EDA322
Digital Design

Lecture 19:
Asynchronous Sequential Logic
loannis Sourdis

Outline of Lecture 19

Introduction to asynchronous circuits

Analysis and synthesis of asynchronous circuits

Race conditions and state assignment

State minimization
Asynchronous design example
Hazards

Disclaimer many slides of this
lecture taken from ECE124 Digital
Circuits and Systems course

Asynchronous Sequential Circuits

e A type of circuit has state that is not synchronized
with a clock (therefore NO flip-flops)

 They are realized by adding a feedback to the
combinational logic that implements the next state

e State variables may change at any point in time

State Current state Next state
Delay
> A B -
Q S (E S
in D ou»t in out
n m n m

(a) (b)

EDA322 Digital design, 2017- . Sourdis, CSE, Chalmers

2018, Lecture 19

Asynchronous Sequential Circuits

e Should worry about

— Hazards: glitches in the combinational logic may cause
going to wrong state), and

— Races between state bits: more than one state bits
changing in a random order may cause going to the wrong
state

State Current state Next state
Delay
> - o S
Q S (E S
in D ou»t in out
n m n m
(a) (b)

EDA322 Digital design, 2017-

2018, Lecture 19 l. Sourdis, CSE, Chalmers

Definitions important for

asynchronous circuits

e Stability:
For a given set of inputs (i.e., values), the system is stable if the
circuit eventually reaches steady state and the current and
next state are equal and unchanging (secondary variables y =
excitation variables Y), otherwise the circuit is unstable.

* Fundamental Mode Restriction:
A circuit is operating in fundamental mode if we assume/force
the following restrictions on how the inputs can change:

— Only one input is allowed to change at a time,
— The input changes only after the circuit is stable.

Analysis of asynchronous circuits

Example of an asynchronous circuit

* Consider the following circuit that has combinatorial feedback
paths (and is therefore identified as asynchronous). No
apparent latches in the circuit:

— TW}Z

Y1

Feedback path is

one in which an
output feeds back y2 @i

to its own input (it

creates a “loop” in V2
the circuit through {\
combinational > ; } I
logic)

e Circuit has one input (x), one output (z), two current state
variables (y1, y2) and two next state variables (Y1, Y2).

Analysis (writing logic equations)

Write logic equations for the next
state in terms of the circuit inputs
and current state:

Y7 rYy1 + TYo

':W} ,

Y1

Yo = Tyo + Y3

Write logic equations tor circuit
outputs in terms of the circuit

Y2

@%

inputs and current state:

zZ = Yi1y»

Analysis (transition table)

* Using these equations, we can write a transition table that
shows next state (Y1, Y2) and outputs (z) as a function of inputs
(x) and current state (y1, y2):

curr state next state output
x=0 x=1 x=0 x=1
y2y1 Y2Y1 Y2Y1

Z Z

00 10 0 0
01 0 0
10 11 1 1
11 1) 01 0 0
oy .n

* Note that stable states (current state “y” equal to next state
“Y”) are circled.

Analysis (flow table)

* We can also create a flow table, which is just the transition
table with binary numbers replaced with symbols (e.g., let a =

00,b=01,c=10and d =11):

curr state next state output
x=0 x=1 x=0 x=1
y2y1 Y2Y1 Y2Y1 Z Z
a @ C 0 0
b a 0 0 0
C d 1 1
d @ b 0 0

 We could proceed to draw something like a state diagram from

this information, if we choose...

Primitive flow table

* Flow table with only one stable state per row is called a
primitive flow table.

X X1x2

01 00|01/[11/]10

@é aaja a b

<:> : b|ala <:><::>
A

a|d)

T

Primitive Not primitive

o QO
(@)

o

EDA322 Digital design, 2017-

2018, Lecture 19 l. Sourdis, CSE, Chalmers

Flow-Table analysis

* Break the feedback path (fig. b)

current state (y) and inputs
 Make a flow table

Write the equations of the next state (Y) as a function of

When multiple bits of the state are changing at the same time

(at different order) it can cause a condition called race. The
circuit may not reach a steady state and may oscillate

Current state

Next state

indefinitely. -
daie
—> ,I
¢ |
in out
n m

. . a)
EDA322 Digital design, 2017- (:
2018, Lecture 19 l. Sourdis, CSE, Chalmers

¢

out

13

Another analysis

00

00

11

01

N

y State

00

example

b

a
A circle with transient ireeak
states would cause

I feedback
an oscillation.
loop

b
Hardly ever desired
e.g. ab=11

Make the flow table

When next state is the same as the current
state it is a stable state and is circled

Otherwise it is an unstable or transient state

EDA322 Digital design, 2017-

2018, Lecture 19 l. Sourdis, CSE, Chalmers

00

11

01

@HJ

gﬁv

out

Next

Y

out

Next
State (55157 T 17170
o @110
1 [(D[@] oo

14

Summary of analysis

* Procedure to determine transition table and/or flow
table from a circuit with combinatorial feedback paths:

— |dentify feedback paths.

— Label Y (next state variables) at output and y (current state
variables at input).

— Derive logic expressions for Y (next state variables) in terms
of circuit inputs and current state variables. Do the same for

circuit outputs.
— Create a transition table and flow table.

— Circle stable states where Y (next state variables) are equal
to y (current variables).

Revising latches

e Latches are simply asynchronous circuits. We
can use the previous analysis technique to see
how latches work.

Analysis of an SR latch (1)

* We can analyze an SR latch using the previous technique

R

1 0
S R o o’
>< 10 10
0 0 1 0 (After SR = 10)
0 1 0 1
0 0 0 1 (After SR = 01)
2 Q' 1 1 0 0
S
(a) Cross-coupled circuit (b) Truth table
* Equations derived for secondary
variable (same equation for output):
s _ _ Y
Y = R+(S+y)=SR+ Ry R) > Q

 Since we want to avoid the SR=11 S
situation, we can write:

y
Y = S+ Ry if SR=0

EDA322 Digital design, 2017- :
2018, Lecture 19 l. Sourdis, CSE, Chalmers 17

Analysis of an SR latch (2)

e (Can derive the transition table and the flow table:

curr curr

next state output next state output
state state
SR=00 01 11 10 SR=00 01 11 10
y Y Y Y Y y Y Y Y Y
0

R Q

|

0 1 0 a b
1 o o@ 1 b a a@

Analysis of an SR latch (3)

Note: We can see the undesirable case when SR=11 and inputs
change.

Depending on the various delays and assuming SR=11 changes
to SR=00...

— |f SR=11 -> SR=10 -> SR=00, we get stable state with output of 1.

— |f SR=11 -> SR=01 -> SR=00, we get stable state with output of O.

So the stable state is not predictable.

Conclusion is that we need to be careful if we (possibly) need
to transition from one state to another and we (somehow)
pass through state 11.

Race conditions &
State assighment

Race conditions

 when two or more binary state variables
change value

e 00 > 11
—00—>10—>110or 00—>01—->11
e a non-critical race

— if they reach the same final state
— otherwise, a critical state

Non-critical race

Yiy2 0 1 Viy2 0 1

00 11 00 11
01 11 01
11 @ 11 01

10 11 10 11
(a) Possible transitions: (b) Possible transitions:
00 — 11 00 — 11 — 01
00 — 01 — 11 00 — 01
00 — 10 — 11 00 — 10 — 11 —> 01

EDA322 Digital design, 2017-

2018, Lecture 19 l. Sourdis, CSE, Chalmers

EDA322 Digital design, 2017-
2018, Lecture 19

Critical race

X X

Yiy2 0 1 Viy2 0 1
00 11 00 11
01 01 11

11 @ 11 @

o o
(a) Possible transitions: (b) Possible transitions:
00 — 11 00 — 11
00 —> 01 00 — 01 — 11
00 — 10 00 — 10

l. Sourdis, CSE, Chalmers

23

Avoiding race conditions

* Races may be avoided

— race-free state-assignment: only one state-bit can
change at any one time

— insert intermediate unstable states with a unique
state-variable change

Race-Free State Assignment

* To avoid critical races
— only one variable changes at any given time

* Three-row flow-table example
— flow-table and transition diagram example

Xl .Xz OO b
, , a =
00 0l 11 10 < -

a@b c
b@@ Y
[E[O[E6

(a) Flow table (b) Transition diagram

01

EDA322 Digital design, 2017-

2018, Lecture 19 l. Sourdis, CSE, Chalmers 25

Race-Free State Assignment

an extra row is added
no stable state in row d

X1X2
00 01 11 10
O []©
| O|®)]
¢ [(D|]©
a — C —

EDA322 Digital design, 2017-
2018, Lecture 19

(a) Flow table

a =00

X1 X2

00 01 11 10

a|(a)| #

bl oo [()|(e)] «

(a) Flow table

b =01
>9

-

d =10

c =11

(b) Transition diagram

l. Sourdis, CSE, Chalmers

26

Transition Table

a = 00

EDA322 Digital design, 2017-
2018, Lecture 19

X1X2
00 01 11 10
o | (1) [()] (1)
00 — 11 —

l. Sourdis, CSE, Chalmers

27

Cycles

A cycle is a uniqgue sequence of unstable states

YN 0 1 YN 0 1 YN g 1
00 @ 01 00 @ 01 00 01
01 11 01 11 01 11
11 10 11 @ 11 10
10 10 @ 10 01
(a) State transition: (b) State transition: (c) Unstable
00—-01—-11—-10 00—-01—-11 |—>Ol—>ll—>10—|

EDA322 Digital design, 2017-
2018, Lecture 19

l. Sourdis, CSE, Chalmers

Outputs a, b can serve as the two LSbits of the state encoding

Race and state assighment

An extra state variable c needed to distinguish between A and C states

Transition from A (cab=000) to B (110) has 2 state bits changing

— If a changes first go to 010 and then to 110
— If c changes first go to C (100) which then takes it to D

Racing affects the end state so it is a critical race

Code | Next (in) [Out
State

(cab)l o 1 | (ab)
A | 000 B | 00

® s

B | 110 | C 10
c | 100 @ D | 00
D | oot [A (D)| of

EDA322 Digital design, 2017-

2018, Lecture 19

(@)

l. Sourdis, CSE, Chalmers

| - -
*@ B1 D1| @)4
e | o
K N
|A<——<[D<——DA
v

33

Race and state assignment

In

Code | Next (in) [Out
State

(cab)l o 1 [(ab)
A | 000 [(A) B | 00
B | 110 | C 10
c | 100 @ D| 00
D | oo1 | A @ 01

(@)

| 3
*@ B1 D1| ©‘
—> | o -
B+ (B C|
|A<——®<——DA

v

0

Introduce B1 (010), when input changes to 1: A->B1, B1->B
* Transient state also required for C (100) to D (001)
Introduce D1 (101)

EDA322 Digital design, 2017-

2018, Lecture 19

l. Sourdis, CSE, Chalmers

34

: | a :
Race and state . ' [ele]]o]
1 - 1
. | B c| '
aSS|gnment 000 | 010 | 101 | 100 i @ = i
| |
110 | 110 | 100 i 1o, i
. . © ! T :
a=in*b’*c’ +in*a o m°_ 1
0
b=in*a’"*c+in*b 000 | 001 | 001
c=a+b'*c a
a . b . G
cin L cin L cin L
ba_ 00 01 11 10 ba_ 00 01 .11, 10 ba_ 00 01 11 10
gl o[1)o]o sl ofo|1]o glo o[
melﬁ_)ﬂO mSXOOO 05(x11__1)
::xLx__xeQ ::x(x_ﬂxﬂ :Lxxxx)n
°l0[0/0]x ol 0 (11 |1)] x o[0[0|0|x
C C C
EDA322 Digital design, 2017- (b) Ceourdie ot Chalm((;?g (d) .

2018, Lecture 19

* Ql: Find the stable states in .
the following transition table:

X1X2

Quiz 17-1

http://m.socrative.com/student/#joinRoom

room number: 713113

Q3: Are there race conditions in
the cases below? If not put (a), if

there are critical ones put (b) if
there are only non-critical put (c)

00 01 11 10
o0 [1(1]0
101 1(0]O0

00 @

e Q2: What is the output of the I

(b) Transition table

circuit for x;x,=11
1. Logicl
2. LogicO
3. Consecutive logic 1s and Os

EDA322 Digital design, 2017-

2018, Lecture 19

01

10

l. Sourdis, CSE, Chalmers

00 00

01

L1

1]

01

(iif)

36

http://m.socrative.com/student/

Stability Considerations

a square-wave generator (x,x,=11)?

(a) Logic diagram

X1X2
y 00 01 11 10

(O]] [®
Example of an unstable
circuit 1 0 @ 0 0

EDA322 Digital design, 2017- (b) Transition table

2018, Lecture 19 l. SOUI’dIS, CSE, Channers

Synthesis of Asynchronous
circuits

Flow-Table Synthesis

e Create a flow table
from specifications
of a circuit

e Use flow table to

a
synthesize the in Toagle
circuit that realizes b
the specification
in |
g, / /T
b WG [\

EDA322 Digital design, 2017-
2018, Lecture 19

l. Sourdis, CSE, Chalmers

40
© Cambridge University Press 2015

Flow-Table Synthesis

* Partition the o
waveform into

potential states ? -
b \/_6_

e Write down the flow

table |

Siafa Next (in) | Out

0o 1| @b
A [(® B oo
B |C 10
c [(© D| oo
D | A (D] of

EDA322 Digital design, 2017- . sourdis, CSE, Chalmers a1

2018, Lecture 19 © Cambridge University Press 2015

Flow-Table Synthesis

* State assignment: Assign

binary codes to each in
state -

* If two states differ in State | Code N; : ('1“) (2};;) ®—~> |
more than one bit, a A | o [(A B[C *
transition betweenthem B | ot |cC 10 & i =
needs to go through a c_| 11]© D] 00 ©]p s
transient state with one o[[A O o v (°

A | ©
bit change @) l o -

e Careful for races (b)
between two state bits Redraw flow table as

Karnaugh map showing

the state transitions

581A832L2 Dtigitallgesign, 2017 l. Sourdis, CSE, Chalmers (traJeCtory rré]gp)
RECre © Cambridge University Press 2015

Flow-Table Synthesis

Redraw Karnaugh map

in in in
replacing state symbols
with their binary codes 00 | of 0 q 0 | o
Make separate maps for 1 | o1 [(1\ L1)J (1\ 0
each next state variable & & L/ & L(
11 10 1 0 1 1
J
(SO, S1) = = jl 5
From Karnaugh derive = e o [@ 0 QJ
equations:
©) (d) (e)
SO =s1'*in + sO*in” + sO*s1’ | in
S1 =s1*in+s0*in’ + sO*s1 oo | o [Mot | oun *@_*B |
: : 0o 1|@b)
Derive output equations: A To @ el 3 ®'
—c1’* B | o1 |cC 10 S| T—1—
a=s1"s0 Last implicants are put to c | 1 |© b 0 ¢©——>D|
b=s1*s0’ avoid hazards D | 10 |A ©] of) @+ &
(a) | <+——
EDA322 Digital design, 2017- . Sourdis, CSE, Chalmers 7 s

2018, Lecture 19 © Cambridge UniversitgpPress 2015

State Minimization

State minimization
in asynchronous circuits

e Similar to the minimization we did with synchronous
sequential circuits.

* Lots of opportunity for state minimization in
asynchronous flow tables:

— Lots of don’t care outputs for unstable states (since we
won’t stay in unstable states too long).

— Don’t care next state information if we assume
fundamental mode operation (some transitions will not
occur).

Compatible states

With don’t cares, equivalency is replaced with
compatibility.

Two states A and B are compatible if, for every input
combination we find:

— A and B produce the same outputs wherever specified, AND
— A and B have compatible next states wherever specified.

Don’t cares match with anything...

Implication chart using compatible
states (1)

* Consider the following flow table with some unspecified next
states and outputs (two inputs, one output, 6 states):

s?c::; inputs (DG) output
00/01{11/10/00|01 11|10

a C @ b | - 0

b - | a @ e 1

C @ a | -|/d[/0]|-|-]-

d |c|-|bld|-]-1-]0

e fl-1Db @ - - -1

f @ e | 1

Implication chart using compatible
states (2)

* Build the implication chart (list states along left and bottom
side — like lower triangle of a matrix):

SC,[::; inputs (DG) output b

0001111000 01/11]10 c
a C @ b|-]-]0]-
b - | a @ e | - 1 d
C @ a|-|d|0]-|-]- e
d |c|-|bld|-|-]-]0 ¢
e |f|-|blle)-|-]-]|1
P e | 1 a/bjc dje

Implication chart using compatible

states (3)

 Mark states incompatible due to different outputs with "x” .

 Marking definitely compatible states with “v”.

* Marking possibly compatible states with implied decisions.

curr

state inputs (DG) output
0001111000 01 11|10
a C @ b | - 0
b - | a @ e 1
C @ al|-]d]|O0
d 'c|-|bid) - 0
e | f|-|blle) - 1
f(f) e | 1

b v/

C | _|@e

d Jlee |

e oo | b

flen |] e
a|/b|c|d

Implication chart using compatible
states (4)

e Scan columns again and again, checking implied decisions to
remove compatibilities...

curr

state inputs (DG) output b y
00/01({11/10/00|01 11|10 e (d.e)
a C @ b | - 0 v
b - | a @ e 1 d V(d,e)>< V4
C al|-|d[0]|-|-]- (c.f)<
d - b o=
L[ole el
e fl-1Db - -] =11 ’
£ e | 1 a/b|c|d

Merger diagram with compatible
states (1)

e Squares with any x are not compatible; those with all “v” are

compatible (possibly under implications).

* Draw Merger Diagram:

b
'®
e C

Merger diagram with compatible
states (2)

 We now look for large cliques in the graph (clique is part of the
graph in which every node is connected to every other node)...

a

f b >
=

d

 We can now merge states (a,c,d) and (b,e,f). We have reduced
6 states down to 2 states by merging.

curr

Final Result

state inputs (DG) output
00/01(11{10/00{01 11|10
a C @ b|-|-10]-]-
b - | a @ e | -|-]1]-
C @ al-/d 0| -]-]-
d |c|-|bld)-]|-|-0
e |f|-|bile)f-|-|-]|1
f @ -l -le 1] -1-1]-

curr

state inputs (DG) output
00|01[11/10/00 01|11 /10

a @)@ b|b|0|0]-]0

b |(b)al|b)b)1]- 1]1

We can now merge states (a,c,d) and (b,e,f). We have reduced
6 states down to 2 states by merging.

Note that we still have some unspecified values in the flow
table (which is no longer a primitive flow table).

Important!!!

e Reminders:
— We need to check that each state is included at least once.

— We need to make sure that any implied compatibilities are
true...

* For our solution...
— (a,c,d) and (b,e,f) all states are included.

— Implied compatibilities are true. In particular, (a,c,d) and
(b,e,f) requires no implied compatibilities.

Revisiting the merger diagram (1)

Useful to illustrate an example where we need to be careful
about mergings in the Merger Diagram.

Consider the following implication chart and its merger
diagram:

a

a
b |(be)
C o |@e) b
d |(be) (a,d) e
e o X ko
a ' blc|d

Revisiting the merger diagram (2)

e Say we consider the merging (a,b) and (c,d,e)...
— For (a,b), (d,e) we require that (b,c) get merged.
— For (c,d) we require that (a,d) get merged.

 The implied compatibilities do not hold given our selected
merging, so our merging is BAD (i.e., wrong).

b ‘(b,c)

C o |@e)

d |(b,c) X|(a,d)

e o x| e
alb|c|d

Revisiting the merger diagram (3)

e Say we consider (a,d), (b,c), (c,d,e)...

 The implied compatibilities do hold given our selected
merging, so our merging is GOOD (i.e., right).

b |[(bc)

d |[(b,c) X(a,d)

e X (b,c)

EDA322 Digitai uesigii, zuss-

2018, Lecture 19 l. Sourdis, CSE, Chalmers

57

Asynchronous synthesis example

Asynchronous design example

* Consider a circuit with two inputs, D and G and one output, Q.
Output Q follows D with G=1, otherwise Q holds its value.

— Assume fundamental mode operation — only one input changes at a time.

Sstate

Condition

-~ D Q O T

— ORORFOJ

OO0 0O r R Q

=R~ O O0ORr O

(follow 0)

(follow 1)

(hold O; from a or d)
(hold 0)

(hold 1; from b or f)
(hold 1)

Asynchronous design example
(primitive flow table)

* Note: Outputs depend only on one state (Moore-like):

next state

curr output
state | pDG=00 | DG=01 | DG=10 | DG=11 Q

a c ‘a) ; b 0

b - a e b) 1

C @ a d - 0

d c (d) b 0

e f (e) b 1

f (f) a e 1

 Note: Some unspecified entries due to the fundamental mode
assumption (e.g., in state a, DG=01, so we never go from
DG=01 -> DG=10)...

Asynchronous design example
(reduced flow table)

b | X
C
curt next state output v X
state | DG=00 | DG=01 | DG=10 | DG=11 Q dlv X |V
a C (a) - b 0 e X v XX
b : a e b Tl IX v|x X
C a d - 0
@ a blc|d
d c (d) b 0
e f - (e) b 1
f @ a e - 1

Asynchronous design example

(reduced flow table)

curr next state output
state | pG=00 | DG=01 | DG=10 | DG=11 Q
a C @ - b 0
b - a e @ 1
C @ a d - 0
d c (d) b 0
e f (e) b 1
f @ a e 1
 Reduced flow table:
curr next state output
state | DG=00 | DG=01 | DG=10 | DG=11 Q
a (@)) b 0
b (b) a b) 1

EDA322 Digital design, 2017-
2018, Lecture 19

l. Sourdis, CSE, Chalmers

b | X
cClv X
dl v X|v
e X|v | X|X
FIX]Tv XX
a blc|d

a, ¢, d can be merged

b, e, f, can be merged

62

Asynchronous designh example (state
assignment and transition table)

 We only have two states, so we can let a=0, and b=1.
e Qur transition table becomes:

next state (Y) output
curr state
(y) DG=00 | DG=01 | DG=10 | DG=11 Q
0 0 © (0) 1 0
1 @ 0 1) 1) 1

Asynchronous design example
(logic equations)

 We can make K-Maps to determine excitation variables (Y) and
output (Z) in terms of circuit inputs and secondary variables (y):

DG

y 00|01 |11|10
o/o/of1]o0
101011

Y = DG+ Gy

e OQOutput equal to the secondary (state) variable.

Asynchronous design example
(circuit)

* Can finally draw the circuit:

: ij

y(j

Y = DG +G'y

Hazards

Hazards

A hazard is a momentary unwanted switching transient at a
logic function’s output (i.e., a glitch).

Hazards/glitches occur due to unequal propagation delays
along different paths in a combinational circuit.

Can take steps to try and eliminate hazards.

There are two types of hazards; static and dynamic.

For asynchronous circuits in particular, hazards can cause
problems in addition to other issues like races and non-
fundamental mode operation!

— Momentary false logic function values in an asynchronous circuit can
cause a transition to an incorrect stable state!

Static hazards

e Static-0O Hazard:

— Occurs when output is 0 and should remain at 0, but temporarily
switches to a 1 due to a change in an input.

e Static-1 Hazard:

— Occurs when output is 1 and should remain at 1, but temporarily
switches to a 0 due to a change in an input.

N

static-0 hazard (0->0) static-1 hazard (1->1)

<

Dynamic Hazards

* Dynamic Hazard:

— Occurs when an input changes, and a circuit output
should change 0 -> 1 or 1 -> 0, but temporarily flips
between values.

0 — 0 —

dynamic hazard (0->1) dynamic hazard (1->0)

Illustration 1

a
b
1->0
e Consider the following circuit
with delays where only one input
. C
(input b) changes...
* Draw atiming diagram to see
what happens at output with
b

delays.

* From the logic expression, we
see that b changing should result INV

AND1
o 1 1 150

f=ab+b'c
1->7?7?7?

T\ 0->1
AND2

in the output remaining at logic

W\

level 1... AND1
* Due to delay, -th.e output goes 1- AND2

>0- >1 and this is an output

glitch; we see a static-1 hazard. f

<\

OUTPUT GLITCH!!!

Fixing hazards (2-level circuits) (1)

* When circuits are implemented as 2-level SOP (2-level POS), we can detect
and remove hazards by inspecting the K-Map and adding redundant
product (sum) terms.

bc
00011110

O 0111010
1101111
f=ab+b'c

* Observe that when input b changes from 1->0 (as in the previous timing
diagram), that we “jump” from one product term to another product term.

a

— If adjacent minterms are not covered by the same product term, then
a HAZARD EXISTS!!!

Fixing hazards (2-level circuits) (2)

bc
0001|1110

0O/0|1]0]0
110 (1111 1

f=ab+b'c + ac

a

 The extra product term does not include the changing input
variable, and therefore serves to prevent possible momentary
output glitches due to this variable.

Fixing hazards (2-level circuits) (3)

* The redundant product term is not influenced by the changing
input.

1 AND1

f

INV AND2 i::>%$>1
f=ab+b'c+ac

AND3
1->1

u

Fixing hazards (2-level circuits) (4)

* For 2-level circuits, if we remove all static-1 hazards using the
K-Map (adding redundant product terms), we are guaranteed
that there will be no static-0 hazards or dynamic hazards.

* If we work with Product-Of-Sums, we might find static-0
hazards when moving from one sum term to another sum
term. We can remove these hazards by adding redundant sum-

terms.

Hazards in asynchronous circuits

Consider our first circuit with a hazard, but assume it is not

combinatorial, but rather asynchronous.

We can draw the transition table, and see that there is the

potential to end up in an incorrect stable state.

%ij

o

Y=ab+b'y

curr

next state output
state
ab=00 01 11 10
y Y Y Y Y
0 0

Hazards in multi-level circuits (1)

2-level circuits are easy to deal with and hazards can be
removed...

The situation is harder with multi-level circuits in which there
are multiple paths from an input to an output:

1bj>wﬂ DS

Hazards in multi-level circuits (2)

« Timing diagram shows output changing 0->1->0->1.

a

N

a :

w D 1->0->1 L X \\
o1 — 1 1Ny
po o ety
,d D=t i 1\

_ \Ns

* Hazards like this are hard to fix. We could always find a 2-level
version of the previous circuit and get something hazard free...

Fixing hazards with latches

e (Can also fix hazards using SR (with NOR gates) or S’R’ (with
NAND gates) Latches

— An SR Latch can tolerate momentary Os appearing at its inputs (since we
might momentarily move from a set or reset to a hold and then back).

— An S’R’ Latch can tolerate momentary 1s appearing at its inputs (since we
might momentarily move from a set or reset to a hold and then back)

R (reset) Q S (set)— Q

S (set) Q R (reset)—— Q

(after S=1,R=0) (after S=1,R=0)

(after S=0,R=1) (after S=0,R=1)

O OOrFW’
R ORr OO
cNeoNeN W IFy)
O R+ O oL
O, ORr KW
O KR KOl
== R0 o0
RO O R RO

Fixing hazards with latches

* Consider our original circuit with a static-1
hazard (temporary O at output):

1 a be
b * :::j 00 | 01

B
1T ¢ f=ab+b'c

Fixing hazards with latches

Consider that we take our output f from the output of a latch.

Since we are trying to fix static-1 hazards we need to be able to tolerate
momentary Os at latch inputs => Use a SR Latch (NOR Latch).

To get the function f from the latch output, we need equations for S and R
of the latch (so that the latch gets SET when f should be one, otherwise
RESET).

e 00|{01[11]10 e 0001|1110
2 0O|0|1]0|O0 2 O|1/]0 11

1101111 171/0,01]0

Equation for S Equation for R

S=ab+be R=0bc +ab

Fixing hazards with latches

* Draw a circuit using the latch, and see that
glitch in output due to the hazard is gone.

1->0 R

1->0->1

->1

BT:

Output assignment in asynchronous
circuits

* Flow and transition tables might have unspecified entries for outputs.
— This might be a result of the fundamental mode assumption.
— This might be a result of unstable states.

* Note: we always have output values assigned for stable states!
We should think about what happens with the unspecified outputs...

— They are, in effect, don’t cares that we can exploit during minimization of the
output logic equations.

— But, we might temporarily pass through these values while transitioning from
one stable state to another stable state.
 Depending on the output equations that we derive (due to
minimization of the output equations), we might end up having
glitches at our circuit outputs.

— Glitches are bad; they could get fed into another circuit causing problems. They
also waste power.

Avoiding output glitches

* Consider the following flow table with don’t cares at some outputs (circuit

has one input and one output):
curr next state ouTpuI

state | x=0 x=1 | x=0 x=1

a @ b 0 -
b c | (b) - 0
c | (¢) | d 1 :
d a @ - 1

* Consider a transition between two stable states due to a change in an input
value and how it might be best to assign the don’t care value in an unstable
intermediate state:

— If both stable states produce a 0 output, make output O instead of a don’t care.

— If both stable states produce a 1 output, make output 1 instead of a don’t care.
— If stable states produce different outputs, the output can remain a don’t care and be
used to find a smaller output circuit.
* This will enable us to avoid output glitches when passing through unstable
temporary states.

Example

* If we consider possible transitions, we see that some of the
output don’t cares should be changed to 0 or 1 to avoid glitches.

curr next state output curr next state output

state | x=0 x=1 | x=0 x=1 state | x=0 x=1 | x=0 x=1
a | (a | b 0 - a | (@b 0 0
b | ¢ (o) | - | o0 b | ¢ | b 0
c | (¢) | d 1 - c | (c)—»d 1 1
d a | (d) | - 1 d a | Yd) 1

The above changes will avoid temporary glitches at the outputs
during transitions where the output should not change.

Quiz 17-2

http://m.socrative.com/student/#joinRoom
room number: 713113

 Q1l: Apply state minimization ¢ Q2:find and remove all

to the following table: hazards in the following k-
Map:
Next State Output X3 X, L
Present 00 01 11 10
State x=0 x=1 x=0 x=1
00

a d b 0 0

b e a 0 0 01 | 1 ﬂ 1

¢ 8 / 0 1 ﬂ

d a d 1 0 11 l 1 j 1

e a d 1 0 U

f ¢ b 0 0

g a e 1 0 1 @

how many states remained?

EDA322 Digital design, 2017- :
2018, Lecture 19 l. Sourdis, CSE, Chalmers 96

http://m.socrative.com/student/

Next State Output
Present
State x=0 x=1 x=0 x=1
a d a 0 0
b ld,eV ¢ d 7 0 |
d a d 1 0
f c a 0 0
C X X
d X X X

— the equivalent states

* (a,b), (d,e), (d,g), (e,8)
e X X X v — the reduced states
* (a,b), (c), (d,e,8), ()

f c,dxg’gx X X X
g X X X d,e\/d,e\/ X
a b C d e f

EDA322 Digital design, 2017- :
2018, Lecture 19 l. Sourdis, CSE, Chalmers 97

Q2:

00

Jan

11

—_
-

)
N———]

10

CH

EDA322 Digital design, 2017-
2018, Lecture 19

F= X XoX3X, + X4 Xg + + X41X5Xy4

Hazard free F= X, XoX5 + X{' X4 + + XXy

l. Sourdis, CSE, Chalmers

98

Summary

Introduction to asynchronous ¢ This lecture is related to
circuits Chapter 26 and to 6.10

Analysis and synthesis of

asynchronous circuits
* Next Lecture:

— Wrapup lecture

Race conditions and state
assignment

State minimization

Asynchronous design
example

Hazards

Summary of analysis when latches
are present

* Procedure:
— Label each latch output with Yj and its feedback path with vyj.

— Derive logic equations for latch inputs Sj and R;.

— Check of SR=0 for NOR Latches and S’'R’=0 for NAND Latches.
If not satisfied, the circuit may not work correctly.

— Create logic equations for latch outputs Yj using the known
behavior of a latch (Y=S+R’y for NOR Latches and Y=S"+Ry for
NAND Latches).

— Construct a transition table using the logic equations for the
latch outputs and circuit stable states.

— Obtain a flow table, if desired.

Analysis of Asynchronous circuits

* We identify asynchronous circuits by (1) the presence of
latches (un-clocked storage elements) and/or (2)
combinational feedback paths (loops through logic gates).

* Analysis involves obtaining a table or diagram that describes
the sequence of internal states and outputs as a function of
changes in the circuit inputs.

* The tables we will try to obtain are transition tables and flow
tables (more or less the same thing as a state table in
synchronous circuit FSM design). We can also use state
diagrams to describe asynchronous circuits.

Design with latches

We can also implement asynchronous circuits using
latches at the outputs.

Given the map for each excitation variable Y, derive
necessary equations for S and R of a latch to produce Y.

Derive Boolean equations for S and R.

— Need to make sure the S and R are never equal (potential
problem in Latch).

Revising SR latches
(excitation table)

e Recall how a SR Latch (NOR) works:

R (reset) Y Q S RIQ Q
1 0|1 O
O 0|1 O (afterS=1,R=0)
y O 1|0 1
! O 0|0 1 (after S=0,R=1)
S (set) Q 1 110 o0

* Assuming we never have the SR=11 case. Can write excitation table:

Y S R|y Y

" —) > Q 0 X0 0
S 1 0|0 1
0 1|1 0

g X 01 1

Revising S'R’ latches
(excitation table)

* Recall how a SR’ Latch (NAND) works:

S R
S (set)— Y q 10 8 Cf
1 1|0 1 (afterS=1,R=0)
O 1|1 O
Yy 1Q 1 1|1 0 (afterS=0,R=1)
R (reset)—— ' o 0|1 1

* Assuming we never have the SR=00 case. Can write excitation table:
Y

S) q
R =

X = O R Wn
— O R Xl

== O oK
= O R O

Implementation using latches

 Consider our example again, and assume we want to use a S'R’

latch: oG
Y = DG + Gy

 Need to figure out how to select S and R for the NAND Latch

(while making sure never 0 at same time):
DG DG

y 00101/11/10 S Rly Y y 00011110
1 X|0 O

O|1]|1]0]|1 0 1/0 1 O X | X|1|X
1 0|1 O

Implementation using latches

e Can draw the circuit:

S = (DG

° D
S

