
EDA322
Digital	Design

Lecture	7:	
Sequential	Logic	- VHDL

Ioannis	Sourdis

Lecture 7:
Sequential	Circuits	VHDL	

– Behavioral	VHDL	– Structural	VHDL	

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 2

Outline	of	Lecture	7

• Processes	in	VHDL
• Registers	(latches,	flip-flops)
• Counters,	Shift	registers
• Generic	component	instantiation
• Aliases	and	Constants
• Packages
• Structural	VHDL
• Mixing	design	styles
EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 3

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 4

Behavioral Design Style:
Registers & Counters

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 5

VHDL	Design	Styles

Components and
interconnects

structural

VHDL Design
Styles

dataflow

Concurrent
statements

behavioral

• Registers
• Shift registers
• Counters
• State machines

Sequential statements

and more
if you are careful

synthesizable

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 6

Processes	in	VHDL
• Processes	Describe	Sequential	Behavior
• Processes	in	VHDL	Are	Very	Powerful	
Statements
–Allow	to	define	an	arbitrary	behavior	that	may	be	
difficult	to	represent	by	a	real	circuit

–Not	every	process	can	be	synthesized
• Use	Processes	with	Caution	in	the	Code	to	Be	
Synthesized

• Use	Processes	Freely	in	Testbenches

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 7

Anatomy	of	a	Process

[label:] PROCESS [(sensitivity list)]
[declaration part]

BEGIN
statement part

END PROCESS [label];

OPTIONAL

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 8

PROCESS	with	a	SENSITIVITY	LIST
• List	of	signals	to	which	the	

process	is	sensitive.
• Whenever	there	is	an	event	

on	any	of	the	signals	in	the	
sensitivity	list,	the	process	
fires.

• Every	time	the	process	fires,	it	
will	run	in	its	entirety.

• WAIT	statements	are	NOT	
ALLOWED	in	a	processes	with	
SENSITIVITY	LIST.

label:	process (sensitivity	list)
declaration	part	

begin
statement	part

end	process;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 9

Component	Equivalent	of	a	Process

• All	signals	which	appear	on	the	left	of	
signal	assignment	statement	(<=)	are	
outputs	e.g.	y,	z

• All	signals	which	appear	on	the	right	of	
signal	assignment	statement	(<=)	or	in	
logic	expressions	are	inputs e.g.	w,	a,	b,	c

• All	signals	which	appear	in	the	sensitivity	
list	are	inputs	e.g.	clk

• Note	that	not	all	inputs	need	to	be	
included	in	the	sensitivity	list

priority: PROCESS (clk)
BEGIN

IF w(3) = '1' THEN
y <= "11" ;
z <= ‘1’ ;

ELSIF w(2) = '1' THEN
y <= "10" ;
z <= ‘1’ ;

ELSIF w(1) = c THEN
y <= a and b;
z <= ‘1’ ;

ELSE
z <= ‘0’ ;

END IF ;
END PROCESS ;

w
a

y

z
priority

b
c

clk

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 10

Registers

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 11

Clock D
0
1
1

–
0
1

0
1

Truth table Graphical symbol

t 1 t 2 t 3 t 4

Time

Clock

D

Q

Timing diagram

Q(t+1)
Q(t)

D latch

D Q

Clock

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 12

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY latch IS
PORT (D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;
END latch ;

ARCHITECTURE behavioral OF latch IS
BEGIN

PROCESS (D, Clock)
BEGIN

IF Clock = '1' THEN
Q <= D ;

END IF ;
END PROCESS ;

END behavioral;

D latch

D Q

Clock

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 13

Clk D
­
­

0
1

0
1

Truth table

t 1 t 2 t 3 t 4

Time

Clock

D

Q

Timing diagram

Q(t+1)

Q(t)

D flip-flop

D Q

Clock

Graphical symbol

0 –
Q(t)1 –

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 14

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT (D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;
END flipflop ;

ARCHITECTURE behavioral OF flipflop IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock'EVENT AND Clock = '1' THEN
Q <= D ;

END IF ;
END PROCESS ;

END behavioral ;

D flip-flop

D Q

Clock

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 15

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT (D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;
END flipflop ;

ARCHITECTURE behavioral2 OF flipflop IS
BEGIN

PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
Q <= D ;

END IF ;
END PROCESS ;

END behavioral2;

D flip-flop

D Q

Clock

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 16

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT (D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;
END flipflop ;

ARCHITECTURE behavioral3 OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL rising_edge(Clock) ;
Q <= D ;

END PROCESS ;
END behavioral3 ;

D flip-flop

D Q

Clock

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 17

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop_ar IS
PORT (D, Resetn, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC) ;
END flipflop_ar ;

ARCHITECTURE behavioral OF flipflop_ar IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= '0' ;

ELSIF rising_edge(Clock) THEN
Q <= D ;

END IF ;
END PROCESS ;

END behavioral ;

D flip-flop with asynchronous reset

D Q

Clock

Resetn

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 18

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY flipflop_sr IS

PORT (D, Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC) ;

END flipflop_sr ;

ARCHITECTURE behavioral OF flipflop_sr IS
BEGIN

PROCESS(Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Resetn = '0' THEN

Q <= '0' ;
ELSE

Q <= D ;
END IF ;

END IF;
END PROCESS ;

END behavioral ;

D flip-flop with synchronous reset

D Q

Clock

Resetn

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 19

Variables vs. Signals

Variables
architecture RTL of XYZ is

signal A, B, C : integer range 0 to 7;
signal Y, Z : integer range 0 to 15;

begin
process (A, B, C)
variable M, N : integer range 0 to 7;
begin
M := A;
N := B;
Z <= M + N;
M := C;
Y <= M + N;

end process;
end RTL;

• Variables	are	available	within	
processes,	only	named	within	
process	declarations	known	only	
in	this	process	

• VHDL	93:	shared	variables	
• immediate	assignment	keep	the	

last	value	
• Possible	assignments	

– signal	to	variable	
– variable	to	signal	
– types	have	to	match	

EDA322	Digital	Design,	2017-2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 20

Variables	vs.	Signals
signal A, B, C, Y, Z : integer;

begin
process (A, B, C)

variable M, N : integer;
begin

M := A;
N := B;
Z <= M + N;
M := C;
Y <= M + N;

end process;

• Signal	values	are	assigned	after	the	
process	execution	

• Only	the	last	signal	assignment	is	
carried	out	

• M	<=	A;
is	overwritten	by
M	<=	C;	

• The	2nd	adder	input	is	connected	
to	C	

EDA322	Digital	Design,	2017-2018,	Lecture	7
I.	Sourdis,	CSE,	Chalmers 21

signal A, B, C, Y, Z : integer;
signal M, N : integer;
begin

process (A, B, C, M, N)

begin
M <= A;
N <= B;
Z <= M + N;
M <= C;
Y <= M + N;

end process;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 22

Asychronous	vs.	Synchronous

• In	the	IF	loop,	asynchronous	items	are
– Before the	rising_edge(Clock) statement

• In	the	IF	loop,	synchronous	items	are
–After the	rising_edge(Clock) statement

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 23

8-bit register with asynchronous reset
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY reg8 IS
PORT (D : IN STD_LOGIC_VECTOR(7 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)) ;

END reg8 ;

ARCHITECTURE behavioral OF reg8 IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= "00000000" ;

ELSIF rising_edge(Clock) THEN
Q <= D ;

END IF ;
END PROCESS ;

END behavioral ;`

Resetn

Clock

reg8

8 8

D Q

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 24

N-bit register with asynchronous reset
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regn IS
GENERIC (N : INTEGER := 8) ;
PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE behavioral OF regn IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= (OTHERS => '0') ;

ELSIF rising_edge(Clock) THEN
Q <= D ;

END IF ;
END PROCESS ;

END behavioral ;

Resetn

Clock

regn

N N

D Q

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 25

Generics

• Generics	are	typically	integer values
– In	this	class,	the	entity	inputs	and	outputs	should	be	std_logic	or	

std_logic_vector
– But	the	generics	can	be integer

• Generics	are	given	a	default	value
– GENERIC	(N	:	INTEGER	:=	16) ;
– This	value	can	be	overwritten	when	entity	is	instantiated	as	a	component

• Generics	are	very	useful	when	instantiating	an	often-used	
component
– Need	a	32-bit	register	in	one	place,	and	16-bit	register	in	another
– Can	use	the	same	generic	code,	just	configure	them	differently

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 26

OTHERS
OTHERS stand for any index value that has

not been previously mentioned.

Q <= “00000001” can be written as Q <= (0 => ‘1’, OTHERS => ‘0’)

Q <= “10000001” can be written as Q <= (7 => ‘1’, 0 => ‘1’, OTHERS => ‘0’)
or Q <= (7 | 0 => ‘1’, OTHERS => ‘0’)

Q <= “00011110” can be written as Q <= (4 downto 1=> ‘1’, OTHERS => ‘0’)

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 27

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regne IS
GENERIC (N : INTEGER := 8) ;
PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END regne ;

ARCHITECTURE behavioral OF regne IS
BEGIN

PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Enable = '1' THEN

Q <= D ;
END IF ;

END IF;
END PROCESS ;

END behavioral ;

N-bit register with enable

QD
Enable

Clock

regn

N N

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 28

Counters

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 29

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY upcount IS

PORT (Reset, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(1 DOWNTO 0)) ;

END upcount ;

ARCHITECTURE behavioral OF upcount IS
SIGNAL Count : std_logic_vector(1 DOWNTO 0);

BEGIN
upcount: PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Reset= '1' THEN

Count <= "00" ;
ELSE

Count <= Count + 1 ;
END IF ;

END IF;
END PROCESS;
Q <= Count;

END behavioral;

2-bit up-counter with synchronous reset

Q
Reset

Clock

upcount

2

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 30

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY upcount_ar IS
PORT (Clock, Resetn, Enable : IN STD_LOGIC ;

Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)) ;
END upcount_ar ;

4-bit up-counter with asynchronous reset (1)

Q
Enable

Clock
upcount

4

Resetn

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 31

ARCHITECTURE behavioral OF upcount _ar IS
SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS (Clock, Resetn)
BEGIN

IF Resetn = '0' THEN
Count <= "0000" ;

ELSIF rising_edge(Clock) THEN
IF Enable = '1' THEN

Count <= Count + 1 ;
END IF ;

END IF ;
END PROCESS ;
Q <= Count ;

END behavioral ;

4-bit up-counter with asynchronous reset (2)

Q
Enable

Clock
upcount

4

Resetn

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 32

Shift Registers

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 33

Shift	register	– internal	structure

D QSin

Clock

D Q D Q D Q

Q(3) Q(2) Q(1) Q(0)

Enable

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 34

Shift	Register	With	Parallel	Load

D(3)

D Q

Clock

Enable

Sin
D(2)

D Q

D(1)

D Q

D(0)

D Q

Q(0)Q(1)Q(2)Q(3)

Load

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 35

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY shift4 IS
PORT (D : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

Enable : IN STD_LOGIC ;
Load : IN STD_LOGIC ;
Sin : IN STD_LOGIC ;
Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END shift4 ;

4-bit shift register with parallel load (1)

Q
Enable

Clock
shift4

4
D
Load
Sin

4

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 36

ARCHITECTURE behavioral OF shift4 IS
SIGNAL Qt : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN
PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Load = '1' THEN

Qt <= D ;
ELSIF Enable = ‘1’ THEN

Qt <= Sin & Qt(3 downto 1);
END IF ;

END IF ;
END PROCESS ;
Q <= Qt;

END behavioral ;

4-bit shift register with parallel load (2)

Q
Enable

Clock
shift4

4
D
Load
Sin

4

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 37

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY shiftn IS
GENERIC (N : INTEGER := 8) ;
PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable : IN STD_LOGIC ;
Load : IN STD_LOGIC ;
Sin : IN STD_LOGIC ;
Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END shiftn ;

N-bit shift register with parallel load (1)

Q
Enable

Clock
shiftn

N
D
Load
Sin

N

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 38

ARCHITECTURE behavioral OF shiftn IS
SIGNAL Qt: STD_LOGIC_VECTOR(N-1 DOWNTO 0);

BEGIN
PROCESS (Clock)
BEGIN

IF rising_edge(Clock) THEN
IF Load = '1' THEN

Qt <= D ;
ELSIF Enable = ‘1’ THEN

Qt <= Sin & Qt(N-1 downto 1);
END IF;

END IF ;
END PROCESS ;
Q <= Qt;

END behavior al;

N-bit shift register with parallel load (2)

Q
Enable

Clock
shiftn

N
D
Load
Sin

N

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 39

Generic Component
Instantiation

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 40

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regn IS
GENERIC (N : INTEGER := 8) ;
PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS (Clock)
BEGIN

IF (Clock'EVENT AND Clock = '1') THEN
IF Enable = '1' THEN

Q <= D ;
END IF ;

END IF;
END PROCESS ;

END Behavior ;

N-bit register with enable

QD
Enable

Clock

regn

N N

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 41

Circuit	built	of	medium	scale
components

w 0

w 3

y 1

y 0

z

w 1

w 2

w
1

En

y
3

w
0

y
2

y
1

y
0

s(0)

0

1

s(1)

0

1

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

p(0)

p(1)

p(2)

p(3)

q(1)
q(0)

ena

z(3)

z(2)

z(1)

z(0)
dec2to4

priority

t(3)

t(2)

t(1)

t(0)
regne

D Q

Clk Clock

Enable

En

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 42

Structural	description	– example	(1)
LIBRARY	ieee	;
USE	ieee.std_logic_1164.all	;

ENTITY	priority_resolver IS
PORT	(r :	IN	 STD_LOGIC_VECTOR(5 DOWNTO	0)	;

s :	IN	 STD_LOGIC_VECTOR(1	DOWNTO	0) ;
clk								:	IN									STD_LOGIC;
en									:	IN								STD_LOGIC;
t	 :	OUT	 STD_LOGIC_VECTOR(3 DOWNTO	0))	;

END	priority_resolver;

ARCHITECTURE	structural	OF	priority_resolver	IS

SIGNAL		p	:	STD_LOGIC_VECTOR	(3	DOWNTO	0)	;
SIGNAL		q	:	STD_LOGIC_VECTOR	(1		DOWNTO	0)	;
SIGNAL		z :	STD_LOGIC_VECTOR	(3	DOWNTO	0)	;
SIGNAL		ena	:	STD_LOGIC	;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 43

Structural	description	– example	(2)
VHDL-93

BEGIN

u1:		work.mux2to1(dataflow)
PORT	MAP (w0 =>	r(0) ,

w1 =>	r(1),
s =>	s(0),
f	=>	p(0));

p(1)	<=	r(2);
p(2)	<=	r(3);

u2:		work.mux2to1(dataflow)
PORT	MAP (w0 =>	r(4) ,

w1 =>	r(5),
s =>	s(1),
f	=>	p(3));

u3:	work.priority(dataflow)
PORT	MAP	(w	=>	p,

y =>	q,
z =>	ena);

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 44

Structural	description	– example	(3)
VHDL-93

u4:	work.dec2to4 (dataflow)
PORT	MAP (w =>	q,

En =>	ena,
y =>	z);

u5:	work.regne(behavioral)					

GENERIC	MAP	(N	=>	4)

PORT	MAP (D	=>	z	,

Enable	=>	En	,
Clock	=>	Clk,
Q =>	t);

END	structural;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 45

Sequential Logic Synthesis
for

Beginners

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 46

For	Beginners
• Use	processes	with	very	simple	structure	only to	describe

– Registers
– Shift	registers
– Counters
– state	machines.

• Use	examples	discussed	in	class	as	a	template.

• Create	generic entities	for	registers,	shift	registers,	and counters,	
and	instantiate	the	corresponding	components	in a	higher	level	
circuit	using	GENERIC	MAP	PORT	MAP.

• Supplement	sequential	components	with	combinational	logic	
described	using	concurrent	statements.

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 47

Sequential Logic Synthesis
for

Intermediates

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 48

For	Intermmediates
• Use	Processes	with	IF	and	CASE	statements	only.	Do	not	use	

LOOPS	or	VARIABLES.

• Sensitivity	list	of	the	PROCESS	should	include	only signals	
that	can	by	themselves	change	the	outputs	of	the	sequential	
circuit	(typically,	clock	and	asynchronous	set	or	reset)

• Do	not	use	PROCESSes	without	sensitivity	list	(they	can	be	
synthesizable,	but	make	simulation	inefficient)

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 49

For	Intermmediates	(2)
Given	a	single	signal,	the	assignments	to	this	signal	should	
only	be	made	within	a	single	process	block	in	order	to	avoid
possible	conflicts	in	assigning	values	to	this	signal.

Process	1:	PROCESS	(a,	b)
BEGIN
y	<=	a	AND	b;

END	PROCESS;

Process	2:	PROCESS	(a,	b)
BEGIN
y	<=	a	OR	b;

END	PROCESS;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 50

Non-synthesizable VHDL

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 51

Delays
Delays	are	not	synthesizable

Statements,	such	as
wait	for 5 ns
a	<=	b	after 10 ns

will	not	produce	the	required	delay,	and	
should	not	be	used	in	the	code	intended
for	synthesis.

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 52

Initializations

Declarations	of	signals	(and	variables)
with	initialized	values,	such	as

SIGNAL		a	:	STD_LOGIC	:=	‘0’;
cannot	be	synthesized,	and	thus	should
be	avoided.
If	present,	they	will	be	ignored	by	the
synthesis	tools.

Use	set	and	reset	signals	instead.

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 53

Dual-edge	triggered	register/counter (1)

In	FPGAs	register/counter	can	change	only
at	either	rising	(default)	or	falling	edge	of	the
clock.

Dual-edge	triggered	clock	is	not	synthesizable
correctly,	using	either	of	the	descriptions	
provided	below.

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 54

Dual-edge	triggered	register/counter	(2)

PROCESS	(clk)
BEGIN

IF	(clk’EVENT	AND	clk=‘1’)	THEN
counter	<=	counter	+	1;

ELSIF	(clk’EVENT	AND	clk=‘0’)	THEN
counter	<=	counter	+	1;

END	IF;
END	PROCESS;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 55

Dual-edge	triggered	register/counter	(3)

PROCESS	(clk)
BEGIN

IF	(clk’EVENT)	THEN
counter	<=	counter	+	1;

END	IF;
END	PROCESS;

PROCESS	(clk)
BEGIN

counter	<=	counter	+	1;
END	PROCESS;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 56

Aliases

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 57

Aliases
Syntax:

ALIAS name	:	type	:=	expression;

Example:

signal	IR	:	std_logic_vector(31	downto	0);

alias	IR_opcode	 :	std_logic_vector(5	downto	0)	is	IR(31	downto	26);
alias	IR_reg1_addr	:	std_logic_vector(4	downto	0)	is	IR(25	downto	21);
alias	IR_reg2_addr	:	std_logic_vector(4	downto	0)	is	IR(20	downto	16);

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 58

Constants

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 59

Constants
Syntax:

CONSTANT			name	:	type	:=	value;

Examples:

CONSTANT	init_value	:	STD_LOGIC_VECTOR(3	downto	0)	:=	"0100";
CONSTANT	ANDA_EXT	:	STD_LOGIC_VECTOR(7	downto	0)	:=	X"B4";
CONSTANT	counter_width	:	INTEGER	:=	16;
CONSTANT	buffer_address	:	INTEGER	:=	16#FFFE#;
CONSTANT	clk_period	:	TIME	:=	20	ns;
CONSTANT	strobe_period	:	TIME	:=	333.333	ms;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 60

Constants	- features
Constants can	be	declared	in	a
PACKAGE,	ENTITY,	ARCHITECTURE

When	declared	in	a	PACKAGE,	the	constant
is	truly	global,	for	the	package	can	be	used
in	several	entities.

When	declared	in	an	ARCHITECTURE,	the
constant	is	local,	i.e.,	it	is	visible	only	within	this	architecture.

When	declared	in	an	ENTITY	declaration,	the	constant	
can	be	used	in	all	architectures	associated	with	this	entity.

EDA322	Digital	Design,	2017-2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 61

Packages

EDA322	Digital	Design,	2017-2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 62

Explicit	Component	Declaration	versus	
Package

• Explicit	component	declaration	is	when	you	declare	
components	in	main	code
– When	have	only	a	few	component	declarations,	this	is	fine
– When	have	many	component	declarations,	use	packages	
for	readability

• Packages	also	help	with	portability	and	sharing	of	libraries	
among	many	users	in	a	company

• Remember,	the	actual	instantiations	always	take	place	in	
main	code
– Only	the	declarations	can	be	in	main	code	or	package

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 63

• For	simple	projects	put	entity	.vhd	
files	all	in	same	directory

• Declare	components	in	main	code
• Compilation	order

– Modelsim	figures	it	out	by	itself
– For	other	tools	make	sure	compiler	

knows	the	correct	hierarchy
• From	lowest	to	highest

Explicit	Component	Declaration	Tips

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 64

METHOD	#2:	Package	component	
declaration

• Components	declared	in	package
• Actual	instantiations	and	port	maps	always	in	main	
code

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 65

Packages
• Instead	of	declaring	all	components	in	main	code,	you	
can	declare	all	components	in	a	PACKAGE,	and	
INCLUDE	the	package	once
– This	makes	the	top-level	entity	code	cleaner
– It	also	allows	that	complete	package	to	be	used	by	another	
designer

• A	package	can	contain
– Components
– Functions,	Procedures
– Types,	Constants

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 66

Package	– example	(1)
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE GatesPkg IS

COMPONENT mux2to1
PORT (w0, w1, s : IN STD_LOGIC ;

f : OUT STD_LOGIC) ;
END COMPONENT ;

COMPONENT priority
PORT (w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
z : OUT STD_LOGIC) ;

END COMPONENT ;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 67

Package	– example	(2)

COMPONENT dec2to4
PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;
y : OUT STD_LOGIC_VECTOR(0 TO 3)) ;

END COMPONENT ;

COMPONENT regn
GENERIC (N : INTEGER := 8) ;
PORT (D : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Enable, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END COMPONENT ;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 68

Package	– example	(3)

constant ADDAB : std_logic_vector(3 downto 0) := "0000";

constant ADDAM : std_logic_vector(3 downto 0) := "0001";

constant SUBAB : std_logic_vector(3 downto 0) := "0010";

constant SUBAM : std_logic_vector(3 downto 0) := "0011";

constant NOTA : std_logic_vector(3 downto 0) := "0100";

constant NOTB : std_logic_vector(3 downto 0) := "0101";

constant NOTM : std_logic_vector(3 downto 0) := "0110";

constant ANDAB : std_logic_vector(3 downto 0) := "0111";

END GatesPkg;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 69

Package	usage	(1)
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

USE work.GatesPkg.all;

ENTITY priority_resolver1 IS
PORT (r : IN STD_LOGIC_VECTOR(5 DOWNTO 0) ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
clk : IN STD_LOGIC;
en : IN STD_LOGIC;

t : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;
END priority_resolver1;

ARCHITECTURE structural OF priority_resolver1 IS

SIGNAL p : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
SIGNAL q : STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SIGNAL z : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
SIGNAL ena : STD_LOGIC ;

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 70

BEGIN

u1: mux2to1 PORT MAP (w0 => r(0) ,
w1 => r(1),
s => s(0),
f => p(0));

p(1) <= r(2);
p(2) <= r(3);

u2: mux2to1 PORT MAP (w0 => r(4) ,
w1 => r(5),
s => s(1),
f => p(3));

u3: priority PORT MAP (w => p,
y => q,
z => ena);

u4: dec2to4 PORT MAP (w => q,
En => ena,
y => z);

u5: regn GENERIC MAP (N => 4)

PORT MAP (D => z ,

Enable => En ,

Clock => Clk,

Q => t);

END structural;

Package	usage	(2)

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 71

Mixing Design Styles
Inside of an Architecture

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 72

VHDL	Design	Styles

Components and
interconnects

structural

VHDL Design
Styles

dataflow

Concurrent
statements

behavioral

• Registers
• Shift registers
• Counters
• State machines

Sequential statements

synthesizable

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 73

architecture ARCHITECTURE_NAME	of ENTITY_NAME	is

– Here	you	can	declare	signals,	constants,	types,	etc.
– Component	declarations

begin
Concurrent	statements:

• Concurrent	simple	signal	assignment	
• Conditional	signal	assignment	
• Selected	signal	assignment
• Generate	statement

• Component	instantiation	statement

• Process	statement
– inside	process	you	can	use	only	sequential																						

statements
end	ARCHITECTURE_NAME;

Mixed	Style	Modeling

Concurrent Statements

dataflow

structural

behavioral

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 74

PseudoRandom	Number	Generator	
example

5

Name Width Description

seed 5 Initial	state	of	a	PRNG

coeff 5
Coefficients	of	the	underlying	

LFSR	
(c0,	c1,	c2,	c3,	c4)

load_coeff 1
Control	signal	active	when	
loading	coefficients	of	the	

underlying	LFSR

init_run 1

Choice	between	the	
initialization	mode	(loading	
seed),	and	execution	mode	

(running	PRNG)

clk 1 clock

current_state 5 Current	state	of	the	PRNG

55

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 75

PRNG	Example	(1)
library	IEEE;
use	IEEE.STD_LOGIC_1164.all;	
use	work.prng_pkg.all;

ENTITY	PRNG	IS
PORT(Coeff									 :	in		std_logic_vector(4	downto	0);

Load_Coeff				 :	in		std_logic;
Seed										 :	in		std_logic_vector(4	downto	0);
Init_Run						 :	in		std_logic;
Clk							 :	in		std_logic;
Current_State	 :	out	std_logic_vector(4	downto	0));

END	PRNG;

ARCHITECTURE	mixed	OF	PRNG	is
signal	Ands						 :	std_logic_vector(4	downto	0);
signal	Sin							 :	std_logic;
signal	Coeff_Q				 :	std_logic_vector(4	downto	0);
signal	Shift5_Q		 :	std_logic_vector(4	downto	0);	

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 76

PRNG	Example	(2)
BEGIN
-- Data	Flow

G:	FOR	i	IN	0	TO	4	GENERATE
Ands(i)	<=	Coeff_Q(i)	AND	Shift5_Q(i);

END	GENERATE;
Sin	<=	Ands(0)	XOR	Ands(1)	XOR	Ands(2)	XOR	Ands(3)	XOR	Ands(4);
Current_State	<=	Shift5_Q;

-- Behavioral
Coeff_Reg:	PROCESS(Clk)
BEGIN

IF	Clk'EVENT	and	Clk	=	'1'		THEN
IF	Load_Coeff	=	'1'			THEN

Coeff_Q	<=	Coeff;
END	IF;

END	IF;
END	PROCESS;		

-- Structural
Shift5_Reg	:	Shift5	PORT	MAP	(D						=>	Seed,

Load		=>	Init_Run,
Sin					=>	Sin,
Clock	=>	Clk,
Q								=>	Shift5_Q);

END	mixed;

Summary	of	Lecture	7

• Processes	in	VHDL
• Registers	(latches,	flip-

flops)
• Counters,	Shift	registers
• Generic	component	

instantiation
• Aliases	and	Constants
• Packages
• Structural	VHDL
• Mixing	design	styles

• Next	Lecture	8:
– FSMs

EDA322	Digital	Design,	2017-
2018,	Lecture	7 I.	Sourdis,	CSE,	Chalmers 77

