EDA322
Digital Design

Lecture 9:
Finite State Machines - VHDL

loannis Sourdis

Outline of Lecture 9

* Control vs. Datapath
* More FSM examples

* FSMs in VHDL
— Moore and Mealy FSMs in VHDL
— State processes
— State Coding

— More VHDL alternatives (Mealy, Moore,
registered output)

Datapath
VS.
Controller

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Structure of a Typical Digital System

Data Inputs Control Inputs

4

Control
Signals

A

Datapath Controller
(Execution (Control
Unit) Unit)

Status
Signals 1
Data Outputs Control Outputs

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers 4

Datapath (Execution Unit)

— Manipulates and processes data

— Performs arithmetic and logic operations, shifting,
and other data-processing tasks

— Is composed of registers, gates, multiplexers,
decoders, adders, comparators, ALUs, etc.

— Provides all necessary resources and interconnects
among them to perform specified task

— Interprets control signals from the Controller and
generates status signals for the Controller

Controller (Control Unit)

Controls data movements in the Datapath by switching
multiplexers and enabling or disabling resources

Example: enable signals for registers
Example: control signals for muxes

Provides signals to activate various processing tasks in
the Datapath

Determines the sequence the operations performed by
Datapath

Follows Some ‘Program’ or Schedule

Controller

* Controller can be programmable or non-programmable
* Programmable

— Has a program counter which points to next instruction

— Instructions are held in a RAM or ROM externally

— Microprocessor is an example of programmable controller
* Non-Programmable

— Once designed, implements the same functionality

— Another term is a “hardwired state machine” or “hardwired
instructions”

Finite State Machines

* Digital Systems and especially their Controllers can be
described as Finite State Machines (FSMs)

* Finite State Machines can be represented using

— State Diagrams and State Tables - suitable for
simple digital systems with a relatively few inputs
and outputs

— Algorithmic State Machine (ASM) Charts - suitable
for complex digital systems with a large number of
inputs and outputs

EDA322 Digital Design, 2017-

. i E
2018, Lecture 9 l. Sourdis, CSE, Chalmers

Hardware Design with RTL VHDL

Interface

Datapath

Block
diagram

: 1

VHDL code

EDA322 Digital Design, 2017-
2018, Lecture 9

Pseudocode

R

Controller

Block
diagram

State diagram
or ASM chart

3 B

VHDL code

l. Sourdis, CSE, Chalmers

VHDL code

9

Finite State Machines
Refresher

l. Sourdis, CSE, Chalmers

Finite State Machines (FSMs)

A machine/mathematical model with a finite amount of memory to
represent its finite set of internal states, has a set of defined inputs
and outputs and a set of transitions between selected states

— Even computers can be viewed as huge FSMs
Design of FSM

— Defining states

— Defining transitions between states

— Optimization / minimizations

* Manual Optimization/Minimization Is Practical for Small FSMs Only

Moore FSM

* QOutput Is a Function of a Present State Only

Inputs Next State

—})
function

Next State Present State

clock
reset

Present State
register

Output Outputs
function

EDA322 Digital Design, 2017-
2018, Lecture 9

l. Sourdis, CSE, Chalmers

12

Mealy FSM

* Qutput Is a Function of a Present State and Inputs

Inputs Next State
function

Next State l

Present State

olole @EN Drosont State
register

Output
function

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-
2018, Lecture 9

State Diagrams

l. Sourdis, CSE, Chalmers

14

Moore Machine

transition
condition 1

/\

transition

*~__ condition 2/

state 2 /
output 2

state 1/
output 1

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

15

EDA322 Digital Design, 2017-
2018, Lecture 9

Mealy Machine

transition condition 1/
output 1

/—\

transition condition 2 /

\ output 2 /

l. Sourdis, CSE, Chalmers

16

Moore vs. Mealy FSM (1)

* Moore and Mealy FSMs Can Be Functionally
Equivalent

— Equivalent Mealy FSM can be derived from Moore
FSM and vice versa

* Mealy FSM Has Richer Description and Usually
Requires Smaller Number of States

— Smaller circuit area

Moore vs. Mealy FSM (2)

* Mealy FSM Computes Outputs as soon as
Inputs Change

— Mealy FSM responds one clock cycle sooner than
equivalent Moore FSM

e Moore FSM Has No Combinational Path
Between Inputs and Outputs

— Moore FSM is more likely to have a shorter critical
path

Moore FSM - Example 1

* Moore FSM that Recognizes Sequence “10”

0 1
0
S0 /00— s1/0)
y N
reset 0
S0: No S1: %17 S2:“10”
Meaning elements observed observed
of states: of the

sequence
observed

Mealy FSM - Example 1
 Mealy FSM that Recognizes Sequence “10”

0/0 1/0 1/0
)
reset 0/ 1
S0: No S1:“17
Meaning elements observed
of states: of the
sequence

observed

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Moore & Mealy FSMs — Example 1

clock

R © __1. D __ |- __L____

- — ke - H |||||

Moore & Mealy FSMs — Example 1
0
S2
SO

clock

22

l. Sourdis, CSE, Chalmers

EDA322 Digital Design, 2017-

2018, Lecture 9

Finite State Machines
in VHDL

l. Sourdis, CSE, Chalmers

FSMs in VHDL

e Finite State Machines Can Be Easily Described
With Processes

e Synthesis Tools Understand FSM Description If
Certain Rules Are Followed

e State transitions should be described in a process
sensitive to clock and asynchronous reset signals
only

e Qutputs described as concurrent statements
outside the process

Moore FSM

process(clock, reset)

Inputs ! Next State
function

clock ——— —BEERRSIEIG Present State
reset : Register

concurrent Output
statements function

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Mealy FSM

process(clock, reset)

|
Inputs | Next State
function

Next State l

Present State

Present State
Register

Outputs

concurrent function
statements

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Moore FSM - Example 1

* Moore FSM that Recognizes Sequence “10”

0 1
0
/ v

Moore FSM in VHDL (1)

TYPE state IS (SO0, S1, S2);

SIGNAL Moore_state: state; 0 @ 1
o9

U_Moore: PROCESS (clock, reset) reset/

BEGIN

IF(reset ='1") THEN
Moore_state <= S0;
ELSIF (clock = “1" AND clock’event) THEN
CASE Moore_state IS
WHEN SO =>
IF input = ‘1" THEN
Moore state <= S1;
ELSE
Moore_state <= S0;
END IF;

EDA322 Digital Design, 2017- :
2018, Lecture 9 l. Sourdis, CSE, Chalmers

28

Moore FSM in VHDL (2)

WHEN S1 =>
IF input = ‘0’ THEN
Moore_state <= S2;
ELSE
Moore_state <= S1;
END IF;
WHEN S2 =>
IF input = ‘0’ THEN
Moore_state <= S0O;

ELSE
Moore_state <= S1;
END IF;
END CASE;
END IF;

END PROCESS;

Output <= “1” WHEN Moore_state = S2 ELSE ‘0’;

Mealy FSM - Example 1

* Mealy FSM that Recognizes Sequence “10”

0/0

1/0 1/0
o e
_/

0/1

reset

Mealy FSM in VHDL (1)

TYPE state IS (SO, S1);
SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)
BEGIN
IF(reset = ‘1) THEN
Mealy_ state <= SO;
ELSIF (clock = 1" AND clock’event) THEN
CASE Mealy_state IS
WHEN S0 =>
IF input = ‘1" THEN
Mealy state <= S1;
ELSE
Mealy state <= SO;
END IF;

reset

0/0 1/0
/\

0/1

1

0

Mealy FSM in VHDL (2)

WHEN S1 => 010 o o
IF input = ‘0’ THEN o
Mealy_state <= SO;
ELSE
Mealy_state <= S1; reset 0/1
END IF;
END CASE;

END IF;
END PROCESS;

Output <= ‘1" WHEN (Mealy_state = S1 AND input = ‘0’) ELSE ‘0’;

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers 32

Moore FSM — Example 2: State diagram

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers 33

Moore FSM — Example 2: State table

Present Next state Output
state w=0 w=1 z
A A B 0)
B A C 0
C A C 1

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Moore FSM

process(clock, reset)

Input: w Next State
function

clock —+ eIl |Present State: y
resetn ——— B LY =g

concurrent

|
| Output
statements : function

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Moore FSM — Example 2: VHDL code (1)

USE ieee.std _logic_1164.all ;

ENTITY simple IS
PORT (clock :INSTD LOGIC;
resetn : INSTD LOGIC;
w :INSTD LOGIC;
Z : OUT STD _LOGIC);
END simple ;

ARCHITECTURE Behavior OF simple IS
TYPE State type IS (A, B, C);
SIGNAL vy : State_type ;
BEGIN
PROCESS (resetn, clock)
BEGIN
IF resetn ='0' THEN
y <=A;
ELSIF (Clock'EVENT AND Clock ='1"') THEN

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers 36

Moore FSM — Example 2: VHDL code (2)

CASE Yy IS
WHEN A =>
IF w ="0' THEN
y<=A;
ELSE
y<=B;
END IF ;
WHEN B =>
IF w ='0' THEN
y<=A;
ELSE
y<=C,;
END IF ;
WHEN C =>
IF w ="'0' THEN
y<=A;
ELSE
y<=C;
END IF ;
END CASE ;

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers 37

Moore FSM — Example 2: VHDL code (3)

END IF;
END PROCESS ;

z<="1"WHEN y = CELSE '0’;

END Behavior ;

Mealy FSM — Example 2: State diagram

Reset
w=1/z=0
w=0/z=0
EDA322 Digital Design, 2017- I. Sourdis, CSE, Chalmers 39

2018, Lecture 9

Example 2: VHDL code (1)

LIBRARY ieee ;
USE ieee.std logic_1164.all ;

ENTITY Mealy IS

PORT (clock :IN STD LOGIC;
resetn :IN STD_LOGIC;
w . IN STD_LOGIC;

z :0UT STD LOGIC);
END Mealy ;

ARCHITECTURE Behavior OF Mealy IS
TYPE State type IS (A, B) ;
SIGNAL vy : State type ;
BEGIN
PROCESS (resetn, clock)
BEGIN
IF resetn ='0' THEN
y<=A;
ELSIF (clock'EVENT AND clock ='1') THEN

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

40

Example 2: VHDL code (2)

CASEy IS
WHEN A =>
IF w="0"'THEN
y<=A;
ELSE
y<=B;
END IF;
WHEN B =>
IF w="0"'THEN
y<=A;
ELSE
y<=B;
END IF ;
END CASE ;
END IF ;

END PROCESS ;
z<="1" WHEN (y = B) AND (w=‘1") ELSE '0';

END Behavior ;

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

Control Unit Example: Arbiter (1)

reset

ri

r2

r3

clock

EDA322 Digital Design, 2017-

2018, Lecture 9 I. Sourdis, CSE, Chalmers 42

Control Unit Example: Arbiter (2)

EDA322 Digital Design, 2017-
3 igital Design, 20 ” Chalmers

2018, Lecture 9

43

Control Unit Example: Arbiter (3)

EDA322 Digital Design, 2017-

Example 3: VHDL code (1)

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY arbiter IS
PORT (Clock, Resetn :IN STD _LOGIC;

r - IN STD _LOGIC VECTOR(1 TO 3);
g :OUT STD LOGIC VECTOR(1TO3));
END arbiter ;

ARCHITECTURE Behavior OF arbiter IS
TYPE State_type IS (ldle, gnt1, gnt2, gnt3) ;
SIGNAL vy : State_type ;

EDA322 Digital Design, 2017-

: | : ! 45
2018, Lecture 9 Sourdis, CSE, Chalmers

Example 3: VHDL code (2)

BEGIN
PROCESS (Resetn, Clock)
BEGIN
IF Resetn ='0' THEN y <= Idle ;
ELSIF (Clock'EVENT AND Clock ='1") THEN
CASE y IS

WHEN Idle =>
IFr(1)="1""THEN y <= gnt1 ;
ELSIF r(2) ="1' THEN y <= gnt2 ;
ELSIF r(3) ='1' THEN y <= gnt3 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt1 =>
IFr(1)="1"THEN y <= gnt1 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt2 =>
IFr(2)="1"THEN y <=gnt2 ;
ELSE y <= Idle ;
END IF ;

EDA322 Digital Design, 2017- . Sourdis, CSE, Chalmers

2018, Lecture 9

46

Example 3: VHDL code (3)

WHEN gnt3 =>
IFr(3)="1'"THEN y <= gnt3;
ELSE y <= Idle;
END IF;

END CASE ;
END IF;
END PROCESS ;

g(1) <="1'"WHEN y = gnt1 ELSE '0';

g(2) <="1' WHEN y = gnt2 ELSE '0';

g(3) <="1"WHEN y = gnt3 ELSE '0';
END Behavior ;

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

FSMs with VHDL

 State Processes
e State Coding

e Additional ways to implement FSMs
— Moore
— Mealy
— Registered Output

One "State" Process

State STATE

*| Registers |

FSM_FF: process (CLK, RESET)
begin
if RESET="1" then
STATE <= START ;
elsif CLK'event and CLK="1" then
case STATE is
when START =>if X=GO_MID then
STATE <= MIDDLE :
end if ;
when MIDDLE == if X=GO_STOP then
STATE <= STOP ;
end if ;
when STOP == if X=GO_START then
STATE <= START ;
end if ;
when others => STATE <= START ;
end case ;
end if |
end process FSM_FF ;

X=

go_start

N —
e .

/
J

J

\

\
"-

STOP

, go_stop

\

EDA322 Digital Design, 2017-

2018, Lecture 9

l. Sourdis, CSE, Chalmers

49

Two "State" Processes

NEXT
STATE | State STATE

*| Registers |

FSM_FF: process (CLK, RESET) begin
if RESET="1" then
STATE <= START ;
elsif CLK'event and CLK="1"then
STATE <= NEXT STATE ; \,\‘jESET N
end if; - X=
end process FSM_FF ; f '.|| go_mid ‘.f' ‘~.|
\ START | = MIDDLE |
FSM_LOGIC: process (STATE , X) ' \ /
begin
NEXT_STATE <= STATE ; X= /S X=
case STATE is go_stant . go_stop
when START =>if X=GO_MID then
”E‘\T _STATE <= MIDDLE ; ' STOP ::.
end if ; \
when MIDDLE => __.
when others => NEXT STATE <= START ;
end case ;
end process FSM_LOGIC ;

!
2 - e -~
—— / ™

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

How Many Processes?

Structure and Readability

— Asynchronous combinatoric # synchronous storing elements
=> 2 processes

— FSM states change with special input changes
=> 1 process more comprehensible

— Graphical FSM (without output equations) resembles one state process
=> 1 process

Simulation

— Error detection easier with two state processes
=> 2 processes

Synthesis

— 2 state processes can lead to smaller generic netlist
and therefore to better synthesis results
=> 2 processes

State Encoding

e type STATE_TYPE is (START, e State encoding responsible
MIDDLE, STOP) ; for safety of FSM
signal STATE : STATE_TYPE ;

e START ->"00"
MIDDLE ->"01"

STOP ->"10" * Default encoding: binary

e START ->"001"
MIDDLE ->"010"
STOP ->"100 * Speed optimized default
encoding: one hot

Extension of Case Statement

type STATE_TYPE is (START, MIDDLE, ST« Adding the "when others" choice
OP) ;
signal STATE : STATE_TYPE ;

case STATE is
when START =>:--
when MIDDLE =>- - -
when STOP =>--..

when others =>---

end case ;

Hand Coding

subtype STATE_TYPE is o

Defining constants
std_logic_vector(1 downto 0) ;

e Control of encoding

signal STATE : STATE_TYPE ; e Safe FSM
constant START : STATE_TYPE := "01"; _
constant MIDDLE : STATE_TYPE :="11"; * Simulatable

constant STOP : STATE TYPE :="00"; .
B * Portable design

case STATE is .
when START => -- MOFe effort

when MIDDLE => -

when STOP =>--

when others => .-
end case ;

FSM: Moore

Registers \ Logic

State STATE / outpuwt

The output vector is a function of the state vector: Y = f(S)

= Three Processes
architecture RTL of MOORE is

begin
REG: -- Clocked Process
CMB: -- Combinational Process

OUTPUT: process (STATE)
begin

-- Output Logic
end process OUTPUT ;

end RTL ;

EDA322 Digital Design, 2017-
2018, Lecture 9

= Two Processes
architecture RTL of MOORE is

begin
REG: process (CLK, RESET)
begin
-- State Registers Inference with

Next State Logic
end process REG ;

OUTPUT: process (STATE)
begin

-- Output Logic
end process OUTPUT ;

end RTL ;

. Sourdis, CSE, Chalmers

55

Moore: 3 Process Example

architecture RTL of MOORE_TEST is

signal STATE,NEXTSTATE : STATE_TYPE ;
begin

REG: process (CLK, RESET) begin
if RESET="1" then STATE <= START ;
elsif CLK event and CLK=1" then
STATE <= NEXTSTATE ;
end if ;

end process REG ;
RESET

START 00

MIDDLE

00 | 00 o1 nm

G

10101 /11
STATE W

(¥.Z)

subtype STATE_TYPE is std_ulogic_vector(1 downto 0);
constant START STATE_TYPE = "00";
constant MIDDLE - STATE_TYPE = "01°;

constant STOP STATE_TYPE = "10";

EDA322 Digital Design, 2017-
2018, Lecture 9

CMB: process (A,B,STATE) begin
NEXT_STATE <= STATE;
case STATE is
when START => if (A or B)=0" then
NEXTSTATE <= MIDDLE ;
end if ;
when MIDDLE => if (A and B)=1" then
NEXTSTATE <= STOP ;
end if ;
when STOP =>if (A xor B)="1" then
NEXTSTATE <= START ;
end if ;
when others => NEXTSTATE <= START ;
end case ;

end process CMB ;

-- concurrent signal assignments for output
Y <= ‘1" when STATE=MIDDLE else ‘0’ ;

Z <= ‘1" when STATE=MIDDLE or STATE=STOP else ‘0’
end RTL;

l. Sourdis, CSE, Chalmers

~ .

56

Waveform Moore Example

50 100 150
Ly D b e i i
ekl ||||I|I|I|||||_
RESET 0
A 0 |
B |
v 0 p /4
: 0 }k N
B> STATE(1.0)||00 ' 00 “3 01) 10 00

* (Y,Z) changes simultaneously with STATE => Moore machine

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

|/ Next STATE [State STATE [Output
X — | —
State ‘ Reg|ster3 _.—'J Logic /
* Logic N

The output vector is a function of the state vector and the input vector:Y =f(X,S)

= Two Processes
= Three Processes

_ _ architecture RTL of MEALY is
architecture RTL of MEALY is

beg.;.iﬁ
begin MED: process (CLK, RESET)
REG: -- Clocked Process begin

-- State Registers Inference with
Next State Logic

CMB: -- Combinational Process
end process MED ;

OUTPUT: process (STATE, X) OUTPUT: process (STATE, X)
begin begin
-- Output Logic -- Output Logic
end process OUTPUT ; end process OUTPUT ;
end RTL ; _
end RTL ;

EDA322 Digital Design, 2017-

. i E
2018, Lecture 9 l. Sourdis, CSE, Chalmers 53

Mealy Example

architecture RTL of MEALY_TEST is
signal STATE,NEXTSTATE : STATE_TYPE ;

begin
REG: - - -- clocked STATE process
CMB: - - - -- Like Moore Examples

OUTPUT: process (STATE, A, B)
begin
case STATE is
when START =>

Y<=0;
Z<=AandB;

when MIDLLE =>
Y<=AnorB;
Z<="1";

when STOP =>
Y<=AnandB;
/<=AorB;

when others =>
Y<=0;
Z<="0";

end case;
end process OUTPUT;
end RTL ;

EDA322 Digital Design, 2017-

2018, Lecture 9 l. Sourdis, CSE, Chalmers

59

Waveform Moore Example

160

CLK
RESET
A

B

v

Z

b= STATE(1 0}

00

L EAN
AW

10 ;00

* (Y,Z) changes with input => Mealy machine
* Note the "spikes" of Y and Z in the waveform

— FSM has to be modeled carefully in order to avoid spikes in normal operation.

EDA322 Digital Design, 2017-

2018, Lecture 9

l. Sourdis, CSE, Chalmers

60

Modelling Aspects

 Moore is preferred because of safe operation

 Mealy more flexible, but danger of
— Spikes
— Unnecessary long paths (maximum clock period)
— Combinational feed back loops

ulout State —

: Stake

‘—w -~ Logvlc STATE |Reyisters EXT\ Logic
g STATE v Feed back loop

Next : Output

— X STATE |State QA u

- R = . A1) glc * _b
‘ lﬂglc

EDA322 Digital Design, 2017-
2018, Lecture 9

e

l. Sourdis, CSE, Chalmers 61

Registered Output

* Avoiding long paths and uncertain timing

* With one additional clock period

: X
M
State STATE Oulpul gu pu: _ Y ealy
Registers Logic egisters *

* Without additional clock period (Mealy)

optional
. Y
State NEXT | Registers Registers
"\ Logic
‘ STATE
EDA322 Digital Design, 2017- . Sourdis, CSE, Chalmers -

2018, Lecture 9

Registered Output Example (1)

architecture RTL of REG_TEST is
signal Y |, Z | :std_ulogic;

signal STATE,NEXTSTATE : STATE_TYPE ;

begin
REG: - - - -- clocked STATE process
CMB::-- -- Like other Examples

OUTPUT: process (STATE, A, B)
begin
case STATE is
when START =>
Y I<k="0";
Z I<=AandB;

end process OUTPUT

-- clocked output process

OUTPUT_REG: process(CLK) begin
if CLK'event and CLK="1' then
Y<=VY_I;
Z<=71;
end if ;

end process OUTPUT_REG;

end RTL ;

EDA322 Digital Design, 2017-
2018, Lecture 9

Y <='0'; Y <= AnorB;
Z<=AandB; Z<=‘1“

OOIYK—
START Y <=AandBy/\ oo E
NG U
7

RESET \9 " ! <=A nor B:
10]017Y <= A nand <=1,
Z<=AorB;
STOP
W
Y <= A nand B;
Z<=AorB;
l. Sourdis, CSE, Chalmers 63

Waveform Registered Output Example (1)

P 50 100 150
1604} I s e ns s | s s s s s 08 u s !
CLK |
RESET 0
A 0
B |
'] 0 (i
Z 0 U |
= STATE(1:0)|]|00 [00

* One clock period delay between STATE and output changes.

* Input changes with clock edge result in an output change.
(Danger of unmeant values)

EDA322 Digital Design, 2017-

. i E
2018, Lecture 9 l. Sourdis, CSE, Chalmers

Registered Output Example (2)

architecture RTL of REG_TEST2 is
signal Y_I,Z | :std_ulogic;

signal STATE,NEXTSTATE : STATE_TYPE ; Y <=0"; Y <= A nor B;
begin Z<=A and B, Z <= al
REG: - - - -- clocked STATE process
. {Y <=Anor
CMB:--- -- Like other Examples e 2
START \ Z<=1% 7MIDDLE
OUTPUT: process (NEXTSTATE, A, B) =4

begin 01
case NEXTSTATE is

when START => 111Y «=Anand B;

Y I<="0"; Z<=AorB;
Z I<k=AandB;
end process OUTPUT
OUTPUT_REG: process(CLK) 10
begin
if CLK'event and CLK="1' then
Y<=Y_I;
eanl=ifZ._l ; Y <= A nand B;
end process OUTPUT_REG; Z<=AorB;
end RTL ;
EDA322 Digital Design, 2017- . Sourdis, CSE, Chalmers 65

2018, Lecture 9

Waveform Registered Output Example (2)

r) so 100 150
)| T P N
'_IIII\HIIIIIII
RESEIT 0
A 0 | | |
B i | ‘
N
S o N N
|b STATE(10) |00 0o] 0l) 10 > 0o

* No delay between STATE and output changes.
* "Spikes" of original Mealy machine are gone!

EDA322 Digital Design, 2017-

. i E
2018, Lecture 9 l. Sourdis, CSE, Chalmers

66

Summary of Lecture 9

* Book (complimentary
to the slides):
— Sections 14.6

e Control vs. Datapath
* More FSM examples

* FSMs in VHDL

— Moore and Mealy FSMs in
VHDL * Next Lecture 10:

— State processes — Testbenches VHDL
— State Coding

— More VHDL alternatives
(Mealy, Moore, registered
output)

