Content

Content

1. VHDL - Overview and Application Field

1.1 Application of HDLs (1)
1.1.1 Application of HDLs (2)
1.1.2 Range of Use

1.2 VHDL - Overview
1.2.1 VHDL - History
1.2.2 VHDL - Application Field
1.2.3 ASIC Development

1.3 Concepts of VHDL
1.3.1 Abstraction
1.3.2 Abstraction Levels in IC Design
1.3.3 Abstraction levels and VHDL
1.3.4 Description of Abstraction Levels
1.3.5 Behavioural Description in VHDL
1.3.6 RT Level in VHDL
1.3.7 Gate Level in VHDL
1.3.8 Information Content of Abstraction Levels

1.4 Modularity and Hierarchy

1.5 Summary

2. VHDL Language and Syntax

2.1 General
2.1.1 Identifier
2.1.2 Naming Convention

2.2 VHDL Structural Elements
2.2.1 Declaration of VHDL Objects
2.2.2 Entity
2.2.3 Architecture
2.2.4 Architecture Structure
2.2.5 Entity Port Modes
2.2.6 Hierarchical Model Layout
2.2.7 Component Declaration

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.ntm (1 of 7) [29/12/2001 12:51:04]

Content

2.2.8 Component Instantiation
2.2.9 Component Instantiation: Named Signal Asscociation

2.2.10 Configuration

2.2.11 Configuration: Task and Application
2.2.12 Configuration: Example (1)

2.2.13 Configuration: Example (2)

2.2.14 Process

2.2.15 VHDL Communication Model

2.2.16 Signals

2.2.17 Package
2.2.18 Library

2.2.19 Design Structure: Example
2.2.20 Sequence of Compilation
2.2.21 Outlook: Testbench

2.2.22 Simple Testbench Example

2.2.23 Summary
2.2.24 Questions
2.2.25 Questions
2.2.26 Questions

2.3 Data Types
2.3.1 Standard Data Types

2.3.2 Datatype 'time'

2.3.3 Definition of Arrays

2.3.4 'integer' and 'bit' Types

2.3.5 Assignments with Array Types

2.3.6 Types of Assignment for 'bit' Data Types
2.3.7 Concatenation

2.3.8 Aggregates

2.3.9 Slices of Arrays

2.3.10 Questions

2.3.11 Questions

2.4 Extended Data Types
2.4.1 Type Classification
2.4.2 Enumeration Types
2.4.3 Enumeration Types - Example
2.4.4 BIT Type Issues
2.4.5 Multi-valued Types
2.4.6 |IEEE Standard Logic Type
2.4.7 Resolved and Unresolved Types
2.4.8 Std _Logic 1164 Package
2.4.9 Resolution Function
2.4.10 STD LOGIC vs STD ULOGIC

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.htm (2 of 7) [29/12/2001 12:51:04]

Content

2.4.11 The NUMERIC STD Package

2.4.12 Arrays

2.4.13 Multidimensional Arrays

2.4.14 Aggregates and Multidimensional Arrays
2.4.15 Records

2.4.16 Type Conversion

2.4.17 Subtypes
2.4.18 Aliases

2.5 Operators
2.5.1 Logical Operators

2.5.2 Logical Operations with Arrays
2.5.3 Shift Operators: Examples

2.5.4 Relational Operators

2.5.5 Comparison Operations with Arrays
2.5.6 Arithmetic Operators

2.5.7 Questions
2.5.8 Questions

2.6 Sequential Statements
2.6.1 IF Statement
2.6.2 IF Statement: Example
2.6.3 CASE Statement
2.6.4 CASE Statement: Example
2.6.5 Defining Ranges

2.6.6 FOR Loops

2.6.7 Loop Syntax
2.6.8 Loop Examples

2.6.9 WAIT Statement

2.6.10 WAIT Statement: Examples

2.6.11 WAIT Statements and Behavioural Modeling
2.6.12 Variables

2.6.13 Variables vs. Signals

2.6.14 Use of Variables

2.6.15 Variables: Example

2.6.16 Global Variables (VHDL'93)

2.7 Concurrent Statements
2.7.1 Conditional Signal Assignment
2.7.2 Conditional Signal Assignment: Example
2.7.3 Selected Signal Assignment
2.7.4 Selected Signal Assignment: Example
2.7.5 Concurrent Statements: Summary

2.8 RTL-Style

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.htm (3 of 7) [29/12/2001 12:51:04]

Content

2.8.1 Combinational Process: Sensitivity List

2.8.2 WAIT Statement <-> Sensitivity List

2.8.3 Combinational Process: Incomplete Assignments
2.8.4 Combinational Process: Rules

2.8.5 Clocked Process: Clock Edge Detection

2.8.6 .Detection of a Rising Edge by Use of Functions
2.8.7 Register Inference

2.8.8 Asynchronous Set/Reset

2.8.9 Clocked Process: Rules

2.8.10 Questions
2.8.11 Questions
2.8.12 Questions

2.9 Subprograms

2.9.1 Parameters and Modes
2.9.2 Functions

2.9.3 Procedures

2.10 Subprogram Declaration and Overloading
2.10.1 Overloading Example
2.10.2 Overloading - lllegal Redeclarations
2.10.3 Overloading - Ambiguity
2.10.4 Operator Overloading
2.10.5 Operator Overloading - Example

2.10.6 Questions

3. Simulation

3.1 Sequence of Compilation

Example
Changes in ... recompile files ...

3.2 Simulation Flow
3.2.1 Elaboration
3.2.2 Initialization
3.2.3 Execution

3.3 Process Execution
3.3.1 Concurrent versus Sequential Execution
3.3.2 Signal Update
3.3.3 Delta Cycles (1)
3.3.4 Delta Cycles (2)
3.3.5 Delta Cycles - Example
3.3.6 Process Behaviour

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.ntm (4 of 7) [29/12/2001 12:51:04]

Content

3.3.7 Postponed Processes

3.4 Delay Models
3.4.1 Projected Output Waveforms (LRM)
3.4.2 Transport Delay (1)
3.4.3 Transport Delay (2)
3.4.4 Inertial Delay (1)
3.4.5 Inertial Delay (2)
3.4.6 Inertial Delay (3)

3.5 Testbenches
3.5.1 Structure of a VHDL Testbench
3.5.2 Example
Clock and Reset Generation
Stimuli Generation
Response Analysis

3.6 File 1/0O
3.6.1 Example for File 1/0 (1/4)
Example (2/4)
Example (3/4)
Example (4/4)

4. Synthesis

4.1 What is Synthesis?
4.1.1 Synthesizability
4.1.2 Different Language Support for Synthesis
4.1.3 How to Do?
4.1.4 Essential Information for Synthesis
4.1.5 Synthesis Process in Practice
4.1.6 Problems with Synthesis Tools
4.1.7 Synthesis Strategy

4.2 RTL-style
4.2.1 Combinatorics

4.2.2 Complete sensitivity lists

4.2.3 WAIT statement <-> Sensitivity List

4.2.4 Incomplete assignments

4.2.5 Rules for synthesizing combinational logic
4.2.6 Modelling of Flip Flops

4.2.7 Description of a rising clock edge for synthesis

4.2.8 Describing a rising clock edge by means of a function call

4.2.9 Counter synthesis

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.ntm (5 of 7) [29/12/2001 12:51:04]

Content

4.2.10 FF with asynchronous reset
4.2.11 Rules for clocked processes
4.2.12 Questions
4.2.13 Questions
4.2.14 Questions

4.3 Combinational Logic

4.3.1 Coding Style Influence

4.3.2 Source Code Optimization

4.3.3 IF structure <-> CASE structure

4.3.4 Implementation of a Data Bus
Problems with Internal Bus Structures
Portable and Safe Bus Structure

4.3.5 Example of a Multiplier
Multiplier Function Table
Multiplier Minterms -- Karnaugh Diagram
Multiplier: VHDL Code using the Function Table

Multiplier: Minterm Conversion
Multiplier: Integer Realization
4.3.6 Synthesis of Operators
Synthesis Results
4.3.7 Example of an Adder

4.4 Sequential Logic
4.4.1 RTL - Combinational Logic and Reqisters
4.4.2 Variables in Clocked Processes

Example

4.5 Finite State Machines and VHDL
4.5.1 One "State" Process
4.5.2 Two "State" Processes
4.5.3 How Many Processes?
4.5.4 State Encoding
4.5.5 Extension of Case Statement
4.5.6 Extension of Type Declaration
4.5.7 Hand Coding
4.5.8 FSM: Medvedev
4.5.9 Medvedev Example
4.5.10 Waveform Medvedev Example
4.5.11 FSM: Moore
4.5.12 Moore Example
4.5.13 Waveform Moore Example

4.5.14 FSM: Mealy
4.5.15 Mealy Example

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.htm (6 of 7) [29/12/2001 12:51:04]

Content

4.5.16 Waveform Mealy Example

4.5.17 Modelling Aspects

4.5.18 Reqistered Output

4.5.19 Regqistered Output Example (1)

4.5.20 Waveform Registered Output Example (1)
4.5.21 Reqistered Output Example (2)

4.5.22 Waveform Registered Output Example (2)

4.6 Advanced Synthesis
4.6.1 Parameterization via Constants
4.6.2 Parameterization via Generics(1)
4.6.3 Parameterization via Generics(2)
4.6.4 GENERATE Statement
4.6.5 Conditional GENERATE Statement
4.6.6 'Parameterization’ via Signals

5. Project Management

5.1 Design Components
5.1.1 Libraries
5.1.2 The LIBRARY Statement
5.1.3 The USE Statement

5.2 Name Spaces

5.3 File Organisation
5.3.1 Packages
5.3.2 Package Syntax
5.3.3 Package Example
5.3.4 Use of Packages
5.3.5 Visibility of Package Contents

http://www.vhdl-online.de/~vhdl/tutorial/englisch/inhalt.ntm (7 of 7) [29/12/2001 12:51:04]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_3.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1. VHDL - Overview and
Application Field

. What is hardware?

>

- EIDZ

if PRINTREQUEST then Z<=AandB;
-- print protokoll
end if;

. Hardware Description Language (HDL) =

"Programming"-language for modelling of
(digital) hardware

VHDL isahardware description language. The word 'hardware', however, is used in awide variety of contexts which range from complete

systems like personal computers on one side to the small logical gates on their internal integrated circuits on the other side.

Thisiswhy different descriptions exist for the hardware functionality. Complex systems are often described by the behaviour that is
observable from the outside. Abstract behavioural models are used in this case that hide al the implementation details. In this example the

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_3.htm (1 of 2) [29/12/2001 12:51:10]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_2.htm

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_3.htm

print protocol will be executed whenever a PRINTREQUEST occurs. This can be either a pressed key or a software command, etc. The
description of abasic logic gate, on the other hand, may consist of only one boolean eguation. Thisis avery short and precise description.

The language VHDL covers the compl ete range of applications and can be used to model (digital) hardware in a general way.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_3.htm (2 of 2) [29/12/2001 12:51:10]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_4.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

1.1 Application of HDLs (1)

Modelling

o

Z <="1" when A="01"
else '0" ;

Simulation

A [L
A0 [|
Z []

f —

Synthesis
A1)
AD [7

The most evident application is probably the development of aformal model of the behaviour of a system. With formality,
misunderstandings and misinterpretations can be avoided. Because of the selfdocumenting character of VHDL, aVHDL model can even
serve as system documentation to a certain degree.

Let'shave alook at the field of application for a hardware description language:

The big advantage of hardware description languages is the possibility to actually execute the code. In principle, they are nothing else than
a specialized programming language. Coding errors of the formal model or conceptual errors of the system can be found by running
simulations. There, the response of the model on stimulation with different input values can be observed and analysed.

During the development cycle the description has to become more and more precise until it is actually possible to manufacture the product.
The (automatic) transformation of aless detailed description into a more elaborated oneis called synthesis. Existing synthesis tools are
capable of mapping specific constructs of hardware description languages directly to the standard components of integrated circuits. This
way, aformal model of the hardware system can be used from the early design studiesto the final netlist. Software support is available for
the necessary refinement steps.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_4.htm [29/12/2001 12:51:16]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_5.htm

© LRS- UNI Erlangen-Nuremberg

1.1.1 Application of HDLs (2)

Reuse:
macro module
A
macro module
macro module B
Z
Project ASIC | Project ASIC I Project CPLD Il

/

DED
Ll
0
=

Additionally, hardware description languages offer so called design reuse capabilities. Similar to simple electronic components, like for
example aresistor, the corresponding HDL model can be re-used in several designs/projects. It is common use that frequently needed

function blocks (macros) are collected in modél libraries. The selection of an existing moduleis not only restricted to the design engineer
but can sometimes be performed by a sytnesis tool.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_5.htm [29/12/2001 12:51:22]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_6.htm

=7
@© LRS- UNI Erlangen-Nuremberg

1.1.2 Range of Use

{ Specification :}‘ﬂ
¥ . | Graphical

Specification:

Behavioural - Description of the system
VHDL {_ SystemDesign _} ng:‘éagl requirements
=ystem Design:
RTL { Logic Design } Modelling the behaviour
VHDL
Logic Design:
\.mlldalmn ;
Netlist Simulation Modelling the structure
{ Circuit Design _Testbench - .
VHDL Stimuli/Response Circuit Design:

Automatic conversion of
structural description

Validation:

iZheck function through simulation
Frovide input stimuli

Check expected response

The design process always starts with a specification phase: The component which isto be designed is defined with respect to function,
size, interfaces, etc. Despite the complexity of the final product, mainly simple methods, based on paper and pencil most of the time, are
being used.

After that, self-contained modules have to be defined on the system level . Their interaction is described very precisely and interfaces
(inputs, outputs, data formats), clock speed and reset mechanism are specified. With that information at hand, pure simulation models of
the circuit can be developed. Behaviour models of standard components can be integrated into the system from libraries of commercial
model developers. The overall system can already be simulated.

Onthelogic level , the modesthat have to be designed are described with all the synthesis aspectsin view. Aslong as only a certain
subset of VHDL constructs is used, commercial synthesis programs can derive the boolean functions from this abstract model description
and map them to the elements of an ASIC gate library or the configurable logic blocks of FPGAs. The result isanetlist of the circuit or of
the module on the gate level .

Finally, the circuit layout for a specific ASIC technology can be created by means of other tools from the netlist description.

Every transition to alower abstraction level must be proven by functional validation . For this purpose, the description is simulated in
such away that for al stimuli (= input signals for the simulation) the modul€e's responses are compared.

VHDL is suitable for the design phases from system level to gate level .

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_6.htm [29/12/2001 12:51:30]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_7.htm

%
_@(@ LRS- UNI Erlangen-Nuremberg

1.2 VHDL - Overview

. Very High Speed Integrated Circuit Hardware
Description Language

o Modelling of digital systems

s Concurrent and sequential statements

o Machine-readable specification

o Design lifetime > designer lifetime

o Man- and machine-readable documentation

. International Standards
o |IEEE Std 1076-1987
o IEEE Std 1076-1993
. Analogue- and mixed-signal extension: VHDL-
AMS
o IEEE Std 1076.1-1999
. Pure definition of language in the LRM
(Language Reference Manual)
o No standards for application or methodolgy

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_7.htm (1 of 2) [29/12/2001 12:51:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_7.htm

VHDL development was initiated originally from the American Department of Defense (DoD). They requested a language for describing a
hardware, which had to be readable for machines and humans at the same time and strictly forces the developer to write structured and
comprehensible code, so that the source code itself can serve as akind of specification document. Most important was the concept of
concurrency to cope with the parallelism of digital hardware. Sequential statements to model very complex functions in a compact form
were also alowed.

In 1987, VHDL was standardized by the American Institute of Electrical and Electronics Engineers (IEEE) for the first time with the first
official update in 1993. Apart from the file handling procedures these two versions of the standard are compatible. The standard of the
language is described in the Language Reference Manual (LRM).

A new and difficult stage was entered with the effort to upgrade VHDL with analogue and mixed-signal language elements. The upgradeis
called VHDL-AMS (a nalogue- m ixed- signal) and it is a superset of VHDL. The digital mechanisms and methods have not been altered
by the extension.

For the time being, only simulation is feasible for the analogue part because analogue synthesisis a very complex problem affected by
many boundary conditions. The mixed signal simulation has to deal with the problem of synchronizing the digital- and analogue
simulators, which has not been solved adequately, yet.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_7.htm (2 of 2) [29/12/2001 12:51:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_8.htm

;@© LRS- UNI Erlangen-Nuremberg

1.2.1 VHDL - History

. early 70s: Initial discussions
. late 70s: Definition of requirements

. mid - 82: Contract of development with IBM,
Intermetrics and TI

. mid -'84: Version 7.2
. mid - 86: IEEE-Standard
. 1987: DoD adopts the standard -> IEEE.1076

. mid - 88: Increasing support by CAE
manufacturers

. late 91: Revision
. 1993: New standard
. 1999: VHDL-AMS extension

VHDL isalanguage which is permanently extended and revised. The original standard itself needed more than 16 years from theinitial
concept to the final, official IEEE standard. When the document passed the committee it was agreed that the standard should be revised
every 5 years. Thefirst revision phase resulted in the updated standard of the year 1993.

Independently of this revision agreement, additional effort is made to standardize "extensions" of the pure language reference. These

extensions cover for examples packages (std_logic_1164, numeric_bit, numeric_std, ...) containing widely needed data types and
subprograms, or the definition of special VHDL subsets like the synthesis subset |EEE 1076.6.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_8.htm (1 of 2) [29/12/2001 12:51:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_8.htm

The latest extension is the addition of analogue description mechanisms to the standard which resultsin aVHDL superset called VHDL-
AMS.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_8.htm (2 of 2) [29/12/2001 12:51:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_9.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

1.2.2 VHDL - Application Field

. Hardware design
o ASIC: technology mapping
o FPGA: CLB mapping
o PLD: smaller structures, hardly any use of VHDL

n Standard solutions, models, behavioural
description, ...

. Software design
o VHDL - C interface (tool-specific)

o Main focus of research (hardware/software co-
design)

VHDL isused mainly for the development of Application Specific Integrated Cicuits (ASICs). Tools for the automatic transformation of
VHDL code into agate-level netlist were developed already at an early point of time. This transformation is called synthesisand is an
integral part of current design flows.

For the use with Field Programmable Gate Arrays (FPGAS) several problems exist. In the first step, boolean equations are derived from the
VHDL description, no matter, whether an ASIC or a FPGA is the target technology. But now, this boolean code has to be partitioned into
the configurable logic blocks (CLB) of the FPGA. Thisis more difficult than the mapping onto an ASIC library. Another big problemis
the routing of the CLBs as the avail able resources for interconnections are the bottleneck of current FPGASs.

While synthesis tools cope pretty well with complex designs, they obtain usually only suboptimal results. Therefore, VHDL is hardly used
for the design of low complexity Programmable Logic Devices (PLDs).

VHDL can be applied to model system behaviour independently from the target technology. Thisis either useful to provide standard
solutions, e.g. for micro controllers, error correction (de-)coders, etc, or behavioural models of microprocessors and RAM devices are used
to simulate anew device in itstarget environment.

An ongoing field of research is the hardware/software codesign. The most interesting question is which part of the system should be
implemented in software and which part in hardware. The decisive constraints are the costs and the resulting perfomance.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_9.htm [29/12/2001 12:51:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_10.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1.2.3 ASIC Development

o e il

Stimuli
Testhench
WHDOL

S— L1 1 -
CMOS 0,8 pm 4 good??
ASIC-lib
}mgg { vHDL Simulation } - |
~FF5R [
=~FF3

ate data
-=faninfout

L
ngnd??

{ GaleNetist }

Y
{ VHDL Simulation } - || | N ||

pate delay

Stirmuli

Testhench
WHOL

The development of VHDL models starts with their specification which covers functional aspects and the timing behaviour. Sometimes a
behavioural VHDL model is derived from there, yet synthesizable code is frequently requested right from the beginning. VHDL code can
be ssimulated and checked for the proper functionality.

If the model shows the desired behaviour, the VHDL description will be synthesized. A synthesis tool selects the appropriate gates and flip-
flops from the specified ASIC library in order to reproduce the functional description. It is essential for the synthesis procedure that the
sum of the resulting gate delays along the longest paths (from the output to the input of every Flip Flop) is less than the clock period.

As soon as amodel built of ASIC librariy elementsis available, a simulation on gate level can be performed. Now gate and propagation
delays have to be taken into account. Delay values can be included in each VHDL model description, i.e. the designer receives the first
clues about maximum clock frequency and critical paths after synthesis, already.

The propagation delay along the signal wires have to be estimated first because the real values are available after the layout is finished.
The process of feeding these values back into the VHDL model is called back annotation. Once again it must be checked, whether the
circuit fulfills the specified timing constraints.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_10.htm [29/12/2001 12:51:50]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_11.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

1.3 Concepts of VHDL

. Execution of assignments:
o Sequential

o Concurrent

. Methodologies:
o Abstraction

} l“

o Modularity

o Hierarchy

VHDL distinguishesitself from other languages by the way assignments are executed because two basic types of statements are known:

Sequential statements are executed one after another, like in software programming languages. Subsequent statements can override the
effects of previous statements thisway. The order of the assignment must be considered when sequential statements are used.

Concurrent statements are active continuously. So the order of the statements is not relevant. Concurrent statements are especially suited
model the parallelism of hardware.

VHDL features also three important modeling techniques:

Abstraction allows for the description of different parts of a system with different amount of detail. Modules which are needed only for the
simulation do not have to be described as detail ed as modules that might be synthesized.

Modularity enables the designer(s) to split big functional blocks and to write amodel for each part.

Hierarchy lets the designer build a design out of submodules which may consist of several submodules, themselves. Each level of
hierarchy may contain modules of different abstraction levels. The submodules of these models are present in the next lower hierarchical

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_11.htm (1 of 2) [29/12/2001 12:51:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_11.htm

level.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_11.htm (2 of 2) [29/12/2001 12:51:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_12.htm

;@© LRS- UNI Erlangen-Nuremberg

1.3.1 Abstraction

. Abstraction is hiding of detalils:
Differentiation between essential and
nonessential information

. Creation of abstraction levels:
On every abstraction level only the essential
Information Is considered, nonessential
Information iIs left out

. Equability of the abstraction:
All information of a model on one abstraction
level contains the same degree of abstraction

Abstraction is defined as the hiding of information that is too detailed. It is therefore necessary to diffrentiate between essential and non-
essential information. Information that is not important for the current view of the problem will be left out from the description.
Abstraction levels are characterized by the kind of information that is common to all models of thislevel.

A model is said to be of a certain abstraction level if every module has the same degree of abstraction. If thisis not the case than the model
will be amixture of different abstraction levels.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_12.htm [29/12/2001 12:52:00]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_13.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1.3.2 Abstraction Levels in IC Design

Behaviour
RTL | —C O

Logic

L

Layout

U
y
UU

The four abstraction levels of adigital circuit design are shown in the figure. The functional description of the model is outlined in the
behavioural level. Thereis no system clock and signal transitions are asynchronous with respect to the switching time. Usualy, such
descriptions are simulatable, only, but not synthesizable.

In the next step, the design is divided into combinational logic and storage elements. Thisis called the Register Transfer Level (RTL). The
storage elements (Flip Flops (FFs), latches) are controlled by a system clock. In synchronous designs, FFs should be used (driven by the
edge of the clock signal) exclusively, because transparent latches (driven by the level of a control signal) are not spike-proof. For the
description on RT level only 10 to 20 percent of al VHDL language constructs are needed and a strict methodol ogy has to be followed.
This description on RT level is called synthesizable description.

Onthelogic level, the design is represented as a netlist with logic gates (AND, OR, NOT, ...) and storage elements. The final layout is at

the bottom of the hierarchy. The different cells of the target technology are placed on the chip and the connections are routed. After the
layout has been verified, the circuit is ready for the production process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_13.htm [29/12/2001 12:52:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_14.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1.3.3 Abstraction levels and VHDL

Human Abstraction Levels Automation Tools
- ™ .
y textual input Behaviour I
H block linking Behavioural Synthesis
Y
D system level RTL
L Logic Synthesis
- I \ 4
L schematic input y Logic
Placement and Route
v
Layout Tools Layout I

VHDL is applicable to the upper three abstraction levels. It is not suitable to describe alayout. The design entry in behavioural and RT
level isusually done by text editors. Graphical tools are also available but experienced users often find it easier to write the code by hand.
On the gate level, a schematic is modified as VHDL netlist descriptions tend to become too complex pretty soon.

The transition from an upper abstraction level to alower oneis supported more or less efficiently by software.

Behaviourial synthesisis still a dream of many researchers as only very simple behaviour models are synthesizeable. A common
application is the design of RAM cells for the target technology, where only the generic parameters (width, depth, number of ports,
(a)synchronous, ...) need to be specified.

Logic synthesis, however, has been perfected in recent years. Aslong as the designer confines himself to certain simple VHDL constructs
that are sufficient for RT level descriptions, the synthetis tools will be able to reproduce the behaviour in the logic level.

Asaresult of the ongoing research in efficient place and route algorithms the step from the logic level to the final layout has been widely
automated for digital standard cell designs.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_14.htm [29/12/2001 12:52:13]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_15.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1.3.4 Description of Abstraction Levels

Algorithmic level
Modelling of bus systems,

System specification, models Behaviour
0 Stimuli

standard assemblies

L

Machine independent
ASIC/FPGA synthesis RTL description

syhthesizable models Registers, logic, clock

Gate level Logic Netlists, gate structure
PLD development

Layout Technol ogg dependent

Full custom design (e.g. CMOS 0,35 pum)

|

In the behaviour level, complete systems can be modelled. Bus systems or complex algorithms are described without considering
synthesizability. The stimuli for simulation of RTL models are described in the behaviour level, for example. Stimuli are signal values of
the input ports of the model and are described in the testbench, sometimes called validation bench.

The designer has to take great care to find a consistent set of input stimuli that do not contradict the specification. The responses of the
model have to be compared with the expected values which, in the simplest case, can be done with the help of awaveform diagram that
shows the simulated signal values.

Onthe RT level, the system is described in terms of registers and logic that calculates the next value of the storage elements. It is possible
to split the code into two blocks (cf. process statement) that contain either purely combinational logic or registers. The registers are
connected to the clock signal and provide for synchronous behaviour. In practice, the strict separation of Flip Flops from combinational
logic is often annulated and clocked processes describe the registers and the corresponding update functions.

The gate netlist is generated from the RT description with the help of a synthesis tool. For thistask, acell library for the target technology
which holds the information about all available gates and their parameters (fan-in, fan-out, delay) is needed.

Based upon this gate netlist the circuit layout is generated. The resulting wire lengths can be converted into propagation delays which can
be fed back into the gate level model (back annotation). This allows for thorough timing simulations without the need for additional
simulator software.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_15.htm [29/12/2001 12:52:20]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_16.htm

© LRS- UNI Erlangen-Nuremberg

1.3.5 Behavioural Description in VHDL

Input Qutput
i1
12 0
13
Specification:
Input ——
Output ll?

max 100 ns

0 <=transport il +i2 * i3 after
100 ns;

A simple specification of the function of a module is shown. The output o depends upon the three input valuesil, i2 and i3. Furthermore it
is specified that a new output value must be stable at the latest 100 ns after the input values have changed.

In abehavioural VHDL description, the function can be modeled as a simple equation (eg. il +i2 * i3) plus adelay of 100 ns. The worst
case, i.e. that 100 ns are needed to calculate a new output value, is assumed here.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_16.htm [29/12/2001 12:52:25]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_17.htm

—'[ff © LRS- UNI Erlangen-Nuremberg

1.3.6 RT Level in VHDL

77777777
NAY
é ///é _ OUT A
N = e
. FF
CLOCK 1 . % binatorical
_ - c?:c e?sa orica
RESET /// // // // P

registered process

In VHDL functional behaviour is modeled with so called processes. Two different types of processes exist in RT level descriptions: the
pure combinational process and the clocked process. All clocked processes infer FlipFlops and can be described in terms of state machine
syntax.

In addition to the data input and data output signals, the control signals like the module clock (CLOCK) and reset (RESET) for
asynchronously resetable FlipFlops have to be considered in modeling on RT level. When a synchronous reset strategy is employed, the
reset input is treated like an ordinary data input.

It followsthat RT level VHDL code also contains some sort of structural information in addition to the functional behaviour as storing and
non-storing elements are separated. Timing issues in form of when signal values may be updated (eg. synchronously to the clock signal)
are also considered.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_17.htm [29/12/2001 12:52:33]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_18.htm

=7
@© LRS- UNI Erlangen-Nuremberg

1.3.7 Gate Level in VHDL

e)

o]]
UG MD2 port mapl & == n192, B==n131, £==n182)
87 - ND2 port mapl & == 12_2 B=> 12_0, Z==n175);
U828 - ND2 port mapl & == 12_2 BE==12_0 Z==n173)

U 2% NR2Z port mapl & == mul_36_FPROD_not_0,
LT B==ni174, Z=»n185);

IS0 EN port mapl[== n181, B=>nl1d2 Z==nl120)
U91 - ND2 port mapl & == 12_2 BE==2_1, Z==n181)
LI92 - ND2 port mapl{ & == 12_2 B=x 12_1, Z== n182)

o US2 : IVP port mapl A== n1B80, £==n152),

— ! . L84 AOE port mapl &= ::—rﬂ?’SB ==nli4, C=xn175

Z==n172});

U85 MR2 port mapl & == ni174, B=»=nl173, == ni7E);
LSE - ND2 port map{ &= 12_1 B=> 12_1, Z==n174);
LS EN port mapl A==n123 B == n178,
£ == productéd 4y
LI98 - ND3 port mapl A== 12_2 B=» 132 C=»ni74,
Z=>n183);

A VHDL gate level description contains alist of the gates (components) that are used in the design. Another part holds the actua
instantiation of the components and lists their interconnection.

A schematic of the gate structure of adigital circuit can be seen on the left side of the picture. The right side shows a part of the
corresponding VHDL description. Each single element of the circuit (eg. U86) isinstantiated as a component (eg. ND2) and connected to
the corresponding signals (n192, n191, n188). All used gates are part of the selected technology library where additional information like
area, propagation delay, capacity, etc. is stored.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_18.htm [29/12/2001 12:52:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_19.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1.3.8 Information Content of Abstraction Levels

fast less

simulation precise . Functional timing behaviour
Behaviour I “after 10 ns, signal A
4 S switches to ‘1" ©

RTL NO time,

Clock, function, events

Logic I Gate delays
v v Layout I Path delays

slow more
simulation precise

The behaviour model is a simple way to describe the behaviour of acircuit, similar to usual software programming languages, such as
PASCAL or C. With this description, only the functional behaviour can be simulated by aVHDL simulator.

The clock pulseisthe distinguishing mark for the RT level description. All operations are related to the clock signal. RT level simulations
give no information about the real timing behaviour, which means that isimpossible to tell, whether al signals have actually settled to
stable values within one clock period or not.

When the model is described on the logic level, delays can be applied to the used gates for simulation. The timing information is part of
the synthesis library. This enables arough validation of the timing behaviour. The uncertainty stems from the propagation delay along the
signal wires which has not yet been considered. These delays may very well make up the main part of the entire delay in larger designs.

If the layout is completed, the wire lengths and thus the propagation delays will be known. The design can be simulated on gate level with
the additional delay values and consequently the timing behaviour of the entire circuit can be validated. Y et, the simulation time grows
considerably with the increased amount of information about the circuit, which restricts timing simulation to small parts of complex
designs.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_19.htm [29/12/2001 12:52:49]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_20.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

1.4 Modularity and Hierarchy

. Partitioning in several partial designs
. Restrict complexity

. Enable teamwork

. Study of alternative implementations
. Soft macros

. Simulation models

Analog Interface /%ﬂ
| |
RS |- / A\
CPU
I
ASIC/ \
FPGA [\

hMemory

Modularity alows the partitioning of big functional blocks into smaller units and to group closely related parts in self-contained subblocks,
so called modules. Thisway, acomplex system can be devided into managable subsystems. The guidelines for partitioning can differ from
design to design. Most of the time functiona aspects are considered as partitioning constraint. The existance of well defined subsystems
allows several designer to work in parallel on the same project as each designer will view his part as a new, complete system.

Hierarchy allows the building of adesign out of modules which themselves may be built out of (sub-)modules. One level of a hierarchical
description contains one or more modules, each module can even have different degrees of abstraction. These modules can themselves
contain submodules which would be present the next lower hierarchical level.

Modularity and hierarchy help to simplify and organize a design project. Additional advantages are that different implementation
alternatives can be examined for the modules, eg. in asimulation. Only the corresponding component instantiation needs to be changed for

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_20.htm (1 of 2) [29/12/2001 12:52:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_20.htm

thisin the overall model. Also analogues interfaces can be modeled in VHDL and added to the system model for simulation. Sometimes,
simulation models of the devices that will be connected to the new design exist and can be used for a simulation of the design under test in
its real working environment.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_20.htm (2 of 2) [29/12/2001 12:52:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_21.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

1.5 Summary

. Hardware and software concepts

. Hardware is part of the system design

. Behavioural and RTL style

. Structure

. Concurrence (simultaneity)

. Sequential statements

. Description of timing behaviour is possible

. One language for model development and
verification

Hardware and software concepts are present in VHDL to model a digital system. Thereis aclear distinction between a pure behavioural
model and RT level modeling for synthesis.

VHDL permits astructural (modular) and hierarchical description of adigital system.

Concurrency is an important concept of VHDL: Concurrent statements are executed virtually in parallel. The simulation is event driven. If
acertain event occurs (eg. initiated by the stimulus), processes that depend on these events are triggered. These processes contain
sequential statements which are evaluated one after another. Each process as a whole can be viewed as a concurrent statement. This way,
the changes of signal values caused by the execution of several processes occur at the same time in the simulation.

Furthermore, it is possible to describe timing behaviour in VHDL. This eliminates the need for other languages for stimuli generation for
test purposes or timing verification of the final design.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_21.htm [29/12/2001 12:53:00]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_22.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2. VHDL Language and Syntax

. General
. ldentifiers

. Naming Convention

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_22.htm [29/12/2001 12:53:04]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_23.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.1 General

-- Example VHDL Code --

signal mySignal: bit; --an
example signal

MYsignal <="0',
start with 'O’

'1' AFTER 10 ns,

and toggle after

'0" after 10 ns,
every 10 ns

'1' afTer 10 ns;

. Case insensitive
. Comments: '--' until end of line

. Statements are terminated by

(may span multiple lines)
. List delimiter: ')
. Signal assignment: '<='

. User defined names:

o letters, numbers,
underscores

» start with a letter

VHDL isgenerally case insensitive which means that lower case and upper case letters are not distinguished. This can be exploited to

define own rules for formatting the VHDL source code. VHDL keyword could for example be written in lower case letters and self defined

identifiersin upper case letters. This convention is valid for the following slides.

Statements are terminated in VHDL with a semicolon. That means as many line breaks or other constructs as wanted can be inserted or left

out. Only the semicolons are considered by the VHDL compiler.

List are normally separated by commas. Signal assignments are notated with the composite assignment operator '<=".

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_23.htm (1 of 2) [29/12/2001 12:53:09]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_23.htm

Self defined identifier as defined by the VHDL 87 standard may contain letters, numbers and underscores and must begin with aletter.
Further no VHDL keywords may be used. The VHDL 93 standard alows to define identifiers more flexible as the next slide will show.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_23.htm (2 of 2) [29/12/2001 12:53:09]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_24.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.1.1 Identifier

mySignal_23 -- normal identifier

rdy, RDY, Rdy -- identical
identifiers

vector_& vector -- X : special
character

last of Zout -- X : white spaces
idle__state -- X:consecutive
underscores

24th_signal -- X : begins with a
numeral

open, register -- X : VHDL
keywords

\mySignal_23\ -- extended

identifier

\rdy\, \RDY\, \Rdy\ -- different
identifiers

\vector_& vector\ --legal
\last of Zout\ -- legal
\idle__state\ -- legal

\24th_signal\ -- legal

\open\, \register\ -- legal

. (Normal) Identifier

O

Letters, numerals,
underscores

Case insensitiv

No two consecutive
underscores

Must begin with a letter
No VHDL keyword

. Extended Identifier (VHDL93)

l

O

Enclosed in back slashes
Case sensitive
Graphical characters allowed

May contain spaces and
consecutive underscores

VHDL keywords allowed

Simpleidentifiers as defined by the VHDL 87 standard may contain letters, numbers and underscores. So 'mySignal_23'isavalid simple
identifier. Further VHDL is case insensitive that means 'rdy’, 'RDY" and 'Rdy" are identical. In particular the identifier hasto begin with a
letter, so '24th_signal’ isnot avalid identifier. Also not allowed are graphical characters, white spaces, consecutive underscores and VHDL

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_24.htm (1 of 2) [29/12/2001 12:53:14]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_24.htm

keywords.

Inthe VHDL 93 standard a new type of identifiersis defined. They are called extended identifiers and are enclosed in back slashes. Within
these back slashes nearly every combination of characters, numbers, white spaces and underscoresis allowed. The only thing to consider is
that extended identifiers are now case sensitive. So ‘/rdy/', /RDY/" and '/Rdy/" are now three different identifiers.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_24.htm (2 of 2) [29/12/2001 12:53:14]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_25.htm

;@© LRS- UNI Erlangen-Nuremberg

2.1.2 Naming Convention

architecture CONVENTION of NOTATION is

end architecure CONVENTION ;

The keyword .
@ ‘architecture' may be

repeated after the

keyword 'end'

@ Output port modes

have to match

@ Not generally
synthesizable

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_25.htm (1 of 2) [29/12/2001 12:53:19]

VHDL keywords are
written
In lower case letters

Importent parts are
written in
bold letters

Explains syntax of
the
VHDL'93 standard

Pointing out
particular issues
to watch out

Pointing out
synthesis
aspects

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_25.htm

The direction of arrays . Gives atip in usin
@ should P)

always be defined the ;the tactivel
same way anguage etrectively

The naming convention are, that VHDL keywords are written in lower case letters while user defined identifiers are written in upper case
letters. If something has to be highlighted it is done by writing it in bold letters.

There are severa selfexplaining icons. They mark special issues about the VHDL'93 syntax (compared to that of VHDL'87), thingsto
remark, synthesis aspects and special tips.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_25.htm (2 of 2) [29/12/2001 12:53:19]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_26.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.2 VHDL Structural Elements

. Entity : Interface

. Architecture : Implementation, behaviour,
function

. Configuration : Model chaining, structure,
hierarchy

. Process : Concurrency, event controlled

. Package : Modular design, standard solution,
data types, constants

. Library : Compilation, object code

The main unitsin VHDL are entities, architectures, configurations and packages (together with package bodies).

While an entity describes an interface consisting of the port list most of the time, an architecture contains the description of the function of
the corresponding module. In general, a configuration is used for simulation purposes, only. In fact, the configuration is the only
simulatable object in VHDL asit explicitly selects the entity/architecture pairs to build the complete model. Packages hold the definition
of commonly used used data types, constants and subprograms. By referencing a package, its content can be accessed and used.

Another important construct is the process. While statementsin VHDL are generally concurrent in nature, this construct allows for a
sequential execution of the assignments. The process itself, when viewed as a whole object, is concurrent. In redlity, the process codeis
not always executed. Instead, it waits for certain eventsto occur and is suspended most of the time.

A library in VHDL isthe logical name of a collection of compiled VHDL units (object code). Thislogical name has to be mapped by the
corresponding simulation or synthesis tool to aphysical path on the file system of the computer.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_26.htm [29/12/2001 12:53:24]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm

&
"@© LRS - UNI Erlangen-Nuremberg

2.2.1 Declaration of VHDL Objects

Entity Architecture Process/Subprogram Package

Subprogram

X X X X
Component « y
Configuration «
Constant X « y y
Datatype X W

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm (1 of 3) [29/12/2001 12:53:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm

Port

Signal

Variable

Thetable lists the legal places for the declaration of different objects:

A subprogram is similar to afunction in C and can be called many timesin aVHDL design. It can be declared in the declarative part of an entity, architecture,
process or even another subprogram and in packages. As a subprogam is thought to be used in several places (architectures) it is useful to declareit in a package,
always.

Components are necessary to include entity/architecture pairsin the architecture of the next higher hierarchy level. These components can only be declared in an
architecture or a package. Thisisuseful, if an entity/architecture pair might be used in several architectures as only one declaration is necessary in this case.

Configurations, themselves, are complete VHDL design units. But it is possible to declare configuration statements in the declarative part of an architecture. This
possibility isonly rarely used, however, asit is better to create an independent configuration for the whole model.

Constants and data types can be declared within all available objects.

Port declarations are allowed in entities, only. They list those architecture signals that are available as interface to other modules. Additional internal signals can be
declared in architectures, processes, subprograms and packages. Please note that signals can not be declared in functions, a specia type of a subprogram.

Generally, variables can only be declared in processes and subprograms. In VHDL'93, global variables are defined which can be declared in entities, architectures
and packages.

1. Signals may not be declared in functions

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm (2 of 3) [29/12/2001 12:53:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm
2. Global variables (VHDL '93) may also be declared in entities, architectures and packages

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm (3 of 3) [29/12/2001 12:53:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_28.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.2 Entity

entity HALFADDER is
port(
A, B: in bit;
SUM, CARRY: out bit);
end HALFADDER,;
-- VHDL'93: end entity HALFADDER ;

A— — SUM
2
B— — CARRY
entity ADDER is
port(
A, B: in integer range 0 to 3;
SUM: out integer range 0 to 3;
CARRY: out bit);
end ADDER;

3|

Interface description

No behavioural definition

Linking via port signals
1 datatypes
o signal width
1 signal direction

The keyword 'entity' may be repeated
after the keyword 'end'

On the following pages, afulladder consisting of two halfadders and an OR gate will be created step by step. We confine ourselvesto a
purely structural design, i.e. we are using gate level descriptions and do not need any synthesis tools. The ideais to demonstrate the

interaction of the different VHDL objectsin a straightforward manner.

The interface between a module and its environment is described within the entity declaration which isinitiated by the keyword ' entity .

It isfollowed by auser-defined, (hopefully) descriptive name, in this case: HALFADDER. The interface description is placed between the

keyword ' is' and the termination of the entity statement which consists of the keyword ' end ' and the name of the entity. In the new
VHDL'93 standard the keyword ' entity ' may be repeated after the keyword ' end ' for consistency reasons.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_28.htm (1 of 2) [29/12/2001 12:53:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_28.htm

Theinput and output signal names and their data types are defined in the port statement which isinitiated by the keyword ' port . The list
of portsisenclosedina'('")' pair. For each list element the port name(s) is given first, followed by a":', the port mode and the data type.

Within thelist, the';' symbol is used to separate elements, not to terminate a statement. Consequently, the last list element is not followed
by a';'!

Several ports with the same mode and data type can be declared by a single port statement when the port names are separated by ',". The

port mode defines the data flow (in: input, i.e. the signal influences the module behaviour; out: output, i.e. the signal value is generated by
the module) while the data type determines the value range for the signals during simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_28.htm (2 of 2) [29/12/2001 12:53:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_29.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.2.3 Architecture

o DPERS . Implementation of the design
A, B: in bit;

e . Always connected with a

architecture RTL of HALFADDER is SpeCifiC ent|ty

begin

1 one entity can have

SUM <= A xor B;

CARRY <= A and B; several architecures
d RTL; . .
f:-nVHDL'93: end architecture RTL ; 0 entlty pO rts are aval |ab | e

as signals within the
architecture

. Contains concurrent

A— — SUM
pE3Y statements
— CARRY

93
The keyword 'architecture' may be repeated
after the keyword 'end'

The architecture contains the implementation for an entity which may be either a behavioural description (behavioural level or, if
synthesizable, RT level) or astructural netlist or a mixture of those alternatives..

An architectureis strictly linked to a certain entity. An entity, however, may very well have several architectures underneath, e.g. different
implementations of the same algorithm or different abstraction levels. Architectures of the same entity have to be named differently in
order to be distinguishable. The name is placed after the keyword * ar chitecture' which initiates an architecture statement. 'RTL' was

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_29.htm (1 of 2) [29/12/2001 12:53:40]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_29.htm

chosen in this case.

It isfollowed by the keyword ' of * and the name of entity that is used as interface (HALFADDER'). The architecture header is terminated
by the keyword ' is’, likein entity statements. In this case, however, the keyword ' begin ' must be placed somewhere before the statement
isterminated. Thisis done the same way as in entity statements. The keyword ' end ', followed by the architecture name. Once again, the
keyword ' ar chitecture' may be repeated after the keyword ' end ' in VHDL'93.

Asthe VHDL codeis synthesizable, RTL was chosen as architecture name. In case of this simple function, however, there is no difference
to behavioural (algorithmic) description. We will use'BEHAVE', 'RTL', 'GATE', 'STRUCT' and 'TEST' to indicate the abstraction level
and the implemented behaviour, respectively. The name 'EXAMPLE' will be used whenever the architecture shows the application of new

VHDL elements and is not associated with a specific entity.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_29.htm (2 of 2) [29/12/2001 12:53:40]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_30.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.2.4 Architecture Structure

. Declarative part:
o datatypes

architecture EXAMPLE of

STRUCTURE i
' o constants
subtype DIGIT is integer range 0 to 9;

o additional signals
("actual" signals)

constant BASE: integer := 10;

signal DIGIT_A, DIGIT_B: DIGIT;

signal CARRY: DIGIT,;
o components
begin
DIGIT_A <= 3: D

SUM <= DIGIT_A + DIGIT_B;

. Definition part (after 'begin’):

DIGIT_B <=7,
CARRY <= 0 when SUM < BASE else 1 signal assignments
1
end EXAMPLE ; o Processes

o component instantiations

o concurrent statements:
order not important

Each architecture is split into an optional declarative part and the definition part.

The declarative part is located between the keywords' is* and ' begin *. New objects that are needed only within the architecture constants,
datatypes, signals, subprograms, etc. can be declared here.

The definition part isinitiated by the keyword ' begin ' and holds concurrent statements. These can be simple signal assignments, process

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_30.htm (1 of 2) [29/12/2001 12:53:44]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_30.htm

statements, which group together sequential statements, and component instantiations. Concurrency means that the order in which they
appear inthe VHDL code is not important. The signal SUM, for example, gets always the result of (3 + 7), independently of the location of
the two assignments to the signals DIGIT_A and DIGIT_B.

Signal assignments are carried out by the signal assignment operator ' <=". The symbol represents the data flow, i.e. the target signal
whose value shall be updated is placed on the |eft side of the operator. The right side holds an expression that evaluates to the new signal
value. The datatypes on the left and on the right side have to be identical. Please remember that the signals that are used in this example
were defined implicitly by the port declaration of the entity.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_30.htm (2 of 2) [29/12/2001 12:53:44]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_31.htm

;@© LRS- UNI Erlangen-Nuremberg

2.2.5 Entity Port Modes

INPUT QUTPUT
in|in @_} out |out
W_OUTPUT

In = BIDIR
DL!TPUT L inout
out -

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_31.htm (1 of 2) [29/12/2001 12:53:51]

signal values
are read-only

signal values
are write-only

multiple
drivers

buffer:

0

d

comparable to
out

signal values
may be read,
as well

only 1 driver

Inout:

O

bidirectional
port

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_31.htm

Output port modes have to match

The mode of an entity port restricts the direction of the data flow. The port mode* in ' is used to classify those signals that are only read in
the underlying architecture. It is not possible to update their values.

Likewise, the port mode ' out ' denotes signals whose values are generated by the architecture. Their values can not be used to influence
the behaviour in any form. If the current output value has to be used to calculate the next signal value, e.g. within a counter module, an
intermediate signal must be declared. Internal signals do not have a data flow direction associated with them!

Alternatively it is possible to use the port mode ' buffer . This eliminates the need for an additional signal declaration. However, thereis
just asingle source allowed for these signals.

In order to model busses, where multiple units have access to the same data lines, either the port mode ' out * hasto be used, if each unitis
only writing to this data bus, or the port mode ' inout ' which allows a bidirectional data flow.

Please note that the port modes have to match, if the output port of a submodule is connected directly to the output port of the entity on a
higher hierarchy level. At the worst, intermediate signals have to be declared to avoid compilation errors.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_31.htm (2 of 2) [29/12/2001 12:53:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_32.htm

%
‘@ © LRS- UNI Erlangen-Nuremberg

2.2.6 Hierarchical Model Layout

A W SUM SUM
module modulez
B | I _
W CARRY1 — CARRY
CARRY_IN

Full adder: 2 halfadders + 1 OR-gate

VHDL allowsfor a hierarchical model layout, which means that a module can be assembled out of several submodules. The connections
between these submodul es are defined within the architecture of atop module. Asyou can see, afulladder can be built with the help of two
halfadders (modulel, module2) and an OR gate (modul €3).

A purely structural architecture does not describe any functionality and contains just alist of components, their instantiation and the
definition of their interconnections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_32.htm [29/12/2001 12:53:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_33.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.7 Component Declaration

entity FULLADDER is
port (A,B, CARRY_IN: in bit;
SUM, CARRY: out bit);
end FULLADDER;

architecture STRUCT of FULLADDER is
signal W_SUM, W_CARRY1, W_CARRY2 : bit;

component HALFAD_DER. ¢ In deCIarat|Ve part Of
port (A, B g architecture

SUM, CARRY : out bit);
end component;

component ORGATE . Comparable to a socket -
ort (A, B:in bit;
i t(RES:outbitt); type

end component;

begin

Al

The component port-list does not replace
the declaration
of connecting signals (local objects, only)

The entity of the fulladder can be derived directly from the block diagram. The inputs A and B, aswell asa CARRY _IN input are
required, together with the SUM and the CARRY signals that serve as outputs.

Asthe fulladder consists of several submodules, they have to be "introduced” first. In a component declaration all module types which will
be used, are declared. This declaration has to occur before the 'begin’ keyword of the architecture stement. Note, that just the interface of
the modules is given here and their use still remains unspecified. The component declaration is therefore comparable with a socket
definition, which can be used once or several times and into which the appropriate entity isinserted later on. The port list elements of the
component are called local €l ements, which means that they are not signals!

In this case, only two different sockets, namely the socket HALFADDER and the socket ORGATE are needed. Arbitrary names may be
chosen for the components, yet it is advisable to use the name of the entity that will be used later on. Additionally, the port declaration
should also be identical. Thisis absolutely necessary, when the design is to be synthesized, as the software ignores VHDL configuration
statements and applies the default rules.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_33.htm [29/12/2001 12:54:02]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_34.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.8 Component Instantiation

architecture STRUCT of FULLADDER is
component HALFADDER
port (A, B : in bit;

SUM, CARRY : out bi); . Socket generation
end component;
component ORGATE
"‘”?(Q’Eiii”t?j-i;. . How many do | need?

end component;

signal W_SUM, W_CARRY1, W_CARRY?2: bit; . In SFan 15' ation In
begin definition part of
MODULE1: HALFADDER architecture (after

port map(A, B, W_SUM, W_CARRY1); ' -
begin')

MODULEZ2: HALFADDER
port map (W_SUM, CARRY _IN,
SUM, W_CARRY2);

. Places socket on PCB

MODULES: ORGATE

port map (W_CARRY2, W_CARRY1, CARRY); . Wires Signa|S'

end STRUCT;

o default: positional
association

If acomponent has been declared, that means the socket typeis fixed, it can be used as often as necessary. Thisis donein form of
component instantiations, where the actual socket is generated. This is comparable to the placement of sockets on a printed circuit board
(PCB). The entity/architecture pair that provides the functionality of the component isinserted into the socket at alater time when the
configuration of aVHDL design is built.

Each component instance is given a unique name (label) by the designer, together with the name of the component itself. Component
instantiations occur in the definition part of an architecture (after the keyword 'begin’). The choice of componentsiis restricted to those that
are aready declared, either in the declarative part of the architecture or in a package.

As the component ports or socket pins have to be connected to the rest of the circuit, a port map statement is necessary. It hasto list the
names of the architecture signals that shall be used. As default, the so called positional association rules apply, i.e. the first signal of the
port map list is connected to the first port from the component declaration, etc.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_34.htm [29/12/2001 12:54:07]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_35.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.9 Component Instantiation: Named Signal

Asscociation
entity FULLADDER is
port (A,B, CARRY_IN: in bit;
SUM, CARRY: out bit);
end FULLADDER;
architecture STRUCT of FULLADDER is . N am ed assoc | at| on:
component HALFADDER
port (A, B : in bit; o left side: "formals”
SUM, CARRY : out bit);
end component; (port names from
' .s:ignal W_SUM, W_CARRY1, W_CARRY?2 : bit; com p onent
begin deCIaratiOn)
MODULE1: HALFADDER . :
portmap (A =>A, o right side: "actuals”
SUM =>W_SUM, . .
B =8, (architecture signals)

CARRY =>W_CARRY1);

Independent of order In
component declaration

end STRUCT;

Instead of the positional association that was used in the previous exampleit is also possible to connect architecture signals directly to
specific ports. Thisis done by the so called named association where the order of the signalsis not restricted. The port names from the
component declaration, also called "formals', are associated with an arrow ' => ' with the signals of the entity ("actuals").

In the exampl e, the output port SUM is declared third in the component declaration. In the port map statement, however, this port is
connected to the signal W_SUM in the second place. Please note that the list elements are separated by *,' symbols in the port map
statement unlike the';' symbols that are used in port declarations.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_35.htm [29/12/2001 12:54:12]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_36.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.2.10 Configuration

tity HALFADDER i
enplo)r/t(A, B: ISin bit; HALFADDER

SUM, CARRY: out bit); (entity)
end HALFADDER; '

configuration J}B

component HALFADDER '
port(A, B: in bit; HALFADDER

SUM, CARRY: out bit); (component)
end HALFADDER;

signal W_SUM, W_CARRY1, W_CARRY2: bit;

MODULEL1 : HALFADDER W_CARRY1

port map(A, B, W_SUM, W_CARRY1);

MODULEA1

93
J Entities may be instantiated directly without

a preceding component declaration

Component declaration and instantiation are independet of VHDL models that are actually available. It is the task of the VHDL
configuration to link the components to entity/architecture pairsin order to build the complete design. In summary: A component
declaration provides a certain kind of socket that can be placed on the circuit as often as necessary with component instantiations. The
actual insertion of a device into the instantiated sockets is done by the configuration.

In VHDL'93 it is possible to omit the component declaration and to instantiate entities directly.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_36.htm [29/12/2001 12:54:19]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_37.htm

;@© LRS- UNI Erlangen-Nuremberg

2.2.11 Configuration:

Task and Application

entity FULLADDER is

end FULLADDER,;

architecture STRUCT of FULLADDER is
end STRUCT;

configuration CFG_FULLADDER of FULLADDER
is
for STRUCT -- select architecture STRUCT
-- use default configuration rules
end for;
end configuration CFG_FULLADDER ;

. Selects architecture for
top-level entity

. Selects
entity/architecture pairs
for instantiated
components

. Generates the hierarchy

. Creates a simulatable
object

. Default binding rules:

1 selects entity with
same name as
component

o signhals are
associated by name

- last compiled
architecture is used

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_37.htm (1 of 2) [29/12/2001 12:54:25]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_37.htm

93
JThe keyword 'configuration' may be

repeated
after the keyword 'end’

The connection between the entity and the architecture that is supposed to be used for the current simulation is established in the
configuration, i.e. it creates the final design hierarchy. Thisincludes the selection of the architecture for the top-level entity. The
configuration is the only VHDL object that can be simulated or synthesized. Whileiit is possible to control the configuration process
manually for simulation purposes, synthesis tools always apply the default rule set.

For this to succeed, the component names have to match the names of existing entities. Additionally, the port names, modes and data types
have to coincide - the order of the ports in the component declaration isignored. The most recently analysed architecture for the specific
entity will be selected as corresponding architecture.

The example shows the default configuration for a structural architecture. Some simulators require an explicit configuration definition of
this kind the top-level entity. A configuration refers to a specific entity, which is FULLADDER in this case. The architecture STRUCT is
selected with the first ‘for' statement. As no additional configuration commands are given, the default rules apply for all other components.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_37.htm (2 of 2) [29/12/2001 12:54:25]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_38.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.12 Configuration: Example (1)

entity A is
port(A, B: in bit;
SUM, CARRY: out bit);
end A;

architecture RTL of Ais

entity B is
port(U,V:in bit;
X,Y: out bit);
end B;

architecture GATE of B is

entity FULLADDER is
port(A, B, CARRY_IN: in bit;
SUM, CARRY: out bit);
end FULLADDER,;
architecture STRUCT of FULLADDER is

component HALFADDER
port(A, B: in bit;
SUM, CARRY: out bit);
signal W_SUM, W_CARRY1, W_CARRY2: bit;
begin
MODULE1: HALFADDER
port map (A, B, W_SUM, W_CARRY1);
MODULEZ2: HALFADDER
port map(W_SUM, CARRY_IN, SUM, W_CARRY2);

end STRUCT;

Please have alook at the VHDL code fragmentsin order to understand a more elaborated configuration example:

In the end, afulladder shall be simulated again. The structure of this fulladder is the same as in the example before, i.e. two halfadders are
used. Each halfadder is declared to have two signals of data type 'bit' as input and output, respectively. The component ports are connected

to the architecture's signals by position, i.e. the first signal is connected to the first port.

An entity named HALFADDER shall not be available, however, and the two entities A and B that also have different architectures named

RTL and GATE, respectively areto be used. Both entities match the ports from the component declaration.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_38.htm [29/12/2001 12:54:30]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_39.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.13 Configuration: Example (2)

Entity/architecture pairs may be
configuration SeIeCted by use Of
CFG_FULLADDER of

FULLADDER is o Instance names
for STRUCT

ALEADB D ILE 5 'all': all instances of the

tit D f2a
AT, specified component

port map (U =>A,

V=>8, 1 'others': all instances not
Ol explicitly mentioned
end for;
for others : HALFADDER . If the port names differ
use entity work. A(RTL);
B => port map clause

end CFG_FULLADDER;

. Possible to reference an
existing configuration of a
submodule

Again, the architecture STRUCT is selected for the FULLADDER entity. Within this for loop, however, the entities and architectures for
the subordinated components are selected.

For this, the for statement is used again. The first name after the keyword ' for ' names the component instantiation, followed by a":' and
the component name. The keyword "all’ can be used, if all instances of a component shall be adressed. Within the for loop, the use
statement selects the entity by specifying the absolute path to that object. Unless explicitly changed, all VHDL objects are compiled into
the library work. The architecture for the selected entity isenclosed ina'(' ")’ pair.

As the port names of the entity B do not match the port names from the component declaration a port map statement is necessary again.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_39.htm (1 of 2) [29/12/2001 12:54:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_39.htm

Again, it is possible to map the names by positional association, yet an explicit names association should always be used to enhance
readability. In this case, the formal parameters are the port names of the entity, while the component port names are used as actuals.

Itisalso possible to address all those components that have not been configured yet with the keyword ' others'. Thisis necessary in this
case as there does not exist an entity named HALFADDER. Instead, the entity A and the corresponding architecture RTL is used for all

HALFADDER instantiations other than MODULE2. A port map clause is not necessary as the entity port names are equivaent to the
names of the component.

All other components that might exist are treated according to the default configuration rules.

In order to simplify the hierarchy definition of large designsit is often useful to define the configuration for the submodules and to
reference these configurations from the top level.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_39.htm (2 of 2) [29/12/2001 12:54:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_40.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.14 Process

entity AND_OR_XOR is
port (A,B : in bit;
Z_OR, Z_AND, Z_XOR : out bit);
end AND_OR_XOR;

architecture RTL of AND_OR_XOR is
begin

A_O_X: process (A, B)=+—Ssensitivity list
begin

Z OR <=Aor B;

Z AND <= A and B;

Z XOR <= A xor B;

end process A_O_X;

end RTL;

Contains sequentially
executed statements

Exist within an
architecture, only

Several processes run
concurrently

Execution Is controlled
either via

o sensitivity list (contains
trigger signals), or

o walt-statements

The process label is
optional

Because the statements within an architecture operate concurrently another VHDL construct is necessary to achieve sequential behaviour.
A process, as awhole, istreated concurrently like any other statement in an architecture and contains statements that are executed one after
another likein conventional programming languages. In fact it is possible to use the process statement as the only concurrent VHDL

statement.

The execution of a processistriggered by events. Either the possible event sources are listed in the sensitivity list or explicit wait
statements are used to control the flow of execution. These two options are mutually exclussive, i.e. no wait statements are allowed in a
process with sensitivity list. While the sensitivity list is usually ignored by synthesis tools, aVHDL simulator will invoke the process code

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_40.htm (1 of 2) [29/12/2001 12:54:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_40.htm

whenever the value of at |east one of the listed signals changes. Consequently, all signals that are read in a purely combinational process,
i.e. that influence the behaviour, have to be mentioned in the sensitivity list if the simulation isto produce the same results as the
synthesized hardware. Of course the sameistrue for clocked processes, yet new register values are to be calculated with every active clock
edge, only. Therefore the sensitivity list contains the clock signal and asynchronous control signals (e.g. reset).

A process statement starts with an optional label and a':' symbol, followed by the ' process' keyword. The sensitivity list is also optional
andisenclosedina’(’")' pair. Similar to the architecture statement, a declarative part exists between the header code and the keyword
begin '. The sequential statements are enclosed between ' begin ' and ' end process'. The keyword ' process ' hasto be repeated! If alabel
was chosen for the process, it has to be repeated in the end statement, as well.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_40.htm (2 of 2) [29/12/2001 12:54:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_41.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.2.15 VHDL Communication Model

. Processes are

concurrent
Statements
parallel
= el . Several processes
515: —— EF—: 5 run parallel
pmiess o - linked by signals
entity/anchitgcture 1 engly/architecture 2 In the SenS|t|V|ty
A\ f list
v \ o sequential
paralel execution of
= l:_: statements
s . Link to processes of
entity/architecture 3 O t h er

entity/architecture
pairs via entity
Interface

Process statements are concurrent statements while the instructions within each process are executed sequentialy, i.e. one after another.
All processes of aVHDL design runin parallel, no matter in which entity or hierarchy level they are located. They communicate with each
other viasignals. These signals need to be ports of the entities if processes from different architectures depend from another.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_41.htm [29/12/2001 12:54:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_42.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.2.16 Signals

. Every signal has a
specific data type

o number of possible

bit_wector {9 downto O) Val ues
=] =
S Sromess . Predefined data types

o bit, bit_vector,
Integer, real, ...

. User-defined data types

process ussr_dsf_types o Mmore accurate
hardware model

o enhanced readability

o Improved error
detection

Each signal has a predetermined data type which limits the amount of possible values for this signal. Synthesizable data types offer only a
limited number of values, i.e. it is possible to map these values to a certain number of wires. Only the most basic data types are aready
predefined in VHDL, like bit, bit vectors and integer.

The user can define his own data types which might become necessary to enhance the accuracy of the model (tristate drivers, for example,

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_42.htm (1 of 2) [29/12/2001 12:54:54]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_42.htm

may be set to high impedance instead of alow or high voltage level), for better readability (e.g. asignal value called "IDLE" tells more
about its function than "00101"or "17") and to allow for automatic error detection (e.g. by restricting the range of legal values).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_42.htm (2 of 2) [29/12/2001 12:54:54]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_43.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.2.17 Package

. Collection of
definitions, datatypes,
subprograms

. Reference made by the
design team

. Any changes are
known to the team
Immediately

1 same data types
("downto vs. to")

1 extended functions
for all

1 clearing errors for
all

package PROJECT_PACK is
- constants
- data types
- componsnts
- =ub routines
end PROJECT _PACK:

use work.PROJECT PACK.all;

v

Entity A — -

Entity B

Entity C

A packageis acollection of definitions of datatypes, subprograms, constants etc. Thisis especially usefull in teamwork situations where

everyone should work with the same data types, e.g. the same orientation of a vector range. This simplifies the connection of the modules

of different designers to the complete VHDL model later on. Necessary changes are a so circularized immediately to all persons

concerned.

It is possible to split a package into a header and a body section. The package header contains prototype declarations of functions or

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_43.htm (1 of 2) [29/12/2001 12:54:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_43.htm

procedures, the definition of all required data types and so on. The actual implementation of the subprograms can be placed in the body
section. This simplifies the compilation process, because only the usually rather short package header must be read in order to decide
whether the current VHDL code conforms to the previous declarations/definitions.

A packageisreferenced by ause clause. After the keyword ' use' follows the so called "selected name”. This name consists of the library

name where the compiled package has been placed, the package name itself and the object name which will be referenced. Usually, the
keyword ' all ' isused to reference al visible objects of the package.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_43.htm (2 of 2) [29/12/2001 12:54:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_44.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.2.18 Library

library IEEE ;
use IEEE.std_logic_1164.all ;
—odie * Collection of compiled design units

+ Physical location of the compiled VHDL data
file entity, architecture, package header and

user_def pack. vhd

‘/ body, configuration
+ WORK is the current librar
¥ -
USERPACEK USERLIE FROJECT 1 FROJECT XY
E Parkage Heackt Ei]: E|:|: E|:|: Ei]: E':I:
aoa
— Entity ﬂ: E ntity LHL Entity _ .
B | Package Heacer Entity Configuration Configuration
£ wl | | R
Package Heacer 1F - Eptity ﬁ T Lemy Entity
Ahitecture — Entity —
I S— o oo| |=3F 000 [T
— Configuration Architacture Arch tecture | ENtity

All analysed objects as there are packages, package bodies, entities, architectures and configurations can be found in alibrary. In VHDL,
the library is alogical name with which compiled objects can be grouped and referenced. The default library is called "work". Thislogical

name can be mapped to another logical library name as shown in the picture, but it has to be mapped to a physical path on a storing device
eventually.

Usually, every designer operates within his own work library. Y et he can use units from other libraries which might hold data from former
projects (PROJEKT_1 and PROJEKT _XY) or the current project packages (USERPACK). If another library than WORK isto be used, it
will have to be made visible to the VHDL compiler. Thisis done with the library statement that starts with the keyword ' library ',
followed by the logical name of the library. For example the library |EEE is commonly used because it contains standardized packages.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_44.htm [29/12/2001 12:55:09]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_45.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.2.19 Design Structure: Example

MONITOR
CTRL

_ [entity MONTTOR |
{ lareh & of MONITOR]

DATA IN DATA OUT

Y

data format | package P

| entity DATA_IN |
+ | arch A of DATA_IN |

-"., package body P|:
t““”' | |

onfig CFG_FASTSIM

entity DATA_OUT |
| arch A of DATA_OUT]|

| sntity CTRL
Larch SIM of CTRL W
[arch GATE of CTRL]

In the exampl e, the design consists of four modules. The top level is the module MONITOR which uses three other submodules. These
other modules are called CTRL, DATA_IN and DATA_OUT.

The data types for the data format that will be monitored are defined in a package P as the data types might be used in other design which
communicate with this one. A separate package body has also been written. The package P is referenced by the entities MONITOR,
DATA_IN and DATA_OUT as these three modules will use the new data types. The CTRL module will process control signals, only,
which can be model ed with the predefined data types. The entities MONITOR, DATA_IN and DATA_OUT each have a architecture A.
Two different architectures (SIM and GATE) exist for the entity CTRL. A configuration is necessary for the simulation.

Secondary units like package bodies and architectures are linked automatically to their primary units (package and entities). Other links
have to be made explicitly. Therefore the package P needs to be referenced with a use clause before the entities are declared, while thisis
not necessary for the corresponding architectures. The assembly of the final design is made by the configuration, i.e. hierarchy errorslike
incompatible interfaces will be reported when the configuration is analysed. If several architectures exist for one entity, the configuration
will aso select the architecture that is to be used for the current simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_45.htm [29/12/2001 12:55:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_46.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.2.20 Sequence of Compilation

. Primary units are analysed before secondary
units

o entity before architecture
o package before package body
. All units that are referred to have to be analysed
first
o entity after package
o configuration after entity/architecture

-
entity TOP ;
’-‘- -------------- 1
|
: package P architecture Tof TOP [*s
i T RSl config CFG_TOP
1
+ | package bodyP l l entity X
1 1
S - ——————— -7 : architecture Aof X °
A - _?

The sequence of compilation is predetermined by the dependency of model parts. If a dependency tree was built, one would have to
compile from the lowest level of hierarchy to the top.

As secondary units rely on information given in their primary units (e.g. the interface signals have to be known for an architecture), they
can only be compiled when the corresponding primary unit has already been compiled before. Consequently, primary units have to be
analysed before their secondary units (entity before architecture, package header before package body).

The same reason applies for references. A package, for example, hasto be analysed before an entity which references this package can be
compiled, because the entity or its architecture(s) need the information about the data types, etc. The second ruleis to compile modules
which are referenced by others before the modul es that are actually referencing it. Therefore the configuration, which builds up the design
hierarchy, has to be analysed at last.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_46.htm (1 of 2) [29/12/2001 12:55:23]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_46.htm

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_46.htm (2 of 2) [29/12/2001 12:55:23]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_47.htm

;@© LRS- UNI Erlangen-Nuremberg

2.2.21 Outlook: Testbench

. VHDL code for top level

. No interface signals

TE_DUTVHD . Instantiation of design
N . Statements for stimuli
@ generation
DUTNVHD

Design Under Test
{instantiated as component)

Responses

. Simple testbenches:
response analysis by
waveform inspection

. Sophisticated testbenches
may need >50% of
complete project
ressources

The most commonly used method to verify adesign is simulation. As VHDL was developed for the ssmulation of digital hardware in the
first place, thisiswell supported by the language.

A new top level, usually called testbench, is created which instantiates Design Under Test (DUT) and models its environment. Therefore,
the entity of thistop level has no interface signals. The architecture will also contain some processes or submodules which generate the
stimuli for the DUT and sometimes addtional processes or submodules which simplify the analysis of the responses of the DUT.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_47.htm (1 of 2) [29/12/2001 12:55:28]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_47.htm

The effort which isinvested into the creation of atestbench varies considerably and can cost the same amount of the time as the modeling
of the DUT. It depends on the type of testbench, i.e. how much functionality (stimuli generation, response analysis, file I/O, etc.) hasto be
supplied.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_47.htm (2 of 2) [29/12/2001 12:55:28]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_48.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.2.22 Simple Testbench Example

entity TB_ADDER IS
end TB_ADDER,;

architecture TEST of TB_ADDER is

component ADDER

port (A, B: in bit;

CARRY, SUM: out bit);
entity ADDER IS end component; ,
B TEE in bt signal A_I, B_I, CARRY_I, SUM_| : bit;
CARRY,SUM : out bit); begin
end ADDER: DUT: ADDER port map (A_I, B_I, CARRY_I, SUM_J);
zg;l:gecture RTL of ADDER is STIMULUS: process

. begin

Q;)g[i)r.] process (A,B) Al<="1:B l<=0"

wait for 10 ns;
Al<="1B I<="1;
wait for 10 ns;
--and soon ...
end process STIMULUS;
end TEST;

SUM <= A xor B;
CARRY <= A and B;
end process ADD;
end RTL;

configuration CFG_TB_ADDER of TB_ADDER is
for TEST

end for;

end CFG_TB_ADDER,;

The example shows the VHDL code for asimple design and its corresponding testbench. The design to be tested is the ADDER which
implements a halfadder. The architecture RTL contains one pure combinational process which calculates the results for the SUM and
CARRY signals whenever the input signals A or B change.

The testbench is shown on the right side. First the empty entity TB_ADDER is defined. Thereis no need for an interface, so no port list is
present. In the architecture TEST of the testbench the component ADDER and the intermediate signals are declared. The intermediate
signals (*_1) are connected to the component in the port map of the component instantiation. The signals that are connected to the input
ports of the component ADDER get their values assigned in the process STIMULUS. New values are set every 10 ns. The reaction of the
DUT can be observed in awaveform display of the simulator.

At the bottom of the VHDL source code, the configuration is listed. Only the architecture TEST for the TB_ADDER entity is specified and
the rest is left to the default rules as the name of the component and the entity are identical.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_48.htm [29/12/2001 12:55:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_49.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.2.23 Summary

. VHDL is avery precise language
1 Signal types and directions have to match
o All objects have to be declared
1 One language for design and validation

. Validation by means of a
TESTB EN CH Testbench vhdl

1 Provides stimuli and STIMULI —— Model
DuT
expected response e
. IUnder Test
o Top hierarchy level HESPONSE

5 No in-/output ports

VHDL isavery strict language in which hardly a cryptic programming style is possible (asit is the case with the programming language
C). Every signal, for example, has to possess a certain data type, it has to be declared at a certain position, and it only accepts assignments
from the same data type.

To make afunctional test of aVHDL model, atestbench can be written also in VHDL, which delivers the verifiaction environment for the
model. Init, stimuli are described as input signals for the model, and furthermore the expected model responses can be checked. The
testbench appears as the top hierarchy level, and therefore has neither input- nor output ports.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_49.htm [29/12/2001 12:55:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_50.htm

‘5@© LRS- UNI Erlangen-Nuremberg

2.2.24 Questions

1. An architecture...

O yes O 1.1. ... can exist on its own
O yes O 1.2. ... can exist only together with its
dedicated design entity.
O yes O 1.3. ... contains a description of the
module’s behaviour.
2. In VHDL, sequential statements ...
O yes O 2.1. ... are defined in the architecture
O yes O 2.2. ... are defined in the process

| submit || reset |

Please answer the questions by clicking "Yes' or "Nao". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_50.htm [29/12/2001 12:55:45]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_51.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.2.25 Questions

3. The configuration...

O yes O 3.1. ... generates the simulateable object.
O yes O 3.2. ... I1s declared within the architecture.
O yes O 3.3. ... chooses the entity for a certain

no

architecture.

4. The component declaration ...

O yes O 4.1. ... Integrates a certain entity into a
preset ,socket".

O yes O 4.2. ... defines only the socket type.

O yes O 4.3. ... should have the same name as the

no

dedicated entity for default-configuration

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit” to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_51.htm [29/12/2001 12:55:50]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_52.htm

‘5@© LRS- UNI Erlangen-Nuremberg

2.2.26 Questions

5. Component instantiation ...

O yes 5.1. ... generates the socket of the
o ne component type.

O yes 5.2. ... wires the socket (=component) to the
ore PCB (=entity).

6. Concurrent statements ...

O yes 6.1. ... are declared only in the architecture.
O no

O yes 6.2. ... are declared only in subprograms.

O no

O yes 6.3. ... are executed consecutively.

| submit || reset |

Please answer the questions by clicking "Yes' or "Nao". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_52.htm [29/12/2001 12:55:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_53.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.3 Data Types

entity FULLADDER is
port(A, B, CARRY_IN: in

o SUM, CARRY: out

bit); -

enti FULLADDER: . Every signal has atype

architecture MIX of

FULLADDERs oer . Type specifies possible values
port(A, B: in bit;

oy, CARRY:out . Type has to be definined at

signal W_SUM, signhal declaration...

W_CARRY1, W_CARRY2: bit;

begin
HA1: HALFADDER

. ...eitherin
port map(A, B, W_SUM,

W_CARRY1); o entity: port declaration, or in
HA2: HALFADDER

t CARRY IN, . 5 = .
W SOM UMW, CARRY2): 1 architecture: signal declaration

CARRY <= W_CARRY1 or

W_CARRYZ2; . lypes have to match

end MIX;

In VHDL, signals must have a data type associated with them that limits the number of possible values. Thistype has to be fixed when the
signal is declared, either as entity port or an internal architecture signal, and can not be changed during runtime. Whenever signal values
are updated, the data types on both sides of the assignment operator '<=" have to match.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_53.htm [29/12/2001 12:56:00]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_54.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.3.1 Standard Data Types

package STANDARD i - Every type has a number
s e RS of possible values
type CHARACTER is (-- ascii set);

ype INTEGER s -r-ai?r?;ementation_defined ® Stan d ard ty p eS are d efl n ed
type REAL is range
-- implementation_defined by th e I an g U ag e

-- BIT_VECTOR, STRING, TIME
end STANDARD;

. User can define his own
types

Feal
=374 Il 'Cfl !
1.02 1 O {0 ! ! Integer
435 -4 2aE45 Bi nop
false |t |1m1u
true ns Errorsg s Character
40 ns "message string
Boolean TI me .
¥ o4 String

3
New types added to the standard

package,
e.g. umlauts

In VHDL, signals must have a data type associated with them that limits the number of possible values. This type has to be fixed when the
signal is declared, either as entity port or an internal architecture signal, and can not be changed during runtime. Whenever signal values
are updated, the data types on both sides of the assignment operator ' <= " have to match.

A number of datatypes are already defined in the standard package which is awaysimplicitly referenced. ' boolean ' is usually used to
control the flow of the VHDL execution while ' bit " useslevel values (' 0', ' 1) instead of truth values (' false’, ' true ") and is therefore

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_54.htm (1 of 2) [29/12/2001 12:56:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_54.htm

better suited to model wires. Number values can be communicated viasignals of type ' integer ' or ' real . The actual range and accuracy
depends on the platform implementation and only lower bounds are defined, e.g. integers are guaranteed to be at least 32 bits wide.
Floating point operations can not be synthesized automaticaly, yet, i.e. the use of ' real ' datatypesis restricted to testbench applications.
The same appliesto ' character 'and ' time'.

"time'isaspecia datatype asit consists out of a numerical value and a physical unit. It is used to delay the execution of statements for a
certain amount of time, e.g. in testbenches or to model gate and propagation delays. Signals of datatype' time' can be multiplied or
divided by ' integer ' and ' real ' values. The result of these operations remains of datatype ' time'. Theinternal resolution of VHDL

simulatorsis set to femto seconds (fs).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_54.htm (2 of 2) [29/12/2001 12:56:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_55.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.3.2 Datatype 'time'

architecture EXAMPLE of TIME_TYPE is C US ag e

signal CLK : bit := "0;
1 testbenches

constant PERIOD : time := 50 ns;

begin
process 1 gate delays
begin
wait for 50 ns;

. Multiplication/division
wait for PER|OD

o mutliplied/divided by

waitfor5* PERIOD ; integer/real

waitior PERIOD +5.5:

end process;

o returns TIME type
o Internally in smallest unit

-- concurrent signal assignment (fs)
CLK <= not CLK after 0.025 us;
-- or with constant time

B e . Available time units |
fs, ps, ns, us, ms, sec, min,
hr

'time' isa specia datatype asit consists out of a numerical value and a physical unit. It is used to delay the execution of statementsfor a
certain amount of time, e.g. in testbenches or to model gate and propagation delays. Signals of datatype 'time' can be multiplied or divided
by ‘'integer' and 'real’ values. The result of these operations remains of datatype ‘time. The internal resolution of VHDL simulatorsis set to
femto-seconds (fs).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_55.htm [29/12/2001 12:56:12]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_56.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.3.3 Definition of Arrays

signal A_BUS, Z_BUS : bit_wector (3 downto Dj;|

. Collection of signals of the
Same type L _BUS <=A_BUS

. Predefined arrays z
n bit_vector (array of bit) | <

3) —— i BlS
D) —— it BUS
1) —— s BUS|

| — 4 BUS(0

3)
2)
1]
)

1 string (array of

Ch aracter) £_BUSZ) ==A_BUSO)
. Z BlUS3 — A& _BUS(E
. Unconstrained arrays: Covae = e
.. . Z_BUS(H) = — A_BUS()
definition of actual size 7 BUS(0) — A BUS(O)

during signal/port
declaration

Arrays are useful to group signals of the same type and meaning. Two unconstrained array data types, i.e. whose range is not limited, are
pre-defined in VHDL: ' bit_vector 'and ' string ' are arrays of ' bit ' and ' character ' values, respectively. Please note that the array
boundaries have to be fixed during signal declarations, e.g. 'bit_vector(3 downto 0)'. Only constrained arrays may be used as entity ports or
architecture signals.

Integer signals will be mapped to a number of wires during synthesis. These wires could be modeled via bit vectors aswell, yet '
bit_vector ' signals do not have a numerical interpretation associated with them. Therefore the synthesis result for the two example
architectures would be the same. The process models a simple multiplexer which selects the input A as source for its output Z when the
select signal SEL is'1' and the input B otherwise. Please note that the multiplexer processis exactly the same for both data types!

Special careis necessary when signal assignments with arrays are carried out. Although the data type and the width of the signals have to
match, thisis not true for the order of the array elements. The values are assigned according to their position within the array, not

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_56.htm (1 of 2) [29/12/2001 12:56:18]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_56.htm

according to their index. Thereforeit is highly recommended to use only one direction (usualy ' downto ' in hardware applications)
throughout your designs.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_56.htm (2 of 2) [29/12/2001 12:56:18]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_57.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

2.3.4'Integer' and 'bit' Types

architecture EXAMPLE_1 of DATATYPES is architecture EXAMPLE_2 of DATATYPES is
signal SEL : bit ; signal SEL : bit ;
signal A, B, Z . integer range 0 to 3; signal A, B, Z: bit_vector (1 downto 0);
begin begin
A <=2 A <= "10"
Be=t B <="11";
process(SEL,A,B) process(SEL,A,B)
begin begin
if SEL ='1' then O R c if SEL ='1' then
Z<=A; . Z<=A
else else
Z <= B; Z<=B;
end if; end if;
end process; end process;
end EXAMPLE_1; end EXAMPLE_2;
: 1 Ny | 1 1
. Example for using ' bit' and ' integer

Integer signals will be mapped to a number of wires during synthesis. These wires could be modelled via bit vectors as well, yet
'bit_vector' signals do not have a numerical interpretation associated with them. Therefore the synthesis result for the two example
architectures would be the same. The process models a simple multiplexer which selectsthe input A as source for its output Z when the
select signal SEL is'1' and theinput B otherwise. Please note that the multiplexer process is exactly the same for both data types!

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_57.htm [29/12/2001 12:56:22]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_58.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.3.5 Assignments with Array Types

architecture EXAMPLE of ARRAYS is
signal Z_BUS : bit_vector (3 downto

0);sig]nal C_BUS : bit_vector (0 to 3); Z—BUS(S) C—BUS(U)
s ’ Z_BUS(2) ~——— C_BUS(1)

Z BUS <= C_BUS: Z BUS(1) -e——— C_BUS(2)
end EXAMPLE; Z_BUS(0) -s—— C_BUS5(3)

Elements are assigned according to their
position,
not their number

2

The direction of arrays should always be
defined
the same way

Special careis necessary when signal assignments with arrays are carried out. Although the data type and the width of the signals have to
match, thisis not true for the order of the array elements. The values are assigned according to their position within the array, not
according to their index. Therefore it is highly recommended to use only one direction (usually ‘downto’ in hardware applications)
throughout your designs.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_58.htm [29/12/2001 12:56:28]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_59.htm

;@© LRS- UNI Erlangen-Nuremberg

2.3.6 Types of Assignment for 'bit' Data Types

. Single bit values are

architecture EXAMPLE of enclosed in "'
ASSIGNMENT is

signal Z BUS : bit_vector (3 downto 0); ¢ VeCtO r Val u eS are
signal BIG_BUS : bit_vector (15 downto 0); en C I OS ed | n n o n

begin .
canl assinments. o optional base
-- legal assignments:

Z_ BUS(3) <= 1L specification

Z BUS <="1100"; .
(default: binary)
Z BUS <= b 1100

ZBUS <=xToT - values may be
BIG_BUS <= B 0000 _0001_0010_0011 *; Separated by
end EXAMPLE; underscores to
iImprove
readability

Al

Different specification of single bits and bit
vectors

3
Valid assignments for the datatype 'bit' are

also valid
for all character arrays, e.g.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_59.htm (1 of 2) [29/12/2001 12:56:33]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_59.htm

'std_(u)logic_vector

The specification of signal valuesis different for the base types ‘character’ and 'bit' and their corresponding array types 'string' and
'bit_vector'. Single values are always enclosed in single quotation marks ("), while double quotation marks (") are used to specify array
values.

As bit vectors are often used to represent numerical values, VHDL offers several possibilities to increase the readability of bit vector
assignments. First, a base for the following number may be specified. Per default binary data consisting of 'O'sand '1'sis assumed. Please
note that the values have to enclosed in double quotation marks even though only a single symbol might be necessary when another baseis
used! Additionally, underscores (_) may be inserted at will to split long chains of numbers into smaller groupsin order to improve
readability.

Since VHDL'93, the same rules apply to the enhanced bit vector types' std_(u)logic_vector ', which will be discussed later on, as well.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_59.htm (2 of 2) [29/12/2001 12:56:33]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_60.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.3.7 Concatenation

- Concatenation . Resulting signal
operator: & assignment;
architecture EXAMPLE_1 of CONCATENATION is BYTE [?] I A—BUS(EJ
signal BYTE . bit_vector (7 downto 0); BYTE(s) #—— A_BUS(2)
signal A_BUS, B_BUS : bit_vector (3 downto 0); BYTE(5) -+—— A_BUS(1)
begin BYTE(4) ~—— A_BlUS(0)
BYTE <=A_BUS & B_BUS; BYTE(3) <#—— B_BUS(3)
BYTE(2) -+—— B_BUS(2)
end EXAMPLE; B'Y'TE(1) e B_BUS(1]

BYTE (o) <——— B_BUS(0)

architecture EXAMPLE_2 of CONCATENATION is
signal Z_BUS : bit_vector (3 downto 0);
signal A_BIT, B_BIT, C_BIT, D_BIT : bit;

begin Z_BUS(3) -—— A_BIT
Z BUS(2) -s—— B BIT

Z_BUS <= A_BIT & B_BIT & C_BIT & D_BIT; Z BUS(1) C BIT
end EXAMPLE; Z BUS(0) s¢——— D_BIT

Al

The concatenation operator '&' is allowed
on the right side
of the signal assignment operator '<=', only

As signal assignments require matching data types on both sides of the operator it is sometimes necessary to assemble an arraysin the
VHDL code. The concatenation operator ' & ' groups together the elements on its sides which have to be of the same data type, only.
Again, the array indices are ignored and only the position of the elements within the arraysis used. The concatenation operator may be
used on the right side of signal assignments, only!

Another way of assigning signals which does not suffer from this limitation is via the aggregate construct. Here, the signalsthat are to
build the final array areenclosed ina'(’)" pair and separated by ','. Instead of a ssmple concatenation, it is also possible to address the array

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_60.htm (1 of 2) [29/12/2001 12:56:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_60.htm

elements explicitly by their corresponding index, as shown in the last signal assignment statement of the aggregate example. The keyword '
others' may be used to select those indices that have not been addressed, yet.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_60.htm (2 of 2) [29/12/2001 12:56:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_61.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.3.8 Aggregates

architecture EXAMPLE of
AGGREGATES is

Ganaiz BUs e Gaowmo 0, o Aggregates bundle signals
biSlgnal A BIT, B_BIT, C_BIT, D_BIT: tO g et h er
begin
Z_BUS <= (A_BIT, B_BIT, C_BIT, .
D_BIT); . May be used on both sides
(A_BIT, B_BIT, C_BIT, D_BIT) <= .
bit_vector("1011") of an assighment
(A_BIT, B_BIT, C_BIT, D_BIT) <=
BYTE(3 downto 0);
BYTE <= (7 => 1", 5 downto 1 => 1", . keyword 'other' selects all
T remaining elements

B
Some aggregate constructs may not be

supported
by your synthesis tool

2

Assignment of 0 to all bits of a vector
regardless of the width:
VECTOR <= (others =>"'0");

Another way of assigning signals which does not suffer from this limitation is via the aggregate construct. Here, the signalsthat are to
build the final array areenclosed ina'(" ")' pair and separated by ',". Instead of a simple concatenation, it is & so possible to address the array
elements explicitly by their corresponding index, as shown in the last signal assignment statement of the aggregate example. The keyword

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_61.htm (1 of 2) [29/12/2001 12:56:44]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_61.htm

‘others may be used to select those indices that have not been addressed, yet.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_61.htm (2 of 2) [29/12/2001 12:56:44]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_62.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.3.9 Slices of Arrays

architecture EXAMPLE of SLICES is
signal BYTE : bit_vector (7 downto
0);
signal A_BUS, Z_BUS : bit_vector (3
downto o;
signal A_BIT : bit;
begin
BYTE (5 downto 2) <= A_BUS;
BYTE (5 downto 0) <= A_BUS;

- wrong . Slices select elements of
5:282 (1 downto 0) z: BOYfEA(EBlT; arr ayS
downto 3);
Z BUS (0to 1) <="0"&B_BIT;
-- wrong

A_BIT <=A_BUS (0);
end EXAMPLE;

a_ _
The direction of the "slice" and of the array
must match

The inverse operation of concatenation and aggregation is the selection of dlices of arrays, i.e. only a part of an array isto be used. The
range of the desired array diceis specified in brackets and must match the range declaration of the signal! Of course, it is possible to select
only single array elements.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_62.htm [29/12/2001 12:56:49]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_63.htm

‘5@© LRS- UNI Erlangen-Nuremberg

2.3.10 Questions

7. Array assignments are made ...

O yes O no 7.1. ...according to the position.
O yes O no 7.2. ...according to the index.
O yes O no 7.3. ...at option.

8. A BIT_VECTOR assignment is, e.g.,...

O yes O no 8.1. ... <="000111XXUuuo00";

O yes O no 8.2...<="0000111000111" ,

| submit || reset |

Please answer the questions by clicking "Yes' or "Nao". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_63.htm [29/12/2001 12:56:54]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_64.htm

ws> © LRS- UNI Erlangen-Nuremberg

2.3.11 Questions

O yes
O no

O yes
O no
O yes
O no
O yes

O no

O yes

9. Which assignments are correct with the
following definitions?

signal A_ BUS, B BUS, Z BUS: bit_vector (3 downto 0);
signal A_BIT, B_BIT, C_BIT, D_BIT : bit;
signal BYTE : bit_vector (7 downto 0);

9.1. BYTE <= (others => '1);

9.2. BYTE(7 downto4) <=A BIT& B BIT &
A_BIT & B_BIT;

9.3.Z BUS <= A _ BIT & B_BIT;

9.4. BYTE (3 downto 0) <= ('1', B_BIT, "0,
D_BIT);

9.5.A BUS (0to 1) <= (others => 0);

| submit || reset |

Please answer the questions by clicking "Yes' or "Nao". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_64.htm [29/12/2001 12:57:00]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_65.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.4 Extended Data Types

ADDR RAM QuT
QUT <= CONTENT(ADDR)

™

How?

CTRL
if (STATE = IDLE) then

SEND_1 DEVICE 1 Q
— if (SEMD = false) then .
-- 3 == highimpedance

SEND_2 DEVICE_2 G
—®| i{[SEND - false] then -
-- & <= highimpedance
BUS

The standard data types are of limited use for practical modeling tasks. Of course, it would be possible to implement the behaviour of
RAM or ROM cells via case constructs, yet the resulting VHDL would look pretty awkward. Coding would be much easier, if arrays of
other data types were available.

Another case for additional typesis based on readability issues. VHDL code should be usable as documentation as well. Symbalic,
descriptive names for signal values usually lead to self-documenting code. This does not mean that comments are no longer necessary,
though!

While relatively easy workarounds exist for these two problems, the modeling of bus systems is a nightmare when only predefined data
types are to be used. The main characteristics of adata busis the existence of multiple bus participants, i.e. the same signal wires are used
by multiple modules. If such a device does not transmit anything, its output driver must be set to a value that does not destroy other data
values.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_65.htm [29/12/2001 12:57:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_66.htm

;@© LRS- UNI Erlangen-Nuremberg

2.4.1 Type Classification

array
real
35119127 (17 time o,
= B = 5n5
integer |17 bit
I_II
170 (5ns |0 (1 |["1'|'0"|BA7
record

. Scalar types:

o contain exactly
one value

o Integer, real,
bit,
enumerated,
physical

. Composite types:

o may contain
more than one
value

o array : values
of one type,
only

o record : values
of different

types

. Other types:
o "file"

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_66.htm (1 of 2) [29/12/2001 12:57:12]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_66.htm

o access”

In VHDL, datatypes are classified into three categories: scalar types, composite types and other types. Scalar types have exactly one

value. Examples are the predefined integer, real and bit values. Physical datatypes (e.g. time) fall aso into this category, as well as user
defined data types whose range of valuesis declared via an enumeration. Scalar types do not have distinguishable elements. Composite
types, on the other side, usually hold a collection of values. This collection iscaled an array if al values are of the same type; different

data types may be present in records.

FILE and ACCESS types are data types that provide access to other objects. The FILE typeisused to read or store datain afile; ACCESS
types are comparable with pointers.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_66.htm (2 of 2) [29/12/2001 12:57:12]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_67.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.2 Enumeration Types

architecture EXAMPLE of
ENUMERATION is

type T_STATE is (RESET,
START, EXECUTE, FINISH);

ignal CURRENT_STATE, I I I
L . Designer may define their own
ignal TWO_BIT_VEC :
bits_lggitor(l downto 0); types
a=gir o enhanced readability
-- valid signal [
N g assienTents (commonly used to
SURREN ST describe the states of a

CURRENT_STATE <= RESET; .
state maschine)

-- invalid signal assignments

CURRENT_STATE <= "00" 2 -
SRR T AT o limitted legal values

TWO_BIT_VEC;

end EXAMPLE;

>
JSynthesis tools map enumerations onto a

suitable bit pattern

It is possible to define new scalar datatypesin VHDL. They are called enumeration types because all possible object (constant, signal,
variable) values have to be specified in alist at type declaration. User defined data types are frequently used to enhance readability when
dealing with so called state machines, i.e. modules that behave differently, depending on the state of internal storage elements. Instead of
fixed bit patterns, the symbolic names of the data type values are used which will be mapped to a bit level representation automatically
during synthesis.

In the example, anew data type with values denoting four different states (RESET, START, EXECUTE, FINISH) is defined. Thistypeis
used for the two signals CURRENT_STATE and NEXT_STATE and the four declared type values can be assigned directly. Of course,
after synthesis, there will be two bits for each signal, but a direct assignment of atwo bit vector is not allowed. In asignal assignment only
those values may be used which are enumerated in the type declaration.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_67.htm (1 of 2) [29/12/2001 12:57:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_67.htm

Some synthesis tools allow the designer to map the different values onto specific bit patterns.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_67.htm (2 of 2) [29/12/2001 12:57:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_68.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.3 Enumeration Types - Example

architecture RTL of TRAFFIC_LIGHT is

type T_STATE is
(INIT,RED,REDYELLOW,GREEN,YELLOW);
signal STATE, NEXT_STATE : T_STATE;

signal COUNTER: integer;
constant END_RED : integer := 10000;
constant END_GREEN : integer := 20000;

begin

LOGIC : process (STATE, COUNTER) STATE .
begin LOGIC NE}{TESTATE
NEXT_STATE <= STATE; COUNTER
case STATE is —
when RED =>

if COUNTER = END_RED then zensitive to all
NEXT_STATE <= REDYELLOW ; Inputs

end if;

when REDYELLOW => -- statements
when GREEN => -- statements

when YELLOW => -- statements
when INIT => -- statements

end case;
end process LOGIC;
end RTL;

The example demonstrates the impact of user defined data types on code readability. The LOGIC block shall implement the behaviour of a
traffic light controller. The datatype T_STATE is defined in the declarative part of the architecture and is used for the signals STATE and
NEXT_STATE. The functional behaviour of the algorithm should be pretty obvious as symbolic names are used, only. For this purpose,
additional constants were defined for the specific counter values that are checked within the code.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_68.htm [29/12/2001 12:57:22]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_69.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.4 BIT Type Issues

. Values 0 and 1, only
» default value 0

. Additional requirements for
type BIT simulation and synthesis
Is (0, - uninitialized
1) o high impedance
o undefined
o don'tcare

o different driver strengths

The' bit ' type has only the two values'0" and '1'. While thisis enough to model simple logic where the wires are driven either high or low
level, further options are desirable, especialy for simulation purposes. VHDL objects areinitialised with their default value which isthe
leftmost value from the type declaration. Therefore, every variable/signal of type' bit ' would be set to '0' at the beginning of each
simulation. This makes it impossible to verify the proper reset behaviour of adesign, if the reset value of aregister isaso'0'.

Additional legal wire conditions are necessary, if different driver strengths or high impedance outputs of real hardware drivers are to be
modeled. It depends on the synthesis tool whether these additional logic values can be mapped to the corresponding hardware cells. In
order to avoid hardware overhead one might think of designating bit positions that may safely be ignored during synthesis ("don't care”).
For simulation, the oppositeis desirable, i.e. avalue which indicates that something went wrong and needs to be inspected ("undefined").

In the beginning, several incompatible multi-valued logic systems were defined by the different software companies. In order to solve the
resulting problems, a standardized 9-valued logic system was defined and accepted by the |EEE in 1992.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_69.htm [29/12/2001 12:57:27]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_70.htm

;@© LRS- UNI Erlangen-Nuremberg

2.4.5 Multi-valued Types

. Multi-valued logic-systems are declared via new
datatypes

o uninitialized
o unknown
o high impedance

0

. Manufacturer dependent implementation
o mvil4, mvl7, mvl9, ..., mvi46

. No common standard before 1992
. |IEEE-standard

o 9-valued logic-system defined and accepted by
the IEEE

n standard IEEE 1164 (STD_LOGIC_1164)

Additional legal wire conditions are necessary, if different driver strengths or high impedance outputs of real hardware drivers are to be
modelled. It depends on the synthesis tool whether these additional logic values can be mapped to the corresponding hardware cells. In
order to avoid hardware overhead one might think of designating bit positions that may safely be ignored during synthesis ("don't care”).
For smulation, the opposite is desirable, i.e. avalue which indicates that something went wrong and needs to be inspected ("undefined").
In the beginning, several incompatible multi-valued logic systems were defined by the different software companies. In order to solve the
resulting problems, a standardized 9-valued logic system was defined and accepted by the IEEE in 1992

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_70.htm [29/12/2001 12:57:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_71.htm

;@© LRS- UNI Erlangen-Nuremberg

2.4.6 |IEEE Standard Logic Type

type STD_pLQGIC is_(o . .
D S 9 different signal states
, -—-strongOorl(=
unknown)

o Superior simulation results
, - high impedance

°, --weak 0 or 1 (= unknown)
, —-weak0

, --weak1

, --dontcare);

Bus modeling

"ASCIIl-characters"

.'Il—gNHo
[]

. Defined in package 'lEEE.std _logic_1164'

. Similar data type 'std_logic' with the same
values

. Array types available: 'std_(u)logic_vector’,
similar to 'bit_vector

. All 'bit' operators available

@ The IEEE standard should be used in VHDL
designs

The new datatypeis called 'std_ulogic' and is defined in the package 'std_logic_1164" which is placed in the library |IEEE (i.e. it is
included by the following statement: 'use |IEEE.std logic 1164.al"). The new type isimplemented as enumerated type by extending the

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_71.htm (1 of 2) [29/12/2001 12:57:36]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_71.htm

existing '0" and '1' symbols with additional ASCII characters. The most important ones are probably ‘u’ (uninitialized) and 'x* (unknown
value). The '’ symbol isthe leftmost symbol of the declaration, i.e. it will be used asinitial value during simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_71.htm (2 of 2) [29/12/2001 12:57:36]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_72.htm

;@© LRS- UNI Erlangen-Nuremberg

2.4.7 Resolved and Unresolved Types

|
A 2| Z== 40 . .
| . Signal assignments
are represented by
drivers
A |
& Z |Z <= Aand B
B— | A . Unresolved data type:
only one driver
A Y -
¢ z[%< - Reso_lved data type:
= possibly several
@: resolution function drivers per signal

. Conditions for valid
assignments

architecture EXAMPLE of ASSIGNMENT is
signal A, B, Z: bit;

signal INT: integer; 0 typeS have tO
begin

Z<=A, match

Z<=B;

e ExAMPLE - resolved type, if
more than 1
concurrent
assignment

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_72.htm (1 of 2) [29/12/2001 12:57:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_72.htm

Besides the type definition of 'std_ulogic' the 'std_logic 1164 package contains a so the definition of asimilar type called 'std_logic' which
has the same value set as 'std_ulogic'. Like 'bit_vector', array datatypes'std (u)logic vector' are aso available. Additionally, all operators
that are defined for the standard type 'bit' are overloaded to handle the new replacement type.

As mentioned before, the 'bit' data type can not be used to model bus architectures. Thisis because all signal assignments are represented
by driversin VHDL. If more than one driver try to force the value of a signal aresolution will be needed to solve the conflict.
Consequently, the existence of aresolution function is necessary for legal signal assignments. Please note, resolution conflicts are detected
at run-time and not during compilation!

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_72.htm (2 of 2) [29/12/2001 12:57:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_73.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.8 Std_Logic_1164 Package

PACKAGE std_logic_1164 IS

-- logic state system (unresolved)

-- resolution function

TYPE STD—ULOGIC B FUNCTION resolved (s : std_ulogic_vector)

U’, --uninitialized .
X', -- Forcing Unknown RETURN std_ulogic;
‘05, --Forcing O e : ok
‘1" - Forcing 1 industry standard logic type
"Z°, -- High Impedance . -
‘W' - Weak Unknown SUBTYPE std_logic IS resolved std_ulogic;

LY, --Weak0 . .

e -- unconstrained array of std_logic

o itk -- for use in declaring signal arrays
-, --dont care); g 519 Y

TYPE std_logic_vector IS
ARRAY (NATURAL RANGE <>) OF std_logic;
END std_logic_1164;

-- unconstrained array of std_ulogic for use
-- with the resolution function

TYPE std_ulogic_vector IS
ARRAY (NATURAL RANGE <>) OF std_ulogic;

It is recommended to use the multi-valued logic system from the |EEE instead of the standard 'bit’ data type. The new typeiscalled
'std_ulogic' and is defined in the package 'std_logic_1164" which is placed in the library IEEE (i.e. it isincluded by the following
statement: 'use IEEE.std logic 1164.all'.

It can be seen from the type definition that the most desirable signal values are defined. The'0' and '1' symbols that are used as 'bit’ values
were extended by additional ASCII characters, the most important ones being probably 'u’ (uninitialized) and 'x' (unknown value). The ‘U’
symbol is the leftmost symbol of the delcaration, i.e. it will be used asinitial value during simulation.

Besides the type definition of 'std_ulogic' the 'std logic 1164' package contains aso the definition of asimilar type called 'std_logic' which
has the same value set as'std_ulogic'. Like 'bit_vector', array datatypes'std_(u)logic_vector' are also available. Additionally, all operators
that are defined for the standard type 'bit' are overloaded to handle the new replacement type.

As mentioned before, the 'bit' data type can not be used to model bus architectures. This is because all signal assignments are represented
by driversin VHDL. If more than one driver try to force the value of a signal aresolution will be needed to solve the conflict.
Consequently, the existence of aresolution function is necessary for legal signal assignments. Please note, resolution conflicts are detected
at run-time and not during compilation!

Predefined VHDL data types do not possess a resolution function because the effects of multiple signal drivers depend on the actual
hardware realization. The 'std_ulogic' datatype ("u" = "unresolved") isthe basis for the resolved data type 'std_logic'. The 'resolved'
function that is also defined in the 'std_logic_1164' package gets called whenever signal assignmentsinvolving 'std_logic' based data types

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_73.htm (1 of 2) [29/12/2001 12:57:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_73.htm

are carried out.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_73.htm (2 of 2) [29/12/2001 12:57:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_74.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.4.9 Resolution Function

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic IS
CONSTANT resolution_table : std_logic_table := (

U X 0 1 Z W L H

('v, ‘v, v, U, U, U U, 'U,ouY), U
(oo, X X X, X, X, X)), X
('u, X, o, 'X', ‘0, 'o, ‘0o, 0, X)), -0
('u,o XX o, 1o, 1, 1, X)), -1
(v, X, ‘o, 1, 'z, 'w, 'L, 'H, X), -Z
(', oo, Wy oW, W o'we, X)), W
('v, X, ‘o, "1, 'L, 'w, 'L, 'w, X) -L
('u,oXLoton 1, HY, WS, W, HY X)), -H
(‘oo XX, X, X X X, X, X)) - =)
VARIABLE result : std_ulogic :='Z"; -- weakest state default
BEGIN

IF (S'LENGTH =1) THEN
RETURN s(s'LOW);
ELSE
FOR i IN SsSRANGE LOOP
result := resolution_table(result, s(i));
END LOOP;
END IF;
RETURN result;
END resolved;

. All driving

values are
collected in a
vector

The result is
calculated
element by
element
according to the
table

Resolution
function is called
whenever signal
assignments
Involving
resolved types
are carried out

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_74.htm (1 of 2) [29/12/2001 12:57:52]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_74.htm

The conflict resolution processitself, i.e. the decision about the final signal value in case of multiple drivers, is based upon aresolution
table. All driving values are collected in an array and handed to the resolution function, even if only asingle driver is present! The result is
calculated element by element: the current result selects the row of the resolution table and the value of the next signal driver selectsthe
column of the resulting signal value.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_74.htm (2 of 2) [29/12/2001 12:57:52]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_75.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.4.10 STD_LOGIC vs STD_ULOGIC

Benefit
STD_ULOGIC . Error messages in case
STD ULOGIC VECTOR of multiple concurrent

signal assignments

Benefit

. Common industry

standard
STD LOGIC o gate level netlists
STD_LOGIC_VECTOR . mathematical
functions

. Required for tri-state
busses

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_75.htm (1 of 2) [29/12/2001 12:57:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_75.htm

@ STD_LOGIC(_VECTOR) is recommended for
RT level designs

@ Use port mode 'buffer' to avoid multiple
signal assignments

By far most of the connectionsin a design, either as abstract signals or later on asrea wires, are from one point to another, i.e. multiple
signal drivers would indicate an error. Thiskind of error will be easily detected if just unresolved data types are used.

Y et, the resolved counterpart 'std_logic' has been established as de facto industry standard despite of some shortcomings. As all kind of
hardware structures, including bus systems, can be modeled with this datatype it is used by synthesis tools for the resulting gate level
description of adesign. Even aworkaround exists, so that multiple signal assignments can still be detected: the port mode 'buffer' allows
for asingle signa driver, only. According to the VHDL language definition, however, the resolution function has to be called when
resolved signals are assigned. The impact on simulation performance depends on the compiler/simulator implementation.

Thelast, but certainly not the least advantage of 'std_logic' based designs is the existence of standard packages defining arithmetical
operations on vectors. This eliminates the need for complex type conversion functions and thus enhances the readability of the code.

The' numeric_std ' package islocated in the library |EEE and provides two numerical interpretations of the bit vector, either as signed or
as unsigned integer value. Overloaded operators to mix vectors and integers in expressions are also available. Please note, that it is
impossible to overload the signal assignment operator, i.e. afunction must be called in this case. Conversion functions' to_integer 'and "
to_(un)signed ' are also defined in the package.

The equivalent of ' numeric_std ' for * bit ' based operationsis called ' numeric_bit *. The use of * bit ' based signals is not recommended,
however, due to the disadvantages of a 2-valued logic system.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_75.htm (2 of 2) [29/12/2001 12:57:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_76.htm

%
_@(@ LRS- UNI Erlangen-Nuremberg

2.4.11 The NUMERIC_STD Package

. Provides numerical interpretation for 'std_logic'
based vectors

o sighed: 2-complement (sign+absolute value)
1 unsigned: binary representation of positive
Integers
. Overloaded mathematical operators
o allow mixture of vector and integer values
(vector <= vector + 1)
. Overloaded relational operators

o avoid problems when dealing with different
vector lengths

1 comparison of vector with integer values

. NUMERIC BIT package with 'bit' as basis data
type

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_76.htm (1 of 2) [29/12/2001 12:58:01]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_76.htm

@ The use of 'bit' and 'bit_vector' is not
recommended

The 'numeric_std' package islocated in the library |EEE and provides two numerical interpretations of the bit vector, either as signed or as
unsigned integer value. Overloaded operators to mix vectors and integersin expressions are also available.

Please note, that it isimpossible to overload the signal assignment operator, i.e. afunction must be called in this case. Conversion
functions'to_integer' and 'to_(un)signed' are a so defined in the package.

The equivalent of 'numeric_std' for 'bit' based operationsis called 'numeric_hit'. The use of 'bit' based signals is not recommended,
however, due to the disadvantages of a 2-valued logic system.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_76.htm (2 of 2) [29/12/2001 12:58:01]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_77.htm

7%
E ‘I © LRS- UNI Erlangen-Nuremberg

2.4.12 Arrays

type STD_ULOGIC_VECTOR is

array (natural range <>) of STD_ULOGIC,;

type MY_BYTE is
array(7 downto 0) of STD ULOGIC;

signal BYTE_BUS : STD_ULOGIC_VECTOR(7 downto 0);
signal TYPE_BUS : MY_BYTE;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_77.htm (1 of 2) [29/12/2001 12:58:06]

Definition of an array
type
o constrained or

unconstrained
size

Declaration of a
signhal of that type

o range
specification
necessary

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_77.htm

architecture EXAMPLE of ARRAY is
type CLOCK _DIGITS is
(HOUR10,HOUR1,MINUTES10,MINUTES1);
type T_TIME is
array(CLOCK_DIGITS) of integer anNge Oto 9;

. Theindex set can be

signal ALARM_TIME : T_TIME := (0,7,3,0); Of any typ e
begin
ALARM_TIME(HOURL1) <=0;

ALARM_TIME(HOUR10 to MINUTES10) <= (0,7,0);
end EXAMPLE;

@ Only integer index sets are supported by all synthesis
tools

Arrays are a collection of a number of values of a single data type and are represented as a new datatype in VHDL. It is possible to leave the range of array
indices open at the time of definition. These so called unconstrained arrays can not be used as signals, however, i.e. the index range has to be specified in the
signal declaration then. The advantage of unconstrained arrays is the possibility to concatenate objects of different lengths, for example, because they are still
of the same data type. Thiswould not be allowed if each array length was declared as separate data type.

VHDL does not put any restrictions on the index set of arrays, aslong it is a descrete range of values. It is even legal to use enumeration types, as shown in
the code example, although this version is not generally synthesizable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_77.htm (2 of 2) [29/12/2001 12:58:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_78.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.13 Multidimensional Arrays

architecture EXAMPLE of
ARRAY is

type INTEGER_VECTOR IS
array (1 to 8) of integer;

1 --
type maTrix A IS
array(1 to 3) of

INTEGER_VECTOR o multidimensional array
== 2 oo
type MATRIX B is
array(1to 4, 1to 8) of integer ;

2 possibilities
o array of array

Different referencing

signal MATRIX_3x8 : MATRIX_A;
signal MATRIX_4x8 : MATIRX_B;

Barely supported by
begin synthesis tools

MATRIX 3x8(3)(5) <= 10; --array of array
MATRIX_4x8(4,5) <=17; -- 2 dim array

end EXAMPLE;

Multidimensional arrays can simply be obtained by defining a new data type as array of another array datatype (1). When accessing its
array elements, the selections are processed from left to right, i.e. the leftmost pair of brackets selects the index range for the "outermost”
array. Thus' MATRIX_3x8(2) ' selectsthe second' INTEGER_VECTOR 'of ' MATRIX_A '. The range enclosed in the next pair
appliesto the array that is returned by the previous dlice selection, i.e. ' MATRIX_3x8(2)(4) ' returns the fourth integer value of this’
INTEGER_VECTOR .

Multiple dimensions can a so be specified diretly within a new array definition (2). The ranges of the different dimensions are separated by
' symbols. If awhole row or column is to be selected, the range has to be provided in the slice selection. Multidimensional arrays are
generally synthesizable up to dimension 2, only.

The most convenient way to assign values to multiple array elements is via the aggregate mechanism. Aggregates can aso be nested for
this purpose.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_78.htm [29/12/2001 12:58:11]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_79.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.14 Aggregates and Multidimensional Arrays

architecture EXAMPLE of AGGREGATE is

type INTEGER_VECTOR is
array (1 to 8) of integer;
type MATRIX_Ais
array(1 to 3) of INTEGER_VECTOR,;

type MATRIX_B is . Aggregates may be

array(1 to 4, 1 to 8) of integer;

| | | nested

signal MATRIX3x8 : MATRIX_A;

s?gnal MATRIX4x8 : MATIRX_B;

Sl'gnal \\//Ec(::g \\//Egs} . INTEGER_VECTOR; ° Ag gregd ates can be used
S to make

MATRIX3x8 <= (VECO, VEC1, VEC2); .

MATRIX4x8 <= (VECO, VEC1, VEC2, VEC3); assignmen ts to all

MATRIX3x8 <= (others => VEC3); elements of a

MATRIX4x8 <= (others => VEC3); L .

MATRIX3x8 <= (others => (others => b)); mu |t| d Imension al a‘rray

MATRIX4x8 <= (others => (others => 5));

end EXAMPLE;

With an aggregate one can assign to all elements of an array a specific valuein a clear fashion.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_79.htm [29/12/2001 12:58:16]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_80.htm

:::}@© LRS - UNI Erlangen-Nuremberg
2.4.15 Records

architecture EXAMPLE of AGGREGATE is
type MONTH_NAME is (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);

type DATE is c
record . Elements of different
DAY: integer range 1 to 31;
MONTH: MONTH_NAME; typ e
YEAR: integer range O to 4000;
end record;

. Possible assignments

type PERSON is

record
NAME: string (O to 8); o record <=
BIRTHDAY: DATE;
end record; reCOI’d
signal TODAY: DATE; _
signal STUDENT _1: PERSON; o record <=
signal STUDENT_2: PERSON;
begin agg reg ate
TODAY <= (26, JUL, 1988):
STUDENT _1 <= ("Franziska", TODAY); o reco rd el ement <=
STUDENT 2 <= STUDENT 1; Val u e

STUDENT 2.BIRTHDAY.YEAR <= 1974;
end EXAMPLE;

In contrast to array types, records admit different data types within the newly created structure. Three choices exist for value assignments:
The most obvious method isto assign one record to another (| STUDENT _2 <= STUDENT _1"). Thisdoes not allow to set individual
values, however. Again, aggregates are commonly used for this purpose, i.e. the different element values are grouped together (e.g. "
TODAY <= (26, JUL, 1988)). The single elements are addressed via RECORD.ELEMENT constructs, like'
STUDENT_2.BIRTHDAY.YEAR <=1974". As can be seen, this syntax applies also to nested records.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_80.htm [29/12/2001 12:58:20]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_81.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.16 Type Conversion

architecture EXAMPLE of CONVERSION is . Datatypes have to
stjogie ey (rdowntof)et match for assignments
doviigtnoalo\)/;ECTOR: std_logic_vector(7 . type convers | on
SPEAE TS g s functions
begin 0 type cast
SOME_BITS <= VECTOR; .
WroSngJ)ME_BITS <= Convert_to_Bit(VECTOR) ; ° CI O S ely rel ated ty p es
Wrol?];TE <= VECTOR; - o in teger <-> real

BYTE <= MY_BYTE(VECTOR) ;

o arrays with the same
length, index set and
element types

end EXAMPLE;

Matching data types are a strict language requirement in assignment operations. This can always be achieved via type conversion functions
that have to be defined by the user for all necessary pairs of data types.

If the data types in question are so called "closely related”, the call of a conversion function can be replaced by a more simple type cast.
‘integer’ and 'real’ are closely related, for example, i.e. the following code line representslegal VHDL: ' REAL _SIGNAL <=
real(INTEGER_SIGNAL) '. The syntax is similar to afunction call, except that the desired data type is used directly as prefix.

Arrays are also caled closely related when they are built of the same data type for their elements and coincide in their length and index set.
Consequently, type casts occur frequently when dealing with vector operations as bit vectors (* bit_vector ', ' std_(u)logic_vector)
themselves do not have a numerical interpretation associated with them.

The arithmetic and relational operators for bit vectors operate with ' signed ' or ' unsigned ' data types that interpret the bit values as 2-
complement (sign bit + absolute value) of an arbitrary integer number or binary representation of a positive integer value, respectively.
These new data types are built of the same basic types (' bit ', ' std_logic "), i.e. whenever numerical operations are to be carried out with
vectors, their interpretation is provided via the corresponding type cast expression. Of course, the type and operator definitions must be
made available first (' use |EEE.numeric_bit/std.all).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_81.htm [29/12/2001 12:58:25]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_82.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.17 Subtypes

architecture EXAMPLE of SUBTYPES is
type MY_WORD is array (15 downto 0)
of std_logic;
subtype SUB_WORD is
std_logic_vector (15 downto 0);

subtype MS_BYTE is integer range 15

downto 8, B . Subsets of existing types
subtype LS_BYTE is integer range 7
downto O; o
signal VECTOR: std_logic_vector(15 ¢ Sam e ty p e aS th e O Il g In al
downto 0);
signal SOME_BITS: bit_vector(15 downto ty p e
0);
i | WORD_1: MY_WORD; 5
signal WORD_2: SUB_ WORD: . More readable signal
begin . | assignments
SOME_BITS <= VECTOR; =
Y SOME_BiTS <= - Eliminates type casts
Convert_to_Bit(VECTOR); and type COnverSionS
WORD 1 <=
VE(@SE’D_l <= MY_WORD(V-I-E\(IZVEI?Cr)]g); O Sym bolic names for
WORD_2 <= VECTOR; ar ray ran g €S

-- correct!

WORD_2(LS BYTE) <= "11110000";
end EXAMPLE;

Instead of declaring a completely new datatypeit is possible to declare so called "subtypes’, if the new type that isrequired isjust a
somewhat restricted version of another type. Subtypes have the same type as their original type and are therefore compatible to the basic
type without the need for type casts or conversion functions. Subtypes can also be used to create symbolic names for array ranges.

Thisis synthesizable aternative to the ' alias' construct in VHDL . Aliases are used to give another name to already existing objects. This
way it is possible to break down complex data structures into simpler parts that can be accessed directly.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_82.htm [29/12/2001 12:58:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_83.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.4.18 Aliases

architecture EXAMPLE of ALIAS is
signal DATA is bit_vector(9 downto 0);

alias STARTBIT : bitis DATA() ;

alias MESSAGE: bit_vector(6 downto 0) is DATA (8 downto 2); .

alias PARITY: bit is DATA(L); . Glve new nhames

alias STOPBIT: bit is DATA(0);

alias REVERSE: bit_vector(1 to 10) is DATA,; tO al read y

function calc_parity(data: bit_vector) return bit is EX | St| N g O bJ eCtS
begin . Make it easier to

STARTBIT <='0"
e o RN handle complex
REVARSAL) = data structures

end EXAMPLE;

@ Aliases are not always supported by
synthesis tools

With an alias statement an object can be referenced by a new name. Thisway it is possible to break down complex data structures into
simpler parts that can be accessed directly.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_83.htm [29/12/2001 12:58:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_84.htm

;@© LRS- UNI Erlangen-Nuremberg

2.5 Operators

_ not
logical
and
O ' nand| nor xor xnor
relational @ _ B
- /— < <= >= >
shift sl|
srl | sla sra | rol ror
+ -
arithmetic
*
/ mod | rem
%
abs

sorted in order of increasing precedence
(top->down)

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_84.htm (1 of 2) [29/12/2001 12:58:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_84.htm

o3|

New operators: xnor, shift operators

The table shows the operators predefined in VHDL. They are ordered by kind and precedence. Please note the new operators defined in
VHDL'93.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_84.htm (2 of 2) [29/12/2001 12:58:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_85.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.5.1 Logical Operators

. Priority
1 not (top priority)

entity LOGIC_OP is

port (A, B, C, D :in bit o and, or, nand, nor
Z1: out bit; ! : ’ ’
EQUAL : out boolean); XO0r, Xnor

end LOGIC_OP; | . .

eqgual priorit
architecture EXAMPLE of LOGIC_OP is (q p y)
begin

Z1 <= A and (B or (not C xor D))); ° Pred eflned for

EQUAL <= A xor B; -- wrong 0 bit, bit vector
end EXAMPLE;

1 boolean

. Datatypes have to
match

Brackets must be used to define the order
of evaluation

Logical operations with arrays require operands of the same type and the same length. The operation is carried out element by element,
then.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_85.htm [29/12/2001 12:58:44]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_86.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.5.2 Logical Operations with Arrays

AL of . Operands of the same length
LOGICAL _OPis an d typ e

signal A_BUS, B_BUS : bit_vector
(3 downto 0);

il pit_vector . Assignment via the position
bezg_lrllsus <= A_BUS and B_BUS; of the elements
end EXAMPLE; -
(according to range
definition)
BRI = A_BUS(1)—]
o U _}Z_BUSH) & BUs)_} Z_BUS(S)
;‘Sﬁg _\—Z_BUS(SJ A _BUS(0) |
~ e B_BUS(0) —}Z—BUBW

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_86.htm [29/12/2001 12:58:49]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_87.htm

;@© LRS- UNI Erlangen-Nuremberg

2.5.3 Shift Operators: Examples

Defined only for one-dimensional arrays of bit of boolean!

signal A_BlUS, B BUS, 2 BUS: hit_vector (3 downto 0);

33 £ BUS <= A_BUS sl g; Atthe end, the first value ofthe

7 BUS <= B BUS sra 1; . ,
7 BUS <= A_BUSror 3; type is used forfilling up

Logical shift

sll +_+ + + in st —+ - *(‘ - -

Arithmetic shift

da LT T T o B EEE -

Rotation

o 7139 W Frirs

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_87.htm [29/12/2001 12:58:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_88.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.5.4 Relational Operators

architecture EXAMPLE of
RELATIONAL OP is

signal NR_A, NR_B: integer;

signal A_EQ_B1, A_EQ _B2: bit;
signal A LT B: boolean;

begin
-- A,B may be of any standard data type
process (A, B)
begin
if (A = B) then
A EQ Bl1l<="1}
else
A EQ B1<='0;
end if;
end process;

A EQUAL B2 <=A=B; -- wrong

A LT B<=B<=A;
end EXAMPLE

Predefined for all
standard data

types

Result: boolean
type (true, false)

<
less than

<=
less or equal

gqual

/=

unequal

o=
greater or equal

=
greater

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_88.htm [29/12/2001 12:59:03]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_89.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.5.5 Comparison Operations with Arrays

architecture EXAMPLE of
COMPARISON is

signal NIBBLE: bit_vector(3
downto 0);

signal BYTE: bit_vector(0 to 7);
begin

NIBBLE <="1001";

BYTE <="00001111";

. Operands of the same type

COMPARE: process (NIBBLE,
BYTE)

begin . Arrays:

if (NIBBLE < BYTE) then

i NISBLE(3) < BYTEQ)) or » may differ in length
- ((NIBBLE(3) = BYTE(0)) _ _
d -
M BBLER) < BYTEW) o left allgnment prior to
or comparison
- ((NIBBLE(3) = BYTE(0))
M NIBBLEQ) = BYTE(W) 1 are compared element after
d
o (NIBBLE(1) < BYTE(2))) element
or
 better . No numerical interpretation
if (("0000"& NIBBLE) <= BYTE) .
then (unsigned, 2-complement,
etc.)

end EXAMPLE;

Adjust the length of arrays prior to
comparison

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_89.htm (1 of 2) [29/12/2001 12:59:08]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_89.htm

When comparing array types it must be considerd that the comparison is carried out from the left side to the right. That means for arrays of
varying length that "111" is greater than "1001", for example. If it is not desired, hence shall be compared right-aligned, then the arrays
will have to be brought upon the equal length by hand, e.g. by means of concatenation: '0'&"111" isthen smaller than "1001".

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_89.htm (2 of 2) [29/12/2001 12:59:08]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_90.htm

;@© LRS- UNI Erlangen-Nuremberg

2.5.6 Arithmetic Operators

signal A, B, C: integer;
signal RESULT: integer;

RESULT<=-A + B * C;

addition substraction Operands of the same type
Predefined for
i _ o Integer
multiplication exponentiation 5 real (except mod and
rem)
1 physical types (e.g.
divi{sion mng:-gglo tim e)
Not defined for bit_vector
(undefined number format:
Saemiiovat || MEnens unsigned, 2-complement,

etc.)

Conventional mathematical
meaning and priority

'+' and '-' may also be used
as unary operators

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_90.htm (1 of 2) [29/12/2001 12:59:15]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_90.htm

The VHDL operators are rather self-explanatory. While relational operators are available for all pre-defined data types, the logical, shift
and arithmetical operators may only be used with bit and numerical values, respectively.

Logical operations with arrays require operands of the same length. The operation is carried out element by element, then. This
requirement does not exist for comparison operations with arrays. The arrays are |eft-aligned prior to comparison instead. Thereforeitis
recommended to adjust the length of the operands with the help of the concatenation operator.

Shift and rotation operations on arrays were introduced with the VHDL'93 standard. Rotation means that none of the element valuesislost
as the value that isrotated out of the array on one side will be used for the vacant spot on the other side. Thisis different from the shift
operations where the value is discarded. During so called arithmetic shift operations the vacant spot receives its previous value; in case of
logical shift operations the default value of the signdl, i.e. the left-most value from the type declaration, will be used.

Please note, that two operations to calculate the remainder of an integer division are defined. The sign of theresult of 'rem 'and ' mod
operationsis equal to the sign of the first and second operand, respectively.

Examples:
5rem 3=2 5mod 3=2(5=1*3+ 2)
(-5)rem 3 =-2,(-5mod 3 = 1(-5=(-1)* 3 +(-2)

=(-2* 3 + 1))
(-5) rem (-3) =-2, (-5) mod (-3) =-2 (-5= 1*(-3)+(-2))
5rem(-3)= 2, 5 mod(-3)=-1(5=(-1*-3)+ 2
=(-2*(-3) + (-1))

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_90.htm (2 of 2) [29/12/2001 12:59:15]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_91.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.5.7 Questions

10. Which operators can be used on the
std _ulogic_vector type?

O yes 10.1. ... Logic-operators

O no

O yes 10.2. ... Arithmetic-operators

O no

O yes 10.3. ... Comparison-operators
O no

11. Arrays are compared...

O yes 11.1. ... according to their position.
O no

O yes 11.2. ... from left to right.

O no

12. The array elements are assigned ...

O yes 12.1. ... automatically, according to their
o e position.
gyes 12.2. ... specifically, via the index (e.g.:

Z BUS(1) <="3%)

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_91.htm (1 of 2) [29/12/2001 12:59:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_91.htm

| submit ” resetI

Please answer the questions by clicking "Yes' or "No". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_91.htm (2 of 2) [29/12/2001 12:59:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_92.htm

‘5@© LRS- UNI Erlangen-Nuremberg

2.5.8 Questions

Oyes O

no

Ovyes O
no

Ovyes O

no

Ovyes O
no

O yes O

no

Ovyes O

13. Which instructions represent correct

VHDL?
signal BOOL : boolean;
signal A_INT, B_INT, Z_INT: integer range 0 to 15;
signal Z_BIT : bit;

signal A_VEC, B_VEC, Z VEC: bit_vector (3 downto 0);
signal A VEC2, B_VEC2, Z VEC2: bit_vector (7 downto 0);

13.1. Z BIT <=A_INT =B_INT;
13.2. BOOL <=A_INT >B_VEC,;
13.3. Z INT <=A_INT + B_INT;
13.4. Z INT <=A_INT =""0001"";

13.5.Z BIT <=A_VEC and B_INT;

13.6. Z VEC <= A_VEC2 and B_VEC2;

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit” to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_92.htm [29/12/2001 12:59:27]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_93.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6 Sequential Statements

sequential
statement 1

Y

. exectuted according to the

tial . :
Statemente order in which they appear
Y . permitted only within processes
sequential _ _
statement 3 . used to describe algorithms

'

All statements in processes or subprograms are processed sequentially, i.e. one after another. Like in ordinary programming languages
there exist avariety of constructsto control the flow of execution. Theif clause is probably the most obvious and most frequently used.

The IF condition must evaluate to a boolean value (true or false). After the first IF condition, any number of EL SIF conditions may follow.
Overlaps may occur within different conditions. An EL SE branch, which combines all cases that have not been covered before, can
optionally be inserted last. The IF statement is terminated with END |F.

Thefirst IF condition has top priority: if this condition is fulfilled, the corresponding statements will be carried out and the rest of the I F -
END IF block will be skipped.

The example code shows two different implementations of equivalent behaviour. The signal assignment to the signal Z in thefirst line of
the left process (architecture EXAMPLEL]) is caled a default assignment, asits effects will only be visibleif it is not overwritten by
another assignment to Z. Note that the two conditions of the if and elsif part overlap, because X="1111" is aso true when X>"1000". Asa
result of the priority mechanism of thisif construct, Z will receive the value of B if X="1111".

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_93.htm [29/12/2001 12:59:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_94.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.1 IF Statement

if CONDITION then
-- sequential statements
end if;

if CONDITION then

-- sequential statements
else

-- sequential statements
end if;

if CONDITION then

-- sequential statements
elsif CONDITION then

-- sequential statements
else

-- sequential statements
end if;

Condition is a boolean expression

Optional elsif sequence
1 conditions may overlap
0 priority

Optional else path

1 executed, if all conditions
evaluate to false

Attention: elsif but end If

Theif condition must evaluate to aboolean value (‘true’ or ‘false’). After the first if condition, any number of elsif conditions may follow.
Overlaps may occur within different conditions. An else branch, which combines all cases that have not been covered before, can
optionally be inserted last. The if statement is terminated with 'end if'.

Thefirst if condition has top priority: if this condition is fulfilled, the corresponding statements will be carried out and the rest of the 'if -

end if' block will be skipped.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_94.htm [29/12/2001 12:59:37]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_95.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

2.6.2 IF Statement: Example

entity IF_STATEMENT is
port (A, B, C, X :in bit_vector (3 downto 0);
Z : out bit_vector (3 downto 0);
end IF_STATEMENT;

architecture EXAMPLE2 of IF_ STATEMENT is
architecture EXAMPLEL1 of IF_STATEMENT is | begin

begin process (A, B, C, X)
process (A, B, C, X) begin
begin
Z<=A; if (X="1111") then
if (X="1111") then Z<=B;
Z <=B; elsif (X >"1000") then
elsif (X >"1000") then Z<=C;
Z<=C; else
end if; Z<=a,
end process; end if;
end EXAMPLEL; end process;

end EXAMPLEZ2;

The example code shows two different implementations of equivalent behaviour. The signal assignment to the signal Z in the first line of
the left process (architecture EXAMPLEL]) is called a default assignment, asits effects will only be visibleif it is not overwritten by
another assignment to Z. Note that the two conditions of the 'if' and 'elsif' part overlap, because X="1111" is also true when X>"1000". As
aresult of the priority mechanism of thisif construct, Z will receive the value of B if X="1111".

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_95.htm [29/12/2001 12:59:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_96.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.3 CASE Statement

CaSe ExPRESSION |S . Choice options must not

overlap
when valve 1 =>

-- sequential statements

. All choice options have to

When vVALUE_ 2| VALUE 3 =>

s be covered

when vALUE_ 4 to VALUE_N 0 single values
_>__Sequemia. statements o value range

when others => o Selection of values

- sequential statements (.. l.. means " or")
end case;

o "when others" covers all
remaining choice options

While the priority of each branch is set by means of the query's order in the IF case, al branches are equal in priority when using a CASE
statement. Therefore it is obvious that there must not be any overlaps. On the other hand, all possible values of the CASE EXPRESSION
must be covered. For covering al remaining, i.e. not yet covered, cases, the keyword ' others' may be used.

The type of the EXPRESSION in the head of the CASE statement has to match the type of the query values. Single values of
EXPRESSION can be grouped together with the ' symboal, if the consecutive action is the same. Value ranges allow to cover even more
choice options with relatively simple VHDL code.

Ranges can be defined for data types with a fixed order, only, e.g. user defined enumerated types or integer values. Thisway, it can be
decided whether one value is less than, equal to or greater than another value. For ARRAY types (e.g. aBIT_VECTOR) thereisno such
order, i.e. the range "0000" TO "0100" is undefined and therefore not admissible.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_96.htm [29/12/2001 12:59:46]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_97.htm

© LRS- UNI Erlangen-Nuremberg

2.6.4 CASE Statement: Example

entity CASE_STATEMENT is
port (A, B, C, X :in integer range 0 to 15;

Z : out integer range 0 to 15;
end CASE_STATEMENT;

architecture EXAMPLE of CASE_STATEMENT is

begin
process (A, B, C, X)
begin
case X is
when 0 =>
Z<=A;
when 7 | 9 =>
Z <=B:;
when 1to5 =>
Z<=C;
when others =>
Z<=0;
end case;

end process;
end EXAMPLE;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_97.htm [29/12/2001 12:59:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_98.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.5 Defining Ranges

entity RANGE_1 is entity RANGE_2 is
port (A, B, C, X :in integer range 0 to 15; |port (A, B, C, X:in bit_vector(3 downto 0);
Z : out integer range 0 to 15; Z : out bit_vector(3 downto 0);
end RANGE_1; end RANGE_2;
architecture EXAMPLE of RANGE_1 is architecture EXAMPLE of RANGE_2 is
begin begin
process (A, B, C, X) process (A, B, C, X)
begin begin
case X is case X is
when 0 => when "0000" =>
Z<=A; Z<=A;
when 7|9 => when "0111" | "1001" =>
Z <=B; Z <=B;
when 1to 5=> when "0001" to "0101" => -- wrong
Z<=C; Z2<=C;
when others => when others =>
Z<=0; Z<=0;
end case; end case;
end process; end process;
end EXAMPLE; end EXAMPLE;

A | |
The sequence of values is undefined for
arrays

Ranges can be defined for data types with afixed order, only, e.g. user defined enumerated types or integer values. Thisway, it can be
decided whether one value isless than, equal to or greater than another value. For array types (e.g. a'bit_vector') thereis no such order, i.e.
the 'range "0000" to "0100"" is undefined and therefore not admissible.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_98.htm [29/12/2001 12:59:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_99.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.6 FOR Loops

. Loop parameter is implicitly

enr:ic?r/t IEAO\I:?ﬁLOiStZgi]Zr range 0 to 3; d ec | ar ed
Z :out bit_vector (3 downto 0));
end FOR_LOOP; 1 can not be declared
Zl(racghi::ecture EXAMPLE of FOR_LOOP is external Iy
Poees (&) » read only access
Z <="0000";
f | in Oto3 |
aenaen . The loop parameter adopts
Z() <="1%;
end i all values from the range
end loop; . .
end process; definition

end EXAMPLE;

o Integer ranges
o enumerated types

L oops operate in the usual way, i.e. they are used to execute the same some VHDL code a couple of times. Loop labels may be used to
enhance readability, especially when loops are nested or the code block executed within the loop is rather long. The loop variableis the
only object in VHDL which isimplicitly defined. The loop variable can not be declared externally and is only visible within the loop. Its
valueisread only, i.e. the number of cyclesis fixed when the execution of the for loop begins.

If afor loop isto be synthesized, the range of the loop variable must not depend on signal or variable values (i.e., it hasto be localy
static). By means of the range assignment, both the direction and the range of the loop variable is determined. If a variable number of
cyclesis needed, the while statement will have to be used. While loops are executed as long as CONDITION evaluates to a 'true’ value.
Therefore this construct is usually not synthesizable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_99.htm [29/12/2001 13:00:00]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_100.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.6.7 Loop Syntax

Optional label

FOR loop identifier

[LOOP_LABEL 1] n» not declared
for IDENTIFIER in
DISCRETE_RANGE loop
-- sequential statements
end loop [LOOP_LABEL];

o read only
o hot visible outside the
[LOOP_LABEL]

while CONDITION loop loop
-- sequential statements
end loop [LOOP_LABEL];

Range attributes

o low
o high
0 range

Synthesis requirements:
- Loops must have a fixed range
- 'while' constructs usually cannot be synthesized

Theloop labe is optional. By defining the range the direction as well as the possible values of the loop variable are fixed. The loop variable
is only accessable within the loop.

For synthesis the loop range has to be locally static and must not depend on signal or variable values. While loops are not generally
synthesizable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_100.htm [29/12/2001 13:00:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_101.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.8 Loop Examples

entity CONV_INT is
port (VECTOR: in bit_vector(7 downto 0);
RESULT: out integer);
end CONV_INT;

architecture A of CONV_INT is | architecture B of CONV_INT is

begin begin
process(VECTOR) process(VECTOR)
variable TMP: integer; variable TMP: integer;
begin begin
TMP :=0; TMP :=0;

for I in 7 downto O loop
if VECTOR(I)="1") then
TMP := TMP + 2**[;
end if; end if;
end loop; end loop;

RESULT <= TMP; RESULT <= TMP;
end process; end process;
end A; end B;

for | in VECTOR'range loop
if VECTOR(I)="1") then
TMP = TMP + 2**[;

architecture C of CONV_INT is

begin
process(VECTOR)
variable TMP: integer;
variable | : integer;
begin
TMP :=0;

| := VECTOR'high;

while (I >= VECTOR'low) loop
if VECTOR()="1") then

TMP ;= TMP + 2**1;

end if;
l=1-1;

end loop;

RESULT <= TMP;

end process;
end C;

The three loop example architectures are functionally equivalent. The difference lies in the specification of the loop range. Architectures A
and B use the for statement. Instead of a hard coded range specification, signal attributes that are dependent on the signal type and are
therefore fixed during runtime in architecture B. Architecture C shows an equivalent implementation using a while construct. Please note,

that an additional loop variable | hasto be declared in this case.

Range attributes are used to make the same VHDL code applicable to a number of signals, independent of their width. They are especialy
usefull when dealing with integer or array types.The following lines represent equal functionality, provided that Z's range is from 0 to 3.

for I in0to 3 loop
for 1 in Z'low to Z'high loop
for I in Z'range loop

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_101.htm [29/12/2001 13:00:10]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_102.htm

;@© LRS- UNI Erlangen-Nuremberg

2.6.9 WAIT Statement

. 'walt' statements stop the process execution
1 The process is continued when the instruction

Is fulfilled

. Different types of wait statements:

5 wait for a specific time
5 wait for a signal event

o wait for a true condition
(requires an event)

o Indefinite (process is never
reactivated)

Al

wait for SPECIFIC_TIME;

wait on SIGMNAL_LIST;

waalt until CONDITION;

wait:

Walit statements must not be used In

processes
with sensitivity list

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_102.htm (1 of 2) [29/12/2001 13:00:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_102.htm

As mentioned before, processes may be coded in two flavours. If the sensitivity list is omitted, another method will be needed to to stop

process execution. Wait statements put the process execution on hold until the specified condition is fullfilled. If no condition is given, the
process will never be reactivated again.

Wait statements must not be combined with a sensitivity list, independent from the application field.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_102.htm (2 of 2) [29/12/2001 13:00:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_103.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.10 WAIT Statement. Examples

. Testbench:

. Flip Flop model stimuli generation

entgzrl;l(:E;SCLK.in i STIMULUS: process
Q : out bit); beggEL o
end FF; BUS_B <= "0000";

BUS_A <="1111"

architecture BEH_1 of FF is | architecture BEH_2 of FF is W O e

process process | N
: wait for 10 ns;
begin begin
wait on CLK; wait until CLK="1"; .
i "1 ' SEL <= 0
e wait for 10 ns;
Q <=D; Q<=D; 0
end if; wait
end process; end process;)
end BIgH_l; end BEH_2; end process STIMULUS;

Processes without sensitivity list are executed until await statement is reached. In the example architecture BEH_1 of aFlip Flop, the
execution resumes as soon as an event is detected on the CLK signal (‘wait on CLK). The following if statement checks the level of the
clock signal and a new output value is assigned in case of arising edge. In BEH_2, both checks are combined in a single 'wait until'
statement. The evaluation of the condition is triggered by signal events, i.e. the behaviour is the same. Via'wait for' constructsit is very
easy to generate simple input patterns for design verification purposes.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_103.htm [29/12/2001 13:00:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_104.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.11 WAIT Statements and Behavioural

Modeling

Specification:

CPU_DATA_VALID ————— o

min 10 N5

-

|

CPU_DATA <)
min 0 ns

—| |-

| i l

CPU_DATA_READ
dataread

. Timing behaviour from
specification

. Translation into VHDL

. Based on time

READ_CPU : process
begin

wait until CPU_DATA VALID = "17;
CPU_DATA READ <="17;

wait for 20 ns;

LOCAL_BUFFER <= CPU_DATA;
wait for 10 ns;

CPU_DATA READ <="0;

end process READ_CPU;

Wait constructs, in general, are an excellent tool for describing timing specifications. For example it is easy to implement a bus protocol
for simulation. The timing specification can directly be translated to simulatable VHDL code. But keep in mind that this behavioural

modelling can only be used for simulation purposes asit is definitely not syntheziable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_104.htm [29/12/2001 13:00:26]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_105.htm

;@© LRS- UNI Erlangen-Nuremberg

2.6.12 Variables

. Variables are available

architecture RTL of XYZ is Wlthln processes1 Only
signal A, B, C : integer range 0 to 7; . .
signal Y, Z: integer range O to 15; o nam ed Wlth N p rocess
begin .
process (A, B, C) declarations
varlable M, N : integer range 0 to 7;
P A o known only in this
D N process
M :=C;
end process, . VHDL 93: shared
end RTL; .
variables

. Immediate assignment

. keep the last value

Synthesis: two 3-bit adders . Possible assignments

C A | |
XD— v p— Z - signal to variable

B B o variable to signal

1 types have to match

Variables can only be defined in a process and they are only accessible within this process.

Variables and signals show afundamentally different behaviour. In a process, the last signal assignment to asignal is carried out when the
process execution is suspended. Va ue assignments to variables, however, are carried out immediately. To distinguish between asignal and

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_105.htm (1 of 2) [29/12/2001 13:00:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_105.htm

avariable assignment different symbols are used: ' <="indicates asigna assignment and ' := " indicates a variable assignment.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_105.htm (2 of 2) [29/12/2001 13:00:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_106.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.6.13 Variables vs. Signals

. Signal values are

signal A, B, C, Y, Z : integer; signal A, B, C, Y, Z : integer;

begin SELAN s assigned after the
IOFOCSZfi;ﬁ,leB;\AC’?)N > integer; SRSy 5 G b0, p Frocess exec Utl on
begin begin
W R . Only the last signal
Z<=M+N; Z<=M+N; 5 5
M = C; M <= C; assignment is
Y <=M+ N; Y<=M+N; .
end process; end process; carri ed (@) ut

. M<=A;
IS overwritten by

A: . ? : . M <= C,
B” ¢ y B y . The 2nd adder
B>C B:C Input is connected
to C

The two processes shown in the example implement different behaviour as both outputs X and Y will be set to the result of B+C when
signals are used instead of variables. Please note that the intermediate signals have to added to the sensitivity list, asthey are read during
process execution.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_106.htm [29/12/2001 13:00:37]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_107.htm

;@© LRS- UNI Erlangen-Nuremberg

2.6.14 Use of Variables

. Intermediate results of
algorithm implementations

o signal to variable
assignment

o execution of algorithm

o variable to signal
assignment

. NO access to variable values
outside their process

. Variables store their value
until the next process call

Variables are especialy suited for the implementation of algorithms. Usually, the signal values are copied into variables before the
algorithm is carried out. The result is assigned to asignal again afterwards. Variables keep their value from one process call to the next,
i.eif avariableisread before a value has been assigned, the variable will have to show storage behaviour. That meansit will have to be
synthesized to alatch or flip-flop respectively.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_107.htm [29/12/2001 13:00:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_108.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.15 Variables: Example

. Parity calculation

entity PARITY is
port (DATA: in bit_vector (3 downto 0);
ODD : out bit);
end PARITY;

Synthesis result:

architecture RTL of PARITY is
begin
process (DATA)
variable TMP : bit;
begin
TMP =0

AN AN - -— D .'&'.= .ﬂ'.
or1in DATA low to DATA high ioop q wor
TMP := TMP xor DATA(l); aran — |
end loop; L & |

ODD <= TMP; D ATAS
end process;
end RTL;

In the example afurther difference between signals and variables is shown. While a (scalar) signal can always be associated with aline,
thisis not valid for variables. In the example the for loop is executed four times. Each time the variable TM P describes a different line of
the resulting hardware. The different lines are the outputs of the corresponding XOR gates.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_108.htm [29/12/2001 13:00:48]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_109.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.6.16 Global Variables (VHDL'93)

architecture BEHAVE of SHARED is

_ shared variable S : integer; [ACC€SS|b|e by a” prOCESSGS Of
begmg?gciﬁss B an architecture

L (shared variables)

o (0 B) . Can introduce non-

S b determinism
end BEHAVE;

B

Not to be used in synthesizable code

In VHDL 93, global variables are allowed. These variables are not only visible within a process but within the entire architecture. The
problem may occur, that two processes assign a different value to a global variable at the sametime. It is not clear then, which of these
processes assigns the value to the variable last. This can lead to a non-deterministic behaviour!

In synthesizabel VHDL code global variables must not be used.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_109.htm [29/12/2001 13:00:53]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_110.htm

7
_@(@ LRS- UNI Erlangen-Nuremberg

2.7/ Concurrent Statements

concurrent
statement 1

. Concurrent
statements are

|
I
|
|
exectuted at the | e Signals
same time, |
independent of the |
) | concurrent
order in | statement 3
which they appear | VHDL code

All statements within architectures are executed concurrently. While it is possible to use VHDL processes as the only concurrent
statement, the necessary overhead (process, begin, end, sensitivity list) lets designer look for alternatives when the sequential behaviour of
processes is not needed.

The signal assignment statement was the first VHDL statement to be introduced. The signal on the left side of the assignment operator '<='
receives a new value whenever asignal on the right side changes. The new value stems from another signal in the most simple case (i.e.
when an intermediate signal is necessary to match different port modes) or can be calculated from a number of signals.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_110.htm [29/12/2001 13:00:58]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_111.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.7.1 Conditional Signal Assignment

. Condition I1s a boolean

expression
TARGET <= VALUE: . Mandatory else path, unless
TARGET <= VALUE_1 when . . c
CONDITION Lelse” unconditional assignment

CONDITION_2 else ..
1 conditions may overlap

VALUE_n;

o priority

. Equivalent of if ..., elsif ...,
else constructs

The signal assignment can be extended by the specification of conditions. The condition is appended after the new value and is introduced
by the keyword ' when *. The keyword ' else ' is aso strictly necessary after each condition as an unconditional signal assigment has to be
present. Consequently, it is not possible to generate storage elements with an conditional signal assignment. Otherwise the behaviour is
equivalent to theif ..., elsif ..., else ... construct that is used within processes.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_111.htm [29/12/2001 13:01:03]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_112.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.7.2 Conditional Signal Assighment: Example

entity CONDITIONAL_ASSIGNMENT is
port (A, B, C, X :in bit_vector (3 downto 0);
Z CONC : out bit_vector (3 downto 0);
Z_SEQ : out bit_vector (3 downto 0));
end CONDITIONAL_ASSIGNMENT;

architecture EXAMPLE of CONDITIONAL_ASSIGNMENT is
begin
-- Concurrent version of conditional signal assignment
Z _CONC <=Bwhen X ="1111" else
C when X > "1000" else
A;

-- Equivalent sequential statements
process (A, B, C, X)
begin
if (X="1111") then
Z SEQ<=B
elsif (X >"1000") then
Z_SEQ<=C;
else
Z SEQ <=A;
end if;
end process;
end EXAMPLE;

In the exampl e, two equivalent descriptions of a simple multiplexer are given. Please note that al signals appearing on the right side of the
signal assignment operator are entered into the process' sensitivity list. The unconditional else path could be replaced by an unconditional
signal assignment in front of the if statement. This assignments would be overwritten, if any of the conditions were true.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_112.htm [29/12/2001 13:01:07]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_113.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.7.3 Selected Signal Assignment

. Choice options must not

overlap
. All choice options have to
with EXPRESSION select
be covered
TARGET <= VALUE_1 when
CHOICEL o single values
VALUE_2 when CHOICE_2
| CHOICE 3, 1 value range
VALUE_3 when CHOICE_4 .
to CHOICE_5, 1 selection of values
(ll |II means llorll)
VALUE_n when others; . "
o "when others" covers all

remaining choice options

. Equivalent of case ..., when
... constructs

The behaviour of the so called selected signal assignment is similar to the case statement. It suffers from the same restrictions as its
sequential counterpart, namely that al possible choice options have to be covered and none of the choice options may overlap with

another.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_113.htm [29/12/2001 13:01:12]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_114.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.7.4 Selected Signal Assignment: Example

entity SELECTED_ASSIGNMENT is
port (A, B, C, X :in integerrange O to 15;
Z CONC : out integer range 0 to 15;
Z SEQ :outinteger range 0 to 15);
end SELECTED_ASSIGNMENT;

architecture EXAMPLE of SELECTED_ASSIGNMENT is
begin
-- Concurrent version of selected signal assignment
with X select
Z CONC <= Awhen 0,
B when 7 | 9,
C when 1 to 5,
0 when others;

-- Equivalent sequential statements
process (A, B, C, X)
begin
case X is
when 0 =>7Z SEQ <=A;
when7|9 =>Z SEQ <=B;
whenlto5 =>Z SEQ<=C;
when others => Z_SEQ <= 0;
end process;
end EXAMPLE;

Like with conditional signal assignments, the signal assignment operator '<=" can be seen as the core of the construct. Again, the choice
options are appended after the keyword 'when', yet the different assignment alternatives are separated by ',' symbols. The equivalent of the
‘case EXPRESSION is construct from the case statement must be placed as header linein front of the actual assignment specification. The
keywords have to be trandated, however, to 'with EXPRESSION select'.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_114.htm [29/12/2001 13:01:16]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_115.htm

;@© LRS- UNI Erlangen-Nuremberg

2.7.5 Concurrent Statements: Summary

. Modelling of multiplexers

o conditional signal assignment: decision based
upon several signals

o selected signal assignment: decision based
upon values of a single signal

. "Shortcuts" for sequential statements

o conditional signal assignment <=>if ..., elsif ...,
else ..., end if

1 selected signal assignment <=> case ..., when
..., end case

@ Unconditional else path is mandatory in
conditional signal assignments

All concurrent statements describe the functionality of multiplexer structures. It isimpossible to model storage elements, like Flip Flops
with concurrent statements, only. Conseguently, the unconditional else path is necessary in conditional signal assignments. Every
concurrent signal assignment, whether conditional or selected, can be modeled with a process construct, however. As sequentially

executed codeis easier comprehensible, the concurrent versions should be used as shortcut when simple functionality would be obfuscated
by the process overhead, only.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_115.htm [29/12/2001 13:01:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_116.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8 RTL-Style

Clocked process

Combinational process
process | i

Process |) begin

g in —_—
______________ n

and process;

end process;

—(O— ==

In RTL (Register Transfer Level) style modeling, the design is split up into storing elements, i.e. Flip Flops or often simply called
registers, and combinatorics which constitute the transfer function from one register to the succeeding register. A processis required for
each of them: a combinational process, which describes the functionality, and a clocked process, which generates all storing elements. Of
coursg, it is possible to combine these two processes into a single clocked one which models the complete functionality.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_116.htm [29/12/2001 13:01:27]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_117.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8.1 Combinational Process: Sensitivity List

. Sensitivity list is usually ignored

process (A, 8, SEL) during synthesis

i?(SEL ='1") then . . .]
QUi . Equivalent behaviour of simulation
Ut <= model and hardware:

end process;

sensitivity list has to contain all
signhals that are read by the process

What kind of hardware is modelled?

A What will be the simulation result if SEL is
missing in the sensitivity list?

The sensitivity list of acombinational process consists of all signalswhich will be read within the process. It is especially important not to
forget any signals, because synthesis tools generally ignore sensitivity listsin contrast to simulation tools. During simulation, a process
will only be executed, if there an event occurs on at least one of the signals of the sensitivity list. During synthesis, VHDL code is simply
mapped to logic elements. Consequently a forgotten signal in the sensitivity list will most probably lead to a difference in behaviour
between the simulated VHDL model and the synthesized design. Superflouos signals in the sensitivity list will only slow down simulation
speed.

The code example models a multiplexer. If the signal SEL was missing, synthesis would create exactly the same result, namely a
multiplexer, but ssmulation will show a completely different behaviour. The multiplexer would work properly aslong as an event on SEL
would coincide with events on A or B. But without an event on A or B the process would not be activated and thus an event exclusively on
SEL would be ignored in simulation. Consequently, during simulation, the output value OUT would only change, if the the input signals A
or B were modified.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_117.htm [29/12/2001 13:01:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_118.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8.2 WAIT Statement <-> Sensitivity List

process
begin
if SEL = 1" then
Z<=A;
else
Z <= B;
end if;

wait on A, B, SEL; . equivalent Processes

end process;

. mutually exclusive:

process (A, B, SEL)

begi - e .
TSEL= 1" then - either sensitivity list

Z<=A

else o Oor wait statements

Z <= B;
end if;

end process;

Instead of using a sensitivity list, it is possible to model the same behaviour by the use of aWAIT ON statement. It should be placed as last
statement in the process and should quote the same signals of course.

In case of a sensitivity list, the process is started whenever an event occurs on one of the signalsin the list. All sequential statements are
executed and after the last sequential statement the processis suspended until the next event. In case of await statement, the process runs
through the sequential statements to the wait statement and suspends until the condition of the wait statement is fulfilled. Process execution
must be interrupted via wait statements if no sensitivity list is present as the simulator would be stuck in an endless loop otherwise.

Please remember again, that it is not alowed to use a sensitivity list and await statement simultanously in the same process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_118.htm [29/12/2001 13:01:36]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_119.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8.3 Combinational Process: Incomplete
Assignments

entity MUX is
port (A, B, SEL : in std_logic;
Z :out std_logic);
end MUX;
architecture OK_2 of MUX is
architecture WRONG of MUX is architecture OK_1 of MUX is begin
begin begin process (A, B, SEL)
process (A, B, SEL) process (A, B, SEL) begin
begin begin
Z <= B: if SEL = "1 then
if SEL = "1" then if SEL = "1 then Z<=A;
Z<=A; Z<=A; else
end if; end if; Z <=B;
end process; end process; end if;
end WRONG; end OK_1; end process;
end OK_2;

What is the value of Zif SEL = 0 ?

9 P

What hardware would be generated during
synthesis ?

Special careis necessary when modeling combinational hardware in order to avoid the generation of latches. The leftmost code example
lacks an unconditional else branch. Therefore the value of Z is preserved in case of SEL='0", even if the input signals change. Synthesis
would have to generate an adequate storing element, i.e. alatch which is transparent whenever the level of SEL is'1'.

Thiskind of storing elementsis not recommended for synchronous designs. Edge triggered Flip Flops are prefered because possibly illegal
intermediate signal values are filtered out as long as the combinational logic settles to its final state before the next active clock edge.
Additionally latches cannot be tested by a scan test. In scan test mode all Flip Flops are combined to a single shift register the so called
scan path . They are all supplied with the same clock signal. This maked it possible to set al registers to specific values by shifting them
into the chip using an additional input pin (scan_in). After one system clock period the registers contain new values which are shifted out

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_119.htm (1 of 2) [29/12/2001 13:01:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_119.htm

using an additional output pin (scan_out). Thisway, scan test provides access to otherwise invisible internal states. Scan test is current
state of the art technology to improve testability for production tests.

The two coding alternatives are functionally identical and are mapped to purely combinational logic (multiplexer) by synthesistools. The

difference lies in the implementation of the default assignment. Please remember that signal values are updated at the end of the process
execution, only! Thisway the default assignment of B to Z in the architecture OK_1 will be overwritten if the if condition istrue.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_119.htm (2 of 2) [29/12/2001 13:01:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_120.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.8.4 Combinational Process: Rules

. Complete sensitivity list

o RTL behaviour identical with hardware
realization

5 Incomplete sensitivity lists can cause warnings
or errors

. No incomplete if statements
o Inference of transparent latches

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_120.htm [29/12/2001 13:01:46]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_121.htm

;@© LRS- UNI Erlangen-Nuremberg

2.8.5 Clocked Process: Clock Edge Detection

. New standard for synthesis: IEEE 1076.6

clock_signal
name='1" and

wait until

o clock_signal

1 clock_signal_ name'EVENT
name'EVENT and
and clock_signal
clock_signal name="'1'
name="1"'

o clock_signal
name='1" and
clock_signal

clock_signal name'EVENT
name'EVENT - not

not clock_signal
clock_signal name'STABLE
name'STABLE and

and clock_signal
clock_signal __ name="'1'
name="1"'

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_121.htm (1 of 2) [29/12/2001 13:01:51]

o clock_signal
name='1" and

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_121.htm

1 clock_signal not

name='1" and clock_signal
not name'STABLE

clock_signal
— _ o RISING _EDGE (
name'STABLE clock_signal_

1 RISING _EDGE (name)
clock_signal

o clock_signal
name) — —

name='1"

B

IEEE 1076.6 is not fully supported by all
tools, yet

Asthe sensitivity list is usually ignored by synthesis tools and wait statements are not synthesizable in general, a solution to the problem of
modeling storage elements has to be found. Synthesis tools solved this issue by looking for certain templates in the VHDL code, namely
the first option ('if/wait until X'event and X="1' then') of the two process styles. All aternatives show the same behaviour during
simulation, however. Please note that the event detection in the 'wait until® statement is redundant as an event isimplicitly required by the
'wait until' construct.

In the meantime, the |EEE standard 1076.6 was passed that lists that the VHDL constructs that should infer register generation. Asthis
standard is not fully supported by synthesis tools, yet, the first option is still the most common way of describing arising/falling clock
edge for synthesis. When asynchronous set or reset signals are present, only the IF variant is applicable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_121.htm (2 of 2) [29/12/2001 13:01:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_122.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8.6 Detection of a Rising Edge by Use of
Functions

. Defined in std logic_1164 package

function RISING_EDGE (signal CLK : std_ulogic)
return boolean is

process begin
begin if (CLK event and CLK = 1" and CLK’last_value = "0) then
wait until RISING_EDGE (CLK); return true;
Q <=D; else
end process; return false;
end if;

end RISING_EDGE;

The RISING_EDGE function is just mentioned for sake of completeness asit is not supported by synthesis tools. Nevertheless it may be
useful for simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_122.htm [29/12/2001 13:01:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_123.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8.7 Register Inference

library IEEE;
use IEEE.std_logic_1164.all;

. Storage elements are

entity COUNTER is

port (CLK: in std_logic; SyntheS|Zed fOr a.”
9 ouinge ANGE V0L o) signals that are driven
architecture RTL of COUNTER is Wlthln a CIOCked

Signal COUNT : integer prOCeSS

range O to 15;
begin 1 COUNT: 4 flip flops

process (CLK)

begin c i
if CLK event and CLK = "1" then O Q n Ot u Sed N
COUNT <= 0;
else
COUNT <= COUNT +1;
end if; COUNT
end if;
end process; Q Q
Q <= COUNT ;
end RTL; CLK I—} P

The example shows the VHDL model of asimple 1 digit decimal counter. Severa things are worth mentioning:

First, the design is not resetable. Thisis not a problem for simulation as initial values can be assigned to the signals. Real world hardware
does not behave this nicely, however, and the state of internal storage elements is unknown after power up. In order to avoid strange and
inexplicable behaviour it is recommended to provide areset feature that brings the design into awell defined state.

Second, the range of the integer signals has been restricted. Synthesis tools have to map all data types onto a bit pattern that can be

transported viawires. Without explicit range definition, the range for integers would be from -2,147,483,647 to +2,147,483,647, which is
equivalent of 32 bits. As the maximum counter value is 9 it would be natural to specify avalid range for signal values from 0to 9. During
synthesis, however, 4 bits will be needed to represent the number 9, i.e. the theoratical maximum value of the signal would be 15. In order
to avoid possible shortcomings of synthesis tools and to make sure that the counter restarts with 0, indeed, the range is set to match the

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_123.htm (1 of 2) [29/12/2001 13:02:01]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_123.htm

synthesized hardware.

Third, the internal signal COUNT has been declared in addition to the output port Q. Thisis due to the fact that Q is declared with port
mode ' out ', i.e. its value can not be read within the architecture. Asits next value depends on the previous one, however, it is necessary to
declare the intermediate signal COUNT which is used within the counter process. The processitself is a clocked process without any
asynchronous control signals and thus the CLK signal isthe only signal in the sensitivity list.

Flip Flops are infered by clocked processes, only. Every signal that might be updated in a clocked process receives aregister. Therefore,

four storage elements will be created for the COUNT signal. The assignment of the output value is done concurrently, i.e. the outputs of
the Flip Flops will be connected directly to the outputs of the COUNTER module.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_123.htm (2 of 2) [29/12/2001 13:02:01]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_124.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.8.8 Asynchronous Set/Reset

library IEEE;
use IEEE.std_logic_1164.all;

entity ASYNC_FF is
port (D, CLK, SET, RST : in std_logic;
Q : out std_logic);

Only possible in processes

end ASYNC_FF; C
architecture RTL of ASYNC_FF is with sensitivi ty list
begin
process (CLK, RST, SET) .
begin . If / elsif - structure
if (RST‘ =\.‘1‘) then .
R - clock edge detection as
elsif SET =1"then last condition
<=1 1
BN R i) GUR S) o no unconditional else
egd<i;; > branch
end process;
end RTL;

As noted before, it is advisable to provide each clocked design with areset capability. If a synchronous reset strategy is employed, the reset
signal istreated just like any other control signal, i.e. the clock signal will be still the only signal in the process' sensitivity list.

While purely synchronous clocked processes can also be described with the ‘wait until' construct, asynchronous control signals can be
modeled with processes with sensitivity list, only. All signals that might trigger the process execution have to be listed again, i.e. the
asynchronous signals (usually reset, only) are added. The processitself consists of an if-construct, where the asynchronous signals are
checked first, followed by the detection of the active clock edge.

The condition for synchronous actions has to be the last condition of the if structure because asynchronous control signals are usualy
treated with higher priority by the underlying hardware cells. An unconditional else path is strictly forbidden as statements that have to be
processed whenever the active clock edge is not present do not have a physical representation.

It is very important not to forget any of these asynchronous signals. Otherwise simulation will differ from synthesis results, as simulation
tools base their simulation on the sensitivity list and synthesis tools usually ignore the sensitivity list completely.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_124.htm [29/12/2001 13:02:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_125.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.8.9 Clocked Process: Rules

process
begin' . ' L i .
jmoemcuer - Wait-form:
el;-esynchronous reglster reset n O S en S I t I V I ty | ISt
-- combinatorics
end process: . Synchronous reset
. If-form:
rocess(CLK, RST)
Eegfi(n . only clock and asynchronous
if (RST ="1") then . . . e .
~ asynchronous register reset signals (reset) in sensitivity
elsif (CLK event and CLK="1") then .
en—(—j ci::mbinatorics | |St

end process;

. Synchronous and
asynchronous reset

¥ Registers for all driven signals
9

All registers should be resetable

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_125.htm [29/12/2001 13:02:11]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_126.htm

‘5@© LRS- UNI Erlangen-Nuremberg

2.8.10 Questions

14. Which signals in clocked processes are
used for deducing registers ?

O yes O 14.1. Temporary signals.
O yes O 14.2. Signals which contain an assignment.
O yes O 14.3. Signals which have been read.

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit” to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_126.htm [29/12/2001 13:02:16]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_127.htm

‘5@© LRS- UNI Erlangen-Nuremberg

2.8.11 Questions

15. Which two process types are permitted in
the RTL - style ?

8yes 15.1. Mixed and analog processes.
O yes 15.2. Combinational and sequential
o processes.

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit” to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_127.htm [29/12/2001 13:02:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_128.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.8.12 Questions

Ovyes O
no

Oyes O

no

Ovyes O
no

O vyes O
no

Ovyes O

no

Ovyes O
no

16. What causes latches to be created in the
synthesized design ?

16.1. Concurrent IF-statements.
16.2. Forgotten else-paths.

16.3. Signal assignments which are not
executed in all paths of an IF- or CASE-
statement .

16.4. Incomplete sensitivity lists.

17. How can unwanted latches be prevented
most efficiently ?

17.1. By replacing IF-statements by CASE-
statements.

17.2. By giving default assignments to all
sighals which contain an assignment in one
path, before the IF- or CASE-statement.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_128.htm (1 of 2) [29/12/2001 13:02:27]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_128.htm

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_128.htm (2 of 2) [29/12/2001 13:02:27]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_129.htm

;@© LRS- UNI Erlangen-Nuremberg

2.9 Subprograms

. Functions
o function name can be an operator
o arbitrary number of input parameters
o exactly one return value
o no WAIT statement allowed
o function call <=> VHDL expression

. Procedures

o arbitrary number of parameters of any possible
direction (input/output/inout)

- RETURN statement optional (no return value!)
o procedure call <=> VHDL statement

. Subprograms can be overloaded

. Parameters can be constants, signals, variables
or files

E 'impure' functions are allowed in VHDL'93

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_129.htm (1 of 2) [29/12/2001 13:02:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_129.htm

The term subprogram is used as collective name for functions, procedures and operators. Operator definitions are treated as a special case
of function definitions where the name is replaced by the operator symbol, enclosed by quotation marks (). Please note that it is not
permitted to declare new operators, i.e. it isjust possible to provide a function with a different set of input parameters. Thisfeatureis
called overloading (different subprograms differ by their parameters, only) and may be applied to al subprograms.

Subprogram definitions consist of the subprogram declaration, where the identifier and parameter list are defined, and the subprogram
body, defining the behaviour. The statements in the subprogram body are executed sequential ly.

A function call is an expression (like 'a + b') that can exist within a statement, only. A procedure call, on the other hand, is a statement (like
'c:=a+Db;") and therefore it can be placed inside a process where it is executed sequentially or inside an architecture where it acts like any
other concurrent statement. The return value is given after the keyword ' return ' which may be placed severa times within a subprogram
body. Please note that procedures do not have a return value!

IMPURE functions can have access to external objects outside of their scope. This allows returning different values, even when called with
the same parameters. If, for example, afunction call was used to read input values from afile, the file would have to be declared inside the
function in VHDL'87. Conseguently, the file would be opened with each function call and closed whenever at the end of the execution of
the function. Therfore, always the first character would be read! It was impossible to read character after character viaafunction call in
VHDL'87, unless the fileitself was provided with each function call.

The IMPURE mechanism and the existance of global objectsin VHDL'93 alows to open the file somewherein the VHDL code and to
read character after character by a function call. Another good example is the implementation of arandom number generator which returns
adifferent value each timeit is called. Of course, the random numbers could be read from afile, then.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_129.htm (2 of 2) [29/12/2001 13:02:32]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_130.htm

;@© LRS- UNI Erlangen-Nuremberg

2.9.1 Parameters and Modes

Function Procedure
mode: I I auUtinout
class: constant constant wariable
signal signal signal
variable
no mode| file file file

. Formal parameters (parameter declaration)

o default mode: IN

o default parameter class for mode IN: constant,
for mode OUT/INOUT: variable

o file parameters have no mode

. Actual parameters (subprogram call)
o must match classes of formal parameter

o class constant matches actual constants,
signals or variables

Function parameters are always of mode IN
and can not be declared as variables

Analogous to entity ports, subprogram parameters have a certain mode associated with them. The default modeis|IN, i.e. these objects can
beread only. Sgnal attributes (" event ', ' last_value', etc.) are only available if the formal parameter (i.e. in the declaration part of the
subprogram) has been declared as signal. Please note that the use of the signal attributes' stable', ' quiet ', ' transaction ' and ' delayed '

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_130.htm (1 of 2) [29/12/2001 13:02:38]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_130.htm
is forbidden.

Actual parameters are the ones used in the subprogram call and are treated as constants by default. The classes of the formal and actual
parameters must match. So it isan error if a parameter is declared as signal and avariable is used as actual parameter in the call.
Parameters of type ' constant ' are an exception as they match all possible types.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_130.htm (2 of 2) [29/12/2001 13:02:38]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_131.htm

;@© LRS- UNI Erlangen-Nuremberg

2.9.2 Functions

. (Im)pure declaration

architecture EXAMPLE of FUNCTIONS is O ptl on al

[(im)pure] function COUNT_ZEROS (A : bit_vector) (d efau It - ! p u re' —

return integer is

variable ZEROS : integer; VH D L ' 87)

beZinET?_OS =0;
RS A . Body splitinto
ZEROS := ZEROS +1; .
end if declarative and
end loop; 5 onc
return ZEROS; definition part (cf.
end COUNT_ZEROS;
signal WORD: bit_vector(15 downto 0); p roces S)
s!gnal WORD_0: integer; .
b 19-0: - boolean: . Unconstrained
EYS;E;O R parameters possible
8.0 <= true; (array size remains
if COUNT_ZEROS("01101001") > 0 then .-
S0 <=iale unspecified)
wait; ’

end process;
end EXAMPLE;

. Are used as expression
In other VHDL
statements (concurrent
or sequential)

The keyword ' pure' can be used for "oldstyled" functions, the keyword ' impure ' declares the new VHDL'93 function type. By default,
i.e. if no keyword is given, functions are declared as PURE. A PURE function does not have access to a shared variable , because shared

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_131.htm (1 of 2) [29/12/2001 13:02:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_131.htm
variables are declared in the declarative part of an architecture and PURE functions do not have access to objects outside of their scope.

The code example shows a function that counts the number of '0'sin a bit vector. Only parameters of mode ' in ' are allowed in function
callsand are treated as ' constant ' by default. The size of the bit vector is not declared, i.e. a so called unconstrained formal parameter is
used. Consequently, the subprogram code has to be written independently of the actual vector width. This can be done with the help of
predefined attributes, like the attribute ' range ' in the example. Thisway, the for loop works for any vector size passed to the function. If a
constrained array is used instead (e.g. bit_vector(15 downto 0)), the actual parameter will have to be of the same type, i.e. the type of the
array elements and the size of the array must match. The directions of the array ranges may differ.

Functions may be used wherever an expression is necessary within a VHDL statement. Subprograms themselves, however, are executed
sequentially like processes. Smilar to a process, it is also possible to declare local variables. These variables areinitialised with every
function call with the leftmost element of the type declaration (boolean: false, bit: '0"). The leftmost value of integersis guaranteed to be at
least -(2/31)-1, i.e. ZEROS must be initialised to O at the beginning of the function body. It is recommended to initialise al variablesin
order to enhance the clarity of the code.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_131.htm (2 of 2) [29/12/2001 13:02:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_132.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.9.3 Procedures

architecture EXAMPLE of PROCEDURES is e NO retu ' Val u e

procedure COUNT_ZER_OS.
GG onmesens o Parameter values may be

variable ZEROS : integer;

begin U pdatEd

ZEROQOS :=0; -
for I in Aange loop (mode out/inout)
if A(I) ='0" then
ZEROS .= ZEROS +1; . . -
el . Body splitinto declarative
Q <= ZEROS! and definition part (cf.
end COUNT_ZEROS; proces S)
s@gnal COUNT: integer;
vogn- e . Unconstrained parameters
Eelgmo o possible
C6UN}_ZEI’?OS("OMOIOOI", COUNT); (ar ray S | Zerem ai ns
wait for O ns; o ac
.fi:sciggiagg;en unspeC|f|ed)
end if;

wait; . Are used as VHDL

end process;

end EXAMPLE; statements (concurrent or
sequential)

Procedures, in contrast to functions, are used like any other statement in VHDL. Consequently, they do not have areturn value, although
the keyword ' return ' may be used to indicate the termination of the subprogram. Depending on their position within the VHDL code,
either in an architecture or in a process, the procedure as awhole is executed concurrently or sequentially, respectively. The code within all
subprograms is always executed sequentially.

Procedures can feed back results to their environment via an arbitrary number of output parameters. As the default mode of a parameter is'
in’', the keyword ' out ' or ' inout ' is necessary to declare output signals/variables. Per default, output parameters are of the class variable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_132.htm (1 of 2) [29/12/2001 13:02:48]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_132.htm
The VHDL compiler will report an error message if a function declared with a signal as parameter is called with avariable and vice versa.

Since the class of the parameters have to match, one might think of overloading a procedure, i.e. by writing procedures that differ in the
class declaration of the parameters and the corresponding assignment operators, only. Y et thisis not possible because the parameter class
isignored when the appropriate subprogram is selected!

The example procedure is the equivalent of the previously presented function for counting the ‘0" elements within a bit_vector. Again, all

internal variables should be initialized because subprograms do not store variable values and initialize them with type'left at each call
instead.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_132.htm (2 of 2) [29/12/2001 13:02:48]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_133.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

2.10 Subprogram Declaration and
Overloading

. Subprograms may be declared/defined in any
declaration part

o package

o entity

o architecture
o process

o Subprogram

. Overloading of subprograms possible
o Identical name
o different parameters
o works with any kind of subprogram
. During compilation/runtime that subprogram is

called whose formal parameter match the
provided actuals

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_133.htm (1 of 2) [29/12/2001 13:02:52]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_133.htm

Subprograms may be declared/defined in any declarative part of aVVHDL object. The actual definition of the behaviour may also be
separated from the declaration, which is often the case when packages are split into package and package body. The usual object visibility
rules apply, e.g. asubprogram which is declared in a package may be used in all units that reference this package. Subprograms that are
declared within another subprogram are available within this "parent" subprogram, only.

It islegal to declare subprograms with identical names, as long as they are distinguishable by the compiler. Thus, if the two subprogram
names match, the parameter set/return values have to differ. Thisis called overloading and is allowed for al subprograms. It is especialy
useful when applied to operators, which can be seen as functions with a special name. This allows, for example, to use the conventional '+
symbol for the addition of integer values and, likewise, with bit vectors that should be interpreted as numbers.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_133.htm (2 of 2) [29/12/2001 13:02:52]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_134.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.10.1 Overloading Example

Input routines from TEXTIO

procedure READ (L :inout line; °
VALUE : out character; p acC kag e
GOOD : out boolean);
procedure READ (L :inout line; O eXtraCt d |fferent
VALUE : out character); datat es from 3 Iine
procedure READ (L : inout I_ine; yp
T » identical names
procedure READ (L : inout line; 5 different number of

VALUE : out integer);

parameters

o different parameter
types

Thefile I/O procedures read, write, readline, writeline and the line types are predefined in the standard TEXTIO package. Several
overloaded read/write procedures for the standard data types are declared. They extract avalue of the desired type from afileline. Theline
itself is modified, asindicated by the mode declaration * inout ', i.e. several values may be read from a single line. During compilation that
procedure is chosen whose formal parameters match the actual parametersin the procedure call.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_134.htm [29/12/2001 13:02:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_135.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.10.2 Overloading - lllegal Redeclarations

package P_EXAMPLE is

orocedure TEST (A: i . VHDL compiler ignore the
variable X_VAR: out . 0 .
meger)) following differences in
procedure TEST (8: bi; parameter declarations:
_ _ variable X_VAR: out
. 5 names of formal
intper;])((a:re;dure TEST (variable X_VAR: out p aram eterS (2)
A: bit);
4 -, o order of parameter
procedure TEST (A: b!t, . .
variable X_VAR: in d eCc I aration (3)
integer);

A (it 1 mode/class of formal
inte%er); signal X_SIG: out p aram eter (4/5)
PromeIE TR el X_S16: o . Default values may be
nieaer FOO: boolean := false); aS S | g N ed tO | N p Ut

end P_EXAMPLE;

parameters

@ Default parameters should not be used in
synthesizable code

It is not possible to declare two subprograms which have the same number of parameters and the same types but different names, modes or
classes. The compiler will report an error message similar to "illegal redeclaration”. The example package P_EXAMPLE will not compile
successfully unless the declarations 2-5 are removed, e.g. by marking them as comments. These four procedures have the same name as

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_135.htm (1 of 2) [29/12/2001 13:03:02]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_135.htm
the first one and all of them need a bit and an integer parameter.

If asubprogram is necessary to deal with signal and variable parameters, it is possible to declare an additional dummy input parameter and
assign it adefault value. This way, the declared subprograms differ in the number of parameter and aredeclaration error is avoided.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_135.htm (2 of 2) [29/12/2001 13:03:02]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_136.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.10.3 Overloading - Ambiguity

-- Declarations 2-4 need to be
removed from the

-- package P_EXAMPLE in order to
compile!

use work.P_EXAMPLE.all;

. Ambiguous calls occur, if itis

entity AMBIGUITY is

end AMBIGOITY, not posible to find a unique
gl s subprogram by
s?gnal A: .bit;
b;lgnal X_SIG: integer; o hame
gin
" ariable X_VAR: integer o number of formal
L
i parameters
TEST(A, X_VAR);
T o types and order of actual
. -
TEST(A => A, X_SIG => X_SIG); parameters (1/2)
-4 -
TEST(A=> A, X_VAR => o names of formal parameters
X_VAR); 0 .
~wat (named association, only)

end process;
end EXAMPLE;

For ambigues overloading it is necessary to use the named association mechanism to map the actual parameters to the formal ones that
were declared. Otherwise, the compiler will try to find a unique subprogram of the given name which has the same number and type of
parameters asin the call. If thisfails, an error message about an ambiguous expression will be generated (TEST statements 1, 2).

Input parameters with a default value assigned to them need not be present in the subprogram call. Their use is not recommended,
however, as some synthesis tools map absent parameters to the default value of the data type (type'left) which may lead to a different
behaviour, if the parameter is actually used in the body.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_136.htm [29/12/2001 13:03:07]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_137.htm

;@© LRS- UNI Erlangen-Nuremberg

2.10.4 Operator Overloading

. Similar to function

bit wector
bit wector

integer
bit_wector

bit wector

bit wector

} bit_vector

integer

declarations

1 name = existing
operator symbol,
enclosed in
guotation marks

1 operand left/right of
operator are
mapped to
first/second
parameter

Extends operator
functionality to new
data types

Operator call
according to the
individual context

Definition of new
operators is not
allowed

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_137.htm (1 of 2) [29/12/2001 13:03:13]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_137.htm

bit wector

integer

bit_wector

@ Arithmetic operations with 'bit_vector' are
not defined

All standard VHDL operators can be overloaded but is not allowed to define new operators. Operator declarations are equivalent to
function declarations apart from the name which must be placed in quotation marks (). The number of parametersis also fixed and can

not be modified. In case of binary operators, i.e. operators with two operands, the |eft/right operand are mapped to the left/rightmost
parameter, respectively.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_137.htm (2 of 2) [29/12/2001 13:03:13]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_138.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

2.10.5 Operator Overloading - Example

package P_BIT_ARITH is
function "+" (L: bit_vector; R: bit_vector) return bit_vector; -- 1

function "+" (L: integer; R: bit_vector) return bit_vector; --2
function "+" (L: bit_vector; R: integer) return bit_vector; --3
function "+" (L: bit_vector; R: bit_vector) return integer; --4

end P_BIT_ARITH;

use work.P_BIT_ARITH.all;
entity OVERLOADED is
port(A_VEC, B_VEC: in bit_vector(3 downto 0);
A_INT, B_INT: in integer range 0 to 15;
Q_VEC: out bit_vector(3 downto 0);
Q_INT: out integer range 0 to 15);
end OVERLOADED;

architecture EXAMPLE of OVERLOADED is
begin

Q VEC<=A VEC+B VEC; --a

Q VEC<=A INT+B VEC;--b

Q VEC<=A VEC+B_INT; --c

Q VEC<=A INT+B_INT;--d

Q INT<=A VEC +B_VEC; --e

Q INT <= A INT + B_INT; -- f
end EXAMPLE;

The code example shows just the operator declarations and their use. The behaviour has to be defined in a package body, if the designisto
be simulated. During compilation, the VHDL compiler searchesitslist of operator declarations for a parameter list with matching data
types. Thisway, the function bodies of the operator declarations (1)-(3) will be used in the signal assignments (a)-(c). Signal assignment
(d) will result in an error message as the addition of two integer values to obtain a bit_vector has not been defined, yet. Assignment (€)
matches the parameter list of declaration (4) and the last assignment will use the standard VHDL operator.

Arithmetic operations based on the data type 'bit" are defined in the standard package ‘'numeric_bit' (library IEEE). In practice, this data

type should be avoided, however, as standard packages are available that define more powerful bit vector types and the corresponding
operations.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_138.htm [29/12/2001 13:03:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_139.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

2.10.6 Questions

18. What is subprogram overloading ?

O yes 18.1. Same parameters but different function
ore name.

O yes 18.2. The right function is chosen from the
oo context.

O yes 18.3. Same names but different parameters.
O no

19. What is important for the use of
overloading?

O yes 19.1. Subprograms with the same name
o should do the same.

O yes 19.2. A good subprogram documentation in
the package header.

O no

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit” to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_139.htm [29/12/2001 13:03:23]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_140.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

3. Simulation

. Sequence of Compilation
. Simulation Flow

. Process Execution

. Delay models

. Testbenches

. File 1O

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_140.htm [29/12/2001 13:03:27]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_141.htm

;@© LRS- UNI Erlangen-Nuremberg

3.1 Sequence of Compilation

. Main components are analysed before side- or
sub-components

o entity before architecture
o package before package body
. The component which is referred to another one
has to be analysed first
o package before entity/architecture
o configuration after entity/architecture

N BN BN BN BN BN BN BN BN BN BN e

“
jommmmmmmmm—aaa- ety TOP_ o,

: package P architecture T of

i gz B oong OFG_TOR
: package body P ! ' entity X 1
Nemmmmmmmmeoees ’ E architecture Aof X" |

‘SN BN BN EN BN BN BN BN BN BN BN BN Em Em W

The sequence of compilation is determined by the interdependence of the single parts. Primary units have to be compiled before secondary
ones, because secondary units need some information from their corresponding primary unit for the compliation process (e.g. entity ports
are available as architecture signals). Thus, the entity is compiled before its architecture(s), a package header before the package body and
the configuration at the end.

General rule: When amodule is referenced, it must be compiled before.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_141.htm [29/12/2001 13:03:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_142.htm

;@© LRS- UNI Erlangen-Nuremberg

Example

. Which files will have
to be recompiled if
Structure of a design there is a change in
the following files?

Fackage PKG1 Fackage PKG2)
(only minor changes,
Fackage body PK.G2 .
l.e. comments)
use PKG 0 Entlty of module C
uze PkG2 Module C

o Architecture of
Module B module D

Module A Module D
s Package PKG1
e » Package PKG2

s Package body
PKG2

o Architecture of TB

o Configuration of
B

configuration . of TE

The design DUT which isto be simulated consists of several modules (A,B,C,D). The packages PKG1 and PK G2 are referenced in module
A and B, respectively. The package PKG 1 is split into the package header containing declarations of subprograms, data types and

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_142.htm (1 of 2) [29/12/2001 13:03:40]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_142.htm
constants and a package body with the corresponding definitions.

The following order is suitable for the initial compilation: PKG1, PKG2, body of PKG2, module D, C, B, A, DUT, TB (entity first) and
finially the testbench configuration. Asthe configuration creates the simulatable object, is has to recompiled whenever something is
changed.

If entity C is changed, the corresponding architecture and the configuation have to be recompiled. A modification of D's architecture does
not require any additional recompilations apart from the configuration. A recompilation of PKGL1 leads to recompilations of the complete
module A and the configuration.

Changesin PKG2 imply that the package body and module B have to be recompiled. If the changes are restricted to the package body,
only the configuration, as always, remains to be updated. The same applies to modified testbench (TB) architectures and changes to the
configuration itself.

Please note, that only minor modifications, e.g. in the VHDL comments where considered here. If entity ports are changed, for example, a

simple recompilation is not enough and the VHDL code of the modules on al hierarchy levels might have to be adjusted accordingly. The
interface mismatch is detected when compiling the configuration.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_142.htm (2 of 2) [29/12/2001 13:03:40]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_143.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

Changes in ... recompile files ...

. Entity of module C . Package PKG2
. Architecture of . Package body
module D PKG2

. Package PKG1

O

. Architecture of TB

O

. Configuration of TB

O

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_143.htm [29/12/2001 13:03:45]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_144.htm

;@© LRS- UNI Erlangen-Nuremberg

3.2 Simulation Flow

. Design
elaboration
o Specified
elements
are created

. Signal

Initialisation
7 Starting
values are
assigned

. Simulation iIs
executed on
command

The simulation of aVHDL model operatesin three phases. First, the simulation model is created in the elaboration phase. In the
initialisation phase a starting value is assigned to al signal. The model itself is executed in the execution phase.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_144.htm [29/12/2001 13:03:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_145.htm

;@© LRS- UNI Erlangen-Nuremberg

3.2.1 Elaboration

. During
elaboration
design elements
are created

. All design

objects are
elaborated
before the
simulation

Elaboration

~ =

. Except "for
loop"- variables
and objects
which are
defined in
subprograms

The simulation of aVHDL model operatesin three phases. First, the simulation model is created in the elaboration phase. The processes
and concurrent statements of the whole design are combined in a communication model. This model lists, which process can be activated
by which one, i.e. some sort of netlist is created. All objects are converted to an executable form residing in the simulator memory. Loop

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_145.htm (1 of 2) [29/12/2001 13:03:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_145.htm

variables and subprograms are the only exception as they are elaborated dynamically during the execution of the simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_145.htm (2 of 2) [29/12/2001 13:03:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_146.htm

§@© LRS- UNI Erlangen-Nuremberg

3.2.2 Initialization

. Initial values:

o Start
values
from
declaration

e @ o
= Initialization i o First value
e l @ from type

definition
(type left)

. Every process
IS executed
signal clock: std_ulogic := "0’; ey e, w
signal reset: std_ulogic; u ntl | |t |S
suspended

o ...without
signal
values
being
updated

\\\\\

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_146.htm (1 of 2) [29/12/2001 13:04:02]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_146.htm

Theinitial values of all signals are assigned in the initialization phase. Either the initial value specified in the signal declaration or the first
valuein the type definition (="data typeleft") is used. In the case of the type STD_ULOGIC based types thisisan 'u' for uninitialized.
Hence the designer can deduce from an 'u’ in the simulation waveform, that there has never been assigned a value to the corresponding
signal. Signal values do not return to 'u’ except an 'u’ is directly assigned. At the end of the initialization phase every process is executed
once until it is suspended. The signal values, however, are not updated.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_146.htm (2 of 2) [29/12/2001 13:04:02]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_147.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.2.3 Execution

@ e . Simulation is
(=)

: actually
Execution
TSN Ly executed
T . Signal values

are evaluated

The actual simulation of the design behaviour takes place in the execution phase. By means of testbench processes, the VHDL model is
provided with stimuli. The individual signals of the model can then be viewed and checked in the waveform window (stimuli and
responses of the model). The actual responses can be compared automatically with the expected values by adequate VHDL statements, as
well.
For instance you can compare actual and expected responses at time OCCURRING_TIME by an assertion in an 'if' statement:
if now=OCCURRING_TIME then

assert EXPECTED_RESPONSE=RECEIVED_RESPONSE

report ""unexpected behaviour"

severity error;
end if;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_147.htm [29/12/2001 13:04:08]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_148.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.3 Process Execution

architecture A of E is P2
o= ‘.\
P1 : process Process
begin
-- sequential statements

end process P1;
-- C2: concurrent statements
P2 : process

begin
-- sequential statements

v
end process P2; P1
-- C1: concurrent statements /___.-' Process
end A;

An architecture can contain processes and concurrent statements which are all active in parallel. Statements within processes are sequential
ones and are executed one after another.

The connection of the parallel partsis established via signals and sensitivity lists. Concurrent statements can be interpreted as functionally
equivalent processes with a sensitivity list including all those values that are going to be read in this process. Concurrent statements have
to be transferred to sequential ones of course (conditional signal assignment -> if statement, selected signal assignment -> case statement).

If, for example, the process P1 was triggered, e.g. by a clock edge, its statements are executed one after another. Thisway it is possible to
execute parts of the code after an active edge has occured. Let us assume that a couple of signals were modified. Their value is modified
after the process execution has finished. According to the schematic, these updated values will trigger C1 and P1 which will trigger P1 and
C2inturn, and so on. The execution of the statements continues until a stable state is reached, i.e. no events are generated anymore.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_148.htm [29/12/2001 13:04:14]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_149.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.3.1 Concurrent versus Sequential Execution

architecture CONCURRENT of MULTIPLE is | A

signal A, B, C, D : std_ulogic;
signal Z : std_logic @
begin
Z <= A and B; B
Z <=C and D;
end CONCURENT;

O
?
(N

architecture SEQUENTIAL of MULTIPLE is D
signal Z, A, B, C, D : std_ulogic;
begin
process (A, B, C, D)
begin
Z <= A and B;
Z <=Cand D; Z
end process;
end SEQUENTIAL: D

If the same two signal assignments appear in the VHDL code, once as concurrent statement in the architecture and once in a process, the
result will differ substantially: In the first case, two parallel signal assignments are actually made to the signal. Thisis only allowed for
resolved types, for which aresolution functions is present to decide which value is actually driven. In the second case, the first assignment
is executed and its result is stored. Afterwards, thisresult is overwritten by another assignment, so that only the last signal assignment is
carried out when updating the signal.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_149.htm [29/12/2001 13:04:19]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_150.htm

;@© LRS- UNI Erlangen-Nuremberg

3.3.2 Signhal Update

. Signals have a past value, a current value and a
future value

o future value used within the simulator core, only

o past value ! current value: event

. Signal values are updated at the end of a
process execution:
the old current value of a signal is overwritten
by the future value

. Several process calls at one single moment of
the simulation are possible

The signal update mechanism is essential for aVHDL simulator. Signals possess a past, a current and a future value within the simulators
signal management functions. Signal assignments in a process always assign the value to the future value of the signal. The future valueis
copied to the current value in the signal update phase after the process execution is finished i.e. the process is suspended.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_150.htm [29/12/2001 13:04:24]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_151.htm

%
_@(@ LRS- UNI Erlangen-Nuremberg

3.3.3 Delta Cycles (1)

. One moment of
simulation

. One loop cycle =
“delta cycle”

0 . Deltatimeis
1 i orthogonal to
% 3 simulation time
: E . Signals are
T \T/ T T " ns updated
10 20 30 40 50 60 70 80 90 100 . All processes are

/\

5 initiated
— - signal

Signal Process aSSignmentS
Update Execution are StOred

—i

. New signal
assignments

o 1o execute

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_151.htm (1 of 2) [29/12/2001 13:04:30]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_151.htm

further
processes

A simulation cycle always consists of asignal update and a phase process execution. Several of these so called delta cycles might have to
be carried out at one point simulation time in order to achieve a stable state of the system. The number of delta cycles does not affect the
time used in the simulation! It just affects the time that is necessary to carry out the simulation.

At the beginning, all signals are updated and alist of al processesthat are triggered by the signal changesis created. All the processes of
thislist are executed one after another in delta cycle 1. When the execution is finished, a signal update will be carried out. Again, anew
process list is created containing those processes whose sensitivity list signal values have changed.

This continues until the process list remains empty, that means no further processes are triggered by the signal events. Now, statements
which induce areal time step (‘wait for ...", "... after ...") are carried out and the simulation time advances for the specified amount of time.
Afterwards the delta cycles for the new simulation time are started. The delta cycles are lined up orthogonally to the simulation time, i.e.
several delta cycles can be carried out at one simulation time.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_151.htm (2 of 2) [29/12/2001 13:04:30]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_152.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

3.3.4 Delta Cycles (2)

. Several delta cycles at any moment of the
simulation

i

Process
Execution

i

£y
s
2w
= 2

a=-
simulation time

—{Detta 1 —(Delta2 }—
—-{ Detta 1 }—{Delta2 j—
—{Delta 1 }—Delta2 —{Delta3)—

——-(:DEIta 1HDEI1‘& 2}—
—{Delta 1 }—{Delta2 j—
—{Delta1 = Delta2 j—

The delta cycles are orthogonal to the simulation time. So at afixed simulation time several delta cycles can be executed.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_152.htm [29/12/2001 13:04:36]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_153.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

3.3.5 Delta Cycles - Example

Event on B (first delta cycle)

future value of
Y receives the current value of A (no
change)
X receives the current value of B (new

library IEEE; valu e)
use [EEE.Std_Logic_1164.all Z receives the current value of X (no
entity DELTA is change)

port (A, B : in std_ulogic;
Y, Z: out std_ulogic); .
end DELTA; signal update

architecture EXAMPLE of DELTA is
signal X : std_ulogic;

e Event on X (second delta cycle)
begin
Y <=A . future value of
X <= B; Y receives the current value of A (no
Z <=X; change)
end process: X receives the current value of B (no

end EXAMPLE;
change)

Z receives the current value of X (new
value)

signal update

No further events on A, B, X

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_153.htm (1 of 2) [29/12/2001 13:04:41]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_153.htm

L et us assume that the value of signal B changes. The process of architecture A istriggered by this event on B and is activated for the first
time. The future value of X is given the current value of B. At the end of the process, the future value of X istransferred to the current
value. This change of value on X resultsin an event that calls the process for the second time. Now, the current value of X iswritten to the
future value of Z (B and consequently X remain the same). At the end of the process the signal update is carried out once again, so the
future value of Z istransferred to the current value of Z. As no change has appeared in the current values of the signals A, B, or X that are
listed in the sensitivity list, the process will not be called again. Both signals X and Z have obtained the value from B this way.

This example is for demonstrative purposes, only. The intermediate signal X conceals the functionality of the process and would not be
used in practice. Generally, variables, which are not subject to the update mechanism, should be used instead.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_153.htm (2 of 2) [29/12/2001 13:04:41]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_154.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

3.3.6 Process Behaviour

. The processis an
endless loop

. Itis stopped by a wait-

process (A, B) Ereogcl:ﬁss Statement
begir!) if (A;E)—thf‘r-]
N | e . The sensitivity list is
else Z2<="0; . c
z<=05 | endft equivalent to a wait-
end if; i .
S [PIEeess: end pr\cln\(/:easlsf on A, B’ Statem ent

. A process with a
sensitivity list must not
contain any wait
statements

Basically, a process has to be considered as an endless |oop. The continuous process execution can be interrupted viawait statements. The
use of asengitivity list is equivalent to a WAIT ON-statement. If asensitivity list is present, WAIT statements must not appear in the
Process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_154.htm [29/12/2001 13:04:45]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_155.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

3.3.7 Postponed Processes

postponed process . Processes which are executed
begin .
In the last delta cycle of a

Z<="0;

wrong certain moment

wait for O ns;
Z<="1;

eI . The following is not permitted:

waiton A, B; - o Wait-statements of the time O
wrong _ : :
end process; » Signal assignments without

delay (for O ns)
Z <= "0 after4ns;

[
end if; ; |. -

end process; simulation time

postponed
process (A, B)
begin
if (A=B) then
Z<= "1 after5ns;
else

N

S CERICED
+@1){p2;
g L. CEY.CHY;

2 ROERCED,

@ Postponed processes are a new feature of
VHDL'93

Postponed processes are always carried out in the last delta cycle. This means that this process can access already stable signals at this
point of simulation time. In postponed processes, WAIT statements with 0 ns and signal assignments without delay are not permitted.

Please note that postponed processes can only be used in simulation, not in synthesis.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_155.htm [29/12/2001 13:04:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_156.htm

;@© LRS- UNI Erlangen-Nuremberg

3.4 Delay Models

2l S «= transport A after 2 ns;
I s) A
[1 [1 1 s
- t

2l < 2 S «= A after 2 ns;
—1 o= —— A
-

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_156.htm (1 of 2) [29/12/2001 13:04:58]

Transport delay:

models the current
flow through a wire
(everything is
transferred)

Inertial delay:
(default delay
mechanism)

models spike-
proof behaviour =>
avalueis
transferred only if
it is active for at

least 2 ns

Inertial delay
with pulse
rejection limit

models spike-

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_156.htm

<5ns S <= reject 5 ns inertial A after 10 ns; proof behaviour =>
:’J [[| A | avalueis
— 2, g | transferred only if
=t ItLis active for at
least 5 ns

There are two different delay modelsin VHDL: transport and inertial, which is used per default.

In the transport delay model, everything istransferred via the signal, as can be seen in the upper example where signal A is an exact copy
of signal S, delayed by 2 ns. Transport delay models signal transfers by wire with pure propagation delay, thus spikes are not filtered out.

When using inertial delay, signal transitions are only transferred when the new value remains constant for a minimum amount of time, thus
spikes are suppressed.

"S<= A after 2 ns' filtersout all spikes of less than 2 ns and delays signa values which remain constant for alonger period of time for 2
ns.

"S<=rgject 5 nsinertial A after 10 ns' requires a minimum pulse width of 5 ns and copies all other signal values from A to Swith 10 ns
delay.

Inertial delay is characteristic of switching circuits. Spikes which are shorter than the necessary specific switching time of the circuit have
no effect on the succeeding switch and will not be transmitted.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_156.htm (2 of 2) [29/12/2001 13:04:58]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_157.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

3.4.1 Projected Output Waveforms (LRM)

. Transport and inertial delay:

o (1) All old transactions that are projected to
occur at or after the time at which the earliest
new transaction is projected to occur are
deleted from the projected output waveform.

o (2) The new transactions are then appended to
the projected output waveform in the order of
their projected occurrence.

. For inertial delay projected output waveform is
further modified:

5 (3) All of the new transactions are marked.

o (4) An old transaction is marked if the time at
which it is projected to occur is less than the
time at which the first new transaction is
projected to occur minus the pulse rejection
limit.

o (5) For each remaining unmarked, old
transaction, the old transaction is marked if it
Immediately precedes a marked transaction and
Its value component is the same as that of the
marked transaction

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_157.htm (1 of 2) [29/12/2001 13:05:03]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_157.htm

o (6) The transaction that determines the current
value of the driver is marked.

o (7) Al unmarked transactions (all of which are
old transactions) are deleted from the projected
output waveform.

The definition of the delay mechanism is quoted from the VHDL language reference manual. As conclusion, all signal assignments can be
brought into the following format:
T <=rgject TIME_1linertial VALUE after TIME_2;

The following assignments are equival ent:

T<= VALUE after TIME_1; -- (default inertial delay)
T<= inertial VALUE after TIME_1,

T <=rgject TIME_1 inertial VALUE &fter TIME_1;

Also equivalent are:

T <=transport VALUE &fter TIME _1;

T <=rgject O nsinertial VALUE after TIME_1,

Thisis because a pulse rejection limit of 0 ns makes all transaction being marked (step 3) and thus none of the transactions will be deleted
in step 7. Consequently steps 3 to 7 have no effect and the delay model is actually equivalent to transport delay.

Furthermore"T <= VALUE" isjust a shortcut for "T <= VALUE after O ns".

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_157.htm (2 of 2) [29/12/2001 13:05:03]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_158.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.4.2 Transport Delay (1)

signal S : integer := 0; signal S : integer := 0;

process process

begin begin
S <= transport 1 after 1 ns; S <= transport 2 after 2 ns;
S <= transport 2 after 2 ns; S <= transport 1 after 1 ns;
wait; wait;

end process; end process;

S _1{1,1ns) & _|(2 2ns) Timeg 4
S <= transport 1 after 1 ng; S <= transport 2 after 2 ns;

S (1.1 nsy| (2 2ns) (ef 2) S _1(1,1ns) Timg (cf. 1)
S <=transpaort 2 after 2 ns; S <=transport 1 after 1 ns;

A signal driver manages value/time pairs
It Is not possible to assign a new value for
Timel < Timei-1

Within asignal driver, the actual values are always associated with an activation time. The initial vaue/time (0, O ns) pair for the integer
signal of the exampleis|left out in the figures as this pair remains unaffected at any time.

Whenever asignal assignments leads to anew pair, it must be decided, whether the time in the value/time pair is chronologically after the
time of the last list entry or not. Thefirst signal assignment is the most simple one asit isjust appended to the list. The same appliesto
pairs that occur later on in time (Ieft example; step 2). Otherwise the new value/time pair will be inserted chronologically after the pair
with the next previous time specification and all succeeding pairs will be deleted (right example; step 1).

It is not possible to insert a new value/time pair before an already existing one without deleting all succeeding pairs!

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_158.htm [29/12/2001 13:05:09]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_159.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.4.3 Transport Delay (2)

signal S : integer := 0; signal S : integer := 0;

process process

begin begin
S <=transport 1 after 1 ns, 3 after 3 ns, 5 after 5 ns; S <=transport 1 after 1 ns, 3 after 3 ns, 5 after 5 ns;
S <=transport 4 after 4 ns; S <=transport 4 after 6 ns;

wait; wait;

end process; end process;

S —i1,1ng) | (2 3ns) | (5 &5ns)

S «= fransport 1 after 1 ns, 3 after 3 ns, 5 after 3 ns;

s —(1,1ns) | (3, 3ns)| (4 4ns) S —(1,1ns) | (3, 3ns)| (5 5ns)| (4 6ns)

o == transport 4 after dns; = == transport 4 after 6 ns;

A . . .
New pairs are either appended to the list or
overwrite the remaining elements

After thefirst signal assignment the driver of S contains three value/time pairs.

The signal assignment occuring after 4 ns (left example: "'S <= transport 4 after 4 ns") is prior to the last assignment that was specified
before. Thus, the last entry is overwritten: In step 1, the last list element is deleted; in step 2, the new pair is added. If the list had been
longer, then the following list entries would have been deleted too.

In the second example (S <= transport 4 after 6 ns"), the pair is attached to the list, because the time entry of this pair follows
chronologically the time entry of the last list element (nothing to do in step 1, only step 2). The time entry ti of the additional value/time
pair decides on whether the list is overwritten and the following entries have to be deleted (ti-1 >= ti), or whether the pair will be attached
tothelist (ti-1 < ti).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_159.htm [29/12/2001 13:05:15]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_160.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.4.4 Inertial Delay (1)

signal S : integer := 0;

signal S : integer := 0;

signal S : integer := 0;

signal S : integer := 0;

process process process process

begin begin begin begin
S <=1 after 1 ns; S<=1; S <= 2 after 2 ns; S <=1 after 2 ns;
S <= 2 after 2 ns; S<=2; S <=1 after 1 ns; S <=1 after 1 ns;
wait; walit; wait; wait;

end process;

end process;

end process;

end process;

s — {1, 1ns) s — {1, 0ns) S —i2, 2ns) s —1 {1, 2ns)

S <= 1 after 1 ns; S = 1; S <= 2 after 2 ns; S <= 1 after 2 ns;
5 — (2, 2ns) s —1 (2 0ns) 5 — (1. 1ns) S — (1. 1ns)

S == 2 after 2 ns: S a= 2 = == 1 after 1 ns; = == 1 after 1 ns;

S <=1, -- equivalent to
S <=1 after 0 ns;

@ The last assignment to a signal in a process
takes effect

In the left example, the pulse rejection limit of the signal assignment "S <= 2 after 2 ns" equals 2 ns. Therefore, al transactions are
marked, whose recurrence time is smaller than 0 ns (2 ns minus pulse rejection time; step 4). Accordingly the pair (1, 1 ns) is not marked
and deleted in the final step (step 7).

The time in the new value/time pair in the three right hand side examplesis at most as big as the time of the pair in the list, thus the old
entry is overwritten by the new one (step 1 deletes, step 2 adds new pair), independent from rejection limit values.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_160.htm [29/12/2001 13:05:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_161.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

3.4.5 Inertial Delay (2)

signal = : integer = 0

Process

begin
= «= 1 after 1 ns, 2 after 2ns, & after 5 ns;
= == 3 after 4 ns, 4 after 5 ns;
walt:

gnd process,

§ — (1. 1nsy| {3, 3ns} | {2 &ns) Starting wavefommin ascending order

= == 1 after 1 ns, 2 after 2 ns, & after 5 ns;

signal 5 integer = 0;

Process

begin
= <=1 after 1 ns, 2 after 2 ns, 2 after 2 ns, 5 after Sns:
= == 3 after 4 ns, 4 after 5ns;
wait;

end process;

§ — 12 2ns) | (3, 4ns) | (4, 5ns) Resulting waveformin ascending order

= «= 2 after 4 ns, 4 after & ns;

After thefirst signal assignment 'S <= 1 after 1 ns, 3 after 3 ns, 5 after 5 ns;" the list contains three value/time pairs.

The second signal assignment "S <= 3 after 4 ns, 4 after 5 ns;" deletes the last entry from the list because 4 ns <=5 ns (step 1) and appends
two entries (step 2). Then, all new transactions (step 3) and aso (3, 3 ns) will be marked, because this transaction is a direct predecessor of
amarked transaction and it has the same value as this marked transaction, namely 3 (step 5). The unmarked entries will be deleted, that is
the pair (1, 1 ns) and (2, 2 ns) in the second case respectively (step 7).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_161.htm [29/12/2001 13:05:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_162.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

3.4.6 Inertial Delay (3)

signal S : integer := 0;

process
begin

S <= 2 after 3 ns, 2 after 12 ns, 12 after 13 ns, 5 after 20 ns, 8 after 42 ns;
S <=reject 15 ns inertial 12 after 20 ns, 18 after 41 ns;

wait;
end process;

g —{2 dnsy |(2 12ns) [{12,13ns) |(5 20ns) |[{8, 42 ns)
g — (2, 3ns) |2 12ns) |12, 13 ns)

o —102 3ns) |(212ns) [(12,1%ns) [(12, 20 ns) | (18, 41 ns)
g 2,12 ns) |{12,13ns) {12 20ns) (18 41 ns)
< 2, 12ns) {12 18ns) (12 20ns) (18 41 ns)
< 12,12 ns) (12, 20ns) (18, 41 ns)

The signal assignment "S <= 2 after 3 ns, 2 after 12 ns, 12 after 13 ns, 5 after 20 ns, 8 after 42 ns;" builds the first list.
The second signal assignment "S <=reject 15 nsinertial 12 after 20 ns, 18 after 41 ns;" modifies thislist in the following way:

step 1 : al pairs with time values greater than or equal to 20 nswill be removed

step 2 : the new pairs will be attached

step 3 : al new transactions will be marked (light gray);
step 4 : old transactions with atime value smaller than the time value of the first new transaction (20 ns) minus the reject limit (15 ns), i.e.

5 ns, will be marked (dark gray)

step 5: still unmarked transactions will be marked (gray), if they are direct predecessor of a marked transaction and contain the same value

as the already marked transaction

step 6 : the current value/time pair will be marked; as this pair has to be marked anyway it is not displayed in the list

step 7 : al unmarked transactions will be deleted

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_162.htm [29/12/2001 13:05:36]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_163.htm

;@© LRS- UNI Erlangen-Nuremberg

3.5 Testbenches

. Stimuli transmitter to DUT
Example of a testbench (testvectors)

__ﬁh CLK) . Needs not to be

W synthesizable
DUT . No ports to the outside

(Respmej . Environment for DUT
Analysis

. Verification and validation
of the design

\Waveform| [File |

. Several output methods

. Several input methods

A testbench is used to verify the specified functionality of adesign. It provides the stimuli for the Device Under Test (DUT) and analyses
the DUT's respones or stores them in afile. Information necessary for generating the stimuli can be integrated directly in the testbench or
can be loaded from an external file. Simulation tools visualize signals by means of awaveform which the designer compares with the
expected response. In case the waveform does not match the expected response, the designer has to correct the source code. When dealing
with bigger designs, thisway of verification proofs impractical and will likely become a source of errors. The only way out would be a
widely automated verification, but thisis still a dream for the future.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_163.htm [29/12/2001 13:05:41]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_164.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.5.1 Structure of a VHDL Testbench

entity TB_TEST is
end TB_TEST;

. Empty entity

. Declaration of the DUT

architecture BEH of TB_TEST is
-- component declaration of the

DUT . Connection of the DUT with

-- internal signal definition

begin testbench signals

-- component instantiation of
the DUT
-- clock generation

-- stimuli generation y Stlmu“ and ClOCk generatlon
snaeEn (behavioural modelling)

. Response analysis

configuration CFG_TB_TEST of

Yereew . default or customized
endfors O configuration to simulate the

end CFG_TB_TEST;

testbench

The entity of atestbench is completely empty, because all necessary stimuli are created standalone. Otherwise a testbench for the testbench
would be needed. Asthe DUT'sinputs cannot be stimulated directly, internal temporary signals have to be defined. In order to distinguish
between port names and internal signals, prefixes can be employed, for instance "W _" to indicate awire.

The declaration part of the testbench's architecture consists of the definition of the internal signals, a component declaration of the DUT or
DUTs and perhaps some constant definitions e.g to set the clock period duration. A stimuli process provides the values for the DUT's input
ports, in which behavioural modelling can be employed as there is no need to synthesize it. Sometimes, models of external components are
available (probably behavioural description, only) and can be used similar to create a whole system.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_164.htm (1 of 2) [29/12/2001 13:05:46]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_164.htm

A configuration is used to pick the desired components for the simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_164.htm (2 of 2) [29/12/2001 13:05:46]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_165.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

3.5.2 Example

entity TB_TEST is

end TB_TEST;
architecture BEH of TB_TEST is . Declaration part of the
component TEST 5
POM(CLK - in std_logic; architecture
RESET : in std_logic;
5 A . in integer range 0 to . Component
B - in std_logic; . .
5 C : out integer range 0 5 internal S|gnals
to 15);
end component; 5 su b p rog rams
constant PERIOD : time := 10 ns;
i | W CLK : std logic :='0";
2:32; W:A, W_C ?in?ecg)]gelrcrange 0 o Con Stan tS
to 15;
signal W_B : std_logic;
signal W_RESET : std_logic;
begin
DUT : TEST .
port map(CLK ~ =>W_CLK, e Instantiation of the DUT
RESET =>W_RESET,
A = W_A, . . c
B =W, . Connecting internal signals
C =>W_C);

with the module ports

@ Initial clock signal value set to '0'

The example shows a VHDL testbench for the design TEST. The design is declared as component in the declaration part of the
architecture BEH. A constant PERIOD is defined to set the clock period. Internal signals that are needed as connections to the DUT are
also declared. It isimportant to initialize the clock signal either to '0' or '1' instead of its default value 'u' because of the clock generation
construct that is used later on.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_165.htm [29/12/2001 13:05:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_166.htm

;@© LRS- UNI Erlangen-Nuremberg

Clock and Reset Generation

. Simple signal assignment
o endless loop

W_CLK <= not W_CLK after

PERIOD/2; » W_CLK must be initialized to

. ‘0" or '1' (not 'u' ='u')
-- complex version

W_CLK <="'0' after PERIOD/4 O Sym metrlc ClOCk’ on |y
when W_CLK:"l" else . o . .
WU . Conditional signal assignment
o

1 Complex clocking schemes

. Realization as process
Introduces huge overhead

W_RESET <="'0',
'"1' after 20 ns,
'0" after 40 ns;

. Reset generation

assert now>100*PERIOD
report "End of simulation”
severity failure;

. Simulation termination via
assert

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_166.htm (1 of 2) [29/12/2001 13:05:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_166.htm

The clock stimulusis the most important one for synchronous designs. It can be created either with a concurrent signal assignment or
within a clock generation process. As aprocess requires alot of "overhead" when compared to the implemented functionality, the
concurrent version is recommended.

In the most simple form shown on top, the clock runs forever and is symmetric. Asthe signal value isinverted after half of the clock
period, the initial signal value must not be 'u’, i.e. its start value has to be explicitly declared. The more elaborated example below shows
the generation of an asymmetric clock with 25% duty cycle via conditional signa assignments. Please note that the default signal value
needs not to be specified because of the unconditional else path that is required by the conditional signal assignment.

The complete simulation is stopped after 100 clock cycles viathe ASSERT statement. Of course, the time check can beincludedin a
conditional signal assignment as well.

Clocks with a fixed phase relationship are modeled best with the ' delayed ' attribute similar to the following VHDL statement:
"CLK_DELAYED <=W_CLK'delayed(5 ns);"

The reset redlization is straight forward: It isinitialized with '0" at the beginning of the simulation, activated, i.e. set to '1', after 20 ns and
returnsto '0' (inactive) after an additional 20 ns for the remainder of the simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_166.htm (2 of 2) [29/12/2001 13:05:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_167.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

Stimuli Generation

STIMULI : process

begin
W_A <=10;
W_B <='0,
wait for 5*PERIOD;
W_B <=1
wait for PERIOD: . Simple stimuli generation
wait;

end process STIMULI;

process(W_C)
begin
case W _Cis
when 3 =>W B<="1'

e o ihers => W B <= 0 . Dynamically generated stimuli

end case from DUT response

end process;

All other DUT inputs can be stimulated the same way. Y et, the pattern generation via processes is usually preferred because of its
sequential nature. Please note that await statement is required to suspend a process as otherwise it would restart. More complex
testbenches will show dynamic behaviour, i.e. the input stimuli will react upon DUT behaviour. This may lead eventually to a complete
behavioural model of the DUT environment.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_167.htm [29/12/2001 13:06:00]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_168.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

Response Analysis

process(W_C)

proce Assertion with severity

assert W_C > 5 -- level
message, if false

report "WRONG - Note
RESULT!!" - Warning
severity ERROR;
end process; o Error (d efaU|t)
o Failure

process(W_C) Additional attributes in
et W_C> 5 VHDL'93

report "WRONG RESULT in" &

s S 1 'path_name
integer'image(W_C) .
severity error; o 1IN St_n ame
o 'Image

WRONG RESULT in TB_TEST:W_C Value: 2

Report in simulator

3]

Additional attributes for debugging purposes

93 Report without assert statement

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_168.htm (1 of 2) [29/12/2001 13:06:05]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_168.htm

The' assert ' statement is suited best for performing automatic response analysis. An assertion checks a condition and will report a
message, if the condition isfalse. Depending on the chosen severity level and the settings in the simulation tool, the simulation either
resumes (e.g. note, warning) or stops (e.g. error, failure) after reporting that the assertion fails. The default severity level is' error '.

The message that is reported is defined by the the designer. In order to achieve dynamic reports that offer more detailed debugging
information in case of errors several new attributes were defined in VHDL'93. They provide additional information about the
circumstances that lead to the failing assertion: ' instance_name' and ' path_name ' may be used to locate the erronous module. The path
information is necessary when one component is instantiated at various places within a complex design. The' image ' attribute looks like a
function call. Its argument is returned as string representation and the data type is the prefix of the attribute.

Asareport is generated whenever the assertion condition evaluatesto ' false', it can be forced by setting this condition to the fixed value'
false'. This construction is no longer necessary in VHDL'93, i.e. the 'report’ keyword may be used without a preceding assertion.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_168.htm (2 of 2) [29/12/2001 13:06:05]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_169.htm

;@© LRS- UNI Erlangen-Nuremberg

3.6 File I/O

DATAIN = STIMULI
_ PROCESS -
stim_in.txt DUT
RE SPONSE [
DATA OUT |- PROCESS
stim_out.ixt Testbench

. Package TEXTIO of
STD library .

. Important functions
and procedures:

o readline(...),
read(...),

o writeline(...),
write(...),

5 endfile(...)

. Additional data types
(text, line)

READ / WRITE
overloaded for all
predefined data

types:
o bit, bit_vector

o boolean

o character,
string

o Integer, real
o time

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_169.htm (1 of 2) [29/12/2001 13:06:11]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_169.htm

In VHDL, the designer is alowed to load data from or save datato afile. To do this, it is necessary to include the TEXTIO package of the
STD library which contains basic functions and procedures. These subprograms (write, writeline, read, readline, ...) facilitate the file 1/0
mechanism and are defined for the predefined VHDL data types. The main application of file 1/0 is simulation flexibility. This means that
simulation stimuli and response analysis are | eft to specialized software, which is often easier than writing the corresponding VHDL
models.

To get the information from afile, the user readsit line by line (READLINE procedure) and stores the datain a variable of the datatype'
line'. Afterwards it is possible to access the data from this line with the READ command. Usually aline contains information of different
datatypes. To interpret the datain a correct way, i.e. astring as a string and an integer value as an integer, you have to employ actual
parameters of the same data type. This fact will become clearer in the following example. Besides it is necessary to read the space
character between the information in a separate read statement!

The file output worksin asimilar way, i.e. aline is assembled first via WRITE commands and is finaly written to the file with a
WRITELINE statement.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_169.htm (2 of 2) [29/12/2001 13:06:11]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_170.htm

;@© LRS- UNI Erlangen-Nuremberg

3.6.1 Example for File I/0O (1/4)

. ADDER module
» Adds two 8 bit

VALUE_1 8 8, RESULT .
LVl Wi vectors and provides
VALUE 2,8 HEER CWVE RFLOWY .
ETA — an 8 bit result vector

n Generates an
overflow signal

. Entity and architecture
e of the ADDER module

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ADDER is . std _logic_unsigned
port(VALUE_1 :in std_logic_vector(7 downto — -
o) | | package
VALUE 2 :in std logic_vector(7 downto
0); -
OVERFLOW : out std_logic; o copyright by
RESULT : out std_logic_vector(7 downto
0); Synopsys
end ADPER: (EDA software
architecture RTL of ADDER is
signal INT_RES : std_logic_vector(8 downto 0); com p an y)
signal INT_VAL_1 : std_logic_vector(8 downto 0);
signal INT_VAL_2 : std_logic_vector(8 downto 0); o Nnot stan d ard | Zed by
begin
INT_VAL_1 <='0'& VALUE_1; IEEE

INT_VAL_2 <='0'& VALUE_2;

INT_ RES <= INT_VAL_1 +INT_VAL_2; |
RESULT <= INT_RES(7 downto 0); n» overloaded

OVERFLOW <= INT_RES(8);

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_170.htm (1 of 2) [29/12/2001 13:06:16]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_170.htm

end RTL mathematical
operators where
std_logic_vector is
treated as unsigned
number

Thefirst part of the file 1/0 example shows a design of an adder (entity and architecture). Please note the use of the
STD_LOGIC_UNSIGNED package. Although this package islocated in the IEEE library it is not standardized by the institute. The
package was created by Synopsys Inc., an EDA software company. Their packages, however, have achieved the level of a quasi-standard
inindustry.

In the architecture, the operands are extended to 9 bitsin order to avoid an overflow during the actual addition. The most significant bit of
the resulting vector is then used as OVERFLOW signal and the lower 8 bits represent the result of the addition.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_170.htm (2 of 2) [29/12/2001 13:06:16]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_171.htm

:;@© LRS - UNI Erlangen-Nuremberg
Example (2/4)

> I [PEICAEE SE I St

el el EEEST logle 2o il

use STD.textio.all file I/O functions and
procedures

entity TB_ADDER is
end TB_ADDER,;

architecture BEH of TB_ADDER is
component ADDER
port(VALUE_1 :in
std_logic_vector(7 downto 0);

VALUE 2 :in . Common testbench structure

std_logic_vector(7 downto 0); - .

T i - Empty entity; no external
td_logic_vector(7 downto 0)); :
i interface

STELVALUE L & - Component declaration and
std_logic_vector(7 downto 0); . . .

signal W_VALUE 2 : instantiation
std_logic_vector(? downt_o 0); .

Slonal WRESULT o » Definition of internal
std_'loglc_vector(7 downto 0); S | g n al S tO conn ect th e
o input/output ports
whoatUE g e with the stimuli/response
wyae 2 T analysis processes

OVERFLOW =>
W_OVERFLOW,

RESULT =>
W_RESULT);

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_171.htm (1 of 2) [29/12/2001 13:06:21]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_171.htm

The testbench for the ADDER design follows the usual structure. The entity remains empty as no higher hierarchy level exists and in the
declarative part of the architecture the design under test and signals for its interface ports are declared. In the component instantiation
statement, these signal's are connected to the DUT ports.

Please note that two additional packages are used to handle the file I/0. The standard TEXTIO package provides the basic functionality.

The STD_LOGIC_TEXTIO, again a Synopsys package that is not standardized by the |EEE, provides overloaded subprograms to handle
STD_ULOGIC based data types.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_171.htm (2 of 2) [29/12/2001 13:06:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_172.htm

;@© LRS- UNI Erlangen-Nuremberg

Example (3/4)

STIMULI : process
variable L_IN : line;
variable CHAR : character;
variable DATA 1 : std_logic_vector(7
downto 0);
variable DATA 2 : std_logic_vector(7
downto 0);
file STIM_IN : text is in "stim_in.txt";
begin
W_VALUE_1 <= (others =>'0");
W_VALUE_2 <= (others =>'0');
wait for PERIOD;
while not endfile (STIM_IN) loop
readline (STIM_IN, L_IN);
hread (L_IN, DATA_1);
W_VALUE_1 <= DATA 1;
read (L_IN, CHAR);
hread (L_IN, DATA_2);
W_VALUE_2 <= DATA 2;
wait for PERIOD;
end loop;
wait;
end process STIMULI;

00 A1
FF 01
FF 00
1155
OF 01
1F 05
AA F3

. STIMULI process

0

File access is limited to
only one line at a certain
time

Only variables are
allowed for the

parameters of the read
functions

The function hread(...) Is
defined in the
IEEE.std_logic_textio
package; it reads hex
values and transforms
them into a binary vector

. Stimuli file "stim_in.txt"

O

Each line contains two
hex values to stimulate
the inputs of the ADDER

module

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_172.htm (1 of 2) [29/12/2001 13:06:26]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_172.htm

After having instantiated the entity ADDER, a stimuli process is needed that provides the test patterns. Different from previous examples
the stimuli are read from the file "stim_in.txt". Some example content is shown below the process code. Thefirst hex value of each lineis
the stimulus for the port VALUE_1 (2 hex values -> 8 bits), the second hex value is for the port VALUE_2. Each line will be used as input
vector for a duration of PERIOD.

ThesignalsW_VALUE_1and W_VALUE_2 areinitialized with the all zeros vector. After one clock cycle aloop is started whereit is
checked, whether the stumli file STIM_IN still contains data. If so, the following statements will be executed, otherwise they will be
skipped and the process will suspend at the last * wait * statement of this process.

Reading the file works as follwos: First oneline L_IN isread from the file STIM_IN by the READLINE command. Afterwards, three
different values, an 8 bit standard logic vector, followed by a single character and another 8 bit vector are extracted from thisline L_IN.
The datatypeis selected by the data type of the variable used in the READ procedure. HREAD is also a kind of read command which
transforms the value read from hexadecimal to STD_LOGIC_VECTOR automatically. HREAD is contained in the
STD_LOGIC_TEXTIO package.

After the values from the file are stored in the variables, they have to be assigned to the signals that are connected to the input ports of the

DUT. After finishing one line, the process waits for one PERIOD before checking again, whether the stimuli file STIM_IN still contains
some data.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_172.htm (2 of 2) [29/12/2001 13:06:26]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_173.htm

::;@© LRS - UNI Erlangen-Nuremberg
Example (4/4)

RESPONSE :
process(W_RESULT)
variable L_OUT : line;
variable CHAR_SPACE :
character :="";
file STIM_OUT : text is out
"stim_out.txt";
begin
write (L_OUT, now);
write (L_OUT,
CHAR_SPACE);

write (L_OUT, W_RESULT);

write (L_OUT,
CHAR_SPACE);

hwrite (L_OUT,
W_RESULT);

write (L_OUT,
CHAR_SPACE);

write (L_OUT,
W_OVERFLOW);

writeline (STIM_OUT,
L OUT);
end process RESPONSE;

0 NS UuUuuUuuu 00 U
0 NS XXXXXXXX 00 X
0 NS 00000000 00 0

20 NS 10100001 A1 0
40 NS 00000000 00 1
60 NS 11111111 FF O
80 NS 01100110 66 O
100 NS 00010000 100
120 NS 00100100 24 0
140 NS 10011101 9D 1

Response process of the
testbench

5 'NOW' is a function returning

the current simulation time

Several write commands
assemble a line

Writeline saves this line in the
file

The function hwrite(...) is
defined in the
IEEE.std_logic_textio package;
It transforms a binary vector to

a hex value and stores it in the
line

Response file "stim_out.txt"
1 4 columns containing:

- Simulation time

- 8 bit result value (binary and
hex)

- Overflow bit

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_173.htm (1 of 2) [29/12/2001 13:06:31]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_173.htm

Thefile output isjust the inverse of the file input presented before: A line has to be composed and written to the file when finished. The
RESPONSE process stores the current simulation time, the RESULT as STD_LOGIC_VECTOR and in hexadecimal format and the
OVERFLOW signal. The process is activated whenever an event occursat W_RESULT (sensitivity list). Thisisthe reason why three lines
are written to the fileat 0 NS. First, W_RESULT is uninitialized because no initial valueis specified explicitly in the signal definition. So
W_RESULT consists of 'U's only, which HWRITE transforms to '0". The "X'sin the second line occur because the overloaded operator
returns 'X' (unknown) when undefined values are added. 'X"' and 'U’ are treated just same, i.e. theresult isalso 0.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_173.htm (2 of 2) [29/12/2001 13:06:31]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_174.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4. Synthesis

. What is Synthesis?

. RTL-style

. Cominatorical Logic

. Sequential Logic

. Finite State Machines and VHDL
. Advanced Synthesis

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_174.htm [29/12/2001 13:06:36]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_175.htm

;@© LRS- UNI Erlangen-Nuremberg

4.1 What I1s Synthesis?

(RTLIVHDLcode |= | | — X
= [
constraints
b
macrocel| \ %
library — = =
=]
=
technology / %
library e

e
P

(Gate-) VHDOL code

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_175.htm (1 of 2) [29/12/2001 13:06:42]

Transformation
of an abstract
description into
a more detailed
descrition

o '+" operator

IS
transformed
Into a gate
netlist

“if VEC_A =
VEC_ B)
then"

IS realized
as a
comparator
which
controlls a
multiplexer

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_175.htm

. Transformation
depends on
several factors

In genera, the term "synthesis' is used for the automated transformation of RT level descriptions into gate level representations. This
transformation is mainly influenced by the set of basic cells that is available in the target technology. While simple operations like
comparisons and either/or decisions are easily mapped to boolean functions, more complex constructs like mathematical operators are
mapped to atool specific macro cell library first. This means that a number of adder, multiplier, etc. architectures are known to the
synthesis tool and these designs are treated as if they were designed by the user.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_175.htm (2 of 2) [29/12/2001 13:06:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_176.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.1.1 Synthesizability

. Only asubset of VHDL is

100 % _
synthesizable
Tool C . Different Tools support different
Tool B subsets
Tool A 1 records?
o arrays of integers?
o clock edge detection?
0% e
o sensitivity list?
[l

The macro cell library isjust one distinguishing feature of synthesis software. VHDL itself is not fully synthesizable and the available
tools differ in the language subset that is supported. Complex user defined data structures like records and multidimensional arrays (e.g.
simple arrays of integers) turn out to be the most problematic cases.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_176.htm [29/12/2001 13:06:47]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_177.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.1.2 Different Language Support for Synthesis

process (CLK)
begin
if CLK="1"then
Q<=D;
endif;
end process;
sensitivity list supported sensitivity list not supported
flip flop transparent latch

The consequences of different language support on the resulting hardware are demonstrated at the example of a clocked process. In case
the synthesis tool supports sensitivity lists the result is aflip flop because the processis triggered with every event at CLK and the value of
D will beassignedto Q, if CLK="1" asaresult of this event. Thus, the behaviour of arising edge triggered flip flop is modeled here.

Even if synthesis tools do not support sensitivity listsin general, they often look for templates that describe the behaviour of registers.

Usually, the check for the CLK event hasto be part of the if condition, aswell. If the sensitivity list isignored and the code can not be
matched to aregister template, alevel triggered latch will be generated!

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_177.htm [29/12/2001 13:06:53]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_178.htm

‘5@@ LRS - UNI Erlangen-Nuremberg

4.1.3 How to Do?

constraints

o comparator

bool ti Bool i
oolean equations oolean) J o businterface

. Contraints
o Speed

VHDL code |E 1 area

[macrocell
:F library o power
preprocessed §_:

VHDL code = . Macrocells
l o adder

o o
gate netiist . Optimizations
o boolean:
mathematic
0 gate:

technological

Besides the fixed synthesis constraints set by the target technology and the tool capabilities, "soft" constraints that are imposed by the designer have
to be considered as well. Maximum operating speed and required hardware resources are usually the main targets for netlist optimization. Thisis
possible either on a purely abstract mathematical model or by different mappings of the boolean functions on the available technology cells. Due to
the complexity, the optimization phase requires quite alot of iterations before the software reportsits final result.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_178.htm [29/12/2001 13:06:59]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_179.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.1.4 Essential Information for Synthesis

. Load values

. Path delays

. Driver strengths
. Timing

. Operating conditions

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_179.htm [29/12/2001 13:07:03]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_180.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.1.5 Synthesis Process in Practice

. In most
i | yes cases
choosze block A | startsynthesis [T ™ result; OK 77 SyﬂtheSIS
no
has to be
ot | carried out
several
alter constraints ™| tlmes in
alter hierarchy - Order tO
s el
synthesis
result

Even after extensive optimizations by the synthesistool, the result is pretty often not compliant with the system requirements. In this case,
the input to the software has to be modified. Severa parameters may be modified by the designer: The block operating conditions includes
environmental conditions like operating temperature as well as settings like necessary driver strength (fan-out) or capacitance of wire
connections. They have a direct impact on the actual wire delays.

Hierarchy alterations can simply be performed by selecting a bigger block and allowing the tool to break up the hierarchy definitions from
the VHDL source code. If the repeated attempts still fail to produce the desired result, modifications of the original VHDL code become
the last way oui.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_180.htm [29/12/2001 13:07:10]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_181.htm

%
_@(@ LRS- UNI Erlangen-Nuremberg

4.1.6 Problems with Synthesis Tools

. Timing issues

o layout information is missing during the
synthesis process

o clock tree must be generated afterwards

. Complex clocking schemes
(inverted clocks, multiple clocks, gated clocks)
. Memory

o synthesis tools are not able to replace register
arrays with memory macro cells

. Macro cells

o no standardized way for instantiation of existing
technology macro cells

. |O-pads
o ASIC-libraries have several different I0-pads

o selection by hand, either within the synthesis
tool or in the top level entity

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_181.htm (1 of 2) [29/12/2001 13:07:14]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_181.htm

While the algorithms have matured considerably there exist still a number of problems and pitfalls for the users of synthesistools. Many
issues are related to the separation of netlist and layout generation. Therefore the length of the interconnections can only be estimated
during synthesis and critical nets have to modified by hand afterwards. The clock tree, for example, requires extensive buffering in order to
distribute the clock signal evenly on the chip and has to be generated by hand.

While synthesis of synchronous designs with a single clock sourceisfairly ssimple, practical systems, unfortunately, often require
additional clock signals. This introduces asynchronous behaviour which is very complex to handle as long as the exact propagation delays
are unknown. Macro cellsthat are available in the target technology are also hard to use. Thisis especially true for memory cells that can
not used by synthesis tools automatically. The same appliesto the I/O cells of ASIC libraries that have to chosen by hand.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_181.htm (2 of 2) [29/12/2001 13:07:14]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_182.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.1.7 Synthesis Strategy

. Consider the effects of different coding styles
on the inferred hardware structures

. Appropriate design partitioning

o critical paths should not be distributed to
several synthesis blocks

o automatic synthesis performs best at module
sizes of several 1000 gates

o different optimization constraints may be used
for separate blocks

The VHDL coding styleitself has arather big impact on the synthesis result. Thereforeiit is necessary to keep thisin mind even if the
model isto be synthesized at the last step of the development cycle.

The design partitioning should be reviewed prior to the synthesis runs. Thisis mainly due to the fact that the algorithms perform best at
module sizes of several thousand gates. It is not necessary to rewrite the RTL description as submodul es can be grouped together during
synthesis. This allows for different optimization settings, i.e. high speed parts can be synthesized with very stringent timing constraints
while non critical parts should consume the least amount of ressources (area) possible.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_182.htm [29/12/2001 13:07:19]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_183.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

4.2 RTL-style

Combinational process Clocked process
process | J quegg '{]'
beir seln

______________ i

&nd process;

end process;

. If-elsif-elsif-end if

structure
. Complete
sensitivity list . Thefirst IF has a
. Complete IF- reset
statements or . The last elsif has the
default-assignment CLK poll

. No else branch

—O— — O—

RTL - register transfer level. In variation to the modelling on the behaviour level, where VHDL can be used like any other programming
language, the RT level is one stage nearer to the hardware. By that the algorithm is partitioned into pure combinational groupsand in
clocked groups with storage ahility, that is flip-flops. In a pure combinational group no storage element should be contained. On the other
hand, |F assignments must be written completely, that means that the EL SE branch must not be forgotten, because otherwise unintended
latches can be generated by the synthesis tool. Another possibility is to assign default values before the |F condition, which can be changed

P

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_183.htm (1 of 2) [29/12/2001 13:07:25]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_183.htm

in the IF branch, if necessary.

A clocked process with a asynchronous reset has the following form:
process(clock, reset)

begin

if reset ='1' then ...(Reset-assignmnet)

elsif clock'event and clock ='1' then ...(assignment to FFs) ;

endif ;

end process;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_183.htm (2 of 2) [29/12/2001 13:07:25]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_184.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.2.1 Combinatorics

Library IEEE;
use IEEE.Std_Logic_1164.all;

entity IF_EXAMPLE is _ Hardware realisation
port (A, B, C, X : in std_ulogic_vector(3 downto 0);
Z : out std_ulogic_vector(3 downto 0));
end IF_EXAMPLE; B C A
010

architecture A of IF_EXAMPLE is
begin e '

process (A, B, C, X) W

begin .
if(X ="1110") then e _/
Z<=A 1110
elsif (X ="0101") then 7
Z <=B;
else
2<=C; ..
end if; Priority M
end process;
end A;

An |F assignment is always implemented as one or several mutliplexersin the synthesis. With it, every condition corresponds to a
multiplexer (IF or ELSIF branch).

Please note the priority of the single branches. In the simulation of an IF assignment, when entering a condition, the others following will
not be worked off.

This branches' order must be kept in the synthesis, aswell. Yet, it is only possible by means of series connected multiplexers, whereas the
FIRST condition is attached to the SELECT entry of the LAST multiplexer.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_184.htm [29/12/2001 13:07:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_185.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.2.2 Complete sensitivity lists

D)
. All signals which
o If SEL is missing are read are entered
in the sensitivity into the sensitivity
list, what will the list

behaviour be?
. Complete if-
process (A, B, SEL)

begin statement for the
if SEL = “1" then .
Z<=A synthesis of
else . . .
2<=p; combinational logic
end pr(;cess;

A processis activated in the simulation, when on one of its sensitivity list's signal an event occures.

When the SEL signal is not contained in thelist - asin above question - the process would be activated only by means of eventson A or B.
This does not correspond to the desired behaviour of the described multiplexer on one side.

On the other side, most synthesis tools do not react on sensitivity lists, but handle the VHDL code contained in the process. In our caseit is
an |F assignment.

This IF assignment is always realised as multiplexer.

Result: If SEL isnot contained in the sensitivity list, the component part will not be simulated, which is usually synthesised.

Upshot: All inputs - signals which are read - should always reside in the sensitivity list for the description of pure combinatorics.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_185.htm [29/12/2001 13:07:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_186.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

4.2.3 WAIT statement <-> Sensitivity List

process
begin
if SEL = "1 then
Z<=A;
else
Z <= B;
end if;
WAIT ON A,B,SEL;
end process;

. equivalent Processes

process (A, B, SEL)
begin
if SEL = "1 then
Z<=A;
else
Z <= B;
end if;
end process;

The sensitivity list can be replaced with aWAIT ON statement at the end of the process. The behviour of the process does not change with
this replacement.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_186.htm [29/12/2001 13:07:39]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_187.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.2.4 Incomplete assignments

. What is the value of Z,
If SEL =0 ?

. What hardware would

be generated during synthesis
?

Library IEEE;
use IEEE.Std_Logic_1164.all;

entity INCOMP_IF is
port (A, B, SEL :in std_ulogic;

Z : out std_ulogic);
end INCOMP_IF;

architecture RTL of INCOMP_IF is
begin
process (A, B, SEL)
begin

if SEL = 1" then

Z<=A;

end if;
end process;
end RTL;

In this example, the 'else’ branch has been left out.

If SEL='0, the old value of Z will be maintained in the simulation, that means no change will be carried out on Z.

For thisit must be implemented with a storage element in the according hardware. Therefore, the synthesis tools create alatch, in which
the SEL signal ia connected with the clock entry. It is an element very difficult to test in the synchronous design, and therefore it should

not be used.

Normally only edge-triggered FF are used, which are ALL connected to one and the same clock signal.
Then the possibility exists to combine all FF with special Scan FF to a scan path; with an additional entry pin, the chip can be put into a

scan test modus and internal values can be read out.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_187.htm [29/12/2001 13:07:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_188.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.2.5 Rules for synthesizing combinational logic

. Complete sensitivity list
o RTL behaviour has to be identical with the IC

o an incomplete sensitiviy list can cause errors or
warnings

. No incomplete If-statements are allowed
o transparent latches

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_188.htm [29/12/2001 13:07:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_189.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

4.2.6 Modelling of Flip Flops

Library IEEE;
use IEEE.Std_Logic_1164.all;

entity FLOP is

port (D, CLK :in std_ulogic;
Q : out std_ulogic);
end FLOP;

architecture A of FLOP is
begin
process
begin
wait until CLK event and CLK="1";
Q <=D;
end process;
end A;

Here, a D-flip-flop controlled by a clock pulse edge is described. If an event occurs at the clock signal and this event has the value ONE,
the value of the pin D will be transferred to the pin Q.
(You could also await the negative clock pulse edge, then must be: CLK="0").

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_189.htm [29/12/2001 13:07:52]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_190.htm

;@© LRS- UNI Erlangen-Nuremberg

4.2.7 Description of arising clock edge for
synthesis

. New standard for synthesis: IEEE 1076.6

... If condition

RISING_EDGE (C|OCk_Sig naI_ name)

clock signal nameevent and
clock_signal _name=1

clock_signal _name=1 and
clock_signal nameevent

notclock _signal namestasLe and
CIOCk_S|g nal_ name="1'

CIOCk_S|g nal _name='1' and not
clock_signal namestasLe

... wait until condition

RISING_EDGE (C|OCk_Sig naI_ name)

clock_signal_ nameevent and
ClOCk_SignaI _hame="1"'

Cl OCk_Sig nal _name='1' and
clock _signal nameevent

notclock signal_ namestasLe and
ClOCk_SignaI_ name="1'

clock_signal _name=1 and not
clock _signal namestasLe

clock_signal _name=1

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_190.htm (1 of 2) [29/12/2001 13:07:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_190.htm

Asthe sensitivity list is usually ignored by synthesis tools and wait statements are not synthesizable in general, a solution to the problem of
modelling storage elements has to be found. Synthesis tools solved this issue by looking for certain templatesin the VHDL code, namely
the first option ('if/wait until X'event and X="1' then') of the two process styles. All aternatives show the same behaviour during
simulation, however. Please note that the event detection in the 'wait until* statement is redundant as an event isimplicitly required by the
'wait until' construct.

In the meantime, the |EEE standard 1076.6 that lists the VHDL constructs that should infer register generation was passed. Asthis

standard is not fully supported by synthesis tools, yet, the first option is still the most common way of describing arising/falling clock
edge for synthesis. When asynchronous set or reset signals are present, only the IF variant is applicable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_190.htm (2 of 2) [29/12/2001 13:07:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_191.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.2.8 Describing arising clock edge by means of
a function call

. In Std_Logic 1164 package

function RISING_EDGE (signal CLK : std_ulogic)
return boolean is
begin

E;‘;ﬁss if (CLK event and CLK ="1"
wait until RISING_EDGE(CLK); ' and CLK’last_value="0") then
: return true;
Q <=D;
end process; else
’ return false;
end if;

end RISING_EDGE;

The function rising_edge is only mentioned here to complete things. It is not accepted by the most synthesis tools (because of 'last_value),
but it can be used in the simulation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_191.htm [29/12/2001 13:08:01]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_192.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.2.9 Counter synthesis

Library IEEE;
use IEEE.Std_Logic_1164.all;

entity COUNTER is

port (CLK :in std_ulogic; ° FOI’ a” Slgna|S Wthh

Q :outinteger Fange 0 to 15y, ; . .
e integer T receive an assignment in
arcr_ﬂtecturerfCOUNTER is CIOCked prOCGSS@S
signal COUNT : integer memory is synthesized
range O to 15;
bepgrlcr:cess (CLK)
begin

if CLK event and CLK = "1" then

if (COUNT >= 9) then
COUNT <= 0; COUNT

else

COUNT <= COUNT +1; .
end if;
end if;

end process; CLK ., L
Q <= COUNT:; |
end A;

Thisisthe description of a counter without resetting line. We have to point out some peculiarities:

At first the range assignment in the port declaration of the output. Here, the digits from 0 to 15 are only allowed, that means 4 bit are
sufficient for abinary representation. The port signal Q is replaced by means of the synthesis tool by a4 bit signal (ultimately all types are
transferred by means of the synthesis toolsinto std_logic types).

So a4 bit counter is realised.

Another peculiarity is, that the port modus 'out’ of the signal Q can be only written on, it cannot be read. Therefore, a (temporary) signal
COUNT must be declared within the architecture, in order to be able to implement the query COUNT >= 9.

The result of the counting is then transferred into Q in a concurrent signal assignment (Q <= COUNT) as an additional process. That
means every result at COUNT triggers the assignment Q <= COUNT.

Theinternal IF assignment thus describes the combinatoric before the FF. The number of FF is derived from the width of the signal, which
receive an assignment inside the outer | F assignment (‘event and so on). In our casg, it is only the signal COUNT of 4 bit (because of the
range O to 15).

Important : In the sensitivity list thereis only the signal CLK!!!

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_192.htm [29/12/2001 13:08:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_193.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.2.10 FF with asynchronous reset

Library IEEE;
use IEEE.Std_Logic_1164.all;

entity ASYNC_FF is

port (D, CLK, SET, RST : in std_ulogic;
Q : out std_ulogic);

end ASYNC_FF;

If/elsif - structure

[
architecture A of ASYNC _FF is .
begin o The last elsif has an
process (CLK, RST, SET)
begin ed g e
if (RST ="1") then
Q<="0};
elsif SET ='1' then D NO else
Q<="14
Sy o, Cvenand cLie= L) then . It has a sensitivity list !!
end if;
end process;
end A,

In order to describe a RESET, you have to proceed as follows:

The RESET signal is also in the sengitivity list. The RESET query comes at first (asynchronous RESET).

The CLK query stands in the following 'elsif' assignment. Thereisno 'else’ branch!!! Thiswould lead to an error message in the synthesis.
The combinatoric for the next conditions' cal culation stands as has been before in the CLK branch (here the elsif branch).

Generally it is applicable: the last elsif condition contains the CLK query (exactly NAME'event and NAME="'value, it must be added that
‘value' can be 0 or 1). All previous 'if' and 'elsif' condition signals have to be also in the sensitivity list, because their queries can occur
asynchronous to the cycle.

Important : If these signals are not contained in the sensitivity list, something else will be simulated than that what would be synthesised,
because the sensitivity list is on principle all the same to the synthesistools. They only comply with the structure of the VHDL code within

the process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_193.htm [29/12/2001 13:08:10]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_194.htm

g7
"W@@ LRS - UNI Erlangen-Nuremberg

4.2.11 Rules for clocked processes

process
begin
wait until CLK'event and CLK="1";

if RESET = '1' then -~ Wait and If-form:

synchron RESET Wait-form: _ .
-- Register reset ° AII Slgna|S Wh'Ch

e . Nno sensitivity list receive an

end if;

end process; aSS | g n m ent
-> Register

process(CLK, RST)
begin

if (RST ="1) then -- If-form: process(CLK) -- N0 RESET
asynchron RESET begin

-- Register reset . On |y Cl oC k an d ReS et if (CLK event and CLK="1") then

elsif (CLK event and CLK="1") then -- combinatorics

= ComiaEinse: In sensitivity list (and | endf

end if; end process;

end process; all the other
asynchronous Signals)

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_194.htm (1 of 2) [29/12/2001 13:08:15]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_194.htm

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_194.htm (2 of 2) [29/12/2001 13:08:15]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_195.htm

‘5@© LRS- UNI Erlangen-Nuremberg

4.2.12 Questions

20. Which signals in clocked processes are
used for deducing registers ?

O yes O 20.1. Temporary signals.
O yes O 20.2. Signals which contain an assignment.
O yes O 20.3. Signals which have been read.

| submit || reset |

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_195.htm [29/12/2001 13:08:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_196.htm

‘5@© LRS- UNI Erlangen-Nuremberg

4.2.13 Questions

21. Which two process types are permitted in
the RTL - style ?

8yes 21.1. Mixed and analog processes.
O yes 21.2. Combinational and sequential
o processes.

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit” to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_196.htm [29/12/2001 13:08:26]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_197.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.2.14 Questions

Ovyes O
no

Oyes O

no

Ovyes O
no

O vyes O

no

Ovyes O

no

Ovyes O
no

22. What causes latches to be created in the
synthesized design ?

22.1. Concurrent IF-statements.
22.2. Forgotten else-paths.

22.3. Signal assignments which are not
executed in all paths of an IF- or CASE-
statement .

22.4. Incomplete sensitivity lists.

23. How can unwanted latches be prevented
most efficiently ?

23.1. By replacing IF-statements by CASE-
statements.

23.2. By giving default assignments to all
sighals which contain an assignment in one
path, before the IF- or CASE-statement.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_197.htm (1 of 2) [29/12/2001 13:08:31]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_197.htm

| submit || reset |

Please answer the questions by clicking "Yes' or "No". Then press "submit" to verify your answers, or "reset" to clear your selections.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_197.htm (2 of 2) [29/12/2001 13:08:31]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_198.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.3 Combinational Logic

architecture EXAMPLE of FEEDBACK is
signal B,X : integer range 0 to 99;

begin
process (X, B)
begin X
X <= X + B; |
end process; — |

end EXAMPLE;

@ Do not create combinational feedback
loops!

When modeling purely combinational logic, it is necessary to avoid combinational feedback loops. A feedback loop triggersitself al the
time, i.e. the corresponding process is always active. In the example, this resultsin a perpetual addition, i.e. X isincreased to its maximum
value. So simulation quits at time 0 nswith an error message because X exceeds itsrange. In general, synthesisis possible, yet the
hardware is not useable.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_198.htm [29/12/2001 13:08:36]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_199.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.3.1 Coding Style Influence

EXAMPLEZ:
process (SEL,A,B)
begin

if SEL = 1" then
Z<=A+B;

Direct implemen- clse

Z<=A+C;

tation el

end process EXAMPLEZ;

EXAMPLEZ2:
process (SEL,A,B)

variable tve : bit

begin
if SEL = "1" then
TMP = B;

Manual resource .
sharing P e
Z<=A+TMP;

end process EXAMPLEZ;

Hardware realization
A B A C

2

SEL

Hardware realization
C B A

SEL— /

An |F statement is synthesized to a multiplexer with eventual additional logic. That isthe reason why the direct implementation of

example 1 resultsin two adders asthisis exactly what the VHDL code describes. But it is obvious that one adder is sufficient to implement
the desired functionality and good synthesis tools will detect this during their optimization cycles. In example 2 atemporal variable is used
to implement a functionally equivalent description which reguires only one adder. Manual resource sharing is recommended asiit leadsto a

better starting point for the synthesis process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_199.htm [29/12/2001 13:08:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_200.htm

%
_@(@ LRS- UNI Erlangen-Nuremberg

4.3.2 Source Code Optimization

. An operation can be described very efficiently
for synthesis, e.g.:

OUTT <= IN1 + N2 + IN3 + ING+ NS + INE | QUTZ <= {(INT+ M2 3+ 143+ 1) T+ { INS + N6

M1 | P M4

. In one description the longest path goes via five,
In the other description via three addition
components - some optimization tools
automatically change the description according

to the given constraints.

The structure of the generated hardware, at least in the first synthesisiteration, is determined by the VHDL code itself. Consequently, the
coding style has a rather big impact on the optimization algorithms. As not all synthesis tools are able to optimize the design structure
itself, it is reasonable to ease their task, e.g. by structuring the code for minimum critical paths.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_200.htm [29/12/2001 13:08:48]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_201.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.3.3 IF structure <-> CASE structure

. Different descriptions are synthesized differently

i (1 ;::.ﬁe IN is
' gﬁ; Z)At\h.en when 0 to 16 =>
elsif (IN < 17) then oL ==
OUT <=B: when 17 =>
else ’ OUT <=C;
— & when others =>
en(()jLiJfT- = C OUT <=A;
S end case ;
A I _
E CUT i)
0 A B C
i [T | | |
17 : |
I
[17 ID QT
] 17 17 .

While agorithms can take care of some clumsy VHDL constructs, other model aspects can not be changed during synthesis. The use of IF
constructs, for example, implies different levels of priority, i.e. they infer a hierarchical structure of multiplexers. In CASE statements,
however, the different choice options do not overlap and a paralel structure with a single switching stage is the resuilt.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_201.htm [29/12/2001 13:08:54]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_202.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.3.4 Implementation of a Data Bus

entity TRISTATE is

port(DATAL, DATAZ2 :in std_ulogic;
EN1, EN2 :in std_ulogic;
DATA_BUS : out std_logic);

end TRISTATE;

architecture RTL1 of TRISTATE is

begin
process (DATAL, EN1)
begin
if EN1 ="1' then
DATA BUS <= DATAL;
else
DATA_BUS <='Z';
end if;
end process;

process (DATA2, EN2)
begin
if EN2 ='1' then
DATA BUS <= DATA2;
else
DATA_BUS <='Z';
end if;
end process;
end RTL1;

EMA

DATAA
— DATA_BUS

DATAZ

len

architecture RTL2 of TRISTATE is
begin

DATA_BUS <= DATA1 when EN1 ='1' else 'Z;
DATA_BUS <= DATA2 when EN2 ='1" else 'Z,

end RTLZ;

In order to implement a proper internal bus system it must be guaranteed that only one driver is active while all others are set to high
impedance, i.e. driving 'Z'. Otherwise, if one bus member drives alogic '1' and another drives alogic '0', the current might, depending on
the actual technology, increase beyond acceptable levels and probably result in a permanent damage of the device. This overlap of active
drivers may be caused by different propagation delays, that means the deactivation of one driver takes more time than the activation of
another one. As a consequence two drivers are active. Even if the delays are balanced so that everything works properly, a change to
another technology will likely induce problems with the delays.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_202.htm [29/12/2001 13:08:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_203.htm

§;@© LRS - UNI Erlangen-Nuremberg
Problems with Internal Bus Structures

Bus with tristate drivers

O
— Bl
02
“Tene
Waveform
EM
09 B,
EN2 -
D2 b
BUs 7 O 02 il
D1 and DEW

Different propagation
delays

A bus controller has to
guarantee that at most
one driver is active on
the bus

Technology
dependency

Because of the different propagation delays for rising and falling edges one can not assure that only one driver is active at afixed time.
Multiplexers are used to avoid this problem.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_203.htm [29/12/2001 13:09:04]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_204.htm

. ::J© LRS- UNI Erlangen-Nuremberg

Portable and Safe Bus Structure

. Multiplexer instead
of tristate driver

eliminate internal . Bidirectional I/O pad

bus . Benefit
. Three internal n Safe circuit
signals » Portable and

(DIN, DOUT, testable
DOUT_EN)

D _ENZ
— Dz 1 [
oped oenal = Wz x =
BUS -
* MODLILEZ
DOUT EN
O EM1
D EMx] [
MC‘DULE'I

An dternative design structure avoids the problems associated with tristate signals: Multiplexers, driven by the enable signals, guarantee
that only one driver exists per signal. Bidirectional signals are eliminated internally by splitting the original bus into two parts. The
bidirectional communication with the outside world is done by special I/O pads, i.e. the core structure represents a safe circuit that is fully
testable and easily ported to other technologies.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_204.htm [29/12/2001 13:09:10]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_205.htm

@© LRS- UNI Erlangen-Nuremberg

4.3.5 Example of a Multiplier

AT ——

Ay —m :Ej . 2X 2 bit multiplier
Multiplier L &) inputs:

B1 — _

80— — = O Al, AO, B1,B0O: 2 bit

o outputs:
C3,C2,C1, CO: 4 bit

entity MULTIPLIER is

port (_
AO:in bit: . _3d|fferent VHDL
Al:in bit: Implementations
BO :in bit; > Function table
(83(1) " tbtl)tt 1 Synthesis "by hand"
C1 : gat b:t: (boolean functions for
C2 : out bit; LIS QUpLILS) |
C3 : out bit); o Use of VHDL integer
end MULTIPLIER; types and operators

Different VHDL coding styles shall be demonstrated with a simple module that has to cal culate the result of the multiplication of two 2-bit
numbers. The maximum value of each input is 3, i.e. the maximum output value is 9 which needs 4 bitsin abinary code. Therefore, four
input ports and four output ports of data type 'bit' are required. The same entity shall be used for all different implementations.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_205.htm [29/12/2001 13:09:15]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_206.htm

£
"@© LRS- UNI Erlangen-Nuremberg

Multiplier Function Table

al a0 bl b0 c3 c2
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 1
1 0 1 1 o) 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 1

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_206.htm (1 of 2) [29/12/2001 13:09:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_206.htm

1 1 1 1 1 0 0 1

The most direct approach is viathe function table of the multiplications. The behaviour of acombinational logic block is completely defined
by listing the result for all possible input values. Of course, the function table is usually no the most compact representation.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_206.htm (2 of 2) [29/12/2001 13:09:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_207.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

Multiplier Minterms -- Karnaugh Diagram

0 @ w
0
1
al al = |
g comale
NIEY M
b1 b1 c0= alb0
¢l =alaThl + albObl +
0
@ a0 @ a— alzaib0 + albob]
c? = alb1bl + alalbi
Q1)
al - al @ c3 = alalbib0
=1 bo b0
b1 b1

The function table of this 2x2 bit multiplier leads directly to the four Karnaugh diagrams of the output signals. The bars on the side of the
squares indicate those regions where the corresponding input bit is'1'. All '1's of the output signals are marked in the corresponding
diagrams. By combining adjacent '1's, the minimal output function can be derived.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_207.htm [29/12/2001 13:09:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_208.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

Multiplier: VHDL Code using the Function Table

o An internal signal is
used that combines

architecture RTL_TABLE of MULTIPLIER is

signal A_B : bit_vector (3 downto 0); all in P ut si gn als
begin
AB <= AL&AD&BL&BO; o Theinternal signal is
MULTIPLY : A B
oo Y Process (A-8) generated
A B) o
Cas?mhén "ISOOO" => (C3,C2,C1,C0) <= "0000"; Concurrently’ l.e.Itls
hen "0001" => (C3,C2,C1,C0) <= "0000";
xhiﬂ "0010" => Eca,cz,chog <= "0000"; up dated whenever
when "0011" => (C3,C2,C1,C0) <= "0000"; the In put c han ges

when "0100" => (C3,C2,C1,C0) <= "0000";
when "0101" => (C3,C2,C1,C0) <= "0001";

when "0110" => (C3,C2,C1,C0) <= "0010"; o The function table is
when "0111" => (C3,C2,C1,C0) <= "0011"; realized as case

”h. "1100" => (C3,C2,C1,C0) <= "0000";
when "1101" > gcs,cz,(:l,co; <= "0011"; statement and thus
hen " "=> ,C2,C1, <= " e o o
When 111 -2 (C3.Ca GL.CO) <2 "2000" has to placed within a
d : .
o6 s TR process. The internal
end RTL_TABLE; signal is the only

signal that controlls
the behaviour.

Here the function table is coded in VHDL within a CASE statement.

To be able to examine all inputs at once in the CASE statement the signal are contatenated to a new signal 'A_B' within a concurrent signal
assignment. The process which reads the new signal 'A_B' must have this signal in the sensitivity list. Asthe concurrent signal assignment
to'A_B'issensitive to the input signals, the process sensitive to 'A_B' isindirectly sensitiv to the input signals. At least thesignal A_B is
temporary and will not be visible in the synthesised circuit.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_208.htm [29/12/2001 13:09:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_209.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

Multiplier: Minterm Conversion

architecture RTL_MINTERM
of MULTIPLIER is
begin

CO0 <= A0 and BO;

C1 <= (A0 and not Al and B1) or
(AO and not BO and B1) or

(A0 and not B0 and B1) or o The minterm functions
(A1 and BO and ot B1); are realized directly as
C2 <= (AL and B1 and not BO) or concurrent statements

(Al and not AO and B1);
C3 <= Al and A0 and B1 and BO;

end RTL_MINTERM,;

Here the output functions are written in VHDL. Principle we have synthesised the circuit by ourself as we have executed every step of the
synthesis.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_209.htm [29/12/2001 13:09:38]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_210.htm

;@© LRS- UNI Erlangen-Nuremberg

Multiplier

. Integer Realization

library IEEE;
use IEEE.NUMERIC_BIT.all;

architecture RTL_INTEGER
of MULTIPLIER is

signal A_VEC, B_VEC: unsigned(1
downto 0);

signal A_INT, B_INT: integer
range 0 to 3;

signal C_VEC: unsigned (3 downto
0);

signal C_INT: integer range 0to 9;

begin
A VEC <= Al & AOQ;
A_INT <= TO_INTEGER(A_VEC);
B VEC <=B1 & BO;
B_INT <= TO_INTEGER(B_VEC);

C_INT <= A_INT * B_INT;

C_VEC <= TO_UNSIGNED(C_INT,

4);

(C3, C2, C1, C0) <= C_VEC;
end RTL_INTEGER;

The NUMERIC_BIT
package provides all
necessary functions to
convert bit vectors to
Integer values and vice
versa

Internal signals are used
to generate bit vectors and
Integer representations of
the port signals. The bit
vectors shall be treated as
unsigned binary values.

The single bit input signals
are concatenated to
vectors and converted to
Integer data types

The multiplication is
realized via the standard
VHDL operator

The size of the target
vector must be specified
when converting integers
back to bit vectors

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_210.htm (1 of 2) [29/12/2001 13:09:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_210.htm

o Finally, the bit vector
elements are assigned to
the output ports

Last, the bits are converted to integer values and the multiplication isimplemented with the aid of the VHDL multiplication operator ™"
Internal signals are used to hold the data values in different data formats (vectors, integers).

The minterm realization is very tedious and is performed by the synthesis tool automatically when the function table is parsed. The most
elegant solution is the integer implementation as the function of the code is clearly visible and not hidden in boolean functions or in
hardcoded values like in the other examples. The use of 'bit' type ports, however, is very awkward. It is better style to use 'unsigned’ bit
vectors or ‘integer’. Additionally, the conversion of the bit vectorsto ‘integer' is not necessary as the arithmetic operators, including *' are
overloaded in the 'numeric_hit' package.

The synthesis result should be identical in al three cases.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_210.htm (2 of 2) [29/12/2001 13:09:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_211.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.3.6 Synthesis of Operators

. Operator structure
o Discrete gates
o Macro cell from the library

. Operator architecture (e.qg. ripple-carry, carry-
look-ahead etc.)

o Specific comments for the synthesis tool
contained in the VHDL code

o Optimization based on time- / surface-defaults

Based on the operator symbol, the synthesis knows about the desired functionality. Depending on the target technology and the
corresponding library elements either a sort of submodule which performs the necessary operationsis created out of standard cells, or a
macro cell that has already been optimized by the manufacturer isinstantiated in the netlist. If alternative implementations exist, e.g. ripple-
carry or carry-look-ahead, the decision will be made according to the given speed and area constraints. Sometimes, the user may influence
the synthesis process viatool options or special VHDL comments that are evaluated by the software.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_211.htm [29/12/2001 13:09:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_212.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

Synthesis Results

. Step 1: Conversion into a generic netlist

o VHDL -> either boolean equations (more or less

complicated)
or the tool recognizes a complex function

. Step 2: Optimization

. Depends on the tool: all three examples provide
the same result

A E

e

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_212.htm [29/12/2001 13:09:52]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_213.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.3.7 Example of an Adder

IPackage with “+" functions |

entity ADD is
port (A, B :in integer range 0 to 7;
Z : out integer range 0 to 15);
end ADD;

library VENDOR_XY;
use VENDOR_XY.p_arithmetic.all;

entity MVL_ADD is

architecture ARITHMETIC of ADD is X
port (A, B : in mvl_vector (3 downto 0);

begin _ _
Z<=A+B: Z :out r_nvl_vector (4 downto 0));
end ARITHMETIC; il Bl Jafole;
architecture ARITHMETIC of MVL_ADD is
begin
Z<=A+B:
end ARITHMETIC;
Advantages of arange A B

declaration with integer types:
a) During simulation: check for
"out of range..."
b) During synthesis: only 4 bit bus
width

Y ou could follow the same steps shown above with the multiplier when implementing an adder. But as we aready know the smartest way
of coding an adder in VHDL isto use integer types and the operator '+'. The number of bits per port signal is determined by the range
constraint. The operator "+" can be transferred into the function table and into boolean expressions, i.e. gates, by a synthesistool.
It is more complicated when using self defined data types (non integer). The VHDL standard as stated in the LRM (Language Reference
Manual) predefines such arithmetic operators only for INTEGER and REAL datatypes. Therefore it is necessary to describe a new "+"
operator in VHDL.
This new function (with the same name "+", but with new parameters) might look like:

function "+"(L: mvl_vector; R: mvl_vector) return mvl_vector is

constant length: INTEGER := R'length + 1;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_213.htm (1 of 2) [29/12/2001 13:09:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_213.htm

begin
-- cdculateresult =L + R
return result;

end;.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_213.htm (2 of 2) [29/12/2001 13:09:57]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_214.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.4 Sequential Logic

. Areset mechanism is required in hardware to
Initialize all registers

. Asynchronous reset behaviour can be modeled
with processes with sensitivity list, only

process
begin IMNPUT —— —— DATA
wait until CLK event and CLK="1"; -- not recommended

DATA <= INPUT ;
end process ; CLk —= [

process(CLK,RESET)

begin
if (RESET = "1") then INPUT — — DATA
DATA<=0;
elsif (CLK event and CLK="1") then -- correct CLK —d =
DATA <= INPUT ;
end If RESET]

end process ;

Sequential logic isthe general term for designs containing storing elements, especialy Flip Flops. While al signals can beinitialized prior
to simulation by specifying default values, an explicit reset mechanism is necessary to guarantee that the designs behaves the same way
whenever it is powered up. Usually, a dedicated reset signal is used for this purpose. Please note that asynchronous behaviour can be
model ed with processes with sensitivity list, only, i.e. the process has to react upon the clock and the reset signal.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_214.htm [29/12/2001 13:10:02]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_215.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.4.1 RTL - Combinational Logic and Registers

CLK , p—
LOGIC_A: process c 5 -
e “CEK S . Signal assignments in clocked
Logic A | processes infer Flip Flops

end process LOGIC_A;

| o LOGIC_A: logic + Flip Flops
LOQIC_B. process (ST)
e » LOGIC_B: purely
en process LOGIC_B: combinational logic
o LOGIC_AB: Flip Flops at the

LOGIC_AB: process

begin o outputs of "Logic A" and
wait until CLK event and CLK="1";
-- Logic A and Logic B " LogiC B"

end process LOGIC_AB;

=>wrong implementation

Additionally, al signals that may receive new values within a clocked process infer Flip Flops. Though it is recommended from a theoretic
point of view that registers and combinational logic are modeled with separate processes, it is often convenient to place the calculation of
new Flip Flop valuesin the same process. Postprocessing of register values, however, has to be performed within another process or with
concurrent statements.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_215.htm [29/12/2001 13:10:07]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_216.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.4.2 Variables in Clocked Processes

VAR_1: process(CLK)
variable TEMP : integer;
begin

if (CLK'event and CLK ="'1") then
TEMP := INPUT * 2;

OUTPUT_A <= TEMP + 1 . Registers are generated for all
OUTPUT_B <= TEMP + 2; X .
end i variables that might be read

end process VAR _1;

before they are updated

VAR_2: process(CLK)

oot . How many registers are
if (CLK'event and CLK ='1") then g en erated ’)

OUTPUT <= TEMP + 1;
TEMP = INPUT * 2;
end if;
end process VAR _2;

The hardware implementation of variables depends on their use in the process. The VHDL language guarantees that variables still hold
their old values when a process is executed again. If this valueis not used, however, because it is always updated prior to its use, a storing
element will become redundant. Consequently, Flip Flops are infered for variablesin clocked processes only if they are read before they
will be updated.

Inthe VAR _1 process, the variable is aways set to INPUT*2 whenever an active clock edge is detected. Thus, TEMP is treated as shortcut
for the expression and is not visible in the final netlist. In VAR _2, however, the value of TEMP is used to calculate the new value of the
OUTPUT signdl, i.e. aregister bank (integer: at least 32 bit) will be generated.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_216.htm [29/12/2001 13:10:12]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_217.htm

%
‘@ © LRS- UNI Erlangen-Nuremberg

Example

process
variable LFSR : bit_vector(3 downto 0);
begin
wait until CLK event and CLK="1";
LFSR(0) := INPUT;
LFSR(3) := LFSR(2);
LFSR(2) := LFSR(1);
LFSR(1) := LFSR(0); .
()= LPSRO) How many registers are generated?
OUTPUT <= LFSR(3);
end process;

Three FlipFlop will be implemented. One for the signal OUTPUT, which is driven within the clocked process. Two FlipFlops will be
implemented for the variables LFSR(2) and LFSR(1), as they are read before they are driven.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_217.htm [29/12/2001 13:10:17]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_218.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5 Finite State Machines and VHDL

. State Processes
. State Coding

. FSM Types
1 Medvedev
- Moore
o Mealy
1 Registered Output

In this chapter, the different types of finite state machines, their graphical representation and ways to model them with VHDL will be
shown. Furthermore only synchronous automatons are assumed.

Generally every finite state machine can be described either by one single or by two separated processes. | mplementation guidelines and
advantages or drawbacks of the different variants will be given.

The actual states of a state machine should generally be described by descriptive names. This can be achieved by use of an enumeration
type whose values are these names. Later in the synthesis process, these names have to be mapped to a binary representation. Thisstepis
called state encoding.

There are several versions of finite state machines. The standard versions known in theory are Medvedev, Moore and Mealy machines.
However, there are far more versions than these three. It is for example recommended for several reasons to place storing elements

(registers, Flip Flops) at the module outputs. By doing this, additional versions of finite state machines can be build, which will be shown
later.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_218.htm [29/12/2001 13:10:21]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_219.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

4.5.1 One "State" Process

State STATE
Registers

FSM_FF: process (CLK, RESET)
begin
if RESET="1' then
STATE <= START : RESET
elsif CLK'event and CLK="1' then
case STATE is
when START =>if X=GO_MID then
STATE <= MIDDLE ;
end if ;
when MIDDLE =>if X=GO_STOP then
STATE <= STOP ;

» MIDDLE

end if ; X= =
when STOP =>if X=GO_START then go_start go_stop
STATE <= START ;
end if ;
when others => STATE <= START ;
end case ;
end if ;

end process FSM_FF ;

Three different notations of a simple state machine are shown in the picture.

The graphic on the top depicts the automaton as an abstract block diagram which contains only the relevant blocks and signals of interest.

Thefirst block (oval) represents the logic of the automaton and the second block (rectangle) the storing elements.

In the bottom right graphic, the automaton is described by a so called bubble diagram. The circles mark the different states of the

automaton. If the condition connected to the corresponding transition (arrow) evaluates to ‘true’ at the time the active clock edge occurs,
the automaton will change its state. Thisis a synchronous behavior. Here the asynchronous reset is the only exception to this behavior. At

the time the reset signal gets active, the automat changes to the reset state START immediately.

In the bottom left graphic, the corresponding part of the VHDL source code is shown. The automaton is described in one clocked process.
Thefirst IF branch contains the reset sequence. In the second branch, the EL SIF branch, the rest of the automaton is described. In the
CASE statement which models the state transitions, the current state of the automaton is detected and it is examined whether input values

are present that lead to a change of the state.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_219.htm [29/12/2001 13:10:27]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_220.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

4.5.2 Two "State" Processes

State STATE
Registers

FSM_FF: process (CLK, RESET) begin
if RESET="1"' then
STATE <= START ;
elsif CLK'event and CLK="1" then
STATE <= NEXT_STATE ;
end if;
end process FSM_FF ;

FSM_LOGIC: process (STATE , X)
begin
NEXT STATE <= STATE ;
case STATE is
when START =>if X=GO_MID then
NEXT_STATE <= MIDDLE ;
end if ;
when MIDDLE => ...
when others => NEXT _STATE <= START ;
end case ;
end process FSM_LOGIC ;

MIDDLE

go_stop

Now, the same automaton is used to show an implementation based on two VHDL processes.

The signal NEXT_STATE is examined explicitly thistime. It isinserted in the block diagram between the logic and the storing elements.

In the bubble diagram no changes have to be made at this point, as the behaviour remains the same.

The VHDL source code contains two processes. The logic for the NEXT_STATE calculation is described in a separate process. The result
isaclocked process describing the storing elements and another purely combinational process describing the logic. In the CASE statement,
again, the current state is checked and the input values are examined. If the state has to change, then NEXT_STATE and STATE will

differ. With the next occurence of the active clock edge, this new state will be taken over as the current state.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_220.htm [29/12/2001 13:10:33]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_221.htm

;@© LRS- UNI Erlangen-Nuremberg

4.5.3 How Many Processes?

. Structure and Readability

1 Asynchronous combinatoric ?
synchronous storing elements
=> 2 processes

1 FSM states change with special input
changes

=> 1 process more comprehensible

o Graphical FSM (without output equations)
resembles one state process
=>1 process
. Simulation

o Error detection easier with two state
processes
=> 2 processes
. Synthesis

1 2 state processes can lead to smaller
generic net list

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_221.htm (1 of 2) [29/12/2001 13:10:38]

http://www.vhdl-online.de/~vhdl/tutoria/englisch/t_221.htm

and therefore to better synthesis results
=> 2 processes

Automaton descriptions with either one or two separated processes were shown previously. Depending on the own liking and experiences,
either one of the two versionsis preferred by desingers.

Generally there are different advantages and disadvantages:

Structure and readability

The VHDL model should represent in away the hardware which has to be created out of the VHDL source code. So the structure should
be mirrored in the VHDL code. As purely combinational logic and storing elements are two different structural elements, these should be
separated, i.e. the VHDL source code should be split into two processes.

But one is normally interested in the actual changes of the states of the automaton, only. These changes can then be observed from the
outside of the module. The one process description is more adequate for this view. Additionally, the graphical description, which is often
used as a specification for the VHDL model, resembles more a one process than a two process description.

Simulation

It will be easier to detect possible errors of the VHDL model in the waveform if one has access to the intermediate signal NEXT_STATE.
So the time and |ocation where the error occurs for the first time can be determined exactly and with that the source of the error. The two
process version is therefore the better version.

Synthesis

The synthesis algorithms are based on heuristics. Therefore it isimpossible to give universally valid statements. But several synthesis tools
tend to produce better results (no sophisticated synthesis script assumed), in the meaning of less gate equivalents, when two processes are
used to describe the automaton because they are closer related to the hardware structure.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_221.htm (2 of 2) [29/12/2001 13:10:38]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_222.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.4 State Encoding

type STATE_TYPE is (START,

MIDDLE, STOP) . State encoding responsible
signal STATE : STATE_TYPE ;
for safety of FSM

START ->"00"
MIDDLE ->"01"
STOP ->"10"

. Default encoding: binary

START ->"001"

MIDDLE > 010" . Speed optimized default
encoding: one hot

A if {Id# of states) * ENTIER[Id(# of states)] }
=> unsafe FSM!

A finite state machine is an abstract description of digital hardware. It is a synthesis requirement that the states of the automaton are
described as binary values or the synthesis tool itself will transform the state namesinto a binary description on his own. This
transformation is called state encoding.

Most synthesis tools select a binary code by default, except the designer specifies another code explicitly. The states of the automaton
above could be encoded by a synthesis tool with the values"00", "01" and "10". However other possihilities of state encoding exist. A
frequently used code which is needed for speed optimized circuits is the "one-out-of-n" code which is aso called one hot code. Here, one
bit is used for every state of the automaton. E.g. if the automat has 11 states, then the state vector contains 11 bits. The bit of the vector
which is set to '1' represents the current state of the automaton.

A problem arises for the encoding of the states which can not be ignored: If the automat has n states, one needs ENTIER[Id(n)] Flip Flops
for abinary code. Thisisthe smallest integer value bigger or equal to the result of the binary logarithm of n. In the example above, two
FFs are needed for a binary code. Asthe automat consists only of 3 states and two FFs can represent up to 4 states ("00", "01", "10", "11"),
thereis oneinvalid state which leads to an unsafe state machine, i.e. the behaviour of the design when accidentally entering this state is not
determined.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_222.htm (1 of 2) [29/12/2001 13:10:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_222.htm

Ususally, a mechanism has to be provided which corrects the erronous entering of an invalid state.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_222.htm (2 of 2) [29/12/2001 13:10:43]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_223.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.5 Extension of Case Statement

type STATE_TYPE is (START, MIDDLE, STOP) ;
signal STATE : STATE_TYPE ;

case STATE is
when START =>...

when MIDDLE => - - - o Addlﬂg the "when
when STOP = ... n .
others" choice

when others = ...

end case ;

A
JNot simulatable;
In RTL there exist no other values for STATE

Not necessarily safe;
some synthesis tools will ignore "when others"
choice

The most obvious method to intercept invalid states is to insert a'when others' branch in the CASE statement. With this branch, all values
of the examined expression (here: STATE) that are not included in the other branches of the CASE statement are covered. The intention is
tointercept al illegal states and to restart the automaton with its reset state (here: START).

VHDL isavery strict language. Therefore, during simulation, only the values defined by the type definition of asignal can be accessed.
For this reason, invalid states do not exist in the simulation and consequently can not be simulated. Furthermore the synthetisized circuit is
also not necessarily safe. Some synthesis tools ignore the ‘when others' branch as, by definition, there are no values to cover in this branch.

Inserting a 'when others' branch into the case statement is not a good solution for creating a safe state machine.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_223.htm [29/12/2001 13:10:49]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_224.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

4.5.6 Extension of Type Declaration

| . Adding dummy
type STATE_TYPE is (START, MIDDLE, STOP, DUMMY) ;

signal STATE : STATE_TYPE ; values

case STATE is
when START => ...
when MIDDLE => ...
when STOP = oo

. Advantages:

when DUMMY => ... --or when others
end case ; o Now simulatable
o Safe FSM after
synthesis

Al

{2**(ENTIER [Id(n)]) -n} dummy states
(n=20 => 12 dummy states)

] . .
Changing to one hot coding =>

unnecessary hardware
(n=20 => 12 unnecessary FlipFlops)

The second way is to define additional values for the enumeration type. So many values have to be added that after state encoding invalid
values can no longer occur. If an automaton contains for example 20 states, 5 Flip Flops are needed with a binary code. With 5 FFs one
can distinguish 32 values (2"5=32). Thus, 12 additional values have to be added to the enumeration type of the state machine.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_224.htm (1 of 2) [29/12/2001 13:10:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_224.htm

By adding additional values to the enumeration type, one gets a state machine whose behaviour in case of errors can now be simulated.
The synthesis also results in a safe circuit representing the original state machine. However this method is somewhat awkward as one has
to insert many so called dummy states eventually. Furthermore, this method is only suitable when binary coding for the states of the
automaton is used. If one has added for exampl e these 12 additional values for a safe state machine, he will get 12 redundant Flip Flop
when he switches the state encoding to the one hot code as an extra bit is needed for every state.

It isimpossible to make a state machine safe by inserting additional values for dummy states if a one hot code is used. Every new value
would lead to an additional FF and therefore would noly increase the amount of invalid state values after synthesis.

Therfore the method of inserting additional values into the enumeration type is not a good solution, too, asit is applicable to binary state
encoding, only.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_224.htm (2 of 2) [29/12/2001 13:10:55]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_225.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.7 Hand Coding

subtype STATE_TYPE is std_ulogic_vector (1 downto 0) ;

signal STATE : STATE_TYPE ;

constant START : STATE TYPE :="01";
constant MIDDLE : STATE_TYPE :="11";
constant STOP : STATE _TYPE :="00"

case STATE is
when START => ...
when MIDDLE => ---
when STOP => ...
when others => -
end case ;

Defining constants
Control of encoding
Safe FSM
Simulatable
Portable design

More effort

The best method of state encoding is hand coding, i.e. the designer decides by himself which code will be used.

Thisis done by using a vector type instead of an enumeration type. This vector type can based upon the 'std_(u)logic_vector' type for
exmple. The width of this vector depends on the code chosen. The state signal is now of this vector type, which is the reason for the term

"state vector"”.

In the next step, constants are defined which represent the corresponding states of the automaton. These constants are set to the state vector

values according to the selected code. With these constants, the code can be fixed by the designer and can not be altered by the synthesis

tool. This VHDL model isalso 100 percent portable. The behaviour in case of errors can be verified in a simulation as the state vector can
assume all values that might occur in real hardware, now.

The only drawback to mention is alittle more effort in writing the VHDL code. Thisis especially true when the code is changed. The hand

coding alternative is the best method to design a safe finite state machine and is furthermore portable among different synthesis tools.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_225.htm [29/12/2001 13:10:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_226.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.8 FSM: Medvedev

State STATE
Heqgisters

¥ -

. The output vector resembles the state vector:
Y=S

Two Processes

architecture RTL of MEDVEDEYV is One Process
beéin
REG process (CLK RESET) architecture RTL of MEDVEDEV is
ST be:q.i.n

-- State Registers Inference
end process REG ;

REG: process (CLK, RESET)
CMB: process (X, STATE) begin

-- State Registers Inference with Logic Block

begin ' end process REG ;
-- Next State Logic
end process CMB ; Y<=S;
Y<=S; end RTL ;
end RTL ;

The difference between the three types of state machines known in theory (Medevedev, Moore and Mealy machines) is the way the output
is generated.

In the Medvedev machine the value of the output isidentical with the state vector of the finite state machine. That means, the logic for the

output consists only out of wires; namely the connection from the state vector registers to the output ports. Thisis donein VHDL by a
simple signal assignment which is shown in the example above. Concurrent assigments are used here.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_226.htm [29/12/2001 13:11:04]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_227.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.9 Medvedev Example

architecture RTL of MEDVEDEV_TEST is
signal STATE,NEXTSTATE : STATE_TYPE ;

begin
REG: process (CLK, RESET)
begin
if RESET="1" then
STATE <= START : HESET
elsif CLK event and CLK="1" then \'\

STATE <= NEXTSTATE ;
end if ; START o0 MIDDLE

end process REG; -
CMB: process (A,B,STATE) begin w 11

NEXT_STATE <= STATE;
case STATE is
when START =>if (A or B)="0" then
NEXTSTATE <= MIDDLE ;

end if ; STOP
when MIDDLE => if (A and B)="1" then

NEXTSTATE <= STOP ; 01
end if ; STATE = Output
when STOP =>if (A xor B)="1" then

10 101 11

NEXTSTATE <= START ; subtype STATE_TYPE is std_ulogic_vector{1 downto O);
end if ; constant START STATE_TYPE = "00"
when others => NEXTSTATE <= START ; constant MIDDLE : STATE_TYFPE = "11"
end case ; constant STOP CSTATE_TYPE = "01",

end process CMB ;
-- concurrent signal assignments for output
(Y,Z) <= STATE ;

end RTL ;

Here, an example of a Medvedev machine is shown.

The bubble diagram contains the states of the machine (START, MIDDLE, STOP), the state encoding ("00", "11", "01"; see also the
constant declarations) and the state transitions. The so called weights (labels) of the transitions (arrows) determine the value of the input
vector (here the signals A and B) for which the corresponding state transition will be executed. For '10 | 01', the state transition is executed
when the input vector has either the value "10" or the value "01".

The functionality of the state machine is described in the VHDL source code on the |eft side. The version with two processes was sel ected.
One can see that the output vector is wired with the state vector by a concurrent signal assignment.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_227.htm [29/12/2001 13:11:11]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_228.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.10 Waveform Medvedev Example

1600
e
RESET]

& 0
B 1
Y] ff’ {'(
, 0 4 N .
= STATE(1:0% |00 (] 3 11 J o1 (]

. (Y,Z) =STATE => Medvedev machine

In the waveform one can see the progression over time of the signal values of the design during simulation. It is apparent that it must be a

Medvedev automaton, because the values of the output vector (represented by the two singals Y and Z) change synchronously with the
state vector.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_228.htm [29/12/2001 13:11:16]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_229.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.11 FSM: Moore

State
Hegisters

. The output vector is a function of the state
vector: Y =1(S)

Three Processes Two Processes
architecture RTL of MOORE is architecture RTL of MOORE is
beéi.n beéin
REG: -- Clocked Process REG: process (CLK, RESET)
S
CMB: -- Combinational Process e?—mState Registers Inference with Next State Logic

end process REG ;
OUTPUT: process (STATE)

begin OUTPUT: process (STATE)
-- Output Logic begin .
end process OUTPUT ; -- Output Logic

end process OUTPUT ;

end RTL ;
end RTL ;

Here, an example of a Moore machine is shown.

The value of the output vector is afunction of the current state. Thisis the reason for the second logic block in the block diagram, located
after the storing elements. This logic block holds the hardware which is needed to calculate the output values out of the current state of the
automaton.

Inthe VHDL source code, thislogic isimplemented with an own combinational process. As the value of the output vector depends on the
current value of the state vector, only, no other signals appear in the sensitivity list of the process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_229.htm (1 of 2) [29/12/2001 13:11:22]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_229.htm

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_229.htm (2 of 2) [29/12/2001 13:11:22]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_230.htm

© LRS- UNI Erlangen-Nuremberg

4.5.12 Moore Example

architecture RTL of MOORE_TEST is
signal STATE,NEXTSTATE : STATE_TYPE ;
begin
REG: process (CLK, RESET) begin
if R_ESET=‘1‘ then STATE <= START ; FESET
elsif CLK event and CLK="1" then
STATE <= NEXTSTATE ;
end if; end process REG ; m 00 @
CMB: process (A,B,STATE) begin =
NEXT_STATE <= STATE; oo | OO o111
case STATE is
when START => if (A or B)="0" then
NEXTSTATE <= MIDDLE ; 10| 01 11
end if ;
when MIDDLE => if (A and B)="1" then
NEXTSTATE <= STOP ; STOF
end if ;
when STOP =>if (A xor B)="1" then 101 01
I\(IjE_fXTSTATE <= START ; STATE (‘I",Z}
end if ;
when others => NEXTSTATE <= START ;
end case; end process CMB ; subtype STATE_TYPE Iz std_ulogic_vector 1 downto O);
-- concurrent signal assignments for output constant START - STATE TYPE :="00%
Y <= .1° when STATE=MIDDLE else 0" : constant MIDDLE - STATE_TYPE = "01";
7 <= 1" when STATE=MIDDLE constant STOP CSTATE_TYPE = "10%
or STATE=STOP else ,0";
end RTL ;

Again, the bubble diagram and the corresponding VHDL code are shown; this time for a Moore automaton. The difference to the
Medvedev automaton can be recognized in the difference between the state encoding and the corresponding values for the output vector.

Both values are specified in the bubbles. The vaues for the output vector (Y, Z) are the same as in the Medvedev automaton. However the
state enconding is how based upon a binary code.

In the VHDL source code, the ouput logic is not contained in a combinational process because of space limitation. Instead, itis
implemented via separate concurrent signal assignments. One can see that the output values are calculated out of the state vector values.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_230.htm [29/12/2001 13:11:28]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_231.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.13 Waveform Moore Example

120 | S T
ew L L
RESET 1]
A 1]
B 1
N] (’ f‘
. 0 o N 4
= STATE{1:0} |00 oo :j‘ 01 ”I' 10 oo

. (Y,Z) changes simultaneously with STATE =>
Moore machine

Again, the characteristics of the Moore automaton can be seen clearly in the waveform. The values of the output vector change
simultaneously with the values of the state vector. But this time the values of the output vector differ from those of the state vector.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_231.htm [29/12/2001 13:11:34]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_232.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

4.5.14 FSM: Mealy

State
Hedgisters

. The output vector is a function of the state

vector
and the input vector: Y =1{(X,S)

Three Processes Two Processes

beéin begin
REG: -- Clocked Process MED: process (CLK, RESET)
begin
CMB: -- Combinational Process -- State Registers Inference with Next State Logic

end process MED ;
OUTPUT: process (STATE, X)

begin OUTPUT: process (STATE, X)
-- Output Logic begin
end process OUTPUT ; -- Output Logic
end RTL ; end process OUTPUT ;
end RTL ;

Here, a Mealy automat is shown.

The value of the ouput vector is afunction of the current values of the state vector and of the input vector. Thisiswhy alineisdrawn in
the block diagram from the input vector to the logic block calculating the output vector. In the VHDL source code, the input vector is now
listed in the senisitivity list of the corresponding process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_232.htm [29/12/2001 13:11:40]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_233.htm

%
‘@© LRS- UNI Erlangen-Nuremberg

4.5.15 Mealy Example

architecture RTL of MEALY_TEST is

signal STATE,NEXTSTATE : STATE_TYPE ; o

begin Y <=0 Y <= A nor B;
REG: - - - --clocked STATE process Z <= A and B; Z<="1
CMB: - - - -- Like Medvedev and Moore Examples

START 00 MIDDLE
OUTPUT: process (STATE, A, B)
begin oo 01

case STATE is

when START =>
Y<="0; RESET 10101 11
Z<=AandB;
when MIDLLE =>
Y <= AnorB:; STCOF
Z<="1";
when STOP => 10
Y <=Anand B ;
Z<=AorB;
when others => Y <= A nand B;
Y<="0: Z<=AorB;
Z<='0"; subtype STATE_TYPE iz std_ulogic_vector(1 downto O,
end case; constant START STATE_TYFPE = "00";
end process OUTPUT; constant MIDDLE - STATE_TYPE = "01";
end RTL : constant STOP CESTATE_TYPE = "10%

In contrast to the other two types of automatons decribed before, the output values can not be simply written into the corresponding state
bubble here. Complete functions have to be written down which differ from state to state. These functions are often "hidden™ behind the

state bubble, instead of explicitly displayed in the graphic.

In the VHDL source code, the calculation of the ouput values is described with concurrent signal assignments, again. One can see that the
input signals appear on the right side of the assignments and are therefore part of the output function, now.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_233.htm [29/12/2001 13:11:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_234.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.16 Waveform Mealy Example

0 =0 100 150
160IIIIIIIII|IIIIIIIII|IIIIIIIII|I

ew L L

RESET 0

A, 1]

))

B 1 4 I K

Y 1] pﬁ! £ I_"

z i \’ﬂ&# \?
aa

= STATE(1:0Y |00

R i

01 10 ;]’ aa

. (Y,Z) changes with input => Mealy machine

. Note the "spikes" of Y and Z in the waveform

1 FSM has to be modeled carefully in order to
avoid spikes in normal operation.

Again, one can see the characteristics of the Mealy automaton clearly in the waveform. The most remarkable feature is the fact that the
output values change together with the values of the input vector, sometimes. Furthermore, they change together with changes of the state
vector values, of course. As one can see, this can lead to so called spikes, i.e. signal pulses with a smaller width than the clock period. This
can lead to a misbehaviour in the blocks following thereafter. Of course, this has to be avoided and the designer must take specia care
when modeling a Mealy automaton in aform similar to the one described here.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_234.htm [29/12/2001 13:11:53]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_235.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.17 Modelling Aspects

. Medvedev is too inflexible
. Moore is preferred because of safe operation

. Mealy more flexible, but danger of
1 Spikes

o Unnecessary long paths (maximum clock
period)

s Combinational feed back loops

t State Hexl

Outpu . Stake

"w + Ll]‘[?:i][: STATE Hegmtgrs HEXT Ll]gi[: al— —
STATE v Feed back loop

) Y
State BATE l:l,ltp ut I -
Hegisﬂ

There are different reasons for a designer to use one or other version of the three different automatons.

The advantage of the Medvedev automaton is the reduced amount of hardware needed to implement the automaton and the output logic.
Asthe output values are identical with the state vector, no additional combinational logic is heeded and the values of the output vector are
changed together with the active clock edge. But the designer has to select the code for the state vector by himself. This means that the
designer hasto put more effort into the design and the design offers no flexibility, which will be negative if the code for the state machine
has to be changed.

The Moore automaton is frequently used because this type of automaton is more flexible than the Medvedev automaton and the output

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_235.htm (1 of 2) [29/12/2001 13:11:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_235.htm

calculation depends on the state vector, only. By this pure dependence on the state vector, the output values are calculated in arelatively
safe manner, which means, the new values are stable long before the next active clock edge occurs and spikes are avoided. A disadvantage
which becomes sometimes relevant is, that a change of the input vector needs on complete clock cycle to affect the output vector (first, the
state vector hasto change before the output vector can change). Sometimes, this delay of time is unaccetable and consequently the Moore
automaton can not be used.

The Mealy automaton is the most flexible of the automatons presented. As the output vector depends on the state vector and the input
vector, it can react on every change of avalue. But there are also some disadvantages. Spikes can occur, for example, which has been
shown on the dlide before. If two Mealy automatons are connected in arow then there is the danger of combinational feedback |oops, as
demonstrated in the picture above. Additionally, long paths are created. Two logic block are connected in arow, so a change of avaue
needs arelatively long time to propagate through the logic to the next Flip Flops. So one has to choose arelatively large clock period.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_235.htm (2 of 2) [29/12/2001 13:11:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_236.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.18 Registered Output

. Avoiding long paths and uncertain timing

. With one additional clock period

%

State STATE Output Outp_:-ut Y Iealy
Registers Logic Registers

. Without additional clock period (Mealy)

- optional
L
"""""" L
State . { Output Output | ¥
Registers o Logic Registers
STATE

As shown before, combinational feedback loops can occur if two Mealy automatons are connected in arow. These loops can be avoided if
the outputs are "clocked", i.e. if the outputs are connected to Flip Flops. With this, the feedback loop is broken up.

Generally, clocked outputs are used to avoid long paths between Flip Flops and thus assure a safe timing behavior. By clocking all outputs,
the output logic is separated from the next logic block of the subsequent module and by this the path through logic elementsis shortened
and higher clock frequencies are possible. Furthermore, synthesis tools often have problems when optimizing logic paths which pass
module boundaries for speed. By clocking the outputs, these problems can be solved. Another advantage is that the successive module can
work with safe input data. "Safe" means that the data changes with the active clock edge, only, and thus spikes are ruled out. So the
designer of the successive modul has more optionsin designing the module.

Two versions are known for clocking the output. In the first version, an additional delay of one clock period is created. Here, Flip Flops are
simply inserted between the output logic and the state machine outputs without any other changes. By this, the new values of the outputs
arrive after the next active clock edge. However, this delay, sometimes, can not be accepted.

In the second version, Flip Flops are present at the state machine output and the output logic uses the NEXT_STATE signal in addition to

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_236.htm (1 of 2) [29/12/2001 13:12:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_236.htm
the state vector. For bigger state machines, this can lead to incomprehensible dependencies and relatively long paths as two logic blocks

are connected in arow, again. But this version of a state machine is the most flexible and the fastest (in terms of delay) which provides
safe (clocked) output signals.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_236.htm (2 of 2) [29/12/2001 13:12:06]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_237.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.19 Registered Output Example (1)

architecture RTL of REG_TEST is
signal Y |, Z |: std_ulogic ;
signal STATE,NEXTSTATE : STATE_TYPE ;

begin
REG: - - - -- clocked STATE process
CMB: - - - -- Like other Examples

OUTPUT: process (STATE, A, B)
begin
case STATE is
when START =>
Y Ik='0";
Z I<=AandB;

end process OUTPUT

-- clocked output process
OUTPUT_REG: process(CLK)
if CLK'event and CLK="1' then
Y<=VY_I;
Z2<=27Z_1;
end if ;
end process OUTPUT_REG ;
end RTL ;

begin

Y <=0 Y <= A nor B;
Z <= A and B; Z<="1";
UZUFVE=‘U(;:E_ m
START " AN D DLE
00
RESET =AnorB;
10]011Y <= A nand <=1
f==AorB;

Y <= A nand B;
Z<=AorB;

In the picture, the example of the Mealy automat is shown again.

In the bubble diagram, the assignments which were hidden behind the states before are now explicitely connected to self loops.

Furthermore, the transitions between states also have signal assignments for the output signals. As transitions take place only when an
active clock edge occurs, it is clear that avalue is assigned to the output signals with every active clock edge, i.e. Flip Flops have to be

provided for the outputs.

Asthe signal assignments of the old state (which will be exited) are connected to the transitions, the output values depend only on the
current (old) state (STATE) but not on the new state (NEXT_STATE). Generally, the signal assignments can be hidden again behind the

states in the graphical diagram. For this, so called in-state actions for the self loops and exit-actions for the transitions are used.

Inthe VHDL source code, intermediate signals (Y_I, Z_|) are evaluated. The values of these signals depend on the input values and the

current state. In the following clocked process, the intermediate signals are connected to Flip Flops.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_237.htm [29/12/2001 13:12:11]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_238.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

4.5.20 Waveform Registered Output Example (1)

0 50 100 150
LW | v s rnnnonolonnnonoool oonnnnnnnlls
e | [0 L0 L0 L
RESET]
~ SN
B 1 \l)
W o o ,..: N /—TK
(e =) Nz
I= STATE(:0) | |00 oo h1 10 (]

. One clock period delay between STATE and

output changes.

. Input changes with clock edge result in an
output change.
(Danger of unmeant values

)

The wavform depicts the simulation results of the clocked Mealy automaton.

It can be sees clearly that the output values change one clock period after the change of the state vector. Furthermore, it can be seen that
changes of the input values affect the output values just when the next active clock edge occurs. All value changes of intermediate signals
occur only synchronously to the clock so that the state machine has afixed and well known behaviour.

Still, the modeling has to be carried out carefully. It is essential to consider the delay of one clock period between the changes of the state
vector and the output signals. If it isignored, the values marked in the waveform can lead to undesired behaviour in the subsequent

modules.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_238.htm [29/12/2001 13:12:18]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_239.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.5.21 Registered Output Example (2)

architecture RTL of REG_TEST2 is
signal Y _|, Z | : std_ulogic ;
signal STATE,NEXTSTATE : STATE_TYPE ;

begin
REG: - - - -- clocked STATE process
CMB: - - - -- Like other Examples

OUTPUT: process (NEXTSTATE , A, B)
begin
case NEXTSTATE is
when START =>
Y Ik=0";
Z I<=AandB;

end process OUTPUT

OUTPUT_REG: process(CLK)
begin
if CLK'event and CLK="1' then
Y<=Y_I;
Z2<=Z7Z1;
end if ;
end process OUTPUT_REG ;
end RTL ;

Y <= "0°; Y <= A nor B;
Z<=A and B; Z <=1
0fY <=AnorB;
START £<="1% { MIDDLE
Qa0
RESET 11.""'|"’¢=Anant§1 B:
-ln ﬂ-l .f'\llll'{= Z*‘~'=AOI'E,
== A and

Y <= A nand B;
Z<=AorB;

Again, the Mealy automaton from the previous examplesis used. Besides the self-loops that were already introduced before, signal

assignments for the state machine outputs are connected to the state transitions. By this, assignments to output signals appear only on

clocked transitions and Flip Flops have to be provided for the outpults.

The assignments connected to the transitions, however, are equivalent to the assignment that leads to a new target state. Therefore the
output values depend on the current input values and on the new state (NEXTSTATE). This affects the VHDL sourcecode: The values of
the intermediate signals are cal culated from the values of the current inputs and the current successor state. Again, Flip Flops are infered

for the intermediate signals with another process.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_239.htm [29/12/2001 13:12:23]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_240.htm

;@© LRS- UNI Erlangen-Nuremberg

4.5.22 Waveform Registered Output Example (2)

o o
U LT LT L L
RESET 1]

& 0
B 1
b 1] T ='_,',.. |"'
B 1 D —~—
= STATE(1:0% (|00 oo /} 01 J] 10 L‘:_] oo

. No delay between STATE and output
changes.

. "Spikes" of original Mealy machine are gone!

The waveform shows the simulation results of the second version of the clocked Mealy automaton. The output values change
synchronously with the state changes now and undesired temporary values are eliminated.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_240.htm [29/12/2001 13:12:29]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_241.htm

Z
"@© LRS - UNI Erlangen-Nuremberg

4.6 Advanced Synthesis

constant C:=5 . Constant C identical in
l all referencing units
entity A . Generic G different but
signal S p— constant within each
entity
entity Z .
. Inputsignal S
G:=17 TG==12 set/changed in operation
generic G (different operation

modes)

Once you have finished a design, you hope that you will be able to use at |east parts of the VHDL code in other designs aswell. Thisis
certainly possible aslong as you can adopt the VHDL code via copy/paste. But if the function has to be changed dlightly, the designer will
have to adapt the VHDL code. To make this adaption easier and less error-prone, VHDL provides several ways of parameterizing a design
or amodule, that means the behaviour description depends on some parameters. The value of these parameters can then be set differently
in different implementations or even on the fly during operation. The intention is that by changing the parameter the behaviour will change
accordingly.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_241.htm [29/12/2001 13:12:35]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_242.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.6.1 Parameterization via Constants

package T_PACK is

constant MAX_VALUE :integer :=
15;
end T_PACK;

use WORK.T_PACK.all;

entity COUNTER_C is

PO e ter . Constants are fixed for the
. buffer integer range O]
s ST complete design
S RS . Instantiations of COUNTER_C
begn produce exactly the same
if CLK'event and CLK='1' then
if RESET="1" then counter
COUNT <= 0;

elsif ENABLE="1' then
if COUNT < MAX_VALUE then

COUNT <= COUNT + 1 . Parametric signals in port
else map

COUNT <=0;
end if;
end if;
end if;
end process;
end RTL;

One way to parameterize a design isto use constants. The example shows a counter with reset and enable. The counter is free wheeling
when enabled. The maximum value (MAX_VALUE) is set by a constant which is defined and given avalue in the package T_PACK.
Wherever COUNTER_C isbuilt in (by use of acomponent declaration and component instantiation) the counter range is fixed (from 0 to
the value specified in the package).

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_242.htm [29/12/2001 13:12:40]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_243.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.6.2 Parameterization via Generics(1l)

entity COUNTER_G is
generic (MAX_VALUE : integer := 15);
port(... -- default value
COUNT : buffer integer
range 0 to MAX_VALUE);

end COUNTER_G; . Generics are defined in
Elg;:ecture RTL of COUNTER_G is th e ent | ty d ec | ara“ on
process(CLK)
begin 1
{ CLicevent and CLK=" then . Treated as constants in
Tt the architecture
elsif ENABLE="1' then
if COUNT < MAX_VALUE then
COUNT <= COUNT + 1 . Default values
° sCeOUNT <=0; . . .
endt . Parametric signals in
engnp(:IrciJEess; p O rt m ap
end RTL;

If you want to instantiate counters with different counter rangesin one design you will have to switch to generics. Generics are defined like
the portsin the entity definition and receive their values during the step of component instantiation. Therefore, in addition to the port map,
ageneric map is required to provide these values. Generics may be given adefault value in the generic clause which will be used if the
generic is not explicitly assigned avalue.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_243.htm [29/12/2001 13:12:45]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_244.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.6.3 Parameterization via Generics(2)

entity TWO_COUNTERS IS

port(...);
end entity;

o . Different values for different
TWO_COUNTERS is Instantiations

component COUNTER_G

generic (MAX_VALUE:integer :=
15);

port(...);
end component;

Begin o Instantiation with default

COUNTERL1 : COUNTER_G
port map (...); -- MAX_VALUE Val ue
with default value

COUNTER2 : COUNTER_G
generic map (MAX_VALUE =>

31) . - c c
port map (...); o Instantiation with generic
end RTL; map

A Every instantiation needs a label
£

Only generics of type integer are supported
by synthesis tools

The component declaration is as usual except that you must not forget the generic clause.

But how does the instantiation of COUNTER_G work? If default values were defined for the generics, the component instantiation does
not need a generic map (cf. COUNTERL). Of course, the default value can be overwritten by setting the generic to an explicit valuein the
generic map of the component instantiation (cf. COUNTER?2).

The most useful feature is that entities using generics can be instantiated with different values for the generics within the same module.
However only integer type generics are synthesizabl el

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_244.htm [29/12/2001 13:12:50]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_245.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.6.4 GENERATE Statement

enity GENERATE_COUNTER I3 . 'for generate' needs a label

end entit;};

architecture RTL of _ ° Hloop" for Concurrent

" componeni COUNTER statements

b bt (component instantiations,
ort(...); c c

Sl - signal assignments)
i T — - several instantiations of
e T the same component

2++K-1) _

portmap(..); o different values for

end generate; .
generics

end RTL;

5 loop variable implicitly
declared

When a component has to be instantiated several times, the way described above would be exhaustive. The generate statement provides a
shortcut to this problem. Within a'for ... generate ..." loop concurrent statements can be iterated. This applies not only to repeated
component instantiations but also to concurrent signal assignments. The loop variable is declared implicitly, again, and can only be read,
e.g. as generic value.Value assignments will lead to an error.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_245.htm [29/12/2001 13:12:54]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_246.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.6.5 Conditional GENERATE Statement

entity GENERATE_COUNTER IS

port(...);
end entity;

architecture RTL of GENERATE_COUNTER is
component COUNTER_G
generic (MAX_VALUE:natural := 15);
port(...);
end component;

n . If condition is true then
eC?EN:forKin 1to 8 generate generate

COND1 : if K<=5 generate
COUNTER : COUNTER_G .
generic map (MAX_VALUE => 2**K-1)
SIS e . No elsif / else paths
end generate;

COND2: if K>5 and FLAG generate . Each generate needs a

MAX : COUNTER_G
generic map (MAX_VALUE => 31) label
port map (...);
end generate;
end generate;

end RTL;

To make the generate statement even more powerful you can use an if-generate statement which allows to execute the concurrent
statements subject to the value of a boolean expression. In contrast to conditional signal assignments or the sequential if statement, elsif
and el se paths are not permitted.

In the example, 8 counters are instantiated. For K=1...5 the maximum counter value is calculated according to the formula 2*K-1, i.e. 1, 3,
7, 15, 31. For higher index values the maximum counter values remains 31. It is also possible to evaluate constants or generics of the own
entity in the expression of theif condition.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_246.htm [29/12/2001 13:12:59]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_247.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

4.6.6 'Parameterization' via Signals

entity COUNTER_S is
port(MAX_VALUE : in integer
range 0 to 1023
col);
end COUNTER_S;

architecture RTL of
COUNTER_S is
begin
process(CLK)
begin
if CLK'event and CLK="1"
then
if RESET="1' then
COUNT <= 0;
elsif ENABLE="1' then
if COUNT <
MAX_VALUE then
COUNT <= COUNT+1;
else
COUNT <=0;
end if;
end if;
end if;
end process;
end RTL;

. Set different modes in operation
(cf. MAX_VALUE)

. No parametric signals in port
map

Constants and generics are very profitable when configuring a module before synthesizing. If it is necessary to switch parameters during
operation, the only solution is to feed these parameters via signal s into the module.

The counter range in the example above can be set to values between 1 and 1023 during operation. For that reason, an overhead of
hardware is generated to provide this flexibility in functionality. The signal MAX_VALUE must be stable when the active clock edge
occurs. If this cannot be guaranteed, storing elements will have to be created, which hold the current value of MAX_VALUE and are

updated at certain times, only.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_247.htm [29/12/2001 13:13:03]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_248.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

5. Project Management

. Design Components
. Libraries

. File Organisation

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_248.htm [29/12/2001 13:13:07]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_249.htm

;@© LRS- UNI Erlangen-Nuremberg

5.1 Design Components

. Five basic design units, divided into two groups:

primary units:

E ntity i secondary units:
Package Body

Package

Architecture D[] {} UU

' 0 [
Configuration 0ilg

. Each design unit has to be analysed and stored
In alibrary

. Packages may be split into header (declarations)
and main part

All parts of aVHDL design have to be analysed/compiled before they can be used for simulation or synthesis. In total, five different so
called design units exist: entity/architecture, package/package body and configuration. A file must contain at |east one design unit to be
accepted by the compiler. The separation of the package body from the declarative part is not strictly necessary.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_249.htm [29/12/2001 13:13:13]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_250.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

5.1.1 Libraries

. Container for compiled
design units

1 entities,
architectures,

1 packages, package
bodies,

1 configurations

Setup file:

. Mapped fo a direCtory PROJECT1: fhamefuser_bil'vHDL_Stuffprajecti_li

on the filesyStem f'u]er'ﬂf"ﬁ'S'r'éfy PROJECT1 p_frame_types. vhd
5 platform
iIndependency

1 setup file needed

. Different libraries in one
design project possible

After compilation, the design units are stored in a so called "library”. The purpose of the library mechanism is platform independency, i.e.
every VHDL tool has to map the logical library nameto a physical directory. If the target library is not specified when compiling a VHDL
file, the design units are compiled into the default library ' work . It is often mapped to the startup directory of the software. The default
settings can be overwritten, e.g. via setup files. Special setup files or option settings are needed to specify aternatives.

In the example, the logical library name PROJECT1 is mapped to the physical directory "/home/user_bill/VHDL_Stuff/projectl_lib" in the
setup files for the ssimulator and synthesis tool. This library must be named as target when VHDL files are compiled, i.e. the command will

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_250.htm (1 of 2) [29/12/2001 13:13:19]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_250.htm
look like "compile -library projectl p_frame_types.vhd". In order to be able to use the information contained in the P FRAME_TYPES

package, the library PROJECT1 has to be made visible with the LIBRARY statement. Afterwards, individual elements of the library are
made available with the USE statement.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_250.htm (2 of 2) [29/12/2001 13:13:19]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_251.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

5.1.2 The LIBRARY Statement

library EXAMPLE;
use EXAMPLE.PKG.all;

entity A is

end A;

library EXAMPLE;

use EXAMPLE.PKG.all;
entity X is

end X;

architecture BEH of A is

end BEH;

architecture BEH of X is

end BEH;

Occurrence

o In front of any design unit
(entity, architecture, package, ...)

o valid for the next unit, only

Secondary units "inherit" library
declarations

Does not declare any VHDL design
units / objects

Refers to existing libraries

Easier design management and
preparation

May cause visibility problems

Library statements may only be placed in front of VHDL design units and are valid for the unit immediately following, only. Secondary
design units, however, inherit library declarations that apply to their primary counterparts. Thus, alibrary clause needs not be repeated in
front of an architecture or package body, even when they are placed in separate files (cf. "architecture BEH of X"). On the other hand,
library EXAMPLE must be declared explicitly for the entity X, again, if definitions from the package PKG are to be used.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_251.htm (1 of 2) [29/12/2001 13:13:23]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_251.htm

Thelibraries WORK and STD are visible by default and need not be declared vialibrary statements. The library STD contains the
STANDARD package, which is also visible by default, and the TEXTIO package that is necessary for file 1/O operations.

Libraries can be used advantageously to separate the object code of different design projects. Y et, visibility problems might occur. If
objects that are not distinguishable by the compiler exist, none of the eligible objectsis used and an error message is generated. Probably
the most obvious example is the case of procedures with identical names and parameter lists that are defined in separate packages. Please
note that an illegal redeclaration will be reported if both packages reside in the same library.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_251.htm (2 of 2) [29/12/2001 13:13:23]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_252.htm

;@© LRS- UNI Erlangen-Nuremberg

5.1.3 The USE Statement

. Occurrence
o In front of any design unit
5 valid for the next unit, only

o may appear in declarative
parts, if all items of an object

library EXAMPLE; are made visible
library OTHER_1;

library OTHER_2;

e BN PR G LSS A . Secondary units "inherit" use
EXAMPLE.PKG_1.CONST_B; C|auseS

use EXAMPLE.PKG_2.all;
use EXAMPLE.ENTITY_1,;

. Library must be known

architecture BEH of ENTITY_1 is

e . Grants access to individual
be,glgz OTHER_2.PKG.CONST_A: Items
end BEH,;

o design units (e.g. entities)

1 objects from packages (e.g.
constants)

o ‘'all' accesses all objects

. complete "logical pathname"
needed, if 'use' is omitted

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_252.htm (1 of 2) [29/12/2001 13:13:28]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_252.htm

A library statement alone does not give access to the design units and objects contained in this library. An additional use clauseis
necessary for this purpose. Most of the rules concerning its location and consequences are equivalent to the library statement and
consequently both statements appear conjunctively most of the time.

A use clause makes individual elements of alibrary visible within adesign unit. It is even possible to select specific objects from a
package. Usually, however, the keyword ' all ' is used to make all its declarations available to the user. The keyword ' all ' isalso

applicable to complete library contents. Use clauses with the keyword ' all * may also be placed within the declarative part of entities,
architectures, etc.

While the library statement is always necessary, objects can be accessed viatheir "selected name" instead of a use clause. Then, the
complete logica path consisting of the names of the library, design unit and object must be specified.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_252.htm (2 of 2) [29/12/2001 13:13:28]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_253.htm

;@© LRS- UNI Erlangen-Nuremberg

5.2 Name Spaces

package PKG is
constant C : integer :=

1;

end PKG;

entity ENT is

constant C : integer :=
4;
end ENT;

architecture RTL of ENT
is
signal C : integer := 8;
begin
--only signal C is
visible
C <= 24;
process
variable C : integer :=
9;
begin
--only variable C is
visible
C:=42;
for Cin 0to 5 loop
--only loop
parameter C is visible

ENT.RTL.C<=C,; --

selected name
end loop;
ENT.RTL.C <=
work.PKG.C;
end process;
end RTL;

Multible objects of same names are
allowed:

o Without selected names: Local
name overrides

o Assignment with complete
selected names: ENT.RTL.C <=
12;

Declarations in a package are visible in
all design units which use this package

Declarations in an entity declarative part
are visible in all the architectures of this
entity

Declarations in an architecture are
visible for all processes of this
architecture

Declarations in a process are visible
only inside this process

Declarations in a loop statement (loop
parameter) or in a subrogramm are only
visible inside these objects.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_253.htm (1 of 2) [29/12/2001 13:13:33]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_253.htm

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_253.htm (2 of 2) [29/12/2001 13:13:33]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_254.htm

;@© LRS- UNI Erlangen-Nuremberg

5.3 File Organisation

. Primary and secondary design units can be
split into several files

. Advantages of

1 modularisation
and reuse
aspects
(IEEE, corporate,

o Several project packages)

Packages _
1 separation of

synthesisable
from simulation
only VHDL

1 ho recompilation
1 Package/ of the design
Package body hierarchy if body
separation (implementation)
changed

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_254.htm (1 of 2) [29/12/2001 13:13:37]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_254.htm

1 Ssystem design

(top level,
structural)
o Entity / Independent from
Architecture Implementation
separation - several modeling

alternatives (e.g.
behavioural, RTL)
possible

1 adjust design to

» Several top goal of simulation
level 1 comparison of
configurations alternative

architectures

VHDL offers several possihilities of implementing hierarchy. The language introduces the main hierarchy into the design with the
philosophy of entity/architecture pairs and their instantiation as components. This leads to a strict separation of interface and
implementation. With the help of packages, libraries and a strict coding style (port, type naming conventions, comments, ...) it is possible
to manage huge designs with a plenty of files. Switching between the different implementations during simulation is done with the
configuration mechanism.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_254.htm (2 of 2) [29/12/2001 13:13:37]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_255.htm

%
_@(@ LRS- UNI Erlangen-Nuremberg

5.3.1 Packages

. Packages contain VHDL objects that may be
shared by many design units

o (sub-)type declarations
o constants

o Subprograms

o components

. Package contents must be made available via
use clauses

. Implementation details can be hidden in a
package body

. Package body
o Vvisible only within a package
- always linked to a package

o may contain all declarations/definitions that are
legal for a package

o holds definition of previously declared
constants and subprograms

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_255.htm (1 of 2) [29/12/2001 13:13:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_255.htm

Packages are the only language mechanism to share objects among different design units. Usually, they are designed to provide standard
solutions for specific problems, e.g. data types and corresponding subprograms like type conversion functions for a certain bus protocol,
procedures and components (macros) for signal processing purposes, etc. A body is strictly needed if subprograms are to be placed in
packages because only the declaration of functions and procedures may be placed in the package itself. A package body is not needed if no
subprograms or deferred constants are used. Please note that only objects declared in a package can be referenced via use statements.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_255.htm (2 of 2) [29/12/2001 13:13:42]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_256.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

5.3.2 Package Syntax

Package declaration: Package body declaration:

package body IDENTIFIER is
-- Definition of previously declared
-- constants
-- subprograms
-- Declaration/definition of additional

package IDENTIFIER is
-- Declaration of
-- types and subtypes

-- subprograms
-- constants, signals and shared variables a ;{jpbep)sr:grtia;l;btypes
- files -- constants, signals and shared variables
-- aliases i
-- files
-- components -- aliases
end [package] [IDENTIFIER] ; - components

end [package body] [IDENTIFIER] ;

@ Only the package content is visible, NOT
the body

@ Subprogram definitions can not be placed
In a package

s3]
The keywords 'package' / ‘package body’

may be repeated
after the keyword 'end'

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_256.htm [29/12/2001 13:13:47]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_257.htm

%
‘@© LRS - UNI Erlangen-Nuremberg

5.3.3 Package Example

package PKG is _
type T1is ... library STD; -- VHDL default

type T2 is ... library WORK; -- VHDL default
constant C : integer; | US€ STD.standard.all; -- VHDL default
procedure P1 (...): " | use work.PKG.all;
end PKG; _ _
entity EXAMPLE is
end EXAMPLE;

package body PKG is

type T3'is ... architecture BEH of EXAMPLE is
signal S1: T1;
Cc =17, signal S2 : T2;

signal S3: T3; -- error: T3 not declared
procedure P1 (...) is

e begin
end P1;
. P1(...);
procedure P2 (...) is P2 (...):; -- error: P2 not declared
end P2; end BEH;
end PKG;

. Signals or procedures which are declared in the
package body cannot be accessed

. A specific new data type may be defined in only one of
the referenced packages

. Deferred constants: actual value assignment is
package body

Thelibraries WORK and STD and the STANDARD package are available by default. Thus the corresponding VHDL statements are not
needed.

If apackage body exists, it should be placed in a separate file. Otherwise it would not be possible to compile the body separately. Only the
package contnent can be made visible with use statements so changes to constant declarations or subprogram bodies can be made in the
package body without implying a recompilation of the complete design. Only the package body has to be recompiled then. A package
body is not necessary if no subprograms or deferred constants are declared.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_257.htm (1 of 2) [29/12/2001 13:13:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_257.htm

In this example the type T3 and the procedure P2 are declared in the package body, only. Thisleads to an error during compilation because
these two items are not visible in the architecture.

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_257.htm (2 of 2) [29/12/2001 13:13:51]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_258.htm

‘5@@ LRS- UNI Erlangen-Nuremberg

5.3.4 Use of Packages

. Definitions of: types, subtypes, constants,
components and subprograms

. Deferred constants:
constants, which are declared in the header of a
package and are assigned a value in the body

package net is

package f’ IS{ it . subtype p_bit is std_ulogic;
ond cI;?nS ant L. integer, subtype p_bit_vector is std_ulogic_vector;

subtype p_net_data is p_bit_vector (7 downto 0);
type p_net_frame is array (1 downto 0) of p_net_data;

constant low: integer := 0;

package body P is constant high: integer :=1;

constant C : integer:=200;

end P; . .
constant period: time := 10 ns;

. There are low-cost tools which do not support
self defined packages.

It is possible to change the value of the constant C several times without recompiling the complete design. Only the package body has to
be recompiled.

A package body is not necessary if no subprograms or deferred constants are declared.
Example:
package SimulationTimesis

constant tCLK : time := 30 ns;

constant tSetup : time:=10ns;
constant tHold : time:=14ns;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_258.htm (1 of 2) [29/12/2001 13:13:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_258.htm

constant tCLK77 : time:= 77 ns,
constant tWrite : time:=8ns;
constant tRead : time:=8ns;
constant tData time:=21ns

end SimulationTimes ;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_258.htm (2 of 2) [29/12/2001 13:13:56]

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_259.htm

| <
Iﬁ & ,@(@ LRS- UNI Erlangen-Nuremberg

5.3.5 Visibility of Package Contents

Library: project_a Library: ps
: Entity A Entity Package P :
I 3 - A o0 i
| = c - - [
|7 i |
| o 0
| Entity Entity s FPackagse Headsr :
|
TR U l |
| "o ot £og |
| i Fackags BEod
| Architectures L o yj_!
library ps; = package P s
use ps.p.all; —g= constant C:integer = 200,
antity & 1S — end F,

With the keyword "all" as suffix in the use clause it is possible to make visible all the objects declared in the package header. If you only
want to make visible special objects of the package header you have to use their simple name as suffix:

Library ps;
use ps.p.C;

http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_259.htm [29/12/2001 13:14:02]

	www.vhdl-online.de
	Content
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_3.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_4.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_5.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_6.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_7.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_8.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_9.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_10.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_11.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_12.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_13.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_14.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_15.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_16.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_17.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_18.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_19.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_20.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_21.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_22.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_23.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_24.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_25.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_26.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_27.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_28.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_29.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_30.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_31.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_32.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_33.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_34.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_35.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_36.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_37.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_38.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_39.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_40.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_41.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_42.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_43.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_44.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_45.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_46.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_47.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_48.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_49.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_50.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_51.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_52.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_53.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_54.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_55.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_56.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_57.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_58.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_59.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_60.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_61.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_62.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_63.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_64.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_65.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_66.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_67.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_68.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_69.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_70.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_71.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_72.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_73.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_74.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_75.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_76.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_77.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_78.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_79.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_80.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_81.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_82.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_83.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_84.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_85.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_86.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_87.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_88.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_89.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_90.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_91.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_92.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_93.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_94.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_95.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_96.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_97.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_98.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_99.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_100.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_101.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_102.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_103.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_104.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_105.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_106.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_107.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_108.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_109.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_110.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_111.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_112.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_113.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_114.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_115.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_116.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_117.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_118.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_119.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_120.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_121.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_122.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_123.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_124.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_125.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_126.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_127.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_128.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_129.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_130.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_131.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_132.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_133.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_134.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_135.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_136.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_137.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_138.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_139.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_140.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_141.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_142.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_143.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_144.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_145.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_146.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_147.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_148.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_149.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_150.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_151.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_152.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_153.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_154.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_155.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_156.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_157.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_158.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_159.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_160.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_161.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_162.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_163.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_164.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_165.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_166.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_167.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_168.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_169.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_170.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_171.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_172.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_173.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_174.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_175.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_176.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_177.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_178.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_179.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_180.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_181.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_182.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_183.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_184.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_185.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_186.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_187.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_188.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_189.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_190.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_191.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_192.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_193.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_194.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_195.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_196.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_197.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_198.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_199.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_200.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_201.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_202.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_203.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_204.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_205.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_206.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_207.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_208.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_209.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_210.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_211.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_212.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_213.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_214.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_215.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_216.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_217.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_218.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_219.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_220.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_221.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_222.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_223.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_224.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_225.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_226.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_227.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_228.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_229.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_230.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_231.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_232.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_233.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_234.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_235.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_236.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_237.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_238.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_239.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_240.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_241.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_242.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_243.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_244.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_245.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_246.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_247.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_248.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_249.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_250.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_251.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_252.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_253.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_254.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_255.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_256.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_257.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_258.htm
	http://www.vhdl-online.de/~vhdl/tutorial/englisch/t_259.htm

	CGEIKOEIJKFFCKHOPMFBKLHLPAJDCJIG:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_50.htm
	f3: ../tutorial/englisch/ct_50.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off

	f9:
	f10:

	NEJMBLELCGJCAGCEMODMIIIMCJJJFKKK:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_51.htm
	f3: ../tutorial/englisch/ct_51.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off

	f10:
	f11:

	BNGDOBFPNIMGEKEEBGFOFNEHHDHLLGBD:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_52.htm
	f3: ../tutorial/englisch/ct_52.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off

	f9:
	f10:

	AMOJOGPIPNCIKHNMENPIJMBEBKPGPAGF:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_63.htm
	f3: ../tutorial/englisch/ct_63.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off

	f9:
	f10:

	IOIGKIJFJJPLNIIGAHFJLCGPFFHHNBEC:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_64.htm
	f3: ../tutorial/englisch/ct_64.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off

	f9:
	f10:

	OABJNBDBAKMHDOPHGNCHAIKEBKFLCKCE:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_91.htm
	f3: ../tutorial/englisch/ct_91.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off

	f11:
	f12:

	IELNHALBDLCBACGINIMGJPGFNCPABEDI:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_92.htm
	f3: ../tutorial/englisch/ct_92.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off

	f10:
	f11:

	HAJLMEPDEEKHFGFHBMLJKPKKBFPDBIHE:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_126.htm
	f3: ../tutorial/englisch/ct_126.htm
	f4: Off
	f5: Off
	f6: Off

	f7:
	f8:

	ALLDIDNHBGFLPDCHNKGEEJNDEPPLNPKO:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_127.htm
	f3: ../tutorial/englisch/ct_127.htm
	f4: Off
	f5: Off

	f6:
	f7:

	JHJFODLNMHECLFMADDNEEMFKFBDOPDLL:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_128.htm
	f3: ../tutorial/englisch/ct_128.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off

	f10:
	f11:

	LGKDOJDEOIHDCCIMCKIEFONBKAMHEPOA:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_139.htm
	f3: ../tutorial/englisch/ct_139.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off

	f9:
	f10:

	MDHJDDJEDPEJKBLFHJJCNBABAPMJPNLD:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_195.htm
	f3: ../tutorial/englisch/ct_195.htm
	f4: Off
	f5: Off
	f6: Off

	f7:
	f8:

	LJNDEMJFNDOANBIHHIOFJACKECNIKDID:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_196.htm
	f3: ../tutorial/englisch/ct_196.htm
	f4: Off
	f5: Off

	f6:
	f7:

	PBDJKNOOKMHDLDFLGPEOOFOJEAIJDEIC:
	form1:
	x:
	f1: x
	f2: ../tutorial/englisch/ct_197.htm
	f3: ../tutorial/englisch/ct_197.htm
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off

	f10:
	f11:

