
EDA322
Digital	Design

Lecture	2:	
Logic	Minimization,	Adders

Ioannis	Sourdis

Lecture	2	outline
• Boolean	logic	refresher
• Logic	minimization

– Karnaugh

• Adders
– Ripple-carry,
– Carry-select
– Carry-Lookahead

I. Sourdis, CSE, Chalmers 2EDA322 Digital Design,
2017-2018, Lecture 2

Boolean	Logic	
refresher

I. Sourdis, CSE, Chalmers 3EDA322 Digital Design,
2017-2018, Lecture 2

Boolean Algebra

1) X ⋅0 = 0
2) X ⋅ 1 = X
3) X ⋅ X = X

4) X ⋅ X = 0
5) X + 0 = X
6) X + 1 = 1
7) X + X = X

8) X + X = 1

9) X = X

10A) X ⋅ Y = Y ⋅ X
10B) X+ Y = Y + X
11A) X YZ() = XY()Z
11B) X + Y+Z() = X +Y()+ Z
12A) X Y+Z() = XY + XZ
12B) X+ (YZ) = (X +Y)(X + Z)
12C) X+Y() W+Z() = XW + XZ +YW +YZ

13A) X+XY = X+Y

13B) X+XY = X+Y

13C) X+XY = X+Y

13D) X+XY = X+Y

14A) X Y = X + Y

14B) X +Y = X Y

Commutative
Law

Associative
Law

Distributive
Law

Consensus
Theorem

DeMorgan’s Theorem

I. Sourdis, CSE, Chalmers 4EDA322 Digital Design,
2017-2018, Lecture 2

Book	Notations

• For	AND	logic	function:
– Book	uses	Ù or	&	

• e.g.,	:	(aÙb) (a	&	b)	

– We	are	used	to	�
• e.g.,	:	(a�b)

• For	OR	logic	function:
– Book	uses	Ú or	|

• e.g.,	:	(aÚb) (a	|	b)	

– We	are	used	to	+
• e.g.,	:	(a+b)

• For	NOT	logic	function:
– Book	uses	¬ or	~

• e.g.,	:	(¬a)		(~a)

– We	are	used	to	’	or −
• e.g.,	:	(a’)		(a)

• For	XOR	logic	function:
– Book	and	we	use	⊕

• e.g.,	:	(a⊕b)

I. Sourdis, CSE, ChalmersEDA322 Digital Design,
2017-2018, Lecture 2 5

Algebraic	Forms	of	Logic	Functions
• Literal:	A	variable,	complemented	or	uncomplemented.
• Product:	Literals	ANDed	together.
• Sum:	Literals	ORed	together.

• SOP	(Sum	of	Products):	
• ORing	product	terms
• f(A,	B,	C)	=	ABC +	A'C +	B'C

• POS	(Product	of	Sums)
• ANDing	sum	terms
• f (A,	B,	C)	=	(A'	+	B'	+	C')(A +	C')(B +	C')

I. Sourdis, CSE, Chalmers 8EDA322 Digital Design,
2017-2018, Lecture 2

de	Morgan	theorem

x 1
x 2

x 1
x 2

x 1

x 2

x 1 x 2 x 1 x 2 + = (a)

x 1
x 2

x 1

x 2

x 1 x 2 + x 1 x 2 = (b)

x 1
x 2

nand or or

nor and and

The inversion of a
product is the sum of
the inverted variable

The inversion of a sum
is the product of the
inverted variable

I. Sourdis, CSE, Chalmers 9EDA322 Digital Design,
2017-2018, Lecture 2

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

AND - OR

OR - AND

NAND - NAND

NOR - NOR

SoP

PoS

I. Sourdis, CSE, Chalmers 10EDA322 Digital Design,
2017-2018, Lecture 2

The	XOR	gate

I. Sourdis, CSE, Chalmers 11EDA322 Digital Design,
2017-2018, Lecture 2

The	XOR	gate

Commutative Law
ΑÅΒ = ΒÅΑ

Associative Law
(ΑÅΒ)ÅC = AÅ(BÅC) = AÅBÅC

Distributive Law
(AB)Å(AC) = A(BÅC)

I. Sourdis, CSE, Chalmers 12EDA322 Digital Design,
2017-2018, Lecture 2

Algebraic	Forms	of	Logic	Functions
• A	minterm is	a	product	term	in	which	all	the	variables	appear	exactly	once

either	complemented	or	uncomplemented.
• Canonical	Sum	of	Products	(canonical	SOP):

– Represented	as	a	sum	of	minterms	only.
– Example:	f1(A,B,C) =	A'BC' +	ABC' +	A'BC	+	ABC
– Minterms	of	three	variables:

Minterm Minterm Code Minterm Number
A'B'C' 000 m0
A'B'C 001 m1
A'BC' 010 m2
A'BC 011 m3
AB'C' 100 m4
AB'C 101 m5
ABC' 110 m6
ABC 111 m7

I. Sourdis, CSE, Chalmers 13EDA322 Digital Design,
2017-2018, Lecture 2

Algebraic	Forms	of	Logic	Functions
• A	maxterm is	a	sum	term	in	which	all	the	variables	appear	exactly	once

either	complemented	or	uncomplemented.
• Canonical	Product	of	Sums	(canonical	POS):

– Represented	as	a	product	of	maxterms	only.
– Example:	f2(A,B,C) =	(A+B+C)(A+B+C')(A'+B+C)(A'+B+C')	

• Maxterms	of	three	variables:
Maxterm Maxterm Code Maxterm Number
A+B+C 000 M0

A+B+C' 001 M1

A+B'+C 010 M2

A+B'+C' 011 M3

A'+B+C 100 M4

A'+B+C' 101 M5

A'+B'+C 110 M6

A'+B'+C' 111 M7

I. Sourdis, CSE, Chalmers 14EDA322 Digital Design,
2017-2018, Lecture 2

+ ABC+ ABC’+ AB’C+ A’BCA’B’C

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0 F =

F’ = A’B’C’ + A’BC’ + AB’C’

Canonical	(Normal)	Forms
SoP canonical form

F = 001 011 101 110 111

(A + B + C) (A + B’ + C) (A’ + B + C)

F =

F = 000 010 100

canonical form ¹ minimal form

PoS canonical form

F= Σ(1,3,5,6,7)

F= Π(0,2,4)

#
0
1
2
3
4
5
6
7

I. Sourdis, CSE, Chalmers 15EDA322 Digital Design,
2017-2018, Lecture 2

Conversion	between	canonical	forms

Relation	between	maxterms	and	minterms	of	a	
function

F(x,y,z)	=	Σ(1,3,5,6,7)	=	Π(0,2,4)

… and	for	the	inverted	function:
F’(x,y,z)	=	Π(1,3,5,6,7)	=	Σ(0,2,4)

I. Sourdis, CSE, Chalmers 16EDA322 Digital Design,
2017-2018, Lecture 2

Shannon's	expansion	theorem
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

Example:
F(x1,	x2,	x3)	=	x1x2 +	x1x3	+	x2x3

=	x1’F(0,	x2,	x3)	+	x1F(1,	x2,	x3)	
=	x1’	(0x2 +	0x3	+	x2x3)+	x1(1x2 +	1x3	+	x2x3)
=	x1’	(x2x3)+	x1(x2 +	x3	+	x2x3)
=	x1’	(x2x3)+	x1(x2 +	x3(1 +	x2))
=	x1’	(x2x3)+	x1(x2 +	x3)

I. Sourdis, CSE, Chalmers 17EDA322 Digital Design,
2017-2018, Lecture 2

Derivation	of	Canonical	Forms
• Derive	canonical	PoS	or	SoP	using	Boolean	algebra.
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

Convert	a	function	to	SoP	(Two	alternatives,	second	is	simpler!)
1. Apply	Shannon		Theorem	until	you	get	sum	of	minterms
2. Get	the	function	to	a	SoP	form,	as	follows:

– if	a	product	of	literals	is	a	minterm,	keep	it
– for	every	variable	xi that	doesn’t	exist	in	a	product	we	add	 (xi +	xi’),	e.g.:	

• x1*x2	=	x1*x2*(x3+	x3’) =	x1*x2*x3	+	x1*x2*x3’
– Continue	and	delete	redundant	products

I. Sourdis, CSE, Chalmers 18EDA322 Digital Design,
2017-2018, Lecture 2

Derivation	of	Canonical	Forms
• Derive	canonical	PoS	or	SoP	using	Boolean	algebra.
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

• Example:	f(A,B,C)	=	AB	+	AC' +	A'C
– f(A,B,C)	=	AB	+	AC' +	A'C =	A	f(1,B,C)	+	A'	f(0,B,C)

=	A(1×B +	1×C'	+	1'×C)	+	A'(0×B +	0×C'	+	0'×C)	=	A(B	+	C')	+	A'C
– f(A,B,C)	=	A(B	+	C')	+	A'C =	B[A(1+C')	+	A'C]	+	B'[A(0	+	C')	+	A'C]

=	B[A +	A'C]	+	B'[AC'	+	A'C]	=	AB +	A'BC +	AB'C'	+	A'B'C
– f(A,B,C)	=	AB +	A'BC +	AB'C'	+	A'B'C

=	C[AB +	A'B×1	+	AB'×1'	+	A'B'×1]	+	C'[AB +	A'B×0	+	AB'×0'	+	A'B'×0]	
=	ABC +	A'BC +	A'B'C +	ABC'	+	AB'C’

I. Sourdis, CSE, Chalmers 19EDA322 Digital Design,
2017-2018, Lecture 2

Derivation	of	Canonical	Forms
• Derive	canonical	PoS	or	SoP	using	Boolean	algebra.
• Shannon's	expansion	theorem

(a).	f(x1,	x2,	…,	xn)	=	x1 *f(1,	x2,	…,	xn)	+	x1’*	f(0,	x2,	…,	xn)
(b).	f(x1,	x2,	…,	xn)	=	[x1 +	f(0,	x2,	…,	xn)]	[x1'	+	f(1,	x2,	…,	xn)]

• Example:	f(A,B,C)	=	AB	+	AC' +	A’C
f(A,B,C)	=	AB	+	AC' +	A'C =	
=	AB(C+C’)	+	AC’(B+B’) +	A'C(B+B’)
= ABC	+	ABC’	+	ABC’	+	AB’C’	+	A’BC	+	A’B’C
=	ABC	+	ABC’	+	AB’C’	+	A’BC	+	A’B’C

I. Sourdis, CSE, Chalmers 20EDA322 Digital Design,
2017-2018, Lecture 2

Logic Simplification

I. Sourdis, CSE, Chalmers 21EDA322 Digital Design,
2017-2018, Lecture 2

22

yz
wx 00 01 11 10

00
01 1 1
11
10

W’XY’Z + W’XYZ =
W’XZ(W’XZ) (Y’+Y) =

Note: (Y’+Y)=1

Karnaugh-diagram

I. Sourdis, CSE, Chalmers 22EDA322 Digital Design,
2017-2018, Lecture 2

Karnaugh of 4 variables
Minimize function F = S m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’

C

00

01

11

10

00 01 11 10

D

A

B

CD\AB

I. Sourdis, CSE, Chalmers 23EDA322 Digital Design,
2017-2018, Lecture 2

Product	of	Sums	(maxterms)

POS f (x1,…, x4) = P M(0, 1, 4, 8, 9, 12, 15).

x 1 x 2 x 3 x 4

0

00 01 11 10

0 0 0

0 1 1 0

1 1 0 1

1 1 1 1

00

01

11

10

x 2 x 3 + ()

x 3 x 4 + ()

x 1 x 2 x 3 x 4 + + + ()
How would one
choose between
PoS and SoP?

f = (x3+x4)(x2+x3)(x1+x2+x3+x4)

I. Sourdis, CSE, Chalmers 24EDA322 Digital Design,
2017-2018, Lecture 2

x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x 1 x 2 x 3 x 4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f 1 x 1 x 3 x 1 x 3 x 4 x 1 x 2 x 3 x 5 + + =

x 5 1 = x 5 0 =

Karnaugh of 5 variables

I. Sourdis, CSE, Chalmers 26EDA322 Digital Design,
2017-2018, Lecture 2

Minimizing	multiple	functions

x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function

1

f 1

x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

(b) Function f 2

I. Sourdis, CSE, Chalmers 28EDA322 Digital Design,
2017-2018, Lecture 2

x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function

1

f 1
x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

(b) Function f 2

f 1

f 2

x 2

x 3

x 4

x 1

x 3

x 1

x 3

x 2

x 3

x 4

(c) Combined circuit for f 1 f 2 and

I. Sourdis, CSE, Chalmers 30EDA322 Digital Design,
2017-2018, Lecture 2

Minimizing	multiple	functions

Definition	of	terms

• A	function	F covers a	function	g,	if	it	takes	the	value	’1’	when	
function	g does.

• Implicant:	a	product	of	literals	of	a	function	f for	which	f	gets	
the	value	’1’.

• Prime	implicant:	an	implicant	that	cannot	be	covered	by	a	
more	general	(more	reduced	- meaning	with	fewer	literals)	
implicant.

• Essential	prime	implicant:	a	prime	implicant	of	function	f that	
includes	a	minterm,	not	included	by	any	other	prime	
implicant	of	the	function.

I. Sourdis, CSE, Chalmers 33EDA322 Digital Design,
2017-2018, Lecture 2

0 X

1 1

1 0

1 0

AB
00 01 11 10

1 0

0 0

1 1

1 1

CD00

01

11

10

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples	to	illustrate	terms

0 0

1 1

1 0

1 0
D

AB
00 01 11 10

0 1

0 1

1 1

0 0
B

CD 00

01

11

10

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' +
A'B'D

essential

minimum cover: 4 essential implicants

Essential prime implicants

I. Sourdis, CSE, Chalmers 34EDA322 Digital Design,
2017-2018, Lecture 2

From	Boolean	expressions	to	logic	gates

• More	than	one	way	to	map	expressions	to	gates

– e.g.,		F	=	A’ •	B’ •	(C	+	D)	=	(A’ •	(B’ •	(C	+	D)))

VHDL:
F<=	not	A	and	(not	B	and	(C	or	D)));

T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

I. Sourdis, CSE, Chalmers 35EDA322 Digital Design,
2017-2018, Lecture 2

Waveform	view	of	logic	functions

• Note	how	edges	don’t	line	up	exactly
• It	takes	time	for	a	gate	to	switch	its	output!

time

change in Y takes time to "propagate" through gates
I. Sourdis, CSE, Chalmers 36EDA322 Digital Design,

2017-2018, Lecture 2

Choosing	different	implementations	of	a	function

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

I. Sourdis, CSE, Chalmers 37EDA322 Digital Design,
2017-2018, Lecture 2

What	is	the	difference?

• Delay
• Number of gates in a row

• Area
• fewer gates in total or
• Smaller circuit

• Power?

• Tradeoffs:
• More Area for lower delay
• Higher Delay for lower power

I. Sourdis, CSE, Chalmers 38EDA322 Digital Design,
2017-2018, Lecture 2

• Q1:	which	is	the	number	of	minterm	AB’C
• Q2:	which	is	the	number	of	maxterm	A+B’+C
• Q3:	What	are	the	maxterms	of	
F(x0,x1,x2)=Σ(0,1,2,3,4)

• Q4:	What	are	the	minterms	of	F’	if	
F(x0,x1,x2)=Σ(0,1,2,3,4)

• Q5:	Expand	F(x0,x1,x2)=	x0*x1	to	its	canonical	
SoP

I. Sourdis, CSE, Chalmers 39

Quiz	2-1
http://m.socrative.com/student/#joinRoom

room	number:	713113

EDA322 Digital Design,
2017-2018, Lecture 2

Adders

I. Sourdis, CSE, Chalmers 40EDA322 Digital Design,
2017-2018, Lecture 2

Adders
Full-adder cell (FA) revisited:

FA

a bcin

cout s

a b cin cout s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

00 01 11 10 00 01 11 10
0

1

0

1

ab ab
cin cin

cout s
I. Sourdis, CSE, Chalmers 41EDA322 Digital Design,

2017-2018, Lecture 2

Boolean	functions	for	the	full	adder

R	=	AB'Cin’	+	A'BCin’	+	ABCin	+	A'B'Cin
=	Cin'(AB'+A'B)	+	Cin(AB+A'B')
=Cin'(AB'+A'B)	+	Cin	(AB'+A'B)’
=	Cin'(A	xor	B)	+	Cin	(A	xor	B)’
=Cin	xor	(A	xor	B)

Cout=AB'Cin	+	A'Bcin	+	AB =
=Cin(AB'+A'B)	+	AB
=Cin(A	xor	B)	+	AB

r

Co

Ci

Critical path:
The longest path from
an input to an output

I. Sourdis, CSE, Chalmers 42EDA322 Digital Design,
2017-2018, Lecture 2

Ripple-Carry	Adder

• Each	cell:
ri =	ai XOR bi XOR cin
cout	=	cin(ai XOR	bi)	+	aibi

• 4-bit	adder:

• What	about	subtraction?

“Full adder cell”

r

Co

Ci

I. Sourdis, CSE, Chalmers 43EDA322 Digital Design,
2017-2018, Lecture 2

Subtractors
A - B = A + (-B)

How do we form -B?
1. complement B
2. add 1

SUB

s0s1sn-1

bn-1 b1 b0

an-1 a1 a0

cout cinn-bit adder

I. Sourdis, CSE, Chalmers 44EDA322 Digital Design,
2017-2018, Lecture 2

Adders	(cont.)
Ripple Adder

Ripple adder is inherently slow because, in general
s7 must wait for c7 which must wait for c6 …

T is O(n), Cost is O(n)

FA

c0
a0b0

s0c1

c2c3c4c5c6c7

s7 s6

What’s the
Critical path
here?

I. Sourdis, CSE, Chalmers 45EDA322 Digital Design,
2017-2018, Lecture 2

r

C
o

C
i

Critical	Path	Through	a	Ripple-Carry	Adder

I. Sourdis, CSE, Chalmers 46EDA322 Digital Design,
2017-2018, Lecture 2

Tripple-add = TFA(x,y®cout) + (k – 2)´TFA(cin®cout) + TFA(cin®s)

How do we make it faster,
perhaps with more cost?

Mechanical adder: https://youtu.be/GcDshWmhF4A

x

s

y

c

x

s

y

c

x

s

y

c

x

s

y

c

c out c in

0 0

0

c 0

1 1

1

1

k-2 kñ2

kñ2

2 k

kñ1

kñ1

kñ1

kñ1

FA FA FA FA . . .
c kñ2

s k

k-2

k-2

k-2k-1

k-1

k-1k-1

Carry	Select	Adder

FA

c0
a0b0

s0

FA

1 0 1 01 0 1 0

0

1
c8 1

0

a1a2a3a4a5a6a7

a4a5a6a7

b7 b6 b5 b4 b3

b7 b6 b5 b4

b2 b1

s1s2s3

s4s5s6s7

T = Tripple_adder / 2 + TMUX

COST = 1.5 * COSTripple_adder+ (n+1) * COSTMUX
I. Sourdis, CSE, Chalmers 47EDA322 Digital Design,

2017-2018, Lecture 2

Carry	Select	Adder
• Extending	Carry-select	to	multiple	blocks

• What	is	the	optimal	#	of	blocks	and	#	of	bits/block?
– If	#	blocks	too	large	delay	dominated	by	total	mux	delay
– If	#	blocks	too	small	delay	dominated	by	adder	delay

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

4-bit Adder

a3-a0b3-b0

cincout

a11-a8b11-b8a15-a12b15-b12 b7-b4 a7-a4

bits N of stages N T is O(√N),
Cost »2*ripple + muxes

I. Sourdis, CSE, Chalmers 48EDA322 Digital Design,
2017-2018, Lecture 2

Carry	Select	Adder

• Ttotal =	(2*sqrt(N)-1)	TFA
– assuming	TFA =	TMUX

• For	ripple	adder	Ttotal =	N	TFA

• Is	sqrt(N)	really	the	optimum?
– From	right	to	left	increase	size	of	each	block	to	better	match	delays
– E.g.:	16-bit	adder,	use	block	sizes	[5	4	3	2	2]	
– E.g.:	64-bit	adder,	use	block	sizes	[13	12	11	10	9	8	7]

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

1
0

1 0 1 0 1 0 1 0

4-bit Adder

 4-bit
Adder

4-bit Adder

a3-a0b3-b0

cincout

a11-a8b11-b8a15-a12b15-b12 b7-b4 a7-a4

I. Sourdis, CSE, Chalmers 49EDA322 Digital Design,
2017-2018, Lecture 2

Carry	Select	Adder
variable	size	blocks

EDA322 Digital Design,
2017-2018, Lecture 2 I. Sourdis, CSE, Chalmers 50

16-bit	adder	Carry	select	adder	with	variable	block	sizes	[5	4	3	2	2]	

Carry	Look-ahead	Adders
• In	general,	for	n-bit	addition	best	we	can	achieve	is	

delay	O(log(n))

• How	do	we	arrange	this?		(think	trees)
• First,	reformulate	basic	adder	stage:

carry “propagate”
pi = ai Å bi
Exactly one of the 2 inputs is 1,
then propagate the carry you
received from the previous stage

carry “generate”
gi = ai bi
If both inputs are 1, then no
matter what carry-in you
received, generate a carry

ci+1 = gi + pici
Carry-out is one
if you generate a carry
or you have a carry-in
to propagate

si = pi Å ci
Result is 1 either when
exactly 1 of the
Inputs (a, b) is 1
(carry-propagate)
(exclusive) or
have a carry-in

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

a b ci ci+1 s

I. Sourdis, CSE, Chalmers 51EDA322 Digital Design,
2017-2018, Lecture 2

p

g

Carry	Look-ahead	Adders
• Ripple	adder	using	p	and	g	signals:

• So	far,	no	advantage	over	ripple	adder:			T	a N

p0
g0

s0 = p0 Å c0
c1 = g0 + p0c0

s0
a0
b0

p1
g1

s1 = p1 Å c1
c2 = g1 + p1c1

s1
a1
b1

p2
g2

s2 = p2 Å c2
c3 = g2 + p2c2

s2
a2
b2

p3
g3

s3 = p3 Å c3
c4 = g3 + p3c3

s3
a3
b3

c0

c4

I. Sourdis, CSE, Chalmers 52EDA322 Digital Design,
2017-2018, Lecture 2

Carry	Look-ahead	Adders
• Expand	carries:

c0
c1 =	g0 +	p0c0
c2 =	g1 +	p1c1 =	g1 +	p1g0 +	p1p0c0
c3 =	g2 +	p2c2 =	g2 +	p2g1 +	p1p2g0 +	p2p1p0c0
c4 =	g3 +	p3c3 =	g3 +	p3g2 +	p3p2g1 +	.	.	.

.

.

.

• Why	not	implement	these	equations	directly	to	avoid	
ripple	delay?
– Lots	of	gates.		Redundancies	(full	tree	for	each).
– Gate	with	high	#	of	inputs.

• Let’s	reorganize	the	equations.
I. Sourdis, CSE, Chalmers 53EDA322 Digital Design,

2017-2018, Lecture 2

Carry	Look-ahead	Adders
• “Group” propagate	and	generate	signals:

• P	true	if	the	group	as	a	whole	propagates	a	carry	to	cout
• G	true	if	the	group	as	a	whole	generates	a	carry

• Group	P	and	G	can	be	generated	hierarchically.

pi
gi

pi+1
gi+1

pi+k
gi+k

P = pi pi+1 … pi+k
G = gi+k + pi+kgi+k-1 + … + (pi+1pi+2 … pi+k)gi

cin

cout

Cout = G + PCin

I. Sourdis, CSE, Chalmers 54EDA322 Digital Design,
2017-2018, Lecture 2

Carry	Look-ahead	Adders
a0
b0
a1
b1
a2
b2

a

a3
b3
a4
b4
a5
b5

b

c3 = Ga + Pac0

Pa

Ga

Pb

Gb

a6
b6
a7
b7
a8
b8

c

c6 = Gb + Pbc3

Pc

Gc

P = PaPbPc

G = Gc + PcGb + PbPcGa

c9 = G + Pc0

c0

9-bit Example of hierarchically
generated P and G signals:

I. Sourdis, CSE, Chalmers 55EDA322 Digital Design,
2017-2018, Lecture 2

p0
g0s0

p1
g1s1

c1= g0+p0c0

p2
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c0

c4

c8

8-bit Carry Look-ahead
Adder with 2-input gates.

I. Sourdis, CSE, Chalmers 56EDA322 Digital Design,
2017-2018, Lecture 2

p0
g0s0

p1
g1s1

c1= g0+p0c0

p2
g2s2

c2

p3
g3s3

c3= g2+p2c2

p4
g4s4

p5
g5s5

p6
g6s6

c6

p7
g7s7

c0

c5= g4+p4c4

c7= g6+p6c6

c4

c4=Gc+Pcc0

Pc=P8P9

Gc=G9+P9G8

Pd=PaPb

Gd=Gb+PbGa

c8=Ge+Pec0

Pe=PcPd

Ge=Gd+PdGc

c2=G8+P8c0

P8=p0p1

G8=g1+p1g0

P9=p2p3

c6=Ga+Pac4

Pa=p4p5

Ga=g5+p5g4

Pb=p6p7

G9=g3+p3g2

Gb=g7+p7g6

c0

c4

c8

8-bit Carry Look-ahead
Adder with 2-input gates.

I. Sourdis, CSE, Chalmers 57EDA322 Digital Design,
2017-2018, Lecture 2

Carry	Look-ahead	adder

I. Sourdis, CSE, Chalmers 58EDA322 Digital Design,
2017-2018, Lecture 2

x, y
adder inputs

• Q1:	a	8-bit	ripple	carry	adder	
compared	to	a	4-bit	ripple	
carry	adder	has:
– 50%	more	area
– 2	times	more	delay

• Q2:	when	adding	111	and	101	
in	a	ripple	carry	adder,	how	
many	carries	are	generated?	

• Q3:	What	is	the	delay	and	
area	of	a	8-bit	carry	select	
adder	of	2	blocks	(each	block	
4-bits).	Consider	that:
– FA	delay=1,	MUX	delay=	1	
– FA	area	=	1	and	MUX	area	=	1

• Q4:	What	is	the	delay	of	a	
carry-lookahead adder:
– Linear,	O(n)?
– ?
– O(logN)?

I. Sourdis, CSE, Chalmers 60

Quiz	2-2
http://m.socrative.com/student/#joinRoom

room	number:	713113

EDA322 Digital Design,
2017-2018, Lecture 2

O(N)

Summary	of	Lecture	2
• Boolean	algebra	basics		

– Axioms,	theorems,	
– PoS,	SoP,	minterms,	maxterms

• Logic	minimization:	
– Karnaugh

• Multiple	variables
• Multiple	functions

• Adders
– Ripple	carry,	Carry	select,	Carry	

lookahead

• Book	sections	
(complimentary	to	the	
slide	lectures):	
– 3.1,	3.2,	3.4,	3.5,	6.1-6.3,	
6.5-6.9,	10.2,	10.3,	12.1		

• Next	Lecture	3	
(Thursday):
– Combinational	logic	
(VHDL)

I. Sourdis, CSE, Chalmers 61EDA322 Digital Design,
2017-2018, Lecture 2

