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EDA322 lab processor

• Chalmers Accumulator processor (ChAcc processor)
• In EDA322 lab, ChAcc will be:

– Implemented
– Verified using real programs
– Downloaded on FPGA (optional)
– Evaluated in terms of performance, area and power dissipation 

(optional)

• Processor specifications are very important for the 
implementation of ChAcc. 
– Study the processor specification document (processor.pdf): 

contains all the details
– Ask the lab assistants

• ChAcc is based on the lab processor of HY-120 course, 
Institute of Computer Science, FORTH, Greece
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ChAcc processor - Overview

• ChAcc: Chalmers Accumulator processor
– Only one register to save data, as opposed to modern 

processors
– Keeps the result of the most recent operation 
– Consecutive operations are performed  result is 

accumulated in the accumulator 

• ChAcc:
– Simple to implement, but slow ( about 2-4 clock cycles per 

executed instruction)
– Runs a variety of programs

• ChAcc is an 8-bit processor: 
– operates on 8-bit data

EDA322 Digital Design, 2017-
2018, Lecture 4

I. Sourdis, CSE, Chalmers 5



ChAcc processor - Overview

Datapath Controller

Communication Bus
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ChAcc processor - Overview

• Datapath is where data flow:
– Are used or modified
– Are read or written to memory
– Are displayed in 7-segments 

• Datapath consists of many components:
– Memory, registers
– ALU
– 7-segments
– ...

• Controller: synchronizes processor’s components and 
orchestrates operations

• Communications bus (or just bus): transfers data between 
different components (e.g., between ALU and memory) of the 
datapath.
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ChAcc processor – Datapath
Storage elements 

Memories

Registers

Registers
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ChAcc processor – Datapath
Arithmetic and Logic Units 

Adder (PC=PC + 1) ALU
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ChAcc processor – Datapath
Muxes 

Muxes
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ChAcc processor – Datapath
Displays 

Displays
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ChAcc processor – Datapath
Storage elements (1)

• Memory and Registers

• Memory stores either data or program instructions

• Harvard architecture: memory is organized in two separate 
memories:

– Instruction memory (IM): saves program instructions (12-
bit); cannot be written at runtime (ROM)

– Data memory (DM): saves data (8-bit); can be written at 
runtime

• Both memories are accessed using an 8-bit address  each 
has 256 entries (memory locations)

EDA322 Digital Design, 2017-
2018, Lecture 4

I. Sourdis, CSE, Chalmers 12



ChAcc processor – Datapath
Storage elements (2)

• Registers: store the content when:

– Clk is in the rising edge

– When load enable is set
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ChAcc processor – Datapath
Storage elements (3)

Many types of registers in ChAcc:

• ACC: The main accumulator register

• FReg: Flag register keeps 4 1-bit flags (MSB to LSB order):
– Ovf: overflow is set when an ALU operation results in overflow
– NEQ: is set when the ALU operands are not equal
– EQ: is set when the ALU operands are equal
– Zero: is set when the ALU output is zero

• Datapath registers (FE, FE/DE, DE/EX): 
– Keep information needed in the next stage

• Display register: 
– Keeps the data to be displayed in a particular display
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ChAcc processor – Datapath
ALU (1)

• ALU = Arithmetic and Logic Unit

• ALU performs all the arithmetic and logic operations. 
– Add 2 operands
– Sub 2 operands
– AND of two operands
– NOT of one operand
– Compare two operands and determine if they are equal or not

• It doesn’t support: 
– Multiplication
– Division
– Floating point operations
– Square root, etc…
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ChAcc processor – Datapath
ALU (2)

• ALU inputs:
1. ALU_inA (8 bits): connected to ACC output
2. ALU_inB (8 bits): given by the bus (normally the data 

memory output)
3. Operation(2 bits): given by the controller and determines 

the current ALU operation

• ALU outputs:
1. ALU_out (8 bits)
2. Carry (1 bit): is set if the carry out of the adder is 1
3. NotEq (1 bit): is set if ALU_inA and ALU_inB are not equal
4. Eq (1 bit): is set if ALU_inA and ALU_inB are equal
5. isOutZero (1 bit): set if ALU_out is zero  
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ChAcc processor – Datapath
Bus

• Bus: communicates data between different 
components

• Implemented with tri-states buffer

– Need to be careful: 

• if more than one tri-state buffers are ON bus takes an 
undefined value

– Alternative implementation: 

• Using multiplexers + extra logic you will find out
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ChAcc processor – Datapath
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Keep the entity & signal names 
consistent!

• Signal names and their widths are given on the datapath. 

– If some names are not provided, set your own ones. 

• In the lab assignments, for each unit, we provide: 

– The entity name (e.g. EDA322_processor is the name of the top-level design)

– The names of the entity inputs/outputs

– The widths of the entity inputs/outputs

• In the 6th lab assignment, we provide a wrapper that connects your 
implemented processor to the FPGA interface (pins, clk, switches, 
displays, etc)

• DON’T change any names/widths in the above specifications, 
otherwise the provided testbenches and the wrapper won’t work! 
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ChAcc ISA and instruction format

ISA = Instruction Set Architecture: A set of the 
instructions that this processor can “recognize” 
and execute

•Instruction consists of two parts: 

– Opcode (4 bit): Unique ID of the instruction

– Argument (8 bits): Can be used in different ways
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Machine code Instruction 

Name

Assembly 

language

Comment Extra info

000000000000
No 

operation
NOOP Do nothing —

0010aaaaaaaa Subtract
SU ACC, 

DM[Addr]
ACC = ACC - DataMem[Addr]

may set 

”Ovf”, ”Zero”

0001aaaaaaaa Add
AD ACC, 

DM[Addr]
ACC = ACC + DataMem[Addr]

may set 

”Ovf”, ”Zero”

010000000000 Not NT ACC ACC = ACC'
may set 

”Zero”

0011aaaaaaaa And
NA ACC, 

DM[Addr]
ACC = (ACC & DataMem[Addr])'

may set 

”Zero”

0101aaaaaaaa Compare
CMP ACC, 

DM[Addr]
Compare ACC vs. DataMem[Addr]

set EQ, NEQ

0110aaaaaaaa Load Byte
LB ACC, 

DM[Addr]
Load 8 byte value from location DataMem[Addr] into ACC —

0111aaaaaaaa Store Byte
SB DM[Addr], 

ACC 
Store contents of ACC into location DataMem[Addr] —

1000aaaaaaaa Add Index
ADX ACC, 

DM[DM[Addr]]
ACC = ACC + DataMem[DataMem[Addr]]

may set 

”Ovf”, ”Zero”

1001aaaaaaaa
Load Byte 

Index

LBX ACC, 

DM[DM[Addr]]
ACC = DataMem[DataMem[Addr]] —

1010aaaaaaaa
Store Byte 

Index

SBX 

DM[DM[Addr]], 

ACC

DataMem[DataMem[Addr]] = ACC —

1011aaaaaaaa Input
IN DM[Addr], 

IO_BUS
DataMem[Addr] = value at IO_BUS —

1100aaaaaaaa Jump J addr Execute next instruction @ PC = Addr —

1101aaaaaaaa
Jump Not 

Equal
JNE addr Jump if the corresponding flag NEQ is set —

1110aaaaaaaa Jump Equal JEQ addr Jump if the corresponding flag EQ is set —

111100000000 Display DS Move ACC to Diplay reg. (used for debugging) —I. Sourdis, CSE, ChalmersEDA322 Digital Design, 2017-
2018, Lecture 4
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and logic 
instructions

* Memory 
instructions

Branch 
instructions
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Arithmetic and logic instructions
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Machine code Instructio

n Name

Assembly language Comment Extra info

000000000000
No 

operation
NOOP Do nothing —

0010aaaaaaaa Subtract SU ACC, DM[Addr] ACC = ACC - DataMem[Addr]
may set ”Ovf”, 

”Zero”

0001aaaaaaaa Add AD ACC, DM[Addr] ACC = ACC + DataMem[Addr]
may set ”Ovf”, 

”Zero”

010000000000 NOT NT ACC ACC = ACC'
may set ”Zero”

0011aaaaaaaa AND NA ACC, DM[Addr] ACC = ACC & DataMem[Addr]
may set ”Zero”

0101aaaaaaaa Compare CMP ACC, DM[Addr] Compare ACC vs. DataMem[Addr]
set EQ, NEQ

1000aaaaaaaa Add Index ADX ACC, DM[DM[Addr]] ACC = ACC + DataMem[DataMem[Addr]]
may set ”Ovf”, 

”Zero”



ADX ACC, DM[DM[Addr]]
Fetch
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ADX ACC, DM[DM[Addr]]
Decode
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ADX ACC, DM[DM[Addr]]
Decode*

•
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ADX ACC, DM[DM[Addr]]
Execute
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Memory instructions
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Machine code Instruction 

Name

Assembly language Comment Extra info

0110aaaaaaaa Load Byte LB ACC, DM[Addr]
Load 1 byte value from location 

DataMem[Addr] into ACC
—

0111aaaaaaaa Store Byte SB DM[Addr], ACC 
Store contents of ACC into location 

DataMem[Addr]
—

1001aaaaaaaa
Load Byte 

Index

LBX ACC, 

DM[DM[Addr]]
ACC = DataMem[DataMem[Addr]] —

1010aaaaaaaa
Store Byte 

Index

SBX DM[DM[Addr]], 

ACC
DataMem[DataMem[Addr]] = ACC —

1011aaaaaaaa Input IN DM[Addr], IO_BUS DataMem[Addr] = value at IO_BUS —



SB DM[Addr], ACC
Fetch
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SB DM[Addr], ACC
Decode
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SB DM[Addr], ACC
Memory

•
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Machine code Instruction 

Name

Assembly 

language

Comment Extra info

1100aaaaaaaa Jump J address Execute next instruction @ PC =  address —

1101aaaaaaaa Jump Not Equal JNE address Jump if the corresponding flag NEQ is set —

1110aaaaaaaa Jump Equal JEQ address Jump if the corresponding flag EQ is set —

111100000000 Display DS Move ACC to Diplay reg. (used for debugging) —

31

For Debug

Branch instructions ++



JEQ Addr
Fetch
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JEQ Addr
Decode
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ChAcc processor – ISA
• Arithmetic and logic instructions:

– perform arithmetic and logic operations between operands on the 
ALU. 

– Data memory is accessed using instruction’s address-field to retrieve 
the second ALU operand (one is ACC).

• Memory instructions: 
– The memory instructions access the data memory using the address-

field of the instruction. Accesses:
• read something from the data memory and save it to the ACC (Load Byte, Load 

Byte Index)
• write the content of the ACC into the data memory (Store Byte, Store Byte Index)
• write the data that come from the I/O bus into the data memory (Input)

• Branch instructions: 
– change the program flow by modifying the program counter (PC) 

based on a condition (JE, JNE) or unconditionally (J), by jumping to a 
particular address
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ChAcc processor – ISA

• Other instructions:

– NOOP: keeps processor idle by doing nothing: adding 
DM[0] (is always 0) to the ACC

– Display: displays the content of ACC register  useful 
for debugging

• ADX, LBX and SBX are special instructions:

– they access the data memory twice. Mentioned as 
Index instructions
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Index instructions

• A is an array of 10 1-byte numbers 

• The data memory locations 100 to 109 have been allocated to 
save the array elements)

Pseudocode:

...

x=1;

for (i=0; i!=10; i++)

{

A[i] += x;  

}

...
EDA322 Digital Design, 2017-
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Assembly: 

# Initialize some memory locations

1. IN DM[1], IO_BUS # Write 1 from IO_BUS to DM[1];  x= 1 the value to add to the A[i]

2. IN DM[2], IO_BUS # Write 10 from IO_BUS to DM[2]; 10 --> Max loop iteration

3. IN DM[3], IO_BUS # Write 1 from IO_BUS to DM[3]; 1--> loop iteration step

4. IN DM[5], IO_BUS # Write 100 from IO_BUS to DM[5]; 100  the location of A[0] in DM

5. IN DM[6], IO_BUS # Write 0 from IO_BUS to DM[6]; Initialize the current loop iteration to 0

# Calculate new A[i]

6. LB ACC, DM[1] # Load x to ACC

7. ADX ACC, DM[DM[5]] # ACC = x + A[i]

8. SBX DM[DM[5]], ACC # A[i] = ACC

# Calculate next address of A[i]

9. LB ACC, DM[3] # Load iteration step to ACC

10. AD ACC, DM[5] # Calculate next address of A[i]

11. SB DM[5], ACC # Save ACC (new calculated address) back to DM[5]

# Increment the iteration counter (i) and check if done

12. LB ACC, DM[3] # Load iteration step to ACC

13. AD ACC, DM[6] # Calculate new iteration

14. SB DM[6], ACC # Save iteration counter back to DM[6]

15. CMP ACC, DM[2] # Compare current iteration (@ACC) to max iteration (10)

16. JNE 6 # Evaluate NEQ flag and if it was set PC=6 (instr #6)

17. ...

The array is stored in the DM 
locations 100-109

Initially DM[100-109] = 
0,1,2,3,4,5,6,7,8,9

1st iteration (i=0) DM[5] = 100

2nd iteration (i=1) DM[5] = 101

3rd iteration (i=2) DM[5] = 102

At the end of the loop iteration 
the memory locations DM 100-
109 will have 
1,2,3,4,5,6,7,8,9,10 respectively



ChAcc processor –
Global control signals

• Every sequential circuit is synchronized by a 
common signal  the global clock (CLK)

• Many components are initialized to zero when 
reset is on (ARESETn)

• Reset is asynchronous:

– Effective when active and not dependent on the 
rising/falling edge of clock

– Active when ‘0’
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ChAcc processor – Controller

• Controller: 

– synchronizes the rest of the processor’s units and orchestrates 
their operations

• Controller: 

 breaks the datapath into five stages

o Fetch, Decode, Decode*, Execute, Memory

o Instructions DON’T pass through all stages

o All instructions pass through Fetch and Decode

– Generates the control signals of the datapath units in these 
stages based on the executed instruction’s opcode (part of the 
instruction)
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ChAcc processor – Controller
Datapath stages

` `
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opcode detailed instr FE DE DE* EX MEM #stages

0000 AD ACC, DM[0] y y n y n 3

0010 SU ACC, DM[Addr] y y n y n 3

0001 AD ACC, DM[Addr] y y n y n 3

0100 NT ACC, DM[Addr] y y n y n 3

0011 AND ACC, DM[Addr] y y n y n 3

0101 CMP ACC, DM[Addr] y y n y n 3

0110 LB ACC, DM[Addr] y y n y n 3

0111 SB DM[Addr], ACC y y n n y 3

1000 ADX ACC, DM[DM[Addr]] y y y y n 4

1001 LBX ACC, DM[DM[Addr]] y y y y n 4

1010 SBX DM[DM[Addr]], ACC y y y n y 4

1011 IN DM[Addr], IO_BUS y y n n n 2

1100 J address y y n n n 2

1101 JNE address, NEQ y y n n n 2

1110 JEQ address, EQ y y n n n 2

1111 DS y y n y n 3

• EX: uses the ALU

• MEM: writes ACC 
into data memory

Extra DE stage for the 
Index instructions  they 

access the data memory 2x

All enter FE and DE
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opcode detailed instr FE DE DE* EX MEM #stages

0000 AD ACC, DM[0] y y n y n 3

0010 SU ACC, DM[Addr] y y n y n 3

0001 AD ACC, DM[Addr] y y n y n 3

0100 NT ACC, DM[Addr] y y n y n 3

0011 AND ACC, DM[Addr] y y n y n 3

0101 CMP ACC, DM[Addr] y y n y n 3

0110 LB ACC, DM[Addr] y y n y n 3

0111 SB DM[Addr], ACC y y n n y 3

1000 ADX ACC, DM[DM[Addr]] y y y y n 4

1001 LBX ACC, DM[DM[Addr]] y y y y n 4

1010 SBX DM[DM[Addr]], ACC y y y n y 4

1011 IN DM[Addr], IO_BUS y y n n n 2

1100 J P Offset y y n n n 2

1101 JNE P Offset, NEQ y y n n n 2

1110 JEQ P Offset, EQ y y n n n 2

1111 DS y y n y n 3EDA322 Digital Design, 2017-
2018, Lecture 4

I. Sourdis, CSE, Chalmers

Variable 
number of 
stages per 
instruction
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ChAcc processor – Controller
Control signals

• Controller sets/resets the signals that control the 
datapath units

• Certain signals must be set/reset in every stage
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X_Y: where X is the value of the control signal, Y is the stage it gets that value.
Stages: Fetch: FE, Decode: DE, Decode*: DE*, Execute: EX, Memory: ME
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0000 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00

0010 0 1_EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 01

0001 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 00

0100 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 1_EX 0 0 0 11

0011 0 1_ EX 1 0 0 1_DE 1_EX 0 1_EX 0 x 0 0 0 10

0101 0 1_ EX 1 0 0 1_DE 1_EX 0 0 0 1_EX 0 0 0 xx

0110 0 1_ EX 1 0 0 1_DE 0 1_EX 1_EX 0 1_EX 0 0 0 xx

0111 0 1_ME 1 0 1_ME 0 0 0 0 0 0 1 0 0 xx

1000 0 1_EX 1 1_

DE

*

0 1_DE/

1_DE*

1_EX 0 1_EX 0 1_EX 0 0 0 00

1001 0 1_EX 1 1_

DE

*

0 1_DE/

1_DE*

0 1_EX 1_EX 0 1_EX 0 0 0 xx

1010 0 1_ME 1 1_

ME

1_ME 1_DE 0 0 0 0 0 1 0 0 xx

1011 0 1_DE 1 0 1_DE 0 0 0 0 0 0 0 1 0 xx

1100 1_DE 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx

1101 1_DE 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx

1110 1_DE 1_DE 1 0 0 0 0 0 0 1 0 0 0 0 xx

1111 0 1_EX 1 0 0 0 0 0 0 0 0 0 0 1_EX 00



ChAcc processor – Controller
Control signals

• Opcode (input): the opcode of the read instruction

• EQ, NEQ (input): used by the controller when determining the pcSel and 
pcLd

• pcSel and pcLd: control the logic that is relevant to the program counter 
(PC)

• instrLd: load enable of the register that keeps the read instruction

• addrMd: control the address input of the data memory. Can be:
– The address field of the instruction (if normal instruction)

– The data memory output (if Index instruction)
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ChAcc processor – Controller
Control signals

• dmWr: enables the write operation in the data memory

• dmRd: enables the read operation in the data memory

• dataLd: enables “DE/EX” to store the output of the data memory

• flagLd: enables “FReg” to store Flags

• accSel: controls the source of “ACC” register’s input:
• From ALU

• From bus: If it is a load instruction

• accLd: enables the ACC register to save the input

• dispLd: load enable of the Display register

• dmRd, acc2bus and ext2bus: control signals of the bus

• aluMd: determines the operation of the ALU
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ChAcc processor - Overview

Communication Bus
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ChAcc processor – Controller
Control signals

• Registers have an additional enable signal (except for 
one of the previous load enable signals) 
master_load_enable

• master_load_enable:
– Controls the clock toggling manually
– Controlled by the user through one FPGA switch
– Affects FSMs and registers

• A register, in particular, is enabled if and only if:
– Reset is disabled (ARESETN=‘1’)
– Positive edge of the clock
– master_load_enable is set (master_load_enable=‘1’)
– load enable signal (given by the controller) is set

EDA322 Digital Design, 2017-
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ChAcc processor – Controller

Controller:

• Is implemented as a Finite State Machine (FSM)

– Instructions pass through a different number of 
stages and thus states

– Different signals are set/reset based on the current 
stage and the executed instruction (opcode)

– State transitions are enabled when 
master_load_enable=‘1’
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Summary of the ChAcc processor

• Processor specifications are important for the 
correct implementation of ChAcc

• Always consult the processor.pdf document and 
this presentation, during the labs

• Ask the instructors, if you are unsure about 
something or if something is not clear

• Keep consistent with the processor specs:
– entities, signal names or widths

– files (memory initialization files, testbenches, 
wrapper, etc)
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• Q1: What does an “Add index” 
instruction do?
– ADDs Acc register and a memory 

location and put the result to Acc
– ADDsAcc register and a memory 

location and put the result to 
Mem

– Uses the contains of a memory 
location as an address to access 
the memory again and ADD the 
contains of the second memory 
location to Acc. The result is put  
to Acc

– Uses the contains of a memory 
location as an address to access 
the memory again and ADD the 
contains of the second memory 
location to Acc. The result is put  
to Memory

• Q2: In the ChAcc instruction set 
which are the stages that all 
instructions have in common 
and will pass through?
– Fetch and Decode
– Fetch and Execute
– Fetch, Decode and Execute
– All

• Q3: What are the 3 types of 
instructions in ChAcc?

• Q4: the flag register contains..
– Exceptions
– Results of comparison in the ALU
– Both
– None of the above
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Quiz 6-1
http://b.socrative.com/student/#joinRoom

room number: 713113
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Lecture 6, part 2:
Modeling of Circuits with 

a Regular Structure
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Generate scheme

for equations
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Data-flow VHDL

• concurrent signal assignment      ()

• conditional concurrent signal assignment

(when-else)

• selected concurrent signal assignment

(with-select-when)

• generate scheme for equations                  

(for-generate)

Major instructions

Concurrent statements
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Conditional concurrent signal assignment

target_signal <= value1 when condition1 else

value2 when condition2 else

. . .

valueN-1 when conditionN-1 else

valueN;

When - Else

I. Sourdis, CSE, Chalmers 55
EDA322 Digital Design, 2017-
2018, Lecture 4



Most often implied structure

target_signal <= value1 when condition1 else

value2 when condition2 else

. . .

valueN-1 when conditionN-1 else

valueN;

When - Else

.…Value N

Value N-1

Condition N-1

Condition 2

Condition 1

Value 2

Value 1

Target Signal

…
0

1

0

1

0

1

I. Sourdis, CSE, Chalmers 56
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Data-flow VHDL

• concurrent signal assignment      ()

• conditional concurrent signal assignment

(when-else)

• selected concurrent signal assignment

(with-select-when)

• generate scheme for equations                  

(for-generate)

Major instructions

Concurrent statements



Selected concurrent signal assignment

with choice_expression select

target_signal <= expression1 when choices_1,

expression2 when choices_2,

. . .

expressionN when choices_N;

With –Select-When
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Most Often Implied Structure

with choice_expression select

target_signal <= expression1 when choices_1,

expression2 when choices_2,

. . .

expressionN when choices_N;

With –Select-When

choices_1

choices_2

choices_N

expression1

target_signal

choice expression

expression2

expressionN
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Allowed formats of choices_k 

WHEN value

WHEN value_1 | value_2 | .... | value N

WHEN OTHERS

I. Sourdis, CSE, Chalmers 60
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Allowed formats of choice_k - example 

WITH sel SELECT

y <= a WHEN "000",

c WHEN "001" | "111", 

d WHEN OTHERS; 
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Data-flow VHDL

• concurrent signal assignment      ()

• conditional concurrent signal assignment

(when-else)

• selected concurrent signal assignment

(with-select-when)

• generate scheme for equations                  

(for-generate)

Major instructions

Concurrent statements
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PARITY Example
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PARITY: Block Diagram
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PARITY: Entity Declaration

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY parity IS
PORT(

parity_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
parity_out : OUT STD_LOGIC

);
END parity;
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PARITY: Block Diagram

xor_out(1)
xor_out(2)

xor_out(3)
xor_out(4)

xor_out(5) xor_out(6)
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PARITY: Architecture
ARCHITECTURE parity_dataflow OF parity IS

SIGNAL xor_out: std_logic_vector (6 downto 1);

BEGIN

xor_out(1) <= parity_in(0) XOR parity_in(1);
xor_out(2) <= xor_out(1) XOR parity_in(2);
xor_out(3) <= xor_out(2) XOR parity_in(3);
xor_out(4) <= xor_out(3) XOR parity_in(4);
xor_out(5) <= xor_out(4) XOR parity_in(5);
xor_out(6) <= xor_out(5) XOR parity_in(6);
parity_out <= xor_out(6) XOR parity_in(7);

END parity_dataflow;
xor_out(2)

xor_out(3)
xor_out(4)

xor_out(5)
xor_out(6)

xor_out(1)
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PARITY: Block Diagram (2)

xor_out(1)
xor_out(2)

xor_out(3)
xor_out(4)

xor_out(5) xor_out(6)
xor_out(7)

xor_out(0)
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PARITY: Architecture
ARCHITECTURE parity_dataflow OF parity IS

SIGNAL xor_out: STD_LOGIC_VECTOR (7 downto 0);

BEGIN

xor_out(0) <= parity_in(0);
xor_out(1) <= xor_out(0) XOR parity_in(1);
xor_out(2) <= xor_out(1) XOR parity_in(2);
xor_out(3) <= xor_out(2) XOR parity_in(3);
xor_out(4) <= xor_out(3) XOR parity_in(4);
xor_out(5) <= xor_out(4) XOR parity_in(5);
xor_out(6) <= xor_out(5) XOR parity_in(6);
xor_out(7) <= xor_out(6) XOR parity_in(7);
parity_out <= xor_out(7);

END parity_dataflow;

I. Sourdis, CSE, Chalmers 70

xor_out(2)
xor_out(3)

xor_out(4)
xor_out(5)

xor_out(6)

xor_out(1)xor_out(0)

xor_out(7)
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PARITY: Architecture
ARCHITECTURE parity_dataflow OF parity IS

SIGNAL xor_out: STD_LOGIC_VECTOR (7 downto 0);

BEGIN

xor_out(0) <= parity_in(0);
xor_out(1) <= xor_out(0) XOR parity_in(1);
xor_out(2) <= xor_out(1) XOR parity_in(2);
xor_out(3) <= xor_out(2) XOR parity_in(3);
xor_out(4) <= xor_out(3) XOR parity_in(4);
xor_out(5) <= xor_out(4) XOR parity_in(5);
xor_out(6) <= xor_out(5) XOR parity_in(6);
xor_out(7) <= xor_out(6) XOR parity_in(7);
parity_out <= xor_out(7);

END parity_dataflow;
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xor_out(2)
xor_out(3)

xor_out(4)
xor_out(5)

xor_out(6)

xor_out(1)xor_out(0)

xor_out(7)

G2: FOR i IN 1 TO 7 GENERATE
xor_out(i) <= xor_out(i-1) XOR

parity_in(i);
END GENERATE G2; 
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For Generate Statement

For - Generate

label: FOR identifier IN range GENERATE

BEGIN

{Concurrent Statements}

END GENERATE;
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Memory
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Random Access Memory (RAM)
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library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all ;

entity SRAM is

generic( width: integer:=4;

addr_bits: integer:=2);

port(Clock: in std_logic;

Read: in std_logic;

Write: in std_logic;

Address: in std_logic_vector(addr_bits-1 downto 0);

Data_in: in std_logic_vector(width-1 downto 0);

Data_out: out std_logic_vector(width-1 downto 0)

);

end SRAM;
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library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all ;

entity SRAM is

generic( width: integer:=4;

addr_bits: integer:=2);

port(Clock: in std_logic;

Read: in std_logic;

Write: in std_logic;

Address: in std_logic_vector(addr_bits-1 downto 0);

Data_in: in std_logic_vector(width-1 downto 0);

Data_out: out std_logic_vector(width-1 downto 0)

);

end SRAM;

OBS!

OBS!
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architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;
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architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;

Power 

EDA322 Digital Design, 2017-
2018, Lecture 4



I. Sourdis, CSE, Chalmers 80

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;

2 dimensions

Power 
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architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;

2 dimensions

Power 

Sequential Part

EDA322 Digital Design, 2017-
2018, Lecture 4



I. Sourdis, CSE, Chalmers 82

architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;

Sensitivity 
List

2 dimensions

Power 

Sequential Part
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architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); -- initialize memory with ‘0’

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

-- build-in functions to_integer(unsigned(x)) change the type from std_logic_vector to integer

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;

Sensitivity 
List

Better to use: 
rising_edge(clk)

2 dimensions

Power 

Sequential Part
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architecture behav of SRAM is

type ram_type is array (0 to (2**addr_bits)-1) of 

std_logic_vector(width-1 downto 0);

signal tmp_ram: ram_type := (OTHERS => (OTHERS => ’0')); 

begin

process(Clock, Read, Write)

begin

if (Clock'event and Clock='1') then

if Read='1' then

Data_out <= tmp_ram(to_integer(unsigned(Address))); 

else

Data_out <= (OTHERS => 'Z');

end if;

if Write='1' then

tmp_ram(to_integer(unsigned(Address))) <= Data_in;

end if;

end if;

end process;

end behav;
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library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all ;

entity SRAM is

generic( width: integer:=4;

addr_bits: integer:=2);

port(Clock: in std_logic;

Read: in std_logic;

Write: in std_logic;

Address: in std_logic_vector(addr_bits-1 downto 0);

Data_in: in std_logic_vector(width-1 downto 0);

Data_out: out std_logic_vector(width-1 downto 0)

);

end SRAM;

Behavioral SRAM Memory
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Generate scheme

for components
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Structural VHDL

• component instantiation      (port map)

• component instantiation with generic 

(generic map, port map)

• generate scheme for component instantiations

(for-generate)

Major instructions
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Example 1
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Example 1
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A 4-to-1 Multiplexer
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A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT (

) ;
END mux4to1 ;

ARCHITECTURE Dataflow OF mux4to1 IS
BEGIN

END Dataflow ;
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A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Dataflow OF mux4to1 IS
BEGIN

END Dataflow ;
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A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Dataflow OF mux4to1 IS
BEGIN

END Dataflow ;
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A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Dataflow OF mux4to1 IS
BEGIN

WITH s SELECT
f <= w0 WHEN "00",

w1 WHEN "01",
w2 WHEN "10",
w3 WHEN OTHERS ;

END Dataflow ;
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A 4-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Dataflow OF mux4to1 IS
BEGIN

WITH s SELECT
f <= w0 WHEN "00",

w1 WHEN "01",
w2 WHEN "10",
w3 WHEN OTHERS ;

END Dataflow ;
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Save it as 
mux4to1.vhd 

file.
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Straightforward code for Example 1
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY Example1 IS

PORT (  w : IN STD_LOGIC_VECTOR(0 TO 15) ;

s : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

f : OUT STD_LOGIC ) ;

END Example1 ;
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Straightforward code for Example 1

ARCHITECTURE Structure OF Example1 IS

COMPONENT mux4to1
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN

Mux1: mux4to1 PORT MAP ( w(0),    w(1),    w(2),    w(3),       s(1 DOWNTO 0), m(0) ) ;

Mux2: mux4to1 PORT MAP ( w(4),    w(5),    w(6),    w(7),       s(1 DOWNTO 0), m(1) ) ;

Mux3: mux4to1 PORT MAP ( w(8),    w(9),    w(10),  w(11),     s(1 DOWNTO 0), m(2) ) ;

Mux4: mux4to1 PORT MAP ( w(12),  w(13),  w(14),  w(15),     s(1 DOWNTO 0), m(3) ) ;

Mux5: mux4to1 PORT MAP ( m(0),    m(1),    m(2),   m(3),       s(3 DOWNTO 2),   f  ) ;

END Structure ;
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Straightforward code for Example 1

ARCHITECTURE Structure OF Example1 IS

COMPONENT mux4to1
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN

Mux1: mux4to1 PORT MAP ( w(0),    w(1),    w(2),    w(3),       s(1 DOWNTO 0), m(0) ) ;

Mux2: mux4to1 PORT MAP ( w(4),    w(5),    w(6),    w(7),       s(1 DOWNTO 0), m(1) ) ;

Mux3: mux4to1 PORT MAP ( w(8),    w(9),    w(10),  w(11),     s(1 DOWNTO 0), m(2) ) ;

Mux4: mux4to1 PORT MAP ( w(12),  w(13),  w(14),  w(15),     s(1 DOWNTO 0), m(3) ) ;

Mux5: mux4to1 PORT MAP ( m(0),    m(1),    m(2),   m(3),       s(3 DOWNTO 2),   f  ) ;

END Structure ;
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You can remove component declaration but then you have to use this 
format for calling a component:

Mux1: entity work.mux4to1 PORT MAP (…
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Modified code for Example 1

ARCHITECTURE Structure OF Example1 IS

COMPONENT mux4to1

PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

f : OUT STD_LOGIC ) ;

END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN

G1: FOR i IN 0 TO 3 GENERATE

Muxes: mux4to1 PORT MAP (

w(4*i), w(4*i+1), w(4*i+2), w(4*i+3), s(1 DOWNTO 0), m(i) ) ;

END GENERATE ;

Mux5: mux4to1 PORT MAP ( m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f ) ;

END Structure ;
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Example 2
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Example 2
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A 2-to-4 binary decoder
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY dec2to4 IS
PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;
y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ;

END dec2to4 ;

ARCHITECTURE Dataflow OF dec2to4 IS
SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <= En & w ;
WITH Enw SELECT

y <= "0001" WHEN "100",
"0010" WHEN "101",
"0100" WHEN "110",

“1000" WHEN "111",
"0000" WHEN OTHERS ;

END Dataflow ;
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VHDL code for Example 2 (1)

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY dec4to16 IS

PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

En : IN STD_LOGIC ;

y : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ) ;

END dec4to16 ;
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VHDL code for Example 2 (2)
ARCHITECTURE Structure OF dec4to16 IS

COMPONENT dec2to4
PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;
y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ;

END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(3 DOWNTO 0) ;

BEGIN
G1: FOR i IN 0 TO 3 GENERATE

Dec_ri: dec2to4 PORT MAP ( w(1 DOWNTO 0), m(i),  y(4*i+3 DOWNTO 4*i)  );
END GENERATE ;
Dec_left: dec2to4 PORT MAP ( w(3 DOWNTO 2), En, m ) ;

END Structure ;
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Example 3
Variable Rotator
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Example 3: Variable rotator - Interface
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Block diagram
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VHDL code for a 16-bit 
2-to-1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2to1_16 IS
PORT ( w0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

w1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
s : IN STD_LOGIC ;
f : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ) ;

END mux2to1_16 ;

ARCHITECTURE dataflow OF mux2to1_16 IS
BEGIN

f <= w0 WHEN s = '0' ELSE w1 ;

END dataflow ;
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Fixed rotation

a(15) a(14) a(13) a(12) a(11) a(10)  a(9)  a(8)  a(7)  a(6)  a(5)  a(4)  a(3)  a(2)   a(1)  a(0)

a(12) a(11) a(10)  a(9)   a(8)   a(7)  a(6)   a(5)  a(4)  a(3)  a(2)  a(1)  a(0) a(15) a(14) a(13) 

<<< 3

a(15) a(14) a(13) a(12) a(11) a(10)  a(9)  a(8)  a(7)  a(6)  a(5)  a(4)   a(3)   a(2)   a(1)   a(0)

a(10)  a(9)   a(8)   a(7)   a(6)   a(5)   a(4)  a(3)  a(2)  a(1)  a(0) a(15) a(14) a(13) a(12) a(11) 

<<< 5

y <= a(12 downto 0) & a(15 downto 13);

y <= a(10 downto 0) & a(15 downto 11);
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Fixed rotation by L positions

a(15) a(14) a(13) a(12) a(11) a(10)  a(9)  a(8)  a(7)  a(6)  a(5)  a(4)  a(3) a(2)  a(1) a(0)

a(15-L) a(15-L-1) . . . . .  . . . . . . . . . a(1) a(0) a(15) a(14) . . . . . . . a(15-L+2) a(15-L+1)

y  <=  a(15-L downto 0) & a(15 downto 15-L+1);

<<< L
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VHDL code for
for a fixed 16-bit rotator

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY fixed_rotator_left_16 IS

GENERIC ( L : INTEGER := 1);

PORT ( a : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

y : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ) ;

END fixed_rotator_left_16 ;

ARCHITECTURE dataflow OF fixed_rotator_left_16 IS

BEGIN

y  <=  a(15-L downto 0) & a(15 downto 15-L+1);

END dataflow ;
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Structural VHDL code for
for a variable 16-bit rotator (1)

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY variable_rotator_16 is

PORT(

A : IN STD_LOGIC_VECTOR(15 downto 0);

B : IN STD_LOGIC_VECTOR(3 downto 0);

C : OUT STD_LOGIC_VECTOR(15 downto 0)

);

END variable_rotator_16;
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Structural VHDL code for
for a variable 16-bit rotator (2)

ARCHITECTURE structural OF variable_rotator_16 IS

COMPONENT mux2to1_16

PORT ( w0 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

w1 : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

s : IN STD_LOGIC ;

f : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ) ;

END COMPONENT ;

COMPONENT fixed_rotator_left_16

GENERIC ( L : INTEGER := 1);

PORT ( a : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

y : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ) ;

END COMPONENT ;
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Structural VHDL code for
for a variable 16-bit rotator (3)

TYPE array1 IS ARRAY (0 to 4) OF STD_LOGIC_VECTOR(15 DOWNTO 0);

TYPE array2 IS ARRAY (0 to 3) OF STD_LOGIC_VECTORS(15 DOWNTO 0);

SIGNAL Al : array1;

SIGNAL Ar : array2;

BEGIN

Al(0) <= A;

G: FOR i IN 0 TO 3 GENERATE

ROT_I: fixed_rotator_left_16 

GENERIC MAP (L => 2** i)

PORT MAP ( a => Al(i) ,

y => Ar(i));

MUX_I:  mux2to1_16  PORT MAP (w0   => Al(i),

w1   => Ar(i),

s  => B(i),

f  => Al(i+1));

END GENERATE;

C <= Al(4);

END variable_rotator_16;
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Block diagram
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Summary of Lecture 4

• Lab processor 
specifications

– Datapath and control

– Instruction Set

• Structural VHDL and 
tips for regular 
structures

• Additional Reading 
material:

– Lab processor 
specifications

– Book (complimentary 
to the slides):

• 8.9

• Next Lecture 5:
– Sequential circuits
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