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Lecture	2	outline
• Boolean	logic	refresher
• Logic	minimization

– Karnaugh

• Adders
– Ripple-carry,
– Carry-select
– Carry-Lookahead
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Boolean	Logic	
refresher
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Boolean Algebra

1)    X ⋅0 =  0
2)    X ⋅  1 =  X
3)    X ⋅  X =  X

4)    X ⋅  X =  0
5)    X + 0 =  X
6)    X +  1 =  1
7)    X +  X =  X

8)    X +  X =  1

9)    X =  X

10A)    X ⋅  Y =  Y ⋅  X
10B)    X+  Y =  Y +  X
11A)    X YZ( ) = XY( )Z
11B)    X + Y+Z( ) = X +Y( )+ Z
12A)    X Y+Z( ) = XY + XZ
12B)    X+ (YZ ) = (X +Y )(X + Z )
12C)    X+Y( ) W+Z( ) = XW + XZ +YW +YZ

13A)    X+XY = X+Y

13B)    X+XY = X+Y

13C)    X+XY = X+Y

13D)    X+XY = X+Y

14A)    X Y =  X +  Y

14B)    X +Y =  X  Y

Commutative 
Law

Associative 
Law

Distributive 
Law

Consensus 
Theorem

DeMorgan’s Theorem
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Book	Notations

• For	AND	logic	function:
– Book	uses	Ù or	&	

• e.g.,	:	(aÙb) (a	&	b)	

– We	are	used	to	�
• e.g.,	:	(a�b)

• For	OR	logic	function:
– Book	uses	Ú or	|

• e.g.,	:	(aÚb) (a	|	b)	

– We	are	used	to	+
• e.g.,	:	(a+b)

• For	NOT	logic	function:
– Book	uses	¬ or	~

• e.g.,	:	(¬a)		(~a)

– We	are	used	to	’	or −
• e.g.,	:	(a’)		(a)

• For	XOR	logic	function:
– Book	and	we	use	⊕

• e.g.,	:	(a⊕b)
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Algebraic	Forms	of	Logic	Functions
• Literal:	A	variable,	complemented	or	uncomplemented.
• Product:	Literals	ANDed	together.
• Sum:	Literals	ORed	together.

• SOP	(Sum	of	Products):	
• ORing	product	terms
• f(A,	B,	C)	=	ABC +	A'C +	B'C

• POS	(Product	of	Sums)
• ANDing	sum	terms
• f (A,	B,	C)	=	(A'	+	B'	+	C')(A +	C')(B +	C')
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de	Morgan	theorem

x 1 
x 2 

x 1 
x 2 

x 1 

x 2 

x 1 x 2 x 1 x 2 + = (a) 

x 1 
x 2 

x 1 

x 2 

x 1 x 2 + x 1 x 2 = (b) 

x 1 
x 2 

nand or or

nor and and

The inversion of a 
product is the sum of 
the inverted variable

The inversion of a sum 
is the product of the 
inverted variable
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x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

AND - OR

OR - AND

NAND - NAND

NOR - NOR

SoP

PoS
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The	XOR	gate
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The	XOR	gate

Commutative Law
ΑÅΒ = ΒÅΑ

Associative Law
(ΑÅΒ)ÅC =  AÅ(BÅC) = AÅBÅC

Distributive Law
(AB)Å(AC) = A(BÅC)
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Algebraic	Forms	of	Logic	Functions
• A	minterm is	a	product	term	in	which	all	the	variables	appear	exactly	once

either	complemented	or	uncomplemented.
• Canonical	Sum	of	Products	(canonical	SOP):

– Represented	as	a	sum	of	minterms	only.
– Example:	f1(A,B,C) =	A'BC' +	ABC' +	A'BC	+	ABC
– Minterms	of	three	variables:

Minterm Minterm Code Minterm Number
A'B'C' 000 m0
A'B'C 001 m1
A'BC' 010 m2
A'BC 011 m3
AB'C' 100 m4
AB'C 101 m5
ABC' 110 m6
ABC 111 m7
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Algebraic	Forms	of	Logic	Functions
• A	maxterm is	a	sum	term	in	which	all	the	variables	appear	exactly	once

either	complemented	or	uncomplemented.
• Canonical	Product	of	Sums	(canonical	POS):

– Represented	as	a	product	of	maxterms	only.
– Example:	f2(A,B,C) =	(A+B+C)(A+B+C')(A'+B+C)(A'+B+C')	

• Maxterms	of	three	variables:
Maxterm Maxterm Code Maxterm Number
A+B+C 000 M0

A+B+C' 001 M1

A+B'+C 010 M2

A+B'+C' 011 M3

A'+B+C 100 M4

A'+B+C' 101 M5

A'+B'+C 110 M6

A'+B'+C' 111 M7
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+ ABC+ ABC’+ AB’C+ A’BCA’B’C

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0 F =

F’ = A’B’C’ + A’BC’ + AB’C’

Canonical	(Normal)	Forms
SoP canonical form

F =  001      011      101       110       111

(A + B + C) (A + B’ + C) (A’ + B + C)

F =

F =     000              010             100 

canonical form ¹ minimal form

PoS canonical form

F= Σ(1,3,5,6,7)

F= Π(0,2,4)

#
0
1
2
3
4
5
6
7
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Conversion	between	canonical	forms

Relation	between	maxterms	and	minterms	of	a	
function

F(x,y,z)	=	Σ(1,3,5,6,7)	=	Π(0,2,4)

… and	for	the	inverted	function:
F’(x,y,z)	=	Π(1,3,5,6,7)	=	Σ(0,2,4)
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Shannon's	expansion	theorem
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

Example:
F(x1,	x2,	x3)	=	x1x2 +	x1x3	+	x2x3

=	x1’F(0,	x2,	x3)	+	x1F(1,	x2,	x3)	
=	x1’	(0x2 +	0x3	+	x2x3)+	x1(1x2 +	1x3	+	x2x3)
=	x1’	(x2x3)+	x1(x2 +	x3	+	x2x3)
=	x1’	(x2x3)+	x1(x2 +	x3(1 +	x2))
=	x1’	(x2x3)+	x1(x2 +	x3)
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Derivation	of	Canonical	Forms
• Derive	canonical	PoS	or	SoP	using	Boolean	algebra.
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

Convert	a	function	to	SoP	(Two	alternatives,	second	is	simpler!)
1. Apply	Shannon		Theorem	until	you	get	sum	of	minterms
2. Get	the	function	to	a	SoP	form,	as	follows:

– if	a	product	of	literals	is	a	minterm,	keep	it
– for	every	variable	xi that	doesn’t	exist	in	a	product	we	add	 (xi +	xi’),	e.g.:	

• x1*x2	=	x1*x2*(x3+	x3’) =	x1*x2*x3	+	x1*x2*x3’
– Continue	and	delete	redundant	products
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Derivation	of	Canonical	Forms
• Derive	canonical	PoS	or	SoP	using	Boolean	algebra.
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

• Example:	f(A,B,C)	=	AB	+	AC' +	A'C
– f(A,B,C)	=	AB	+	AC' +	A'C =	A	f(1,B,C)	+	A'	f(0,B,C)

=	A(1×B +	1×C'	+	1'×C)	+	A'(0×B +	0×C'	+	0'×C)	=	A(B	+	C')	+	A'C
– f(A,B,C)	=	A(B	+	C')	+	A'C =	B[A(1+C')	+	A'C]	+	B'[A(0	+	C')	+	A'C]

=	B[A +	A'C]	+	B'[AC'	+	A'C]	=	AB +	A'BC +	AB'C'	+	A'B'C
– f(A,B,C)	=	AB +	A'BC +	AB'C'	+	A'B'C

=	C[AB +	A'B×1	+	AB'×1'	+	A'B'×1]	+	C'[AB +	A'B×0	+	AB'×0'	+	A'B'×0]	
=	ABC +	A'BC +	A'B'C +	ABC'	+	AB'C’
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Derivation	of	Canonical	Forms
• Derive	canonical	PoS	or	SoP	using	Boolean	algebra.
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

• Example:	f(A,B,C)	=	AB	+	AC' +	A’C
f(A,B,C)	=	AB	+	AC' +	A'C =	
=	AB(C+C’)	+	AC’(B+B’) +	A'C(B+B’)
= ABC	+	ABC’	+	ABC’	+	AB’C’	+	A’BC	+	A’B’C
=	ABC	+	ABC’	+	AB’C’	+	A’BC	+	A’B’C
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Logic Simplification

I. Sourdis, CSE, Chalmers 21EDA322 Digital Design, 
2017-2018, Lecture 2



22

yz
wx 00 01 11 10

00
01 1 1
11
10

W’XY’Z   +     W’XYZ   =
W’XZ( W’XZ ) ( Y’+Y )   =

Note: (Y’+Y)=1 

Karnaugh-diagram
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Karnaugh of 4 variables
Minimize function F = S m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’

C

00

01

11

10

00 01 11 10

D

A

B

CD\AB
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Product	of	Sums	(maxterms)

POS f ( x1,…, x4) = P M(0, 1, 4, 8, 9, 12, 15).

x 1 x 2 x 3 x 4 

0 

00 01 11 10

0 0 0 

0 1 1 0 

1 1 0 1 

1 1 1 1 

00

01

11

10

x 2 x 3 + ( ) 

x 3 x 4 + ( ) 

x 1 x 2 x 3 x 4 + + + ( ) 
How would one 
choose between 
PoS and SoP?

f = (x3+x4)(x2+x3)(x1+x2+x3+x4) 
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x 1 x 2 x 3 x 4 00 01 11 10

1 1 

1 1 

1 1 

00

01

11

10

x 1 x 2 x 3 x 4 00 01 11 10

1 

1 1 

1 1 

1 1 

00

01

11

10

f 1 x 1 x 3 x 1 x 3 x 4 x 1 x 2 x 3 x 5 + + = 

x 5 1 = x 5 0 = 

Karnaugh of 5 variables
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Minimizing	multiple	functions

x 1 x 2 x 3 x 4 00 01 11 10

1 1 

1 1 

1 1 

1 1 

00

01

11

10

(a) Function

1 

f 1 

x 1 x 2 x 3 x 4 00 01 11 10

1 1 

1 1 

1 1 1 

1 1 

00

01

11

10

(b) Function f 2 

I. Sourdis, CSE, Chalmers 28EDA322 Digital Design, 
2017-2018, Lecture 2



x 1 x 2 x 3 x 4 00 01 11 10

1 1 

1 1 

1 1 

1 1 

00

01

11

10

(a) Function

1 

f 1 
x 1 x 2 x 3 x 4 00 01 11 10

1 1 

1 1 

1 1 1 

1 1 

00

01

11

10

(b) Function f 2 

f 1 

f 2 

x 2 

x 3 

x 4 

x 1 

x 3 

x 1 

x 3 

x 2 

x 3 

x 4 

(c) Combined circuit for f 1 f 2 and 
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Definition	of	terms

• A	function	F covers a	function	g,	if	it	takes	the	value	’1’	when	
function	g does.

• Implicant:	a	product	of	literals	of	a	function	f for	which	f	gets	
the	value	’1’.

• Prime	implicant:	an	implicant	that	cannot	be	covered	by	a	
more	general	(more	reduced	- meaning	with	fewer	literals)	
implicant.

• Essential	prime	implicant:	a	prime	implicant	of	function	f that	
includes	a	minterm,	not	included	by	any	other	prime	
implicant	of	the	function.
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0 X

1 1

1 0

1 0

AB
00    01    11    10

1 0

0 0

1 1

1 1

CD00

01

11

10

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples	to	illustrate	terms

0 0

1 1

1 0

1 0
D

AB
00    01    11   10

0 1

0 1

1 1

0 0
B

CD  00

01

11

10

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + 
A'B'D

essential

minimum cover: 4 essential implicants

Essential prime implicants
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From	Boolean	expressions	to	logic	gates

• More	than	one	way	to	map	expressions	to	gates

– e.g.,		F	=	A’ •	B’ •	(C	+	D)	=	(A’ •	(B’ •	(C	+	D)))

VHDL:
F<=	not	A	and	(not	B	and	(	C	or	D	)));

T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z
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Waveform	view	of	logic	functions

• Note	how	edges	don’t	line	up	exactly
• It	takes	time	for	a	gate	to	switch	its	output!

time

change in Y takes time to "propagate" through gates
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Choosing	different	implementations	of	a	function

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)
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What	is	the	difference?

• Delay 
• Number of gates in a row

• Area 
• fewer gates in total or 
• Smaller circuit

• Power?

• Tradeoffs:
• More Area for lower delay
• Higher Delay for lower power
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• Q1:	which	is	the	number	of	minterm	AB’C
• Q2:	which	is	the	number	of	maxterm	A+B’+C
• Q3:	What	are	the	maxterms	of	
F(x0,x1,x2)=Σ(0,1,2,3,4)

• Q4:	What	are	the	minterms	of	F’	if	
F(x0,x1,x2)=Σ(0,1,2,3,4)

• Q5:	Expand	F(x0,x1,x2)=	x0*x1	to	its	canonical	
SoP

I. Sourdis, CSE, Chalmers 39

Quiz	2-1
http://m.socrative.com/student/#joinRoom

room	number:	713113
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Adders
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Adders
Full-adder cell (FA) revisited:

FA

a bcin

cout s

a b cin   cout   s
0 0 0        0      0
0 0 1        0      1
0 1 0        0      1
0 1 1        1      0
1 0 0        0      1
1 0 1        1      0
1 1 0        1      0
1 1 1        1      1

00 01 11 10 00 01 11 10
0

1

0

1

ab ab
cin cin

cout s
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Boolean	functions	for	the	full	adder

R	=	AB'Cin’	+	A'BCin’	+	ABCin	+	A'B'Cin
=	Cin'(AB'+A'B)	+	Cin(AB+A'B')
=Cin'(AB'+A'B)	+	Cin	(AB'+A'B)’
=	Cin'(A	xor	B)	+	Cin	(A	xor	B)’
=Cin	xor	(A	xor	B)

Cout=AB'Cin	+	A'Bcin	+	AB =
=Cin(AB'+A'B)	+	AB
=Cin(A	xor	B)	+	AB

r

Co

Ci

Critical path:
The longest path from 
an input to an output
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Ripple-Carry	Adder

• Each	cell:
ri =	ai XOR bi XOR cin
cout	=	cin(ai XOR	bi)	+	aibi

• 4-bit	adder:

• What	about	subtraction?

“Full adder cell”

r

Co

Ci
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Subtractors
A - B = A + (-B)

How do we form -B?
1. complement B  
2. add 1

SUB

s0s1sn-1

bn-1 b1 b0

an-1 a1 a0

cout cinn-bit adder
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Adders	(cont.)
Ripple Adder

Ripple adder is inherently slow because, in general
s7 must wait for c7 which must wait for c6 …

T is O(n),  Cost is O(n)

FA

c0
a0b0

s0c1

c2c3c4c5c6c7

s7 s6

What’s the 
Critical path 
here?
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r

C
o

C
i

Critical	Path	Through	a	Ripple-Carry	Adder
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Tripple-add = TFA(x,y®cout) + (k – 2)´TFA(cin®cout) + TFA(cin®s)

How do we make it faster, 
perhaps with more cost?

Mechanical adder: https://youtu.be/GcDshWmhF4A

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

c out c in 

0 0 

0 

c 0 

1 1 

1 

1 

k-2 kñ2 

kñ2 

2 k 

kñ1 

kñ1 

kñ1 

kñ1 

FA FA FA FA .   .   . 
c kñ2 

s k 

k-2

k-2

k-2k-1

k-1

k-1k-1



Carry	Select	Adder

FA

c0
a0b0

s0

FA

1 0 1 01 0 1 0

0

1
c8 1

0

a1a2a3a4a5a6a7

a4a5a6a7

b7 b6 b5 b4 b3

b7 b6 b5 b4

b2 b1

s1s2s3

s4s5s6s7

T = Tripple_adder / 2 + TMUX

COST = 1.5 * COSTripple_adder+ (n+1) * COSTMUX
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Carry	Select	Adder
• Extending	Carry-select	to	multiple	blocks

• What	is	the	optimal	#	of	blocks	and	#	of	bits/block?
– If	#	blocks	too	large	delay	dominated	by	total	mux	delay
– If	#	blocks	too	small	delay	dominated	by	adder	delay

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

4-bit Adder

a3-a0b3-b0

cincout

a11-a8b11-b8a15-a12b15-b12 b7-b4 a7-a4

bits N of stages N T is O(√N),
Cost »2*ripple + muxes
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Carry	Select	Adder

• Ttotal =	(2*sqrt(N)-1)	TFA
– assuming	TFA =	TMUX

• For	ripple	adder	Ttotal =	N	TFA

• Is	sqrt(N)	really	the	optimum?
– From	right	to	left	increase	size	of	each	block	to	better	match	delays
– E.g.:	16-bit	adder,	use	block	sizes	[5	4	3	2	2]	
– E.g.:	64-bit	adder,	use	block	sizes	[13	12	11	10	9	8	7]

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

4-bit Adder

a3-a0b3-b0

cincout

a11-a8b11-b8a15-a12b15-b12 b7-b4 a7-a4
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Carry	Select	Adder
variable	size	blocks

EDA322 Digital Design, 
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16-bit	adder	Carry	select	adder	with	variable	block	sizes	[5	4	3	2	2]	



Carry	Look-ahead	Adders
• In	general,	for	n-bit	addition	best	we	can	achieve	is	

delay	O(log(n))

• How	do	we	arrange	this?		(think	trees)
• First,	reformulate	basic	adder	stage:

carry “propagate”
pi = ai Å bi
Exactly one of the 2 inputs is 1, 
then propagate the carry you 
received from the previous stage

carry “generate”
gi = ai bi
If both inputs are 1, then no 
matter what carry-in you 
received, generate a carry

ci+1 = gi + pici
Carry-out is one 
if you generate a carry 
or you have a carry-in 
to propagate

si = pi Å ci
Result is 1 either when
exactly 1 of the 
Inputs (a, b) is 1 
(carry-propagate) 
(exclusive) or 
have a carry-in

0 0 0        0      0
0 0 1        0      1
0 1 0        0      1
0 1 1        1      0
1 0 0        0      1
1 0 1        1      0
1 1 0        1      0
1 1 1        1      1

a b ci ci+1 s
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Carry	Look-ahead	Adders
• Ripple	adder	using	p	and	g	signals:

• So	far,	no	advantage	over	ripple	adder:			T	a N

p0
g0

s0 = p0 Å c0
c1 = g0 + p0c0

s0
a0
b0

p1
g1

s1 = p1 Å c1
c2 = g1 + p1c1

s1
a1
b1

p2
g2

s2 = p2 Å c2
c3 = g2 + p2c2

s2
a2
b2

p3
g3

s3 = p3 Å c3
c4 = g3 + p3c3

s3
a3
b3

c0

c4
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Carry	Look-ahead	Adders
• Expand	carries:

c0
c1 =	g0 +	p0c0
c2 =	g1 +	p1c1 =	g1 +	p1g0 +	p1p0c0
c3 =	g2 +	p2c2 =	g2 +	p2g1 +	p1p2g0 +	p2p1p0c0
c4 =	g3 +	p3c3 =	g3 +	p3g2 +	p3p2g1 +	.	.	.

.

.

.

• Why	not	implement	these	equations	directly	to	avoid	
ripple	delay?
– Lots	of	gates.		Redundancies	(full	tree	for	each).
– Gate	with	high	#	of	inputs.

• Let’s	reorganize	the	equations.
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Carry	Look-ahead	Adders
• “Group” propagate	and	generate	signals:

• P	true	if	the	group	as	a	whole	propagates	a	carry	to	cout
• G	true	if	the	group	as	a	whole	generates	a	carry

• Group	P	and	G	can	be	generated	hierarchically.

pi
gi

pi+1
gi+1

pi+k
gi+k

P = pi pi+1 … pi+k
G = gi+k + pi+kgi+k-1 + … + (pi+1pi+2 … pi+k)gi

cin

cout

Cout = G + PCin
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Carry	Look-ahead	Adders
a0
b0
a1
b1
a2
b2

a

a3
b3
a4
b4
a5
b5

b

c3 = Ga + Pac0

Pa

Ga

Pb

Gb

a6
b6
a7
b7
a8
b8

c

c6 = Gb + Pbc3

Pc

Gc

P = PaPbPc

G = Gc + PcGb + PbPcGa

c9 = G + Pc0

c0

9-bit Example of hierarchically 
generated  P and G signals:
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p0
g0s0

p1
g1s1

c1= g0+p0c0

p2
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c0

c4

c8

8-bit Carry Look-ahead 
Adder with 2-input gates.
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p0
g0s0

p1
g1s1

c1= g0+p0c0

p2
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c0

c4

c8

8-bit Carry Look-ahead 
Adder with 2-input gates.
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Carry	Look-ahead	adder
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x, y       
adder inputs



• Q1:	a	8-bit	ripple	carry	adder	
compared	to	a	4-bit	ripple	
carry	adder	has:
– 50%	more	area
– 2	times	more	delay

• Q2:	when	adding	111	and	101	
in	a	ripple	carry	adder,	how	
many	carries	are	generated?	

• Q3:	What	is	the	delay	and	
area	of	a	8-bit	carry	select	
adder	of	2	blocks	(each	block	
4-bits).	Consider	that:
– FA	delay=1,	MUX	delay=	1	
– FA	area	=	1	and	MUX	area	=	1

• Q4:	What	is	the	delay	of	a	
carry-lookahead adder:
– Linear,	O(n)?
– ?
– O(logN)?
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Summary	of	Lecture	2
• Boolean	algebra	basics		

– Axioms,	theorems,	
– PoS,	SoP,	minterms,	maxterms

• Logic	minimization:	
– Karnaugh

• Multiple	variables
• Multiple	functions

• Adders
– Ripple	carry,	Carry	select,	Carry	

lookahead

• Book	sections	
(complimentary	to	the	
slide	lectures):	
– 3.1,	3.2,	3.4,	3.5,	6.1-6.3,	
6.5-6.9,	10.2,	10.3,	12.1		

• Next	Lecture	3	
(Thursday):
– Combinational	logic	
(VHDL)
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