
EDA322
Digital	Design

Lecture	9:	
Finite	State	Machines	- VHDL

Ioannis	Sourdis

Outline	of	Lecture	9

• Control	vs.	Datapath
• More	FSM	examples
• FSMs	in	VHDL

– Moore	and	Mealy	FSMs	in	VHDL
– State	processes
– State	Coding
– More	VHDL	alternatives	(Mealy,	Moore,	
registered	output)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 2

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 3

Datapath
vs.

Controller

Structure	of	a	Typical	Digital	System

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 4

Datapath
(Execution

Unit)

Controller
(Control

Unit)

Data Inputs

Data Outputs

Control Inputs

Control Outputs

Control
Signals

Status
Signals

Datapath	(Execution	Unit)

– Manipulates	and	processes	data
– Performs	arithmetic	and	logic	operations,	shifting,	
and	other	data-processing	tasks

– Is	composed	of	registers,	gates,	multiplexers,	
decoders,	adders,	comparators,	ALUs,	etc.

– Provides	all	necessary	resources	and	interconnects	
among	them	to	perform	specified	task

– Interprets	control	signals	from	the	Controller	and	
generates	status	signals	for	the	Controller

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 5

Controller	(Control	Unit)

• Controls	data	movements	in	the Datapath	by	switching	
multiplexers	and	enabling	or	disabling	resources

Example:	enable	signals	for	registers
Example:	control	signals	for	muxes	

• Provides	signals	to	activate	various	processing	tasks	in	
the	Datapath

• Determines	the	sequence	the	operations	performed	by	
Datapath

• Follows	Some	‘Program’	or	Schedule

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 6

Controller
• Controller	can	be	programmable	or	non-programmable
• Programmable

– Has	a	program	counter	which	points	to	next	instruction
– Instructions	are	held	in	a	RAM	or	ROM	externally
– Microprocessor	is	an	example	of	programmable	controller

• Non-Programmable
– Once	designed,	implements	the	same	functionality
– Another	term	is	a	“hardwired	state	machine”	or	“hardwired	
instructions”

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 7

Finite	State	Machines
• Digital	Systems	and	especially	their	Controllers	can	be	

described	as	Finite	State	Machines	(FSMs)
• Finite	State	Machines	can	be	represented	using

– State	Diagrams	and	State	Tables - suitable	for	
simple	digital	systems	with	a	relatively	few	inputs	
and	outputs

– Algorithmic	State	Machine	(ASM)	Charts - suitable	
for	complex	digital	systems	with	a	large	number	of	
inputs	and	outputs

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 8

Hardware	Design	with	RTL	VHDL

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 9

Pseudocode

Datapath Controller

Block
diagram

Block
diagram

State diagram
or ASM chart

VHDL code VHDL code VHDL code

Interface

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 10

Finite State Machines
Refresher

Finite	State	Machines	(FSMs)
• A	machine/mathematical	model	with	a	finite	amount	of	memory	to	

represent	its	finite	set	of	internal	states,	has	a	set	of	defined	inputs	
and	outputs	and	a	set	of	transitions	between	selected	states
– Even	computers	can	be	viewed	as	huge	FSMs

• Design	of	FSM
– Defining	states
– Defining	transitions	between	states
– Optimization	/	minimizations	

• Manual	Optimization/Minimization	Is	Practical	for	Small	FSMs	Only

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 11

Moore	FSM
• Output	Is	a	Function	of	a	Present	State	Only

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 12

Present State
register

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

clock
reset

Mealy	FSM
• Output	Is	a	Function	of	a	Present	State	and	Inputs

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 13

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

Present State
register

clock
reset

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 14

State Diagrams

Moore	Machine

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 15

state 1 /
output 1

state 2 /
output 2

transition
condition 1

transition
condition 2

Mealy	Machine

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 16

state 1 state 2

transition condition 1 /
output 1

transition condition 2 /
output 2

Moore	vs.	Mealy	FSM	(1)

• Moore	and	Mealy	FSMs	Can	Be	Functionally	
Equivalent
– Equivalent	Mealy	FSM	can	be	derived	from	Moore	
FSM	and	vice	versa

• Mealy	FSM	Has	Richer	Description	and	Usually	
Requires	Smaller	Number	of	States
– Smaller	circuit	area

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 17

Moore	vs.	Mealy	FSM	(2)

• Mealy	FSM	Computes	Outputs	as	soon	as	
Inputs	Change
– Mealy	FSM	responds	one	clock	cycle	sooner	than	
equivalent	Moore	FSM

• Moore	FSM	Has	No	Combinational	Path	
Between	Inputs	and	Outputs
– Moore	FSM	is	more	likely	to	have	a	shorter	critical	
path

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 18

Moore	FSM	- Example	1
• Moore	FSM	that	Recognizes	Sequence	“10”

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 19

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

S2: “10”
observed

Mealy	FSM	- Example	1
• Mealy	FSM	that	Recognizes	Sequence	“10”

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 20

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

Moore	&	Mealy	FSMs	– Example	1

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 21

clock

input

Moore

Mealy

0 1 0 0 0

S0 S1 S2 S0 S0

S0 S1 S0 S0 S0

Moore	&	Mealy	FSMs	– Example	1

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 22

clock

input

Moore

Mealy

0 1 0 0 0

S0 S1 S2 S0 S0

S0 S1 S0 S0 S0

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 23

Finite State Machines
in VHDL

FSMs	in	VHDL

• Finite	State	Machines	Can	Be	Easily	Described	
With	Processes

• Synthesis	Tools	Understand FSM	Description	If	
Certain	Rules	Are	Followed
• State	transitions should	be	described	in	a	process
sensitive	to	clock and	asynchronous	reset signals	
only

• Outputs described	as	concurrent	statements
outside	the	process

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 24

Moore	FSM

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 25

Present State
Register

Next State
function

Output
function

Inputs

Present State

Next State

Outputs

clock
reset

process(clock, reset)

concurrent
statements

Mealy	FSM

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 26

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

Present State
Register

clock
reset

process(clock, reset)

concurrent
statements

Moore	FSM	- Example	1
• Moore	FSM	that	Recognizes	Sequence	“10”

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 27

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Moore	FSM	in	VHDL	(1)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 28

TYPE state IS (S0, S1, S2);
SIGNAL Moore_state: state;

U_Moore: PROCESS (clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Moore_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Moore_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Moore_state <= S1;
ELSE

Moore_state <= S0;
END IF;

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Moore	FSM	in	VHDL	(2)
WHEN S1	=>

IF input	=	‘0’	THEN	
Moore_state	<=	S2;	

ELSE
Moore_state	<=	S1;	

END	IF;
WHEN S2	=>

IF input =	‘0’	THEN
Moore_state	<=	S0;	
ELSE	

Moore_state	<=	S1;	
END	IF;

END	CASE;
END	IF;

END	PROCESS;

Output	<=	‘1’	WHENMoore_state	=	S2	ELSE ‘0’;

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 29

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Mealy	FSM	- Example	1

• Mealy	FSM	that	Recognizes	Sequence	“10”

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 30

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Mealy	FSM	in	VHDL	(1)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 31

TYPE state IS (S0, S1);
SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Mealy_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Mealy_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Mealy_state <= S1;
ELSE

Mealy_state <= S0;
END IF;

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Mealy	FSM	in	VHDL	(2)
WHEN S1	=>
IF input	=	‘0’	THEN

Mealy_state	<=	S0;	
ELSE

Mealy_state	<=	S1;
END	IF;

END	CASE;
END	IF;

END	PROCESS;

Output	<=	‘1’	WHEN (Mealy_state	=	S1	AND	input	=	‘0’)	ELSE ‘0’;

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 32

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 33

Moore FSM – Example 2: State diagram

C z 1 = ⁄

resetn

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 34

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Moore FSM – Example 2: State table

Moore	FSM

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 35

Present State
Register

Next State
function

Output
function

Input: w

Present State: y

Next State

Output: z

clock
resetn

process(clock, reset)

concurrent
statements

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 36

USE ieee.std_logic_1164.all ;

ENTITY simple IS
PORT (clock : IN STD_LOGIC ;

resetn : IN STD_LOGIC ;
w : IN STD_LOGIC ;
z : OUT STD_LOGIC) ;

END simple ;

ARCHITECTURE Behavior OF simple IS
TYPE State_type IS (A, B, C) ;
SIGNAL y : State_type ;

BEGIN
PROCESS (resetn, clock)
BEGIN

IF resetn = '0' THEN
y <= A ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

Moore FSM – Example 2: VHDL code (1)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 37

CASE y IS
WHEN A =>

IF w = '0' THEN
y <= A ;

ELSE
y <= B ;

END IF ;
WHEN B =>

IF w = '0' THEN
y <= A ;

ELSE
y <= C ;

END IF ;
WHEN C =>

IF w = '0' THEN
y <= A ;

ELSE
y <= C ;

END IF ;
END CASE ;

Moore FSM – Example 2: VHDL code (2)

Moore	FSM	– Example	2:	VHDL	code	(3)

END	IF	;
END	PROCESS	;

z	<=	'1'	WHEN y	=	C	ELSE '0'	;

END Behavior	;

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 38

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 39

A

w 0 = z 0 = ⁄

w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄

Reset
w 1 = z 0 = ⁄

Mealy FSM – Example 2: State diagram

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 40

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY Mealy IS
PORT (clock : IN STD_LOGIC ;

resetn : IN STD_LOGIC ;
w : IN STD_LOGIC ;

z : OUT STD_LOGIC) ;
END Mealy ;

ARCHITECTURE Behavior OF Mealy IS
TYPE State_type IS (A, B) ;
SIGNAL y : State_type ;

BEGIN
PROCESS (resetn, clock)
BEGIN

IF resetn = '0' THEN
y <= A ;

ELSIF (clock'EVENT AND clock = '1') THEN

Example 2: VHDL code (1)

Example	2:	VHDL	code	(2)
CASE y	IS

WHEN A	=>
IF w	=	'0'	THEN
y	<=	A	;

ELSE
y	<=	B	;

END	IF	;
WHEN B	=>

IF w	=	'0'	THEN
y	<=	A	;

ELSE
y	<=	B	;

END	IF	;
END	CASE	;

END	IF	;
END	PROCESS	;

z	<=	'1'	WHEN (y	=	B)	AND	(w=‘1’) ELSE '0'	;

END Behavior	;

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 41

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 42

Control Unit Example: Arbiter (1)

Arbiter

reset

r1

r2

r3

g1

g2

g3

clock

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 43

Idle

000

1xx

Reset

gnt1 g 1 ⁄ 1 =

x1x

gnt2 g 2 ⁄ 1 =

xx1

gnt3 g 3 ⁄ 1 =

0xx 1xx

01x x0x

001 xx0

Control Unit Example: Arbiter (2)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 44

Control Unit Example: Arbiter (3)

r 1 r 2

r 1 r 2 r 3

Idle

Reset

gnt1 g 1 ⁄ 1 =

gnt2 g 2 ⁄ 1 =

gnt3 g 3 ⁄ 1 =

r 1 r 1

r 1

r 2

r 3

r 2

r 3

r 1 r 2 r 3

r 1 r 2

r 1 r 2 r 3

Idle

Reset

gnt1 g 1 ⁄ 1 =

gnt2 g 2 ⁄ 1 =

gnt3 g 3 ⁄ 1 =

r 1 r 1

r 1

r 2

r 3

r 2

r 3

r 1 r 2 r 3

Example	3:	VHDL	code	(1)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 45

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY arbiter IS
PORT (Clock, Resetn : IN STD_LOGIC ;

r : IN STD_LOGIC_VECTOR(1 TO 3) ;
g : OUT STD_LOGIC_VECTOR(1 TO 3)) ;

END arbiter ;

ARCHITECTURE Behavior OF arbiter IS
TYPE State_type IS (Idle, gnt1, gnt2, gnt3) ;
SIGNAL y : State_type ;

Example	3:	VHDL	code	(2)

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 46

BEGIN
PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN y <= Idle ;
ELSIF (Clock'EVENT AND Clock = '1') THEN

CASE y IS
WHEN Idle =>

IF r(1) = '1' THEN y <= gnt1 ;
ELSIF r(2) = '1' THEN y <= gnt2 ;
ELSIF r(3) = '1' THEN y <= gnt3 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt1 =>
IF r(1) = '1' THEN y <= gnt1 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt2 =>
IF r(2) = '1' THEN y <= gnt2 ;
ELSE y <= Idle ;
END IF ;

Example	3:	VHDL	code	(3)
WHEN gnt3	=>

IF r(3)	=	'1'	THEN y	<=	gnt3	;
ELSE y	<=	Idle	;
END	IF	;

END	CASE	;
END	IF	;

END	PROCESS	;

g(1)	<=	'1'	WHEN y	=	gnt1	ELSE '0'	;
g(2)	<=	'1'	WHEN y	=	gnt2	ELSE '0'	;
g(3)	<=	'1'	WHEN y	=	gnt3	ELSE '0'	;

END Behavior	;

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 47

FSMs	with	VHDL

• State	Processes	
• State	Coding	
• Additional	ways	to	implement	FSMs

– Moore	
– Mealy	
– Registered	Output	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 48

One	"State"	Process

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 49

Two	"State"	Processes

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 50

How	Many	Processes?

• Structure	and	Readability	
– Asynchronous	combinatoric	≠	synchronous	storing	elements

=>	2	processes	
– FSM	states	change	with	special	input	changes

=>	1	process	more	comprehensible	
– Graphical	FSM	(without	output	equations)	resembles	one	state	process

=>	1	process	
• Simulation	

– Error	detection	easier	with	two	state	processes
=>	2	processes	

• Synthesis	
– 2	state	processes	can	lead	to	smaller	generic	netlist

and	therefore	to	better	synthesis	results
=>	2	processes	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 51

State	Encoding

• type	STATE_TYPE	is	(START,	
MIDDLE,	STOP)	;
signal	STATE	:	STATE_TYPE	;	

• START -> " 00 "
MIDDLE -> " 01 "
STOP -> " 10 "	

• START -> " 001 "
MIDDLE -> " 010 "
STOP -> " 100

• State	encoding	responsible
for	safety	of	FSM

• Default	encoding:	binary

• Speed	optimized	default
encoding:	one	hot	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 52

Extension	of	Case	Statement

• type STATE_TYPE is (START, MIDDLE, ST
OP) ;
signal STATE : STATE_TYPE ;
·	·	·
case STATE is

when START => ·	·	·
when MIDDLE => ·	·	·
when STOP => ·	·	·

when others => ·	·	·

end case ;	

• Adding	the	"when	others"	choice	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 53

Hand	Coding

subtype STATE_TYPE is
std_logic_vector(1 downto 0) ;

signal STATE : STATE_TYPE ;
constant START : STATE_TYPE := "01";
constant MIDDLE : STATE_TYPE := "11";
constant STOP : STATE_TYPE := "00";
···
case STATE is

when START => ···
when MIDDLE => ···
when STOP => ···
when others => ···

end case ;	

• Defining	constants	
• Control	of	encoding	
• Safe	FSM	
• Simulatable	
• Portable	design	
• More	effort	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 54

FSM:	Moore

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 55

n Three Processes

architecture RTL of MOORE is
...

begin
REG: -- Clocked Process

CMB: -- Combinational Process

OUTPUT: process (STATE)
begin

-- Output Logic
end process OUTPUT ;

end RTL ;

n Two Processes
architecture RTL of MOORE is

...
begin

REG: process (CLK, RESET)
begin

-- State Registers Inference with
Next State Logic

end process REG ;

OUTPUT: process (STATE)
begin

-- Output Logic
end process OUTPUT ;

end RTL ;

The output vector is a function of the state vector: Y = f(S)

Moore:	3	Process	Example

architecture RTL	of MOORE_TEST	is
signal STATE,NEXTSTATE	:	STATE_TYPE	;

begin

REG:	process (CLK,	RESET)	begin
if RESET=‘1’	then STATE	<=	START	;
elsif CLK`event	and	CLK=‘1’	then
STATE	<=	NEXTSTATE	;

end	if	;
end	process	REG	;

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 56

CMB:	process	(A,B,STATE)	begin
NEXT_STATE	<=	STATE;
case STATE	is
when START	=>	if (A	or	B)=‘0’	then	

NEXTSTATE	<=	MIDDLE	;
end	if	;

when	MIDDLE	=>	if (A	and	B)=‘1’	then
NEXTSTATE	<=	STOP	;

end	if	;
when	STOP =>	if (A	xor	B)=‘1’	then

NEXTSTATE	<=	START	;
end	if	;

when	others	=>	NEXTSTATE	<=	START	;
end	case	;

end	process	CMB	;

-- concurrent	signal	assignments	for	output
Y	<=	‘1’	when	STATE=MIDDLE	else	‘0’	;
Z	<=	‘1’	when	STATE=MIDDLE or	STATE=STOP	else	‘0’	;

end	RTL	;	

Waveform	Moore	Example

• (Y,Z)	changes	simultaneously	with	STATE	=>	Moore	machine	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 57

FSM:	Mealy

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 58

n Three Processes

architecture RTL of MEALY is
...

begin
REG: -- Clocked Process

CMB: -- Combinational Process

OUTPUT: process (STATE, X)
begin

-- Output Logic
end process OUTPUT ;

end RTL ;

n Two Processes

architecture RTL of MEALY is
...

begin
MED: process (CLK, RESET)
begin

-- State Registers Inference with
Next State Logic

end process MED ;

OUTPUT: process (STATE, X)
begin

-- Output Logic
end process OUTPUT ;

end RTL ;

The output vector is a function of the state vector and the input vector:Y =f(X,S)

Mealy	Example
architecture	RTL	of MEALY_TEST	is

signal STATE,NEXTSTATE	:	STATE_TYPE	;
begin
REG:	·	·	· -- clocked	STATE	process
CMB:	·	·	· -- Like	Moore	Examples

OUTPUT:	process (STATE,	A,	B)
begin
case	STATE	is
when START =>

Y	<=	‘0’	;
Z	<=	A	and	B	;

when MIDLLE =>
Y	<=	A	nor	B	;
Z	<=	'1'	;

when STOP =>
Y	<=	A	nand	B	;
Z	<=	A	or	B	;

when others =>
Y	<=	‘0’	;
Z	<=	'0'	;

end	case;
end	process OUTPUT;

end RTL	;	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 59

Waveform	Moore	Example

• (Y,Z)	changes	with	input	=>	Mealy	machine	
• Note	the	"spikes"	of	Y	and	Z	in	the	waveform	

– FSM	has	to	be	modeled	carefully	in	order	to	avoid	spikes	in	normal	operation.	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 60

Modelling	Aspects

• Moore	is	preferred	because	of	safe	operation	
• Mealy	more	flexible,	but	danger	of	

– Spikes	
– Unnecessary	long	paths	(maximum	clock	period)	
– Combinational	feed	back	loops	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 61

Registered	Output

• Avoiding	long	paths	and	uncertain	timing	
• With	one	additional	clock	period	

• Without	additional	clock	period	(Mealy)	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 62

Registered	Output	Example	(1)

architecture	RTL	of	REG_TEST	is
signal	Y_I	,	Z_I :	std_ulogic	;
signal	STATE,NEXTSTATE	:	STATE_TYPE	;

begin

REG:	·	·	· -- clocked	STATE	process

CMB:	·	·	· -- Like	other	Examples

OUTPUT:	process	(STATE,	A,	B)
begin
case	STATE	is
when	START =>

Y_I<=	`0`	;
Z_I<=	A	and	B	;

·	·	·
end	process	OUTPUT

-- clocked	output	process
OUTPUT_REG:	process(CLK) begin
if	CLK'event	and	CLK='1'	then
Y	<=	Y_I	;
Z	<=	Z_I	;
end	if	;

end	process	OUTPUT_REG	;
end	RTL	;	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 63

Waveform	Registered	Output	Example	(1)

• One	clock	period	delay	between	STATE	and	output	changes.	
• Input	changes	with	clock	edge	result	in	an	output	change.

(Danger	of	unmeant	values)	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 64

Registered	Output	Example	(2)
architecture	RTL	of	REG_TEST2	is

signal	Y_I	,	Z_I :	std_ulogic	;
signal	STATE,NEXTSTATE	:	STATE_TYPE	;

begin

REG:	·	·	· -- clocked	STATE	process

CMB:	·	·	· -- Like	other	Examples

OUTPUT:	process	(NEXTSTATE ,	A,	B)
begin
case	NEXTSTATE	is
when	START =>

Y_I<=	`0`	;
Z_I<=	A	and	B	;

·	·	·
end	process	OUTPUT

OUTPUT_REG:	process(CLK)
begin
if	CLK'event	and	CLK='1'	then
Y	<=	Y_I	;
Z	<=	Z_I	;
end	if	;

end	process	OUTPUT_REG	;
end	RTL	;	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 65

Waveform	Registered	Output	Example	(2)

• No	delay	between	STATE	and	output	changes.	
• "Spikes"	of	original	Mealy	machine	are	gone!	

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 66

Summary	of	Lecture	9

• Control	vs.	Datapath
• More	FSM	examples
• FSMs	in	VHDL

– Moore	and	Mealy	FSMs	in	
VHDL

– State	processes
– State	Coding
– More	VHDL	alternatives	

(Mealy,	Moore,	registered	
output)

• Book	(complimentary	
to	the	slides):
– Sections	14.6

• Next	Lecture	10:
– Testbenches VHDL

EDA322	Digital	Design,	2017-
2018,	Lecture	9 I.	Sourdis,	CSE,	Chalmers 67

