EDA322
Digital Design

Lecture 3:
Combinational Logic - VHDL

loannis Sourdis

Outline of Lecture 3

 VHDL styles

* Dataflow style (combinational logic)

— Multiplexers, decoders, adders, multipliers,
comparators, buffers, encoders

— Concurrent statements

VHDL Design Styles

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

VHDL Design Styles

VHDL DeS|gn
Styles
X Testbenches
behavioral
dataflow structural)
(sequential)
Concurrent Components and Seqtiential statements
statements interconnects ’

- Registers
- State machines
+Instruction decoders

Subset most Suitable for synthesis

Synthesizable VHDL

VHDL code

Dataflow VHDL r;
Design Style synthesizable

Dataflow VHDL ?Xé VHDL code
Design Style synthesizable

Data-Flow VHDL

Concurrent Statements

concurrent signal assignment
(<)
conditional concurrent signal assignment
(when-else)
selected concurrent signal assignment
(with-select-when)
generate scheme for equations
(for-generate)

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

Data-flow VHDL: Example

D

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

Data-flow VHDL: Example (1)

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY fulladd IS
PORT (x : IN
y : IN
cin : IN
S : OUT
cout :OUT
END fulladd ;

EDA322 Digital Design, 2017-
2018, Lecture 3

STD LOGIC ;
STD LOGIC ;
STD LOGIC ;
STD LOGIC ;
STD LOGIC):

l. Sourdis, CSE, Chalmers

12

Data-flow VHDL: Example (2)

ARCHITECTURE dataflow OF fulladd IS
BEGIN

s <= xXORyXORcin;

cout <= (x AND y) OR (cin AND (x XOR y)) ;
END datatlow ;

EDA322 Digital Design, 2017-

. i E
2018, Lecture 3 l. Sourdis, CSE, Chalmers

13

Logic Operators

* Logic operators

== = = -

I
and or nand nor XOT not :xnor:
i
¢ Logic operators precedence only in VHDL-93
Highest
l not
and or nand nor XOr XNor

Lowest

No Implied Precedence

Wanted: y =ab + cd
Incorrect
y<=aand b orcandd;
equivalent to
y<=((aand b)orc)andd;
equivalent to
y = (ab + c)d

Correct
y <=(a and b) or (cand d) ;

EDA322 Digital Design, 2017-
2018, Lecture 3

Multiplexers

l. Sourdis, CSE, Chalmers

16

2-to-1 Multiplexer

O—»O w
f 0 0

0%

1—]1 1 W

(a) Graphical symbol (b) Truth table

VHDL code for a 2-to-1 Multiplexer

LIBRARY iece ;
USE ieee.std logic 1164.all ;

ENTITY mux2tol IS
PORT (w0, wl,s :IN STD LOGIC;
f : OUT STD LOGIC);
END mux2tol ;

ARCHITECTURE dataflow OF mux2tol IS
BEGIN

f<=w0 WHEN s ='0' ELSE w1l ;
END dataflow ;

Cascade of two multiplexers

VHDL code for a cascade of

two multiplexers

LIBRARY ieee ;
USE 1eee.std logic 1164.all ;

ENTITY mux cascade IS
PORT (wl, w2, w3:IN STD LOGIC ;
sl, s2 : IN STD LOGIC;
f : OUT STD LOGIC);
END mux cascade ;

ARCHITECTURE dataflow OF mux cascade IS
BEGIN
f<=wl WHEN sl =“1' ELSE
w2 WHEN s2 = ‘1" ELSE
w3 ;
END dataflow ;

Operators

* Relational operators

* Logic and relational operators precedence

Highest not
= /= < <= > >=

owest and or nand nor XOr XNor

Priority of logic and relational operators

compare a=Dbc
Incorrect
... when a=b and c else ...
equivalent to
... when (a=b)and c else ...

Correct
... when a=(bandc) else ...

VHDL operators

Operator Class | Operator
Highest precedence || Miscellaneous ik ABS, NOT
Multiplying * /, MOD, REM
Sign +, —
Adding +, —, &
Shift SLL, SRL, SLA, SRA, ROL, ROR
Relational =, /= <, <=, >, >=
Lowest precedence Logical AND, OR, NAND, NOR, XOR, XNOR

EDA322 Digital Design, 2017-
2018, Lecture 3

. Sourdis, CSE, Chalmers

25

T I T _E

4-to-1 Multiplexer

1—P

2—>

N

00 ™N
01
10

y

(a) Graphic symbol

EDA322 Digital Design, 2017-
2018, Lecture 3

l. Sourdis, CSE, Chalmers

s S f
1 O
0O O WO
0 1 |
1 O W2
1 1 W3
(b) Truth table

26

VHDL code for a 4-to-1 Multiplexer

LIBRARY ieee ;
USE i1eee.std logic 1164.all ;

ENTITY mux4tol IS
PORT (wO,wl,w2,w3 :IN STD LOGIC ;
S : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
f :OUT STD LOGIC);
END mux4tol ;

ARCHITECTURE dataflow OF mux4tol IS
BEGIN
WITH s SELECT
f <= w0 WHEN "00",

wl WHEN "01",

w2 WHEN "10",

w3 WHEN OTHERS ;
END dataflow ;

EDA322 Digital Design, 2017-

. i E 7
2018, Lecture 3 l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-
2018, Lecture 3

Decoders

l. Sourdis, CSE, Chalmers

30

2-to-4 Decoder

Enw Wyl 3% %
W y
1 00 0 0 0 1 1 3
| w y
1 0 1 0 0 1 O 0 2
y
1 1 0 0 1 0 0 1
1 1 1. 100 0 — En Y
0O x x 0 0 0 0
(a) Truth table (b) Graphical

symbol

VHDL code for a 2-to-4 Decoder

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT(w - IN STD LOGIC VECTOR(1 DOWNTO 0) ;
En :IN STD LOGIC;

y : OUT STD LOGIC VECTOR(3 DOWNTO 0)) ;
END dec2to4 ;

ARCHITECTURE dataflow OF dec2to4 IS
SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;
BEGIN
Enw <=En & w;
WITH Enw SELECT
y <=“0001" WHEN "100",
"0010" WHEN "101",
"0100" WHEN "110",
“1000" WHEN "111",
"0000" WHEN OTHERS ;
END dataflow ;

EDA322 Digital Design, 2017-
2018, Lecture 3

Adders

l. Sourdis, CSE, Chalmers

39

16-bit Unsigned Adder

16

4+

‘S

X Y

) Cout Cin[

3

Operations on Unsigned Numbers

For operations on unsigned numbers

USE ieee.numeric_std.all
and
signals of the type
UNSIGNED
and conversion functions:
std logic_vector(), unsigned()

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

41

Addition of Unsigned Numbers (1)

LIBRARY ieee ;
USE 1eee.std logic 1164.all ;
USE ieee.numeric_std.all ;

ENTITY adderl6 IS
PORT (Cin
X
Y
S
Cout
END adderl6 ;

EDA322 Digital Design, 2017-
2018, Lecture 3

. IN
- IN
. IN
: OUT
: OUT

STD LOGIC ;
STD LOGIC VECTOR(15 DOWNTO 0)
STD LOGIC_VECTOR(15 DOWNTO 0) ;

STD LOGIC VECTOR(15 DOWNTO 0) :
STD LOGIC):

l. Sourdis, CSE, Chalmers 43

Addition of Unsigned Numbers (2)

ARCHITECTURE dataflow OF adder16 IS
SIGNAL Xu : UNSIGNED(16 DOWNTO 0);
SIGNAL Yu : UNSIGNED(16 DOWNTO 0);
SIGNAL Su : UNSIGNED(16 DOWNTO 0) ;
SIGNAL Cinu : UNSIGNED(1 DOWNTO 0);

BEGIN
Xu <=unsigned(‘0’ & X);

Yu <=unsigned(Y);
Cinu <= unsigned(Cin);
Su <=Xu+ Yu+ Cinu;
S <=std_logic_vector(Su(15 DOWNTO 0)) ;
Cout <= Su(16) ;
END dataflow;

EDA322 Digital Design, 2017-

. is, CSE "
2018, Lecture 3 l. Sourdis, CSE, Chalmers

Operations on Sighed Numbers

For operations on sighed numbers

USE ieee.numeric_std.all,
signals of the type
SIGNED,
and conversion functions:
std logic_vector(), signed()

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

45

Signed and Unsigned Types

Behave exactly like

STD LOGIC_VECTOR
plus, they determine whether a given vector
should be treated as a signed or unsigned number.
Require

USE ieee.numeric_std.all; General role:

Use the numeric library, avoid the
signed and unsigned libraries.

Signed and unsigned libraries
have problems when used
together in the same file!

EDA322 Digital Design, 2017-

' | : 46
2018, Lecture 3 l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-
2018, Lecture 3

Multipliers

l. Sourdis, CSE, Chalmers

47

Unsigned vs. Signed Multiplication

Unsigned Signed
1111 15 1111 -1
x 1111 X 15 x 1111 x -1
11100001 225 00000001 1

8x8-bit Unsigned Multiplier

Multiplication of unsigned numbers

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.numeric_std.all ;

entity multiply is
port(
a:in STD_LOGIC_VECTOR(7 downto 0);
b:in STD_LOGIC_VECTOR(7 downto 0);
c : out STD_LOGIC_VECTOR(15 downto 0)
);
end multiply;

architecture dataflow of multiply is
begin

c <= STD_LOGIC_VECTOR(UNSIGNED(a)*UNSIGNED(b))

end dataflow;

8x8-bit Signed Multiplier

Multiplication of signed numbers

LIBRARY ieee;
USE ieee.std logic_1164.all;
USE ieee.numeric_std.all ;

entity multiply is
port(
a:in STD_LOGIC_VECTOR(7 downto 0);
b:in STD_LOGIC_VECTOR(7 downto 0);
c : out STD_LOGIC_VECTOR(15 downto 0)
);
end multiply;

architecture dataflow of multiply is
begin

¢ <= STD_LOGIC_VECTOR(SIGNED(a)*SIGNED(b))

end dataflow;

8x8-bit Unsigned and Signed Multiplier

Multiplication of sighed and unsigned

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all ;

entity multiply is
port(
a:in STD_LOGIC_VECTOR(7 downto 0);
b:in STD_LOGIC_VECTOR(7 downto 0);
cu : out STD_LOGIC_VECTOR(15 downto 0);
cs : out STD_LOGIC_VECTOR(15 downto 0)
);
end multiply;

architecture dataflow of multiply is
begin

-- signed multiplication
cs <= STD_LOGIC_VECTOR(SIGNED(a)*SIGNED(b));

-- unsigned multiplication

cu <= STD_LOGIC_VECTOR(UNSIGNED(a)*UNSIGNED(b))

end dataflow;

numbers

EDA322 Digital Design, 2017-
2018, Lecture 3

Comparators

l. Sourdis, CSE, Chalmers

56

4-bit Number Comparator

——A AegB —
AgtB —
—+— B AtB

VHDL code for a 4-bit Unsigned Number

Comparator
LIBRARY ieee ;
USE i1eee.std logic 1164.all ;
USE ieee.numeric_std.all ;
ENTITY compare IS
PORT (A,B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
AegB, AgtB, AltB : OUT STD LOGIC);
END compare ;

ARCHITECTURE dataflow OF compare IS

BEGIN
AegB <="'1' WHEN unsigned(A)=unsigned(B) ELSE '0' ;
AgtB <="1' WHEN unsigned(A)>unsigned(B) ELSE '0' ;
AltB <="'1' WHEN unsigned(A)<unsigned(B) ELSE '0' ;

END dataflow ;

EDA322 Digital Design, 2017-

. i I
2018, Lecture 3 l. Sourdis, CSE, Chalmers 58

VHDL code for a 4-bit Signed Number

Comparator
LIBRARY ieee ;
USE i1eee.std logic 1164.all ;
USE ieee.numeric_std.all ;
ENTITY compare IS
PORT (A,B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
AegB, AgtB, AltB : OUT STD LOGIC);
END compare ;

ARCHITECTURE dataflow OF compare IS

BEGIN
AegB <="'l1' WHEN signed(A)= signed(B) ELSE '0' ;
AgtB <="'1' WHEN signed(A)>signed(B) ELSE '0' ;
AltB <= '1' WHEN signed(A)<signed(B) ELSE '0';

END dataflow ;

EDA322 Digital Design, 2017-

. i E |
2018, Lecture 3 . Sourdis, CSE, Chalmers 59

EDA322 Digital Design, 2017-
2018, Lecture 3

Buffers

l. Sourdis, CSE, Chalmers

60

Tri-state Buffer

e=0
(a) A tri-state buffer M ‘ > < o P

e X f I: e=1
X O O f
0 0 Z
0 1 Z
1 0 0 (b) Equivalent circuit
I 1 1

(¢) Truth table

Four types of Tri-state Buffers

(c) (d)

Tri-state Buffer — example (1)

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY tri_state IS
PORT (ena: IN STD_LOGIC;
input: IN STD_LOGIC;
output: OUT STD_LOGIC
);
END tri_state;

Tri-state Buffer — example (2)

ARCHITECTURE dataflow OF tri_state IS
BEGIN

output <= input WHEN (ena = ‘1") ELSE ‘Z’;
END dataflow;

EDA322 Digital Design, 2017-
2018, Lecture 3

Encoders

l. Sourdis, CSE, Chalmers

65

Priority Encoder

W W1 W N1 N Z

W3

d

d
0

0O 0 0 O

1

0O 0 O

VHDL code for a Priority Encoder

LIBRARY iece ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT (w :IN STD LOGIC VECTOR(3 DOWNTO 0) ;
y :0UT STD LOGIC VECTOR(I DOWNTO 0) ;
z :0UT STD LOGIC);
END priority ;

ARCHITECTURE dataflow OF priority IS
BEGIN
y<= "11"WHEN w(3) ="l"' ELSE
"10" WHEN w(2) ='1' ELSE
"01" WHEN w(1)="1' ELSE
"00" ;
z <="0'WHEN w ="0000" ELSE 'l" ;
END dataflow ;

Describing
Combinational Logic
Using
Dataflow Design Style

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

68

Multiple Logical Unit (MLU)
Example

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

69

MLU Block Diagram

EDA322 Digital Design, 2017-
2018, Lecture 3

MUX_4_1

~INO Y1

?T\} MUX_1 Jin :
[' MUX_2 HIN2 OUTPUT ‘P—L’ [.) '_‘DY

IN3 SELO
SEL1 %
NEG Y
L1 LO
l. Sourdis, CSE, Chalmers 70

MLU: Entity Declaration

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY mlu IS
PORT(
NEG_A : IN STD_LOGIC;
NEG_B:IN STD_LOGIC;
NEG_Y : IN STD_LOGIC;

A: IN STD_LOGIC;
B: IN STD_LOGIC;
L1: IN STD_LOGIC;
LO : IN STD_LOGIC;
Y: OUT STD_LOGIC

);
END mlu;

MLU: Architecture Declarative Section

ARCHITECTURE mlu_dataflow OF mlu IS

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

Al: STD_LOGIC;
B1: STD_LOGIC;

Y1:STD_LOGIC;

MUX_0 : STD_LOGIC;

MUX_1: STD_LOGIC;

MUX_2 : STD_LOGIC;

MUX_3 : STD_LOGIC;

L: STD_LOGIC_VECTOR(1 DOWNTO 0);

MLU - Architecture Body

Al<= NOT A WHEN (NEG_A="1") ELSE
A,

Bl<= NOT B WHEN (NEG_B="'1") ELSE
B,

Y <= NOT Y1 WHEN (NEG_Y="'1'") ELSE
Y1;

MUX_0<=Al AND B1;
MUX_1<=A1 OR B1J;
MUX_2 <= Al XOR B1;
MUX_3 <= A1 XNOR B1;

L <=L1 & LO;

with (L) select
Y1 <= MUX_0 WHEN "00",
MUX_1 WHEN "01",
MUX_2 WHEN "10",
MUX_3 WHEN OTHERS;
END mlu_dataflow;

Logic Implied Most Often by
Conditional and Selected
Concurrent Signal
Assignments

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers

74

Data-flow VHDL

Major instructions

Concurrent statements

e concurrent signal assignment (<)
e conditional concurrent signal assighment
(when-else)
e selected concurrent signal assignment
(with-select-when)
e generate scheme for equations
(for-generate)

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers 75

Conditional concurrent signal assighment

When - Else

target signal <= valuel when conditionl else
valueZ when condition’Z else

valueN-1 when conditionN-1 else

valueN;

Most often implied structure

When - Else

target signal <= valuel when conditionl else

value? when condition’? else

valueN-1 when conditionN-1 else

valueN;
Value N |:>—H 0
1 EEE —}— O
Value N-1 D 11 0 Target Signal
Value 2 D ‘ 1
Value 1
Condition N-1
Condition 2
. . Condition 1
EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers 77

Data-flow VHDL
Major instructions

Concurrent statements

e concurrent signal assignment (<)

e conditional concurrent signal assignment
(when-else)

e selected concurrent signal assignment
(with-select-when)
e generate scheme for equations

(for-generate)

EDA322 Digital Design, 2017-

2018, Lecture 3 l. Sourdis, CSE, Chalmers 78

Selected concurrent signal assighment

With —Select-When

with choice expression select
target signal <= expressionl when choices 1,

expressionZ when choices 2,

expressionN when choices N;

Most Often Implied Structure

With —Select-When

with choice expression select
target signal <= expressionl when choices I,

expressionZ when choices 2,

expressionN when choices N;

/

expression1 choices_1

expression2 — | choices_2
target_signal

expressionN | choices N
choice expression

Allowed formats of choices k

WHEN value
WHEN value 1 |value 2| | value N

WHEN OTHERS

Allowed formats of choice k - example

WITH sel SELECT
vy <= a WHEN "000",
c WHEN "001"™ | "111",
d WHEN OTHERS;

Summary of Lecture 3

 VHDL styles * Book Chapters: 3.6,

* Dataflow style 7.1.5-7.1.8
(combinational logic)

— Multiplexers, decoders,
adders, multipliers,
comparators, buffers,
encoders

e Next Lecture 4:

— Lab Processor, VHDL for
regular structures

— Concurrent statements

EDA322 Digital Design,

2017-2018, Lecture 3 I. Sourdis, CSE, Chalmers 83

