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Outline of Lecture 8

* Finite State Machines
— Moore
— Mealy

* State assignment
* State minimization



General form of a sequential

circuit

Realized using combinational logic and flip-flops
Primary inputs: w

Outputs: z

State: Q

Moore FSMs: outputs depend only on the state

Mealy FSMs: outputs depend on both state and primary inputs

L
W -]

- =| Flip-flops|—e—»

Combinational

circuit Q
—

Clock
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Two types of FSMs

Moore-type
" Combinati Q Combinationa
ompinationa Flio-flops R . .
circuit p-Hop circuit
A% g
Clock
Mealy-type
- Combinati Q Combinationa
ompinationa Flio-flops R . .
circuit p-rop circuit
A%

Clock




Example: 1-1 detector

1-1 detector: generate an output z=1 whenever a second w=1 is detected
in consecutive clock cycles

Moore-type

Mealy-type

The output z be equal to 1 in the clock
Cycle that follows the detection of the

The output z be equal to 1 in the same
clock cycle when the second w=1is
detected

( second w=1

Clockcycle: ty 4 t t3 t4 t5 t¢ t7 tg to ty
w: 0 1 0 1 1 0 1 1 1 0 1
z: 0 0 0 O 0 1 0 0 1 1 0
Clockcycle: t¢ 4 b 6 t4 t5 t¢ t7 tg to ty
w: 0 1 0 1 1 0 1 1 1 0 1
z 0 0 O O 1 0 o0 1 1 0 0




Example: 1-1 detector:
state diagram

Moore-type Mealy-type

Reset

Reset

SONBOS

W=0/Z=O / w= 1/z=1
w=0"2z=0

Fewer states
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Example: 1-1 detector
state table

Moore-type
Present Next state Output
state [, =09 =1 -
Next state
Present
state w=20 w=1 Output
z
yzyl Y2Y1 Y2Y1
g 00 00 01 0
B 01 00 10 0
C 10 00 10 1

EDA322 Digital Design, 2017-
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Mealy-type
Present Next state Output z
state. | =0 w=1|w=0 w=1
A A B 0
B A B 0 1
Present Next state Output
state. |y -0 w=1|lw=0 w=1
¥ Y Y z z
A 0 1 0
B 1 0 1 0 1
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Example: 1-1 detector
Boolean expressions derivation (Moore)

From state-assigned table: we have the following Karnaugh maps

Y.y
2Y1 ¥

w 00 01 11 10 Y, 0 .

0] o 0 d | o o | o 0

1 |1 0 d | o . (:) 4

Y o= myr, =y,

= +
Yo =m tw,

= +
W(y1 yz)



Example: 1-1 detector
Final implementation (Moore)

= +
Yo=mw *tw,

’ z=y2

= +
W(y1 yz)

Y, = wy

N Yy "
- W— < D Q
>  Q
[©)

Clock

o Resetn
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Example: 1-1 detector
Final implementation (Mealy)

Z =Wy




Example: 1-1 detector

Moore-type
Mealy-type
=pSy
T\ Y, 2 l z
} D Q z
> Q w D Qr—,
] |
Clock > Q
w ) i D Q ! Resetn T
> Q —‘
Clock Simpler!
fosern Note that the function is not exactly the same
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Example: 1-1 detector

Timing diagram
bty tz L3ty g tg ty tg g o
C.focﬁf;||||||||||||||||||||||
1
o @ 9 |_
1 /\
B B
0 1
1
z
0
1
Mealy-type Clock D_|_l_|_l_[_|_|_|_
W
1
y D_
: g [Tl I .
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Swapping Register contents
R2<->R1, using R3 as tmp

w ——

Clock

Control
circuit

R1 out
Rlin
R out
R2in
R3out

FRRERR

Done

Rlout

R1in

R2out
R2in

R3out

R3in

Specifications:

1) After w: 0 21, R2->R3 (R2out=1, R3in=1).
2) then, R1>R2 (Rlout=1, R2in=1), regardless of w
3) then, R3->R1 (R3out=1, R1lin=1), regardless of w, done=1.

bus

EDA322 Digital Design, 2017-
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Example: control circuit for
swapping registers

Moore-type

)

A s/No transfer

Mealy-type

w =1
( B/R2,p =1, 3, = 1 ) R2=>R
w =10 3
f W= 1
w =10
ER ( C/R gy =1 R2,, = 1 ) R1-R
w =10 2
w =1
(D/RSOW-1 R1m:1 Done 1) R3=2R
1
EDA322 Digital Design, 2017- 4 States I. Sourdis, CSE, Chalmers
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w=1/R2,u=1R3,=1 R2=9R
3

$ z ?/ Rlow=1,R2p=1 519R

$ z ?/Rgout: 1, Ry =1 0Done=1 ?39R

3 states »




Moore State diagram

()
—C A/ No transfer } Reset

|W=1

Y
( B/R20ut= 1° R3in = 1 )
w=0
w=1

w=0
w=1 c/ Rlout = 1> R2in = 1
'

G)/ R3out = 1> Rlin = 1> Done = 1)

¥ ¥
o
—_-




CQwp

Moore State table
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Present | INExt state Qutputs
state w=0 w=1 Rlow Rl R20u  R24 R3owe R3in  Done
A A B 0 0 0 0 0 0 0
B C C 0 0 1 0 0 1 0
C D D 1 0 0 1 0 0 0
D A A 0 1 0 0 1 0 1
Present Nextstate
state | jo =0 w0 =1 Outputs
231 ]E]rl }r‘ﬁjrl leu’ R]-."i'i' RE{J!H’ RE."H RS{J!H’ RS."H Done
00 00 01 0 0 0 0 0 0 0
01 10 10 0 0] 1 0 0 1 0
10 11 11 1 0 0 1 0 0 0
11 00 00 0 1 0 0 1 0 1
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Moore:
Expressions of next state and outputs

Y2 Y1
w

1
m Y =wy +y1y,

M |

VoY1
W 00 01 11 10

0 1 1 o
Y, = y1Y2+Y1Y;

1 1 1
Rlout — Rzm — J—/IyZ
Rl., =R3_ .= Done= yly2
Rzout — R3m — yl)—/2




Final Moore implementation

> ) e
- Y1
Clock > Q —— Done
\ [ Rlout
$ 9
J
- R2in
Y, Y2
pun Doy I
N
> Q
[ R20ut
—— R3.
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Mealy state diagram

W = 1/,Q2out = 1, RS,’n = 1 R29R3

N Rlow=1,Rp=1 RIIR2

?/R?’out =1, Rl =100ne="1 R3-R1

EDA322 Digital Design, 2017-
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Mealy-type Present Next state Outputz

state |\, — 0 w=1|w=0 w=1

w=0 /V A A B 0 R2out,R3in

Reset B C C RlOllt, R2in
w=1/R2=1,R3p =1 C A A R3out, R1lin,Done
‘ By inspection
v Rlow=1,R2;= 1 y3y2yl
A:001 Y1=ley1+y3 R2out=R3in=wyl
_—_ B:010 _ e
V2 3 R =1,Rljy =1, Done =1 C:100 Y2=wyl Rilout=R2in=y2
One-hot Y3=y2 R3out=R1lin=done=y3

3 states

EDA322 Digital Design, 2017-
2018, Lecture 8
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b 1 - 71, |
: D_‘[>‘I_ D Qp4— R3 m:
I Clock > 0 o Donel E I ° t I
JE ' Example: contro
[ I
I I [ ] [ ]
| — [ circuit for
: —/ |_ Rzm : °
I I
, — , swapping
| O : -
| | 5 Moore-type registers
[ |
| | [
| |_ r3. |
———————————————— I=—_—_—=—_—_—=—_"__———————————————
I MeaIY'type Rzouhmm R1out:R2m R30u3=R1J'n
: Reset
| W
l ‘ B \ JL
l DiD pFPa } D af—=+—{D @
: Clock > Q —> Q > Q
I (&) (]
l
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Summary of FSMs

Most of tasks can be realized by Moore-type FSM, as well as by
Mealy-type FSM, although these two type FSMs don’ t have the exact
same logic function

Compared to Moore-type FSMs, Mealy-type FSMs have following features:
Less states;
Quicker response;
Usually, simpler circuit implementation;
But, sometimes longer critical path, all the way from input to output
(v.s. Moore: from state registers to output)
- one solution: registered outputs in Mealy



FSM design by CAD tools

* Different ways of FSM design using CAD tools:

— Derive circuits from a state diagram manually =2
draw a schematic into CAD systems or HDL code
- simulate =2 implement in a chip (e.g.PLD).

— Enter state diagram into CAD systems using a
graphical tool =2 automatically synthesize.

— Write HDL code for state diagram —> automatically
synthesize. (V')



Quiz 7-1

http://m.socrative.com/student/#joinRoom
room number: 713113

 Q1: A Mealy machine would change its output at
the same clock cycle an input is modified.

— True/false

* Q2: Each state of a Mealy machine has a single set
of outputs

— True/false

* Q3: The circuit of a Mealy machine is usually
simpler
— True/false



State Assignment Problem
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State Assignment Problem

. Some state assignments are better than others.

» The state assignment influences the complexity of

the state machine.

- The combinational logic required in the state
machine design is dependent on the state
assignment.

« Types of state assignment
- Binary encoding: 2N states — N Flip-Flops
- Gray-code encoding: 2N states — N Flip-Flops
- One-hot encoding: N states — N Flip-Flops

EDA322 Digital Design, 2017- )
2018, Lecture 8 I. Sourdis, CSE, Chalmers
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FSM: State Assignment

Example:

Design a FSM that detects a sequence of two or more
consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is
detected, and a 0 otherwise.

This is another example of a sequence detector.

I. Sourdis, CSE, Chalmers
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FSM: State Assignment

Input:
Output:

011101011011101 ...
001100001001100...

I. Sourdis, CSE, Chalmers
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FSM: State Assignment

State
Diagram




FSM: State Assignment

Present State Next State Output
w=0 w=1
So S, S, 0
S, S, S, 0
S, S, S, 1
State Table

EDA322 Digital Design, 2017- .
2018, Lecture 8 I. Sourdis, CSE, Chalmers



FSM: State Assignment #1

State Assigned Table
Present State Next State Output
w=0 w=1

Qs Q" | Qp Qv | Qp Z

S, | /0 ON| S | o o [ s, | o 1 0
S, |[ 0 1\ s, | o 0 | s, 1 0 0
s, || 1 0| s, | o0 0 | S, 1 0 1
\ 1 1/ d d d d d

N

/

Using Binary Encoding
for the State Assignment

EDA322 Digital Design, 2017-
2018, Lecture 8
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FSM: State Assignment #1

State Assigned Table
Present State Next State FF Inputs
w=20 w=1 w=20 w=1

Q | & [ o [ [ | D | Dy Dy
S, 0 0 0 0 0 1 0 0 0 1
S, 0 1 0 0 1 0 0 0 1 0
S, 1 0 0 0 1 0 0 0 1 0
1 1 d d d d d d d d

Characteristic Equation: D = Q*

EDA322 Digital Design, 2017-
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FSM: State Assignment #1

SN

g
00 01 11 10 0, 0 .
0
0 0 da | o o | o 0
1 |1 0 d | o . @ d
Dp = w0, Oy = 0,




FSM: State Assignment #1

|
D D,=w.(Q,+Qp)
) D 0 z
- A
> Q 2=Q,
i
D, =w.Q,".Qy'
w } D Q
> Q
Clock
Resetn

I. Sourdis, CSE, Chalmers
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FSM: State Assignment #2

State Assigned Table
Present State Next State Output
w=0 w=1

Qs Qv | Qp’ Q| Qy Z

S, | /0 N | S | o o [ s, | o 1 0
S, |/ 0 1\ s, | o 0 | s, 1 1 0
s, || 1 1/l s, | o o | s, | 1 1 1
\ 1 0/ d d d d d

Using Gray-code Encoding

for the State Assignment

EDA322 Digital Design, 2017-
2018, Lecture 8
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FSM: State Assignment #2

State Assigned Table
Present State Next State FF Inputs
w=20 w=1 w=20 w=1

Q | & [ o [ [ | D | Dy Dy
S, 0 0 0 0 0 1 0 0 0 1
S, 0 1 0 0 1 1 0 0 1 1
S, 1 1 0 0 1 1 0 0 1 1
1 0 d d d d d d d d

Characteristic Equation: D = Q*

EDA322 Digital Design, 2017-
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FSM: State Assignment #2

2%

2%

w 00 01 11 10

DB = w
00 01 11 10
0 0 d 0
0 1 1 d
D = wly

I. Sourdis, CSE, Chalmers
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FSM: State Assignment #2

D, =w.Qpg
DB =W W
Clock
Reset

D

I. Sourdis, CSE, Chalmers
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FSM: State Assignment #3

State Assigned Table
Present State Next State
w=0 W =
Qn | Q | Q Q" | Q" | QF Q" | Q" | QF

S, 0 | ™~ S | o© 0 1 | s, | o 1 0
S, 0 1 0 S, 0 0 1 S, 1 0

S, (]\1 0 0| S, 0 0 1 S, 1

T~}

For each state only one flip-flop is set to 1.
The remaining combination of state variables are not used.

Using One-hot Encoding
for the State Assignment

Characteristic Equation: D = Q"

EDA322 Digital Design, 2017- .
‘ita’ Jesigh I. Sourdis, CSE, Chalmers 39
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FSM: State Assignment #3

QBQC
w QA 00 01 11 10
00| d 0 d 0
o1 o d d d
1m] 1 d d d
10| d 0 d 1
|

QBQC
w QA 00 01 11 10
00 d 0 d 0
01| o0 d d d
1| 0 d d d
10( d 1 d 0
= WQC

I. Sourdis, CSE, Chalmers

2
wQN\_ 00 | 01 | 11 10
00| a 1 d 1
01| 1 d d | d
1| o d d d
10| 4 0 d | o
D = W
40



FSM: State Assignment #3
D, =w.Q.' )'D Q z

Dy =w.Q I )— D Q

B_
> Q
[ d
DC =W W _‘_DC D Q
C._
Clock s > Q
Resetn T

I. Sourdis, CSE, Chalmers 41



State Assignments: comparison

Resett I. Sourdis, CSE, Chalmers

:>_L » P -C
-l oz T
Q
W Do
>
ﬂ Q N
W — _ Gray '
Q
- | N
Clock —/ D z " Dc D f
Rese > _(1 Clock >
B i n a ry ‘I’ Resetn T
One-hot
w —|D
Clock P> _Q
1

42



State Minimization

I. Sourdis, CSE, Chalmers
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FSM: State Minimization

Definition:

Two states S; and S; are said to be equivalent if and only if for every
possible mput sequence, the same output sequence will be produced
regardless of whether S; or §; 1s the initial state.

I. Sourdis, CSE, Chalmers
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State Minimization:
Partitioning

Definition:

A partition consists of one or more blocks, where each block comprises
a subset of states that may be equivalent, but the states 1n a given block
are definitely not equivalent to the states in other blocks.

Example: Blocks

Partition /
\

P, = (ABD)(CEFG)

I. Sourdis, CSE, Chalmers 45



State Minimization: Partitioning

. State Minimization through Partitioning:

Form an initial partition (P,) that includes all states.

Form a second partition (P,) by separating the states
Into blocks based upon their output values.

Form a third partition (P,) by separating the states
Into blocks corresponding to the next state values.

Continue partitioning until two successive partitions
are the same (i.e. Py, = P).

All states in any one block are equivalent.
. Equivalent states can be combined into a single state.

I. Sourdis, CSE, Chalmers 46



State Minimization: Partitioning

Example:

Use partitioning to minimize the number of states in the
following Finite State Machine (FSM).

I. Sourdis, CSE, Chalmers 47



State Minimization:

Partitioning
State
Diagram



State Minimization: Partitioning

Output
:

Present Next state
state | =0 w=1

A B C 1

B D F 1

C F E 0

D B G 1

E F C 0

F E D 0

G F G 0

EDA322 Digital Design, 2017-

2018, Lecture 8
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State Minimization: Partitioning

Present__ Nextstate | gytput
state | y=0 w=1| 2
.. .. A B C 1
Initial Partition: B D F 1
C F E 0
D B G 1
E F C 0
P,=(ABCDEFG) | & | & | 8

The initial partition contains all states in the state diagram / table.

EDA322 Digital Design, 2017-
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State Minimization: Partitioning

» Separate states based on output value.
-~ P, = (ABD)(CEFG)

Present  Nextstate | gyuiput
state | =0 w=1 z

A

ATMmMOOW

TMMETMO®
HooOom=mON
COOROKM

EDA322 Digital Design, 2017-
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State Minimization: Partitioning

Presen|t Next state| gytpy

state| \,—0 w=1| Z

« Separate states based on YENEAE

next state values. c|F £l

. P, = (ABD)(CEFG) F | e b o

G F G 0

ABD CEFG
o e o
BDB CFG FFEF ECDG
AN \ \ N\
All in Block 1 of P, All in Block 2 of P, ECG in block 2
All in Block 2 of P, D in block 1

. P3 — (ABD)(CEG)(F)/’ unique state

EDA322 Digital Design, 2017-
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State Minimization: Partitioning

Pr:s:n|t Next state| gytput

. Separate states based on E 'E i E

next state values. el F ¢ o

. P, = (ABD)(CEG)(F) s |Fr oo

ABD CEG
BD\B CFG FFF [ECG
N
All in Block 1 of P, I(:?n":ﬂ:'::';z ‘l}in Block 3 of P, \

B P4 — (AD)(CEG)(F)(B) All in Block 3 of P;

\ unique states

. . 2017- '
EDA322 Digital Design, 20 I. Sourdis, CSE, Chalmers 53
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State Minimization: Partitioning

Presen|t Next state| gytpy
state| =0 w=1| 2
A B C 1
« Separate states based on B D F 1
next state values. el e ¢l o
F E D 0
G F G 0
AD CEG
BB CG FFF ECG

- P, = (AD)(CEG)(F)(B)

/

P.same as previous partition (P,) => state minimization is completed

EDA322 Digital Design, 2017-
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State Minimization: Partitioning

. Since P, = P,, state minimization is
complete.
« The equivalent states are:
- A=D
- C=E=0G
- B
- F
Thus, the FSM can be realized with just 4
states.

I. Sourdis, CSE, Chalmers
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FSM: State Minimization

Present_ Nextstate | gytput
state | \wv=0 w=1 z

A B C 1
B A F 1
C F C 0
F C A 0

Minimized State Table

EDA322 Digital Design, 2017-
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FSM: State Minimization

Minimized
State Diagram

I. Sourdis, CSE, Chalmers
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State minimization:
Implication Table

= Multiple input example  inputs here

present next state output
state 00 01 10 11
SU SU ST SZ S3 1
Si SO S3 S1 &4 0
S2 S1 S3 S2 S4 1
S3 S1 SO S4 S5 0
S4 SO0 S1 S2 S5 1
55 S1 S4 SO S5 0

symbolic state
transition table

EDA322 Digital Design, 2015-
2016, Lecture 7
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= Implication Table Method

Build a table and label vertical axis: S,, S,,.. Syand horizontal S, S;,.. Sy.1
= Each cell is the crossection of a pair of states S;-S;
Cross out pairs of states with different outputs

In the rest of the cells put the pairs of next-states that need to be the same for
Si-S;to be the same

Then cross-out more cells if at least one next-state pair has been already

Ot €ross-out any more cells

present next state output
state 00 01 10 11

pre3ent S xt 3ate>> loutput
state 0

minimized state table
l. Sourdis, CSE, Chalmers (SO:=S4) (53==55) 62
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Implication Table Method

Current | NxtState

state o IN: s ouT
a d c|O
b |f h|(O
C e d|1l
d |a e|O
e (¢ all
f |f b1l
g |b h|O
h |c gl

EDA322 Digital Design, 2015-

2016, Lecture 7

example 2

b

d

Build a table and
label vertical axis:
Sy, S,,.. Syand
horizontal Sy, S, ..
SN-1

Each cell is the
crossection of a
pair of states S;-S

l. Sourdis, CSE, Chalmers

63




Implication Table Method
example 2

3. Cross out pairs of
states with
different outputs

Gt N |out — 4. In the rest of the
0o 1 b | cn cells put the pairs
a (dc|0 ¢ | X|X] e
‘ need to be the
1) {3 }ll (l] d |ce :_'f,k X same for S;-S;to
d |a el e | ad be the same
= c a|l NG ef [~/ |cf
f [f bl g LA L TEATE LI,
g (b h|O g |cn|Pf e-h X
h |c gl oo -
. h d-g *E g .
a b C d e f g

EDA322 Digital Design, 2015-
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Implication Table Method
example 2

Current
state

NxtState

0

IN:
1

ouT

1
b

A

-~ TS D D™

1 ¢

h
d

e
1
b

h

O
=

O = = O = O O

EDA322 Digital Design, 2015-

2016, Lecture 7

5. cross-out more

cells if at least one
next-state pair has

b Xé

been already

crossed out

d | ce

l. Sourdis, CSE, Chalmers
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Implication Table Method

example 2

Current | NxtState

state o IN: s ouT
a |dc|O
b |[f h|O
c |e d|1l
d [a e |0
e |c all
f |[f b|1l
g |b h|O
h [c g|l

EDA322 Digital Design, 2015-

2016, Lecture 7

6. Repeat
last step
until you
cannot
cross-out

b X any more
7. The cells c 1N cells

that are

not d

crossed o

out

indicate f

states that ]

can be s

merged h

l. Sourdis, CSE, Chalmers

[Nstate
Cu- :
st‘;te oIN]_ ouT
a |a ¢ O
b |f h O
C ca 1
f |(f b 1
g |[bh O
h |[c g1
a=d
C=e

66




Quiz 7-2

http://m.socrative.com/student/#joinRoom
room number: 713113

Q1: How many states can be represented by N bits in:

a. Binary encoding
b. Gray-code encoding
c. One-hot encoding

on:I One hot encoding requires fewer flipflops than binary and gray-
code
— True/false

Q3: One hot encoding has usually simpler output logic than the
binary and gray-code
— True/false

Q4: In the partitioning state minimization algorithm: A state needs
to be removed from a block if:
— Its Jrgext state (for a particular input) is different than the next states of the
res
— Its next state (for a particular input) does not belong to the same group as
the other state
— I’E[s Pext state (for a particular output) belongs to the same group as the other
state




Summary of Lecture 8

* Book (complimentary
to the slides):

— Sections 14, 19.1-19.3

* Finite State Machines
— Moore
— Mealy

e State assighment
* Next Lecture 9:

— VHDL for Finite State
Machines

e State minimization

FSMs intro:
https:/ /www.youtube.com/watch?v=vhiiial hC4
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