EDA322
Digital Design

Lecture 2:
Logic Minimization, Adders

loannis Sourdis

Lecture 2 outline

* Boolean logic refresher
* Logic minimization

— Karnaugh
* Adders

— Ripple-carry,

— Carry-select

— Carry-Lookahead

Boolean Logic
refresher

EDA322 Digital Design,

2017-2018, Lecture 2 |. Sourdis, CSE, Chalmers

Boolean Algebra

I0A) X- Y=Y X c -
| 10B) X+Y =Y +X Omg‘\‘,va ve
H X-0-0 1 A X(YZ)=(XY)Z } resociat
: ssociative
2) X-1=X | 1IB) X +(Y+Z)=(X+Y)+Z Lo
N XX =X DAY X(Y+Z)=XY +XZ R
4) X-X=0 . Distributive
| 12B) X+(YZ)=(X+Y)(X+2) -
5) X +0 =X
) i ©120) (X+Y)(WHZ)=XW+XZ+YW+YZ _
6) X+1=1 I . B
) X+X=X ; I3A) X4XY=X+Y
8) X + X =1 13B) X+XY=X+Y Consensus
= ' —— — — Theorem
9 X =X ©130) X+XY=X+Y
- 13D) X+XY=X+Y
| arat=art
: 14A) XY= X + Y} DeMorgan’ s Theorem
14B) X +Y= XY

EDA322 Digital Design,

2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers

Book Notations

 For AND logic function: * For NOT logic function:

— Book uses A or & — Book uses — or ™
e e.g.,:(anb) (a & b) e e.g.,:(—a) (~a)
— We are used to — We are used to’ or -
e e.g. :(a*b) e e.g.,:(a’) (3)
* For OR logic function: * For XOR logic function:
— Book uses Vv or | — Book and we use ©
e e.g.,:(avb) (a | b) * e.g. :(a®b)

— We are used to +
e e.g., : (a+b)

fie oAty

Algebraic Forms of Logic Functions

Literal: A variable, complemented or uncomplemented.
Product: Literals ANDed together.
Sum: Literals ORed together.

SOP (Sum of Products):
ORing product terms
flA, B, C)=ABC+A'C+B'C

POS (Product of Sums)
ANDing sum terms
f(A,B C)=(A"+B'+C)A+C)(B+C)

X1

X

de Morgan theorem

nand

1 > <&

) >

EDA322 Digital Design,
2017-2018, Lecture 2

or or

X1 ADO_\——r>‘ .
oo A S LD
X5 ‘_/ %2

S - The inversion of a

@) X1X = X1+ X2 product is the sum of
the inverted variable

and and
Xy ——l >0 | _>‘ X —O}
: : X, —O
Xy —DC [2
The inversion of a sum

(b) X, + X, = x| X, is the product of the
inverted variable

[. Sourdis, CSE, Chalmers

SoP

X

49

%¢) |
X —
X5 I

NAND - NAND

:)o_
)o_.

X3
X, —j
X5

NOR - NOR

The XOR gate

e

.. .Is equivalentto. ..

2*;_>0—37AB AB + AB
sding

A ®B = AB + AB

EDA322 Digital Design, _
2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers

11

The XOR gate

Commutative Law
ADPB = BAA

Associative Law
(A®B)®C = A®(B®C) = AeBa®C

Distributive Law
(AB)®(AC) = A(B®C)

Algebraic Forms of Logic Functions

* A minterm is a product term in which all the variables appear exactly once
either complemented or uncomplemented.

e Canonical Sum of Products (canonical SOP):

— Represented as a sum of minterms only.
— Example: f,(A,B,C) = A'BC' + ABC' + A'BC + ABC
— Minterms of three variables:

Minterm Minterm Code Minterm Number
A'B'C' 000 my
A'B'C 001 m,;
A'BC' 010 m;
A'BC 011 ms
AB'C' 100 My
AB'C 101 ms
ABC' 110 Mg
ABC 111 m;

Algebraic Forms of Logic Functions

e A maxterm is a sum term in which all the variables appear exactly once

either complemented or uncomplemented.

e Canonical Product of Sums (canonical POS):

— Represented as a product of maxterms only.
— Example: f,(A,B,C) = (A+B+C)(A+B+C')(A'+B+C)(A'+B+C')
 Maxterms of three variables:

Maxterm Maxterm Code Maxterm Number
A+B+C 000 M,
A+B+C" 001 M,
A+B'+C 010 M,
A+B'+C 011 M;
A'+B+C 100 M,
A'+B+C 101 M
A'+B'+C 110 M

A'+B+C 111 M,

EDA322 Digital Design,
2017-2018, Lecture 2

[. Sourdis, CSE, Chalmers

14

Canonical (Normal) Forms

F=%(1,3,5,6,7)

SoP canonical form

F= 001 011 101 110 111
F= ABC + ABC + AB'C + ABC' + ABC

HPRRRROOOOX>
OO OOWm
HFORROFOFON

HEEEEOFRORFOMT

F #

Q. 1

.425\\ F=11(0,2,4) |

8 l‘ PoS canonical form
D 7

F=(AFfB+C) (A+B +C) (A +B+C)
F= 000 010 100
F'=AB'C' + ABC' + ABC

canonical form = minimal form

EDA322 Digital Design,
2017-2018, Lecture 2

[. Sourdis, CSE, Chalmers 15

Conversion between canonical forms

Relation between maxterms and minterms of a
function

F(x,v,2) = 2(1,3,5,6,7) = 11(0,2,4)

... and for the inverted function:
F* (x,y,z) = N(1,3,5,6,7) = £(0,2,4)

EDA322 Digital Design,

2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers 16

Shannon's expansion theorem

 Shannon's expansion theorem

(a). fixy, x5, ..., X)) = x; *A(1, x,, ..., x,) + x;"* f(O, x,, ..., X,
(b). f(x;, X5, .., x,) = [x; + f(O, x5, ..., x,))] [x;' + f(1, X, ..., X,)]
Example:

F(X1, X5, X3) = XXy + X1 X3+ X5X;3
=X,"F(0, X, X3) + X, F(1, X5, X5)
=X, (0X, + OX3 + X;X3)+ X, (1X, + 1X3 + X,X3)
=Xg" (XoX3)+ Xy (X + X3+ X,X3)
=X;" (X,X3)+ X1(%;, + %X5(1 + x5))

=X, (X,X3)+ Xq(X; + X3)

Derivation of Canonical Forms

* Derive canonical PoS or SoP using Boolean algebra.

* Shannon's expansion theorem
(a). fixy, x5, ., X)) = X5 *A1, X5, ..., x,) + x,"* f(O, X, ..., X,)
(b). fixy, X5, ..., X,) = [x; + f(O, X5, ..., x,))] [x;' + AL, X5, ..., X,))]

Convert a function to SoP (Two alternatives, second is simpler!)
1. Apply Shannon Theorem until you get sum of minterms
2. Get the function to a SoP form, as follows:
— if a product of literals is a minterm, keep it
— for every variable x; that doesn’t exist in a product we add (x; + x/’), e.g.:
* XX = XX * (Xg+ X37) = X XK + X F X XS

— Continue and delete redundant products

Derivation of Canonical Forms

Derive canonical PoS or SoP using Boolean algebra.
Shannon's expansion theorem
(a). fixy, x5, ., X)) = X5 *A1, X5, ..., x,) + x,"* f(O, X, ..., X,)
(b). fixy, X5, ..., X,) = [x; + f(O, X5, ..., x,))] [x;' + AL, X5, ..., X,))]

Example: f(A,B,C) =AB + AC' + A'C

— f(ABC)=AB+AC +A'C=Af(1,B,C) + A' f(0,B,C)
=A(LXB+1XC+1'XCO)+A(0XB+0XC +0'XC)=A(B+C)+A'C

— flIA,B,C)=A(B+C)+A'C=B[A(1+C) + A'C] + B'[A(0+ C') + A'C]
=B[A+A'C] + B'[AC' + A'C] =AB+ A'BC+ AB'C' + A'B'C

— f(A,B,C)=AB+A'BC+AB'C' +A'B'C
=C[AB+A'BX1+AB'X1'+A'B'X 1]+ C[AB+A'BX0+AB' X0' + A'B' X 0]
=ABC+A'BC+A'B'C+ ABC' + AB'C

Derivation of Canonical Forms

Derive canonical PoS or SoP using Boolean algebra.
Shannon's expansion theorem
(a). fixy, x5, ., X)) = X5 *A1, X5, ..., x,) + x,"* f(O, X, ..., X,)
(b). fixy, X5, ..., X,) = [x; + f(O, X5, ..., x,))] [x;' + AL, X5, ..., X,))]

Example: f(A,B,C) =AB + AC' + A’C
f(A,B,C)=AB +AC' + A'C=
= AB(C+C’) + AC'(B+B’) + A'C(B+B’)
= ABC + ABC’ + ABC’ + AB’'C’ + A’BC + A’B’C
= ABC+ ABC’ + AB'C' + ABC+ A'B’C

EDA322 Digital Design,
2017-2018, Lecture 2

Logic Simplification

[. Sourdis, CSE, Chalmers

21

EDA322 Digital Design,
2017-2018, Lecture 2

Karnaugh-diagram

Y74
wx>x_ 00 01 11 10

00 E

01

11
10

WXY’Z + WXYZ =
(W’XZ)(Y'+Y) = WXZ

Note: (Y’+Y)=1

[. Sourdis, CSE, Chalmers

22

Karnaugh of 4 variables

Minimize functioAn F=>Xm(0, 2,7, 8,14, 15) + d(3, 6, 9, 12, 13)

CDWWB o9 01 11 10 |

1 0
00)| o [

01 0 0 X
/

A

0

pad
O
UJ
(@)
+

>

|

]

1|
Jad 1
O |

0w

X
X
TRk
5+ /ALl
>
1

11 /_/1\ 11 0

0 L)
\1 \X _ 1) 0 B
B 1 1) o
F=BC+ A'B'D'+ B'C'D’ 0 0
F=AC+AB + B'CD’ — (x| 1)
C
| 1 X I_l, 0
EDA322 Digital Design, :
2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers 23

C

W >

Product of Sums (maxterms)

00 @ 0 0 [0—x+x)

/ : (% + X3)
11 1 (o) 1

10 1 1 1 1

F = (Xa+Xg) (X X3) (X1 FXo X5 +X,)

How would one
choose between
PoS and SoP?

(X; + Xy + X3+ Xy)
POS f(xy,...,x,) =TT M(0, 1,4, 8,9, 12, 15).

EDA322 Digital Design, |. Sourdis, CSE, Chalmers 24

2017-2018, Lecture 2

Karnaugh of 5 variables

XXy X142
34N 00 01 11 10 3TN 00 01 11 10
00 00 1
o ab o aib)
1|1 |1 1] 1|1
ol 1|1 | 1|1

1
f1 = XXg+x X304+ X XpX3Xs

Minimizing multiple functions

" 1 ljlo " ()

_IJ 01 Ll 1J
11 [Tﬁ 11 rl_?’_l)
10 t_lJ 10 L 1

(a) Function 1, (b) Function £,

EDA322 Digital Design, :
2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers 28

Minimizing multiple functions

00 01 11

01 CHIE)

10

—
00 1 ﬂ
1]

oDl

o)

]
o1 L

D
0

1 (1_6\ D)

lOll 1)

(b) Function £,

EDA322 Digital Design,
2017-2018, Lecture 2

By

miDEs
—

S

(c) Combined circuit for f, and f,

[. Sourdis, CSE, Chalmers 30

Definition of terms

A function F covers a function g, if it takes the value "1’ when
function g does.

Implicant: a product of literals of a function f for which f gets
the value ’1’,

Prime implicant: an implicant that cannot be covered by a
more general (more reduced - meaning with fewer literals)
implicant.

Essential prime implicant: a prime implicant of function f that
includes a minterm, not included by any other prime
implicant of the function.

Examples to illustrate terms

AB

00 01 11 10
CDO0 | o |(x \ 6 prime implicants:
— A'B'D, BC', AC, A'C'D, AB, B'CD
01 11 \1] ¢//’//////// K\\\
11 essential
1| o
1I0Jo| o0 minimum cover: AC + BC' +
A'B'D
AB
00 01 11 10
5 prime implicants: CD 00 | of o 0
BD, ABC', ACD, A'BC, A'C'D 0
D
Essential prime implicants
minimum cover: 4 essential implicants 1019 -B °]9

EDA322 Digital Design, :
2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers

From Boolean expressions to logic gates

More than one way to map expressions to gates

— e.g, F=A" eB ¢ (C+D)=(A" (B’ *(C+D)))

12
T1

VHDL:
F<=not A and (not Band (Cor D)));
use of 3-input gate

A >c 3_2 Ao /
QDJ S

Waveform view of logic functions

* Note how edges don’ t line up exactly
* |t takes time for a gate to switch its output!

time

v

A
T I
Mot ¥ :
W &Y |
Mot 04 & ') |
B+ ! E

Mat (5 + ') 1
Aowar Y | |
Mot (X xor) | I

FLTTEREY EETETPEFT - TEOH) EITERCEPTT - PREE) FECEPErrer TEEE TE TR

changelin Y takes time to "propagate" through gates

Choosing different implementations of a function

HRRRPROOOOX

RFRLOORRFROOW

RFORORFROFON

OO OFON

_]lIl

]l..l

two-level realization

_
— (we don’ t count NOT gates)
1 >

—, multi-level realization
! (gates with fewer inputs)

Vs

I

_ XOR gate (easier to draw
I_, = but costlier to build)

What is the difference?

L E
* Delay
D_) Number of gates in a row
H:}; * Area
:}— » fewer gates in total or

« Smaller circuit

j - « Power?
Y s
* Tradeoffs:
* More Area for lower delay
Djf}_ * Higher Delay for lower power

EDA322 Digital Design,

2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers 38

http://m.socrative.com/student/#joinRoom
room number: 713113

Q1: which is the number of minterm AB'C

Q2: which is the number of maxterm A+B’+C

Q3: What are the maxterms of
F(x0,x1,x2)=2(0,1,2,3,4)

Q4: What are the minterms of F’ if
F(x0,x1,x2)=2(0,1,2,3,4)

Q5: Expand F(x0,x1,x2)= x0*x1 to its canonical
SoP

EDA322 Digital Design,
2017-2018, Lecture 2

Adders

[. Sourdis, CSE, Chalmers

40

Adders

Full-adder cell (FA) revisited:

a bcin
cout s
ab
cin o0 01 11 10
0
1
cout

EDA322 Digital Design,
2017-2018, Lecture 2

abcinjcout|s
000 0O |0
001 0O |1
010 o |1
011 1 10
100 0O |1
10 1 1 |0
110 1 |0
111 1 1
ab
cin o0 01 11 10
0
1
S

[. Sourdis, CSE, Chalmers

41

Boolean functions for the full adder

R = AB'Cin’ + A'BCin’ + ABCin + A'B'Cin
= Cin'(AB'+A'B) + Cin(AB+A'B")
=Cin'(AB'+A'B) + Cin (AB'+A'B)’
= Cin'(A xor B) + Cin (A xor B)’
=Cin xor (A xor B)

Cout=AB'Cin + A'Bcin + AB = A

=Cin(AB'+A'B) + AB “

=Cin(A xor B) + AB

EDA322 Digital Design,

2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers

n 4

a b ci

i

FA

N

cO r

Critical path:
The longest path from
an input to an output

r

42

Ripple-Carry Adder

bp———— 1)
l————
-— ()

e Each cell:
- =a XOR b XOR ¢, ia
Cout = Cin(@; XOR b)) + a.b, l
cO I
* 4-bit adder: “Full adder cell”

a3 b3 az he al bl ad b0

T T I T o

FA FA FA FA C
T T T T g:)
ra re 1 ro
e \WWhat about subtraction?

EDA322 Digital Design,
2017-2018, Lecture 2

[. Sourdis, CSE, Chalmers 43

Subtractors
A-B=A+(-B)
How do we form -B?

1. complement B
2.add 1

bn-1 b1 bO

+— SUB
u al U al

|
)) @i

«—| cout n-bit adder ne—

l l l

sn-1 s1 sO

Adders (cont.)

Ripple Adder
b0 a0

!

s/ s6 ¢t sO
Ripple adder is inherently slow because, in general
s/ must wait for ¢/ which must wait for c6 ...

What’s the

T is O(n), Costis O(n) ﬁritic’:)al path
ere?

Critical Path Through a Ripple-Carry Adder

7-ripple-add = TFA(X’y_)Cout) g (k_ 2)XTFA(Cin_>COUt) i 7—FA(Cin_)S)

Ck Ck-1 Ck-2 C2 C1 Co
~—-—4— FA <4 FA [... €« FA [FA [¢—
E Cout Cin
vy I I I
Sk Sk-1 Sk-2 S1 So
How do we make it faster, DD,
perhaps with more cost? <

Mechanical adder: https://youtu.be/GecDshWmhF4A S~ £

EDA322 Digital Design, :
2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers 46

c

Carry Select Adder

—

b7 a7

b7af b6aé bd5a5 bdad b3a3 b2a2 b1at b0 a0
77 c0

OO E000

]]] S I [|

0626 |b5a5 | b ad @ 5 sz sl s0

|u1

TR

s/

s6 s5

s4

T= Tripple_adder [2 + TMUX

COST =1.5" COSTppie addert (N+1) ¥ COST %

EDA322 Digital Design,

2017-2018, L

ecture 2

[. Sourdis, CSE, Chalmers

47

* Extending Carry-select to multiple blocks

Carry Select Adder

b15-b12 a15-a12 b11-b8 a11-a8 b7-b4 a7-a4
i i i b3-b0 a3-a0
—] 4-bit Adder i —] 4-bit Adder i —] 4-bit Adder i i i
p il L L p il L L p il L L) .
°°“tﬂ2 4-bit ‘B: 4-bit ﬂ? 4-bit | +PitAdder cin
Adder [Adder [Adder [
Inlls Inlls Inlls
|10}—‘|10}—‘|1o}—‘|1o|—< |10}—‘|10}—‘|1o}—‘|10|—< |10}—‘|1o}—‘|1o}—‘|1o|—<
* What is the optimal # of blocks and # of bits/block?
— If # blocks too large delay dominated by total mux delay
— If # blocks too small delay dominated by adder delay
VN stages of /N bits Tis O(VN),

Cost ~2*ripple + muxes

; |
cout 0

b15-b12 a15-a12

I

Carry Select Adder

b11-b8 a11-a8

!

!

I
E OW [0 L

4-bit Adder 1 4-bit Adder 1
. _{j:J_ m L
4-bit 0 4-bit
Adder] Adder []
1 | 1 | I

W|1o|~

b7-b4

!

ar-a4

!

4-bit Adder 1
0 4-bit
Adder]
1 | I

b3-b0

I

a3-a0

4-bit Adder

— cin

totaI

(2*Sqrt(N) 1) TFA

Els
'“ﬁ'”ﬁ“

For ripple adder|T, ., =

Is sqrt(N) really the optimum?

N Tea

Inlis
|10}—‘|10}—‘|1

— From right to left increase size of each block to better match delays
— E.g.: 16-bit adder, use block sizes [5 4 3 2 2]
— E.g.: 64-bit adder, use block sizes [13 12 11109 8 7]

Carry Select Adder
variable size blocks

A15/B15 A13/B13 A11/B11
A14/B14 A12/B12

A9/B9 A7IB7
A10/B10 A8/B8

A5/B5
A6/B6 A4/B4

Count

$15 $14 $S13 $12 S11 S10 S9 S8 s7

16-bit adder Carry select adder with variable block sizes [5 4 3 2 2]

EDA322 Digital Design,

2017-2018, Lecture 2 |. Sourdis, CSE, Chalmers 50

Carry Look-ahead Adders

* In general, for n-bit addition best we can achieve is

delay O(log(n))
* How do we arrange this? (think trees)
* First, reformulate basic adder stage:

carry “propagate”
Pi=a;®b
Exactly one of the 2 inputs is 1,

then propagate the carry you
received from the previous stage

abcc

carry “generate”
gi = ab
If both inputs are 1, then no

matter what carry-in you
received, generate a carry

o

N

o
AA—\OAOOOI_

AOOAOA_\OU)

EDA322 Digital Design,

2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers

Civ1 = 0i T DG
Carry-out is one

if you generate a carry
or you have a carry-in
to propagate

Si=pP; D¢

Result is 1 either when
exactly 1 of the

Inputs (a, b) is 1
(carry-propagate)
(exclusive) or

have a carry-in

51

Carry Look-ahead Adders

* Ripple adder using p and g signals: Co
!
a; —» —>Po —{ S0 = Po D Co L s,
by — —Jo — 1= 90 * PoCo
a; —» Py — $1 =P D Yy
b, —» —> gy — ©C2=9¢ * PqCy
a, —» —> P, = $27P2DC L s,
b, — —> g, — C3= 921 PGy
az; —» —> D3 —» S3=p3@C3 L s,
by — —> g3 — C4 =03+ P3Cs3
!

Cs4

e So far, no advantage over ripple adder: Ta N

Carry Look-ahead Adders

* Expand carries:

C1=8+Pg

C; =81+ P1C1 =811 P18o + P1PuCo

C3 =8+ PGy =8, F Pa81 + P1P28o + P2P1P0Co
Cy =831t P3C3 =83+ P38, T P3P8, +. ..

* Why not implement these equations directly to avoid
ripple delay?
— Lots of gates. Redundancies (full tree for each).
— Gate with high # of inputs.

* Let sreorganize the equations.

Carry Look-ahead Adders

‘“ ”y .
 "Group propagate and generate signals:
— P) Cin

— g l

— Pi+1

Jit > P =i Pi+1 --- Pirk
G = Gik + PiskTirket T -+ T (Pis1Pis2 -+ Pirk)9i

> Pisk l
— Qivk Cout

* Ptrueif the group as a whole propagates a carry to c_,

* Gtrue if the group as a whole generates a carry
Cou=G + PC,,

* Group P and G can be generated hierarchically.

Carry Look-ahead Adders

Co

9-bit Example of hierarchically
generated P and G signals:

do
bO —>
a1 —>
b1 —> a

32—»

b, |~ © —~P=P,P,P,

a3—’
b3—’
a4—’
b4—’
a5—’
b5—’

2% | p ~——~G=G,+PG, +P,P.G,

bﬁ_’
a7_’
b7—’ C l
as—’

b8_’ _>Gc C9=G+PCO

— Po
>

> 3

> Py
——>

I %

— Pg=pgp
Jo 8=PoP+
C1= gO+pOCO —> G8=g1+p1go
«
o F
c,=Gg+Pgcy
C
? — Py=p,ps
o))
C3= g>1P,Cy — Gg=g5+p19,
J3 l e,
o — P,=p4Ps
J4
Cs5= J41P4Cy —* G,=05+Ps9,
95 c=G,+P,c,
Ce — Pp,=pepy;
J6
€77 95" PoCe — Gy=97tP06
g7

v Ce

8-bit Carry Look-ahead
Adder with 2-input gates.

—> P=PgPq

C4=Gc+ PCCO

— Py=P,Py

— G,=G,+P,G,

— GC=GQ+P968

> I:J’e=|:)cpd

— G,=G,+P,G,

cg=G.+P.c,

8-bit Carry Look-ahead
Adder with 2-input gates.

9=931P392

S3 l C4

—> P.=p4ps

b—971P79%6

S7 l Cg

EDA322 Digital Design,

2017-2018, Lecture 2 [. Sourdis, CSE, Chalmers 57

Lookahead
Level 3

Lookahead
Level 2

Lookahead
Level 1

Compute
generate
and
propagate

Xy =7

adder inputs

Adders

Carry Look-ahead adder

!

G3 P3 o
Cy
G? P? £ Gg PE -
g Cq
\ T T A A A T
6y Ay LI & P L | e oPE Ll e 8
Cy Cg Cq €y
T A 1 T 1 T 1 A A A 1 A 1 A T A
Gy 7 Gg Pg Gg Pg Gy Py Gy Py Gy Py Gy Py Gy Pyl
T T A T 1 T ! A)) A 1
e [[[[nos [[e
v ¥ [y v | vy | v | o | vy [vy | vy
Fo |« |Fa [« | Fa |« | Fa |« | Fa |= | Fa |« | Fa [« | Fa |«

!
5

EDA322 Digital Design,
2017-2018, Lecture 2

o’ —

o7
-

|. Sourdis, CSE

, Chalmers 58

http://m.socrative.com/student/#joinRoom
room number: 713113

* Ql: a 8-bit ripple carry adder Q3: What is the delay and

compared to a 4-bit ripple area of a 8-bit carry select
carry adder has: adder of 2 blocks (each block
— 50% more area 4-bits). Consider that:
— 2 times more delay — FA delay=1, MUX delay=1
 Q2: when adding 111 and 101 — FAarea=1and MUXarea=1
in a ripple carry adder, how e Q4: What is the delay of a
many carries are generated? carry-lookahead adder:
— Linear, O(n)?
— OGWNY

— OflogN)?

EDA322 Digital Design,

Summary of Lecture 2

Boolean algebra basics

— Axioms, theorems,

— PoS, SoP, minterms, maxterms
Logic minimization:

— Karnaugh

* Multiple variables
e Multiple functions

Adders

— Ripple carry, Carry select, Carry
lookahead

2017-2018, Lecture 2

Book sections

(complimentary to the

slide lectures):

— 3.1,3.2,3.4, 3.5, 6.1-6.3,
6.5-6.9, 10.2, 10.3, 12.1

Next Lecture 3

(Thursday):

— Combinational logic
(VHDL)

[. Sourdis, CSE, Chalmers 61

