q

S (set)

R (reset)



Fixing hazards with latches

• Consider our original circuit with a static-1 
hazard (temporary 0 at output): 
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Fixing&hazards&with&latches&(2)&

�   Consider&our&original&circuit&with&a&sta?cL1&hazard&(temporary&0&at&output):&

a
b

c

f=ab+b'c

1

1

1->0 00 01 11 10

0

1

0

0

1

1

0

1

0

1

f=ab+b'c

a

bc



Fixing hazards with latches
• Consider that we take our output f from the output of a latch.
• Since we are trying to fix static-1 hazards we need to be able to tolerate 

momentary 0s at latch inputs => Use a SR Latch (NOR Latch).
• To get the function f from the latch output, we need equations for S and R 

of the latch (so that the latch gets SET when f should be one, otherwise 
RESET). 
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Fixing&hazards&with&latches&(3)&

�   Consider&that&we&take&our&output&f&from&the&output&of&a&latch.&&&

�   Since&we&are&trying&to&fix&sta?cL1&hazards&we&need&to&be&able&to&tolerate&momentary&
0s&at&latch&inputs&=>&Use.a.SR.Latch.(NOR.Latch)..

�   To&get&the&func?on&f&from&the&latch&output,&we&need&equa?ons&for&S&and&R&of&the&
latch&(so&that&the&latch&gets&SET&when&f&should&be&one,&otherwise&RESET).&

00 01 11 10

0

1

0

0

1

1

0

1

0

1

Equation for S

a

bc
00 01 11 10

0

1

1

1

0

0

1

0

1

0

Equation for R

a

bc



Fixing hazards with latches

• Draw a circuit using the latch, and see that 
glitch in output due to the hazard is gone. 
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Fixing&hazards&with&latches&(5)&

�   Draw&a&circuit&using&the&latch,&and&see&that&glitch&in&output&due&to&the&hazard&is&gone.&

a
b

c

S

1

1

1->0 R

0->0

0->0

0->0

1->0

0->1

f

1->1
1->0->1

1->1

0->0



Output assignment in asynchronous 
circuits 

• Flow and transition tables might have unspecified entries for outputs. 
– This might be a result of the fundamental mode assumption. 
– This might be a result of unstable states. 

• Note: we always have output values assigned for stable states!
We should think about what happens with the unspecified outputs... 
– They are, in effect, don’t cares that we can exploit during minimization of the 

output logic equations. 
– But, we might temporarily pass through these values while transitioning from 

one stable state to another stable state. 

• Depending on the output equations that we derive (due to 
minimization of the output equations), we might end up having 
glitches at our circuit outputs. 
– Glitches are bad; they could get fed into another circuit causing problems. They 

also waste power. 
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Avoiding output glitches 
• Consider the following flow table with don’t cares at some outputs (circuit 

has one input and one output): 

• Consider a transition between two stable states due to a change in an input 
value and how it might be best to assign the don’t care value in an unstable 
intermediate state: 
– If both stable states produce a 0 output, make output 0 instead of a don’t care. 
– If both stable states produce a 1 output, make output 1 instead of a don’t care. 
– If stable states produce different outputs, the output can remain a don’t care and be 

used to find a smaller output circuit. 

• This will enable us to avoid output glitches when passing through unstable 
temporary states. 
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Avoiding&output&glitches&

�   Consider&the&following&flow&table&with&don�t&cares&at&some&outputs&(circuit&has&one&

input&and&one&output):&

a

b

c

d

a b

x=0 x=1

c

c

a

b

d

d

x=0 x=1

0 -

0-

1 -

1-

next state outputcurr
state

�   Consider&a&transi?on&between&two&stable&states&due&to&a&change&in&an&input&value&and&

how&it&might&be&best&to&assign&the&don�t&care&value&in&an&unstable&intermediate&state:&

!  If&both&stable&states&produce&a&0&output,&make&output&0&instead&of&a&don�t&care.&
!  If&both&stable&states&produce&a&1&output,&make&output&1&instead&of&a&don�t&care.&
!  If&stable&states&produce&different&outputs,&the&output&can&remain&a&don�t&care&and&

be&used&to&find&a&smaller&output&circuit.&

�   This&will&enable&us&to&avoid&output&glitches&when&passing&through&unstable&temporary&

states.&



Example

• If we consider possible transitions, we see that some of the 
output don’t cares should be changed to 0 or 1 to avoid glitches.

• The above changes will avoid temporary glitches at the outputs 
during transitions where the output should not change. 
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Example&

�   If&we&consider&possible&transi?ons,&we&see&that&some&of&the&output&don�t&cares&
should&be&changed&to&0&or&1&to&avoid&glitches.&

a

b

c

d

a b

x=0 x=1

c

c

a

b

d

d

x=0 x=1

0 -

0-

1 -

1-

next state outputcurr
state

a

b

c

d

a b

x=0 x=1

c

c

a

b

d

d

x=0 x=1

0 0

0-

1 1

1-

next state outputcurr
state

�   The&above&changes&will&avoid&temporary&glitches&at&the&outputs&during&transi?ons&
where&the&output&should&not&change.&



• Q1: Apply state minimization 
to the following table:

how many states remained?

• Q2: find and remove all 
hazards in the following k-
map:
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Quiz 17-2
http://m.socrative.com/student/#joinRoom

room number: 713113

x 1 x 2 x 3 x 4 00 01 11 10

1 

1 1 

1 

00

01

11

10

1 1 

1 
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– the equivalent states
• (a,b), (d,e), (d,g), (e,g)

– the reduced states
• (a,b), (c), (d,e,g), (f)

Q1:
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Q2:

x 1 x 2 x 3 x 4 00 01 11 10

1 

1 1 

1 

00

01

11

10

1 1 

1 

F= x1’x2x3x4’ + x1’ x4 + + x1x2x4

Hazard free F= x1’x2x3 + x1’ x4 + + x2x4



Summary

• Introduction to asynchronous 
circuits

• Analysis and synthesis of 
asynchronous circuits

• Race conditions and state 
assignment 

• State minimization
• Asynchronous design 

example
• Hazards

• This lecture is related to 
Chapter 26 and to 6.10

• Next Lecture:
– Wrapup lecture
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Summary of analysis when latches 
are present 

• Procedure: 
– Label each latch output with Yj and its feedback path with yj. 
– Derive logic equations for latch inputs Sj and Rj. 
– Check of SR=0 for NOR Latches and S’R’=0 for NAND Latches. 

If not satisfied, the circuit may not work correctly. 
– Create logic equations for latch outputs Yj using the known 

behavior of a latch (Y=S+R’y for NOR Latches and Y=S’+Ry for 
NAND Latches). 

– Construct a transition table using the logic equations for the 
latch outputs and circuit stable states. 

– Obtain a flow table, if desired. 
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Analysis of Asynchronous circuits

• We identify asynchronous circuits by (1) the presence of 

latches (un-clocked storage elements) and/or (2) 

combinational feedback paths (loops through logic gates). 

• Analysis involves obtaining a table or diagram that describes 
the sequence of internal states and outputs as a function of 
changes in the circuit inputs. 

• The tables we will try to obtain are transition tables and flow 
tables (more or less the same thing as a state table in 

synchronous circuit FSM design). We can also use state 

diagrams to describe asynchronous circuits. 
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Design with latches 

• We can also implement asynchronous circuits using 
latches at the outputs.

• Given the map for each excitation variable Y, derive 
necessary equations for S and R of a latch to produce Y.

• Derive Boolean equations for S and R. 
– Need to make sure the S and R are never equal (potential 

problem in Latch). 
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Revising SR latches 
(excitation table) 

• Recall how a SR Latch (NOR) works:

• Assuming we never have the SR=11 case. Can write excitation table: 

EDA322 Digital design, 2017-
2018, Lecture 19 I. Sourdis, CSE, Chalmers 115

ECE124&Digital&Circuits&and&Systems& Page&32&

Revisi<ng&SR&latches&(excita<on&table)&

�   Recall&how&a&SR&Latch&(NOR)&works:&

Q

!Q

R (reset)

S (set)

�   Assuming&we&never&have&the&SR=11&case.&&Can&write&excita;on'table:&

ECE124&Digital&Circuits&and&Systems& Page&32&

Revisi<ng&SR&latches&(excita<on&table)&

�   Recall&how&a&SR&Latch&(NOR)&works:&

Q

!Q

R (reset)

S (set)

�   Assuming&we&never&have&the&SR=11&case.&&Can&write&excita;on'table:&

ECE124&Digital&Circuits&and&Systems& Page&13&

Analysis&of&an&SR&latch&(1)&

�   We&can&analyze&an&SR&latch&using&the&previous&technique:&

Y
R

S

y

Q

�   Equa<ons&derived&for&secondary&variable&(same&equa<on&for&output):&

�   Since&we&want&to&avoid&the&SR=11&situa<on,&we&can&write:&



Revising S’R’ latches 
(excitation table) 

• Recall how a S’R’ Latch (NAND) works:

• Assuming we never have the SR=00 case. Can write excitation table: 
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Revisi<ng&S’R’&latches&(excita<on&table)&

�   Recall&an&S’R’&Latch&(NAND)&works:&

Q

!Q

S (set)

R (reset)

�   Assuming&we&never&have&the&SR=00&case.&&Can&write&excita;on'table:&
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Revisi<ng&S’R’&latches&(excita<on&table)&

�   Recall&an&S’R’&Latch&(NAND)&works:&

Q

!Q

S (set)

R (reset)

�   Assuming&we&never&have&the&SR=00&case.&&Can&write&excita;on'table:&
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Analysis&of&an&S’R’&latch&(1)&

�   We&can&analyze&an&S’R’&latch&using&the&previous&technique:&

�   Equa<ons&derived&for&secondary&variable&(same&equa<on&for&output):&

�   Since&we&want&to&avoid&the&SR=00&situa<on,&we&can&write:&

Y
S

R

y

Q



Implementation using latches 

• Consider our example again, and assume we want to use a S’R’ 
latch: 

• Need to figure out how to select S and R for the NAND Latch 
(while making sure never 0 at same time): 
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Implementa<on&using&latches&

�   Consider&our&example&again,&and&assume&we&want&to&use&a&S’R’&latch:&&
DG

00 01 11 10

0

1

y

0

1

0

0

0

1

1

1

�   Need&to&figure&out&how&to&select&S&and&R&for&the&NAND&Latch&(while&making&sure&never&
0&at&same&<me):&

DG

00 01 11 10

0

1

y

1

X

1

1

1

X

0

X

DG

00 01 11 10

0

1

y

X

1

X

0

X

1

1

1
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Implementa<on&using&latches&

�   Consider&our&example&again,&and&assume&we&want&to&use&a&S’R’&latch:&&
DG

00 01 11 10

0

1

y

0

1

0

0

0

1

1

1

�   Need&to&figure&out&how&to&select&S&and&R&for&the&NAND&Latch&(while&making&sure&never&
0&at&same&<me):&

DG

00 01 11 10

0

1

y

1

X

1

1

1

X

0

X

DG

00 01 11 10

0

1

y

X

1

X

0

X

1

1

1
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Revisi<ng&S’R’&latches&(excita<on&table)&

�   Recall&an&S’R’&Latch&(NAND)&works:&

Q

!Q

S (set)

R (reset)

�   Assuming&we&never&have&the&SR=00&case.&&Can&write&excita;on'table:&



Implementation using latches 
• Can draw the circuit:
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Implementa<on&using&latches&

�   Can&draw&the&circuit:&&

G

D


