EDA322
Digital Design

Lecture /:
Sequential Logic - VHDL

loannis Sourdis

Lecture /:
Sequential Circuits VHDL
— Behavioral VHDL — Structural VHDL

Outline of Lecture 7

Processes in VHDL

Registers (latches, flip-flops)
Counters, Shift registers

Generic component instantiation
Aliases and Constants

Packages

Structural VHDL

Mixing design styles

Behavioral Design Style:
Registers & Counters

l. Sourdis, CSE, Chalmers

VHDL Design Styles

VHDL Design
Styles
N
dataflow structural be%om
Concurrent Components and Sequential statements
statements interconnects Registers
 Shift registérs
: « Counter
Synthesizable S achines

j> and more
if you are careful

Processes in VHDL

* Processes Describe Sequential Behavior

* Processes in VHDL Are Very Powerful
Statements

— Allow to define an arbitrary behavior that may be
difficult to represent by a real circuit

— Not every process can be synthesized

e Use Processes with Caution in the Code to Be
Synthesized

* Use Processes Freely in Testbenches

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

Anatomy of a Process

OPTIONAL

N ——

[label:;] PROCESS [(sensitivity list)]
[declaration part]
BEGIN

statement part
END PROCESS [label];

EDA322 Digital Design, 2017-

. i E
2018, Lecture 7 l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-
2018, Lecture 7

PROCESS with a SENSITIVITY LIST

List of signals to which the
process is sensitive.

Whenever there is an event
on any of the signals in the
sensitivity list, the process
fires.

Every time the process fires, it
will run in its entirety.

WAIT statements are NOT
ALLOWED in a processes with
SENSITIVITY LIST.

label: process (sensitivity list)
declaration part

begin
statement part

end process;

l. Sourdis, CSE, Chalmers 8

Component Equivalent of a Process

priority: PROCESS (clk)
BEGIN

IF w(3)="1'THEN
y <="11";
z<="°1";

ELSIF w(2) ='1' THEN
y<="10";
z<="°1";

ELSIF w(1) =c THEN
y <=aand b;
z<="°1";

ELSE
z<=°0";

END IF ;

END PROCESS ;

EDA322 Digital Design, 2017-
2018, Lecture 7

clk — y
w g L >
ﬁ — priority ,

C "

* All signals which appear on the left of
signal assignment statement (<=) are
outputse.g.y, z

 All signals which appear on the right of
signal assignment statement (<=) or in
logic expressions are inputse.g.w, a, b, ¢

* All signals which appear in the sensitivity
list are inputs e.g. clk

* Note that not all inputs need to be
included in the sensitivity list

l. Sourdis, CSE, Chalmers 9

Registers

D latch

Graphical symbol

Truth table

|
b ol— Clock D | Q(¢+1)
0 - | QO
—|Clock 1 O 0
1 1 1
Timing diagram
4 5 t3 t
fommmsesopmoseenoooees i SCRREEEEES St SURRREEEEEES e
| |
D I
2 S S Y N SR —

EDA322 Digital Design, 2017-
2018, Lecture 7

l. Sourdis, CSE, Chalmers

11

D latch

LIBRARY ieee ;
USE 1eee.std logic 1164.all ;

ENTITY latch IS
PORT (D, Clock : IN STD LOGIC ;
Q :OUT STD LOGIC);
END latch ;

ARCHITECTURE behavioral OF latch IS
BEGIN
PROCESS (D, Clock)
BEGIN
IF Clock ='1' THEN
Q<=D;
END IF ;
END PROCESS ;

END behavioral;

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

Clock

12

D flip-flop

Graphical symbol Truth table
Clk D ; Q(#+1)
>0 T 0] o0
——P> Clock T 1 1
O = 1 Q@
I =1
Timing diagram
Clock ‘ ‘ ‘ ‘
D
Q

— Time

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

13

D flip-flop

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT (D, Clock : IN STD LOGIC;
Q : OUT STD LOGIC);
END flipflop ;

ARCHITECTURE behavioral OF flipflop IS
BEGIN
PROCESS (Clock)
BEGIN
IF Clock'EVENT AND Clock ='1' THEN
Q<=D;
END IF ;
END PROCESS ;

END behavioral ;

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

D Q

> Clock

14

D flip-flop

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS P Q
PORT (D, Clock : IN STD LOGIC;
Q : OUT STD LOGIC);
END flipflop ;

—> Clock

ARCHITECTURE behavioral2 OF flipflop IS
BEGIN
PROCESS (Clock)
BEGIN
IF rising_edge(Clock) THEN
Q<=D;
END IF ;
END PROCESS ;

END behavioral2;

EDA322 Digital Design, 2017-

' | : 15
2018, Lecture 7 l. Sourdis, CSE, Chalmers

D flip-flop

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

—p
ENTITY flipflop IS Q

PORT (D, Clock : IN STD LOGIC;

— > Clock
Q . OUT STD LOGIC); o

END flipflop ;

ARCHITECTURE behavioral3 OF flipflop IS
BEGIN
PROCESS
BEGIN
WAIT UNTIL rising_edge(Clock) ;
Q<=D;
END PROCESS ;
END behavioral3 ;

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

D flip-flop with asynchronous reset

LIBRARY ieee ;
USE 1eee.std logic 1164.all ;

ENTITY flipflop ar IS
PORT (D, Resetn, Clock :IN STD_ LOGIC ;
Q : OUT STD LOGIC);
END flipflop ar; —p> Clock
Resetn
ARCHITECTURE behavioral OF flipflop ar IS i
BEGIN
PROCESS (Resetn, Clock)
BEGIN
IF Resetn ='0' THEN
Q<="0";
ELSIF rising_edge(Clock) THEN
Q<=D;
END IF ;
END PROCESS ;

END behavioral ;

EDA322 Digital Design, 2017-

' | : 17
2018, Lecture 7 l. Sourdis, CSE, Chalmers

D flip-flop with synchronous reset

LIBRARY iece ;
USE ieee.std logic 1164.all ;

ENTITY flipflop sr IS
PORT (D, Resetn, Clock : IN STD LOGIC; —ID Qf—
Q :OUT STD LOGIC);
END flipflop sr; ——> Clock
ARCHITECTURE behavioral OF flipflop_sr IS Resetn
BEGIN 4
PROCESS(Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Resetn ='0' THEN
Q<="0";
ELSE
Q<=D;
END IF ;
END IF;
END PROCESS ;

END behavioral ;

EDA322 Digital Design, 2017-

. i E
2018, Lecture 7 l. Sourdis, CSE, Chalmers

Variables vs. Signals

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

19

Variables

architecture RTL of XYZ is

signal A, B, C: integer range O to 7; e Variables are available within
beg‘ci"ngnal Y.2: Integerrange Oto 15 processes, only named within
process (A, B, C) process declarations known only
b\éagri:\ble M, N : integer range 0 to 7, in this process
M := A; « VHDL 93: shared variables
?<:E;|+N; * immediate assignment keep the
M :=C; last value
Y<=M+N; . .
end process; * Possible assignments
end RTL; — signal to variable
Synthesis: two 3-bit adders — variable to signal

— types have to match

Variables vs. Signals

signal A, B, C, Y, Z : integer;

begin
process (A, B, C)

variable M, N : integer;

begin
Mi= A
N := B;
<=M+ N;
M:= C
Y<=M+N;

end process;

signal A, B, C, Y, Z : integer;
signal M, N : integer;

begin

process (A, B, C, M, N)

Signal values are assigned after the
process execution

Only the last signal assignment is
carried out

M <=A;

is overwritten by

M <=C;

The 2nd adder input is connected
to C

Asychronous vs. Synchronous

* In the IF loop, asynchronous items are
— Before the rising_edge(Clock) statement

* In the IF loop, synchronous items are
— After the rising_edge(Clock) statement

8-bit register with asynchronous reset

LIBRARY iece ;
USE ieee.std logic 1164.all ;

ENTITY reg8 IS
PORT(D : IN STD LOGIC VECTOR(7 DOWNTO 0) ;
Resetn, Clock : IN STD LOGIC ;
Q :OUT STD LOGIC VECTOR(7 DOWNTO 0)) ;
END reg8 ;
ARCHITECTURE behavioral OF reg8 IS
BEGIN
PROCESS (Resetn, Clock)
BEGIN 8 Resetn | 8

IF Resetn ='0' THEN —/—p ¢

Q <="00000000" ;
ELSIF rising_edge(Clock) THEN
Q<=D;

END IF : —>Clock
END PROCESS X reg8
END behavioral ;'

EDA322 Digital Design, 2017-

. i E 73
2018, Lecture 7 l. Sourdis, CSE, Chalmers

N-bit register with asynchronous reset

LIBRARY ieee ;
USE 1eee.std logic 1164.all ;

ENTITY regn IS
GENERIC (N : INTEGER :=8) ;
PORT(D : IN STD LOGIC VECTOR(N-1 DOWNTO 0) ;
Resetn, Clock :IN STD LOGIC;
Q : OUT STD LOGIC VECTOR(N-1 DOWNTO 0)) ;
END regn ;
ARCHITECTURE behavioral OF regn IS
BEGIN
PROCESS (Resetn, Clock)
BEGIN N Resetn | N

IF Resetn ='0' THEN ——p ¢-—

Q <=(OTHERS =>"'0");
ELSIF rising_edge(Clock) THEN

Q<=D;
END IF - —>Clock
END PROCESS ; regn
END behavioral ;

EDA322 Digital Design, 2017-
2018, Lecture 7

l. Sourdis, CSE, Chalmers 24

Generics

Generics are typically integer values

— In this class, the entity inputs and outputs should be std _logic or
std_logic_vector

— But the generics can be integer

Generics are given a default value
— GENERIC (N : INTEGER := 16) ;
— This value can be overwritten when entity is instantiated as a component

Generics are very useful when instantiating an often-used
component
— Need a 32-bit register in one place, and 16-bit register in another
— Can use the same generic code, just configure them differently

OTHERS

OTHERS stand for any index value that has
not been previously mentioned.

Q <="00000001" can be written as Q <= (0 => 1", OTHERS => ‘0’)

Q <=“10000001" can be writtenas Q<= (7=>'1,0 =>1", OTHERS => ‘0’)
or Q<=(7]10=>"1", OTHERS =>‘0’)

Q <=“00011110" can be written as Q <= (4 downto 1=> ‘1", OTHERS => ‘0’)

EDA322 Digital Design, 2017-

. i I 2
2018, Lecture 7 l. Sourdis, CSE, Chalmers 6

N-bit register with enable

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY regne IS
GENERIC (N : INTEGER :=8);
PORT (D : IN STD LOGIC VECTOR(N-1 DOWNTO 0) ;
Enable, Clock :IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N-1 DOWNTO 0)) ;
END regne ;

ARCHITECTURE behavioral OF regne IS
BEGIN
PROCESS (Clock)
BEGIN
IF rising_edge(Clock) THEN
IF Enable ='1' THEN
Q<=D;
END IF ;
END IF;
END PROCESS ;
END behavioral ;

EDA322 Digital Design, 2017-

. i E
2018, Lecture 7 l. Sourdis, CSE, Chalmers

|

N

~—p

—;.>

Enable
Q

Clock

N

—f—

regn

27

EDA322 Digital Design, 2017-
2018, Lecture 7

Counters

l. Sourdis, CSE, Chalmers

28

2-bit up-counter with synchronous reset

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std_logic unsigned.all ;

ENTITY upcount IS
PORT (Reset, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(1 DOWNTO 0)) ;
END upcount ;

ARCHITECTURE behavioral OF upcount IS
SIGNAL Count : std_logic vector(1 DOWNTO 0);
BEGIN
upcount: PROCESS (Clock)
BEGIN
IF rising_edge(Clock) THEN
IF Reset="1' THEN
Count <="00" ;
ELSE
Count <= Count +1 ;
END IF ;
END IF;
END PROCESS;
Q <= Count;
END behavioral;

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

|

Reset

upcount

41>Clock

29

4-bit up-counter with asynchronous reset (1)

LIBRARY ieee ;
USE 1eee.std logic 1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY upcount ar IS
PORT (Clock, Resetn, Enable :IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR (3 DOWNTO 0)) ;
END upcount ar ;

Enable 4
Q—+—
— b Clock
upcount
Resetn

1

EDA322 Digital Design, 2017- I. Sourdis, CSE, Chalmers 30

2018, Lecture 7

4-bit up-counter with asynchronous reset (2)

ARCHITECTURE behavioral OF upcount ar IS
SIGNAL Count : STD LOGIC VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS (Clock, Resetn)
BEGIN
IF Resetn ='0' THEN
Count <="0000" ;
ELSIF rising_edge(Clock) THEN
IF Enable ='1' THEN l
Count <=Count +1 ; Enable 4
END IF ; Q !
END IF ;
END PROCESS ; — Clock
Q <= Count ; R upcount
esetn

END behavioral ; T

EDA322 Digital Design, 2017-

' | . 31
2018, Lecture 7 l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-
2018, Lecture 7

Shift Registers

l. Sourdis, CSE, Chalmers

32

Shift register — internal structure

Q(3) Q(2) Q(1) Q(0)

N] Py et

clock [2 [&1— [® >

Shift Register With Parallel Load

Load
D(_?’)_ﬁ— D(2 D(1 D(0
Sin—
D Q 1D Q D Q D Q
« D > D> D>
Clock
Enable 8 s :

QB3) Q(2) Q(1) Q(0)

4-bit shift register with parallel load (1)

LIBRARY ieee ;
USE i1eee.std logic 1164.all ;

ENTITY shift4 IS
PORT (D IN STD LOGIC VECTOR(3 DOWNTO 0) ;
Enable :IN STD LOGIC ;
Load IN STD LOGIC ;
Sin : IN STD LOGIC ;
Clock :IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(3 DOWNTO 0)) ;
END shift4 ;

4 Enable 4
oo

—|L.oad
—Sin

4bl> Clock

l. Sourdis, CSE, Chalmers 35

shift4

EDA322 Digital Design, 2017-
2018, Lecture 7

4-bit shift register with parallel load (2)

ARCHITECTURE behavioral OF shift4 IS
SIGNAL Qt: STD LOGIC VECTOR(3 DOWNTO 0);

BEGIN
PROCESS (Clock)
BEGIN
IF rising edge(Clock) THEN
IF Load ='1' THEN
Qt<=D;
ELSIF Enable = ‘1’ THEN
Qt <= Sin & Qt(3 downto 1);
END IF ;
END IF : 4 Enable 4
END PROCESS ; ——p o
Q <=Qt; —— Load
END behavioral ; —¥Sin
shift4
4bl> Clock

EDA322 Digital Design, 2017- _
. E 36
2018, Lecture 7 l. Sourdis, CSE, Chalmers

N-bit shift register with parallel load (1)

LIBRARY ieee ;
USE i1eee.std logic 1164.all ;

ENTITY shiftn IS
GENERIC (N : INTEGER :=8) ;
PORT (D:IN STD LOGIC VECTOR(N-1 DOWNTO 0) ;
Enable :IN STD LOGIC ;
Load :IN STD LOGIC ;

Sin :IN STD _LOGIC ;
Clock :IN STD LOGIC ;
Q :OUT STD LOGIC VECTOR(N-1 DOWNTO0));

END shiftn ;

N Enable N
—F—p o—+—

—|L.oad
—Sin

4DI> Clock

l. Sourdis, CSE, Chalmers 37

shiftn

EDA322 Digital Design, 2017-
2018, Lecture 7

N-bit shift register with parallel load (2)

ARCHITECTURE behavioral OF shiftn IS
SIGNAL Qt: STD LOGIC_VECTOR(N-1 DOWNTO 0);

BEGIN
PROCESS (Clock)
BEGIN
IF rising edge(Clock) THEN
IF Load ='1' THEN
Qt<=D;
ELSIF Enable = ‘1’ THEN
Qt <= Sin & Qt(N-1 downto 1);
END IF;
END IF; N ["Enable| N
](E)I\LE léIt{;OCESS ; [lp ol—~1—
END behavior al; ——|Load
—Sin
shiftn
4DI> Clock

EDA322 Digital Design, 2017-

. i E 33
2018, Lecture 7 l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-
2018, Lecture 7

Generic Component
Instantiation

l. Sourdis, CSE, Chalmers

39

N-bit register with enable

LIBRARY iece ;
USE 1eee.std logic 1164.all ;

ENTITY regn IS
GENERIC (N : INTEGER :=8) ;
PORT(D . IN STD LOGIC VECTOR(N-1 DOWNTO 0) ;
Enable, Clock :IN STD LOGIC;
Q : OUT STD LOGIC VECTOR(N-1 DOWNTO 0)) ;
END regn ;
ARCHITECTURE Behavior OF regn IS
BEGIN l

BEGIN ——ip oHA—

IF (Clock'EVENT AND Clock ='1') THEN
IF Enable ='1' THEN

Q<=D;
END IF —pClock
END IF; regn
END PROCESS ;
END Behavior ;

EDA322 Digital Design, 2017-

. i E
2018, Lecture 7 l. Sourdis, CSE, Chalmers

Circuit built of medium scale

compone nts
s(0)
1(0) ——0 p(0) En
r(1) —1
d p(1) | ™ . acl) W, Enablp
r(2) W, qa(0) z(3) t(3)
2 Y A
r(3) P(2) W, 0 o 0 y2 22) | Q)
AN B R “ 1 () ()
I'(4) 0 p(3) priority En yo
z(0) t(0)
r(5) —1 dec2to4 regne
Clk ggkacﬂ(

s(1)

Structural description — example (1)

LIBRARY ieee ;
USE ieee.std_logic_1164.all;

ENTITY priority_resolver IS

PORT (r £ IN STD_LOGIC_VECTOR(5 DOWNTO 0) ;
s L IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
cdk :IN STD_LOGIC;
en :IN STD _LOGIC;
t :OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END priority_resolver;
ARCHITECTURE structural OF priority_resolver IS

SIGNAL p : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
SIGNAL q: STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SIGNAL z: STD_LOGIC_VECTOR (3 DOWNTO 0) ;
SIGNAL ena : STD_LOGIC;

Structural description — example (2)
VHDL-93

BEGIN

ul: work.mux2tol(dataflow)
PORT MAP (w0 => r(0),
wl =>r(1),
s => 5(0),
f=>p(0));
p(1) <=r(2);
p(2) <=r(3);

u2: work.mux2tol(dataflow)
PORT MAP (w0 => r(4),
w1l =>r(5),
s =>5s(1),
f=>p(3));

u3: work.priority(dataflow)
PORT MAP (w => p,
y=>q,
Z => ena);

Structural description — example (3)
VHDL-93

ud: work.dec2to4 (dataflow)
PORT MAP (w => q,
En =>ena,

y=>2);

u5: work.regne(behavioral)
GENERIC MAP (N => 4)
PORT MAP (D =>z,

Enable =>En,
Clock => Clk,
Q=>t);
END structural;

Sequential Logic Synthesis
for
Beginners

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

45

For Beginners

Use processes with very simple structure only to describe

Registers

Shift registers
Counters

state machines.

Use examples discussed in class as a template.

Create generic entities for registers, shift registers, and counters,
and instantiate the corresponding components in a higher level
circuit using GENERIC MAP PORT MAP.

Supplement sequential components with combinational logic
described using concurrent statements.

Sequential Logic Synthesis
for
Intermediates

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

47

For Intermmediates

Use Processes with IF and CASE statements only. Do not use
LOOPS or VARIABLES.

Sensitivity list of the PROCESS should include only signals
that can by themselves change the outputs of the sequential
circuit (typically, clock and asynchronous set or reset)

Do not use PROCESSes without sensitivity list (they can be
synthesizable, but make simulation inefficient)

For Intermmediates (2)

Given a single signal, the assignments to this signal should
only be made within a single process block in order to avoid
possible conflicts in assigning values to this signal.

N
~

\\\Process 1: PROCESS (a, b)
BEGIN
y <=aAND b;
END PROCE§S\;
\\
Process 2: PROCE§S\(a, b)
BEGIN pN
y<=a ORb; S
END PROCESS; N

Non-synthesizable VHDL

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

50

Delays

Delays are not synthesizable

Statements, such as

wait for 5 ns

a <= b after 10 ns
will not produce the required delay, and
should not be used in the code intended

for synthesis.

Initializations

Declarations of signals (and variables)
with initialized values, such as

SIGNAL a:STD_LOGIC := ‘0’;
cannot be synthesized, and thus should
be avoided.
If present, they will be ignored by the
synthesis tools.

Use set and reset signals instead.

Dual-edge triggered register/counter (1)

In FPGASs register/counter can change only
at either rising (default) or falling edge of the

clock.

Dual-edge triggered clock is not synthesizable
correctly, using either of the descriptions
provided below.

Dual-edge triggered register/counter (2)

~
~
~

PTR?)CE\SS (clk)
BEGIN ~_
IF (clk'EVENTN\lD clk="1") THEN
counter <= cc;GnLer +1;
ELSIF (clk’EVENT AND c\IIZ-—*’O’\) THEN
counter <= counter + 1; RN
END IF; ~.

END PROCESS; R

Dual-edge triggered register/counter (3)

~< PROCESS (clk)
BEGIN
IF (ch’EYENT) THEN
counter_<= counter + 1;
ENDIF; ~«_
END PROCESS; T

~
~
~

~

PROCESS (clk)
BEGIN™~ _

cou\n’ter\<= counter + 1,
END PROCESS; ~~«_

EDA322 Digital Design, 2017-
2018, Lecture 7

Aliases

l. Sourdis, CSE, Chalmers

56

Aliases
Syntax:

ALIAS name : type := expression;

Example:

signal IR : std_logic_vector(31 downto 0);

alias IR_opcode :std logic_vector(5 downto 0) is IR(31 downto 26);
alias IR_regl_addr : std_logic_vector(4 downto 0) is IR(25 downto 21);
alias IR_reg2_addr : std_logic_vector(4 downto 0) is IR(20 downto 16);

EDA322 Digital Design, 2017-
2018, Lecture 7

Constants

l. Sourdis, CSE, Chalmers

58

Constants
Syntax:

CONSTANT name : type := value;

Examples:

CONSTANT init_value : STD_LOGIC_VECTOR(3 downto 0) := "0100";
CONSTANT ANDA_EXT : STD_LOGIC_VECTOR(7 downto 0) := X"B4";
CONSTANT counter_width : INTEGER := 16;

CONSTANT buffer_address : INTEGER := 16H#FFFE#;

CONSTANT clk_period : TIME := 20 ns;

CONSTANT strobe_period : TIME := 333.333 ms;

Constants - features

Constants can be declared in a
PACKAGE, ENTITY, ARCHITECTURE

When declared in a PACKAGE, the constant
is truly global, for the package can be used
in several entities.

When declared in an ARCHITECTURE, the
constant is local, i.e., it is visible only within this architecture.

When declared in an ENTITY declaration, the constant
can be used in all architectures associated with this entity.

EDA322 Digital Design, 2017-2018, Lecture 7

Packages

l. Sourdis, CSE, Chalmers

61

Explicit Component Declaration versus
Package

Explicit component declaration is when you declare
components in main code

— When have only a few component declarations, this is fine

— When have many component declarations, use packages
for readability

Packages also help with portability and sharing of libraries
among many users in a company

Remember, the actual instantiations always take place in
main code

— Only the declarations can be in main code or package

Explicit Component Declaration Tips

For simple projects put entity .vhd
files all in same directory

Declare components in main code

Compilation order
— Modelsim figures it out by itself

— For other tools make sure compiler
knows the correct hierarchy

From lowest to highest

METHOD #2: Package component
declaration

* Components declared in package

* Actual instantiations and port maps always in main
code

Packages

* Instead of declaring all components in main code, you
can declare all components in a PACKAGE, and
INCLUDE the package once
— This makes the top-level entity code cleaner
— |t also allows that complete package to be used by another

designer

* A package can contain

— Components
— Functions, Procedures
— Types, Constants

Package — example (1)

LIBRARY ieee ;
USE ieee.std logic 1l64.all ;

PACKAGE GatesPkg IS

COMPONENT mux2tol
PORT (w0, wl, s : IN STD LOGIC ;
f : OUT STD LOGIC) ;

END COMPONENT ;

COMPONENT priority

PORT (w : IN STD LOGIC VECTOR (3 DOWNTO 0) ;
% : OUT STD LOGIC VECTOR (1 DOWNTO 0) ;
z : OUT STD LOGIC) ;

END COMPONENT ;

EDA322 Digital Design, 2017- .
2018, Lecture 7 l. Sourdis, CSE, Chalmers

Package — example (2)

COMPONENT dec?2to4

PORT (w : IN STD LOGIC VECTOR (1 DOWNTO 0) ;
En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3)) ;

END COMPONENT ;

COMPONENT regn

GENERIC (N : INTEGER := 8) ;

PORT (D : IN STD LOGIC VECTOR (N-1 DOWNTO O0)
Enable, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR (N-1 DOWNTO 0)) ;

END COMPONENT ;

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

.
4

67

Package — example (3)

constant
constant
constant
constant
constant
constant
constant

constant

END GatesPkg;

ADDAB
ADDAM
SUBAB
SUBAM
NOTA
NOTB
NOTM

ANDAB

EDA322 Digital Design, 2017-

2018, Lecture 7

std logic vector (3 downto O0)
std logic vector (3 downto 0)
std logic vector (3 downto 0)
std logic vector (3 downto 0)
std logic vector (3 downto 0)
std logic vector (3 downto 0)
std logic vector (3 downto 0)

std logic vector (3 downto 0)

l. Sourdis, CSE, Chalmers

"0000";
"0001";
"0010";
"0011";

"0100";
"OlOl",’
"0110";

"Olll",’

68

Package usage (1)

LIBRARY ieee ;
USE leee.std logic 1164.all ;

USE work.GatesPkg.all;

ENTITY priority resolverl IS

PORT (r : IN STD LOGIC VECTOR(5 DOWNTO 0) ;

S : IN STD LOGIC VECTOR(1 DOWNTO O0) ;
clk : IN STD LOGIC;
en : IN STD LOGIC;

T : OUT STD LOGIC VECTOR(3 DOWNTO 0))

END priority resolverl;
ARCHITECTURE structural OF priority resolverl IS

SIGNAL p STD LOGIC VECTOR (3 DOWNTO 0) ;
SIGNAL g : STD LOGIC VECTOR (1 DOWNTO 0) ;
SIGNAL =z STD LOGIC VECTOR (3 DOWNTO O0) ;
SIGNAL ena : STD LOGIC ;

EDA322 Digital Design, 2017-

l. [E I
2018, Lecture 7 Sourdis, CSE, Chalmers

Package usage (2)

BEGIN
ul: mux2tol PORT MAP (wO => r(0) ,
wl => r(l),
s => s (0),
f =>p(0));
p(l) <= r(2);
p(2) <= r(3);
u2: mux2tol PORT MAP (wO => r(4) ,
wl => r(5),
s => s (1),
f =>p(3));
u3: priority PORT MAP (w => p,
y => 4d,

z => ena);
ud: dec2tod4d PORT MAP

(w => g,
En => ena,
y => z);

ub: regn GENERIC MAP (N => 4)
PORT MAP (D => z

14

Enable => En

14

Clock => Clk,

Q =>t),
END structural;

EDA322 Digital Design, 2017-

2018, Lecture 7 l. Sourdis, CSE, Chalmers

Mixing Design Styles
Inside of an Architecture

EDA322 Digital Design, 2017-

. i E
2018, Lecture 7 l. Sourdis, CSE, Chalmers

71

VHDL Design Styles

VHDL Design
Styles
\N
dataflow structural be%om
Concurrent Components and Sequential statements
statements interconnects Registers
 Shift registérs
: « Counter
Synthesizable S achines

architecture ARCHITECTURE_NAME of ENTITY_NAME is

— Here you can declare signals, constants, types, etc.

Mixed Style Modeling

— Component declarations

begin

Concurrent statements:
Concurrent simple signal assignment

dataflow

Conditional signal assignment
Selected signal assignment

Generate statement

Component instantiation statement

Process statement

behavioral

structural

— inside process you can use only sequential

statements

end ARCHITECTURE_NAME;

> Concurrent Statements

PseudoRandom Number Generator
example

B T

seed
coeff 5
load_coeff 1
init_run 1
clk 1
current_state 5

EDA322 Digital Design, 2017-

2018, Lecture 7

Initial state of a PRNG

Coefficients of the underlying
LFSR
(cO, c1, c2, c3, c4)

load_coeff
Control signal active when
loading coefficients of the init_run
underlying LFSR
Choice between the
clk

initialization mode (loading
seed), and execution mode
(running PRNG)

clock

Current state of the PRNG

l. Sourdis, CSE, Chalmers

B ———

PRNG

+ 5
current_state

74

PRNG Example (1)

use IEEE.STD_LOGIC_1164.all;
use work.prng_pkg.all;

ENTITY PRNG IS

PORT(Coeff :in std_logic_vector(4 downto 0);
Load_Coeff :in std_logic;
Seed :in std_logic_vector(4 downto 0);
Init_Run :in std_logic;
Clk :in std_logic;
Current_State : out std_logic_vector(4 downto 0));
END PRNG;

ARCHITECTURE mixed OF PRNG is
signal Ands :std_logic_vector(4 downto 0);
signal Sin : std_logic;
signal Coeff Q : std_logic_vector(4 downto 0);
signal Shift5_Q : std_logic_vector(4 downto 0);

PRNG Example (2)

BEGIN
-- Data Flow
G: FORiINOTO 4 GENERATE
Ands(i) <= Coeff_Q(i) AND Shift5_Q(i);
END GENERATE;
Sin <= Ands(0) XOR Ands(1) XOR Ands(2) XOR Ands(3) XOR Ands(4);
Current_State <= Shift5_Q;

-- Behavioral
Coeff _Reg: PROCESS(Clk)
BEGIN
IF CIK'EVENT and Clk = '1' THEN
IF Load_Coeff ='1' THEN
Coeff_Q <= Coeff;
END IF;
END IF;
END PROCESS;

-- Structural
Shift5_Reg : Shift5 PORT MAP (D => Seed,
Load => Init_Run,
Sin =>Sin,
Clock => Clk,
Q => Shift5_Q);

END mixed;

Summary of Lecture 7

Processes in VHDL

Registers (latches, flip-
flops)

* Next Lecture 8:

— FSMs
Counters, Shift registers

Generic component
instantiation

Aliases and Constants
Packages

Structural VHDL
Mixing design styles

