EDA322
Digital Design

Lecture 4.
The ChAcc Processor & VHDL for regular structures

loannis Sourdis

Outline of Lecture 4

* Lab processor specifications
— Datapath and control
— Instruction Set

e Structural VHDL and tips for regular structures

The ChAcc Processor
specifications

Angelos Arelakis

loannis Sourdis

EDA322 |lab processor

Chalmers Accumulator processor (ChAcc processor)

In EDA322 lab, ChAcc will be:

— Implemented

— Verified using real programs

— Downloaded on FPGA (optional)

— Evaluated in terms of performance, area and power dissipation
(optional)

Processor specifications are very important for the

implementation of ChAcc.

— Study the processor specification document (processor.pdf):
contains all the details

— Ask the lab assistants

ChAcc is based on the lab processor of HY-120 course,
Institute of Computer Science, FORTH, Greece

ChAcc processor - Overview

* ChAcc: Chalmers Accumulator processor

— Only one register to save data, as opposed to modern
processors

— Keeps the result of the most recent operation

— Consecutive operations are performed =2 result is
accumulated in the accumulator

e ChAcc:

— Simple to implement, but slow (about 2-4 clock cycles per
executed instruction)

— Runs a variety of programs
 ChAcc is an 8-bit processor:
— operates on 8-bit data

Master load enable

ChAcc processor - Overview

Controller

_
_
_
I _
|1y g | T PRME
|
|
|
_

[==]

12 | &

Instruction
Memony

pc

Gas Hn__u_ =
=]

FE

[@=ad ,_

7] nxtpc

noeng

NQoUad

B
w
FHU ©
.H_H_
L
PEE—
Basghgda
i
o
&
o
-l
(=]
wv
| -
(]
£
c
w
= -
(WA | L
— wn
m ()
[= -~
— =]
£ E
— o
%)
I./ —_
(V)]
-
c
S .
—
(S m
2 ¢
c @
= a
_ <
€ =
20 5
m [g s]
@) N
ﬂ,
@) ® «
o o
W N

ChAcc processor - Overview

Datapath is where data flow:

— Are used or modified

— Are read or written to memory

— Are displayed in 7-segments

Datapath consists of many components:
— Memory, registers

— ALU

— 7-segments

Controller: synchronizes processor’s components and
orchestrates operations

Communications bus (or just bus): transfers data between
different components (e.g., between ALU and memory) of the
datapath.

Registers

ChAcc processor — Datapath
Storage elements

ster_load_enable
—_—

les’

Memor

"
Basghgala

buslutlsag

[, I\a WII
UOIpNEU | Wal JIppE
E ¥

[@=ad 4

Internal Bus
l. Sourdis, CSE, Chalmers

N g

EDA322 Digital Design, 2017-

2018, Lecture 4

ChAcc processor — Datapath

Arithmetic and Logic Units

Master_load _enable

—_— -
Adder (PC=PC+1) _cwx _
ARE SETH
———f = === i) sl Y, :
_______________ :
-7 [
[
T 3 3
_ o
g v B E
|
|
E N nstrifemOut Mempatdout S :
E [! | 2 [
& 'J‘-l nxtpc] pc Instruction ' =z | Instruction 3 Data ;E TI DE/ E o T“'Eli;e!
1 = g Memony 12 | BE |l = ;i" Memony = iE [
.y g A : %{ :
= | EB‘!"E = & |]‘; jg: A
§ B S i
5 1 £ »
5 =i n
B L § 5 I
ILI:E . I:E dm b
. cCZbus usj
i DE/DE?
----------------- *— |
- - ‘ -
Internal Bus mmﬁéc_; g@l External
ED = Bus
EDA322 Digital Design, 2017- | Sourdis. CSE. Chalmers 9

2018, Lecture 4

ChAcc processor — Datapath
Muxes

Muxes

Master_load _enable

-

flagld
NEQ
EQ

Instri em O ut
\
|

Instrudtion * FE/
M emony 12 |BE

I
Tlagl §ag
,

PCIncrout

1727 e

addrF mmlngtruction

5
i.% |
|
ia bus)
- - L
Internal Bus =
busOutiseg =] External
EDA322 Digital Design, 2017 . Sourdis, CSE, Chalmers = Bus 10

2018, Lecture 4

ChAcc processor — Datapath

Displays
Displays

Master_load_enable

ey T

posel

PCIncrout
i L

3
o]
L}

'J'] nxetpc = ol Instruction
i E, M emony

b

i}

Internal Bus g'"l Estermnal
. . = Bus
EDA322 Digital Design, 2017-

2018, Lecture 4 l. Sourdis, CSE, Chalmers 11

ChAcc processor — Datapath
Storage elements (1)

Memory and Registers

Memory stores either data or program instructions

Harvard architecture: memory is organized in two separate
memories:

— Instruction memory (IM): saves program instructions (12-
bit); cannot be written at runtime (ROM)

— Data memory (DM): saves data (8-bit); can be written at
runtime

Both memories are accessed using an 8-bit address = each
has 256 entries (memory locations)

ChAcc processor — Datapath
Storage elements (2)

» Registers: store the content when:

— Clk is in the rising edge
— When load enable is set

|

Enable 4

Q—H—

— P Clock

upcount

Resetn

T

ChAcc processor — Datapath
Storage elements (3)

Many types of registers in ChAcc:

 ACC: The main accumulator register

* FReg: Flag register keeps 4 1-bit flags (MSB to LSB order):
— Ovf: overflow is set when an ALU operation results in overflow
— NEQ: is set when the ALU operands are not equal
— EQ: is set when the ALU operands are equal
— Zero: is set when the ALU output is zero

« Datapath registers (FE, FE/DE, DE/EX):
— Keep information needed in the next stage

* Display register:
— Keeps the data to be displayed in a particular display

ChAcc processor — Datapath
ALU (1)

* ALU = Arithmetic and Logic Unit

 ALU performs all the arithmetic and logic operations.
— Add 2 operands
— Sub 2 operands
— AND of two operands
— NOT of one operand
— Compare two operands and determine if they are equal or not

* [tdoesn’t support:
— Multiplication
— Division
— Floating point operations
— Square root, etc...

ChAcc processor — Datapath

ALU (2)
* ALU inputs:
1. ALU _inA (8 bits): connected to ACC output
2. ALU_inB (8 bits): given by the bus (normally the data
memory output)
3. Operation(2 bits): given by the controller and determines

the current ALU operation

* ALU outputs:

s wh e

ALU out (8 bits)

Carry (1 bit): is set if the carry out of the adderis 1

NotEq (1 bit): is set if ALU_inA and ALU_inB are not equal
Eq (1 bit): is set if ALU_inA and ALU_inB are equal
isOutZero (1 bit): set if ALU_out is zero

ChAcc processor — Datapath
Bus

e Bus: communicates data between different
components

* Implemented with tri-states buffer
— Need to be careful:

e if more than one tri-state buffers are ON—> bus takes an
undefined value

— Alternative implementation:

* Using multiplexers + extra logic you will find out

H - - —-
= =) m
S —— 4 -4 A Eo
B Bias gels|p & m
| - D3 _.m
I
! 03N
____ FIEER
N e T Ittty i
i 18

t L ERalE
__-
1|l
a ____-
p “____-_ FEE
|l |
THL
a __: ! “ Basghislla
[|
iy 1 T PrnE
) Mt
HL__-__
(O
e At -
E— = i
a 08 ™ 1
T T A= ° o =
IIIII | E i &
_ _ E : 3
||||| I - 1
= ol
o £ 8 0 neEna ,
S AP 08 ueep L
O i |
! o
(Th R, M
g O | E
n B e
' =
Q o Ls ok
-, Jr_._n.___._._ﬂ&_.__._._n_._ B
O | \Ve---- opeade g | PRI PP %
O |||||||||||| B2 =
=== 2
- | .m Emaﬁ_:_.m
S =3 c
I
|| i
p 2 R TEV B <
|| o &
m_ I _ m..:l:.-.- T
| £
Sl P w E H o
C _m M . 2 E
|
< 2 R 2=
|| —
h _ “ T, 02 220 m
Dln
L ; [
| ! B4
C | pod - _
_ a
_ -
_ fa
L mosng ,
NowuIod)

18

l. Sourdis, CSE, Chalmers

Wee apitUn esiplly e
2018, Lecture 4

—

Keep the entity & signal names
consistent!

Signal names and their widths are given on the datapath.

— If some names are not provided, set your own ones.

In the lab assignments, for each unit, we provide:
— The entity name (e.g. EDA322_processor is the name of the top-level design)
— The names of the entity inputs/outputs
— The widths of the entity inputs/outputs

In the 6t lab assignment, we provide a wrapper that connects your
implemented processor to the FPGA interface (pins, clk, switches,
displays, etc)

DON’T change any names/widths in the above specifications,
otherwise the provided testbenches and the wrapper won’t work!

ChAcc ISA and instruction format

ISA = Instruction Set Architecture: A set of the
instructions that this processor can “recognize”
and execute

*|Instruction consists of two parts:
— Opcode (4 bit): Unique ID of the instruction
— Argument (8 bits): Can be used in different ways

Opcode 4-bits Argument 8-bits

| J
|

Instruction 12-bits

EDA322 Digital Design, 2017-

2018, Lecture 4 l. Sourdis, CSE, Chalmers 20

Machine code | Instruction
Name
\[0)

000000000000

0010aaaaaaaa

000l1aaaaaaaa

010000000000

00llaaaaaaaa

010l1aaaaaaaa

0110aaaaaaaa

01l1l1laaaaaaaa

1000aaaaaaaa

iV EEEEEEEE]

1010aaaaaaaa

1011aaaaaaaa

N EEEEEEEE]

110l1aaaaaaaa

1110aaaaaaaa

111192609900

m

Assembly
language
NOOP

ure 4

Arithmetic

and logic
operation Do nothing B 1 M
- - et instructions
Subtract ’ ACC = ACC - DataMem[Add
uptrac DMI[Addr] ataMem[Addr] "ovf”, "Zero”
AD ACC, may set
Add ACC = ACC + DataM Add
DM[Addr] ataMem[Addr] "Ovf”, "Zero”
may set
Not NT ACC ACC = ACC' Y
Zero
NA ACC, may set
And ACC = (ACC & DataMem[Addr])') Y)
DM[Addr] Zero
CMP ACC, set EQ, NE
Compare Compare ACC vs. DataMem[Addr] Q. NEQ
DMI[Addr]
LB ACC, . .
Load Byte Load 8 byte value from location DataMem[Addr] into ACC —
DMI[Addr]
SB DM[Addr], . .
Store Byte ACC Store contents of ACC into location DataMem[Addr] —
N\
ADX ACC, t
Add Index ACC = ACC + DataMem[DataMem[Addr]] ’r’nay:e” ” * M emory
DM[DM[Addr]] Ovf”, ”Zero - .
Load Byte LBX ACC, < InStrUCtlons
ACC = DataMem[DataMem[Addr]] =
Index DM[DM[Addr]]
Store Byte >BX
. de: DM[DM[Addr]], DataMem[DataMem[Addr]] = ACC —
ACC
IN DM[Addr], Branch
Input 10 BUS DataMem[Addr] = value at I0_BUS — . i}
- < Instructions
Jump Jaddr Execute next instruction @ PC = Addr —
Jump Not /
UFET;FLaIO JNE addr Jump if the corresponding flag NEQ is set —
Jump Equal JEQ addr Jump if the corresponding flag EQ is set -)
igitﬁk@@@ignp@OlT Move ACC to Diplayeg(ysed-for depugging) —

21

Arithmetic and logic instructions

Machine code | Instructio Assembly language Comment Extra info
n Name
No

000000000000 : NOOP Do nothing —
operation
may set "Ovf”,
(WFUEFEEEEeel Subtract SU ACC, DM[Addr] ACC = ACC - DataMem[Addr] - v
ero
may set "Ovf”,
OO EEEEEEEE Add AD ACC, DM[Addr] ACC = ACC + DataMem[Addr] S
ero
010000000000 NOT NTACC ACC = ACC' Tl St 2
t IIZ ”
001laaaaaaaa AND NA ACC, DM[Addr] ACC = ACC & DataMem[Addr] may Set = zero
t EQ, NE
LEEEEEEEEER Compare CMP ACC, DM[Addr] Compare ACC vs. DataMem[Addr] set EQINEQ

may set "Ovf”,

DEEEEEEEERTY Add Index ADX ACC, DM[DM[Addr]] ACC = ACC + DataMem[DataMem[Addr]] "70ro”
ero

EDA322 Digital Design, 2017-

2018, Lecture 4 l. Sourdis, CSE, Chalmers 22

ADX ACC, DM[DMJAddr]]

Fetch

Master load enable

CLK
RESE

A

n
bu=j

FRnE

Bus T

External

"
Gaszhglaa

E mmmm_ﬂ._cmﬁ_u gy
_ &

usDutis ey

10
UlEsEp
O

FIHPRE

[=s)

B W
LOIDIUIEL | Wal HPpE
E

nxipc

a

4

nceng

Internal Bus

noautd

on
N
w
| -
()
£
©
<
o
o
(V]
QO
%)
©
—
)
o)
(0p)]
1
N~
i
o
AN
o
oo
(7p]
()
a
— <
S
o 3
[a RS
Q
N
2[
™M o0
<< -
Qo
w N

PCIncrowt

ADX ACC, DM|DMJ[Addr]]
Decode

Master_load _enable
—_—

CLK

ARESETH

. —

|
|
|
I _______

= o g= | =

g 4 5 E 2 2

[l = :w"' H =] L}

1 4
— Instri em O ut
— i

7] nxtpe =P Instruction * e | |
] & M emony 12 | BE

%]

(04—
(=)

ped seq
Ins e se

addrF romlnstruction

]

BusOut

bu=j

(3]

DE/DE
SR P gy

h | — -
Internal Bus :JECJﬁEE—; :_":Tl External
Ed) = Bus
EDA322 Digital Desi 2017-
A3 igital Design, 2017 . Sourdis, CSE, Chalmers 24

2018, Lecture 4

ADX ACC, DM[DMJAddr]]

CLK
RESE

Master load enable

A

& m Bas pds|p
-] ..A|_

bu=j

Bus T

External

"
Gaszhglaa

pusDutlseg

Internal Bus

_
|| uy
| T
| = L
| E-—-* 1"
|| = =
| w ==
| & T m
|1 B
| E=
| an
I o Gias rad m m
_ _ _n_..n...u
. |
| b el
_ PRd
| o
_ B
| 4 ...ul

== =

| mosne

noautd

25

l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-

2018, Lecture 4

ADX ACC, DM[DMJAddr]]

Execute

CLK

ARESE

Master load enable

|
|
|
11y ! T PANE
|
|
|
|

bu=j

External

puslutiseg

PiHPRE

¥,

[=a]

..
—

FHEU

12 | B€

Instruction

Memony

EI-IZ

——"
s

Bas gad

LOIIUIEL | Wa JppE

&
LL]

e R

Internal Bus

Bus T

26

"
Gaszhglia

[%5]
| -
(]
£
(g0)
-
@)
o
(Vp)]
@)
%)
o
| -
>
(@)
(V)]
1
N
i
o
(@V]
S
o
(7p]
(]
()]
.
S g
B S
o ¢
AN
S <
o0
<<
0o o
w N

Memory instructions

L W
Name

Load 1 byte value from location
0110aaaaaaaa Load Byte LB ACC, DM[Addr] —

DataMem[Addr] into ACC

Store contents of ACC into location
0l1laaaaaaaa Store Byte SB DM[Addr], ACC —
DataMem[Addr]
Load Byte LBX ACC,
100l1laaaaaaaa ACC = DataMem[DataMem[Addr]] —
Index DM[DM[Addr]]

Store Byte ~ SBX DM[DM[Addr]],
Index ACC

1010aaaaaaaa

DataMem[DataMem[Addr]] = ACC —

1011aaaaaaaa Input IN DM[Addr], I0_BUS DataMem[Addr] = value at IO_BUS —

EDA322 Digital Design, 2017-

2018, Lecture 4 l. Sourdis, CSE, Chalmers 27

EDA322 Digital Design, 2017-

2018, Lecture 4

o - o —-
= e | m
S —— . F - A EO
o ak]
o I ¢a
I
e i ﬁ_;_a_@_ g 2
_
1T bttt b s o 773
______| pdsip L -
iy 1! 1) -
T ;
____-
o
i _._ =
_____- |as0e al
| 1 | =
i 1 = L,
__: I8 _ _._F___m - Baszhg.a
i IR E
__:_-““ Frine m
[=a]
C ““ [1 _”.__:ﬁ_.n_E_w.._n_lt ol L] —
C gl abaxnoEEqU o
IIIIIIII-__ ! 5 o
S = Bl - -] MW|. P,E
A ||||___||||m||| ||||| “TT7E F L
! QT A 2
L T I m M 5
] ||||| 1 = W. "
r .mm o nﬁ_ﬁ:m*]
- *]
d h AMALP oz u[BER L
@) ay o
d) L m
< e
- PIHPRE ' @
] — — 1 =
(sl 3 (2] ' m
b - []
M L N—_
|||||| — LiojprusLU LWl JppE
m .
m |
v YA
m _
d_ _
|
A=l
2lalal
- o |
I S
= |
|
|
|
|
|
_]
| =1
_ B
_
a ﬂ (=] —
pgad] ncsna

JNOBU|Dd Y

28

l. Sourdis, CSE, Chalmers

FCIncrout

Master_load _enable

SB DM[Addr], ACC
Decode

- —

72

mDataOutRege

—_—
CLK
ARE SETN
__________________ |
_______________ |
|
|
T = o I z
o
@ z 5 : E %
= o | = =
= o =
1 1% [
— InstrM emO ut :ﬁ_
' |
'* |
7 nxtpc == |_PC Instruction FE/ Instruc:tEu 8 Drata
1 g Memory | 12 |®=[12] | c Memory
A =11 #i g.lf
: = 8i
= E | mg"g =
| £ Zls
BER, B L
| e
= .
= = -
B : =
= . —
i im M dm
& r #
DE/DE
-*'- ---------.-----."F

alubdd

accsel

N e e

3
8
m

flagld
NEQ

=FReqg
E
IH

EDA322 Digital Design, 2017-
2018, Lecture 4

Internal Bus

l. Sourdis, CSE, Chalmers

puslutiseg

errsig2seg
"

External

Bus
29

&
- m
C es 1 m f
f D3 B g n :
... = .m :é
____ 03N '. mu%
1 PTHER -
_____ IIIIIIIII : _.E
______| ||||||||||
!
L
I
!
! _-_ [ESXE
| |
_____.
_____._
_____._
! _-__ ATE
|1 -__
() =L
—_—__n
Q) Sl HE
I..III.I.L__
11 E]
<] -
- o~ | I wii|
=
= 2 . e I |
.m_u
o 86 :
O & H m
T £
O | &
o PIHPRE] _”m C
o |z 8
< ClEC
Qv ' @)
M M ——— " m ;
IIIIIII a m_nu__“_n %
IIIIII_ o I.
=31
V) : 0
|| P
: R
(o]
m m _._:.._L | Lm..n.ln.-....,l
l 0 an | | m [
- o &
I .A | c o
£ N -
. MM _
|| » :
. O
N M..R_mﬂﬁ_n_ m 2,
| ¢ mo
| .a
(]
_ a
| m4
_ = 2
o0 >
0 Qo
n__m
nosnd <2
L <
& wm

Branch instructions ++

Machine code Instruction Assembly Comment

Name language

1100aaaaaaaa Jump J address Execute next instruction @ PC = address —

N EEEEEEEE] Jump Not Equal JNE address Jump if the corresponding flag NEQ is set —

1110aaaaaaaa Jump Equal JEQ address Jump if the corresponding flag EQ is set —

111100000000 Display DS Move ACC to Diplay reg. (used for debugging) —

\ For Debug
31

EDA322 Digital Design, 2017-

l. Sourdis, CSE, Chalmers
2018, Lecture 4

CLK

ARESE

Master load enable

m
H - - —-
5 F B 0~
IIIIIIIIIIIII & P E @
% @
LLJ
e __ . a8 |_”_
Baszhigla
5
- T
F r
= g
= [}
' %
[£
. v
_nggna, | :
iy :
D. w m
S = -
(NN
2|3
“ s %)
i T IS
[] m S
of | . 3
||||| — Uo[prUEU | wal HIppe
apoado 4
=TT
_ |
| |
| _H_.Em:_i
| o
| &
| =
| w
= 1
| - N~
_ o
| AN
|)
! a
| —_ <
i m m
pad o S
i [a RS
N g
™M o0
<< A
pgad] T nosna 2R
NG| O

External

Bus T

33

"
Gaszhglia

] E 7
i T B8 TR
||||| W.M.-.rrtr. h=] “ m
] 2 . =
IIIII = (]
m £ i
a) -—- 8E o) MEME . ”
+* rd] | -
O AP a2 |ueep LIS 2
AL " =
S O o |4
L} m O
< O SN ER
@) S V] T v = : 5 O
v L
¢ & ' 5
(@]
w O [- - 2
a 5 -
J e Ilm lllllllllll
-——— =
- B
-1 __ =
||
= Lo S o i
2 o 2 .
_ I 5-——*
k- 1| =
m mm || W 5
I Ty 1= b5
s & Z I >
|1 — m
|| 5 mw_ﬁ__“_mm c
I af® a0
| O
I ()]
.
| S o
_ oo S
_ [g s)
nm
ey
NoBUad 2

ChAcc processor — ISA

* Arithmetic and logic instructions:

— perform arithmetic and logic operations between operands on the
ALU.

— Data memory is accessed using instruction’s address-field to retrieve
the second ALU operand (one is ACC).

* Memory instructions:

— The memory instructions access the data memory using the address-
field of the instruction. Accesses:

* read something from the data memory and save it to the ACC (Load Byte, Load
Byte Index)

» write the content of the ACC into the data memory (Store Byte, Store Byte Index)
» write the data that come from the 1/O bus into the data memory (/nput)

* Branch instructions:

— change the program flow by modifying the program counter (PC)
based on a condition (JE, JNE) or unconditionally (J), by jumping to a
particular address

ChAcc processor — ISA

e Other instructions:

— NOOP: keeps processor idle by doing nothing: adding
DMIO0] (is always 0) to the ACC

— Display: displays the content of ACC register = useful
for debugging

 ADX, LBX and SBX are special instructions:

— they access the data memory twice. Mentioned as
Index instructions

Index instructions

e Aisan array of 10 1-byte numbers

 The data memory locations 100 to 109 have been allocated to
save the array elements)

Pseudocode:

x=1;
for (i=0; i1=10; i++)
{
Ali] += x;
}

Assembly:

Initialize some memory locations

1. IN DM[1], I0_BUS
2. IN DM[2], 10_BUS
3. IN DM[3], 10_BUS
4. 1N DM[5], 10_BUS
5. IN DM[6], 10_BUS

Write 1 from I0_BUS to DM[1]; x=1 the value to add to the A[i]

Write 10 from I0_BUS to DM[2]; 10 --> Max loop iteration

Write 1 from I0_BUS to DM[3]; 1--> loop iteration step

Write 100 from 10_BUS to DM[5]; 100 = the location of A[0] in DM

Write 0 from IO_BUS to DM([6]; Initialize the current loop iteration to 0

Calculate new A[i]

6. LB ACC, DM[1] # Load x to ACC
7. ADX ACC, DM[DM[5]] # ACC = x + A[i]

8. SBX DM[DM(5]], ACC # Ali] = ACC

Calculate next address of A[i]
9. LB ACC, DM[3] # Load iteration step to ACC

10. AD ACC, DM[5] # Calculate next address of AJi]

11. SB DM[5], ACC # Save ACC (new calculated address) back to DM[5]
Increment the iteration counter (i) and check if done

12. LB ACC, DM[3] # Load iteration step to ACC

13. AD ACC, DM[6] # Calculate new iteration

14. SB DM[6], ACC
15. CMP ACC, DM|2]
16. INE 6
17. ...

Save iteration counter back to DM[6]
Compare current iteration (@ACC) to max iteration (10)
Evaluate NEQ flag and if it was set PC=6 (instr #6)

EDA322 Digital Design, 2017-2018, Lecture 4 I. Sourdis, CSE, Chalmers

The array is stored in the DM
locations 100-109

Initially DM[100-109] =
0,1,2,3,4,5,6,7,8,9

1st iteration (i=0) DM[5] = 100
2nd jteration (i=1) DM[5] = 101
3rd jteration (i=2) DM[5] = 102

At the end of the loop iteration
the memory locations DM 100-
109 will have
1,2,3,4,5,6,7,8,9,10 respectively

37

ChAcc processor —
Global control signals

Every sequential circuit is synchronized by a
common signal = the global clock (CLK)

Many components are initialized to zero when
reset is on (ARESETn)

Reset is asynchronous:

— Effective when active and not dependent on the
rising/falling edge of clock

— Active when ‘0’

ChAcc processor — Controller

e Controller:
— synchronizes the rest of the processor’s units and orchestrates
their operations
e Controller:
» breaks the datapath into five stages
o Fetch, Decode, Decode*, Execute, Memory
o Instructions DON’T pass through all stages
o Allinstructions pass through Fetch and Decode

— Generates the control signals of the datapath units in these
stages based on the executed instruction’s opcode (part of the
instruction)

EDA322 Digital Design, 2017-

2018, Lecture 4 |. Sourdis, CSE, Chalmers

ChAcc processor — Controller
Datapath stages

Master_load_enable

JE—

CLK

ARESETH

Controller

posel

ES
|

| '3"'| nxtpc =
- rih

:3 Memony

e o —

=]

dMemCut2seg

%

(-

\

: f‘:n.

3

5
B |
= "
s ; . BusOut bus)
DE/DE i
------------------*—
- ‘ - _
Internal Bus P g External
HH =
= Bus

EDA322 Digital Design, 2017-

2018, Lecture 4

l. Sourdis, CSE, Chalmers

detailed instr

0000 AD ACC, DMI0]

0010 SU ACC, DM[Addr]

EX: uses the ALU

« MEM: writes ACC
into data memory

AD ACC, DM[Addr] y y n y
NT ACC, DM[Addr] y y n y
1[ix4 | AND ACC, DM[Addr] y y n y
CMP ACC, DM[Addr] y y n y
WG LB ACC, DM[Addr] y y n y

0111 SB DM[Addr], ACC y y n n

1000 ADX ACC, DM[DM[Addr]] y y

Extra DE stage for the
S 4 Index instructions = they
access the data memory 2x

1001 LBX ACC, DM[DM[AddTr]] y y

1010 SBX DM[DM[Addr]], ACC y y n % 4
1011 IN DM[Addr], I0_BUS y y n n 2
All enter FE and DE
1100 J address y y n n
1101 JNE address, NEQ y y n n n 2
1110 JEQ address, EQ y y n n n 2
1111 DS y y n y n 3 a1

e O R R
y n y n

0000 AD ACC, DMI0] y

0010 SU ACC, DM[Addr] y y n y n

AD ACC, DM[Addr] y y n y n

NT ACC, DM[Addr] y y n y n
(FE AND ACC, DM[AddTr] y oy n y n Variable

CMP ACC, DM[Addr] y oy n y n number of
(EEI 1B ACC, DM[Addr] y oy n y n stages per
(FEEIS sB DM[Addr], ACC y y n n y instruction

1000 ADX ACC, DM[DM[Addr]] y y y y n

1001 LBX ACC, DM[DM[Addr]] y y y y n

1010 SBX DM[DM[Addr]], ACC y y y n y

1101 JNE P Offset, NEQ y y n n n
1110 JEQ P Offset, EQ y y n n n

1111 Digital Design, 2017- y
SE-cture 4

<
&b
c
S
o
&P
x
m
(@)
>
=
3
™
-
[72]

42

3
3
3
3
3
3
/4\
4
U
1011 IN DM[Addr], I0O_BUS y y n n n
1100 J P Offset y y n n n

ChAcc processor — Controller
Control signals

* Controller sets/resets the signals that control the
datapath units

* Certain signals must be set/reset in every stage

X_Y: where X is the value of the control signal, Y is the stage it gets that value.
Stages: Fetch: FE, Decode: DE, Decode®*: DE*, Execute: EX, Memory: ME

- 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00
- 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1EX 0 0 0 01
- 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1EX 0 0 0 00
- 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1EX 0 0 0 11
- 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 X 0 0 0 10
- 0 1_EX 1 0 0 1_DE 1_EX 0 0 0 1EX 0 0 0 XX
- 0 1_EX 1 0 0 1_DE 0 1 EX 1_EX 0 1EX 0 0 0 XX
- 0 1_ME 1 0 1_ME 0 0 0 0 0 0 1 0 0 XX
0 1_EX 1 1 0 1.DE/ 1_EX 0 1_EX 0 1EX 0 0 0 00
DE 1_DE*
*
0 1_EX 1 1 0 1_DE/ 0 1. EX 1_EX 0 1EX 0 0 0 XX
DE 1_DE*
0 1_ME 1 1. 1.ME 1_DE 0 0 0 0 0 1 0 0 XX
ME
- 0 1_DE 1 0 1_DE 0 0 0 0 0 0 0 1 0 XX
- 1.DE 1.DE 1 0 0 0 0 0 0 1 0 0 0 0 XX
- 1. DE 1.DE 1 0 0 0 0 0 0 1 0 0 0 0 XX
- 1. DE 1.DE 1 0 0 0 0 0 0 1 0 0 0 0 XX
- 0 1_EX 1 0 0 0 0 0 0 0 0 0 0 1EX 00

£LUL1LO, LTLLUICT

ChAcc processor — Controller
Control signals

Opcode (input): the opcode of the read instruction

EQ, NEQ (input): used by the controller when determining the pcSel and
pcLd

pcSel and pcLd: control the logic that is relevant to the program counter
(PC)

instrLd: load enable of the register that keeps the read instruction
addrMd: control the address input of the data memory. Can be:

— The address field of the instruction (if normal instruction)
— The data memory output (if Index instruction)

ChAcc processor — Controller
Control signals

dmWr: enables the write operation in the data memory

dmRd: enables the read operation in the data memory

datalLd: enables “DE/EX” to store the output of the data memory
flagLd: enables “FReg” to store Flags

accSel: controls the source of “ACC” register’s input:
* From ALU
* From bus: If it is a load instruction

acclLd: enables the ACC register to save the input
dispLd: load enable of the Display register

dmRd, acc2bus and ext2bus: control signals of the bus
aluMd: determines the operation of the ALU

ChAcc processor - Overview

Master_load _enable
—_—

—_— -

ARESETH

CLK

——————————————————— | iy Y, S
_______________ | 1 — [
| T A I [11 |
[
o - = I = b= = ! IU
< = = 3 | Sl oo
g 2 g I - 3 9 9 BE[E
T " | '
1 | Ble 31 I
= —1 Instri em O ut | & 2 ! '
L
B * | L |
= | I ! !
E * ot ! = !
o |nxtpe | __| | |Instruction = | Instruction] 3 | & sz
]] Memory | 12 |25 12] | = L [
o i =
: I : o k4
= L " & e =3
BEH, 5 s B2
|5 & |
= I =B = In
[
h% Lzﬂz_/ E |
s =By ; _ coZbus bu=j
DE/DE
-*--n-----------------.--.--.-*—
¥ L -
H H Internal Bus =
mmunication B / pusoutseg, g External
Co unication Bus - : dor
EDA322 Digital Design, 2017-)
8 gn, I. Sourdis, CSE, Chalmers 47

2018, Lecture 4

ChAcc processor — Controller
Control signals

e Registers have an additional enable signal (except for
one of the previous load enable signals) 2
master _load _enable

* master _load enable:

— Controls the clock toggling manually
— Controlled by the user through one FPGA switch

— Affects FSMs and registers
* Aregister, in particular, is enabled if and only if:
— Reset is disabled (ARESETN=1")

— Positive edge of the clock
— master_load_enable is set (master_load_enable=1’)

— load enable signal (given by the controller) is set

ChAcc processor — Controller

Controller:

* |simplemented as a Finite State Machine (FSM)

— Instructions pass through a different number of
stages and thus states

— Different signals are set/reset based on the current
stage and the executed instruction (opcode)

— State transitions are enabled when
master load _enable="1"

Summary of the ChAcc processor

Processor specifications are important for the
correct implementation of ChAcc

Always consult the processor.pdf document and
this presentation, during the labs

Ask the instructors, if you are unsure about
something or if something is not clear
Keep consistent with the processor specs:
— entities, signal names or widths

— files (memory initialization files, testbenches,
wrapper, etc)

Quiz 6-1

http://b.socrative.com/student/#joinRoom
room number: 713113

* QI1: What does an “Add index”s Q2: In the ChAcc instruction set
instruction do? which are the stages that all
— ADDs Acc register and a memory instructions have in common
location and put the result to Acc and will pass through?

— ADDsAcc refister and a memory — Fetch and Decode
location and put the result to — Fetch and Execute
Mem _ — Fetch, Decode and Execute
— Uses the contains of a memory — All

location as an address to access
the memory again and ADD the * Q3: What are the 3 types of

contains of the second memory instructions in ChAcc?
location to Acc. The result is put, Q4: the flag register contains

to Acc ,

— Uses the contains of a memory — Exceptions , ,
location as an address to access — Results of comparison in the ALU
the memory again and ADD the — Both

contains of the second memory
location to Acc. The result is put
to Memory

— None of the above

http://m.socrative.com/student/

Lecture 6, part 2:
Modeling of Circuits with
a Regular Structure

Generate scheme
for equations

Data-flow VHDL

Major instructions

Concurrent statements

« concurrent signal assignment (<)

« conditional concurrent signal assignment
(when-else)

« selected concurrent signal assignment
(with-select-when)

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers

54

Conditional concurrent signal assignment

When - Else

target signal <= valuel when conditionl else
valueZ when conditionZ else

valueN-1 when conditionN-1 else

valuelN;

Most often implied structure

When - Else

value? when condition’? else

valueN-1 when conditionN-1 else

target signal <= valuel when conditionl else

valueN;

Value N D—’— 0
1 0
Value N-1 D | D v 11 0 Target Signal
Value 2 D I 1
Value 1

Condition N-1

Condition 2

EDA322 Digital Design, 2017-
2018, Lecture 4

Condition 1

I. Sourdis, CSE, Chalmers

56

Data-flow VHDL

Major instructions

Concurrent statements

« concurrent signal assignment (<)

« conditional concurrent signal assignment
(when-else)

« selected concurrent signal assignment
(with-select-when)

EDA322 Digital Design, 2016-2017, Lecture 4 I. Sourdis, CSE, Chalmers

57

Selected concurrent signal assighment

With —Select-When

with choice expression select
target signal <= expressionl when choices 1,
expressionZ when choices 2,

expressionN when choices N;

Most Often Implied Structure

With —Select-When

with choice expression select
target signal <= expressionl when choices 1,
expressionZ when choices 2,

expressionN when choices N;

/

expressionl choices_1

expression2 choices 2

target_signal

choice expression

expressionN

Allowed formats of choices k

WHEN value
WHEN value 1 |value 2|.... | value N

WHEN OTHERS

Allowed formats of choice k - example

WITH sel SELECT
vy <= a WHEN "000",
c WHEN "0O01"™ | "111",
d WHEN OTHERS;

Data-flow VHDL

Major Instructions

Concurrent statements

« concurrent signal assignment (<)

« conditional concurrent signal assignment
(when-else)

« selected concurrent signal assignment
(with-select-when)

» generate scheme for equations
(for-generate)

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers

62

EDA322 Digital Design, 2017-
2018, Lecture 4

PARITY Example

I. Sourdis, CSE, Chalmers

63

PARITY: Block Diagram

Parity_in(0)=————

-7
S
7

Y

(g)ur Aued

—

)D?% —
i

(LU Kyed D_j

(Zur Aued
(i Rued

(@)ui Ared m—

(L yur Aed

EDA322 Digital Design, 2017- .
' . CSE, Chal ”
2018, Lecture 4 |. Sourdis, CSE, Chalmers

PARITY: Entity Declaration

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY parity IS
PORT(
parity_in :IN STD_LOGIC_VECTOR(7 DOWNTO 0);
parity_out : OUT STD_LOGIC
);
END parity;

Parity_in(D)D——'—

DD |

(pLur Ay dD—j
(Zui A dD—i

E i \

g 3 5

c Z =} 3 3

5 I_. Z =

&) 2 . & Z

= N 2 . '
= al 2 2

=) 2

PARITY: Block Diagram

xor_out(1)
xor_out(2)

F'arily_in(D]D——'—)i >._,_¢ |_) j xor_out(3) xor_out(4)
DD

v xor_out(5)
F‘) r)): F;J * xor_out(f)
)D'_k Parity_out
°T o

(1)ur Aed D_—~|>

(2)ui fAyed
(eyur Ayred ms—
(Fui Ayed
(Gur Aured o
(Qur Aued

(L ui Aued

EDA322 Digital Design, 2017- .
' . CSE, Chal e
2018, Lecture 4 |. Sourdis, CSE, Chalmers

PARITY: Architecture

ARCHITECTURE parity_dataflow OF parity IS

SIGNAL xor_out: std _logic_vector (6 downto 1);
BEGIN

xor_out(1) <= parity_in(0) XOR parity_in(1);
xor_out(2) <= xor_out(1) XOR parity_in(2);
xor_out(3) <= xor_out(2) XOR parity_in(3);
xor_out(4) <= xor_out(3) XOR parity_in(4);
xor_out(5) <= xor_out(4) XOR parity_in(5);
xor_out(6) <= xor_out(5) XOR parity_in(6);
parity_out <= xor_out(6) XOR parity_in(7);

xor_out(1)

END parity_dataflow; et Db A g

’__)E Fji >’i*’_)D)(?zi%f)ﬁt(5) xor_out(6)

(L)uiAued D—j

@i fyed m—
(Syur fyped

EDA322 Digital Design, 2017-
2018, Lecture 4

(g)ur Aed D—i

(Fur Aued ——
(9)ui Ayred o

(LuiAed

PARITY: Block Diagram (2)

xor_out(0)
I xor_out(1)
xor_out(2)

Parly, -)% D_’_Ej XOr Out(|—f)_)xor out(f) XOr out(5) Xor out(6) xor out(7)
[|——)D D?DD Parity_out

(Lyur Ayred D——+

(i Apred =
(eyui fAyred =
(F)ur Aued
(g)ur Aued o
(9)ur Ared |:>—

(Lur Aed =

EDA322 Digital Design, 2017- I. Sourdis, CSE, Chalmers 69
2018, Lecture 4

PARITY: Architecture

ARCHITECTURE parity_dataflow OF parity IS

SIGNAL xor_out: STD_LOGIC_VECTOR (7 downto 0);
BEGIN

xor_out(0) <= parity_in(0);
xor_out(1) <= xor_out(0) XOR parity_in(1);
xor_out(2) <= xor_out(1) XOR parity_in(2);
xor_out(3) <= xor_out(2) XOR parity_in(3);
xor_out(4) <= xor_out(3) XOR parity_in(4);
xor_out(5) <= xor_out(4) XOR parity_in(5);
xor_out(6) <= xor_out(5) XOR parity_in(6);
xor_out(7) <= xor_out(6) XOR parity_in(7);
parity_out <= xor_out(7);

xor_out(0) xor_out(1)

_ Parity_in(0j0—1— Xor_out(2) xor_out(3)
END parity_dataflow;] %F)DHL xor_out(4)

Xor_OUt(5) Xor_out(6) Xor OUt(7)

(1)ui Aued &j Rl

(@)ui fued =

EDA322 Digital Design, 2017-
2018, Lecture 4

(chui Ayred =
(Fui Aed =

(g)ur ued D—l

(9yui fypred |:>—j

(Lur fyed =

PARITY: Architecture

ARCHITECTURE parity_dataflow OF parity IS

SIGNAL xor_out: STD_LOGIC_VECTOR (7 downto 0);
BEGIN

xor_out(0) <= parity_in(0);

G2: FORiIN 1 TO 7 GENERATE

xor_out(i) <= xor_out(i-1) XOR
parity_in(i);

END GENERATE G2;

parity_out <= xor_out(7);

xor_out(0) xor_out(1)

- Parity_in(U)D——’_i > &, xor_out(2) xor_out(3)
END parity dataflow; | FJ) >*L T o 0u®) 0) (@
= X0r_ou

(1)ui Aued &j Rl

(@)ui fued =

(chuiAyred &1

(Fui Aed =

(g)ur ued D—li

(9yui fypred |:>—j

(Lur fyed =

For Generate Statement

For - Generate

label: FOR identifier IN range GENERATE
BEGIN

{Concurrent Statements}
END GENERATE;

EDA322 Digital Design, 2017-
2018, Lecture 4

Memory

I. Sourdis, CSE, Chalmers

74

Random Access I\/Iemory (RAM)

Data pt{d -1

Write] o0 e — !
Sel
Sel
(ag —> 3 Sel
.| 8
‘< o
Address : %\1
o
\ —_— E
Selzm,, 1
Read—= | d | L —
Dat tputs{ On-1 O9n-2 q

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all ;

entity SRAM is
generic(width:
addr_bits:

port(Clock: in
Read: in
Write: in
Address: in
Data_in: in
Data_out: out

);

end SRAM:;

EDA322 Digital Design, 2017-
2018, Lecture 4

integer:=4;

integer:=2); : _
Address o

std_logic; o1

std_logic; o

std_logic;

std_logic_vector(addr_bits-1 downto 0);
std_logic_vector(width-1 downto 0);
std_logic_vector(width-1 downto 0)

I. Sourdis, CSE, Chalmers

Data inputs{ dy_1 dno

Ty

m-to-2" decoder

Sel,

o

Sely

Sel,

Sel2m "

1Y

Read = | |

Data outputs] 9n-1 Yn-2

Yo

76

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all ;

entity SRAM is
generic(width:
addr_bits:
port(Clock: in
Read: in
Write: in
OBS! Address: in
* Data_in: in
Data_out: out
)i
end SRAM:;

EDA322 Digital Design, 2017-
2018, Lecture 4

OBS!

integer:=4;
integer:=2);

aO—P

q —=

Address

std_logic;
std_logic;
std_logic;
std_logic_vector(addr_bits-1 downto 0);
std_logic_vector(width-1 downto 0);
std_logic_vector(width-1 downto 0)

I. Sourdis, CSE, Chalmers

Data inputs{ dy_1 dno

Ty

m-to-2" decoder

Sel,

Sely

o

Sel,

Selom»

1Y

Read = | I

Data outputs

Oh-1 Gn-2

Yo

77

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => "0")); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)
begin
if (Clock'event and Clock="1") then

if Read="1' then
-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address)));

else
Data_out <= (OTHERS => 'Z");

end if;

if Write="1' then
tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;
end process;

end behav;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers 78

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => "0")); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)
begin
if (Clock'event and Clock="1") then

if Read="1' then
-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address)));

else
Data_out <= (OTHERS => 'Z");

end if;

if Write="1" then
tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;
end process;

end behav;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers 79

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => 0")); -- initialize memory with "0’

2 dimensions

begin

process(Clock, Read, Write)
begin
if (Clock'event and Clock="1") then

if Read="1" then
-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address)));

else
Data_out <= (OTHERS => 'Z");

end if;

if Write="1' then
tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;
end process;

end behav;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers 80

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => 0")); -- initialize memory with "0’

2 dimensions

begin

process(Clock, Read, Write)
begin
if (Clock'event and Clock="1") then

if Read="1" then
-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address)));

else
Data_out <= (OTHERS => 'Z");

end if;

if Write="1' then
tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;
end process;

end behav;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers 81

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => 0")); -- initialize memory with "0’

2 dimensions

begin

process(Clock, Read, Write
begin
if (Clock'event and Clock="1") then

if Read="1" then
-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address)));

else
Data_out <= (OTHERS => 'Z");

end if;

if Write="1' then
tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;
end process;

end behav;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers 82

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => 0")); -- initialize memory with "0’

2 dimensions

begin

process(Clock, Read, Write
begin
if (Clock'event and Clock="1")

if Read="1" then
-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address)));

else
Data_out <= (OTHERS => 'Z");

end if;

if Write="1' then
tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

Better to use:
rising_edge(clk)

end if;
end process;

end behav;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers 83

Behavioral SRAM Memory

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all ;

entity SRAM is
generic(width: integer:=4;
addr_bits: integer:=2);

port(Clock: in std_logic;
Read: in std_logic;
Write: in std_logic;
Address: in std_logic_vector(addr_bits-1 downto 0);
Data_in: in std_logic_vector(width-1 downto 0);

Data_out: out std_logic_vector(width-1 downto 0)

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of
std_logic_vector(width-1 downto 0);
signal tmp_ram: ram_type := (OTHERS => (OTHERS => '0"));

begin

process(Clock, Read, Write)
begin
if (Clock'event and Clock="1") then
if Read="1" then

Data_out <= tmp_ram(to_integer(unsigned(Address)))
else

Data_out <= (OTHERS => 'Z');
end if;
if Write="1" then

)i : : :
end SRAM: tmp_ram(to_integer(unsigned(Address))) <= Data_in;
end if;
end if;
end process;
end behav;
EDA322 Digital Design, 2017- I. Sourdis, CSE, Chalmers 84

2018, Lecture 4

Generate scheme
for components

Structural VHDL

Major instructions

e component instantiation (port map)
e coOmponent instantiation with generic
(generic map, port map)
 generate scheme for component instantiations
(for-generate)

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers

86

EDA322 Digital Design, 2017-
2018, Lecture 4

Example 1

I. Sourdis, CSE, Chalmers

87

Example 1

EDA322 Digital Design, 2017-
2018, Lecture 4

A 4-to-1 Multiplexer

W8

LA\

W11

W12
W15

I. Sourdis, CSE, Chalmers

oY

A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std logic_1164.all;

ENTITY mux4tol IS
PORT (

);

END mux4tol ;

ARCHITECTURE Dataflow OF mux4tol IS

BEGIN .
= - {L/
5l o
w8 3|
END Dataflow ; wiy —1—
W12 g | i
EDA322 Digital Design, 2017- W15 ~ |

2018, Lecture 4 I. Sourdis, CSE, Chalmers

9U

A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4tol IS

PORT (w0, wl, w2, w3 :IN STD_LOGIC;
S . IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f :OUT STD_LOGIC);

END mux4tol ;

ARCHITECTURE Dataflow OF mux4tol IS
BEGIN

END Dataflow ;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers

W7

W8

W11

W12 3

W15

Lﬂkﬂk

91

A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4tol IS

PORT (w0, wl, w2, w3 :IN STD_LOGIC;
S . IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC);

END mux4tol ;

ARCHITECTURE Dataflow OF mux4tol IS
BEGIN

END Dataflow ;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers

W7

W8

W11

W12 3

W15

Lﬂkﬂk

92

A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4tol IS

PORT (w0, wl, w2, w3 :IN STD_LOGIC;
S . IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f :OUT STD_LOGIC);

END mux4tol ;

ARCHITECTURE Dataflow OF mux4tol IS
BEGIN
WITH s SELECT
f <= wO WHEN "00",

wl WHEN "01",

w2 WHEN "10",

w3 WHEN OTHERS ;
END Dataflow ;

EDA322 Digital Design, 2017-

2018, Lecture 4 I. Sourdis, CSE, Chalmers

W7

W8

W11

W12 3

W15

Lﬂkﬂk

95

A 4-to-1 Multiplexer

Save it as
LIBRARY ieee ;

USE ieee.std_logic_1164.all ; mux4tol.vhd
file.

ENTITY mux4tol IS

PORT (w0, wl, w2, w3 :IN STD_LOGIC;
S :IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f :OUT STD_LOGIC);

END mux4tol ;

ARCHITECTURE Dataflow OF mux4tol IS
BEGIN

WITH s SELECT o
f <= w0 WHEN "00", W) S3
wl WHEN "01", S —
w2 WHEN "10", w8 3 :|
w3 WHEN OTHERS ; wi —L—
END Dataflow ;
W12 o |
EDA322 Digital Design, 2017- W15 =

2018, Lecture 4 l. Sourdis, CSE, Chalmers o

Straightforward code for Example 1

LIBRARY ieee ;
USE ieee.std logic_1164.all ;

ENTITY Examplel IS

PORT (w :IN STD_LOGIC_VECTOR(0 TO 15) ;
S :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
f :OUT STD_LOGIC);

END Examplel ;

xﬂ Wl

Straightforward code for Example 1

ARCHITECTURE Structure OF Examplel IS

COMPONENT mux4tol
PORT (w0, wl, w2, w3 :IN STD_LOGIC;
S . IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC);
END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN
Mux1: mux4tol PORT MAP (w(0), w(1), w(2), w(3), s(1 DOWNTOO0), m(0));
Mux2: mux4tol PORT MAP (w(4), w(5), w(6), w(7), s(1 DOWNTOO), m(1)); 3
Mux3: mux4tol PORT MAP (w(8), w(9), w(10), w(11), s(1 DOWNTO 0), m(2)); 3 | h!

Mux4: mux4tol PORT MAP (w(12), w(13), w(14), w(15), s(1 DOWNTOO0), m(3));
Mux5: mux4tol PORT MAP (m(0), m(1), m(2), m(3), s(3DOWNTO?2), f);
END Structure ;

Walwaly

X §|§| £ 5 u

g Z
|“0|

Straightforward code for Example 1

ARCHITECTURE Structure OF Examplel IS

You can remove component declaration but then you have to use this
format for calling a component:

Mux1: entity work.mux4tol PORT MAP (...

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN
Mux1:
Mux2:
Mux3:

mux4tol PORT MAP (w(0),
mux4tol PORT MAP (w(4),
mux4tol PORT MAP (w(8),
Mux4: mux4tol PORT MAP (w(12),
Mux5: mux4tol PORT MAP (m(0),
END Structure ;

EDA322 Digital Design, 2017-
2018, Lecture 4

w(1),
w(5),
w(9),
w(13),
m(1),

w(10),
w(14),
m(2),

w(3), s(1 DOWNTO 0), m(0));
w(7), s(1 DOWNTODO0), m(1));
w(11), s(1 DOWNTOO0), m(2));
w(15), s(1 DOWNTO 0), m(3));
m(3), s(3DOWNTO?2), f);

I. Sourdis, CSE, Chalmers

E5 S5 ss5m

x‘ﬁ LR CA\F

97

Modified code for Example 1

ARCHITECTURE Structure OF Examplel IS

COMPONENT mux4tol
PORT (w0, wl, w2, w3 . IN
S :IN
f : OUT

END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN
G1: FORi IN 0 TO 3 GENERATE
Muxes: mux4tol PORT MAP (

STD_LOGIC;
STD_LOGIC_VECTOR(1 DOWNTO 0) ;
STD_LOGIC);

w(4*i), w(4*i+1), w(4*i+2), w(4*i+3), s(1 DOWNTO 0), m(i)) ;

END GENERATE ;

Mux5: mux4tol PORT MAP (m(0), m(1), m(2), m(3), s(3 DOWNTO 2),) ;

END Structure ;

EDA322 Digital Design, 2017-
2018, Lecture 4

I. Sourdis, CSE, Chalmers

98

EDA322 Digital Design, 2017-
2018, Lecture 4

Example 2

I. Sourdis, CSE, Chalmers

99

Example 2

Wb

W ——

En

Wo

En

Y3
Y2
Y1
Yo

M

W Y3
e Y2

Y1
En Yo
W Y3
e Y2

Y1
En Yo
W Y3
Wo W

Y1
En Yo
W Y3
Wo N

Y1
En Yo

Y15
Y14
Y13
Y12

Y11
Y10
Yo
Y8

Y6
Y5
Ya

¥3
Y2
Y1
Yo

A 2-to-4 binary decoder

LIBRARY ieee ;
USE ieee.std_logic_1164.all;

Wy

Wo
ENTITY dec2to4 IS
PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
En : IN STD LOGIC;
y : OUT STD_LOGIC_VECTOR(3 DOWNTOO0)) ;
END dec2to4 ;

W3
ARCHITECTURE Dataflow OF dec2to4 IS W2

SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ;
BEGIN

Wq

Wo

En En

Enw<=En & w;
WITH Enw SELECT
y <="0001" WHEN "100",
"0010" WHEN "101",
"0100" WHEN "110",
“1000" WHEN "111",
"0000" WHEN OTHERS ;
END Dataflow ;

Y15
Y14
Y13
Y12

VHDL code for Example 2 (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY dec4tol6 IS W W |—
L)
PORT (w - IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
En - IN STD LOGIC;
Yy : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)) ; ‘_& iil_ o
END dec4tol6 ; w—w, 0
ot R g g C
Vil
En—En Y '

VHDL code for Example 2 (2)

ARCHITECTURE Structure OF dec4tol16 IS

COMPONENT dec2to4d
PORT(w - IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
En - IN STD_LOGIC;
Y : OUT STD_LOGIC_VECTOR(3 DOWNTO0)) ;
END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(3 DOWNTO 0) ;

BEGIN
G1: FORiIN O TO 3 GENERATE

Dec_ri: dec2to4 PORT MAP (w(1 DOWNTO 0), m(i), y(4*i+3 DOWNTO 4%*i));

END GENERATE ;
Dec_left: dec2to4 PORT MAP (w(3 DOWNTO 2), En, m) ;
END Structure ;

S=

W3 e
V\Q—

En™]

Wy
Wo

En

Y3
Y2

|

bl

Yo

m_yls
W Yo V1a

i %13
En y0|_Y12
V\i_ye,l_yll
YW Yo Y10

W %
En % %
L' 7
W Y %

il ¥5
En YOl Yo
W v—
W Y %

Example 3
Variable Rotator

EDA322 Digital Design, 2017-

I. Sourdis, CSE, Chalmers 104
2018, Lecture 4

Example 3: Variable rotator - Interface

Block diagram

<<<4d

Al(2) JArZ2)

VHDL code for a 16-bit
2-to-1 Multiplexer

LIBRARY ieee ; |aio) |Ar)

USE ieee.std_logic_1164.all ; BO) \ o 1
MUX0

ENTITY mux2tol_16 IS

PORT (w0 :IN STD_LOGIC_VECTOR(15 DOWNTO 0);
wl :IN STD_LOGIC_VECTOR(15 DOWNTO 0);
S :IN STD_LOGIC;
f : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)) ;

END mux2tol _16;

ARCHITECTURE dataflow OF mux2tol 16 IS
BEGIN

f <= wO WHEN s ='0" ELSE w1 ;
END dataflow ;

Fixed rotation

a(15) a(14) a(13) a(12) a(11) a(10) a(9) a(8) a(7) a(6) a(5) a(4) a(3) a(2) a(1) a(0)

/ <<< 3 /

a(12) a(11) a(10) a(9) a(8) a(7) a(6) a(5) a(4) a(3) a(2) a(1) a(0) a(15) a(14) a(13)

y <= a(12 downto 0) & a(15 downto 13);

a(15) a(14) a(13) a(12) a(11) a(10) a(9) a(8) a(7) a(6) a(d5) a(4) ad) a2 a(l) a(0)

a(10)y a(9) a8 a(7) a®) a(d) a(d) a(3) a(2) a(l) a(0) a(15) a(14) a(13) a(12) a(11)

y <= a(10 downto 0) & a(15 downto 11);

Fixed rotation by L positions

a(15) a(14) a(13) a(12) a(11) a(10) a(9) a(8) a(7) a(6) a(5) a(4) a(3) a(2) a(1) a(0)

<<< L
a(15-L)a(15-L-1)..... ..cnn.. a(1) a(0) a(15) a(14)....... a(15-L+2) a(15-L+1)

y <= a(15-L downto 0) & a(15 downto 15-L+1);

VHDL code for
for a fixed 16-bit rotator

LIBRARY ieee ;
USE ieee.std logic_1164.all ;

ENTITY fixed_rotator left 16 IS
GENERIC (L : INTEGER :=1);
PORT (a . IN

STD_LOGIC_VECTOR(15 DOWNTO 0);

y : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)) ;

END fixed_rotator_left 16 ;

ARCHITECTURE dataflow OF fixed_rotator left 16 IS
BEGIN

y <= a(15-L downto 0) & a(15 downto 15-L+1);
END dataflow ;

Structural VHDL code for
for a variable 16-bit rotator (1)

A

-l

o/

1716
LIBRARY ieee ; -
USE ieee.std _logic_1164.all; o OMO) 1Ar(0)
ENTITY variable_rotator_16 is Te
PORT(Al(T) {“j\r(‘l}
A:IN STD_LOG'C_VECTOR(].S downto O), B1) ¥ o p
B:INSTD LOGIC VECTOR(3 downto 0); b
C : OUT STD_LOGIC_VECTOR(15 downto 0) T
)’ Al(2 z: 2
END variable rotator 16; 50 ((2)

<<
)
1
16
<<<B
Al3) |Ar?3)
1
16
(4)
C

B(3) ! 7
Al

Structural VHDL code for
for a variable 16-bit rotator (2)

ARCHITECTURE structural OF variable_rotator 16 IS

COMPONENT mux2tol 16

PORT (w0 : IN STD_LOGIC VECTOR(15 DOWNTO 0);
wl : IN STD_LOGIC VECTOR(15 DOWNTO 0);
S : IN STD _LOGIC;
f :OUT STD _LOGIC_VECTOR(15 DOWNTODOQ));
END COMPONENT ;

COMPONENT fixed_rotator left 16
GENERIC (L : INTEGER :=1);
PORT(a I\ STD LOGIC VECTOR(15 DOWNTO 0);
y :OUT STD LOGIC VECTOR(15 DOWNTOO0));
END COMPONENT ;

Structural VHDL code for
for a variable 16-bit rotator (3)

TYPE arrayl IS ARRAY (0 to 4) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

A

TYPE array2 IS ARRAY (0 to 3) OF STD_LOGIC_VECTORS(15 DOWNTO 0); 1=
SIGNAL Al : array1, pr
SIGNAL Ar : array?; o Omm) 1mo)
BEGIN M i&/
Al(0) <= A: T
G: FOR1INOTO 3 GENERATE <<
ROT I: fixed rotator left 16 N
GENERIC MAP (L => 2**1) MUX
PORT MAP (a => Al(i), 1o
=> - <c<d
MUX_I: mux2tol_16 yPOR/?rISI)kP (WO => Al(i), L
wl =>Ar(i), —_mzzL/
s => B(i), Te
f =>Al(i+1)): o
END GENERATE; o 2 T
C <=Al(4); J_M;%u_/
END variable_rotator_16; o

C

Block diagram

Al(1) | Ar(1)

<<<d

Al(2) ArZ2)

<<

Al(3)

Ar(3)

BG) \ o : //
MUX3

¢W5
Al(4)

Summary of Lecture 4

* Lab processor
specifications
— Datapath and control
— Instruction Set

e Structural VHDL and
tips for regular
structures

* Additional Reading

material:
— Lab processor
specifications

— Book (complimentary
to the slides):
« 8.9

Next Lecture 5:

— Sequential circuits

