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Preface 

This book is directed at the issues of integrated photonics. Four major topics 
are covered: 1) fundamental principles of electromagnetic theory; 2) wave­
guides; 3) simulation of waveguide modes, and 4) photonic structures. The 
emphasis is slightly heavier into optical waveguides and numerical simulation 
techniques because advances in optical communication will be based on nano­
structured waveguide structures coupled with new materials and structures. This 
text is targeted for students and technical people who want to gain a working 
knowledge of photonics devices. The text is designed for the senior/1st year 
graduate student, and requires a basic familiarity with electromagnetic waves, 
and the ability to solve differential equations with boundary conditions. 

The first part of the text explores the basis for optical propagation and estab­
lishes the use ofthe MKS system, discussing the wave equation and the proper­
ties of materials such as attenuation and dispersion. The next section explores 
the operation of optical waveguides. We start with planar slab waveguides, then 
systematically advance to more complicated structures, such as graded index 
waveguides, circular waveguides, and rectangular waveguides. The details of 
coupling light between and within waveguide modes is clearly described, and 
applied to optoelectronic devices such as modulators and switches. The final 
section of the text discusses the examination of photonic bandgap crystals and 
optical devices such as ring resonators. These topics are very active areas of 
research today, and are likely to increase in significance as they mature. 

From the beginning this text introduces numerical techniques for studying 
non-analytic structures. Most chapters have numerical problems designed for 
solution using a computational program such as Matlab or Mathematica. An 
entire chapter is devoted to one of the numeric simulation techniques being 
used in optoelectronic design (the Beam Propagation Method), and provides 
opportunity for students to explore some novel optical structures without too 
much effort. Small pieces of code are supplied where appropriate to get the 
reader started on the numeric work. 
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Chapter 1 

INTRODUCTION AND OVERVIEW 

1. A Brief History of Telecommunications 

In 1837, the era of electrical communication began with the demonstration 
of the telegraph by Samuel Morse. The telegraph passed information at a data 
rate, in modem terminology, of a few bits per second, but the speed of propaga­
tion was essentially infinite compared to the message itself. The transmission 
medium was wire cable. The telegraph was followed by Alexander Graham 
Bell's invention of the telephone. The first telephone exchange was operated 
in New Haven, Connecticut, USA, in 1878. At approximately 4kHz band­
width, the telephone represented a major increase in the effective bandwidth of 
a moderate distance communication system. 

Arguably, the greatest technological achievement of the 19th century was 
James C. Maxwell's elucidation [I] of"Maxwell's Equations," in 1878. These 
equations mathematically describe the propagation of electromagnetic waves. 
Maxwell's equations, and applications derived from them, are the foundation of 
electrical machines and electronic devices which form what we now characterize 
as "high technology." Based on the predictions of Maxwell, Heinrich Hertz 
[2] demonstrated long radio waves in 1888, and in 1895, Guglielmo Marconi 
demonstrated radio (communication without wires!) based on electromagnetic 
waves. 

Since these pioneering efforts, scientists and engineers have made steady 
progress toward better and faster communication technologies. The trend has 
been toward higher frequency carrier waves with proportionally increased mod­
ulation bandwidths for carrying information. Early radio, which carried voice 
signals with 15 kHz bandwidth, operated in the 0.5-2 MHz range. Television, 
which requires about 6 MHz bandwidth, raised carrier frequencies to 1 00 MHz. 
During the 1940's, radar research pushed frequencies to the gigahertz domain 
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(microwaves). Low power microwave technology is now widely used in the 2.4 
and 5 GHz region for cellular phone and wireless links between laptop comput­
ers, and high power applications include terrestrial and satellite communication 
links operating at 18 GHz. 

The push toward higher frequencies took a giant leap forward with the inven­
tion of the laser in 1960.[3] The first laser operated at a wavelength of694 nm, 
which corresponds to a carrier frequency of approximately 5 x 1014 Hz. People 
noted that if even 1% of this bandwidth could be realized in a communication 
system, it would represent a signal channel with 5 THz bandwidth (a terahertz is 
1012 Hz). Such a system could carry approximately 106 analog video channels 
at 6 MHz per channel, or ~ 109 telephone calls at 5 KHz per call. However, 
progress toward using this tremendous bandwidth was limited by two factors: 

1. Electronic components did not operate at such frequencies or speeds. 
Since most information today is ultimately converted to electronic form, 
the speed of the electronics determines the realizable bandwidth of any 
communication link. · 

2. There was no dependable transmission media for light. 

Truly incredible progress has been made in using optical carrier waves for 
communication over the four decades since the first demonstration of the laser. 
The electronic speed bottleneck is still a challenge to the direct use of the full 
bandwidth of the optical carrier, but creative optical methods have been devel­
oped which circumvent some of these limits. The drive for increased bandwidth 
has led to faster electronic components which have switching times approaching 
several picoseconds. One can now install transmitters which operate at 40 Gi­
gaBits/second (giga = 109), and 120GB/s transmitters are under development. 
It is always dangerous to define limits, but many feel that electronic devices 
are reaching their practical speed limits. Creative research into optically-based 
information systems where for example, information is carried by many wave­
lengths simultaneously or by ultrashort optical pulses called solitons, is provid­
ing cost-effective access to the full bandwidth of the optical carrier. Without 
doubt, the biggest research task in the next decade will be the development of 
optical switches and devices and in better communication architectures. 

The lack of suitable transmission media has been creatively acldressed over 
the past 40 years. The field of optical waveguides is well established and is 
now a thriving industry. The first part of this text will develop the theory and 
application of the optical waveguide, both for long distance communication 
(optical fibers) and for integrated optic applications. 

To address these problems, a new discipline has emerged called Photonics. 
Using light to convey information requires special technologies. Information 
must be put on the light beam using extremely high speed modulation. Once 
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Information Information 

Transmitter Channel 

Figure 1.1. A communication channel consists of a transmitter, transmission channel, and a 

receiver. The transmitter converts information into an energy form appropriate for the trans­

mission channel. The channel carries the energy, but also distorts the signal and adds noise. 

Following detection, the receiver regenerates the information in (hopefully) a nearly identical 

form to the original signal. 

modulated, the light must be carried over sizable distances, and directed or 

switched to the desired receiver. When it arrives at the receiver, the information 

must be extracted from the light. Consider the simplified block diagram of a 

communication system shown in Fig. 1.1. 

1. The Transmitter couples information onto a transmission channel in the 
form of a suitable signal. 

2. The Channel is a medium bridging the distance between the transmitter 

and receiver. For electromagnetic signals, the channel might be a wire, a 

waveguide, or free space. As the signal travels through the medium it is 

progressively attenuated and distorted. 

3. The Receiver extracts a weakened signal from the channel, and ampli­

fies it. A semblance of the original information (audio, video, etc.) IS 

generated from the modulated signal . 

2. Development of the Optical Waveguide 
Researchers rapidly discovered that free space propagation of laser beams 

was not suitable for reliable communication links. Problems of bad weather 

(precipitation), flying objects that interrupted the beam, and the need for "line­

of-sight" links complicated reliable transmissions. Laser beams are also dis­

torted and randomly aberrated by propagation through turbulent air (this effect 

is called scintillation). There are a few specialized applications for free space 

communication, such as communication between satellites in orbit, but most 

terrestrial applications require a protected transmission channel. 

A solution to these problems is to propagate light through a waveguide which 

both protects the beam from interruptions, and counters diffraction (the ten­

dency of a wave to spread as it propagates). One scheme that is easy to analyze 
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Lens Waveguide Continuous Lens 

Figure 1.2. The optical waveguide is a natural extension of a lens waveguide 

and visualize is the periodic lens waveguide shown in Fig.l.2. The lenses peri­
odically refocus the light, countering diffraction, and also allow light to travel 
around gentle bends. It is fairly straightforward to select a focal length and lens 
spacing that will provide a stable beam path (!] . Manufacturing difficulties 
and surface reflection losses rule out such a structure as a practical solution for 
waveguiding. However an extension of this idea is the continuous lens. Con­
sider making each lens continually weaker in focussing power, while increasing 
the number of lenses so that the light stays confined. In the limit of weaker yet 
more frequent lenses, one gets a continuous lens. 

In the continuous lens,the ray of light is constantly bent back toward the 
center of the waveguide. The continuous lens consists of a glass fiber with a 
higher index of refraction at the core than at the outer perimeter. This waveguide 
structure solves the problem of surface reflections and also allows the waveguide 
to be bent. We will develop an understanding of these guiding structures in the 
next chapters. 

What about transmission losses? Is it possible to send light through kilome­
ters of dense material without excess attenuation? Glass is an obvious candidate 
for making an optical waveguide; it is commonly available, easy to draw into 
fibers, and looks transparent. However, our common experience with glass usu­
ally involves looking through plates no thicker than a few millimeters. What 
happens if light passes though a kilometer of glass? Early measurements in­
dicated that the attenuation of near infrared light in glass was about 1000 dB 
per kilometer. To fully appreciate this number, recall that a dB is defined as a 
logarithmic ratio: 

Pout 
Power(dB) = 10log1o -p. 

ln 
(1.1) 

A 1000 dB loss represents Pout = 10- 100 Pin! Considering that there are 
approximately 1019 photons per watt of visible light, this remarkable number 
implies that it would be necessary to launch approximately 1080 W of light to 
get I photon through one kilometer length of glass. To put this in perspective, 
the sun radiates only (!) 3.8 x 1026 W. 

In view of this incredible attenuation, it is impressive that far sighted re­
searchers pursued optical fiber waveguides. In 1966, K. Charles Kao of Stan­
dard Telecommunications Laboratories, in Harlow, England, suggested that the 
high loss was due to impurities, and not an intrinsic property of glass. Kao 
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went on to propose using fibers as a transmission medium, describing many 
of the fundamental modes that such a fiber would carry in his classic paper 
[ 5]. In 1970, Kapron, Keck, and Maurer[3] of Coming Glass Works confirmed 
this prediction by making an ultrapure glass using chemical vapor deposition 
techniques that displayed only 20 dB/km attenuation. Today, ultrapure glass 
now displays intrinsic attenuation less than 0.2 dB/km near a wavelength of 1.5 
f-Lm. 

Once the attenuation problem was mastered, optical fiber communication 
become a major factor in communication systems, for both long distance and 
local area networks. Motivations for using optical communication include: 

1. Optical communication links have a wider bandwidth than copper or 
microwave links, so more information can be carried on a given link. The 
effective bandwidth of current optical fibers is approximately 30 THz. 
(30 THz!!) 

2. Attenuation in glass fibers is much less than experienced in copper or 
microwave systems. Fewer repeaters are required, and longer distances 
can be spanned more cost effectively. 

3. Optical systems are smaller and lighter, giving them an advantage in 
crowded ducts or aircraft. 

4. Optical waveguides are difficult (but not impossible) to tap or monitor, 
so data security is higher. 

5. Optical waveguides are immune from electromagnetic interference (EMI), 
ground loops, induced cross talk, etc. 

6. Finally, and perhaps most important, semiconductor technology has de­
veloped a family oflasers, detectors, and other integrated optical devices 
that are compatible with optical fibers in power, wavelength, and size. 

3. Types of Optical Communication Systems 
Two types of optical communication system have developed. Historically, 

long distance telecommunication (Telecom) was the first optical communica­
tion application. Telecom primarily involves point-to-point links, such as a 
long distance telephone link between two cities, which carry vast numbers of 
multiplexed signals. Optical fiber has become the standard for telecommuni­
cation links for the reasons listed above, not the least of which is cost. All of 
the advanced technology that appeals to engineers and scientists would never 
be installed were it not the most cost-effective solution to most telecommunica­
tions problems. The major cost component in telecom is installing the optical 
fiber. 
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The second type of optical communication system is data communication 
(Datacom). Datacom is used to link information devices such as computers, 
memory banks, data bases, and workstations together in a local area network 
that may span thousands of connections and hundreds of kilometers. Datacom 
applications are different from telecom, in that the cost pressure is no longer 
on the carrier medium (the optical fiber), but on the associated hardware such 
as transmitters, connectors, switches, filters, and receivers. The need for cost­
effective devices for datacom applications is driving much of today's research 
in optoelectronics. Requests for "Fiber to the desk" are not unusual in new local 
area network installations, but for data rates below 1 GigaBit/second, fiber is not 
cost-competitive with copper right now. "Fiber to the home" faces the same cost 
disadvantage: unless the bandwidth requirements of the typical home increase 
dramatically, or the cost of neighborhood-level optical networks decreases, it 
will be many years before optical fiber replaces residential copper coaxial cables 
and telephone wires. Certainly optical fiber has the bandwidth to support such 
a network, but the necessary support hardware is still not developed to the point 
of cost-effective implementation. 

4. Opportunities in Optoelectronics 
To transfer information from one point to another, whether between two 

workstations or two cities, communications systems will require switches, con­
nectors, amplifiers, filters, etc. While such devices are well developed for 
copper-based and microwave communication links, the optical analogs of these 
devices are still expensive and difficult to manufacture in an integrated fashion. 

Unlike electronic communication systems that have a limited bandwidth, 
optical systems can almost be treated as having infinite bandwidth. Most present 
optical communication systems use simple digital modulation schemes ("on" 
and "off''), much like Marconi's early radio. Researchers are now exploring 
frequency and phase modulation schemes called "coherent detection". These 
offer improvements in signal-to-noise ratios. These "new" optical techniques 
are really tried and true modulation schemes that are presently used in modem 
radio communication systems. This new technology has also opened the door 
to new phenomena, such as optical solitons, which exploit nonlinear properties 
of optical fibers to make potentially better communication systems. A system 
designer today will ask, "Should the huge bandwidth available in optical links be 
exploited through time division multiplexing, using extremely short temporal 
pulses? Or should Wavelength Division Multiplexing be used, where each 
signal is transmitted at its own wavelength?" Most people today would reply that 
wavelength division multiplexing is the answer. However disruptive technology 
could easily appear that is better than both time domain and wavelength domain 
multiplexing. Optical networks are still in a nascent stage, and so there is great 
opportunity for new ideas. 
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Noting that this book is primarily devoted to describing the hardware aspects 
of optoelectronics, readers interested in the systems aspect of optical commu­
nications should also refer to the excellent book by Paul Green [7] on fiber 
optic networks (datacom) and the books by Stuart Personik [8] on telecommu­
nications. These books serve as excellent companions to this one in terms of 
complementary material and concept development. 
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Chapter 2 

FUNDAMENTAL TOOLS OF OPTOELECTRONICS: 
MAXWELL'S EQUATIONS 

1. Introduction: The Tools of the Trade 
There are many tools available to analyze or design an optical device. Imag­

ine trying to characterize the optical behavior of a simple magnifying lens. We 
might first project an image of an object onto a screen. Using a ray picture, we 
could describe the magnification, focal length, principal planes, and so forth 
(Fig. la) of the lens. This characterization is called geometric optics [I]. If 
we were very perceptive, we might notice that different colors form images at 
slightly different distances from the lens (Fig. 1 b). To adequately describe this 
effect, . we would have to understand and explore the material and dispersion 
properties of the lens [2]. This is called physical optics. 

If we could shrink the diameter of the lens to dimensions on the order of 
the wavelength oflight, we would notice that the image begins to blur. Fringes 

~ 
a. 

o )))~((l 0 r- - -~--
c. d. 

Figure 2.1. Four (of many) ways to describe a lens. a) An image is formed through ray tracing. 
b) The image position may vary with wavelength, due to dispersion in the lens. c) Diffraction 
can blur the image of a small object d) An image being formed one photon at a time. 
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begin to appear that are not apparent in the object. These diffraction phenomena 
are most notable at small dimensions, where the geometrical optics assumption 
that light travels in straight lines begins to fail. The proper description of these 
effects requires wave theory based on Maxwell's equations, and is called wave 
optics[4]. 

If we repeat our measurements in very di~ illumination, we will reach a point 
where the corpuscular nature of light is evident. For sufficiently low intensity, 
one photon at a time passes through the lens. The individual photons arrive with 
certain statistical patterns (such as a Poisson distribution)[2]. Different sources 
of light can have different statistical properties, and these properties will affect 
the quality of optical information that can be extracted from the input signal. 
In this photon realm, quantum optics is needed to describe the system [5]. 

Each of these optical methods is appropriate within a certain domain. When 
dealing with the modes of a waveguide, we use physical optics. When dealing 
with optical detection of signals, we use quantum optical concepts. In general, 
we resort to the technique that leads to the most direct solution of a given 
problem. In this chapter, we will introduce Maxwell's Equations, which are the 
optical tools needed to describe the propagation of light in optical waveguides. 
Using Maxwell's equations, we will. derive and solve the wave equation in an 
isotropic media. Following solution of the wave equation, we will explore 
refraction and reflection. Total internal reflection is addressed in the following 
chapter. 

2. Maxwell's Equations 
Maxwell's equations are, arguably, the most significant scientific develop­

ment of the 19th century. It is impressive to realize that the same equations can 
be applied from 0 Hz (DC) to frequencies exceeding 1018 Hz (in fact, an upper 
frequency limit on the validity of the equations has never been shown). The 
four equations can be presented in differential or integral form. They are listed 
below in both forms. 

V' X E = -aB 
at 
an 

V'xH=J+at 

V'·B=O 

V'·D=p 

fE · dl =-it fB · dS 

fH·dl=fJ·dS+£ f D·dS 
area 

fB·dS=O 

J D · dS = Qenclosed 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where S is the unit normal to a surface, and the surface integrals extend only 
over the area enclosed by the path of the line integral. In this text we will 
use MKS units, with the exception that most physical distances will be related 
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in centimeters where it is convenient and obvious. The units that describe an 
optical field in MKS units are listed in Table 2.1 below. 

Note that Eand H are amplitudes which describe the strength of a field at a 
given point in space. D and B are fluxes. Unfortunately, due to the different 
systems often used for electromagnetic quantities, the distinction between am­
plitude and flux is sometimes lost. This is especially true for the magnetic field. 
Amplitudes and fluxes are both vectorial in nature, which means that direction 
and magnitude are important. 

These quantities are continuous functions of space and time, with continuous 
derivatives. All real solutions will be bounded (no infinities exist in physical 
situations) and will be single-valued at all points. At surfaces the distribution of 
charge or current can be changed, so boundary conditions are used to connect 
solutions in adjacent regions. 

The integral form of the equations are listed more for reference than for po­
tential application in this text. They are, however, useful to establish boundary 
conditions. The integral forms of the curl equations are readily derived from 
the differential forms by application of Stokes Theorem. This theorem relates 
the curl of a vector function, A, into a line integral ofthe function 

J ('V x A) · dS = f A· dl (2.5) 

area loop 

where dS and dl are unit vectors oriented normal to the surface, or tangential to 
the loop, respectively. For the divergence equations, Gauss' divergence theorem 

j D · dS = j V' · Ddv (2.6) 

closed surface volume enclosed 

Table 2.1. Electromagnetic Units in the MKS Fonnat 

Quantity Description Units 

E Electric field amplitude Volts/meter (V/m) 
H Magnetic field amplitude Amps/meter (A/m) 
D Electric flux density Coulombs/meter2 (C/m2) 

B Magnetic flux density Webers/meter2 (Wb/m2) 

J Current density Amps/meter2 (A/m2 ) 

p Charge density Coulombs/meter3 (C/m3 ) 

Q Charge Coulombs (C) 
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relates the two forms. The integral forms are used only when fields have a high 
degree of symmetry. This is not the typical case in optical waveguides, so the 
differential forms of Maxwell's equations are usually required. 

3. Constitutive Relations 
The flux densities, D and B, are related to the field amplitudes E and H by the 

constitutive relations. The nature of the medium defines the functional form of 
the relationship. For linear, isotropic media, the relations are simply given by 

B=J.tH D=tE (2.7) 

where t is the electric permittivity of the medium, with units of Farads/meter, 
and J.t is the magnetic permeability of the medium, with units of Henrys/meter. 
A linear medium is one where the permittivity, E, and permeability, J.t, are 
independent of field strengths. The assumption oflinearity is valid only for low 
intensities, where E is, for example, much less than the Coulomb fields that 
bind electrons to the central nucleus. Since these binding fields are on the order 
of 1010 V/cm, nonlinear effects are only observed using high intensity light. 
Nonlinear effects can be exploited for various applications, and we will deal with 
them in later chapters. Vacuum is a linear medium since there are no binding 
fields to be distorted by intense fields. (However, under extreme intensities, 
e.g. > 1023W/cm2, it is possible to spontaneously create an electron-positron 
pair from vacuum, so even vacuum cannot be considered strictly linear. Such 
field strengths are well beyond the realm of interest for present electrooptical 
devices). The vacuum values of E and J.t are symbolically denoted as to and J.to, 
respectively, and have values 

Eo = 8.854 X w-12 Farads/m 

J.to = 47r X w-7 Henrys/m 

(2.8) 

(2.9) 

In non-vacuum media, the general expressions for permittivity and perme­
ability are not necessarily scalar quantities. Since the field quantities are vec­
torial, the constitutive relationships must be described by a tensor. The electric 
flux density, D, is properly described by 

3 

Di = EijEj = L EijEj 

j=l 

(2.10) 

Einstein notation of repeated indices is used, and Eij is the permittivity tensor. 
A similar tensor expression exists that relates the magnetic flux, B, to H [ 6]. The 
components of Eij depend on the properties of the material. Crystals with low 
degrees of symmetry generally have tensorial permittivity. Highly symmetric 
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crystal structures, such as NaCl or silicon, and amorphous material such as 
glass, are isotropic in permittivity, unless the symmetry of their structure is 
perturbed through a strain. 

Example 2.1 Permittivity tensor of two crystalline materials 

Two optical crystals are shown below, GaAs and Calcite. GaAs has the 
diamond structure, and has an isotropic permittivity. The three crystalline axes 
are chosen to lie along the three (100) axes of the crystal. The permittivity 
tensor near >. = 1 p,m is given by 

( 
11.56 

E =Eo 0 
0 

0 
11.56 

0 

If the GaAs crystal were rotated 90°, it would look and act exactly the same as 
before the rotation. 

Calcite has a less symmetric structure, as shown in the Fig. 2.2. If calcite is 
rotated 90° about x-axis, the crystal will look quite different to a beam oflight 
travelling through it. For linearly polarized light propagating in the z-direction 
in Calcite, the electric field can be x or y polarized, or some mixture of both. 
The index of refraction for these waves is identical, and is called the ordinary 
index of refraction. For polarized light along the z-axis, the index of refraction 
is called the extraordinary index. The permittivity tensor for calcite is 

(
2.75 

E =Eo ~ 
0 

2.75 
0 

Calcite is called a negative uniaxial crystal, because the extraordinary index is 
less than the ordinary index. For a good review of crystal optics, see Chapter 4 
ofYariv and Yeh. [7] 

In an isotropic medium, the permittivity is independent of orientation, and is 
described accurately by the scalar relation D = EE. But beware! "Isotropic" 

<001> 

GaAs Calcite 

Figure 2.2. GaAs and Calcite have different regular structures. GaAs is a cube which looks 
identical along each axis. Calcite has a different length crystal axis along each direction, and the 
axes meet at non-right angles. 
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does not necessarily mean homogeneous. The permittivity can be a function of 
position, E(r). In an inhomogeneous medium, the electric field will encounter 
a different permittivity, E, depending upon spatial location in the material. A 
graded index waveguide, discussed in Chapter 7, is a good example of an 
inhomogeneous medium. 

For most optical dielectric materials, p, is effectively I"D· We can ignore mag­
netic effects except when dealing with special magnetic optical materials, such 
as Yttrium Iron Garnet (YIG), used as an optical isolator between waveguides 
and sources. Unless otherwise stated, it is safe to assume that the permeability, 
p,, is that of free space, /LO· We will discuss the frequency dependence of p, and 
E in Chapter 7. 

4. The Wave Equation 
The electromagnetic wave equation comes directly from Maxwell's equa­

tions. Derivation is straightforward if we assume conditions that are reasonable 
for optical wave propagation. These conditions are that we are operating in a 
source free (p = 0, J = 0), linear ( E and p, are independent of E and H), and 
isotropic medium. Eqs. 2.1 - 2.4 become 

V'xE 
V'xH 
Y'·D 
V'·B 

-8Bj8t 
8Dj8t 

0 

0 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

These simple looking equations completely describe the electromagnetic 
field in time and position. Are the assumptions reasonable? Sure, at high 
frequencies (e.g. v > 1013Hz) free charge and current are generally not 
the source of electromagnetic energy. The typical sources of optical energy 
are electric or magnetic dipoles formed by atoms and molecules undergoing 
transitions. Maxwell's equations account for these sources through the bulk 
permeability and permittivity constants. 

Eqs.2.11- 2.14 are strongly coupled first-order differential equations. To 
decouple the two curl equations we follow the usual technique of creating a 
single second order differential equation by first taking the curl of both sides of 
Eq. 2.11. 

-8B -op,H 
\7 X ('\7 X E) = '\7 X 7ft = '\7 X at (2.15) 

Assuming that p,(r, t) is independent of time and position, Eq. 2.15 becomes 

(2.16) 
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Since the functions are continuous, the order of the curl and time derivative 
operators can be reversed: 

(2.17) 

Substituting v X H = an I at into Eq.2.17 and assuming € is time invariant 

VxVxE 
(2.18) 

Now we have a second order differential equation with only one variable, E. 
The (V x V x) operator is usually simplified using a vector identity 

(2.19) 

The \72 operator should not be confused with the scalar Laplacian operator. The 
\72 operator in Eq. 2.19 is the vector Laplacian operator that acts on a vector, 
in this case E. For a rectangular coordinate system, the vector Laplacian can 
be written in terms ofthe scalar Laplacian as 

(2.20) 

where x, y, and z represent unit vectors along the three axes. The \72 's on the 
right hand side ofEq. 2.20 are scalar, given by 

"2- a2 a2 a2 
v - ax2 + ay2 + az2 (2.21) 

in cartesian coordinates. Solution of the vector wave equation requires that 
we first break the equation into the orthogonal vector components, which is 
sometimes extremely difficult, and then combine the individual vector field 
solutions together. 

What about the term, V · E? It is not necessarily equal to zero, as is often 
assumed. We know only that V · D = 0. Simple calculus leads to an expression 
for\7 · E: 

Solve for V · E 

V·D = 0 

V·EE 
\7€· E+EV · E 

\7€ 
V·E=-E·-

€ 

(2.22) 

(2.23) 
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Plugging this value into the linear wave equation for electromagnetic waves 
yields 

(2.24) 

The right hand side deserves special consideration. It is non-zero when there 
is a gradient in the permittivity of the medium. Index gradients are quite com­
mon in guided wave optics, since most guided wave structures use a graded 
permittivity. So how do we deal with this extra term? Well, we ignore it! For­
tunately in most structures, the term is negligibly small. (Problem 2.2. explores 
the limits of'V E/ E, showing that it is almost always negligible). Neglecting this 
term, the wave equation reduces to its homogeneous form 

2 82E 
'V E - f.LE 8t2 = 0 (2.25) 

Had we started with Eq.2.12 instead ofEq.2.11 we could have derived a similar 
wave equation in terms of the magnetic field amplitude (see Prob. 2.9.), 

(2.26) 

5. Solutions to the Wave Equation 
Consider the units of each term in either Eq. 2.25 or Eq. 2.26. The 'V2 term 

has units of 1/(distance)2. The second order time derivative clearly has units 
of 1/(sec)2• In order to make physical sense, the units of f.LE must be (sec/m)2• 

We will show, in a later section, that ...jfffjj, is the phase velocity of light in 
a medium. Notice that the speed of propagation is determined by the material 
parameters. In free space, v'l/ J.LoEo = 2.998 x 108m/ sec, or c, the speed of 
light in vacuum.(The speed oflight is now defined (not measured) to be exactly 
299,792,458 m/sec. The meter is thus defined in terms of the speed of light, 
being the distance light travels in 11299,792,458 second, where the second is 
now the primary standard.) We will discuss the speed of propagation more 
thoroughly in the next section. 

Eqs 2.25 and 2.26 are vector equations. The equations can be simplified 
by rewriting them in terms of the components of the field. In rectangular 
coordinates, the vector Laplacian breaks into three uncoupled components. 
The scalar component equations become 

(2.27) 

Here the subscript indicates the ith component, where i stands for x, y, or 
z, and 'V2 is the scalar Laplacian given in Eq. 2.21. Since the symbol for the 



Maxwell's Equations 17 

(\(\ vv 
exp(jrot + jkz) exp(jrot - jkz) 

Figure 2.3. The general solution to the wave equation in a linear homogeneous medium leads 
to plane waves. Depending on the relative sign, the wave will travel left or right. 

vector and scalar Laplacian look the same, we rely on context to distinguish the 
operators. 

The choice of coordinate system is critical to solving the wave equation. 
For example, choosing rectangular coordinates to describe a wave in a cylinder 
leads to inseparable coupling upon reflection at the cylindrical surface. We seek 
a coordinate system with no coupling between the orthogonal components, and 
in such a case the individual equations can be written as scalar wave equations. 
The scalar wave equation is written as 

2 82 Ei 
'\1 E· - HE-- = 0 

~ ,- 8t2 

where Ei stands for one of the orthogonal amplitude components. 

(2.28) 

To find a valid solution to the wave equation, we use the separation of vari­
ables technique to get 

Ei(r)Ei(t) 
Eo exp(jk · r) exp(jwt) + c.c. (2.29) 

The term Eo is the electric field amplitude: the separation constant, k, is called 
the wavevector (in units ofrads/meter); and w is the angular frequency of the 
wave (in units ofrads/sec). We will use the wavevector as the primary variable 
in most waveguide calculations. The magnitude of the wavevector is defined in 
terms of the angular frequency and the phase velocity: 

lkl =w.fiii= k (2.30) 

The wavevector k points in the direction of travel for the plane wave. The 
magnitude of lkl describes how much phase accumulates as a plane wave travels 
a unit distance. Think of k as a spatial frequency. 

Through proper choice of sign for each term, one can describe a wave that 
travels in the forward or backward direction along the axis of propagation. Fig. 
2.3 shows the two cases. 
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{r-~~;----+--~r---.---~ 
:t 

Figure 2.4. Basic description of the wavelength. The wave accumulates 271' of phase after 
travelling one wavelength. 

In optics, it is common to describe optical fields by their wavelength. The 
waveform in Fig. 2.4 shows the real part of the spatial component of the plane 
wave, E(r) = E 0e1kr. The distance between two adjacent peaks in amplitude 
is called a wavelength,.\. The amplitude of the wave at the first peak, e1kr1, is 
the same as the amplitude at the peak located one wavelength away, e1k(r1 +A). 

We can find a relation between k and .\: 

ejkr1 = e1k(n +>.) 

= ejkr1ejk>. 
(2.31) 

(2.32) 

This equality holds only if ejk>. = 1, which requires that jk.\1 = 27f. Solving 
fork 

iki = 21rj>. (2.33) 

6. Transverse Electromagnetic Waves and the Poynting 
Vector 

Assume that a plane wave is propagating along the z-direction and that the 
electric field is polarized along the x-axis, E(r, t) = xEo cos(wt - kz). In 
complex notation, this would be described as 

E(r, t) xEo~(e-j(kz-wt) + e+j(kz-wt)) 
2 

·Eo -j(kz-wt) + x2 e c.c. (2.34) 

We use complex notation because derivative and integral operations do not 
change the functional form. We must be careful to take the real part of expres­
sions like Eq. 2.34 when we want to describe the physical wave. 

The magnitude of the magnetic amplitude can be derived from the electric 
amplitude using Maxwell's equations. Plug the electric amplitude (Eq. 2.34) 
into Eq. 2.1 and use Eq. 2.9, and Eq. 2.29 to show 

k Eo ·k · t H(r, t) = y---e-J zeJw + c.c. 
f.J,W 2 
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, wjlif. Eo ~jkz jwt y---e e +c.c 
f.J,W 2 

1 Eo .k . t 
fj--e~1 ze1w + c.c. 

77 2 

where 77 is called the characteristic impedance of the medium, 
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(2.35) 

(2.36) 

In vacuum, the characteristic impedance is 770 = 377!:1. The magnitude of the 
magnetic amplitude is directly proportional to the magnitude of the electric 
amplitude. Note that E is perpendicular to H. 

A useful concept for characterizing electromagnetic waves is the measure of 
power flowing through a surface. This quantity is called the Poynting vector, 
defined as 

S=ExH (2.37) 

S represents the instantaneous intensity (W/m2) of the wave. The Poynting 
vector points in the direction of power flow, which is perpendicular to both the 
E and H fields. The time average intensity for a harmonic field (i.e. sinusoidal 
waveform) is often given using phasor notation 

(S) = ~Re[E x H*] (2.38) 

where H* is the complex conjugate of H. The total electromagnetic power 
entering into a volume is determined by a surface integral of the Poynting vector 
over the entire area of the volume. In waveguides we are usually interested in 
the average energy flow in one direction, e.g. along the axis of the waveguide. 
In such cases, the dot product of the Poynting vector with the unit direction 
vector must be evaluated, 

(Sz) = ~Re[E X H*. z] (2.39) 

This value of (Sz) is a function of position, so it is necessary to integrate the 
Poynting vector over the cross section of the guide. 

7. Phase Velocity 
Two velocities describe the propagation of electromagnetic waves: the phase 

velocity, and the group velocity. We will consider phase velocity first. Consider 
the sinusoidal electromagnetic wave plotted in Fig. 2.5 , travelling in the z 
direction. A point is attached to the top of one of the amplitude crests. How 
fast must this point move to stay on the crest of the wave? Since this crest 
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[b] 

Figure 2.5. The phase velocity is detennined by the speed necessary for a point to ride the crest 
of a wave. 

represents a specific phase of the wave, the point must move at a speed such 
that 

e-i(kz-wt) = constant (2.40) 

which is satisfied if kz- wt =constant. It is easy to see z(t) must satisfy 

wt 
z(t) = k + constant (2.41) 

We can differentiate z(t) with respect to time to find the phase velocity, v(t) 

dz w 
dt = k = Vp (2.42) 

Also, recall from Eq. 2.30 that w = k/ ..jjif., so 

Vp = 1/ ..jjif. (2.43) 

This is the same velocity that we derived in Eq. 2.25, so the "speed of light" 
that comes from the wave equation is the phase velocity. If permittivity E > Eo, 
then Vp is less than c, the speed of light in a vacuum. Except for unusual 
circumstances, such as propagation in plasmas or x-rays in a certain frequency 
range, most materials have a permittivity, E, that is greater in magnitude than 
Eo. Do not be alarmed that the phase velocity can exceed c in certain situations. 
Such instances are results of collective action by an oscillating medium. We 
define the index of refraction, n, of a medium as the ratio of the phase velocity 
of light in a vacuum to the velocity in the medium, 

or using Eq. 2.43 

n 

c 
n=­

Vp 
(2.44) 
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- ~ when Jl = JlO· - v~ 
(2.45) 

The index of refraction is an important parameter in optical design and material 
characterization. We will explore its dependence on wavelength in later chap­
ters. The ratio f/ Eo is called the dielectric constant. The index of refraction, n, 
is the square root of the dielectric constant. 

We often write the wavevector, k, in terms of the vacuum wavevector, ko, 
and the index of refraction. The vacuum wavevector is the magnitude of the 
wavevector in a vacuum, and is given by k = 21r / >.. Using the relation k = 
wffo£, we can rewrite this as 

k = wViiQE = wy'jiOED f"!:. = wy'jiOEDn = kon 
v~ 

(2.46) 

Once we know the vacuum wavevector, we can define the magnitude of the 
wavevector in all media based on the index of refraction. 

To summarize, many parameters change inside a dielectric: the wavelength 
is reduced by 1/n, k increases to kon, and the phase velocity reduces to cfn. 
One parameter that stays constant is the angular frequency, w, which is identical 
in all media. This follows from conservation of energy, where Planck's relation, 
E = hw, describes the energy in the wave. 

8. Group Velocity 
Except in regions of high attenuation, energy in an electromagnetic wave 

travels at the group velocity, v9 • Information, which is carried by modulation 
on a light wave, also travels at the group velocity. The group velocity describes 
the speed of propagation of a pulse of light. A simple construction allows us 
to develop an expression for the group velocity through a superposition of two 
waves with different frequencies. With the frequencies assigned 

w1 = w + tiw (2.47) 

the two associated wavevectors will have values 

(2.48) 

Assuming the waves have equal amplitudes, Eo, the superposition can be de­
scribed as 

~+~ ~~ 
=Eo( cos [(w + tiw)t- (k + tik)z] +cos [(w- tiw)t- (k- tik)z]) 

Using the trigonometric identity 

2cosxcosy = cos(x + y) + cos(x- y) (2.50) 
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Figure 2.6. Two waves of similar frequency will form a beat pattern. The envelope of the beat 
travels at the group velocity. 

the electric field superposition can be rewritten as 

E1 + E2 = 2Eo cos(wt- kz) cos(D.wt- D.kz) (2.51) 

This superposition of two waves at different frequencies leads to a temporal 
beat at frequency D.w and a spatial beat with period D.k. Fig. 2.6 shows the 
superposition of the two waves. The envelope of the amplitude clearly depicts 
the beat frequency. 

The group velocity is the speed at which a pulse, or in this case, the envelope, 
travels. The envelope is described by the cos(D.wt- D.kz) term ofEq. 2.51. 
We again attach a point to the crest of the envelope, and ask what speed, v(t), 
is required to stay on the crest of the envelope. Following the arguments used 
to derive the phase velocity, we set the phase argument of the envelope, D.wt­
D.kz =constant. Solving for z(t), 

D.wt 
z(t) = D.k +constant (2.52) 

The group velocity is the derivative of this 

dz D.w 
v9 = dt = D.k becomes v9 

lim D.w = dw 
~w-+0 D.k dk 

(2.53) 

The group velocity, v9 , depends on the .first derivative of the angular frequency 
with respect to the wavevector. In free space, where w = kc, the relation is 
simple and leads to dw / dk = c. In a vacuum, the phase and group velocities 
are identical. The relation is more complicated in other media. The constitutive 
constants, especially t:, usually depend on frequency. Recall that w = kvp = 
kcjn. Then 

dw_ d (kc)_c kcdn 
dk - dk -:;;: - ;;: - n2 dk 

~ _). dn 
n d). 

(2.54) 
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The last relation can be confirmed with a simple calculation. The group velocity 
is nearly equal to the phase velocity, but is reduced or increased by a small term 
proportional to the change of index of refraction with wavelength. This change 
in index is called dispersion. In regions of regular dispersion, dn/ dk > 0, the 
group velocity is less than the phase velocity, c/ n. Anomalous dispersion occurs 
when dn/ dk < 0. As we will see in subsequent chapters, both dispersions will 
play roles in the propagation of pulses in an optical fiber. 

9. Boundary Conditions for Dielectric Interfaces: 
Reflection and Refraction 

When two different media are adjacent to one another, the wave solutions in 
the two regions must be connected at the interface. The rules for connecting 
solutions are called boundary conditions. In general, if there is an index dif­
ference between two media, there will be a reflection. This is called a Fresnel 
reflection, after the French scientist, A. J. Fresnel (1788-1827). 

Consider the interface shown in Fig. 2. 7. The k vector of an electromagnetic 
wave propagates from one medium into another (accompanied by a partial 
reflection back into the originating media). The wave has frequency w, and 
is incident on the interface from region 1 at an angle of incidence, fh The 
two regions have indices of refraction n1 and n2, respectively. We want to 
determine the amplitudes of the transmitted and reflected waves, Et and En 
and their respective wavevectors, kt and kr. 

We must first solve the wave equation (2.25) in each region. This is straight­
forward and yields, 

(2.55) 

z 

Figure 2. 7. A ray incident on an interface at angle 8; will reflect and refract into two different 
rays. The electric field in this figure is directed out of the page for all waves. 
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where Eq is the amplitude. The subscript, q, refers to the three different fields 
that will arise. The tough part of the problem is connecting these solutions at the 
interface. The boundary conditions that apply to this situation can be derived 
from the integral form of Maxwell's equations. In a medium where there are 
no sources, (p, J = 0), the boundary conditions are 

s X (E2- El) = 0 tangential E is continuous (2.56) 

s X (H2- Hl) = 0 tangential H is continuous (2.57) 

s · (B2- B1) = 0 normal B is continuous (2.58) 

s · (D2- Dl) 0 normal D is continuous (2.59) 

Where s refers to the unit normal to the interface. 
There are two possible orientations for the electric field with respect to the 

interface. The field can be perpendicular or parallel to the plane of incidence. 
The plane of incidence contains both the k vector and s. When the electric field 
is perpendicular to the plane of incidence, it is called a Transverse Electric, or 
TE wave. Fig. 2. 7 shows the specific case of aTE wave incident on an interface 
at an angle (h, 

Fig. 2.7 shows there are six field amplitudes (Ei, Et, Er, Hi, Ht, Hr), three 
wavevectors (ki, kt, kr), and three angles (Bi, Bt, and Br). Some of these, like 
Ei and Bi, are initial conditions of the problem while the others are dependent 
variables. It is convenient to first relate the angle of incidence to the angle of 
reflection: 

(2.60) 

Justification is straightforward: we can apply Fermat's principle (Prob. 2.4.), 
or conservation of photon momentum (Prob. 2.5.) 

The general description of the x-polarized incident electric field is 

E E A -J·k: •. f J·wt 
i = iXe e 

The wavevector ki is described in terms of its vector components 

ki = (zcosBi- ysinBi)konl 

(2.61) 

(2.62) 

where k0 is the vacuum wavevector (w/c). Position, r, is also described in 
vector form, 

r = xx +yy+zz (2.63) 

Substituting these terms into Eq. 2.61, the complete description of the incident 
field is 

xEie -jkon1 (z cos Bi -ii sin 8•)·(x:H11Y+zz) dwt 

= xEie-ikanl(zcosB;-ysinB;)eiwt (2.64) 
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The incident field is completely defined in tenns of direction, frequency, 
and polarization. The frequency tenn, eiwt, can be dropped from the explicit 
fonnulation because it is the same in all regions. The other electric fields in 
Fig. 2.7 are similarly described. 

Et(x, y, z) 

(2.65) 

Er(x,y, z) 

(2.66) 

We have assumed that the electric field will continue to point out of the page 
for each component. This may or may not be true: in some cases the phase 
of the field advances by 180°, and the direction would reverse (i.e. point into 
the page). If this happens, when we have completed our solution, one of the 
components will be multiplied by a negative sign. So do not be too concerned 
about choosing the proper orientations initially, as these problems will solve 
themselves. 

We will need to describe the magnetic fields for the three waves. The appro­
priate k-vector for each magnetic field is the same as for the electric field. Note 
that forTE waves, the H fields have two vector components, a z-component and 
a y-component. The magnitude of the magnetic field is related to the electric 
field through the impedance, ry, of the medium (Eq. 2.35) 

IHI = IEI/TJ (2.67) 

where 'f/i = ../iilfi. Using trigonometry, the correct expressions for the H -field 
components are 

Hi = (Ei/TJl) (z sin Bi + i) cos Bi)e-inlko(zcos8;-ysinfh) (2.68) 

Ht = (Et/'f/2) (z sin (Jt + i) cos (Jt)e-jn2ko(zcos8t-ysin8t) (2.69) 

Hr = (Er/'f/1) (zsinBr- ycosBr)e-jnlko(-zcos8r-Ysin9r) (2.70) 

With a complete description of the field in all regions, (Eqs. 2.64 -2.66 and 
Eqs. 2.68- 2. 70), we can connect the solutions at the interface, yielding fonnulae 
for transmission and reflection. First, apply the condition that the tangential 
component of E must be continuous across the interface, 

(2.71) 

The tangential E field at the interface is the Ex component. Expanding this at 
z = 0, and using the fact that z x x = i) and ()i = Or yields 

(2.72) 
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Combining tenns of equal phase 

fj(Ei + Er)e(jkonlysinO;) = fjEte(jkon2ysinOt). (2.73) 

For this equation to hold, it must be true for all values of y. At y = 0 the 
equation becomes simply 

(continuity of magnitude) (2.74) 

Substituting this into Eq. 2.73 and cancelling common tenns yields 

(2.75) 

which can only be true if 

(2.76) 

Cancelling common tenns on both sides we arrive at Snell's Law 

(2.77) 

From Snell's law, the direction of the transmitted wave can be found. This 
leaves only the amplitudes, Et, Er, Ht and Hr to be detennined. To deter­
mine the amplitude of Er in tenns of Ei, we resort to the magnetic boundary 
conditions. The continuity of tangential H requires that 

(2.78) 

In this case, Hi has both z andy components, so we must be careful to carry only 
they component through the cross product. Using Eq. 2.68- 2. 70, z x fj = -x, 
and Br = ()i, 

z x Hi = (-xEicosBi/ryl)e-jkon1(-ysinO;) (2.79) 

z X Ht = (-xEtcosBt/TJ2)e-ikon2(-ysinOt) (2.80) 

z x Hr = (+xErcosBi/TJl)e-jkonl(-ysinO;) (2.81) 

where Ei, Er, and Et represent magnitudes, not vectors. Adding the tenns 
according to Eq. 2.78, and applying Snell's law (Eq. 2.77), we get 

(2.82) 

Since Et = Ei + Er, we can replace Et in tenns of the other variables 

(Ei - Er) cos Bi/TJl = (Ei + Er) cos Bt/'T/2 (2.83) 



Maxwell's Equations 27 

and solve for the ratio of Er / Ei 

(2.84) 

Similarly, we could eliminate Er from Eq. 2.83 and solve for the ratio Et/ Ei 

Et/ Ei = 2TJ2 cos Bi 
(772 cos Bi + 771 cos Bt) 

(2.85) 

It is more common to deal with the index of refraction, ni, than with impedance, 
1Ji, for a material (be careful to distinguish 7J from n). If J.L = J.L0 , then 7J can be 
rewritten as 

(2.86) 

Substituting this expression into Eqs. 2.84 and 2.85 generates the more familiar 
forms of the amplitude transmission and reflection formulae for a transverse 
electric field. In these formulae, the field is incident from the n 1 side, entering 
into the n2 side. 

Er/ Ei = n1 cos Oi- n2 cos Ot 
n1 cos Oi + n2 cos Ot 

(2.87) 

(2.88) 

The expressions for transmission and reflection of a wave which has the mag­
netic field, H, perpendicular to the plane of incidence (the so-called Transverse 
Magnetic or TM wave) are significantly different. Their derivation is left as an 
exercise to &how 

E / E- _ n1 cos Ot- n2 cos Oi 
r ~- n2 cosBi + n1 cosBt · 

Et/ Ei = 2 cos Bi 
(n2/n1) cos Bi +cos Bt 

(2.89) 

(2.90) 

One word of caution about the Fresnel formulae: they describe the amplitude 
of the transmitted and reflected field, and not the power of the fields. In some 
circumstances, the magnitude of the transmitted electric field is larger than that 
of the incident electric field. This dilemma is resolved when total power is 
accounted for in the solution. One must account for geometric change of area 
between the incident and transmitted beams and the impedance change. We can 
also develop expressions for the H components, but these can be found simply 
and directly through the impedance relationships. 
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Example 2.2 Normal reflection from a glass interface 

The most common example of Fresnel reflection is that which occurs when 
light strikes a glass-air interface. Let's apply the reflection formula to this 
problem to illustrate the magnitude of the effect, and the phase shift which 
occurs. 

A beam of light is incident normally on a glass-air interface as shown in 
Fig.2.8 What is the intensity of the reflected light if the glass has an index of 
ref~:action of n = 1.5? 

Solution: Plugging numbers into Eq. 2.88, noting that cos B = 1 in this 
case, we get 

E /E- = 1 - 1.5 = -0.2 
r t 1 + 1.5 

The reflected amplitude is 20% of the incident amplitude. The negative sign 
indicates that the reflected wave is 180° out of phase with the incident wave 
(when light strikes a higher index, the phase of reflected wave will always be 
reversed). Now, what is the intensity? Using the Poynting vector and the fact 
that JHJ = JEJ/'IJ, we find the incident intensity is 

S _ 1E5 
inc- 2ry 

while the reflected intensity is only 

1 (0.2Eo) 2 
Sref = 2 'I} = 0.04Sinc 

Thus, only 4% of the incident power is reflected by the glass interface. This 
reflection can become a significant loss in certain applications. For example, 
a camera lens often will consist of three or more separate lenses, representing 
six glass-air interfaces. The total transmission for such a system would be 
T = (0.96)6 = 0. 78 if the lenses are not modified. This represents a significant 

n=1 n=1.5 

Reflected 
Light -4---t 

Incident Light 

Figure 2.8. A beam of light strikes a glass interface normally, causing a small reflection. 
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loss of power in an application where light collection efficiency is critical. Not 
only would the reflections require larger apertures and longer exposure times, 
but they also could contribute ghost images on the film. These problems are 
overcome by putting an anti-reflection (AR) coating on each surface. The AR 
coating is basically a stack of >./4 thick layers of dielectric material which 
interferometrically reduce the total reflection coefficient. 

10. Total Internal Reftection 
An important physical process in guided wave optics is Total Internal Re­

flection. We will look at total internal reflection from two perspectives: ray 
tracing, and the wave equation. Ray tracing is useful when the dimensions of 
the optical element are large compared to the wavelength oflight. Ray tracing is 
useful for concepts such as the numerical aperture. The wave picture provides 
a complete description of the phase shifts and evanescent fields that accompany 
total internal reflection. 

Ray Tracing 

Ray tracing models light as rays travelling in straight lines between optical 
elements. The only action of an optical element is to redirect the ray. The angle 
of incidence of the ray, and the properties of the optical element establish the 
degree to which the ray is redirected. 

The important operational rules for ray tracing are Snell's Law 

(2.91) 

and the Law of Reflection, 

()incidence = ()reflected (2.92) 

illustrated in Fig. 2.9. Using these two simple equations, a powerful calculus 
can be developed for designing and evaluating lenses and optical systems. Many 
excellent references [1], [8], [15] elaborate on the application of ray tracing to 
optical design. Numerical matrix techniques have been developed based on 
these simple laws which allow the engineer to design complex linear optical 
systems. The ray tracing analysis is usually of limited use for guided wave 
optical design, however, because the size of the waveguide is often comparable 
to the wavelength of guided light. Ray tracing's most common application is 
to describe graded index waveguides, and to define the numerical aperture. 

Total Internal Reflection using ray tracing 

Total Internal Reflection (TIR) is the phenomenon where light is completely 
reflected at a dielectric interface without the help of reflective coatings. TIR 
is often exploited to make efficient achromatic reflectors. For example, right­
angle prisms are often used to redirect light from imaging systems such as 
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n1 n2 

Refrac:llon (Snelrs Law) Equal Angle Reftectlon 

Figure 2.9. The two principle laws of ray tracing. The left figure shows Snell's Law. The right 
figure illustrates that the angle of incidence equals the angle of reflection. 

binoculars, or to serve as rugged mirrors for high powered lasers. Here we 
want to consider optical waveguides. Fig. 2.10 illustrates the ray picture of a 
right-angle prism and of a waveguide. The key requirement for TIR is that the 
light must be incident on a dielectric interface from the high index side. Thus 
an optical waveguide must consist of a layer of high index dielectric surrounded 
by material with a lower index. 

Total internal reflection occurs over a certain range of angles. Fig. 2. I I 
shows a wave incident at an angle, (}1, on a dielectric interface from the high 
index side. The refracted ray in the low index medium, n2 , exits at angle B2 . 

The exit angle is 

e . -l(nl . e ) 2 = sm -sm 1 
n2 

(2.93) 

As the angle of incidence, 81, increases, the angle of refraction, 82, must also 
increase to satisfy the equality. But because nifn2 > 1, the refraction angle, 
82, will reach a value of 90° before 81 does. This occurs when 

(2.94) 

This value of 81 is known as the critical angle. For angles of incidence larger 
than the critical angle, 82 must be a complex number (see Prob. 2.I 1.) to 

Figure 2.1 0. Total internal reflection can be implemented in many ways. The right-angle prism, 
and the optical waveguide both use total internal reflection to redirect or trap light, respectively. 
Note that the light is incident from the high index side of the interface in all cases ofTIR. 
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91< Critical Angle 91 = Critical Angle 91 > Crilical Angle 

Figure 2.11. Three cases where the angle of incidence is below, at, and above the critical angle 
respectively. 

Figure 2.1 2. A waveguide can be formed when total internal reflection traps a wave between 
two surfaces. 

satisfy Snell's Law. A complex angle in the expressions for transmission (for 
example, Eq. 2.88) leads directly to a complex amplitude in the low index 
region. Complex amplitudes simply mean that a phase shift occurs. While we 
will not prove it here (see problems 2.4. and 2.5.), as with all simple reflections, 
the angle of reflection is equal to the angle of incidence of the ray. 

Total internal reflection is the key to optical waveguiding. Consider the di­
electric structure shown in Fig. 2.12. A dielectric slab of index n 1 is surrounded 
by a lower index dielectric. A ray travelling within the high index material will 
be total-internal-reflected at the upper and lower interfaces of this structure if 
the angle of incidence at the interface exceeds the critical angle. This is a sim­
plified picture, as the actual ray picture of a waveguide is more subtle in terms 
of allowed directions for the rays (to be fully developed in the next chapter). 
However, the essential idea behind the optical waveguide is that light is trapped 
in a high index media through total internal reflection. 

11. Wave Description of Total Internal Reflection 
We claim that the ray became totally reflected for angles beyond the critical 

angle, yet the only evidence we offered to support this claim is fact that the 
trigonometric identity is impossible to rationalize using real angles. We can put 
the description on a more physical basis by examining total internal reflection 
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y 

Figure 2.1 3. A plane wave incident on a dielectric interface at angle lh will refract at an angle 
(h in the second medium. The reflected ray is not shown for clarity. 

using electromagnetic waves. The wave picture provides a physical explanation 
of the reflection, and yields information on the phase shift caused by reflection . 

.Consider a TE plane wave, polarized along the x-axis with amplitude, Eo, 
incident on a dielectric interface, as shown in Fig. 2.13. The angle of incidence 
is less than Oc. Since the time behavior is identical for both, only the spatial 
descriptions of the two waves are considered: 

E 1(y, z) = xEoe-jkon1(zcoslh-ysinlh) + c.c. 

E2 (y, z) = TXEoe-jkon2(zcos02-ysin02) + c.c. (2.95) 

where T is the amplitude transmission coefficient (from Eq. 2.85). The angles 
()1 and ()2 are related by Snell's Law. 

. () n1 . () sm 2 -sm 1 

cose2 = 

n2 

n12 . 2 
1- -sm ()1 

n22 
(2.96) 

Substituting these values into Eq. 2.65, we get an expression for the transmitted 
amplitude, E2, that is a function of the incident angle, ()1, 

Physically, we can understand refraction by considering what happens to 
the wavefronts at the interface. On the incident side, the wavefront strikes the 
interface and is partially reflected and partially transmitted. If ()1 < ()c, the 
wavefronts must be continuous across the interface. The node where these two 
wavefronts connect travels along the interface with a velocity, Vnode as shown 
in Fig. 2.14. The velocity of this intersection, Vnode. is simply 

(2.98) 
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Figure 2.14. The plane waves on either side of the interface must connect as they cross the 
interface. These connecting nodes travel along the interface at a velocity that depends on the 
angle of incidence. 

where vp1 is the phase velocity, c/n1 in the first medium. The transmitted 
wave, E2, must travel in such a direction that the velocity of the nodes of its 
phase front is identical to that of the incident field. Since the phase velocity in 
medium n 2 is different, the only way the node velocities can be matched is if 
the direction of the transmitted field refracts to angle e2 such that 

(2.99) 

This is simply a restatement of Snell's law. 
As the angle of incidence 01 increases, the transmitted waves must make a 

larger angle e2 to maintain the proper velocity ofthe intersection at the interface. 
At 91 = Ocr, cos 82 goes to zero, and the transmitted field contains only one 
component, 

(2.100) 

This is the description of a plane wave travelling parallel to the interface in the 
fJ direction. This direction will yield a node velocity that is as slow as can be 
achieved in medium n2. In the ray picture, we would say that the transmitted ray 
is parallel to the plane of incidence. Fig. 2.15 shows this condition. The plane 
waves on either side of the interface must connect as they cross the interface. 
These connecting nodes travel along the interface at a velocity that depends on 
the angle of incidence. 

What happens as 81 increases beyond the critical angle? The radical in Eq. 
2.96 which describes cos 82, becomes imaginary, so the transmitted electric 
amplitude is described as 

(2.101) 
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Figure 2.15. At the critical angle, the transmitted plane waves travel parallel to the interface. 

where we choose the proper sign of the radical to ensure that the amplitude 
decays as distance from the interface increases. This cumbersome form is 
often written as 

E2 = TXEoe - ''fZ ei f3Y 

where "Y represents the attenuation coefficient (units: cm-1 ) , 

2 
n1 · 2 () -sm 1-1 n2 

2 

and /3 represents the propagation coefficient (units: rads/cm), 

(2.1 02) 

(2.103) 

(2.1 04) 

Inspection of Eq. 2.103 shows that the field amplitude decays exponentially 
away from the interface. This field is called the evanescent field. The evanes­
cent field contains real values of E and H, but they are 90° out-of-phase with 
each other. The evanescent field contains reactive power, not real power. In 
reactive power, no work is done, but energy is stored. This evanescent field is 
very important to device applications. It is possible to tap some of the energy 
away using special structures. We will see many such devices in later chapters 
concerning switches, modulators, and couplers. 

Returning to the physical picture, when ()1 is increased beyond the critical 
angle, the node velocity in n1 is slower than the minimum possible velocity 
of nodes in medium n2. In medium n2 , the phase fronts advance beyond their 
generating counterparts in n1 . As the transmitted wave fronts travel ahead, 
they run up on wavefronts emitted from earlier nodes. At a certain distance, 
the fronts in n2 will be 180° out of phase with the nodes of n 1 and destructive 
interference will occur. The larger the angle of incidence, fh, the slower the 
node velocity in n 1 will be. Destructive interference will occur sooner, leading 
to increased attenuation. We see from Eq. 2.103 that the attenuation coefficient, 
"'(, increases as the angle of incidence is increased. 
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Figure 2.16. Beyond the critical angle, the plane waves on the low index side of the interface 
travel faster than the nodes due to the incident field. They get ahead of their source nodes, and 
then react back against them. 

12. Phase Shift Upon Reflection 
A more subtle, yet critically important effect that occurs in TIR is the phase 

shift of the light upon reflection. These phase shifts help determine which 
modes propagate in a waveguide. After reflection, the optical signal slightly 
lags in phase compared to the incident wave. One can view this phase shift as 
being due to the extra distance the light travels when going into and returning 
from the low index media during its evanescent phase (this is called the Goos­
Hiinchen shift, see Pro b. 2.17. and Appendix A: The Goos-Hanchen Shift), or 
one can view the phase shift as occurring due to the mixing of two waves that 
are slightly out of phase (the reflected and evanescent wave). 

How big is the phase shift? For aTE wave, the phase shift can be determined 
directly by writing the the amplitude reflection formula, Eq. 2.88, in polar form 

Er = (n1cose1-n2cos02) = lrl ej2</> 

Ei (n1 cos01 + n2 cos02) 
(2.1 05) 

The reflection coefficient is described in terms of its magnitude, lrl, and phase 
shift, 2¢. Beyond the critical angle, cos 02 becomes pure imaginary (0 = 

V 1 - ni/n~ sin2 01). Letting a = n1 cos 01, and j (3 = n2 cos 02, Eq.2.1 05 
can be rewritten as 

(2.106) 
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Figure 2.17. Plot of the phase shift, <I>, as a function of the angle of incidence, (}. Note that the 
phase shift below the critical angle is zero. 

Substituting the value of cos B2 from Eq.2.96, the phase of this transfer function 
is 

t -1 ( -(3) t -1 ((3) an --;-- - an ~ 

2tan-1 ( -:) 

,------
1 2 • 2e 2 _1 -yn1sm 1-n2 

= 2tan 
nl cosel 

(2.1 07) 

This equation is only valid for B1 > Bcr· The magnitude of Er/ Ei is obvi­
ously unity. We leave it as an exercise to show that the correct formula for TM 
waves is given by 

_ 1 (-n~ /n~sin2 B1-n~) 
<I>rM = tan ---'-------

n~ n1 cose1 
(2.108) 

Figure 2.17 shows the dependence of <I>r E as a function of the angle of incidence 
B1 for two ratios ndn2 • The ratios 0.3 and 0.7 correspond to the approximate 
values of a GaAs-air and glass-air interface, respectively. The phase shift for 
the TM case is similar. 

For angles of incidence below the critical angle, there is no phase shift upon 
reflection (actually, the phase shift can be 0 or n, depending on the relative 
indices). 

13. Summary 
This chapter reviewed Maxwell's equations, using them to establish a set 

of units (MKS), and several important quantities and concepts. We derived 
the wave equation, and solved it in homogeneous media. From the solution, 
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we developed expressions for phase and group velocity. The concept of the 
wavevector was introduced and related to the angular frequency of a wave. 
Using boundary conditions, we developed expressions for the reflection and 
refraction of electromagnetic waves from a dielectric interface. 

We then explored total internal reflection. Snell's law was used to illustrate 
the ray picture of total internal reflection. While Snell's law, if used with com­
plex angles, can give a total description of the evanescent fields associated with 
these reflections, the wave description based on Maxwell's equations provides 
a clearer picture. Using the wave picture, we used the Fresnel formulae for 
reflection and transmission at a dielectric interface to develop expressions for 
phase shift associated with TIR. This phase shift always accompanies TIR, and 
plays a unique role in establishing which rays will be allowed inside an optical 
waveguide. 

The material parameters, J.L and t:, play a critical role in determining the action 
of a wave at a dielectric interface. We alluded to the frequency dependence of 
these material parameters in the discussion of group velocity. This will be 
further developed in Chapter 8. 
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Practice Problems 

1. Derive the Fresnel amplitude reflection and transmission coefficients for 
an electromagnetic wave that is polarized with the electric field in the 
plane of incidence (TM wave). 

2. We simplified Eq. 2.24 by assuming that the term 

-V'(E · V'c/c) 

is negligible. Determine how small V' c must be for this assumption to be 
reasonable. Starting from the exact wave equation (with the above term 
included), use separation of variables to solve for the one-dimensional 
wave (i.e. E = Z(z)T(t)). Solve forT(t) in terms of separation constant 
k and (w) 112. From the resulting equation for Z(z), find a rough value 
for \7 cover a characteristic distance of one wavelength of the field. How 
small must ~< be to make it negligible (say less than 1% in magnitude) 
compared to the other terms in the wave equation? 

3. Show that for an harmonic wave, the average value (S) = ~ (E x H) = 

1~12~11 E'g, for a wave with wavevector, k, and electric amplitude, E0 . 

4. Fermat's Principle states that if a light ray travels between two points, 
it follows the path that takes the least time. Use Fermat's principle to 
I) verify that the angle of incidence equals the angle of reflection for a 
simple plane mirror, and 2) derive Snell's law for a ray crossing a dielectric 
interface. 

5. Use conservation of momentum and the fact that a photon has momentum 
given by 

p = !ik = !inko 

where ko is the vacuum wavevector ofthe photon, to 1) show that the angle 
of incidence equals the angle of reflection for a simple plane mirror, and 
2) derive Snell's law for a ray crossing a dielectric interface. 

6. Derive the four boundary conditions, Eqs. 2.57-2.59, relating E, H, D, 
and B across a dielectric boundary. Use the integral form of Maxwell's 
equations. 

7. Consider the situation shown in the Fig. 2.18 below. ATE wave (po­
larized along fj) with a wavelength of 1 Jlm is incident from air onto the 
GaAs-air interface, at art angle of incidence of 45 a. The index of refrac­
tion ofGaAs equals 3.4 at 1 Jlm. Describe the electric fields in all regions 
surrounding the interface. 
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Figure 2.18. A wave incident at 45° on a dielectric interface from the low index side. The 
wave is TE polarized, and has a wavelength of I JLffi. 

8. Using a computer and a program like Mathematica, plot the amplitude 
and power reflection and amplitude and power transmission coefficients 
as a function of angle for both TE and TM waves for a) a glass-air interface 
(nglass = 1.5), and b) a GaAs-air interface (ncaAs = 3.4). Assume the 
light is incident from the air side. 

9. Beginning with E. 2.12, derive the homogeneous wave equation in terms 
of the magnetic field amplitude, H . 

10. From the definition of the Poynting vector, Eq.2.37, show that Eq. 2.38 
follows when theE field is a sinusoidal function of time. 

11. It is easy to understand trigonometric identities as e becomes complex: 
use the Euler identity, sin B = 1/2( e19 + e-19), and let B become a 
complex number, a+ jf3. Show that cos2 e + sin2 e = 1. 

12. Confirm Eq. 2.108 for the phase shift that occurs for a TM wave upon 
total internal reflection. 

13. ConsideraTE wave with amplitude Eo incident on an air-dielectric in­
terface from the dielectric side. The dielectric has an index of refraction, 
n1, of 1.6. The angle of incidence is 5° larger than the critical angle. 
A= lJ.tm. 

(a) What is the critical angle for this interface? 

(b) Determine the electric field amplitude for all points on the air side of 
the interface. 

(c) What is the phase shift, 2~, for the reflected light? 

14. The transmission coefficient 7 defined by Eq. 2.88 becomes a complex 
number when the angle of incidence exceeds the critical angle. What.does 
it mean physically when the transmission coefficient becomes complex? 
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n=1.~~ 7 n=1.5 

Figure 2.19. Schematic representation for Prob. 2.17. 

15. Use a computer and programming language such as Pascal or Mathemat­
ica to generate and plot phase shift curves for the TM wave, similar to 
those in Fig. 2.17. Generate curves for dielectric-air interfaces, where 
the dielectrics have indices of3.34 (GaAs) and 1.45 (glass). 

16. On a hot day on the highway, the distant road sometimes appears to be a 
shining reflective pool of water. This phenomenon is really an example of 
total internal reflection. The air directly above the surface of the road has a 
lower index of refraction than that of the surrounding layers. Assume the 
index of refraction of air at 273° is n= 1.0003, and the index is directly 
proportional to the density of the air. If air follows the ideal gas law 
(PV=NRT), and the surface layer of air on the highway is 30° higher than 
the surrounding layer, what is the critical angle of incidence for Total 
Internal Reflection at this interface? 

l 7. In the wave picture, we know that upon Total Internal Reflection at an 
interface, the guided wave undergoes a phase shift, 2«P. However, in the 
ray picture, we can interpret a phase shift as a lateral displacement of the 
reflected wave. This is known as the Goos-Hiinchen effect. The lateral 
displacement arises because wave energy actually penetrates beyond the 
interface into the lower index media before turning around. Consider 
Fig.2.19 showing a ray penetrating a surface. Assume that the incident 
ray is striking the interface at an angle exactly 1° larger than the critical 
angle. Referring to Appendix A, what is the depth of penetration for this 
interface? What is the lateral displacement, 2zs? How does the depth 
compare to the "depth" of the evanescent field from this structure? 

18. A waveguide has a core index of 1.457 and a cladding index of 1.454. 

(a) What is the critical angle for this interface? 

(b) How far does the field extend into the cladding if excited by lJ.Lm 
light at 88°? 

19. Using the ray tracing picture of total internal reflection, and the Fresnel 
expressions for transmission and reflection of the electric and magnetic 
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fields, show that the electric and magnetic field are 90° out of phase in 
the low index region near the interface. 

20. Confirm that the reflection coefficient for the electric field, Er j Ei is unity 
for all angles greater than the critical angle for TE waves. 



Chapter 3 

THE PLANAR SLAB WAVEGUIDE 

1. Introduction 
In this chapter we establish the fundamental concepts of guided waves. It is 

perhaps the most important chapter in the book, as almost everything else will 
build on these concepts. This chapter includes many numerical examples and 
problems. The homework problems offer many opportunities to test your un­
derstanding of the concepts. Due to the transcendental nature of the eigenvalue 
equations, a computer with numerical analytical software is required to make 
the computations feasible. You are strongly advised to develop a set of standard 
programs that can quickly evaluate the basic waveguide parameters of a given 
structure, based on the material in this chapter. You will find these programs 
useful as we explore different types of waveguide, mode coupling, and device 
construction later in the text. 

2. The Infinite Slab Waveguide 
The simplest optical waveguide structure is the step-index planar waveguide. 

The slab waveguide, shown in Fig. 3.1, consists of a high-index dielectric layer 
surrounded on either side by lower index material. The slab is infinite in extent in 
the yz-plane, and finite in the x direction. The index of refraction of the guiding 
slab, n f, must be larger than that of the cover material, nc, or the substrate 
material, n8 , in order for total internal reflection to occur at the interfaces. If the 
cover and substrate materials have the same index of refraction, the waveguide 
is called "symmetric", otherwise the waveguide is called "asymmetric." The 
symmetric waveguide is a special case of the asymmetric waveguide. 

We will always choose the direction of propagation to be along the z-axis. 
The slab waveguide is clearly an idealization of real waveguides, because real 
waveguides are not infinite in width. However, the one-dimensional analysis is 
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Figure 3.1. The planar slab waveguide consists ofthree materials, arranged such that the guiding 
index (nJ), is larger than the surrounding substrate (ns) and cover (nc) indices. 

directly applicable to many real problems, and the techniques form the foun­
dation for further understanding. We will begin by solving the wave equation 
using boundary conditions for the slab waveguide structure. This will lead nat­
urally to the concept of modes. We will then develop formal mode concepts 
such as orthogonality, completeness, and modal expansion. We will see that a 
waveguide structure can support only a discrete number of guided modes. The 
mode picture is very powerful, and will be used extensively as we delve deeper 
into the subject of wave propagation in structures. 

3. Electromagnetic Analysis of the Planar Waveguide 
Consider the waveguide structure shown in Fig. 3.1. The three indices are 

chosen such that n f > n8 > nc, and the guiding layer has a thickness h. The 
choice of the coordinate system is critical in making the problem as simple as 
possible [l]. The appropriate coordinate system for this planar problem is a 
rectilinear cartesian system, because the three components of the field, Ex, Ey, 
and Ez are not coupled by reflections. For example, an electric field polarized 
in the y-direction, Ey, will still be an Ey directed field upon reflection at either 
interface; the reflection does not couple any of the vector field into the x or z 
directions. We place the x = 0 coordinate at one of the interfaces, choosing 
arbitrarily the top interface (between n f and nc). 

We must consider two possible electric field polarizations, transverse elec­
tric or transverse magnetic [2]. The axis of the waveguide is oriented in the 
z-direction. The k-vector of the guided wave will zig-zag down the z-axis, 
striking the interfaces at angles greater than the critical angle. The field can be 
Transverse Electric (TE) or Transverse Magnetic (TM), depending on the ori­
entation of the electric field. The TE case has no longitudinal component along 
the z-axis; the electric field is transverse to the plane of incidence established by 
the normal to the interface, and the k vector. Because of the different boundary 
conditions that control both fields, the TE and TM cases are distinguished in 
their mode characteristics as well as their polarization. In the section below, . 
we will consider the TE case, leaving derivation of the TM case to problems at 
the end of the chapter. 
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Figure 3.2. Transverse Electric (TE) and Transverse magnetic (TM) configurations. A cross 
indicates the field is entering the page. 

In the TE case, theE field is polarized along they-axis (into the page) of Fig. 
3.2. We assume the waveguide is excited by a source with frequency wo and a 
vacuum wavevector of magnitude ko = wo /c. To find the allowed modes of the 
waveguide, we must first solve the wave equation in each dielectric region, and 
then use the boundary conditions to connect these solutions. For a sinusoidal 
wave with angular frequency wo, the wave equation (Eq. 2.30) for the electric 
field components in each region can be put in the scalar form 

"V2 Ey + k5nt Ey = 0 (3.1) 

where ni = nf, n 3 , nc, depending on the location. Ey(x, z) is a function of 
both x and z, but because the slab is infinite in extent in the y-direction, Ey 
is independent of y. Due to the translational invariance of the structure in the 
z-direction, we do not expect the amplitude to vary along the z-axis, but we do 
expect that the phase varies. We write a trial solution to Eq. 3.1 in the form 

Ey(x, z) = Ey(x)e-jf3z (3.2) 

(3 is a propagation coefficient along the z-direction, but we do not know its 
magnitude yet. Plugging this trial solution into Eq. 3.1, and noting that 
d2Ey/dy2 = 0 

(3.3) 

The choice ofni depends on the position x . For x > 0, we would use nc, while 
for 0 > X > -h, we would use nf, etc. The general solution to Eq.3.3 will 
depend on the relative magnitude of (3 with respect to koni. Consider the case 
where (3 > koni . The solution to the wave equation, Eq. 3.3, will have a real 
exponential form · 

for (3 > koni (3.4) 

where Eo is the field amplitude at x = 0. To be physically reasonable, we 
always choose the negatively decaying branch ofEq. 3.4. This solution should 
remind you of the evanescent field of a total internally reflected (TIR) wave at 
an interface. 
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L z 

Figure 3.3. Geometric relation between (3, K, and k. 

In the case where (3 < koni the solution has an oscillatory form 

for(J < koni (3.5) 

So depending on the value of (3, the solution can be either oscillatory or expo­
nentially decaying. If (3 > koni we define an attenuation coefficient, "(, 

(3.6) 

and describe the field as Ey(x) = Eoe-'Yx. (Note the similarity to Eq. 2.108 
for the evanescent field of a TIR wave.) If (3 < koni then we define a transverse 
wavevector, K, 

"'= Jk5n~- (32 (3.7) 

so Ey(x) = E0e±i"'x. From Eq. 3.7 we see that (3 and"' are geometrically 
related to the total wavevector, k = k0 n f, in the guiding film. 

(3 and "' are called the longitudinal and transverse wavevectors, respectively, 
inside the guiding film. These terms will be used extensively to characterize 
many types of waveguide mode, so become familiar with the relation shown in 
Fig. 3.3. 

4. The Longitudinal Wavevector {3 
It is important to recognize that (3 is simply the z-component of k. Fig.3.4 

plots the transverse electric field distribution in a slab waveguide for various 
values of (3, as the angle between k and z varies from 90° to 0°. Note that 
the magnitude iki does not change, only its z component changes. (3 is the 
z-component. [4] 

The top sketch of Fig. 3.4 shows the ray picture of the field, while the lower 
sketch shows the wave picture (solutions to Eqs. 3.3 and 3.4). There are three 
special points on the (3 axis: the first one is at (3 = konc. For (3 < konc, 
solutions to the wave equation in all regions of space are oscillatory (Eq. 3.5). 
The ray picture shows that when (3 ~ 0, the wave travels nearly perpendicular 
to the z-axis of the waveguide. Like light going through a sheet of glass, the 
ray refracts at the dielectric interfaces, but is not trapped. An oscillatory wave 
is present in the three distinct dielectric regions. 
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0 

Figure 3.4. Ray and wave picture of the electromagnetic fields as a function of /3. 

The second special point occurs at kon8 • For konc < f3 < k0n 8 , the ray 
picture shows a ray total-internally-reflecting at the film-cover interface, but 
refracting at the lower substrate-film interface. In the wave picture, the field 
becomes evanescent in the cover region. The field will still be oscillatory in the 
film and substrate regions. This condition is called a substrate mode. 

As f3 increases beyond kon 5 , the evanescent conditions are satisfied in both 
the cover and substrate region, and oscillatory solutions are found in the film 
itself. Such solutions are, in fact, the guided modes of the film. The ray picture 
depicts a ray trapped between the two interfaces. 

If f3 continues to increase beyond konf (physically it is not clear how this 
could ever be done, since f3 is simply the z-component of kon 1 ), then Eq. 3.6 is 
satisfied everywhere, so the three regions must have exponential solutions. The 
only way to satisfy boundary conditions is to choose exponentially increasing 
fields in the surrounding dielectric regions, causing the field to explode toward 
infinity as the distance from the film increases. Satisfying this solution would 
require infinite energy, which is unphysical, hence it cannot occur. 

We conclude from this discussion that a guided wave must satisfy the con­
dition 

(3.8) 

where it is assumed that nc ~ n 5 • This is a universal condition for any dielectric 
waveguide, regardless of geometry. 
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5. Eigenvalues for the Slab Waveguide 
To find the values of {3 that lead to allowed solutions to the wave equation, 

we must apply the boundary conditions to the general solutions developed in 
Eqs. 3.4 and 3.5. Assume that {3 satisfies Eq. 3.8. Then the transverse portions 
of the electric field amplitudes in the three regions are 

Ae-"fcX 0 <X 

Bcos(KJX) + Csin(KJX) -h<x<O (3.9) 

De'Ys(x+h) x< -h 

where A, B, C, and Dare amplitude coefficients to be determined from the 
boundary conditions, "Yc and "Ys refer to the attenuation coefficients in the cover 
and substrate, respectively (from Eq.3.6) and "'J is the transverse component 
of kin the guiding film (from Eq. 3.7). The boundary conditions that connect 
the solutions at the interfaces are: 

1. Tangential E is continuous 

2. Tangential His continuous 

We rarely worry about continuity ofthe normal components of D and B, because 
these conditions are almost always satisfied when we satisfy the transverse 
conditions. Since Ey, is transverse to the interface, the first boundary condition 
is straightforward to apply. What about the condition for continuity of magnetic 
field, H? Should we write down a set of equations similar to Eq. 3.9 that 
describe the magnetic field as a function of position? Indeed, we could do 
that, but there is usually a simpler way to derive expressions for the magnetic 
field. If we assume that the fields are harmonic, then we can describe the 
magnetic intensity in terms of the electric intensity, and derive a simple boundary 
condition for the magnetic terms. Recall that 

For a sinusoidal field, 

so 

8B 
V' X E =-at 

B(t) = p.H(t) = p.Hoejwt 

V' x E(t) = -p.jwH(t) 

(3.10) 

(3.11) 

(3.12) 

We need an expression for the tangential component (the z-component in this 
case) of H. Expanding the '\7 x term ofEq. 3.10 into its individual components, 
and taking the z-component, we get 

, (8Ey 8Ex) . H Z ----- = -JLJW z 
8x 8y 

(3.13) 
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Since there is no Ex component to the field, (it would not vary with y even if 
it did exist due to the infinite planar structure), we get an explicit equation for 
the tangential component of the magnetic field, Hz, 

H _ j_ 8Ey 
z- J.LW ax (3.14) 

The tangential component ofH, Hz, is thus defined in terms of the electric field 
quantities. Since J.L and w are identical in all the media, the continuity of the 
tangential magnetic field is guaranteed if 8Ey/8x is made continuous across 
the interface. Hence we can now find the amplitude coefficients, A, B, C, and 
D using only the electric field description. · 

At the x = 0 interface, the condition that Ey be continuous requires that 

(3.15) 

which is satisfied only if A = B. Making the magnetic field continuous at 
x = 0 requires that the first derivative, 8Ey/8x, be continuous at x = 0 

yielding 

-A-yce-'Yc0 -BKJ sin(KjO) + CKJ cos(KJO) 
-A-ye = +CKJ (3.16) 

C =-A 'Yc 
KJ 

(3.17) 

All coefficients are written in terms of A. Using these coefficients, and applying 
the condition that Ey be continuous at x = -h (his a positive number) yields 

A[cos( -KJh)- 'Yc sin( -KJh)] = De'Ys(h-h) (3.18) 
KJ 

This can be solved forD (noting sin( -x) =- sin(x) and cos( -x) = cos(x)) 

D = A[cos(KJh) + 'Yc sin(KJh)] (3.19) 
KJ 

Putting all the terms together, 

Ey Ae-'YcX X> 0 

Ey A[cos(KJX)- :;sin(Kjx)] -h<x<O (3.20) 

Ey = A [cos(Kjh) + :; sin(KJh)] e'Y•(x+h) x < -h 

where A is the amplitude at the x = 0 interface. Eq. 3.20 describes the 
amplitude of the electric field in all regions of the problem. Note that negative 
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values of x must be used in the guiding and substrate layers - otherwise the 
formula will give nonsensical values. This equation is very handy for plotting 
out the mode profiles of guided modes. 

Having found the amplitude coefficients in Eq. 3.20, is this description of 
the transverse electric field complete? Not quite! The propagation and decay 
constants, "fc, "(8 , and "-f, all depend on (3, which is still undefined. The fourth, 
and final, boundary condition, namely the continuity of 8Ey/8x at x = -h, 
gives an equation for (3. 

00~y lx=-h (3.21) 

A[cos(K-Jh) + 'Yc sin(K-jh)hs (substrate term) 
"'J 

Divide both sides of the equation by cos(K-Jh) to get the eigenvalue equation 

(h ) 'Yc +"is 
tan "-! = [ ] 

"'J 1-~ 
"'J 

(3.22) 

This is a transcendental equation that must be solved numerically or graphi­
cally. All terms ("f8 , "fc, "'f) depend on the value of (3. Eq. 3.22 is called the 
characteristic equation for the TE modes of a slab waveguide. Solution of this 
equation will yield the eigenvalues, f3r E that correspond to allowed TE modes 
in the waveguide. Had we set up our initial problem with transverse magnetic 
fields, as opposed to transverse electric fields, we would have arrived at a differ­
ent characteristic equation for the eigenvalues, f3r M. We leave it as an exercise 
(see Problem 3.1.) to confirm that for the TM case, the eigenvalue equation for 
f3 is 

(3.23) 

Every waveguide structure, no matter what shape or symmetry, will have a 
characteristic equation that must be solved to find the eigenvalues of the modes. 

The transcendental equation can be solved numerically on a computer, or 
it can be solved graphically. To provide insight into the eigenequation, the 
example below shows the graphical solution. 

Example 3.1 Graphical and numerical solution to the f3 eigenvalue 
equation 

Consider the planar dielectric structure shown in Fig. 3.5. The guiding index. 
has value 1.50, the substrate index is 1.45, and the cover index is 1.40. This 
is an asymmetric waveguide. The thickness of the guiding layer is 5JLm. We 
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nc =1.40 

fs~.~m 
n5 =1.45 

Figure 3.5. Planar slab waveguide configuration. 

want to determine the allowed values of f3 using Eq. 3.22 for this structure. 
Assume that light with wavelength of lf-Lm is used to excite the waveguide. 

Solution: We will use ~>, f as the variable for plotting all the terms of the 
equation. This choice is arbitrary (we could have chosen (3), but it makes the 
argument of the tan(~>,Jh) term linear. Hence all variables must be defined in 
terms of~>,! 

f3 = jk5(1.5)2- }';,} 

'Ys = J f32 - k5(1.45) 2 

'Yc = V (32 - k5(1.4)2 

Using these values, both sides of the TE characteristic equation (Eq. 3.22) are 
plotted as a function of~>,! on the graph in Fig. 3.6. The variable~>,! ranges 

from a value ofO (when (3 = kont ), to ~>,max = jk~n} - k~n;. The tan(~>,th) 
term generates the typical pattern of a repeating function extending from -oo 
to +oo. The right-hand side ofEq. 3.22 yields a slower function that diverges 
toward -oo around~>, =20,000 cm- 1 and then comes in from +oo. At the 
points where the two curves cross, Eq. 3.22 is satisfied. These points represent 
allowed values of~>, for this waveguide. From the plot we see that the allowed 
~>,values are approximately 5,500, 12,000, 16,500, and 21,500 cm-1. 

This plot was generated using Mathematica, although there are several other 
suitable numeric package~ that can perform these calculations and plots. To 
serve as a guide, the Mathematica code is listed below: 

nf=1 .50; ns=1 .45; nc=1.40; 
h=0.0005; 
lambda= 10-(-4); 
k=2 Pi/lambda; 
beta=Sqrt[ k-2 nf-2- kappa-2]; 
kappamax=Sqrt[k-2 nf-2 - k-2 ns-2]; 
gammas=Sqrt[beta-2-k-2 ns-2]; 
gammac=Sqrt[beta-2-k-2 nc-2]; 
Plot[{Tan[kappa h) ,(gammas+gammac)/(kappa(1-gammas gammac/kappa72))}, 

{kappa, 1, kappamax}, PlotRange ->{-10,10}] 
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Figure 3.6. Graphical plot ofEq. 3.22 for the waveguide shown in Fig. 3.5 

The transcendental characteristic equation must be solved numerically, 
which is a relatively straightforward action for many mathematical software 
packages. Again using Mathematica the following command was used repeat­
edly to find each root of the equation. 

FindRoot[Tan[kappa h]== (gammas+gammac)/(kappa(1-

gammas gammac/kappa-2)), {kappa,5000}] 

The last bracket of the command tells Mathematica to begin its search around a 
value of K = 5000. The program returned the first K value of 5497.16. To find 
higher roots, we used values taken from the graph as starting points, and let the 
computer return the more accurate value. Numerically, the eigenvalues for K 

were found to be 5497.16, 10963.2, 16351, and 21545 cm-1. The eigenvalues 
in terms of f3 can be found directly from the individual K values using Eq. 3.23 
to be 94087,93608,92819, and 91752 cm-1, respectively. 

This example shows some typical features of optical waveguides. First, the 
thickness ofthe guiding film need not be very thick. It is generally on the order 
of a few wavelengths. SecoJ1d, the index difference required to achieve a guiding 
structure is small. In this case, bon = 0.05 between the core and substrate. This 
is actually a huge difference compared to many practical devices which have 
index differences as small as 0.001. Finally, inspection of Fig. 3.6 shows that 
if the waveguide is made too thin (so that the argument Kh does not extend 
beyond approximately 1r /2) it is possible that the two sets of lines will never 
cross, and there will be no mode allowed in the structure. 

The example yielded four solutions for /3, or four allowed modes. What 
does this mean? Each mode has the same wavelength of light, they each just 
travel in a slightly different direction within the waveguide. In the ray picture, 
the modes would be shown as four discrete rays travelling at slightly different 
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"s 

Figure 3. 7. Ray depiction of the four allowed modes in the waveguide. Each ray has the same 
magnitude ofk-vector, they are simply oriented slightly differently with respect to the z-axis. 

angles, as shown in Fig. 3.7. Notice that only a few discrete rays actually 
propagate in the waveguide. 

To those familiar with basic quantum mechanics, the problem outlined in 
the example above should look very familiar. This graphical technique is often 
used to find the allowed energy eigenvalues of a particle in a finite potential 
well [4]. The analogy between the particle-in-a-box and the optical waveguide 
problem is very strong: both situations describe waves which are confined 
between two reflecting boundaries. In both cases the waves partially tunnel into 
the surrounding potential barrier before turning around. Only certain allowed 
energies in the case of the particle, or transverse propagation coefficients(/\:) 
in the case of the optical wave, are found to create a standing wave in the 
one-dimensional system. 

To complete the solution, the coefficient, A, should be related to a physical 
parameter. In practice, A is related to the power carried in the waveguide. The 
power is calculated by integrating the z-component of the Poynting vector over 
the cross-sectional area of the guide 

Sz = ~~e(E X H . z) (3.24) 

Note that we are using the time-averaged power. The average power in a TE 
mode is 

(3.25) 

where the coefficient A is contained in Ey. Since the integral spans only one 
direction, the integral has units of power per unit length (in the y-direction). 

It is enlightening to see the actual mode solutions that correspond to each 
value of {3. Using the following Mathematica commands to evaluate Eq. 3.20 
with the values of {3 found above, and normalizing each mode using Eq. 3.25 
to have 1 W /unit length in each mode, we plotted the total amplitude profile for 
each ofthe allowed modes in Ex. 3.1. 

wave[x_] := Exp[-gammac x] /; x>O 
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Figure 3.8. Modal field patterns for the first four TE modes of waveguide described in Ex. 2.1. 
The vertical lines represent the location of the dielectric interfaces. 

wave[xj:= Cos[kappa x]-(gammac/kappa)Sin[kappa x]/; (x<=O)&k(x>-h) 
wave[x_] := (Cos[kappa h]+(gammac/kappa)Sin[kappa h])* 
Exp[gammas(x+h)]/; x<=-h; 
amplitude=1/Sqrt[beta/(2omega mu) Nintegrate[(wave[x])"2, 
{x,-0.001,0.0002}]] 
Plot[amplitude * wave[x] ,{x, -h-0.0003, 0.0002}] 

Fig.3.8 illustrates the amplitude solutions for the four modes of Example 
3.1. Since the waveguide is asymmetric, the modes are slightly asymmetric, 
although it is not obvious to the casual glance. Notice that the modes have 
alternating even and odd symmetry, and that the evanescent tails of the higher 
order modes extend slightly further into the cladding than do the tails of the 
lowest order mode. The modes are labelled by the number of nodes they have. 
The TEo mode is the lowest order (which means the mode with the smallest 
value of/\:), and it has no (0) nodes. The TE1 mode has one node, the TE2 
mode has 2 nodes, etc. There will also be a set of TM modes with similar 
designations. 

Power in the guiding layer is found by integrating the Poynting vector over 
the area of the waveguide structure. The fraction of the power contained in the 
core is simply 

(3.26) 
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In general, higher order modes are less confined than their lower order 
counterparts. Application ofEq. 3.26 on mode 0 shows it has a power confine­
ment of99.47%, while mode 3 has only 85.9% confinement. Mode confinement 
is an important property for waveguide designs. A mode that is loosely con­
fined will be more affected by bends and more strongly couple evanescently to 
neighboring structures than will a tightly bound mode. 

6. The Symmetric Waveguide 
Fig. 3.9 shows a symmetric waveguide, where a guiding film with index 

n f and thickness h is surrounded on both sides by an index n8 • It is convenient 
to place the coordinate system in the middle of this waveguide since the fields 
will reflect the symmetry of the structure. 

We leave it as an exercise to show that the general field description of aTE 
mode within this symmetric structure is 

Ey Ae-"'(x- h/2) for x ~ hl2 

= A COSKX 
Ey 

COSKhl2 
A sinKX 

or for - hl2 ::=; x ::=; hl2 (3.27) 
sinKhl2 

Ey ±Ae"'(x+h/2) for x ::; -h/2 

The magnetic amplitude of the TM mode can be similarly described. There are 
two choices for the description of the field in the guiding layer, depending on 
whether a symmetric (cosine) or antisymmetric (sine) mode is excited. The fact 
that the modes can be uniquely characterized in terms of even or odd groups is a 
natural consequence of the symmetry of the index structure. The characteristic 
eigenvalue equation for the TE modes in a symmetric waveguide is 

tan Kh I 2 "(I K for even (cos) modes 

= -Kh for odd (sin) modes. (3.28) 

The characteristic equation for the TM modes is 

tanKh/2 = (ntlns)2 "fiK foreven(cos)modes 

T 
h ------------

.L "' 

Figure 3.9. The symmetric waveguide is surrounded by material with the same index .of re­
fraction. The axis of symmetry is usually chosen to be the x=O axis. 
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= - (ntlns) 2 "-h for odd (sin) modes. (3.29) 

A unique feature of the symmetric waveguide is that it will always support 
at least one mode. Consider the graphical solution for a symmetric waveguide 
described in Example 2 below. 

Example 3.2 Modes of he symmetric waveguide 
Suppose the waveguide shown in Fig. 3.9 has a film index ofnt = 1.49, 

and cladding index equal to ns = 1.485. The difference in index between 
the two layers is very small. Let the wavelength be 0.8pm. We will use the 
graphical solution to find (3, as it illustrates demonstrates why the symmetric 
waveguide will always support at least one mode. Two thicknesses will be 
examined; h = 3J.Lm, and h = 15J.Lm. 

Solution: There are only two variables in this problem: 'Y and "'· As in 
the last example, we will plot functions in terms of"'· 

"'s V (32 - k5n; = Jk5(n}- n;) - ,.,2 

(3 Jk5n]- "'2 

Evaluating these expressions, using ko = 21r I)..= 7.853 x 104cm-l, yields 

'Y = V9.176 X 107 - K-2 

(3 Vl.3694 X 1010 - K-2 

To find the eigenvalues of the TE modes, we must solve Eq. 3.28. Graphically, 
the functions tan K-hl2 , 'Y I "'• and -K-h are plotted on the same graph as a 
function of"'· These are plotted against "' for the case where h = 3J.Lm in Fig. 
3.10. 

The top curve, which corresponds to the even mode, begins at +oo, and 
terminates with a value of 0. Notice that the tan K-hl2 starts at zero and in­
creases. It is unavoidable that the two curves cross, so there must always be at 
least one mode, no matter how thin the waveguide. 

As the waveguide is made thicker, more modes appear. Consider the graph­
ical plot of the equations for the case when the waveguide slab is 15 J.Lm thick, 
as shown in Fig. 3.11. 

Note that as the transverse wavevector (K-) increases, the allowed modes 
alternate between even and odd structure. The spatial profile of these allowed 
modes is very similar to that shown in Fig. 3.8. 

7. Intuitive Picture of the Mode 
Solution of the wave equation leads to physical solutions which we can plot 

out on a graph. But looking beyond the math, it is straightforward to understand 
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Figure 3.10. For the thin waveguide, there is only one allowed mode, which occurs near 
~<. = 6000cm -l. 

10 I h=15 ~m I 
5 

-5 

-10 

Figure 3.11. The thick waveguide supports both even and odd modes. 

the mode structure. Mode structure arises from interference patterns within the 
waveguide between components of waves travelling in opposite directions. The 
field within the guiding layer of an even mode in a symmetric waveguide has 
the form 

Ey(x) = Acosll':x e-jf3z (3.30) 

Since cos 1\':X = (eJ~<.x + e-J~<.x)/2, we can rewrite Eq. 3.30 as 

Ey = ~ [e+j(~<.x-{3z) + e-j(~<.x+f3z)] (3.31) 

Eq. 3.31 represents the superposition of two plane waves, shown schematically 
in Fig. 3.12. Each plane wave has a k-vector with a transverse component, 
11':, and a z-component, (3. One plane wave has components k = II':X + (3z, 
while the other has components k = -II':X + (3z. Each k-vector has a plane 
wave associated with it. These two plane waves zig-zag down the waveguid~, 
continuously crossing each other's paths as they travel along. Being excitf(d by 
the same source, the waves are coherent with one another at a given plane in the 
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waveguide, and so they fmm stable interference patterns. The structure of the 
mode is a result of this interference. When the modes constructively interfere, 
the electric field is maximum, and where destructive interference occurs, the 
intensity is a minimum. 

7.1 Why is {3 discrete? 
The discrete nature of f3 can be found using this same model of interfering 

waves. To avoid decay of energy due to destructive interference as the waves 
travel through the waveguide, the total phase change for a point on the wavefront 
that travels from one interface (x = 0) to the next (x = -h), and back again, 
must be a multiple of 27f. For a wave incident at angle (), a phase shift of 
kn 1 h cos() is accumulated on the first transverse passage through the film, and 
a phase shift of-211> c occurs at the film-cover interface. Another kn 1 h cos() of 
phase is accumulated travelling back down, and finally there is a - 211> s phase 
shift at the film-substrate interface. The transverse resonance condition requires 
that 

(3 .32) 

where v is an integer. This expression is effectively a dispersion equation for 
the waveguide. We will use it in the next chapter to develop a generalized 
dispersion relation for slab waveguides of any construction. 

8. Properties of Modes 
Once f3 is determined for a waveguide, the field amplitudes can be described 

in all regions of the waveguide using Eqs. 3.20 or the equivalent for TM waves. 
We have been referring to these field distributions as modes. The concept of 
the mode is very powerful - and perhaps a little confusing to the uninitiated. 
Here we review some of the major properties of modes and modal analysis [ 5]. 

The general expression for the electric field solution in all space is 

E(x,y,z) = E(x,y)e-j/3z (3.33) 

Figure 3.12. A mode can be described as having two plane waves at a slight angle to one 
another, forming an interference pattern. When the phase fronts cross, there is a maxima. 
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The tenn E(x, y) describes the transverse structure of the field, and is usually 
called the mode structure or mode shape. There is a corresponding magnetic 
field distribution for each mode, given by H(x, y, z). The modes have the 
following properties. 

1. Every eigenvalue f3 corresponds to a distinct confined mode of the system. 
Every f3 will have a unique field distribution (shape). The amplitude of 
the mode is established by how much power is carried in the mode. 

2. Only a finite number of modes will be guided. These are associated with 
the solutions to the eigenvalue equation for {3. The spectrum of {3 for 
guided modes is discrete. 

3. Most modes will not be guided. Most values of f3 will lead to unguided, 
or radiation modes. The spectrum of f3 for unguided modes is continuous, 
meaning there are an infinite number of unguided modes. 

4. All modes are orthogonal. This is a very important point. For guided 
modes, orthogonality requires that 

{ Ei(x, y, z) x Hj(x, y, z)]· dA = Dij 
larea 

(3.34) 

where Dij is the Kroenecker delta function, the area of the integral is 
the infinite xy plane at a particular value of z, and where Ei ( x, y, z) 
and Hj(x, y, z) represent nonnalized modes of the system. For radiation 
modes, the fonnal relation is 

r [E(i) x u(j)J . dA = a(i- j)P 
larea 

(3.35) 

where Pis the power in the mode. Radiation modes cannot be nonnalized 
as they represent infinite plane waves. Each mode is unique, and cannot 
be described in tenns of other modes. 

5. Some modes are degenerate. Degenerate modes will share the same 
value of {3, but will have distinguishable electric field distributions. In 
such degeneracies, field solutions can be found which are orthogonal, 
and they will satisfy Eq. 3.33. A good example of such a degeneracy is 
the fundamental mode in a circular dielectric fiber. The mode can have 
two different electric field polarizations, Ex and Ey, respectively, each of 
which has the same spatial energy distribution. 

6. The modes of a given system fonn a complete set. Completeness means 
that the allowed m,odes span the entire space of the system. Any contin­
uous distribution of electric field can be described as a superposition, or 
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sum, of the appropriately weighted modes of the waveguide. 

guided 

E(x, y, z) = L aiEi(x, y, z) + 1 a({3)E(x, y, z, {3) d{3 
i radiation 

(3.36) 
where Ei(x, y, z) are the discrete modes of the system, the ai are weight­
ing coefficients for each mode, and the E({3) are the radiation modes of 
the system, with their respective weighting factor, a({3). 

The power of the mode concept lies in completeness and the use of superpo­
sition. This superposition concept is very powerful for calculating coupling be­
tween two different systems. We will explore coupling in detail in Chap.XXX. 
In general, a given mode in one system will be described as a superposition of 
modes in a second system, some of which may be guided and some may be 
radiative. 

9. Number of Guided Modes in a Waveguide 
We often use terms like "single-mode" or "multimode" to characterize a 

waveguide. The importance of this distinction will become apparent when we 
discuss information bandwidth in later chapters, and when we discuss cou­
pling between devices. In this section, we develop some approximations ofthe 
number of guided modes in a planar waveguide. 

Recall the planar waveguide described in Example 3.2. The waveguide 
supported a different number of modes depending on its thickness. If we had 
adjusted the relative indices between the layers, we would also have found that 
the mode number varied. The lowest order mode has a k vector that is nearly 
parallel to the z axis 

f3lowest order ~ kn I (3.37) 

The highest order mode will have a wavevector at nearly the critical angle 

(3.38) 

The rest of the modes will have eigenvalues for {3 that fall between these two 
extremes. To get an idea of the number of modes in the waveguide, recall the 
general eigenvalue equation for the TE modes, 

( h) 'Yc + 'Ys 
tan K. = ( ) 

K, 1 - ::r::¥ 
K 

(3.39) 

Graphically the two sides of the equation can be plotted against K. to create a 
plot such as Fig. 3.13, which is a modification of Fig. 3.6. 

The right-hand-side of the equation starts at zero, slowly diverges to -.oo, 
then comes in from +oo and terminates at a value somewhere above zero at 
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Figure 3.13. The graphical solution to the eigenmode equation for an asymmetric waveguide 
shows that every time the argument Kmaxh increases by 1r, another mode is allowed in the 
waveguide. 

"'rnax· The left-hand-side ofEq. 3.39 is a periodic function (tan(,.,h) that goes 
from -oo to +oo every time "'h increases by 1r. Notice that if the value of 
"'rnaxh is greater than 7r /2, then we are guaranteed to find at least one TE mode 
in the waveguide. If "'rnaxh > 37f /2, then we are guaranteed to find at least 
two TE modes in the waveguide. These values of "'rnaxh are known as cut-off 
conditions. Every time "'rnaxh increases by 1r, another mode is allowed. The 
approximate number of modes, m, can be found from 

m Int [h"'rnax/1f] 

Int [hk(nJ -n~) 112 f7r] (3.40) 

This approximation is most accurate when m is a large number. It is approximate 
because the exact location of the last crossing is not known. Note that the mode 
count increases with the thickness, h, of the guide, with the difference in index, 
(n}- n~), between the core and cladding, and as the wavelength of the guided 
light gets shorter. Also note that the point at "' = 0 is not considered to be an 
allowed mode, even though it appears on the graph that the two equations are 
crossing at that point. 

We usually characterize a waveguide by its normalized frequency, defined 
as 

(3.41) 

In terms of the normalized frequency, the approximate number of modes, m, in 
a waveguide is m ~ V / 1r. The mode cut-off conditions are usually described 
in terms of the normalized frequency. For example, if it is desired to build a 
waveguide that only carries the first three TE modes, what should the dimen­
sions and index difference be? We can adress such issues knowing the cqt-off 
conditions by trading thickness for index difference. The normalized frequency 
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establishes the relationship between the parameters that influence the number 
of modes carried by a waveguide. 

Why do we worry about the number of modes in a waveguide? The answer 
is pulse distortion and bandwidth. When a pulse is launched on a waveguide, 
such as in a digital communication system, the pulse energy will become dis­
tributed over all the allowed modes of the waveguide. If each mode travels at 
a slightly different velocity, as is often the case, the temporal form of the pulse 
will change as the pulse propagates. This lengthens the pulse, and effectively 
reduces the rate at which pulses can be sent. 

10. Normalized Propagation Parameters 
If you have calculated the mode eigenvalues of a waveguide, you already 

appreciate how cumbersome the process can be. We can develop normalization 
rules for slab waveguides which allow for simple graphical solution to the wave­
guide problem (an example of how this can be applied to a coupled waveguide 
taper is given in Example 11.4). There are five independent parameters to deal 
with in a slab waveguide problem: i) the refractive index of the guiding layer, 
n f, ii) the refractive index of the substrate, n 8 , iii)the refractive index of the 
cover, nc,iv) the guiding layer thickness, h, and v) the vacuum wavevector, ko. 
These parameters can be reduced into normalized values which allow a general 
description of the dispersion and cutoff conditions for modes. We have already 
defined a Normalized Frequency, V (3.41 ). From the five variables above, we 
can also define an asymmetry parameter, a, and a normalized effective index, b 
[4]: 

V = koh(n}- n;) 112 

a (n; - n~)/(n}- n;) (3.42) 

b (n~ff- n;)/(n}- n;) 
(3.43) 

where neff = /3/ko is defined as the effective index of the guide. The nor­
malized index, b, is zero at cutoff, and approaches unity far away from it. The 
asymmetry parameter ranges from 0 for a symmetric waveguide, to infinity for 
strong asymmetry (ns » nc)· 

These definitions are used in conjunction with the transverse resonance 
condition, Eq. 3.32, to define universal dispersion relations. The transverse 
resonance condition state that the waveguide acts like a standing wave cavity 
in the transverse direction. In order to be resonant, the round trip phase of a 
transverse component of k must add up to an integer number of27f. Recall Eq. 
3.32 states 
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Figure 3.14. The normalized index, b, is plotted against the normalized frequency, V, for three 
values of the asymmetry coefficient, a, and for the first three values of v. Values of a = 0, 
a = 10, and a = oo were evaluated. 

where v is an integer. Substituting the normalized parameters into this equation 
yields the normalized dispersion relation 

Vv'l=/.i = v1r + tan-1 Vb/(1- b)+ tan-1 V(b + a)/(1- b) (3.44) 

At first glance, this may appear as needless complication of straightforward 
equations, but there is a good reason for this normalization. We can numerically 
generate a set of curves which relate the normalized index, b, to the normalized 
frequency, V, using Eq. 3.44. Once the curves are generated, we can relate 
the calculation to any new waveguide through appropriate scaling. Fig. 3.13 
shows the numerically derived relation between the normalized index, b, and 
the normalized frequency, V. 

Example 3.3 Evaluation ~fa waveguide using normalized parameters 
To illustrate the power of using the normalized parameters, let's reconsider 

the waveguide used in Example 3.1, which had a guiding index, nf = 1.5, a 
substrate index n 8 = 1.45, a cover index nc = 1.40, a film thickness h = 5p.m, 
and a driving wavelength of >.o = 1p.m. Using a numerical solution, we found 
the eigenvalues for the first three modes to be f3 = 94087, 93608, and 92819 
cm-1 . We can determine the propagation coefficients by inspection using the 
graph in Fig. 3.14. First we must normalize the waveguide parameters, 

V = koh(n}- n~) 112 = ~5J.LmV1.52 - 1.452 = 12.065 
1p.m 
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Figure 3.15. Data from Example 3.2 plotted on graph from Fig. 3.14. 

The asymmetry value a= 0.475lies near the a= 0 value of Fig. 3.13, so we 
will interpolate between the two plotted lines for each value of v in the plot. 
We draw a line on the graph at V=l2.065, as shown in Fig. 3.14, and read the 
b values from the scale. 

At a normalized frequency of V = 12.065 there are three values of b: 
0.575, 0.813, and 0.965. (Note: the fourth mode that we found in Example 3.1 
is not found here because the graph in Fig. 3.14 does not show a curve for the 
v = 3 case. The vertical line in Fig. 3.15 shows the intersections. Using the 
expression for b 

b = (n~ff- n~)/(n}- n~) 

we can solve this for (3 noting that neff = (3 / ko 

(3 = koj(n}- n~)b + n~ 

Plugging values into the equation, we get the first three allowed values of (3. 
These are tabulated alongside the "exact" values obtained by numeric technique 
for comparison. 

The agreement is remarkable: better than 1 part in a 1000, which can be 
attributed to ones ability to read the graph in Fig. 3.13. The virtue of the 
normalized method is that the entire eigenvalue calculation can be carried. out 
on a hand calculator, and the accuracy is probably better than we need. 
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Table 3.1. Comparison of (3 values from normalized and exact methods. 

b f3norm cm- 1 f3exact cm- 1 "error" cm-1 

+0.575 92926 92819 -107 
+0.813 93668 93608 -60 
+0.965 94139 94087 -52 

From the data plotted in Fig. 3.13, we can extract some additional infor­
mation. The cutoff frequency for each mode occurs when b = 0. Therefore 
the intersection of each line corresponding to a mode number v (e.g. T Ev or 
T Mv) and an asymmetry factor a corresponds to the normalized frequency of 
the longest wavelength that will be carried by the mode. We see by inspection 
that the lowest order (v = 0) symmetric waveguide mode reaches b = 0 at 
V = 0, indicating that this mode never is cut-off, in agreement with our un­
derstanding of this mode. Formally, setting b = 0 and solving Eq. 3.44 for V 
yields the cutoff conditions for all modes in the step index waveguide 

V = tan-1 ya + v1r (3.45) 

To apply the normalization technique to TM modes, we need only adjust the 
asymmetry parameter, 

(3.46) 

11. The Numerical Aperture 
A very common parameter for characterizing waveguides is the numerical 

aperture. The concept is based on ray tracing and refraction, so technically it 
is only applicable to multimode waveguides, although it is sometimes used in 
characterizations of single mode waveguides. Consider the optical waveguide 
shown in Fig. 3.16, wht:re a high index layer with index n1 is surrounded 
symmetrically by a lower index medium, n 2 . The thickness of the guiding 
layer is not critical, so long as it is many times greater than the wavelength of 
the light being carried. We want to explore how light (in the form of rays) can 
couple into the end of such a structure. A ray is shown entering the edge of 
the waveguide, where we assume the index of refraction corresponds to that 
of air (essentially n= 1 ). The entering ray is refracted according to Snell's law, 
bending toward the axis of the waveguide. The ray travels until it strikes one 
of the dielectric interfaces. If the ray strikes the interface at an angle smaller 
than the critical angle, it will not be guided. The ray in Fig. 3.16 is oriented 
such that the refracted ray in the n1 region does not satisfy the TIR condition at 
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Figure 3.1 6 . A ray incident on the waveguide at too steep an angle will not satisfy the condition 
for TIR inside the guide. The wave partially reflects and partially transmits at each reflection. 

Figure 3.17. The incident ray just satisfies the condition that the refracted ray will strike the 
interface at the critical angle, and thus be totally internally reflected. Binc is the maximum angle 
for a guided ray. 

the cover-film interface. This ray is partially reflected and partially transmitted 
at the interface. As it bounces down the waveguide, a fraction of its energy 
leaks out at each reflection, and the guided energy is attenuated. Such rays are 
unguided. 

The numerical aperture is defined in terms of the maximum angle that 
an incident ray can have, and still be trapped by the waveguide. Consider the 
critical case where the ray just satisfies the TIR condition as shown in Fig. 3.17 

The refracted ray strikes the interface between the guiding film, n1. and 
the cladding, n2, at and angle Bcrit· The angle between the ray and the axis of 
the waveguide is the complement of that angle, 90- Be. Applying Snell's law 
to the input face of the waveguide, we can determine the maximum incident 
angle, Bmax: 

sin Binc = n1 sin(90 - Bcritical) = n1 cos( Bcritical) 

n1 Vl- sin2 Bcritical = n1 Vl- nVnr 
Jnr- n~ 

The numerical aperture is defined as the sin of the acceptance angle 

N A= sinBmax = Jnr- n~ (3.47) 
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Figure 3.18. The acceptance angle of this structure is 64°. Notice that the Numerical Aperture 
does not depend on the dimensions of the waveguide, only the relative indices. 

As we will see later, the NA is a useful parameter for large core, multimode 
waveguides where propagation of light is rather difficult to express in terms 
of electromagnetic fields. Pragmatically, to couple light into a waveguide it is 
essential that the light be focussed in such a way that all incident rays lie within 
this angle Bmax · 

Example 3.4 The numerical aperture for a symmetric waveguide 

Consider a symmetric waveguide with a guiding film index n1 = 1.5, and 
surrounding indices n2 = 1.4 as shown in Fig. 3.18. The numerical aperture 
is directly found from Eq. 3.46 

N A= Vl.52 - 1.42 = 0.539 

This corresponds to input angle, 

Bmax = sin- 1(0.539) = 32° 

so the full width of the acceptance angle is about 64 o . 

According to ray analysis, any ray incident on the waveguide within the 
numerical aperture will be guided. The NA effectively defines the cone of 
acceptance. Only for large structures (where the guiding film thickness is on 
the order of 50-100 .\), is the ray picture reasonably accurate. 

12. Summary 
We have introduced many important concepts of optical waveguides in 

this chapter. We used formal electromagnetic analysis to solve for the allowed 
field structure inside a dielectric waveguide. We found that boundary condi­
tions establish the connecting formulae that define the shape of a mode. We 
derived a characteristic equation for both TE and TM modes. This equation 
is transcendental, so it requires numerical or graphical solution. We explored 
both forms of solution in an example. We distinguished asymmetric guides 
from symmetric guides, and noted that a symmetric guide will always carry at 
least one mode. We reviewed the mathematical details of the mode concept, 
stating but not proving the important properties such as orthogonality and com­
pleteness that a mode solution will satisfY, These properties will be used in 
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later chapters when calculating coupling. Finally, we described the numerical 
aperture of a waveguide, based on a ray tracing analysis of the total internal 
reflection condition for a waveguide. 
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Practice Problems 

1. Using the boundary conditions for a TM wave, confirm Eq. 3.23 for the 
eigenvalue equation of an asymmetric waveguide. 

2. Confirm the field expression for the TE electric field in a symmetric 
waveguide, Eq. 3.27. 

3. Develop the eigenvalue equation for the TM modes in a symmetric wave­
guide. 

4. For an asymmetric planar waveguide with nf = 1.5, n 8 = 1.47, and 
nc = 1.0, determine the allowed values of f3 for waveguide thickness 
h = 7f..Lm. Assume the excitation wavelength is lf..Lm. 

5. For the waveguide described in Problem 5., at what wavelength does a 
second TE mode appear? 

6. Which is the lowest order mode in an asymmetric waveguide- the TEo 
mode or the TMo mode? Prove your case graphically. 

7. Use the Fresnel reflection formula forTE waves to determine the attenua­
tion coefficient for a leaky ray in a waveguide. Assume that the waveguide 
is symmetric, and is 50f..Lm thick. Assume the the power lost per reflec­
tion is given by rj = 1 - jr2 j, where r is given by Eq. 2.89. Express 
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the answer in terms of nepers/meter as a function of angle. Assume the 
guiding layer has index 1.5, and the surrounding layers have index 1.45. 

8. Evaluate the size of a confined mode as a function of the guiding film 
dimension. Consider a symmetric waveguide with guiding index of3.5, 
and surrounding indices of3.3. 

(a) Write an explicit description of the field for the TEo mode. 

(b) Define the "mode size" of the field by the distance between the points 
where the amplitude is reduced to 1/e of the peak intensity. Find the 
full width of the TEo mode for film thickness, h, ranging from 1 to 
20J.-Lm. 

(c) What film thickness leads to the smallest mode? 

(d) Calculate the mode confinement for h = 20J.-Lm, h = lOJ.-Lm, and 
h=2J.-Lm. 

9. For the waveguide described in Ex. 3.1, at what distance into the substrate 
is the evanescent field equal to 0.001E0, where Eo is the peak amplitude 
of the mode? Determine this for each mode. At what distance into the 
cover is the field the same value? What does this tell you about how thick 
to make the cladding layers on a waveguide? 

10. Consider a waveguide with a guiding film 5J.-Lm thick, surrounded by thick 
films with index 1.45. 

(a) If the guiding film index is 1.5, calculate the numerical aperture of 
the waveguide. 

(b) What is the mode confinement for TEo mode in this waveguide? 

(c) If the guiding film is made to be lOJ.-Lm, what is the mode confinement 
of the TEo mode? 

11. Consider a planar slab waveguide of infinite extent in the y- and z­
directions. The guiding film index is 1.5, the substrate index is 1.48, 
and the cover index is 1.0. The thickness is h = 2J.-Lm. The waveguide is 
excited with a 1.3 J.-Lm source. ForTE modes 

(a) What is the range of allowed f3 values for this waveguide? 

(b) What is the numerical aperture for this waveguide? 

(c) Numerically or graphically, determine the allowed values of f3 and "' 
for h = 2J.-Lm. 

(d) How many modes will this waveguide carry if the excitation wave­
length is 0.600 J.-Lm? 
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12. Show that the eigenvalue equation for f3 for the asymmetric waveguide 
reduces to that of the symmetric waveguide when nc = n 5 • 

13. Show that Hx = ~Ey for aTE wave. 

14. For a symmetric waveguide of thickness h, show that the coefficient, A, 
is given by 

A2 = 4"'2wf.J.oP 

( h + ~) ("'2 + 'Y2) 

where P is the power per unit length carried by the waveguide. 

15. For an asymmetric planar waveguide with nf = 1.5, n 5 = 1.48, and a 
thickness of 8J1.m, how many TE modes for A = 1f.J.m will there be under 
the following conditions: 

(a) covered by air (nc = 1) 

(b) covered by water (nc = 1.33) 

(c) covered by another substrate (nc = 1.45) 

(d) Explain in words why the number of modes did or did not change in 
these three cases. 

(e) If nc = 1.45, what thickness waveguide is needed to increase the 
number of modes to ten? 

(f) How will the number ofTM modes vary in a), b), and c)? 

16. Given a symmetric waveguide with nf = 1.5, n 5 = 1.47, A = l.Of.J.m, 
determine the fraction of power carried in the cladding if the guiding layer 
is 3J1.m thick. 

17. Derive the mode cut-off condition for the TEn mode in terms of V for 
the symmetric waveguide. 

18. Repeat Ex. 3.1 for the TM mode case. Make plots of the allowed modes 
similar to those shown in Fig. 3.8 

19. Plot the mode profiles for the TEo and TE1 modes in a slab waveguide 
with a core index nf = 1.5, n 5 = 1.49, and nc = 1. The film thickness 
is lOf.J.m thick, and the guided wavelength is I Jl.m. 

20. Consider an asymmetric planar waveguide with a film index, nf = 1.50, 
a substrate index n 5 = 1.495, and a cover index nc = 1.40. 

(a) If the vacuum wavelength of the guided light is 1 Jl.m, what is ,the 
thickest that the guiding layer can be to support a TE mode? Use a 
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computer to find the solution by making graphic plots ofEq. 3.22, and 
adjusting the thickness until the eigenequation cannot be satisfied. 

(b) Increase the thickness of the guide by 1 %, and determine the eigen­
value f3 of the TE mode 

(c) Calculate the confinement factor for this mode which is near cut-off. 

(d) Plot the mode profile for this mode. What can you generalize about 
modes near cut-off? 

21. A planar waveguide is made witli n f = 1.48, ns = 1.46 and nc = 1.44. 
The thickness ofthe guiding film is lOJLm. What is the longest wavelength 
that can be carried in a TE mode in this waveguide? 

22. Extend the development of the modal eigenequation to a four layer struc­
ture, with four potentially different indices, and two layer thickness (the 
cover and substrate are assumed to extend an infinite distance beyond 
the layers). Perhaps the simplest way to do this is to write the boundary 
conditions in a matrix form, and use linear algebra techniques to find the 
roots. Demonstrate the performance of your program with some simple 
structures. 



Chapter4 

STEP-INDEX CIRCULAR WAVEGUIDES 

1. Introduction 
The circular waveguide has found extensive use in optical conununications 

systems, especially long distance communication links. The circular waveguide 
has no intrinsic advantage over rectangular waveguides except in one critical 
area: cost. Manufacturing circular waveguides from glass is a well established 
technology. Industry can produce hundreds of thousands of kilometers of cir­
cular dielectric waveguide each year. The same cannot be said about planar 
or rectangular waveguides. In this chapter, we will develop a description of 
wave propagation along a circular waveguide. This chapter deals with the 
"step-index" fiber (Fig. 4.1). Light is guided by a high-index circular core 
of uniform index, surrounded by a lower-index cladding layer. The cladding 
layer is usually covered with a plastic coating to protect the fiber from envi­
ronmental hazards and abrasion. To find the modes of the circular step-index 
fiber, we must solve the wave equation in cylindrical coordinates. The modes 
of the cylindrical structure are more abstract than those of the planar structure. 
Not only are they circular in synunetry which will require a more complicated 
solution to the wave equa~ion, but they are two dimensional, so there will be 

Cladding 

Coating 

Figure 4.1. The cylindrical step waveguide consists of a high index core surrounded by a. lower 
index cladding. 
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Figure 4.2. A radial field at one point in the waveguide will become an azimuthal field at 
another location. Notice that the field is not converted between the components by reflection, 
but by propagation through the coordinate system. 

two mode numbers. We will see a similar effect when we discus rectangular 
waveguides in the next chapter. 

Once the modes in the step-index fiber are established, we will develop 
useful formulae for mode-cutoff conditions, numerical aperture, and normal­
ized frequency. As before, the eigenvalue equations will require graphical or 
numerical solution. 

2. The Wave Equation in Cylindrical Coordinates 
We have already derived the homogeneous wave equation for the planar 

waveguide structure. 

(4.1) 

To solve this equation in a cylindrical waveguide, we must write this equation 
in cylindrical coordinates. The electric field is a vector, and there are three 
components, each of which is a function of r, ¢, and z 

E(r, ¢, z) = fEr(r, ¢, z) + J;E¢(r, ¢, z) + zEz(r, ¢, z) (4.2) 

In cylindrical coordinates, the vector Laplacian (\72) is a rather unwieldy ex­
pression (see reference [1]). The cylindrical wave equation must be evaluated 
in the following form: 

2 A 

A A 8 E 
\7(\7 . E) - \7 X \7 X E - J.Lf- = 0 

8t2 
(4.3) 

Unlike the vector Laplacian in rectilinear coordinates, Eq. 4.3 can not be easily 
decomposed into three individual components. The transverse components of 
the field are tightly coupled. Imagine for example a linearly-polarized field 
travelling at a slight angle to the axis of a cylindrical waveguide, as shown in 
Fig. 4.2. At z = 0, the field is purely radial, but as it travels down the axis, 
it becomes an azimuthal ( ¢) field. It is impossible to decouple the Er or .E<P 
components in this example. 
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Here is the critical point in understanding the analysis of a two-dimensional 
waveguide: only the .£-component of a field, Ez, does not couple to other 
components as it propagates. Even after reflection at a cylindrical surface, the 
Ez component remains oriented along the z-axis. Hence, we will attempt to 
find a solution for Ez using the wave equation. Once we have a solution for 
Ez(r, 8, ¢),we can use Maxwell's equations to relate Ez to Er and E4>. In this 
indirect fashion, all field components within a circular waveguide are derived. 
Fig. 4.3 shows an example of how the Ez field component remains pure. 

Since Ez couples only to itself, it is possible to write the scalar wave 
equation for Ez directly in cylindrical coordinates, 

1 8 ( 8Ez) 1 82 Ez 82 Ez 2 2 
:;: 8r r 8r + r2 8¢2 + 8z2 + kon Ez = 0 (4.4) 

and to solve this equation for Ez. 

Figure 4.3. The longitudinal component of the electric field does not change through either 
propagation or reflection at the cylindrical surface. 

3. Solution of the Wave Equation for Ez 
Since Ez is a function of r, ¢, and z, we can employ separation of variables 

to solve the scalar equation, Eq. 4.4. Setting Ez(r,¢,z) = R(r)<P(¢)Z(z), 
and substituting this into Eq. 4.4 results in 

R"<PZ + ~R'<PZ + 2_R<P"Z + R<PZ" + k2n2R<PZ = 0 (4.5) 
~ ~ 0 

Multiply Eq. 4.5 by r 2 / R'PZ to get 

(4.6) 

Due to the translational invariance along the z-axis, we can assume a phase 
term describes the z-dependence, 

Z(z) = e-j/3z (4.7) 

where f3 is (again) the z-component of the wavevector, k, in the waveg1,1ide. 
Using Eq. 4.7, we find that Z"/Z = -/32, which can be substituted into the 
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wave equation 

R" R' <P" 
r2 - + r- +-- r2{32 + k~n2r2 = 0 

R R <.P 
(4.8) 

Now we can use standard separation techniques to find 

R" R' <P" 
r2 - + r-- r2{32 + k~n2r2 = -- = v2 (4.9) 

R R <.P 

The term vis called the separation constant. Eq. 4.9 can be solved directly for 
<.P(¢): 

(4.10) 

which has the solution 
<.P( ¢) = Aejvtf> + c. c. ( 4.11) 

where A is a normalization constant. Since circular symmetry requires <.P( ¢) = 
<.P ( ¢ + 2rr), we can infer that v must be an integer. 

Substituting Eq. 4.10 into Eq. 4.8 yields an equation that only contains 
R(r): 

2 fJ2 R 8R 2 ( 2 2 2 v 2 ) r -- + r- + r k0 n - f3 - - R = 0 
8r2 8r r 2 

(4.12) 

The solutions to this differential equation is given by Bessel functions [2]. There 
are many different types of Bessel function, and to the uninitiated, the choice 
can look formidable. Bessel functions share these properties with sine and 
cosine functions: i) the value of the function must be calculated or looked up in 
a table ; ii) the functions are orthogonal to one another; and iii) they are defined 
everywhere. It is primarily the lack of familiarity with Bessel functions that 
causes trepidation. Appendix B: A Brief Synopsis of Bessel Functions reviews 
useful relations and properties of relevant Bessel functions. 

Two types of Bessel functions solve Eq. 4.12. Bessel Functions of the 
First Kind of Order v, symbolized by Jv("'r), are the proper solution when the 
argument (k5n2 - {32 - v2 jr2 ) is positive. For all cases that we will examine, 
v is an integer. "' is defined ~hrough the expression 

"'2 = k~n2- {32 (4.13) 

Note that this is the same definition used in Chapter 3 for the transverse wavevec­
tor. The symbol, "'' has the same meaning in these cylindrical waveguide equa­
tions. 

When the argument (k5n2 - {32 - v2 jr2) inEq. 4.12 is negative, Modified 
Bessel Functions of the Second Kind of Order v, symbolized by K v ('yr), are 
the proper solution. 'Y is defined as 

(4.14) 
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4 X 

Figure 4.4. The first three Bessel functions of the first kind, Jv(K.r), and of the second kind, 
Kv('Yr). 

Again, the notation is intentionally chosen to correspond to the decay parameter, 
-y, used in Chapter 3. As with "'• the function 'Y plays the same role in cylindrical 
waveguides that it did in planar waveguides. 

Plots of both types of Bessel function are shown in Fig. 4.4. The Jv(,r) 
functions are periodic along the radial axis. Only Jo ( "'r) has finite value at 
r = 0; all others Jv-to(,r) functions are zero at the origin. For large arguments, 
the Bessel function of the first kind can be approximated as 

Jv(,r) ~{-!;cos ( ,r- v;- ~) for for large (4.15) 

These Bessel functions can be viewed as damped sine waves. The amplitude 
decreases slowly with radial distance, much like the amplitude of a spreading 
wave in a pond. As we shall see, the Jv Bessel functions describe the radial 
standing wave in a cylindrical structure. 

The modified Bessel functions, Kv(!r), display a monotonic decreasing 
characteristic. The higher orders of the function decrease at a slower rate, but 
all orders have the same functional form. In the limit of large -yr, the function 
can be approximated as 

(4.16) 

Again, this looks like a radially damped exponentially decreasing function. 
Note that at large distance; all orders of Kv(!r) look approximately the same. 
The ..jl/2rr-yr dependence is the natural decrease of a wave as it expands 
with radius, while the exponent represents decay due to evanescent interfer­
ence. Kv(!r) functions are used to describe evanescent fields in the optical 
waveguide. 

4. Field Distributions in the Step Index Fiber 
In this and the next section, we derive expressions for the fields and the 

characteristic equation for the cylindrical dielectric waveguide. Consider the 
fiber waveguide shown in Fig. 4.5. The fiber waveguide has a core of radius 
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Cladding 

Figure 4. 5. The cylindrical waveguide has a core radius of dimension a. 

a surrounded by a cladding with lower index. Since we expect oscillatory 
solutions to the transverse wave equation in the core, Jv(r;,r) solutions will be 
sought in this region. From the analysis above we can see that an oscillatory 
solution only occurs when f3 satisfies 

koncore > f3 > konclad (4.17) 

Outside the higher index core, the field exponentially decays, so we choose 
the Kv('Yr) solutions for r > a. The only criteria on the size of the cladding is 
that the evanescent field should decay to negligible values long before the outer 
radius of the cladding is reached. It is possible to excite "cladding modes" in 
which the glass core and cladding form the core of the waveguide (with a 125 
11m diameter) and the plastic coating forms the cladding. Cladding modes play 
a role in coupling energy from fiber Bragg gratings, and causing spectral holes 
to appear in the reflection spectrum of some gratings. 

Let's construct a solution to the wave equation. The complete longitudinal 
fields (Ez and Hz) in both regions can be written as 

for r <a 

for r >a 

Ez(r, ¢, z) = AJv(r;,r)ejv<f>e-jf3z + c.c. 

Hz(r, ¢, z) = BJv(r;,r)ejv<f>e-jf3z + c.c. 

Ez(~, ¢, z) = CKv(')'r)eiv<f>e- jf3z + c.c. 

Hz(r, ¢, z) = DKv(!'r)eiv</>cjf3z + c.c. 

(4.18) 

Note that the electric and magnetic fields have the same spatial dependence. 
Also note that vis a mode number, or eigenvalue. Determining the coefficients 
A, B, C, and D requires application of the boundary conditions, specifically, 
continuity of the tangential E and H fields. These steps involve a lot of math­
ematics, but are necessary for finding the eigenvalue equation of the step index 
fiber. Boundary conditions require that we know the azimuthal field compo­
nents, E</> and H</>, in addition to the longitudinal components (Ez and Hz). 
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From Ez in Eq. 4.18 We can get the azimuthal components in terms of Ez from 
Maxwell's equations: 

8B 8H "X E =-at = -p,&t = -p,jwH (4.19) 

Expanding the '\1 x E term in cylindrical components, and then collecting terms, 
the field components Hr, H<P, Er and E<P can be described [3] in terms of the 
longitudinal components: 

E<P = -j ( /!. 8Ez _ WJL 8Hz) 
o:2 r 8¢ 8r 

Er -j (JLW 8Hz+ ,68Ez) 
o:2 r 8¢ 8r 

H<P 
-j ( 8Ez ,68Hz) - Wf.-+---
o:2 8r r 8¢ 

(4.20) 

Hr = 
-j (,a 8Hz _ Wf. 8Ez) 
o:2 8r r 8¢ 

where o:2 stands for k5n2 - ,62• Note that o:2 is a positive quantity in the core, 
and a negative quantity in the cladding for allowed values of ,6. 

Using the longitudinal fields described in Eq. 4.18, the field components 
in Eqs. 4.20 can be exactly calculated. In the core region (r < a) we get 

Er -:: [A~~:J~(~~:r) + j:v BJv(Kr)] e}v<Pe-j{Jz 

E<P = -j,B [jv AJv(Kr)- WJL B~~:J' (~~:r)] e}v<Pe-j{Jz 
~~:2 r ,6 v 

Hr -:: [B~~:J~(~~:r)- jw~~ell AJv(Kr)] e}v<Pe-j{Jz 

H<P = -:: [j; BJv(Kr) + Wf.;e A~~:J~(~~:r)] e}v<Pe-j{Jz 

where J~(~~:r) = dJv(~~:r)/d(~~:r). In the cladding region (r >a) we get 

Er = f4 [C-yK~('yr) + i~':V DKv('yr)] eiv<Pe-if3z 

E<P = f4 [.ifCKv('yr) -7fD-yK~('yr)] e}v<Pe-j{Jz 

Hr = f4 [D-yK~('yr)- jwffi~adVCKv('yr)] eiv<Pe-jf3z 

H<P = f4 [.ifDKv('yr) + W€t4 C-yK~('yr)] eiv<Pe-if3z 

(4.21) 

(4.22) 
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where K~('yr) = dK11 (rr)jd('yr). 

5. Boundary Conditions for the Step-Index Waveguide 
To determine (3, and the amplitude coefficients, A, B, C, and D ofEq. 4.18, 

we need to apply the boundary conditions. The boundary conditions at r = a 
require that the four tangential components, Ez, E4>, Hz, and H4> be continuous 
at the core-cladding boundary. For example, the longitudinal electric field 
must satisfy AJ11 (K-a)eJ114>e-jf3z = CK11 ('ya)eJ114>e-jf3z The simplest way to 
simultaneously satisfy all four boundary value equations is to write the four 
linear equations in matrix form, and then set the determinant of the matrix 
equal to zero. 

Jv(K-a) 0 -Kv('ya) 0 A 

0 Jv(K-a) 0 -Kv('ya) B 
=0 

~Jv(K-a) i'7J~(K-a) ~Kv('ya) j~K~('ya) c 
_ j W<';:re J~ ( K.a) !![dv(K-a) -jw<~ad K~('ya) !:?K11 ('ya) D 

(4.23) 

For non-trivial solutions (i.e. non-zero amplitudes), the four equations will 
simultaneously equal zero if and only if the determinant of the matrix equals 
zero. Expansion of the determinant yields the "characteristic equation" for the 
step-index fiber. 

(32v2 [2_ + 2_] 2 = 
a2 1 2 K-2 

[ J~(K-a). + K~('ya) ] 
K-Jv(K-a) rKv('ya) . 

(4.24) 

This formidable equation requires numerical or graphical solution. There is only 
one unknown: (3. As with the slab waveguide, the terms K and 1 are functions 
of (3 and the local index. Due to the oscillatory nature of J11 (K-a), there can 
be several values of (3 for a given structure. Since there are two dimensional 
degrees of freedom in the cylindrical waveguide, solutions to the wave equation 
are labelled with two indices, v and m. Both numbers are integers. Them value 
is called the radial mode number, and represents the number of radial nodes that 
exist in the field distribution. The integer v is called the angular mode number, 
and represents the number of angular nodes that exist in the field distribution. 

Once (3 is determined from Eq. 4.24, three of the coefficients (A, B, C, and 
D) can be determined in terms of the fourth by solving the individual equations 



Step-Index Circular Waveguides 81 

of the matrix. For example, from the boundary condition for continuity of Ez 
at r =a, 

AJv(h;a) = CKv(/'a) 

One can solve for coefficient C in terms of A 

Similarly D can be solved in terms ofB 

D = lv(h;a) B 
Kv(/'a) 

(4.25) 

(4.26) 

(4.27) 

The coefficients A and 8 can be related to one another using the continuity of 
E4> or H4>, and Eqs. 4.26 and 4.27. Using the electric field continuity one gets 

B = jvf3 [I_ + I_] [ J~(h;a) + K~('ya) ] -l A 
Wf..ta /i;2 1 2 ii;]v(h;a) rKvba) 

(4.28) 

If the magnetic field continuity is used, one gets 

B = jwa [n~ore J~(h;a) + n~lad K~(ra)] [I_ + _!__] -l A 
f3v h; lv(h;a) 1 Kv(ra) "'2 1 2 

(4.29) 

The choice of which equation to use depends on the type of mode carried in 
the waveguide. This is explained in the next section. Note that B I A is purely 
imaginary in both cases, indicating that the two longitudinal fields are n 12 out 
of phase. On an instantaneous basis, there is radial power flow, but due to the 
n 12 phase shift the power is reactive, so it averages to zero. 

6. The Spatial Modes of the Step-Index Waveguide 
Unlike the slab waveguide with only two possible types of mode (TE or 

TM), the circular waveguide has four types of mode. The quantity IB I AI is of 
particular interest in determining the relative size of the longitudinal compo­
nents of theE and H fields. These, in tum, characterize the type of mode. We 
will start with the simplest mode. 

6.1 Transverse Electric and Transverse Magnetic Modes 
Consider the characteristic equation (Eq. 4.24) for the case where v = 0. 

Since v represents angular dependence of the solution, the field solutions to Ez 
when v = 0 will be rotationally invariant. The equation simplifies to 

[ J~(h;a) + K~('ya)] [k6n~orJ~(h;a) + k'5n~ladK~('ya)] = 0 (4.30) 
"'Jv(h;a) rKv('ya) ii;]v(h;a) rKv(ra) 
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Either term on the left hand side can be set to zero to satisfy the equation. The 
two terms in Eq. 4.30 appeared individually in Eqs. 4.28 and 4.29, where the 
amplitude A was related to amplitude B. If the first term ofEq. 4.30 is set to 
zero, then A must also be zero to keep the magnitude of B in Eq. 4.28 finite. 
If A = 0, then Ez = 0, and the electric field will be transverse. Such modes 
are called TE modes. 

Conversely, if the second term in Eq. 4.30 is zero, then the amplitude B 
will be zero (see Eq. 4.29), and the longitudinal component of the H field will 
be zero. The solution will therefore be a TM mode. Thus, ifv = 0, the allowed 
modes will be either TE or TM. 

The problem of finding the allowed values of the propagation vector, (3, 
reduces to finding the roots of Eq. 4.30. These equations for the TE and 
TM modes can be further simplified using the Bessel function relations (see 
Appendix B) 

K' 
V = ::r:Kv±l :r v 

K ''"YKv 'r "( v 
(4.31) 

Consider first the T E mode. The first term of Eq. 4.30 should be set equal 
to zero. Using the relation in Eq. 4.31 the eigenvalue equation for TE modes 
becomes 

_ J1(1w) _ K1('ya) = 0 
K-Jo(K-a) "(Ko('Ya) 

(4.32) 

The other half ofEq. 4.30 is the eigenvalue equation for TM modes. These can 
be solved numerically or graphically. We will use Mathematica to do both in 
the following example of a TE mode. 

Example 4.1: Eigenvalues for the TE modes in a step-index fiber 

Let's analyze a step-index circular fiber with a core index , ncare = 1.5, a 
cladding index nctad = 1.45, and with a core radius, a = 5JLm. The wavelength 
of the light is l.3JLm. We want to determine the allowed eigenvalues for (3 for 
the TE modes. A simple Mathematica command evaluates and plots the two 
terms in Eq. 4.32 

k=2 Pi /(1.3 10-(-4)); 
a=5 10~(-4); 

n1=1.5; 
n2=1.45; 
kappamax=Sqrt[k~2(n1~2-n2~2)]; 

gamma = Sqrt [ kappamax-2-kappa~2]; 
Plot[{BesselJ[1,kappa a]/(kappa BesselJ[O,kappa a]), 

-BesselK[1,gamma a]/(gamma BesselK[O,gamma a])},{kappa,O,kappamax}] 
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0.002_j 

0.001 

-0.001 

-0.002 

Figure 4.6. The eigenvalue equation plotted against,., for a waveguide with core index 1.5, 
cladding index 1.45, and wavelength 1.3 J.Lm. 

The graphical output is presented in Fig. 4.6. As in previous chapters, 
we chose to plot the functions against the transverse wavevector, "'' instead of 
against {3. The plot extends from"'= 0 to "-max which is given by 

(4.33) 

The J1 ( t.a) I K-Jo ( K-a) term explodes to infinity at every root of Jo ( K-a). Since 
the roots of Jo (K-a) occur (almost) periodically, the ratio J1 I Jo regularly sweeps 
from -oo to +oo. The Ktf Ko term monotonically decreases as "' increases. 
Every time the two lines cross in Fig.4.6, there is an allowed TE mode. In 
this case, three TE modes are allowed, with approximate "' values of 7000, 
12500, and 17500 cm-1. The exact values are easily found using a root finding 
command. In Mathematica the appropriate command is 

FindRoot[-Besse1K[1, gamma a]/(gamma BesselK[O, gamma a])== 

BesselJ[l,kappa a]/(kappa BesselJ[O, kappa a]), {kappa, 5200}] 

The exact values for this example are"' = 6902, 12549, and 17795 cm-1. The 
corresponding values of {3 can be determined from Eq. 4.13. 

The transverse modes (TE and TM) have no azimuthal structure (v = 0). 
We will look at the field solutions in a later section, but in the ray picture these 
modes are geometrically represented by Meridional rays. As seen in Fig. 4.7, 
the ray associated with these modes travels through the origin, r = 0. 

6.2 The Hybrid Modes 
When v =f. 0, the characteristic equation is a little more complicated to 

solve. The values of {3 will correspond to modes which have finite compo­
nents of both Ez and Hz, and are therefore neither TEnor TM modes. These 
modes are called EH or HE modes, depending on the relative magnitude of the 
longitudinal E and H components [ 4, 5]. 

If A = 0 then the mode is called a TE mode 
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f(J\ 1\ ' )CD \/ \/ 
Meridional Ray (TE or TM Modes) 

Figure 4. 7. A meridional ray zig-zags down the fiber, passing through the origin. There is no 
angular rotation of the ray path as it propagates. 

Skew Ray (EH or HE Mode) 

Figure 4.8. A skew ray travels in a spiral path down the fiber. The ray does not go through the 
origin. 

If B =0 
If A > B 
If A < B 

then the mode is called a TM mode 
then the mode is called an HE mode (Ez dominates Hz) 
then the mode is called anEH mode (Hz dominates Ez). 

The EH and HE modes are called "hybrid" modes, because they have both 
longitudinal H and E components in the waveguide. The EH and HE modes 
exist only for v ~ 1, so they have azimuthal structure. In the ray picture, these 
modes are called "skew" rays, because they travel down the waveguide in a 
screw-like pattern (Fig. 4.8), glancing off the interface as they spiral down the 
axis. The azimuthal structure is apparent from the cyclical path of the ray. 

The EH and HE modes have complicated field patterns. These patterns 
are not only difficult to determine, but they are hard to visualize. Because 
of this, and the limited utility derived in actually graphing such distributions, 
we will not pursue their description. Instead, the next subsection develops a 
useful approximation that s"implifies both the calculation and visualization of 
the hybrid modes. 

6.3 The Linearly Polarized Modes (LP modes) 
The characteristic equation for the hybrid modes is difficult to solve for 

/3. Fortunately, a very simple and reasonable approximation makes solution 
straightforward [6]. Consider again the characteristic equation, Eq. 4.24 

f32v2 r~ + ~]2 = 
a2 ... .p "'2 
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For v = 1, 2, ... , HE and EH modes are possible. Unfortunately, even with 
powerful software, finding the roots of this equation is very difficult. Dramatic 
simplification occurs if we make the weakly guiding approximation. For many 
practical optical fibers, the core and cladding index are nearly identical. Typical 
commercial fibers have D.n = ncore- nclad on the order ofO.OOl-0.005. In 
view of this, it is not unreasonable (at least for the purpose of finding roots) to 
approximate that the core and cladding index are identical, ncore ~ nclad = n. 

This approximation will introduce an error on the order of less than 1 part 
per thousand in the actual value of the propagation vector, but will enable easy 
solution to the problem. In the weakly guiding approximation Eq. 4.24 reduces 
to 

(4.34) 

This can be further simplified noting that if ncore = nclad, then /32 = kfin2, 

and these terms can be cancelled from both sides. Taking advantage of some 
Bessel function identities 

J~(K-a) 

K-J.,(tw) 
K~('ya) 

rKv(K-a) 

simplifies Eq. 4.34, leaving only 

Kv±l a v 
= 7aK.., "(a T ;y2a 

Jv±l(K-a) Kv±l(ra) 
----':::'-'-:'--7==f----:::::=-::-~ 
K-Jv(K-a) rK.,('ya) 

(4.35) 

(4.36) 

These are the characteristic equations for the EH (top sign) and HE (bottom 
sign) modes. Solution will yield the eigenvalues for the allowed modes. A little 
more manipulation with Bessel function identities reduces these two equations 
into one single equation [1] 

Jj-1(K-a) Kj-1('ya) 
K, = _, --"--:-.:....:...,....:... 

Jj(K-a) Kj(ra) 

The indices define the mode as follows: 

j=1 
j=v+1 
j=v-1 

TE, TMmodes 
EH, modes 
HE, modes 

(4.37) 
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Two different modes can have the same eigenvalue, or mathematically 
speaking, they are degenerate. In the weakly guiding approximation, the TEom 
is degenerate with the TMom mode (will have the same eigenvalue, (3) and 
will propagate at the same velocity (at least to the accuracy of the weakly 
guiding approximation). Similarly, the HEv+l,m modes and EHv~l,m modes 
are degenerate. 

Since degenerate modes travel at the same velocity, it is possible to define 
stable superpositions of different modes. Certain combinations of degenerate 
modes can be found which are linearly polarized. Furthermore the superpo­
sitions are primarily transverse modes, meaning Ez is negligible. This is best 
illustrated by example. We will take a "back door" approach to creating a su­
perposition that leads to a linearly polarized mode, by initially assuming that a 
mode has a transverse field configuration, and then derive what the longitudinal 
mode structure must be. 

6.4 Linearly Polarized Mode Based on a Superposition of 
Two Degenerate Modes 

Let's start by describing an idealized transverse electric field inside a step­
index fiber, polarized in the y-direction 

(4.38) 

where Eo is the amplitude, and the functional form is consistent with the fields 
we defined in Eq. 4.18 for cylindrical symmetry. We have assumed that the 
azimuthal dependence is in the form of a cosine term. If the electric field is trav­
elling in the z-direction and polarized in the y-direction, then the magnetic field 
must also be transverse and oriented in the x-direction. Using the impedance 
of the medium, we can write an expression for H in terms of E 

(4.39) 

Since we have simply "assumed" a transverse field, it would be valuable to 
actually verifY that the longitudinal component, Ez, is negligibly small. The 
longitudinal component can be found using Faraday's equation 

dD . 
\7 X H = - = - JWEE 

dt 
(4.40) 

where we have assumed that E is a time harmonic field with angular frequency 
w. Expanding the curl equation, and noting that only Hx has non-negligible 
values, Ez can be written as 

1 8Hx 1 8 [Ey IJ ] Ez(r, ¢, z) = -. -----;:;--- = -. -n-- -Jv("'r) cos(v¢)e~1 z 
-JWE uy -JWE uy TJ 

(4.'41) 
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To evaluate this derivative, the operator a I oy must be written in terms of rand¢. 
Using the identities r = Jx2 + y2 , and¢= tan-1(x/y), it is straightforward 
to show that 

d . a cos¢ a 
-=sm¢-+--­
dy or r 8¢ 

Apply this operator to Eq. 4.41 to get 

(4.42) 

Ez(r, <jJ.z) = -. _Y sin(¢)/'l,J~(/'l,r) cos(v¢)- --Jv(f'l,r) sin(v¢) e-1 z -E [ vcos¢ ] '(3 

JTJWE r 

This can be simplified with two Bessel function identities: 

J~(f'l,r) = ~ [Jv-1(/'l,r)- Jv+l(/'l,r)] 

!:_Jv(f'l,r) = ~ [Jv-1(/'l,r) + Jv+l(f'l,r)] 
f'l,T 

and the trigonometric identity 

sino: cos ,B = ~ [sin( o: + ,B) + sin( o: - ,B)] 

Substituting these into Eq. 4.43, and cancelling terms yields 

(4.43) 

(4.44) 

(4.45) 

Ez(r, ¢, z) = ~Ey ~ [Jv-1(/'l,r) sin(v- 1)¢- Jv+l(f'l,r) sin(v + 1)¢] e-j(Jz 
JTJWE2 

(4.46) 
Recall that the general modal solution for the longitudinal field is described as 

(4.47) 

We can see by inspection that Ez is, in fact, a superposition of two modes, 
one with index v + 1 and the other with index v - 1. Now recall that in 
the weakly guiding approximation, the HEv+l,m mode is degenerate with the 
EHv-1,m mode. This shows that it is possible to add two modes in such a way 
that the residual longitudinal component of the field is essentially zero. The 
coefficient, A, describing the amplitude term can be expressed as 

/'1, /'1, 

A = Ey 2rywE = Ey 2kon (4.48) 

Since the transverse wave vector, f'l,, is much smaller than the wavevector, k, 
there is little amplitude in the longitudinal field. Thus our initial assumption of 
a perfectly transverse field (i.e. no longitudinal components) is nearly satisfied 
through proper superposition of degenerate hybrid modes. 

From the example, we can see how two modes can be combined to create a 
linearly-polarized, cartesian-coordinate referenced, electric field distribution. 
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Figure 4.9. The LPn mode is a superposition of the TEo1 and HE21 modes. Note that the 
LP mode is linearly polarized, in contrast to the electric fields of the two constituent modes. 
Ex polarization is shown, although with appropriate superposition, an Ey polarized mode could 
have been created. 

These superposition modes are called the LPvm modes. The designation and 
construction of an LP mode is as follows: 

LP1m 
LPvm 
LPom 

--> sum of TEom, TMom, and HE2m modes 
--> sum ofHEv+l,m and EHv-l,m modes 
--> HElm mode only (special case) 

Fig. 4.9 shows a sketch of the mode structure of an LP11 mode, and a 
sketch of the two modes that are combined to form it. As seen from the figure, 
the mode profiles of the HE21 and TE01 modes are best described in cylindrical 
coordinates, one having purely azimuthal fields, and the other having radial 
fields. However, the superposition leads to a mode with two lobes that is 
linearly polarized. The plot shows fj polarization, but the mode could also be 
polarized along the x axis. Also, the lobes could be rotated by 90°, making 
the null region lie along the x = 0 axis. Thus there are four degenerate LPn 
modes (two orientations of the lobes, each with two possible polarizations). 

The LP modes have many practical advantages. First, the LP modes provide 
an easy way to visualize the structure of the guided modes. Because most of 
the energy is stored in the transverse field of the LP mode, we can ignore the 
complications of energy stored in the longitudinal terms. Second, the LP modes 
represent actual energy distributions that a polarized source would excite in a 
fiber. For example, a polarized laser uniformly illuminating the end of a step 
would create a linearly polarized transverse field on the input. Finally, LP 
modes allow for a simplified characteristic equation that can be solved with 
straightforward numeric or graphical techniques. 

The disadvantages of LP modes are due to the fact that they are not true 
modes, but are in fact a superposition of slightly nondegenerate modes. The 
individual EH, HE, TM, and TE modes travel at slightly different velocities, 
so the polarization state of the initial superposition will change as the modes 
propagate down the axis of the guide. The LP modes are, in summary, only 
an approximation of the true mode structure of the fiber. They allow a simple 
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Figure 4.1 0. The electric field distribution of five different modes in a step index circular 
waveguide. 

way to visualize the mode, and describe the actual field patterns excited by real 
sources. 

6.5 Summary of Mode Shapes 
As can be seen in Fig. 4.1 0, there are many possible orientations of the 

electric field within a step-index waveguide. Here we schematically represent 
the electric field lines for five different modes. The magnetic lines are transverse 
to the electric fields . 
Detailed tables ofthe functional form ofthe fields in the modes of a step-index 
fiber can be found in the literature [5] . 

7. The Normalized Frequency (V-number) and Cutoff 
Often we are concerned whether a given mode will propagate within a 

fiber. For example, we might need a single mode fiber for an experiment using 
a visible laser, such as the ReNe laser operating at .A = 633 nm, but all we 
can find is single mode fiber that is designed for operation at 1.3 J.Lm. How 
can we determine if this fiber will be satisfactory? To answer this, we need to 
develop what are known as "cut-off" conditions, which determine under what 
circumstances a mode will propagate in a fiber. 

The characteristic equation (Eq. 4.24) contains a term with the ratio of 
Bessel functions, Jv±d lv. This term explodes to infinity at each root of lv, 
as was illustrated in Fig. 4.6. To insure that there is at least one solution to the 
equation (i.e. one place where the lines cross), the argument "'a must extend 
beyond the first root. Each time "'a increases beyond another root of lv±d lv, 
another mode will be allowed. The roots of the Bessel functions are thus the 
signposts for establishing mode cutoff conditions. 
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Figure 4.11. a)The first three Jv Bessel functions are plotted, with the mode cutoff conditions of 
a few modes indicated atthe various roots of the curves. b )The condition 2J1 (~~;a) = ~~;ah (~~;a) 
is plotted for the HE2m mode cutoff conditions. Cut-off occurs where the curves cross. 

We can generalize the cutoff conditions for the modes in terms of the roots 
of the appropriate Bessel function. For example, referring back to Fig. 4.6, 
it is clear that no TE mode will exist if ;;,a < 2.405. The TE01 can only 
exist if K.a > 2.405, so we say that the cut-off condition for the TE01 mode is 
1-.a = 2.405. The cutoff condition for the TEo2 mode occurs at the second root 
of the Bessel function, Jo(K.a), which occurs 5.405. The cutoff conditions for 
every variety of mode can be found in a similar fashion. These cutoff conditions 
are 

TEom modes 
HElm mode 
EHvmmode 

K.a > mth root of Jo(K.a) 
K.a > mth root of J1 (K.a) 
K.a > mth root of Jv(K.a) 
with the added constraint that the first root is not 0 

HEvm modes ( ~cor• + 1) Jv-t(K.a) = v~l Jv(K.a). 
o;.clad 

Fig. 4.lla shows a plot of the first three Bessel functions, with notations 
on the cutoff points for a few modes. For example, if K.a is greater than 2.405, 
then the TE01, TM01, and HE21 modes will be allowed. This is in addition to 
the HEn mode, which is always allowed. The HEn mode is a special case 
which is described in the next section. The HEvm modes have a complicated 
cutoff formula which requires knowledge of the refractive indices of the core 
and cladding. In most cases the ratio can be approximated as unity. Fig. 4.11 b 
shows the cut-off conditions for the HE2m modes. 

The parameter used to characterize a waveguide is the Normalized Fre­
quency or the V -number. For a cylindrical fiber, the V -number is defined as 
K.maxa. 

V b - k V 2 2 - 21l'a V 2 2 -num er - a 0 ncore - nclad - T ncore - nclad (4.49) 
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where a is the core radius. The normalized frequency provides a quick way 
to determine the number of modes in a waveguide, and is often used as a 
specification for optical fibers and devices. The cutoff conditions can all be 
evaluated once the V -number of a fiber is given. 

Example 4.2 Number ofTE Modes in a step-index fiber 

Consider a step index fiber that has a core index, ncore = 1.45, a cladding 
index nclad = 1.44, and a core radius of25 J..Lm. If the excitation wavelength is 
1.5 J..Lm, how many TE and TM modes will exist in the waveguide? 

Solution: First calculate the normalized frequency for the fiber 

V (27r 25J..Lm/l.5J..Lm)V1.452 - 1.442 

= 17.802 (4.50) 

The zeros of the Jo(roa) = 0 occur at 2.504, 5.520, 8.654, 11.791, 14.931, 
18.071, etc .. (See Appendix B: Bessel Functions). Clearly, Vis larger than the 
first five roots, but is smaller than the sixth root at 18.071. So five TE modes 
(and five TM modes) will be allowed in this waveguide at that wavelength. 

The V -number is useful for determining cutoff conditions, as well as a 
number of other parameters, like the total number of allowed modes and power 
profiles. The V -number is often specified in the purchase of optical single mode 
fiber. For example, the cut-off condition for a single mode fiber occurs when 
the V -number reaches 2.405 (the first root of the J0 Bessel function). The term 
"cut-off' refers to the point where the TE01 , TM01 , and HE21 modes cease to 
propagate ifV becomes smaller. The wavelength at which a single-mode fiber 
suddenly becomes multimode is called the "cut-off' wavelength, >-c. 

8. The Fundamental HE11 Mode 
A mode which deserves special attention is the HEn mode, sometimes 

called the fundamental mode, or also the LP01 mode. It has no cutoff condition; 
every step-index fiber will support at least this mode. The transverse field of 
the HEn mode is described by the Jo Bessel function (see Prob. 9.) in the 
core region, but because Bessel functions are not convenient to mathematically 
manipulate,the mode field distribution is often approximated by a Gaussian 
shape, 

E(r) = Eoexp [- csr] (4.51) 

The parameter, w, is adjusted to give the "best fit" between the actual Bessel 
function and the Gaussian approximation. For a fiber with a core diameter of 
a, w is chosen to be [8] 

~ = o.65 + L619v-~ + 2.87v-6 (4.52) 
a 



92 INTEGRATED PHOTONICS 

r 

F----=-F_4,___1 
Figure 4.12. The electric field of the HE,, mode is transverse, and approximately Gaussian. 
The mode field diameter is determined by the points where the power is down by e-2 , or where 
the amplitude is down by e -I. The MFD is not necessarily the same dimension as the core. 

This approximation provides a good overlap (better than 96%) between the 
Bessel solution and Gaussian function over the range from 0.8.\c to 2.\c, where 
Ac is the cutoff wavelength. 

The amplitude profile for the HEn mode is shown in Fig. 4.12. The dis­
tance between the 1/e points of the amplitude profile define the Mode Field 
Diameter, MFD, which is twice the mode field radius, w. Notice that the MFD 
depends on the wavelength of the normalized frequency. When coupling be­
tween two single mode waveguides, matching the MFD is a critical parameter 
to minimize loss. When the mode is not well described by a Gaussian param­
eter, definition of the MFD becomes less clear. Several techniques have been 
proposed, and are still being considered for standards [9] . 

The cutoff wavelength defines the boundary between single mode and mul­
timode operation of a fiber. Wavelengths shorter than the cutoff wavelength can 
excite more than one spatial mode. The cutoff wavelength is defined in terms of 
the cutoff parameter for the onset of the TE and TM modes, namely V = 2.405, 

_ 21ra . I 2 2 
Ac - 2.405 V ncore - nclad (4.53) 

The HEn mode can be polarized in any arbitrary direction in the x-y plane, so 
it has a degeneracy of two. 

9. Total Number of Modes in a Step-Index Waveguide 
For large core diameter fibers with many modes, it is possible to provide an 

approximate formula describing the total number of modes that will propagate. 
Recall the characteristic equation for the LP modes (Eq. 4.36) 

lj-I(,..a) Kj-l(!a) 
"' = - 'Y -".,.......,."--:-...:.. 

Jj(,..a) Kj('ya) 

For values of "'a far from cutoff, the term 'Ya will be large, and the asympt9tic 
value of the K v functions can be used. Since Kj (Ia) --. J 1r /2"'fae -')'a forlarge 
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K.a, the ratio Kj- 1)/ Kj goes to unity for large arguments. The characteristic 
equation reduces to 

Jj-1 (K.a) 
Jj(K.a) 

(4.54) 

For a given value of v, the number of allowed modes will be proportional to the 
number of roots of Jj(M) between 0 and K.a = V. In the approximation that 
K.a is large, the asymptotic expansion of Jj ( K.a) can be used 

g l/7f 7f 
J·(K.a) ~ cos(M- - - -) 

J "' 2 4 
(4.55) 

There will be one root every time the ratio goes to infinity, i.e. each time the 
argument increases by 1r. For a given value of v, the number of roots will be 
approximately 

l/7f 7f 
m = (M- - - - )j1r 

2 4 
(4.56) 

Solving this in terms of the normalized frequency, V = K.maxa, and ignoring 
the 7f /4 term 

(4.57) 

This equation, while only an approximation, shows the general relationship 
between the azimuthal number, v, and the number of radial nodes in the mode, 
m. As v increases, indicating more angular lobes, the maximum value of' m 
must decrease, implying that the radial structure becomes smoother. 

Since there is an allowed mode for each value of m and v, we can graph­
ically plot the number of modes. The largest possible value for m, from Eq. 
4.57, is V j1r, when v = 0. Likewise, the maximum value for vis 2V j1r. These 
allowed values are plotted in Fig. 4.13. 

Each dot represents an allowed combination of m and v. The total number 
of allowed modes is geometrically determined from the area of the triangle in 
Fig. 5.13, which will be (.l/2)mmaxVmax = V 2 j1r2 . We must recall that for 
each mode, there are two angular orientations (cosine or sine solution), and two 
possible polarizations (x or yin the LP mode approximation). The number of 
modes is increased by a factor of four. So the number of allowed modes in a 
fiber waveguide is given by the approximation 

(4.58) 

Again, we stress this formula is an approximation, and is only good when V is 
large. 
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Mode Boundary Formed by 

V=(v + 2m)(1t/2) 

V/rc 

Figure 4.13. Graphical plot of the allowed values of v and m for the step- index fiber. The 
boundary is determined by the condition listed in Eq. 4.58. The number of points beneath the 
curve is proportional to the area of the shaded region. 

10. Summary 
In this chapter, we developed the fundamental concepts of the circular 

dielectric waveguide. Solution of the wave equation in cylindrical coordinates 
led to mode solutions in the form of cylinder functions such as sin¢ and the 
Bessel functions, Jv(Kr ). As was found in planar waveguides, the propagation 
parameters, j3, for the modes were found from solution of a transcendental 
equation, and the values of j3 were restricted to lie between k 0 ncore > j3 > 
konclad· We developed explicit solutions to the longitudinal electric fields of 
the modes, and using Maxwell's equations, we found expressions for all field 
components. The formal modes are complicated in terms of their field structure, 
so a picture based on the weakly guided mode approximation was developed 
which simplified both the characteristic equation for finding j3, and the physical 
description of modes as linear superpositions which were linearly polarized. 

We concluded the chapter with a number of short topics, such as the cutoff 
conditions, the V -parameter, the number of modes, and the power confinement 
of the modes. One topic that was not discussed was dispersion, which is a very 
important topic for any long-distance optical waveguide system. We defer a 
complete discussion on dispersion in waveguides until the Chapter 6, where 
graded index waveguides are described. 
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Practice Problems 

I. Confirm Eq. 4.28 (an exercise in Bessel functions). 

2. Determine the cladding index of refraction of a fiber which has a core 
index of 1.5, a core radius of 5 J.Lm, and V = 2.0 at>. = l.5J.Lm. At what 
wavelength does the fiber cease to be a single mode fiber? 

3. Consider a fiber with core index 1.5, cladding index 1.495, and a core 
radius or 5 J.Lm. 

(a) How many modes exist for a wavelength of I J.Lm? 

(b) How many modes exist for a wavelength of 0.5 J.Lm? List each mode, 
and its cutoff condition. 

4. Consider a step-index fiber with ncore = 1.5, nclad = 1.495, and a = 
9J.Lm. 

(a) What is the wavelength that corresponds to the single mode cutoff 
for this fiber? 

(b) At what wavelength does the HE33 mode cutoff? 

(c) List all the modes that propagate in the fiber at 1.5 J.Lm. 

5. For the fiber in problem 3, list all the LP modes that would exist at 
>. = 0.8J.Lm. 
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6. A step-index fiber has an ncare = 1.4 7 and nclad = 1.46. The core 
radius is 3J.Lm. For .>. = l.3J.Lm, determine the following parameters: 
N.A., V-number, Mode Field Diameter of the HEn mode, and the cutoff 
wavelength. 

7. A step index fiber is operated at l.3J.Lm. The core radius is 25J.Lm, ncore = 
1.465 and nclad = 1.460. Use the "weakly guided mode approximation" 
and plot the eigenvalue equation for the v = 0 and v = 1 cases. Find the 
value of (3 for the highest order TE mode. 

8. Identify which modes exist and specify the cutoff parameter for each 
mode in a step-index fiber with V = 5.5. 

9. If a single mode fiber has a longitudinal field given by 

Ez ( r, r/>, z) = - j ko:;ore cos r/>K- ~~f=:~ for 0 < r < a 

= -j-k E cosrjJ-y~trr~ fora< r 
onclad .no "(a 

show that 

Ex(r,¢,z) = EoJo(,r)/Jo(,a) forO< r <a 
= EoKo(lr)/ Ko(la) for a< r 

Make a sketch of the amplitude distribution inside and outside the core. 

10. To learn about Bessel function identities, fill in the missing steps in the 
derivation of the characteristic equation for the LP modes. 

11. Compare the overlap of the transverse mode for an HEn mode to the gaus­
sian approximation for that mode. Design a fiber that has a normalized 
frequency, V = 2. Explicitly describe the transverse field in all regions 
of space. Compare the Gaussian approximation to this by calculating the 
sigma squared deviation between the two normalized field patterns. 

12. Make a plot for designing a single mode fiber. Use axes of core radius 
versus the difference· in the index of refraction between the core and 
cladding for a single mode fiber. Plot a curve showing the boundary 
between single-mode and multi-mode operation of the waveguide. Do 
this for .>. = l.5J.Lm, and l.3J.Lm. Assume the core index is n = 1.5. 

13. A step-index fiber has a V-number of 10. For the LPn mode, what 
fraction of the power is contained in the core, and what fraction is in the 
cladding? 

14. A step-index fiber is made with a core index, ncare = 1.45 and a cladding 
index nclad = 1.44. Using the Gaussian approximation, make a plot of 



REFERENCES 97 

the core diameter versus the MFD for the HEu mode over the range 
V = 0.8 ~ 2.2. Assume A = l.5J.Lm. 

15. Confirm Eq. 4.32 using Eq. 4.30 and the identities listed in Eq. 4.31. 

16. A step-index fiber is to be constructed using silicon for the cladding and 
germanium-silicon for the core. The index of the cladding is nclad = 3.5 
exactly, and the index of the core is ncore = 3.503. 

(a) What radius should the core have in order to insure that the waveguide 
will remain single mode until A= l.2J.Lm? 

(b) What is the numerical aperture of this fiber? 

17. Using a computer, determine the waveguide dispersion od a step-index 
single mode fiber. Design two single mode fibers with V = 2, one with 
a small core and large Lln, and the other with a small Lln and a large 
core. Choose a core index of n = 1.50. By calculating f3 at a number 
of wavelengths around 1.3 J.Lm, determine the waveguide dispersion for 
each fiber. Which fiber has the least waveguide dispersion? 



Chapter 5 

RECTANGULAR DIELECTRIC WAVEGUIDES 

1. Introduction 

The rectangular dielectric waveguide is the most commonly used structure 
in integrated optics, especially in semiconductor diode lasers. Demands for 
new applications such as high-speed data backplanes in integrated electronics, 
waveguide filters, optical multiplexors, and optical switches are driving tech­
nology toward better materials and processing techniques for planar waveguide 
structures. The infinite slab and circular waveguides that we have already stud­
ied are not practical for use on a substrate: the slab waveguide has no lateral 
confinement, and the circular fiber is not compatible with the planar processing 
technology being used to make planar structures. The rectangular waveguide 
is the natural structure. 

In this chapter we will study several methods for analyzing the mode struc­
ture of rectangular structures, beginning with a wave analysis based on the pi­
oneering work ofMarcatili[l]. The wave analysis provides a good description 
of the modes far from cut-off, but becomes less accurate for small V -number 
waveguides. We will then look at look at a popular analysis method called the 
Effective Index Method. One of the simplest structures to build is the ridge 
waveguide. An example using the effective index method will be used to illus­
trate these useful structures. Finally, we will review perturbative solutions to 
improve the results of wave analysis. 

Applications for rectangular waveguides typically involve short lengths 
(distances of no more than a few centimeters). Unlike the optical fiber, which is 
primarily a way to convey optical signals over a long distance, integrated wave­
guides are used to make devices such as power splitters, wavelength-selective 
filters and drops, modulators, switches, and other devices that are useful for 
controlling information on an optical network. The physical mechanisms used 
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Figure 5.1. Three possible configurations for rectangular waveguides. In a) the cover index is 
air. In b) the guiding layer is completely surrounded by a cladding layer. Inc) lateral confinement 
is established by the dielectric ridge on top of the substrate. 

to control this information varies with the device. Power splitters and interfer­
ometers might use Y-junctions, while filters might rely on evanescent coupling 
between adjacent waveguides. Design and analysis of these problems requires 
knowing the exact mode structure of the field in order that coupling can be 
accurately predicted. We will see that unlike the planar slab waveguide or the 
circularly symmetric fiber waveguide, it is generally impossible to find exact 
analytical solutions to these structures. Most work is now done using numerical 
simulations, which are described in a following chapter. 

2. Wave Equation Analysis of a Rectangular Waveguide 
Fig. 5 .I shows three types of rectangular waveguide that can be employed 

in an integrated optical circuit. They illustrate the surface waveguide, the buried 
waveguide, and the ridge waveguide. These geometries are relatively simple 
to create using standard lithographic and overgrowth techniques. As usual, the 
index of the rectangular region must be slightly larger than the surrounding 
medium for the structure to guide light. Our goal is to determine the mode 
structure of these waveguides. To begin the analysis we will develop a wave 
equation expression that is :;~ccurate well above cutoff. 

A cross-section of a generalized embedded waveguide is shown in Fig. 5.2. 
There are nine distinct dielectric regions in this structure. Analysis is difficult 
because it is impossible to simultaneously satisfy all the boundary conditions 
in this structure. 

The difficulty in analyzing this structure originates in the four shaded re­
gions. These regions act as the coupling zones for the x and y solutions of the 
field. Well above cut-off, the electromagnetic mode is tightly confined within 
the core, and the amount of energy in the comer regions is negligible, so the 
wave equation can be solved using standard separation of variables. Near 'Cut­
off, however, the mode will have a significant amount of power in the comer 
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Figure 5.2. A general dielectric structure. The core (nl) is surrounded on every side by a lower 
index material. The index in the shaded regions is neglected in the first-order approximation to 
solutions to the waveguide. The regions are numbered for identification only; there is no implicit 
relationship between the various indices, except that n1 is larger than all others. 

regions. The x and y dependent solutions will be strongly coupled through 
the boundary conditions in the comer regions, making them mathematically 
inseparable. Therefore, neglecting the field in the comer regions will be the 
substance of our approximation. As we shall show in a subsequent section, 
perturbation techniques can be used to "clean-up" the solutions near cut-off. 

2.1 Mode Designation 
The mode designation commonly used for rectangular structures is slightly 

different than the terminology we have used for circular or slab waveguides. 
Since in rectangular dielectric waveguides the field is neither purely TE or TM 
(there is generally a skew in the mode), a different designation is called for. 
In the limit of small index differences, the guided optical fields are essentially 
transverse, and the transverse component of the electric field will be aligned 
either with the x or y axis of the structure. Modes are designated EKm if in the 
limit of total confinement the electric field is parallel to they-axis, and as E~m 
modes if the electric field is parallel to the x axis. As in the microwave notation, 
the nm subscripts designate the number of maxima in the x and y directions. 

2.2 Formulation of the Boundary Value Problem 
To determine the mode field configuration, we must find the eigenvalue f3 

for each mode. If we are far from cut-off, or if the index difference between 
the guiding region and cladding is small, the fields are effectively transverse. 
This condition is similar to the LP modes described in Chapter 4. Since the 
boundaries ofthe waveguide are rectangular there will be no conversion of Ex 
into Ey or Ez upon incidence at an interface. Therefor vector wave equation can 
therefore be converted into a scalar equation for each component. We assume 
that the longitudinal field dependence follows the form Z(z) = exp( -jf3z) + 
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c. c., thus the scalar wave equation becomes 

(5.1) 

where ko is the free space wavevector, f3 is the unknown propagation constant, 
and n(x, y) is the index of refraction for the structure. Notice that this is similar 
to the wave equation we solved in Chapter 3 for the slab waveguide, except now 
there is a possibility of change in the y-direction. 

We use separation of variables to find a solution E(x,y) = X(x)Y(y), 
where X(x) is the amplitude distribution function along x, and likewise Y(y) 
is the amplitude distribution in they direction. Ignoring the four comer regions, 
there will be five solutions, one for each region of the waveguide. The guided 
mode solutions in the core (region l) should vary sinusoidally along the x 
and y direction. Boundary conditions require that the transverse component of 
the fields must be continuous across each interface. In regions 2 and 3, they­
dependence must therefore have the same sinusoidal structure as in the core, but 
the x dependence should decrease exponentially away from the core. Similarly, 
in regions 4 and 5, the field will display the same sinusoidal dependence in the 
x direction as the field in the core, but should exponentially decay withy. The 
general form of the solution is 

E(x, y) = Eoe-j(k,;x+ky;y)e-jf3z + c.c. (5.2) 

where the propagation coefficients, kxi, and kyi. can be real or imaginary, 
depending for which region, i, the solution is valid. The x-propagation constants 
kxl, kx4. and kx5 in regions 1, 4, and 5, must be identical and independent ofy. 
Using separation of variables, letting E(x, y) = X(x)Y(y), it is easy to show 
the wave equation can be written as 

x Y 2 2 2 
X+ y + k0n (x,y)- f3 = 0 

Rearranging, the equation b~comes 

x 22 2 Y 2 
X = -kon (x, y) + f3 - y = -r;,x 

(5.3) 

(5.4) 

where r;,~ is a separation constant. Using this result, we can solve for the Y 
function 

(5.5) 

We will assume a step-index structure. In the core, where n(x,y) = n 1,,the 
guided mode solutions must be oscillatory, implying that r;,x and r;,Y must be 
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Figure 5.3. Geometric interpretation of the three propagation vectors in a rectangular wave­
guide. 

real. The allowed core solutions will have the form 

X(x) = Acos(A;xX + </>x) 
Y(y) =Bcos(A;yY+</>y) (5.6) 

where <Px and </>y are phase constants that are adjusted to match boundary con­
ditions. The separation constants, A;x and A;y, must satisfy (from Eq. 5.5) 

(5.7) 

Notice the similarity between this equation and that for the slab waveguide 
(Eq. 3.7). In the case of the 2-dimensional rectangular structure, there are two 
transverse wavevectors. Fig. 5.3 illustrates the geometric view of the relation 
between the three orthogonal wavevectors. 

Outside the core, the guided mode solutions must have at least one com­
ponent which displays exponential decay. Consider the solution in region 3 of 
Fig. 5.2 (x > 0). To match boundary conditions, the Y(y) in this region must 
be identical to the y-solution found in the core. So the 8 2w I oy2 term simply 
becomes -fi,2 , and the equation in region 3 reduces to 

(5.8) 

Substituting Eq. 5.7 into Eq. 5.8, and using the notation of separation of 
variables, yields 

which has the solution 

-(k5n~ - /32 - A;;) 

(k5ni- k5n~- "';) (5.9) 

(5.1 0) 
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Figure 5.4. The rectangular waveguide can be described as nine separate regions, each with 
its own electromagnetic field description. (For simplicity, amplitudes are not matched across 
boundaries in these expressions.) 

where 

/'3 = }k5(n~- n~)- K~ (5.11) 

So the total field in region 3 can be described as 

E(x, y) = C cos(KyY + ¢y)e--yax for x > 0, 0 < y < b (5.12) 

Through a similar set of solutions we can find the scalar solutions to the x- and 
y-components of the field in regions 2, 4, and 5 

= e"Y2(x+a) for x < b 

e--y4 (y-b) for y >a 

e75Y for y < 0 

where the exponential decay constants are given by 

/'2 = jk5(n~- n~)- ~~:~ 
/'4 . = jk5(n~- n~)- ~~:~ 

/'5 = jk5(n~- n~)- ~~:~) 

(5.13) 

(5.14) 

These fields are summarized in Fig. 5.4, where the appropriate product of X ( x) 
and Y(y) solutions are listed in each region, and the transverse solutions for 
several modes are plotted in Fig. 8.5. 

2.3 Solution to the Boundary Value Problems 
To complete the solution, we must determine the specific values for K:t, Ky 

and /3. This is done by applying the boundary conditions that connect the 
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Figure 5.5. The transverse scalar field distributions for the x andy directions. 

solutions between the various regions. Since there are many fields, and many 
interfaces, matching all the boundary conditions is a complicated and tedious 
process (see for example [2]). Consider the situation where an Ex mode is 
being guided. Fig. 5.6 shows a cross-section of the waveguide, along with the 
two transverse components of the field in the core. 

In this waveguide, we must insure the continuity of the tangential electric 
field at the y = 0 and y = b planes, and continuity of the tangential magnetic 
field at the x = 0 and x = -a planes. The other boundary conditions (con­
tinuity of Dnorm and Bnorm) are almost automatically satisfied in the weakly 
guiding approximation, at least they are close enough to be insignificant. From 
the boundary condition point-of-view, the Ex field looks like a TE mode in a 
slab waveguide of thickness b, and a TM mode in a slab waveguide of thickness 
a . After lengthy calculation [I], the characteristic equation for "-y can be shown 

T tEx 
JL ~Hy 

I b-----t 

Figure 5.6. TheE"' field in the core will have the electric field polarized along the x direction, 
and the magnetic field polarized along the y direction. 
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to be 
tanKyb= Ky("y4 +'Ys) (5.15) 

K,~ - 'Y4'Y5 

This is identical to the characteristic equation for the TE mode in a slab wave­
guide, which seems reasonable. Similarly, matching the tangential components 
of the Hy field only involves the interfaces at x = 0 and x = -a between the 
core region and regions 2 and 3 of Fig. 5.2. After much algebra, the character­
istic equation for Kx can be shown to be [ 1] 

2 Kx(nh3 + nh2) 
tanKxa=n1 2 2 2 2 (5.16) 

n2n3Kx - n 1 'Y2'Y3 

which is the characteristic equation for a TM mode in a slab ofthickness b. These 
results should seem intuitively plausible, even if the mathematical derivation is 
not presented in all its detail. Using these eigenvalues, we can finally determine 
the propagation constant f3 from Eq. 5.9. 

The complete description of the modal fields can now be written. There 
are five regions, so five separate electric fields and five separate magnetic fields 
must be specified to completely describe the field. Reference [2]has a complete 
listing of these fields. 

The phase terms in Eq. 5.6, are found from (2] 

2 
tan¢x = 

n3 Kx 

- n~ 'Y3 

tan¢y 
-'Ys (5.17) = 
Ky 

We can see that the rectangular waveguide mode, to first order, is simply 
the product of two orthogonal spatial modes, one which acts like a TE wave, 
and the other a TM wave. The x dependence of the mode is found by effectively 
solving a slab waveguide problem as if there were no structure to the waveguide 
in they-direction. Similarly, they dependence of the mode is found by treating 
the waveguide as a slab with infinite extent in the x-direction. The two solutions 
are coupled through the selection of the propagation coefficient, {3, where both 
transverse propagation coefficients, Kx and Ky are subtracted quadratically from 
kon1. 

The critical cut-off condition will be determined by the smaller of the 
two dimensions (a or b) of the waveguide. The normalized frequency for a 
rectangular waveguide is defined as 

(5.18) 

where a is the smaller dimension, n 1 is the core index, and n2 is the next smaller 
index. 
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The EKm modes can be obtained in close analogy with the E;m modes. 
In this case, the Ey and Hx components are dominant. Following Marcuse [2], 
the fields in the five regions can be derived from the longitudinal fields, Ez and 
Hz using Maxwell's equations. 

The characteristic equations for these modes are 

tan K;yb = 

K;x (/'z + /3) 

(K;~- /2/3) 

niK;y(nh4 + nhs) 
n~ngK;~ - nh4/5 

and the phase terms can be found from 

tan TJx = ~ tan T}y 
Kx 

Example 5.1: Analysis of a symmetric embedded waveguide 

(5 .19) 

Consider the embedded waveguide shown in Fig. 5.7. The core has an 
index n1, and it is surrounded by index nz. Assume that n1 = 1.5, nz = 1.499, 
a = 5~tm, and b = lO~tm, and the electric field is oriented in they-direction. We 
will first determine the normalized propagation coefficient for the waveguide 
over the 0.5 to 2.0 ~tm region. 

Developing an expression for the propagation coefficient, {3, requires solv­
ing the wave equation. Because this waveguide forms a symmetric structure, 
we will place the origin in the center of the waveguide. We want to define the 
index of refraction in such a manner that it satisfies the requirement of being 
separable in the x andy coordinates. We define n2 (x, y) as follows: 

n 2 (x, y) = n'2 (x) + n"2 (y) (5 .20) 

where 

n'2 (x) ni/2, forlxl < a/2 

~ 
n2 X 

T n1 -a y""' __i 
I b ., 

Figure 5. 7. A symmetric waveguide is comprised of a rectangular dielectric of index n 1 sur­
rounded by an index n2. The origin of the system is situated in the center of the guiding core. 
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n§ - nf/2 for lxl :2: a/2 

n"2(y) = nf/2, for IYI < b/2 

n§ - nf/2 for IYI :2: b/2 (5.21) 

The definition above accurately describes the index of refraction in the five 
regions that we will seek a solution. The index description is not correct in the 
comer regions, but we are not going to solve the wave equation there, so the 
error is of no significance to our ability to find a solution. 

The index distribution (Eq. 5.21) is symmetric, so the separable solutions 
to the wave equation will have the form 

X(x) A COS/'i,xX 

COS/'i,xa/2 
for lxl < a/2 

Ae -"{x {lxl-a/2) for lxl :2: a/2 

Y(y) B COS/'i,yY 

cos /'i,yb/2 
for IYI < b/2 

Be-"fy(lyl-b/2) for IYI:::: b/2) 

for the symmetric modes. Similar expressions can be found for the antisymmet­
ric modes (replace cosine by sine and adjust the signs). The transverse wave 
vectors, "'x and "'Y• are found from the transcendental equations derived for 
symmetric planar waveguides in Chap. 3 (Eqs. 3.28, 3.29). If we assume an 
EY mode, then the characteristic equations for the transverse wavevectors are 

tan"'yb/2 

From these values, we can can find the allowed value of f3 using Eq. 5.7 

/32 = k5n~ - "'; - "'~ 

Using a numeric program in Mathematica, we calculated the allowed trans­
verse wavevectors and values of f3 over the wavelength range 0.5-2 J..lm. The 
normalized value of the propagation vector, b, defined as 

/32- k5n~ b = --:.,.--,.----"-;,....=..,.. 
k5nf- k5n~ 

(5.22) 

was then plotted in Fig. 5.8. Please note, the normalized propagation vector, 
b, should not be confused with the spatial dimension, b, of the waveguide. We 
will rely on context to avoid any confusion between this shared symbol. 

Blind application of the formula for f3 led to values for the normalie;ed 
propagation coefficient, b, which in some regions are negative. This is clearly 
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Figure 5. 8. The normalized propagation coefficient for the waveguide. Note that b is Jess than 
zero for certain ranges of the normalized frequency. This is unphysical, and these modes are 
therefore below cut-off. 

not physical; the only interpretation of these points is that they represent modes 
that are beyond cut-off. Unfortunately, in a symmetric waveguide we expect that 
there will always be at least one allowed mode, in contrast to what the numeric 
results are telling us. It turns out that the calculated solution is increasingly 
inaccurate in the region of normalized frequency V < 2. This is an example of 
where we must be careful about neglecting the comer dielectric regions. The 
wave equation solution is valid, however, for values ofV > 2, as we shall show 
in the next section. 

2.4 Solutions Near Cut-Off 
The analysis presented above is an approximation based on neglect of 

certain regions of the waveguide. So long as the mode is well above cut-off, the 
solutions and expressions for the eigenvalues will be nearly indistinguishable 
from the exact value. For modes where V < 2, we can expect the exact solution 
to deviate from the calculated value because there will be non-negligible fields in 
the comer regions. To reduce this error, one must resort to numerical techniques, 
or to perturbation methods. 

The results of Example 5.1 are disturbing: we expect that for a symmetric 
waveguide, there will always be at least one guided mode. In fact, this is true. So 
the calculations are in error. The next section deals with a first order correction 
to this problem. 

3. Perturbation Approach to Correcting (3 
The major problem with the analytical approach is that it relies on the mode 

being tightly coupled to the core, so that relatively little field exists in the four 
comer regions. The source of error that arose in the last example came from 
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neglecting the field in the comer regions surrounding the rectangular waveguide. 
This results in an underestimate of the propagation coefficient. 

One method to find an improved solution is to apply a perturbative correc­
tion to the solutions obtained above. The true waveguide-mode, IJ!, is assumed 
to be a solution to the scalar wave equation 

(5.23) 

where n ( x, y) is the actual index distribution for the structure. In general, 
n(x, y) is too complicated to allow an analytical solution to the wave equation. 
So we seek an index distribution, n0 ( x, y), that is close to the actual distribution 
and which can be analytically solved. The wave equation for this modified index 
distribution, 

(5.24) 

has solutions IJ! n• where n is the mode index. In general there will be an 
infinite number of such solutions, most of which will be unguided (radiation) 
modes, and a finite number will be guided modes. Based on the completeness 
of the modes, any reasonable distribution of electromagnetic energy can be 
described by an appropriate superposition of these modes. The secret to making 
perturbation theory work well is to select the trial index, no(x, y), to be close 
enough to the actual index so that the trial and actual solutions will not be 
significantly different. Let's assume that a suitable index has been identified, 
and that one of the trial solutions, IJ! m• closely resembles the true solution, IJ!. 

When the true mode and the trial mode are very close, we can approximate 
the actual mode in terms of a superposition of the orthonormal calculated modes 
of the waveguide, 

(5.25) 
n 

where an is the amplitude of each of the other modes. We have separated the 
closest calculated mode from the superposition, so n =1- m in the summation. 
In this way the summation represents the total perturbation on the solution. Of 
course, all we have done is traded an infinite series for an insolvable problem, 
which might strike you as poor progress. However, we can dramatically sim­
plify this series by taking advantage of mode orthogonality. We do this in the 
next few steps. 

If we multiply Eq. 5.24 by IJ!, and multiply Eq. 5.23 by Wn, we can 
subtract the two equations, and then integrate over a surface transverse to the 
axis of the waveguide to get 

(!P- (f;,,) Is ll!ll!ndS = kJ fs(n2(x,y)- n~)ll!ll!ndS 

- k(IJ!V'21l!n- Wn V'21J!)dS (5.26) 
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The last term vanishes due to Green's second identity, leaving 

(5.27) 

This gives us an expression for determining the difference between the actual 
value of /3, and f3n for each of the modes in the simplified waveguide. 

In order to get a complete description of the perturbed mode, we must 
evaluate the summation in Eq. 5.25. Multiplying both sides ofEq. 5.25 by one 
of the modes of the simplified index distribution, 1]! n', integrating over surface 
S, and invoking the orthogonality of the \]in modes, we get 

Is 1]!\]!n'dS = Is l]!m \]in' + L:n#m an Is \]in \]in' 

(5.28) 

where Omn' represents the Kronecker delta function, which is unity only if 
m = n', and is equal to zero otherwise. Substituting from Eq. 5.27 the 
expression for Is 1]!\]!n, we get an expression for an 

k6 r 2 2) 
an= (/32 _ /3~) Js(n (x,y)- n0 WWndS m i= n (5.29) 

Unfortunately, in order to calculate the terms an needed to create a superposition 
that resembles the true mode, 1]!, we need to know 1]!. But we do not know 1]!, 

and it looks like we are going in circles. Fortunately, in calculating coefficients, 
it is generally sufficient to retain the zeroth order solution. We can assume that 
the true mode 1]! closely resembles one of the modes from the modified index 
distribution, namely l]!m, and that the value of f3m ;:::;; /3. Replacing \ll with Wm 
and j3 with f3m, we get 

k5 r 2 2 
an= (/3';. _ j3'J,) Js(n (x,y)- n0 )WmWndS m i= n (5.30) 

The correction to the propagation coefficient with the same approximations is 

(5.31) 

These are general equations that can be applied to any waveguide. The correc­
tion to j3 is proportional to the index difference between the actual and modified 
profiles, weighted by the intensity of the field in the region of the index dif­
ference. In the case of the rectangular structure, we would need to integrate 
only over the four comer regions where the index differs from that assumed in 
the solution. It should also be noted that to get a true description of the modal 
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field distribution, the radiation modes should be included in the superposition. 
However, since to second order the propagation coefficient only depends on the 
overlap integral of the index difference with the square ofthe approximate mode, 
including the radiation modes will not significantly influence the calculation for 
(3. 

To illustrate the power of the perturbative method, let's continue Example 
5.1, and see how inclusion of the field in the comer regions leads to improved 
physical solutions. 

Example 5.2 Perturbative correction to a symmetric waveguide 

In Example 5.1 we found that a solution which inaccurately predicted cut­
off for the fundamental mode. We know this is physically impossible, so the 
solution must be in error near cut-off. In this example we apply perturbation 
theory. The correction to (3, and thus the normalized propagation constant, is 
given by Eq. 5.31. In the example, the actual index in the comer regions was 
n2(x,y) = n~, while in the solution, the comer regions were given a value 
na (X, y) = 2n~ - n~. The difference in index between the actual and trial 
index is given by 

2( ) 2 2 (2 2 2) 2 2 n x, y - n0 = n2 - n2 - n 1 = n 1 - n2 (5.32) 

The correction to the propagation coefficient will thus be 

(5.33) 

The factor of four comes from symmetry and the fact that we must evaluate the 
integral over all four comers. For the trial solution, Wm, we use the solution 
found in Example 5.1. Using the mode described in Eq. 5.21, the integral can 
be evaluated. This integral often will require numeric solution. Fortunately for 
the symmetric waveguide used in this example, a closed form solution can be 
found which dramatically increases calculation speed. After tedious algebra 
[3], the correction to the normalized propagation constant, b, can be shown to 
be 

~b = [1 + (k3(n~-n~) _ 1) 1/ 2 ("xa±sinKxa)] - 1 
11:~ 1±cosll:xa 

* [1 + (k3(n~-n~) _ 1) 1/ 2 ("ub±sin~~:yb)] - 1 

II:~ l+±COSII:yb (5.34) 

where the top sign ( +) corresponds to even modes, and the bottom sign (-) cor­
responds to antisymmetric modes. This function can be numerically calculated 
and added to the original data that formed b. The results are shown in Fig.5.9. 
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Figure 5. 9. The normalized propagation constant after being corrected with the perturbation 
correction. The solid line represents the perturbation corrected solution, and the dotted line 
represents the data from Example 5.1. Notice now that the cut-offis closer to what it should be. 

The two curves are superimposed on each other to illustrate the difference 
that the perturbation adds to the solution. While the perturbation correction does 
not bring the cut-off point to V = 0, as we know it should be, it does improve 
the overall curve. Comparison of this result with more accurate numerical 
modeling shows the perturbative correction is good to about V = 0. 7 for 
the fundamental mode, and is an excellent fix for most higher order mode 
calculations [3]. Nevertheless, the small magnitude of the correction makes 
it clear that perturbation analysis is only useful for cleaning up an already 
reasonable calculation. 

4. Effective Index Method 
As we have seen in the last two sections, exact analysis of the mode struc­

ture of a dielectric waveguide can involve rather extensive calculations. In this 
section, a method known as the Effective Index Method is developed [4]. It 
is very similar to the first technique that we developed using the solutions to 
two orthogonally oriented waveguides to find the allowed value of the propa­
gation coefficient, f], except here the direct interaction of the two waveguides 
is accounted for. 

The effective index method converts a single two dimensional problem into 
two one-dimensional problems. Consider the buried rectangular waveguide 
shown in Fig. 5.10. To use the effective index method, we first stretch the 
waveguide out along its thin axis, in this case along they-axis, forming a planar 
slab waveguide. 

The thin one-dimensional slab waveguide can be analyzed in terms of TE 
or TM modes to find the allowed value off] for the wavelength and mode of 
interest. Once f] is found, the effective index of the slab is determined through 
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+ ns 

-~>--

Figure 5.10. A buried dielectric waveguide can be decomposed into two spatially orthogonal 
waveguides: a horizontal and a vertical slab waveguide. The thin waveguide is analyzed in terms 
of the actual indices that form the structure. The thick waveguide is analyzed using the effective 
index found from the first waveguide analysis. 

the expression 

(3 
neff= ko (5.35) 

where ko is the vacuum wavevector of the light being guided. After this effective 
index is determined, we return to the original structure, and stretch it along the 
thick axis (in this case vertical), forming a slab waveguide in the x-direction. 
The modes for this waveguide can now be found, only instead of using the 
original value of the index for the guiding film, the effective index found in 
the first step must be used. The value of (3 found from this last step is the 
actual value for the mode. A note of caution: to be accurate, the aspect ratio 
of the width/height aspect ratio of the waveguide must exceed a factor of three 
to be accurate. Thus the effective index method is not applicable to square 
waveguides. 

As with the wave analysis, we must be careful to use the proper character­
istic equations for each waveguide. For example, if in Fig. 5.1 0, the electric 
field is polarized in the x-di.rection, then for the thin waveguide, the field will 
appear to be a TM mode, and the appropriate characteristic equation must be 
used. When the thick slab is analyzed, the field will look like a TE mode, and 
so the TE characteristic equation should be used to find (3. When the index 
difference between the guiding and cladding layers is large, using the proper 
characteristic equations is critical for getting a reasonable answer. 

The effective index method is best illustrated with example. In Example 
5.3, we present an description of a waveguide taken from published literature 
[5] which describes a ridge waveguide on a silicon substrate. Since silicon is 
the primary material for electronics, there is much interest in creating optical 
waveguides on silicon substrates. 
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Figure 5.11. A ridge waveguide constructed from Si and SiGe alloy. The alloy is 6.5 J.Lm thick 
under the Si ridge, and is 5.4 J.LID thick elsewhere. 

Example 5.3: Silicon-Germanium Ridge Waveguide 

The structure in Fig. 5.11 is to be used as a waveguide on an silicon 
substrate. This is an example of a ridge waveguide, where the mode is confined 
underneath the ridge in the Si-Ge layer. We can use the effective index method 
to find the eigenvalue f3 for the waveguide, and determine the mode size for the 
fundamental mode in this structure. The waveguide is to operate at>. = 1.32J.Lm. 
Assume that the guided light is polarized in the x-direction. 

The index of refraction of Si-Ge (assuming a 1.2% Ge concentration) is 
given by [6] 

3.5 

nsi + 0.104x(x=0.012) = 3.50125 

The mode will be confined under the ridge due to the effective index created 
by the ridge. There are three different horizontal regions, each with a different 
effective index. 

In order to apply the effective index method to the horizontal confining 
structure, we must find the effective index of all three regions. Since the field 
is polarized vertically (in the x-direction), the field will be a TM mode in the 
horizontal structures. 

We will begin with the ridge. The Si cover layer can be assumed to be 
effectively infinite, because the evanescent waves will not penetrate very far into 
the layer. Therefore the structure can be considered to be symmetric waveguide, 
with thickness h1 = 6.5J.Lm. We use the characteristic equation for the TM 
mode in a symmetric waveguide, 
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Figure 5.12. The ridge waveguide has three distinct vertical structures. Regions I and Ill are 
identical, and consist of a Si-Ge layer on a Si substrate and capped by air. Region II has a Si-Ge 
layer surrounded on both sides by Si. 

where n 1 = 3.50125, n2 = 3.5, and 'Y = Jk5(nr- n~)- "'2 . Using numeri­
cal techniques we find 

"' 2769.22 cm- 1 

(J Jk5nr- "'2 = 166636 cm-1 

"( v k5(nr- n~) - "'2 = 3487 cm-1 

The effective index of the ridge section is 

(J 
nefh = ko = 3.50077 

Now we must repeat this process for the two side regions. These form asym­
metric waveguides. The characteristic equation for the TM mode is (Eq. 3.23) 

Here, h2 = 5.4~tm, "'s = Jk5(nr- n~)- "'2 , and 'Yc = Jk5(nr- 1)- "'2 , 

where n1 = 3.50125, nc = 1, and ns = 3.5. Evaluating Eq. 3.23 numerically 
with these values yields 

"' = 3866.75 cm- 1 

(J 166614 cm- 1 

neff = 3.50031 
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Figure 5.13. The horizontal structure of the waveguide can be modelled as a symmetric slab 
waveguide constructed with three layers, and the index of each layer is determined by the effective 
index determined by the vertical structure of the waveguide. 

Armed with the three indices for regions I, II, and III, we can now describe the 
effective waveguide in the horizontal direction. Fig.5 .13 shows the structure 
that must be analyzed. Note that the three regions carry the three effective 
indices that were evaluated in the last steps. 

In this structure, the x-polarized field will appear as a TE wave, so the 
characteristic equation for this symmetric structure is given by Eq. 3 .28, using 
h3 = 16~-tm, 

Numerical solution leads to 

tan ("'yh3 ) = /y 
2 "-y 

1323 cm- 1 

2352 cm-1 

166631 cm-1 

This value {3 is the eigenvalue for the mode of the waveguide. 

(5.36) 

(5 .37) 

Since the effective waveguide is symmetric, the lowest order spatial mode 
of the waveguide is described by Eq. 3.27 

E(x) Ax cos(K-xx) for lxl < a/2 
cos(K-xa/2) 

Axe- "fxlxl forlxl > a/2 

E(y) • cos( "-yY) I 
x for IY < b/2 

cos(K-yb/2) 

xe-'YviYI for!yl > b/2 

Plugging numbers into these expressions and plotting the results, we find the 
mode field shown in Fig. 5.14. 
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Figure 5.14. The calculated mode intensities derived from the constants given in the text. The 
calculated dimensions agree well with the experimentally measured values of8.0 J.tm, and 13.9 
f.J.m. 

5. Effective Index Method applied to Ex. 5.1 
Let's complete the example we began in the wave analysis and perturbation 

theory sections by using the effective index method to calculate the normalized 
propagation coefficients for the waveguide first introduced in Ex. 5.1. 

The calculation is relatively straightforward. First, the waveguide is an­
alyzed as if it were a 5pm-thick slab waveguide. Since the electric field is 
oriented in the y-direction, the mode can be analyzed as a TE mode for the thin 
dimension. The transverse wavevector, ""x was found for a range of wavelengths 
spanning 0.5 _, 2~tm using 

From this data, an effective index was assigned for each k-vector 

r1o~m-j 

sr~ 
n=1.499 

Rectangular 
Waveguide 

-
Thin Slab 

Waveguide 

+ 

Thick Slab 
Waveguide 

(5.38) 

(5.39) 

Figure 5.15. The rectangular waveguide of Example 5.1 is decomposed into two slab wave­
guides for analysis by the effective index method. 
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Figure 5.16. Comparison of the normalized propagation coefficient derived from the three 
methods described in this chapter. 

Using this value of neff, the transverse wavevectors, "'Y were found using 

b/ _ nef f 2 . /k2 2 2j ) tan"'y 2- --2-V oneff- "'Y "'Y 
n2 

The propagation coefficient, f3 was found from 

f3 = Jk6n~ff- "'~ 

(5.40) 

(5.41) 

Finally, to compare these results with the previous methods, the normalized 
propagation coefficient was calculated using the actual values of the indices, 
but the final value of the propagation coefficient, f3 

/32 - k5n~ b - --,_--..,--~~ 
- k5nr- k5n~ 

(5.42) 

The results ofthe effective index method are plotted in Fig.??. 
The effective index method is the only technique which predicts that there 

will be at least one mode. Careful comparison of the three methods discussed 
so-far with other more exact numerical techniques show that the perturbation 
solution is the most accurate around V = 1, while obviously the effective 
index technique is the only viable option in the region below about V = 0.7. 
Unfortunately, the Effective Index method is only accurate when the aspect 
ratio (width/height) > 3. 

6. Summary 
We have seen that calculation of the allowed mode field distributions and 

eigenvalues is an laborious task, although the techniques themselves are rel­
atively straightforward. We explored three basic techniques: the anal)'\tical 
approach developed by Marcatili; the perturbation techniques which improve 
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on the analytical solutions; and the effective index method. Achieving accu­
rate solutions with analytical techniques is difficult because of the presence of 
comers. We found the solutions were accurate only far from cut-off. Pertur­
bation techniques probably allow the greatest accuracy, although they come 
at the price of considerable effort. The effective index method is perhaps the 
most commonly employed technique for waveguide design. It is relatively 
straightforward to understand and apply, and its results are not too far from 
those generated from exact analysis. Comparison with numeric results show 
that near cut-off, the effective index method slightly overestimates the actual 
(3 of the mode. The effective index method also leads to ambiguous results 
in square waveguides, giving different results for Enm and Emn modes which 
should be degenerate. 

The next chapter introduces a basic numeric technique called the Beam 
Propagation Method for waveguide evaluation. With the advent of stable pack­
ages that can model waveguide structures, simulation via numeric technique 
is becoming the standard analytical tool in waveguide design. Nevertheless, 
techniques such as perturbation analysis are very useful for designing certain 
optical devices, especially those that rely on coupling to evanescent fields. 
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Practice Problems 

1. A symmetric step-index slab waveguide is shown in Fig. 5.17a. The 
guiding layer is 1 0 J..Lm thick, and the fundamental TE mode is described 
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Figure 5.17. Figure for Problem I. 
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forx > 5J.Lm 

for - 5J.lm < x < 5J.lm 

forx < -5J.Lm 

For this waveguide, the propagation coefficient, /3 = 94220 cm-1, and 
K, = 2300 cm-1. The waveguide is modified by adding a region of 
suppressed index around the the guiding film, as shown in Fig. 5.17b. 
Use perturbation theory to determine the exact change, 8/32, for this new 
structure. 

2. Consider a buried rectangular waveguide similar in structure to Fig. 5 .l.b. 
The core index is n 1 = 1.5, while the horizontal side regions have index 
n4 = ns = 1.49, and the top and bottom regions have index n3 = n2 = 
1.495. The dimensions of the waveguide are a = lOJ.Lm, and b = 5J.Lm. 
If an optical wave with vacuum wavelength>. = lJ.lm is carried by the 
guide, which direction of polarization will have the largest value of /3? 
Ex or EY? 

3. The waveguide shown in Fig. 5.18 is to be used in an electronic package 
connecting two high speed computer chips. What is the cutoff wavelength 
for the lowest order mode? Use the first order theory described in Section 
5.2 to answer this question. 

Air 

I n=1.5 I 21Jm 

n=1.495 t 

Figure 5.18. Figure for Problem 3. 
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Figure 5.19. Figure for Problem 6. 
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Figure 5.20. Figure for Problem 7. 

4. Use the effective index method to find f3 in the waveguide of Fig. 5.18 
for .\ + 0.8p.m. 

5. For the waveguide described in Example 5.1, find the description for the 
Ef2 mode for a wavelength of0.4 p.m. 

6. Use perturbation theory to find the longitudinal wavevector, /3, for the 
waveguide structure shown in Fig. 5.19. Assume the guided wavelength 
is I p.m. 

7. Consider the square symmetric waveguide in Fig. 5.20, with core index 
n = 1.5, and surrounding cladding index n = 1.499. Since the wave­
guide is symmetric, it must guide at least one mode. For a wavelength 
of.\ = 1.3p.m, determine the amplitude distribution of the lowest order 
guided mode. 

8. Use the effective index method to determine the mode in the ridge wave­
guide shown in Fig.5.21 . Assume the field is polarized in they-direction. 
and the wavelength is 1.55 p.m. 
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Figure 5.21. Figure for Problem 8. 

9. Calculate the mode confinement factor for the mode described in Prob. 
8. 

10. For the waveguide described in Pro b. 2., use Mathematica or some other 
numeric package to calculate the exact profile for the lowest order x­
polarized mode, and make a two dimensional plot of the mode amplitude. 



Chapter 6 

DISPERSION IN WAVEGUIDES 

1. Introduction 

One of the strongest motivations for using optical waveguides is the large 
information capacity of an optical link. Much of this capacity comes from the 
high carrier frequency of the light itself( on the order of1014 Hz). If even 1% of 
the total bandwidth available could be utilized, the information transmitted on 
one optical beam would be enough to handle over 108 telephone calls. While 
it is unlikely there will ever be demand for that many simultaneous telephone 
calls on one line, applications such as video require large bandwidths and can 
take advantage of such capacity. 

The system designer must be aware of the fundamental bandwidth lim­
itations in optical waveguides. The most prominent limitation is dispersion. 
Dispersion describes the spreading of a signal in time. Fig. 6.1 illustrates how 
dispersion limits the information capacity of a communication channel. At the 
input, a series of pulses (representing perhaps binary information) are launched 
onto an optical waveguide. Dispersion causes each of these pulses to spread in 
time. When they arrive at·the output, the pulses have broadened to the point 
where they begin to seriously overlap adjacent pulses. The temporal spreading 
effectively establishes the maximum data rate for a communication link. 

In this chapter, we examine the mechanisms which l~ad to dispersion in 
waveguides. Armed with this understanding, we can appreciate the specialized 
waveguides such as the graded index waveguide that are described in later 
chapters. There are many clever equalization techniques, both optical and 
electronic, which are being developed to extend the useful bandwidth of optical 
fibers. These topics are not covered in this chapter, but are referenced where 
appropriate. 
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Figure 6.1. Short temporal pulses experience pulse spreading in a dispersive media. If they are 
not separated by enough time they will begin to overlap. 

2. Three Types of Dispersion 
Optical waveguides display three types of dispersion: material dispersion, 

modal dispersion and waveguide dispersion. In material dispersion, different 
wavelengths of light travel at different velocities within a given medium. Con­
sider a pulse that has a finite spectral bandwidth, ~.-\. If the pulse is launched 
in a dispersive material, each wavelength component of the pulse will travel 
at a different velocity. The pulse effectively spreads out (or disperses) in time 
and space. "Aha!", you might be thinking, "why not just make the pulse have 
only one wavelength?" Nice idea, but it won't work. Because of the Fourier 
relation between pulse duration and frequency bandwidth, all finite temporal 
pulses have a finite frequency bandwidth. Dispersion is a fundamental issue 
with system design. 

Modal Dispersion arises in waveguides with more than one propagating 
mode. Unless the waveguide has been specially designed (for example, the 
graded index waveguide described in the next chapter), each allowed mode in 
the waveguide will travel with a different group velocity. The pulse energy 
in a waveguide will be distributed among the various allowed modes, either 
through the initial excitation, or through mode coupling that occurs within the 
waveguide. The modes arrive at the end of the waveguide slightly delayed 
relative to each other. This effectively spreads the temporal duration of the 
pulse, which again limits the bandwidth. 

Waveguide dispersion is a more subtle effect. The propagation constant 
f3 depends on the wavelength, so even within a single mode different wave­
lengths will propagate at slightly different speeds. Compared to material and 
modal dispersion, waveguide dispersion is usually the smallest in magnitude. 
However, in the vicinity of the so-called zero dispersion point for materials, 
waveguide dispersion can the dominant effect in a single mode system. Wave­
guide dispersion can be used to cancel material dispersion, allowing the design 
of special "dispersion shifted" waveguides. Control of waveguide dispersion 
is therefore critical to many waveguide designs. In the next three sections, ,we 
will discuss these three dispersions. 
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3. Material Dispersion 
A general understanding of the optical properties of dielectrics is essential 

in optoelectronics. The index of refraction, n, is the most widely used material 
parameter for waveguide design. In this section, we will explore the index of 
refraction's functional dependence on wavelength using the Lorentz model. 

3.1 Frequency Dependence of the Permittivity, € 

We will assume that the dielectric tensor is a simple scalar, i.e., the dielectric 
material is isotropic. The index of refraction is defined in terms of the relative 
permittivity of a medium: 

n = [!; (6.1) 

The permittivity, <:, relates the electric flux, D to the electric field, E, 

D = t:E (6.2) 

We want to develop a model relating the permittivity, E, to an applied electric 
field. Consider the simple atomic model consisting of a positively charged 
nucleus and a surrounding negatively charged cloud. When there is no electric 
field present, the two charges are centered upon one another. 

No Field E-field 

Figure 6.2. Pictorial depiction of the dipole moment induced in a neutral atom by an external 
field. 

When an electric field is applied to the atom, the negatively-charged elec­
trons and positively-charged nucleus experience opposite forces due to the field, 
and slightly separate. The charge separation forms a microscopic dipole mo­
ment, defined as 

p = qr (6.3) 

where q is the charge, and r is the relative distance from equilibrium that the 
charges move. 

The constitutive equation (6.2) can be written in terms of this dipole mo­
ment. 

D = t:E = t:oE + P (C/m2) (6.4) 
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-xo-+1--•'· xJ 
Figure 6.3. The Lorentz model of the atom consists of a heavy nucleus bound to a light electron 
through a spring. xo represents the equilibrium distance between the charges when no external 
forces are present. x represents the displacement from equilibrium. 

where Pis the bulk polarization of the material, defined by 

P=Np=Nqr (6.5) 

and N is the number of dipoles per unit volume. 
To develop an analytical description of the permittivity, we will use the 

one dimensional Lorentz model of the atom. Lorentz [1] modelled the atom as 
two particles bound together by a spring. The model is shown in Fig. 6.3. The 
position x0 represents the equilibrium position of the two charges when there 
are no external forces. xo could easily be zero. 

Modelling the attraction between an electron and a nucleus with a spring 
might seem a little crude, but it is actually based on sound physical reasoning. 
The binding energy of an electron to a positively-charged nucleus has a general 
form as shown in Fig. 6.4. 

The electron will reside at the minimum of a potential well, xo. Near xo, 
the potential can be approximated in a Taylor series expansion as 

V(x) 

xo Position 

Figure 6.4. The binding potential of an electron to a positive nucleus will look roughly like 
this. The exact shape is generally unknown, but the potential will have a smooth minim~ at 
some point, designated Xo. 
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At the minimum, xo, the first derivative, dV(xo)/dx, is zero, so it can be 
dropped from the expansion. To second order, the potential can be described as 

V(x) 
liPV 2 

V(xo) + 2 dx2 (x- xo) 

1 2 
= Vo + 2kx when x0 = 0 (6.7) 

where k is a constant. This is the simple "Hooke's Law" potential for a spring, 
where k is the spring constant (not to be confused with the wavevector). This 
expansion is only accurate for small values of x, but if the applied electric fields 
are small compared to the binding potential of the electron (which is on the 
order of 1010 V/cm) the approximations are reasonable. 

In the presence of an electric and magnetic fields, a charge q experiences 
the Lorentz force 

F = qE+v x B) (6.8) 

where v is the charge's velocity. Only at relativistic speeds or under conditions 
of strong DC bias, as in Hall measurements, is the magnetic term significant. 
We thus can ignore the magnetic force in optical interactions, simplifying the 
driving force on the charges to be 

F=qE (6.9) 

We will use the center of mass picture, in which all the motion can be attributed 
to the electron with an effective mass of 

(6.10) 

The net forces acting on the electron determine it's motion. These forces 
include the external force from the applied field, acceleration, friction, and 
spring restoring forces. Summing these forces together (recall q = -e) 

d2x dx 
m dt2 + "fm dt + kx = -eE(t) (6.11) 

We have introduced a decay term, "fm dx / dt, which acts as a friction term. 
Do not view this term literally: it accounts in a phenomenological manner for 
energy dissipation that occurs due to radiation or phonon emission. 

Dividing both sides of the equation by mass, m, and recalling that for 
a spring-and-mass system, the resonant frequency of oscillation is given by 
wo = y'kfiii, yields 

d2x dx 2 e - + 'Y- + w0x = --E(t) 
dt2 dt m 

(6.12) 
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To solve for a particular solution, we must specify the driving term. Assume 
that E(t) has a harmonic dependence, E(t) = E0e1wt (where it is understood 
that the actual electric field is given by the real part of the expression). A trial 
solution, x(t) = x0e1wt, leads to the following solution: 

x(t) = -e/m . Eoejwt 
w5- w2 + nw 

(6.13) 

where the displacement is parallel to the applied electric field. Knowing x(t), 
we can directly relate the effect of an applied field to the polarization of the 
material through the relation p = qx. Note that x(t) is a complex number, 
which simply means that there will be a phase shift between the applied field 
and the response of the medium. Using Eq.6.4, we can determine the electric 
displacement vector 

D = EE EoE + N qx = EoE - N ex 

E Ne2 jm E 
Eo + 2 . 

w0 - w2 + J'YW 

= (Eo+ Ne2fm_ ) E (6.14) 
w5- w2 + nw 

The frequency-dependent form of the dielectric constant can be extracted from 
this expression 

E1(w) + jE11(w) 

1 + (Ne2 /m)(w5- w2) - j (Ne2 /m)('Yw) f6 15) 
Eo[(w'tJ- w2)2 + 'Y2w2] Eo[(w5- w2)2 + 'Y2w2 . 

The index of refraction is defined as the square root ofthe complex dielectric 
constant [2] 

n(w) = r;c;;} = y-;; 1 (Ne2/m)(w5- w2) . (Ne2jm)('Yw) 
+ Eo[(w5- w2)2 + 'Y2w2] - J-Eo"7C[(~w"><""5 --..!.w-:::2,..,)2,-!-+:.....'Y....:.,2,.....w-:::::-2] 

(6.16) 
The index of refraction increases with the density of dipoles (atoms in this case) 
through N. The denser the media, the larger will be the index of refraction. 
This explains why air has a low index (on the order of 1.0003) while solids have 
indices in the range of 1.4 - 3 .5. 

The imaginary part of the index of refraction leads to attenuation or gain, 
depending on the sign. In regions of transparency, the imaginary component 
of the index of refraction of dielectrics is negligibly small, dramatically sim­
plifying the expression. We will concentrate on the transparent region in this 
chapter, saving a technical description of attenuation for Chapter 8. 
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Figure 6.5. The real part of the index of refraction as predicted by the Lorentz model. In this 
plot, the resonant frequency, w0 is at 1015 rads/sec, and the damping constant is "Y = 1013 

rads/sec. Note that the index n increases in magnitude, except in the immediate vicinity of the 
resonance. 

The index of refraction slowly increases with frequency, except near a 
resonance, wo, as shown in Fig. 6.5. A resonance occurs when the frequency 
of the applied field is identical with a transition frequency between two energy 
states of the system. As the frequency passes through the resonance, the index 
rapidly drops and then again begins to increase. The region where the index of 
refraction decreases as the applied frequency increases is generally not a useful 
region in which to work, because the absorption losses (imaginary part of n) 
are highest there. 

What happens when there are many electrons, each with a different resonant 
frequency? We simply add the effect of each resonance together 

z fiNe2 /m 
E =Eo+?= -w"~.:...-.c..w~2....:.+_J-,-.'Y-W­

•=1 • 

(6.17) 

where fi is called the oscillator strength of each resonance. This oscillator 
strength takes into account the possibility that each electron interacts differently 
with the applied field. 

In optics it is more common to deal with wavelength than with frequency. 
Using the relation w = 21rcj >.in Eq.6.17, and assuming that the damping terms, 
'Y, are negligibly small, one can rewrite the expression for the index of refraction 
in terms of wavelength. This form, commonly called the Sellmeier equation, is 

(6.18) 
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Table 6.1. Sellmeier coefficients for several dielectrics 

NaCI (A = 1.00055) Si02 (A= 1) AhOa(A = 1) CaF2 (A= 1) 

..\k(Jlm) Gk ..\k(Jlm) Gk Ak(Jlm) Gk 

0.1 0.48398 0.0684 0.69617 0.0615 1.0238 0.0503 0.56758 
0.158 0.25998 0.1162 0.40794 0.1107 1.0583 0.1004 0.471091 
40.5 0.08796 9.8962 0.89748 17.926 5.2808 34.649 3.84847 
60.98 3.17 
0.05 0.198 
0.128 0.3869 

where the terms A, Ak, and Gk are called the Sellmeier coefficients, and rep­
resent resonant wavelengths and oscillator strengths, respectively, for a given 
system. Tables ofSellmeier coefficients can be found in many physics or optics 
handbooks [3, 6]. As an example, Table 6.1 lists the Sellmeier coefficients for 
several optically transparent materials in the visible region. This data will be 
used in subsequent examples and homework problems. 

Note that NaCl has resonances at several wavelengths, such as 50nm, 
lOOnm, 158nrn, and 40.5fLm. The short wavelength resonances are due to elec­
tronic transitions within the NaCl crystal structure. The resonances at 40.5{Lm 
and 60.98{Lm are due. to ionic vibrations. These vibrations occur at lower fre­
quencies than the electronic resonances, because the masses of the atoms are 
larger than those of the electron. We will use these Sellmeier coefficients to 
analyze the dispersion of the materials. 

3.2 Group Index and Group Delay 
A useful term is the Group Delay, T9 . Group delay is defined as the time it 

takes for a pulse of light to travel a unit distance. For example, it takes a light 
pulse about 3.336 nsec to travel one meter in vacuum. Thus the group delay 
for vacuum is 3.336 nsec/m. By definition, group delay is the inverse of the 
group velocity 

T9 = ljv9 = dkjdw (6.19) 

To relate this to the index of refraction, n(w), substitute k = nw/cinto Eq.6.19 

d(nwjc) 
Tg = 

dw 
dnw ndw 

= dw-;;+~dw 
(n+w~) 

(6.20) 
c 
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The group delay, r9 , depends on the index of refraction and the first derivative 
of the index with respect to frequency. Inverting r9, we get an expression for 
v9 that has a form similar to the phase velocity, vp = c/n, 

v9 = c/(n + w:) 
=c/N9 

where the term N 9 is called the Group Index, and is defined to be 

dn 
N9 =n+w dw 

(6.21) 

(6.22) 

We will find the Group Index more useful when defined in terms of wavelength. 
Simple calculation leads to 

dn 
N9 =n->..d>.. (6.23) 

Keep in mind the dn/d>.. is negative in most regions. The group index, N9 , 

is always larger than the regular index of refraction, n, except in regions of 
anomalous dispersion. 

3.3 Group Velocity Dispersion 
If a signal or pulse contains more than one wavelength, the individual com­

ponents of this signal will travel at different group velocities. These components 
will reach the receiver at different times, effectively stretching out the time it 
takes for a signal to arrive. This effect is called Group Velocity Dispersion 
(GVD). 

Consider an optical pulse with a finite spectral bandwidth, 6.>.., travelling 
through a dispersive medium. The time required to travel a distance L is called 
the latency, and is the product of the group delay, r9 with the propagation 
distance, L 

L 
T = -Ng(>..) 

c 
(6.24) 

The spectral width of the pulse spans from >..1 to >..2 (i.e. 6.>.. = !>..1 - >..2! 
Each wavelength component will propagate at a slightly different speed. 

In the time domain, the pulse spread will be 

(6.25) 



134 INTEGRATED PHOTONICS 

A-1 A-2 
Wavelength (A.) 

Figure 6. 6. An optical pulse with a finite spread in wavelength. 

So what is dN9 /d)..? We can derive an expression for this from Eq. 6.23 

(6.26) 

Combining Eq. 6.26 with Eq. 6.25 yields an expression for the spread in the 
pulse arrival time 

(6.27) 

We see that pulse spreading depends on the second der-ivative of the material 
dispersion. The term 

(6.28) 

is called the material dispersion. One often finds material dispersion listed in 
units ofpsec/(nm km), i.e., the number of picoseconds the pulse will spread as 
it travels one kilometer per nanometer of spectral bandwidth. Also, be aware 
that sometimes the minus sign is carried in the material dispersion term, D, as 
we have done, and sometimes it is carried in the latency expression as in Eq. 
6.27. 

Example 6.1 Group velocity dispersion in sapphire 

The Sellmeier coefficients for sapphire are listed in Table 6.1. What is the 
index of refraction, group velocity, and group velocity dispersion (GVD) for 
sapphire over the range from 0.5 to 2.5 f.J,m? 
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Figure 6. 7. The index, group velocity, and group velocity dispersion of sapphire in the near 
infrared region. 

Solution: The solution requires use of a computer to evaluate the Sellmeier 
equation for a number of wavelengths over the desired range, and to calculate 
the first and second derivative of the calculated index. In this example, we 
used Mathematica to evaluate first n(A), dn(A)/dA, and d2n(A)/dA2 . The 
results from n( A) were plotted directly. To find the group velocity, the equation 
v9 (A) = c/(n- Adn/dA) was calculated and plotted. Eq. 6.28 was evaluated 
to find the group velocity dispersion. 
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Notice that n( A) decreases monotonically as the wavelength increases (i.e., 
the frequency decreases); this is normal dispersion. The group velocity reaches 
a maxima near l.4J.£m, and then decreases again. Please notice that the Group 
Velocity Dispersion goes through zero at the point where the group velocity 
is maximum. The zero dispersion point is the wavelength where the GVD is 
equal to zero. 

There is a lot of information in the graphs of Fig. 6.7. First, note that the 
group velocity dispersion goes through zero at a particular wavelength. This 
wavelength is called the "zero dispersion point", and is denoted by the symbol, 
Ao. For A < Ao, the material has positive group velocity dispersion. Positive 
GVD is characterized by propagation where a long wavelength pulse travels 
faster than a short wavelength pulse. For wavelengths longer than Ao, negative 
group velocity dispersion is displayed. 

The region near Ao, where GVD goes through zero, is one of the desired 
operating points for optical communications systems, because signal distortion 
is minimal, however there is still some residual pulse broadening due to third 
order effects. The zero dispersion point can be shifted through compositional 
changes. Fused silica has a zero dispersion point near 1.3 J.Lm (see problem 6.) 

4. Modal Dispersion 
In multimode structures, the dominant cause of pulse spreading is due to 

modal dispersion. The difference in velocity of the extreme modes determines 
the magnitude of the pulse spreading. Low-order modes (/3 ~ kn f) are highly 
confined within the core, and effectively travel at the group velocity allowed 
by the guiding film. For modes near cutoff, most of the field is in the cladding 
layers. These modes effectively travel at the group velocity allowed by the 
cladding index. 

The ray picture shown inFig. 6.8 provides a simple (but unfortunately 
incorrect!) picture of modal dispersion, where the two extreme modes travel 
obviously different paths, and therefore travel different path lengths as they 
propagate down the waveguide. Unfortunately, the ray model give opposite 
results, one predicting that the low order mode travels faster, while the other 
predicts it will travel slower. We will use the correct wave model for subsequent 
calculations. 

If we assume that there are many modes in the waveguide, then to first 
approximation the difference in group delay between the fastest and slowest 
mode is 

tl:r = Tzow - Thigh (6.29) 

where T!ow is the group delay of the lowest order mode (i.e. the mode with 
the largest value of /3) and Thigh is the group delay of the highest order mode. 
Recall (Eq. 6.19) that the group delay in a bulk medium is 1/vgroup = dkjdw. 
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Figure 6.8. To travel a distance l down the waveguide, the ray corresponding to a low order 
mode can go directly, while the ray corresponding to a higher order mode must actually travel a 
distance I'= ljcos9. 

In a waveguide, the group delay is similarly defined in terms of the propagation 
coefficient 

d{J 
Tg = dw (6.30) 

To evaluate Eq. 6.30, we need to express {3 in terms of w. For the lowest 
order mode, the value of {3 is approximately equal to kn f, while the highest 
order mode will be approximately equal to kn8 . Substituting the expression 
{3 = n1k = n1wfc into Eq. 6.29 yields 

Ttaw = d{J = d(wnffc) = nf + kodn1 
dw dw c dw (6.3!) 

Similarly 
ns dns 

Thigh = 7 + ko dw (6.32) 

The difference in arrival times of the two extreme modes is then 

~ _ nf- ns k (dnf _ dns) 
79 - c + 0 dw dw 

(6.33) 

The first term in Eq. 6.33 is due to the different effective z-components of 
the extreme modes' k-vectors. The second term is due to dispersion effects 
in the material that make up the waveguide. While the individual terms of 
this difference can be significant, the difference in material dispersion of the 
guiding and substrate layers is usually insignificant, i.e. dntfdw::::::! dn8 /dw. 
This assumption is reasonable when the materials that make up the waveguide 
structure are nearly the same, such as fused silica guiding film surrounded by 
doped fused silica. Then the differential modal group delay is 

(6.34) 

The total pulse spreading due to modal dispersion is obtained from the group 
delay dispersion 

(6.35) 
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The pulse spreading leads to a basic limitation on the information capacity of a 
multimode waveguide. If a temporally short pulse is used to excite a waveguide 
at t = 0, the energy in each mode will travel at a slightly different velocity. At 
the end of the waveguide, the energy will arrive as a series of mini-pulses each 
carried by an individual mode. This effectively temporally spreads the pulse. 

Example 6.2 Modal dispersion in a planar waveguide 

Consider an asymmetric planar waveguide where the guiding film index is 
nf = 1.48, the substrate index is ns = 1.46, and the cover index isnc = 1 (air). 
The guiding film is 50~-tm thick, and the optical signal has a wavelength .X = 
l.3J.tm, which corresponds to the zero dispersion wavelength of the material, 
so material dispersion effects are negligible. 

I. What is the modal dispersion for this waveguide? 

2. If a I nanosecond pulse is launched onto the waveguide, determine its 
temporal duration be after travelling I 00 meters. 

3. Ifthis waveguide connects two circuit boards that are separated by I meter, 
what is the fastest digital data rate that can be sent across this waveguide 
without pulses running into each other? 

Solution First we should confirm that this is a multimode waveguide (after 
all, if it is a single mode waveguide, there will be no mode dispersion). Using 
Eq. 2.47, the number of guided TE modes is approximately 

m ~ [2 X 50t-tmV1.482 - 1.462 ] = 18.6 
1.3~-tm 

so this is certainly a multimode waveguide. In addition there are about the same 
number ofTM modes. Since all the modes are spread over the available range 
of allowed values of (3, we can be confident that the extreme modes are near 
the limiting values, konf and kon8 • The modal dispersion in this case is 

A 1.48- 1.46 I 
ur9 = 3 x 108m/sec = 66 psec meter 

Note that the cover index (air in this example) has no effect on the modal 
dispersion. The range and magnitude of (3 are determined by the film and 
substrate indices. The cover index influences the exact value of each {3, but does 
not influence the magnitude limits. Also notice the units of modal dispersion: 
time/distance. For optical waveguides, convenient units are psec/m or psec/km 
depending on the situation. 

After travelling I 00 meters, any launched pulse will spread by 

tl.r = 66 X w- 12 sec/m. lOOm= 6.6 nsec 
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The launched pulse was only 1 nsec in duration, so this spread is significant. 
The final pulsewidth is a quadratic sum of the initial width and the additional 
width due to pulse spreading. 

T = vh 2 + 6.62nsec = 6.67nsec 

You were not expected to know how to combine the pulse width and pulse 
spreading. We will discuss how pulse spreading effects are combined in one of 
the last sections of this chapter. 

Finally, error-free transmission requires that adjacent pulses remain distinct 
from one another after travelling through the waveguide. Adjacent pulses must 
not spread into each other by the time they arrive at the output. For a 1 meter 
path length, a pulse will spread by 66 picoseconds. Even if the launched pulse 
is 1 psec in duration, it will be approximately 66 psec long by the time it travels 
1 m (this neglects material dispersion, which may increase the spread even 
further). Subsequent pulses should be delayed by at least 66 picoseconds in 
order to· avoid "collisions" of pulses -in the receiver. The maximum data rate 
is then 1/66psec = 1.5 x 1010 pulses per second. If we chose to make the 
waveguide longer, the maximum data rate would decrease proportionally. 

There are several effective ways to counter modal dispersion. The obvious 
solution is to use a waveguide that only supports one mode, a single mode wave­
guide. Most high speed, long distance optical fiber used throughout the world 
today is single mode. The second solution is to use a graded-index waveguide, 
which is described in Chapter 7. A graded index reduces the geometric path 
difference between low order and high order modes. 

In practice, the pulse spreading due to modal dispersion is not as great 
as predicted by Eq. 6.35. There are two reasons. First, the calculated delay 
is between the two extreme modes. If there are many modes, then each mode 
carries only a small fraction of the total energy. The effect ofthe extreme modes 
will be diluted. A second effect which reduces modal dispersion is due to mode 
coupling. We have not yet discussed mode coupling, but in regions of small 
dielectric perturbations, connections, etc., energy can be transferred from one 
mode to another. The fastest modes can only couple, and hence transfer energy, 
to modes which travel slower. Similarly, the slowest modes will have no choice 
but to couple to faster modes. The net effect is that there is an averaging of 
the modal velocities. This effect is difficult to quantify, because it depends on 
the waveguide and its coupling characteristics. But since energy is effectively 
diffusing among the modes, the length dependence of the pulse spreading goes 
as the ~ instead of directly on L . Lc is the characteristic coupling length 
that depends on the coupling strength in the waveguide. Measurements of 
modal dispersion confirm this type of behavior. 
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5. Waveguide Dispersion 
Waveguide dispersion has generally the smallest magnitude of the three 

dispersion mechanisms. Waveguide dispersion becomes significant in single 
mode systems operating near .\o, the zero material dispersion point. 

Consider light propagating in a single mode waveguide. Different wave­
lengths within this one mode will travel at slightly different velocities. The 
eigenvalue equation that determines (3 depends on the specific value of k, which 
is related to wavelength through iki = 21r / .\. For the TE mode in a slab wave­
guide the eigenvalue equation is 

(h ) 'Yc + 'Ys 
tan K = K(l- ~) {6.36) 

where 'Y and K depend explicitly on the wavevector 

K = )k5n}- (32 and 'Ys,c = V f32 - k5ns,c (6.37) 

If the wavelength changes slightly, the value of (3 will also change slightly. 
The mode will still have the same basic electric field distribution, e.g. a TE2 

mode will still be a TE2 mode after the slight change in wavelength, but it will 
propagate with a slightly different speed. 

The effective group delay (per unit length) of a mode is given by (see Eq. 
6.30) 

1 d(J 
Twg = ~ dk (6.38) 

Using arguments similar to those used to derive the expression for material 
dispersion, we can develop an expression for the dispersion. Consider a pulse 
propagating on a single mode waveguide, with a finite spectral bandwidth ex­
pressed in terms of the wavevector, !:l.k. Each value of k will have a unique 
value of (3. The temporal pulse spreading due to dispersion over a path length 
L will be 

!:l.Twg 

(6.39) 

To convert this into wavelength units (consistent with how we defined material 
dispersion), note that !:l.k = -(21rj.\2)!:l..\. Substituting this into Eq. 6.39 
yields 

(6.40) 

Since (3 can only be found through numerical solution of a transcendental equa­
tion, it is impossible to write a general expression for Eq. 6.40. The waveguide 
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dispersion of a system is usually evaluated numerically. This process is best 
illustrated through example. 

Consider a symmetric slab waveguide made with a guiding index, ncore = 
1.50, and a surrounding index, nclad = 1.48. The guiding region of the wave­
guide is 2 J.Lm thick. Since the waveguide is symmetric, it will always support 
at least one mode. The effective phase velocity of this mode is determined by 
Eq. 1.44, expressed in terms of the waveguide mode parameters 

w 
Vp = "'ffi 

Using the following set of commands with Mathematica, we were able to nu­
merically analyze this waveguide. The eigenvalue f3 was found using the char­
acteristic equation for a TE mode in a symmetric waveguide (Eq. 2.30) 

K-h I 
tan-=-

2 K, 

for values of k ranging from k = 500n --+ 30, OOOn. The first and second 
derivative were determined through simple differencing. 

gamma[kappa_] :=Sqrt[(1.5-2 - 1.48-2)(k i)-2 - kappa-2]; 
k=500 Pi; 
h=0.0002; 
beta=Table[Re [N [Sqrt [1.5-2 (k i)-2 - (FindRoot[Tan[h kappa /2] 

gamma[kappa]/kappa, {kappa,100}] [[1,2]])-2 ]]], {i,1,60,1}]; 
ListPlot [beta] 
deltabeta=Table[ (beta[[i]]-beta[[i-1]])/(500 Pi), {i,2,60,1}]; 
ListPlot[deltabeta, PlotRange->{1.48, 1.505}] 
doubledeltabeta=Table[-((k i)-2 /(6 Pi))(deltabeta[[i]]-

deltabeta[[i-1]])/(500 Pi), {i,2,59,1}]; 

ListPlot[doubledeltabeta] 

Fig. 6.9 shows the calculated values of f3 as a function of k. The group 
velocity of a mode is determined from the expression 

dw 
Vg = d/3 (6.41) 

Relating this to the group index, N9 , and recalling that w = kc, we can find an 
expression for N9 

N - ~- d/3 
g- v - dk 

g 
(6.42) 

Thus the effective group index can be derived from the first derivative of the 
curve in Fig. 6.9. This is plotted in Fig. 6.10 

Inspection ofFig.6.1 0 shows that the group index of the fundamental mode 
of the waveguide depends strongly on the magnitude of the wavevector, k. For 
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Figure 6.9. The {3-k diagram for the TEo mode of a symmetric waveguide with a guiding film 
index of 1.5, and a cladding index of 1.48. 
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Figure 6.1 0. The group index experienced by a mode in the symmetric waveguide depends on 
the magnitude of k. For small k, the group index is approximately equal to that of the cladding, 
while for large k, N9 approaches the value in the guiding layer. 

small values of k, the mode is weakly confined in the core, so most of the mode 
field travels in the lower index cladding region, and therefore sees an effective 
group index as determined by the cladding. As the wavevector increases, more 
of the mode is confined to the core. The effective group index increases from 
the cladding value (slightly greater than 1.48) to the core value (slightly greater 
than the core index, 1.5). The effective index is in fact the average index seen 
by the mode, and can be calculated using the mode amplitude as the weighting 
function. Fig. 6.11 shows the actual waveguide dispersion. 
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Figure 6.11. The numerically-derived waveguide dispersion. Notice it is maximum when the 
mode is converting from a weakly bound mode to a tightly bound mode. 

The cause of waveguide dispersion is apparent from the spectral depen­
dence ofthe group index (Fig. 6.10). Ask increases, the effective group index 
of the mode increases. A pulse containing a superposition of k-vectors will 
spread in time because each component travels at different velocities. The sec­
ond derivative of the ,8-k curve is proportional to the waveguide dispersion (see 
Eq. 6.40). In the Mathematica program listed above, the second derivative was 
calculated according the Eq. 6.40, and then multiplied by 1010 to convert the 
units (cm/sec2 ) into ps/(km nm). 

This example illustrates the power of numeric solution to the eigenvalue 
equation for a symmetric waveguide. By solving the equation repeatedly at 
many different values of k, we were able to map out the functional form of 
the dispersion. This technique forms a useful procedure for calculating such 
effects in new or novel structures. 

6. Simultaneous Effect of Material and Modal Dispersion 
Since the material and waveguide dispersion both depend on wavelength, 

they are highly correlated. Modal dispersion depends only on the mode struc­
ture of the waveguide, and is independent of material or waveguide dispersion. 
Estimating the total effective pulse broadening due to all of these effects de­
pends in part on the pulse shape, and exact evaluation involves determining the 
impulse response of the waveguide [8]. We can make a simplification if we 
assume that the "not-unreasonable" spectral pulse shape is roughly Gaussian, 
e-(A-Ao)2 I f>.A2 • We would expect an impulse to be broadened into a roughly 
Gaussian pulse due to modal dispersion after propagation through a suitable 
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Figure 6.12. Plot of material and waveguide dispersion, simultaneously present in a waveguide. 
Their effects directly add. 

length of fiber. We would expect similar Gaussian broadening due to material 
dispersion. The combined effect of convolving two Gaussian events is simply 
the quadratic sum of the pulse broadening 

(6.43) 

Except near the .Ao point, the waveguide dispersion is usually negligible com­
pared to material dispersion. However, near .A0 , the waveguide dispersion can 
play an important role in shifting the wavelength where the waveguide has zero 
effective dispersion. Consider the dispersion plot shown in Fig. 6.12 for a glass 
waveguide. Here the material dispersion is shown with it's characteristic curve 
increasing through zero near .A = 1.3J.Lm, while the waveguide dispersion is a 
small but decreasing value in the region of the glass zero dispersion point. 

The net effect of the two dispersions is to shift the point where the wave­
guide dispersion equals zero. Such an effect is called dispersion shifting, and 
is widely used in fiber optic waveguide design to optimize the performance of 
long-haul optical fiber communication links. By adjusting the zero dispersion 
point to match the wavelength of minimum attenuation, the maximum perfor­
mance can be extracted from a waveguide. 

7. Summary 
The focus of this chapter was to describe the major dispersion effects in 

a waveguide. We began with the Lorentz model, and used it to develop an 
analytical expression for the index of refraction for a given material. Examples 
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were presented showing how the Sellmeier equations could be used to determine 
properties such as material dispersion. 

We took a look at modal dispersion, and developed an approximate for­
mula which is adequate for extremely multimode waveguides. We mentioned 
the influence of mode coupling, which reduces the magnitude of this form 
of dispersion. Waveguide dispersion was described in general form, and il­
lustrated through numeric example. Waveguide dispersion is most important 
in single-mode waveguides operating near >..0 • However, since that is where 
most single-mode optical communication links operate, obviously waveguide 
dispersion is an important topic. 

In the next chapter we will explore how a graded-index profile can reduce 
the total modal dispersion in a multimode waveguide. Graded index waveguides 
do not yet match the dispersion performance of single mode waveguides, but 
they offer much larger areas for coupling light to and from the waveguide. 
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Practice Problems 

I. A planar waveguide is made with a guiding film index of3.5, a substrate 
index of 3.4, and a cover index of 3.4. The guiding film thickness is 
2p,m. The wavelength of interest is 900 nm. The material dispersion 
for this material is 400 pslkm·nm. Assume that waveguide dispersion is 
negligible. 

(a) Approximately how many modes exist in this structure (both TE and 
TMmodes) 

(b) If the optical source has a I 0 nm spectral width, what is the group 
delay dispersion due to material dispersion? 

(c) What is the modal dispersion for this waveguide? 

(d) What is the total group delay dispersion for this waveguide? 

(e) If a 1 nsec pulse is launched in one end of the waveguide, how far 
must it travel before it is 2 nsec long? 

2. A gaussian shaped pulse, E( t) = Eoe-t2 /r2 , is launched into a dispersive 
waveguide. The wavelength of the pulse is chosen to be .Xo = 1.3p,m, the 
zero material dispersion wavelength. The waveguide is 1 Op,m thick, has 
a guiding layer of index 1.55, and surrounding layers of index 1.52. The 
characteristic time constant, r, for the pulse is 0.5 nsec. 

(a) What is the minimum possible frequency bandwidth of this pulse? 

(b) What is the wavelength bandwidth that corresponds to your answer 
to part (a). 

(c) What is the group delay dispersion of this structure? 

(d) What is the numerical aperture of this structure? 

3. An asymmetric waveguide is 5~-tm thick, and has guiding index of 1.5, 
substrate index of 1.48, and cover index of 1.0. 

(a) Determine the cutoff wavelength for the TEo and TMo modes. 

(b) For the TEo mode, calculate f3 for 25 wavelengths spanning 1.3 p,m 
to 1.55 p.m. From these values, numerically calculate the waveguide 
group delay, r9 , and the waveguide dispersion, dr fd.X. 

(c) Repeat the above calculation for the highest order mode in the wave­
guide. Which mode has the largest waveguide dispersion? 

4. An LED with a spectral bandwidth of20 nm, and a central wavelength of 
850 nm, is to be used to transmit digital pulses on an optical waveguide. 
The symmetric waveguide is made of glass, with guiding index 1.5, and 
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Table 6.2. Index and Dispersion for Fused Silica Glass 

A(JJ.m) n(>.) an(>.) fa>. (JJ.m-1) 

0.509 
1.014 
1.529 

1.4619 -5.626x 10-2 

1.4502 -1.331 X 10-2 

1.4443 -1.178x1o-2 

surrounding layers of 1.48 f.tm. The material dispersion of glass at this 
wavelength is approximately 300 pslkm·nm. 

(a) What is the maximum bit rate for a transmission length of2 km for 
a single mode waveguide? (Assume that waveguide dispersion is 
negligible). 

(b) What is the maximum bit rate for a multimode waveguide of 2 km 
length? 

(c) What is the maximum thickness that the waveguide can be made 
without it becoming a multimode waveguide for TE modes? 

5. The optical power that is incident on the earth's upper atmosphere from 
the sun is approximately 1 kW/m2. The amount that reached the earths 
surface is about 30% of this value, due to scattering and absorption in the 
atmosphere. 

(a) If the optical field were all at one frequency, what would be the 
magnitude of the electric field on the surface of the earth? 

(b) The earth is approximately 150x106 km from the sun. If a satellite 
were sent into orbit around the sun, with an orbital radius of 106 km 
away from the sun, what would the optical field be on the satellite? 
Would non-linear optical effects be a problem in this region? 

6. Table 6. lists the index of refraction and the dispersion of the index for 
fused silica glass at three wavelengths. 

Determine the phase velocity and group velocity for light at these three 
wavelengths in this material. 

7. From the Sellmeier coefficients for NaCl and Si02, make plots of the 
index of refraction, phase velocity, group velocity, and group velocity 
dispersion for these materials over the 0.5 -t 2.5f.tm region. Determine 
the zero dispersion wavelengths, >.0 , for both materials (note: The zero 
dispersion wavelength for NaCIIies slightly outside the specified region.). 



148 INTEGRATED PHOTONICS 

8. Using the ground state configuration of a hydrogen atom, calculate the 
binding energy, E, and the average electrostatic potential, (V), between 
the electron and proton in the atom. What is the optical intensity (W /cm2) 

that creates an equivalent electric field? 

9. Near the band edge, the index of refraction of GaAs can be approximated 
as n 2 = 8.950 + 2.054.A2/(.A2 - 0.390) (D. Maple, J. Appl. Phys. 35, p. 
1241, ( 1964) ). Plot the index of refraction and Group Velocity Dispersion 
for this material in the 1.0 - 2.0 J.Lm region. 

10. Calculate the FWHM frequency bandwidth, D..v, of 

(a) a hyperbolic secant squared pulse, E(t) = 1/ cosh2 (t/t0 ) 

(b) an exponential pulse, E(t) = e-ltl/to 

(c) a triangular pulse, with a pulse width (FWHM) of To seconds. 

11. By inspection of Fig. 6.11, what wavelength has the largest magnitude 
of waveguide dispersion for the particular waveguide that is described in 
the example? What is the value of the waveguide dispersion in units of 
psec/kmnm? 

12. Using a computer, calculate the waveguide dispersion for the TEo mode 
in an asymmetric waveguide with the following parameters: nf = 1.50, 
nc = 1, and ns = 1.49. Thr guiding film is 5 p.m thick. Calculate the 
dispersion of the waveguide over a range spanning from a wavelength 
equal to 2/3 the cutoff wavelength to a wavelength equal to 1/3 the cutoff 
wavelength. 

13. As a slab waveguide is made thinner, the lowest order TEo mode will be­
come spatially smaller up to a certain dimension, and then will begin to 
grow larger as the waveguide continues to grow thinner. Is there a similar 
behavior in the waveguide dispersion for this mode? Is there a wave­
guide thickness at which the waveguide dispersion reaches a maximum 
or minimum? If there is, is the waveguide still single mode at this point? 
Assume the waveguide is comprised of two glasses with core index 1.5 
and cladding index 1.495. Assume the guiding wavelength is I J.Lm. 



Chapter 7 

GRADED INDEX WAVEGUIDES 

1. Introduction 
There are two ways to significantly reduce modal dispersion in a waveguide: 

use only single mode waveguides, or use a graded index waveguide. The first 
choice appears to be the simplest, but it is not always a practical solution. Single 
mode waveguides are much more difficult to couple light into than multimode 
waveguides. To help see this, consider the two planar structures shown in 
Fig.7.l. Both waveguides have the same indexes, but one ofthem has a larger 
guiding layer. The number of guided TE modes can be approximated from 
Eq.2.43, 

(7.1) 

Given identical indices of refraction, the only way to make a waveguide operate 
in a single mode is to reduce the thickness, h, of the guiding film. The smaller 
dimension of the single-mode guiding layer makes alignment between sources 
and other guides much more critical than with a large (multimode) structure. 
Connecting and aligning between multimode waveguides is easier due to the 
large size. 

The second method for reducing modal dispersion is to use graded index 
waveguides. Graded index waveguides can be made with relatively large di­
mensions, easing the coupling and alignment problems common to single mode 
devices, and they can dramatically reduce modal dispersion. 

Being able to analyze graded structures is essential to modem integrated 
optoelectronic design. Many fabrication processes such as dopant diffusion on 
planar structures naturally lead to graded index profiles. In this chapter, we first 
develop the ray picture of the graded index waveguide by using the Eikonal 
equation. Next we will develop the modal solutions to such a waveguide. 
Up until now, diligent application of Maxwell's equation has produced field 
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Multi mode Single Mode 

Figure 7.1. Two waveguides made with identical materials, but with different guiding film 
thickness. The larger film is a multimode structure. 

solutions to the wave equation in the waveguide. With graded indices the 
equations become much more complicated. There are well known solutions to 
the wave equation for only a few specific index profiles. For the general index 
profile, one must resort to approximation or numeric techniques. Prior to the 
availability of numerical differential equation solvers, approximation methods 
such as the WKB approximation were applied to graded index problems. The 
WKB approximation uses a series solution to solve the wave equation in the 
graded index. The WKB technique is not widely used anymore, but it has 
been used to establish important formulae such as the number of modes and 
dispersion in a given waveguide. For an overview of the WKB techniques, refer 
to references [1],[2]. 

Today, with the widespread availability of powerful computers and nu­
merical software, direct numeric solution of the wave equation is possible. 
This "brute force" technique allows finding precise values of the longitudinal 
wavevector, [3, and can provide a graphical picture of the mode profile. The 
major limitation of direct solution is that it can not provide a general formula 
describing phenomena such as dispersion, group delay, or number of modes. 
However, due to it's accuracy and simplicity in application, direct numeric 
solution of the wave equation can accurately map out dispersion, power con­
finement, mode shape, and most other relevant issues of a waveguide. We will 
provide a simple example of numeric techniques in this chapter. 

In Chapter 9, we will describe two popular numerical simulation tech­
niques called the Beam Propagation Method and the Finite Difference Finite 
Time technique which take a completely different numerical approach to find­
ing the modes in a waveguide. The methods described here will provide better 
dispersion data, the later will prove useful in describing waveguide systems 
which have longitudinal structure or dimensional change. 

2. Ray Tracing Model in Graded Index Material 
Consider the slab waveguide shown in Fig.7.2. The index of refraction of 

the guiding layer is a function of position within the material. The index profile 
is plotted to the right of the waveguide. In this specific case, a symmetric profile 
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is shown, with the index chosen to be highest at x = 0, smoothly decreasing 
with distance away from the central axis. 

We want to examine how light propagates in such a structure. We will 
begin with the ray picture using the Eikonal equation. 

2.1 The Eikonal Equation 
Ray propagation in a graded structure is described by the Eikonal Equation. 

The term Eikonal comes from the Greek word for image[3]. The equation can 
be developed using a simple construction based on Snell's law. 

Let's consider what happens when a ray is launched in a graded index 
material. The index gradient can be modelled as a series of microscopically 
thin homogeneous layers, each with an index, n(x), where xis the distance 
from the axis (x = 0) to the thin layer. Consider the ray incident upon the 
interface between layers n(x) and n(x + .6-x) at an angle e, as shown in Fig. 
7.3. This angle is the complement of the angle we normally use in applying 
Snell's Law. 

The ray refracts at the interface between two layers. In terms of() as we 
have defined it, Snell's law is 

n(x) cos()= n(x + 6.x) cos(()+ 6.()) (7.2) 

Figure 7.2. The index profile of a graded index planar waveguide. 

X 

x=O - t-_ __._:::;__-_-_-_-_--_-_--_-_--L z 

Figure 7.3. A graded index material can be modelled as a stack of thin layers, each with index 
n(x). Refraction occurs at the interface between two adjacent layers. 
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The change in direction, ~(}, is very small. The term n( x + ~x) can be rewritten 
in terms of a Taylor series expansion of n( x) around x 

dn 
n(x + ~x) ~ n(x) + dx ~x 

The cos((}+~(}) term can be expanded using the trigonometric identity 

cos((} + ~(}) = cos(} cos~(} - sin(} sin~(} 

~ cos (} - sin (} ~(} 

(7.3) 

(7.4) 

where we have assumed that cos~(} ~ 1 and sin~(}~ ~(}. Plugging Eqs. 7.3 
and 7.4 into Eq. 7.2 we get 

n(x) cos(} = [ n(x) + ~: ~x J [cos(}- sin(}~(}] 

n(x) cos(}- n(x) sin(}~(}+ ~:cos (}~x 

- ~: ~x sin(}~(} (7.5) 

Cancelling common terms and rearranging yields 

n(x) sin (}b.(} = ~:cos Bb.x- ~: b.x sin 8b.8 (7.6) 

The last term in Eq. 7.6, being a product of two infinitesimals, is negligible 
compared to the other terms, so Eq. 7.6 can be written as 

dn ~(} 
- ~ n(x) tanB­
dx ~x 

(7.7) 

For most waveguide situations, the angle (} is going to be small (on the order 
of 10° or less), so small angle approximations can be used to simplify the 
expression: 

(} rv (} rv ~X tan = =-
~z 

Substitute this into Eq. 7. 7, along with ~x = ~z tan(} 

dn ~(} 
dx !::>< n(x) ~z 

l . dn 
Im­

~z--+0 dx 
d d (dx) n(x) dz (B) = n(x) dz dz 

d2x 
= n(x) dz2 

(7.8) 

(7.9) 
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Finally, solve for d2x / dz2 

d2x 1 dn(x) 
dz2 n(x)~ 

(7.10) 

This equation is called the Eikonal equation. The function x(z) describes the 
exact ray path, and can be determined from Eq. 7.10 once n(x) is known. 
As a practical matter, when the index of refraction is not a strong function of 
position, the denominator term for n(x) in Eq. 7.10 is often replaced with n0, 

the index of refraction at x = 0. 

(7.11) 

This assumption can make an otherwise intractable differential equation man­
ageable, while introducing negligible error so long as n(x) does not change 
considerably over the spatial extent of the mode. 

How do we interpret the Eikonal equation, Eq. 7.11? It's very simple: 
the Eikonal equation states that the ray always bends toward the higher index 
material. 

Example 7.1 Ray path in a parabolic index profile 

A common profile for gradient index devices is the parabolic index profile. 
Consider a planar waveguide which has an index profile in the x-direction 
described by 

n(x) =no [1- :~] 
where xo is a characteristic length for the gradient. Given n( x ), we can evaluate 
dn/dx: 

dn 2x 
-=-no-
dx x5 

Substitute this derivative expression into the Eikonal equation 7 .I 0, and make 
the approximation that the denominator term n(x) :::::J no, to get 

d2x 2x 
dz2 - x5 

This is a second order differential equation which has a general solution 

(/2z) . (/2z) X ( Z) = Xi COS --;;;;- + X~ Sill --;;;;-

The ray path from this equation is plotted in Fig.7.4. 



!54 INTEGRATED PHOTONICS 

X 

Figure 7.4. The ray path in a parabolic profile graded index. 

Notice that the ray is bound to the axis, and that it has a periodic motion. 
The initial conditions, Xi and xi, depend on the launch parameters for the ray. 
The propagating rays always bend toward the region of higher index. Once the 
ray crosses the axis of highest index, the curvature of its path changes sign in 
such a way as to return the ray toward the axis. 

2.2 Dispersion Reduction with a Graded Index Profile 
How does this graded index reduce modal dispersion? Recall that in the 

ray picture of the slab waveguide, modal dispersion arose due to the path differ­
ences between the high-order rays that followed a long zig-zag path down the 
waveguide, and low-order rays that travelled straight. Fig. 7.5 illustrates this 
case for two extreme modes. In the graded index structure a ray travelling near 
the axis will spend more time in high index material, and will travel slower than 
will a ray that is farther from the axis. However, rays far from the axis follow 
a longer sinusoidal path. Through optimal adjustment of the index gradient, 
it is possible to minimize the difference in group delay between the extreme 
rays. This will reduce modal dispersion and effectively increase the informa­
tion capacity of the waveguide. The challenge in graded index waveguides is to 
choose an index profile that guides the light and minimizes modal dispersion. 

The ray picture provides a useful illustration of how light is guided in a 
graded index structure. To actually perform the minimization requires use of 
the wave equation. 

3. Modal Picture of the Graded Index Waveguide 
To evaluate the properties of a graded index waveguide, we need to deter­

mine the allowed propagating modes and their dispersion characteristics. To 
find the modes, we must solve the wave equation for the graded index wave­
guide. This is usually a difficult task. Some profiles are analytically solvable, 
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!SZ 
Low Order Mode 

Step Index Graded Index 

Figure 7.5. Modal dispersion arises in planar waveguides due to physical path differences 
between the various modes. In the graded index, the optical path length for each mode can be 
made the same. 

however such profiles are rare and usually they do not have desirable dispersion 
properties to warrant their use. 

For non-analytic cases approximations such as the WKB method can be 
used to find exact values of {3, however the WKB method's real power is in 
the ability to generalized characteristics such as the effect of waveguide profile 
on dispersion. Using it to find exact values of {3 and the corresponding mode 
profile is a cumbersome task, and we will not pursue it here. 

With the availability of numerical differential equation solvers, direct nu­
meric solution of the wave equation is becoming the most widely used method 
for finding {3 in a graded index structure. Determining characteristics such as 
dispersion requires evaluating many different specific points, and then extract­
ing information from the ensemble of data points. The later technique is well 
suited to workstation and personal computer application. 

3.1 Profiles with Analytic Solutions 
We will seek a TE solution to the equation 

(7.12) 

in a planar waveguide structure. We assume that the index gradient extends only 
in the x-direction, and the electric field is polarized in the y-direction. There 
are a few graded profiles that have an exact analytic solution, one of which is 
the parabolic profile, described as 

2 2 X ( 2) n ( x) = n0 1 - x5 for x < xo. (7 .13) 

This profile is only valid where x « xo, because n(x) cannot be less than unity. 
The plot of Fig. 7.6 shows how the actual index eventually departs from the 
parabolic profile as the graded index meets the substrate index. 



156 INTEGRATED PHOTONICS 

n(x) 

Model 
~--------------~----------~~X 

0 

Figure 7. 6. Plot of the actual index profile, compared to the plot of the model of the profile 
used to solve equations. The model is only accurate near x = 0. 

Substituting Eq. 7.13 into the wave equation we get 

82 Ey ( 2 2 2 2 x2 2) 
8x2 + kono- konox5- {3 Ey = 0 (7.14) 

While perhaps not obvious by inspection, Eq. 7.14 has well known solu­
tions called the Hermite-Gaussian functions, 

EZ(x) = Hq ( J2;) exp ( ;
2

) (7.15) 

where q is an integer that identifies the mode. Hq is the appropriate Hermite 
polynomial defined by 

The first three Hermite polynomials in x are 

Ho(x) 1, 

H1(x) = 2x, 
H2(x) = 4x2 - 2 

(7.16) 

(7.17) 

The term w is the "beam radius," in analogy to the description of the spatial 
modes of a laser resonator. (The term "radius" is perhaps unfortunate in this 
application, since we are dealing with a planar field, not a cylindrical one). In 
the slab waveguide, w is defined through 

(7.18) 
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n2(x) 

~--------------~--------------~ x 
0 

Figure 7. 7. The values of {3 for allowed modes of the waveguide are bounded by the substrate 
index, kons, and the maximum index in the guide, kono . 

The eigenvalues for the electric field propagation factor, (3, are found from 
Eq. 7.14 to be 

2 2 2 kono /3q = k0 n0 - (2q + 1)-
Xo 

(7 .19) 

Theoretically, the parabolic profile has an infinite number of eigenvalues, {3, 
given by Eq. 7.19. In practice, there are only a few bound modes, because 
the actual index profile eventually deviates from the perfect parabolic shape, 
as shown in Fig. 7.6. Fig. 7.7 shows two allowed values of (3 on the plot of 
the index profile, n2 (x). The limits on the allowed values of (3 can be seen 
graphically. The upper limit is set by 

(7.20) 

which is the same condition as for the slab waveguide. Similar to the slab 
waveguide, the lower cutoff condition requires that (3 remain larger than k0n8 • 

The solutions predicted by Eq. 7.15 begin to fail as (3 approaches kons. This 
arises because the spatial structure of the individual modes extend to larger 
dimensions as the mode number q increases. For large q the modes get so 
large that they sample regions of the profile that are not parabolic, making the 
solutions inaccurate. 

Nevertheless, the "exact" solution to a particular profile illustrates several 
features of graded waveguides. First, individual modes exist, and each mode 
has a unique field description. Second, the allowed values of the propagation 
coefficient are limited between f3ma x = kono, and f3min = kon8 • Finally, there 
is a limit to the spatial range over which a "solution" is accurate. This limitation 
is due to deviation of the mathematical description of the index profile at large 
values of x. There are other profiles that lead to "exact" solutions to the wave 
equation[4]. For most situations, however, exact solutions are not accessible, 
and we must use approximation techniques to describe the fields. 
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4. Direct Numerical Solution ofthe Wave Equation 
The wave equation can be solved numerically using appropriate software. 

The numeric solution is actually quite simple to create. Given a differential 
equation and the necessary initial conditions, the entire solution can be gen­
erated using relatively simple recurrence relations[5] to plot the evolution of 
each variable. Unfortunately such techniques are not adequate for satisfying 
certain constraints, such as finding the eigenvalues for the equation. There are 
sophisticated techniques which can address this problem [4], especially when 
dealing with the Schrodinger equation. In this section, we want to illustrate 
the power of a simple Mathematica routine for finding the solution to the wave 
equation. 

Let's once again consider the parabolic profile graded index so we can 
test any numerical solution we get against theory. To find a numeric solution, 
the waveguide structure must be fully specified with numeric values for all 
variables. As a specific example let the index of refraction be 

(7.21) 

where no = 1.5 and xo = 50J.Lm. Let the wavelength be 1 J.Lm, so ko = 2rr 
(J.Lm- 1). We will keep all dimensions in microns in this example. Plugging 
these values into the wave equation yields 

fP Ey(x) ( 2 x2 2) 
8x2 + (3rr) (1- 2500)- f3 Ey(x) = 0 (7.22) 

Notice that everything is defined except for (3. Before a computer can begin to 
work on this problem, we must define a value of (3. Here is where this technique 
becomes challenging. As we will see, the computer can find a solution, Ey(x), 
for any value of f3 that we might suggest. But we know that only a few discrete 
values really exist. The eigenmode solutions will be those which have a finite 
energy (more precisely, we say that the solution is normalizable). Incorrect 
solutions will have amplitudes that tend toward infinity as· the magnitude of 
x increases, and therefore can not represent real solutions. Thus, finding the 
proper solution proceeds by guessing a value of (3, observing the numerically 
generated solution to the wave equation and seeing if it diverges toward positive 
or negative infinity, and then trying another value of (3. The eigenvalue of f3 
for a given equation will occur at the point where the solution does not diverge. 
The search for an eigenvalue is made easier by the fact that the sign of the 
diverging component of the profile changes as one goes past the eigenvalue. If 
for one trial value, /3i, the solution diverges positively, and for a different value, 
/3j, the solution diverges negatively, then the true value of f3 will lie somewhere 
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between those two values. A series of converging guesses can rapidly zero in 
on the eigenvalue, /3, for that mode. 

To evaluate the example described above, the following commands in 
Mathematica were used. 

nO=l. 5; 
x0=50; 
nsquare=n0"2 (1-x"2/x0"2); 
la.mbda=1; 
k0=2 Pi/lambda; 
beta=1.4920210 kO; (* trial guess*) 
equation=e'' [x) + (k0"2 nsquare- beta"2)e[x] ==0; 
sol=NDSolve[{equation, e[O]==l, e'[O]==O}, e[x), {x, -15,15}] 

Plot[e[x] /. sol, {x, -15,15}, PlotRange->{-2,1}] 

The key statements are the definition of the wave equation in terms of the 
parabolic profile equation, and the command NDSolve [ ] , which is a numer­
ical differential equation solver. The initial conditions( e [0] ==1, e' [0] ==0) 
were chosen to give the field e [x] a unity amplitude and zero slope at x = 0. 
This ensures that we will find an even mode. To find the odd modes, we would 
set the amplitude to zero at x = 0, and defined a finite slope. 

The trial value of (3 was manually entered each time, although it would 
be a simple task to put this entire process into a loop which sought the desired 
solution. We found very quickly that for a trial value /3 = 1.493 ko the plot 
of the mode profile diverged toward negative infinity, but for (3 = 1.492 ko 
the plot diverged toward positive infinity. Therefore there had to be a root 
somewhere between these values. After about 10 iterations the process led to 
a value of f3 accurate to 6 decimal places, which was decided to be accurate 
enough. Fig. 7.8 shows the plots of mode profiles for the last two iterations, 
taken at (3 = 1.4920210 ko and /3 = 1.4920211 ko. The eigenvalue clearly lies 
somewhere between these two values. Notice that the mode profile is clearly 
defined if we ignore the tails extending beyond lxl = 10JLm. 

One solution diverges positively, while the other diverges negatively, indi­
cating that the eigenvalue of the wave equation lies somewhere between these 
two values of /3. 

We terminated the iterations at this point, noting that the precision was 
probably exceeding any practical need. As a final test of this process, we can 
compare the numerically generated value of /3 to the "exact" value derived from 
Eq. 7.19. In this case, since there are two nodes in the waveform, this must 
be the q = 2 solution. Plugging numbers into Eq. 7.19 yields a value of /3 = 
1.49202103 ko, which is consistent with our numeric result. Direct numeric 
solution is an extremely powerful technique for finding allowed eigenvalues of 
a waveguide with an arbitrary index profile. Due to this power and accuracy, 
it is the commonly used method by waveguide manufacturers when they are 
designing new optical waveguides. To develop dispersion relations, one would 
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Figure 7.8. The "solution" to two trial values of f3 using the numerical differential equation 
solving routine in Mathematica 

have to calculate a series of values, {3( >..), from which the appropriate derivatives 
could be found. 

5. Summary 
We developed two methods for looking at the propagation of light in a 

graded index waveguide. The first, based on the ray model, required the devel­
opment of the Eikonal equation. Armed with the Eikonal equation, an equation 
of motion for rays in a graded index medium, the path of any ray can be cal­
culated. The limitation of the ray picture is that it fails to provide information 
on the modal characteristics of the waveguide, including the propagation co­
efficient, {3, the mode field size, or the dispersion properties. We then showed 
that direct numeric solution using package software provided a faster method 
for finding the eigenvalues of a graded index waveguide. In addition, a plot of 
the mode profile was generated. 
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Practice Problems 

1. Is it possible to define a Numerical Aperture (N.A.) for a graded index 
waveguide? What would the NA of the waveguide described in Example 
7.1 be? 

2. Consider a graded index that fonns a triangle profile 

n(x) n1 -~nix I for 0 < lxl < xo 

no for lxl > xo 

where xo is the width of the triangle profile at its base. Using the Eikonal 
equation, develop an expression for the path of a ray through this wave­
guide. You will have to piece a number of solutions together, taking 
advantage of the translational invariance of the waveguide along the z­
axis. 

3. What is the modal dispersion for the parabolic index profile waveguide? 
Use Eq. 7.19 to detennine an exact expression. 

4. Use a numeric differential equation solving routine to detennine the first 
two allowed values of f3 for the triangle index profile described in Problem 
2. Assume that n1 = 1.5, no= 1.47, ko = 211'J.tm-1, and x0 = l5J.tm. 
Plot the mode profiles. 

5. A triangular index profile is described as 
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n(x) 1.50- (0.004/JLm)lxl for lxl < 5JLm 

1.48 for lxl > 5JLm 

Use a numerical differential equation solving routine to find the three 
allowed modes if the guided wavelength is 1 JLm. Find the allowed values 
of (3 to at least 5 decimals. 

6. Determine the waveguide dispersion of the triangular index profile de­
scribed in Prob.5 .. Using a numeric differential equation solving routine, 
find the eigenvalue, (3, of the lowest order mode for wavelengths rang­
ing from 0.9 to 1.2 JLm. Based on this data, calculate the waveguide 
dispersion. 

7. Use a numeric differential equation solving routine to determine the first 
two allowed values of (3 for the index profile, n2(x) = n~ +0.05e-x2fx5. 
Assume that n0 = 1.5, ko = 27fJLm-1, and x0 = 50JLm. Plot the mode 
profiles. 

8. Calculate the waveguide dispersion of the waveguide described in Prob. 
8. over the range from>. = 1.5 ---+ 1.56JLm. Use the same procedure as 
outlined in Prob. 8 .. 

9. Write a computer program using a suitable software package or language 
that numerically solves the wave equation. Add statements to the software 
to make it automatically iterate the trial values of (3 until the agreement 
between subsequent trial values is better than 1 part in 1 06. 

10. Numerically explore several different index profiles, such as a Gaussian 
index, a triangle profile, a multiple step index, and an exponential profile. 
Which profile has the best mode confinement (defined simply by which 
mode is smallest between the half power points of the mode profile)? 
Which waveguide has the least waveguide dispersion? 

11. One method for creating a slab waveguide is to bombard the surface of a 
substrate with high energy a-particles (ionized He accelerated to 1-2 MeV 
of energy). The particles cause damage to the lattice which effectively 
lowers the refractive index. The a-particle causes maximum damage 
when it has lost a good fraction of its original energy. As a result, the 
damage profile of irradiated glass will have a maximum a few JLms below 
the surface. In this fashion, a buried lower-index layer can be formed on a 
substrate. The damage process is statistical. A simple approximation we 
can make to describe the resulting index profile is described as an offset 
Gaussian function, 
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Figure 7.9. An approximation of the index profile generated by a-particle bombardment of a 
crystal surface. 

An example of such a profile is shown below, using an average depth of 3 
J.Lm, and a Gaussian width ofO. 7 J.Lm. This approximation underestimates 
the damage done at the surface as the a-particles penetrate into the lattice, 
but it provides a first-order description of the situation. Using direct nu­
meric solution to the wave equation, determine the shape and eigenvalue 
of the lowest order mode for the structure shown in Fig. 7.9 (no = 1.5, 
xo = 0. 7 JLm, and bon = 0.01). Determine how much energy exists in the 
region beyond the well. This energy will be radiated away, and represents 
a significant loss to the mode. Energy in the guided portion of the mode 
can tunnel across the well region and escape into the substrate. Since 
the total bon is fixed by the optical properties of the material, the only 
parameter that can be varied easily is the width of the well. Explore how 
the mode confinement is affected as the well width, xo, is varied. 



Chapter 8 

ATTENUATION AND NONLINEAR EFFECTS IN 
WAVEGUIDES 

1. Introduction 

An optical signal will be degraded by attenuation and dispersion as it prop­
agates through a material. Dispersion can sometimes be compensated or elim­
inated through clever design, but attenuation simply leads to a loss of signal. 
Eventually the energy in the signal becomes so weak that it cannot be distin­
guished with sufficient reliability from the noise always present in the system. 
Attenuation therefore determines the maximum distance that optical links can 
be operated without amplification. Attenuation arises from several different 
physical effects. In an optical waveguide, one must consider i) intrinsic ma­
terial absorptions, ii) absorptions due to impurities, iii) Rayleigh scattering, 
iv) surface scattering, v) bending and waveguide scattering losses, and vi) mi­
crobending loss. In terms of priority, intrinsic material absorption and Rayleigh 
scattering are the most serious cause of power loss for long distance optical fiber 
systems. Surface scattering dominates integrated waveguide losses. Impurity 
absorption has become less of a problem as improved material processing tech­
niques have been developed over the years. In this chapter, we will establish 
the fundamental limits of attenuation, and provide a basic understanding of the 
attenuation processes that can be applied directly to materials such as glass or 
semiconductor. 

You might ask, "If the signal at the end of a long link is too weak to 
observe, why not simply increase the input power?" We will show in this chapter 
that nonlinear effects limit the peak power that can be sent into a waveguide. 
Nonlinear effects play a major role in optical waveguides for two reasons. 
First, the small core dimensions of a typical waveguide can lead to extremely 
high optical intensities, even for small amounts of total power. Thus nonlinear 
effects can arise unintentionally. Second, the long lengths involved in certain 
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systems, especially optical fiber links, allow small nonlinearities to add up 
and eventually become significant. These nonlinearities must be addressed by 
a system designer in order to achieve an acceptable signal-to-noise ratio for 
the received optical signal. There are many optical nonlinearities in optical 
waveguides. We will discuss three types: Stimulated Raman Scattering (SRS), 
Stimulated Brillioun Scattering (SBS), and Self Phase Modulation (SPM). As 
with all natural effects, we can either be victimized by them (and thus do our 
best to avoid them), or we can exploit them. Nonlinear effects can be exploited 
to create fascinating new devices. In this chapter we will look at the optical 
solitons. 

2. Intrinsic Absorption Loss 
In this section, we will describe attenuation due to absorption losses such as 

electronic and vibrational transitions in the material. Total optical attenuation 
is formally characterized by an expression known as Beer's Law 

(8.1) 

where Pout and P;,n are the output and input powers of the optical wave, re­
spectively, and a is the attenuation coefficient, with units of inverse length. 
a depends strongly on the wavelength of the light and the material system 
involved. 

Fundamentally, absorption losses arise from the atomic or molecular res­
onances that we discussed in the Lorentz model of the atom in Chapter 6. An 
atomic transition can absorb electromagnetic energy from the applied field and 
store it in an excited state of the atom or solid. This energy eventually is dis­
sipated through emission of a photon or through creation of lattice vibrations, 
and represents a loss to the electromagnetic field. In Chapter 6, we developed 
an expression for the index of refraction based on the Lorentz model. It is 
straightforward to show that the real (n') and imaginary (n") parts of the index 
ofrefraction (Eq. 3.16) are: 

1 l (Ne2jm)(w5-w2) 
n (w) + (w3-w2)2+-y2w2 

~(w) =± ~~~~ (82) 
n'(w) (w5-w2)2+-y2w2 . 

The imaginary part of n can lead to attenuation or gain, depending on its sign. 
Unless special efforts are made, such as creating a population inversion, the 
imaginary term leads to attenuation. Consider the electric field 

Eoe-ikonz = Eoe-iko(n'-jn")z = Eoe-ikon'ze-kon"z (8.3) 

where the sign of the imaginary term was chosen to yield a decaying amplitude. 
Even far from resonances, Eq. 8.2 shows that there will always be a residual 
absorption. 
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Figure 8.1. The bandgap of fused silica is about 8.9 eV. A photon with energy 2::: 8.9 eV is 
required to excite an electron from the valence band to the conduction band. 

2.1 Absorption Due to Electronic Transitions 
In this section we will concentrate on the optical properties of fused silica 

(i.e. glass), and mention analogous behavior in other systems such as semi­
conductors where appropriate. Fused silica has a "transmission window" in 
the near infrared. This transmission window lies between absorptions due to 
electronic transitions and Rayleigh scattering at the short wavelength side of 
the spectrum, and vibrational transitions on the long wavelength side of the 
spectrum. 

Fig. 8.1 crudely illustrates the valence and conduction bands in fused silica 
(Si02). The bandgap for this important optical material is approximately 8.9e V. 
To optically raise an electron from the valence band to the conduction band 
requires a photon of energy greater than or equal to 8.9 eV. This corresponds to 
light with wavelength shorter than approximately 140 nm. Since the absorption 
process involves elevating an electron to a new state, such transitions are called 
electronic transitions, or interband transitions. In principle, photons with longer 
wavelengths, such as visible light, cannot excite electrons across the bandgap, 
so they are not absorbed by the material. This partially explains why glass is 
transparent in the visible region. 

The absorption edges, Amin, of several optical materials are tabulated be­
low. The semiconductor materials are useful for integrated optics applications 
and detectors. From Table 8.1 we can see that Gallium Arsenide ( GaAs) absorbs 
light with wavelengths shorter than approximately 0.88 J.Lm. These interband 
transitions in semiconductors strongly influence the absorption and dispersion 
characteristics of optical waveguides made from semiconducting material. The 
semiconductor laser is a good example of such a waveguide system. 

In practice, the sharp absorption edge predicted by the simple band model 
of Fig. 8.1 is not observed. The transition from absorbing to transmitting 
usually follows a soft curve as the wavelength changes. Fig. 8.2 shows the 
optical absorption coefficient of GaAs as a function of wavelength.[2] Notice 
that instead of changing abruptly as the photon energy drops below 1.42 e V, , 
the absorption decreases exponentially. 
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Table8.1. Energy Bandgaps, Absorption Edges, and Refractive Index of Various Materials[ I] 

Material E9 (300 K) Am in n 

PbS 0.37 eV 3.341J.m 4.1 
GaAs 1.42 0.87 3.34 
Si 1.12 1.10 3.5 
Ge 0.67 1.85 4.1 
In As 0.35 3.54 3.1 
Diamond 5.5 0.23 2.41 
Si02 8.9 0.14 1.45 

Like the GaAs example shown in Fig. 8.2, the band gap of most materials 
is not sharpely defined in energy. This is especially true in glass. The vari­
ety of molecular bonds and configurations in the amorphous material lead to 
slightly different binding energies for individual electrons, so, unlike the ide­
alized energy picture presented in Fig.8.1, there is not a sharp edge in energy 
that defines the conduction or valence bands. Furthermore, thermal vibrations 
slightly alter the band structure of the material, further smearing out the energy 
distributions. As a result, the onset of optical absorption is usually a smooth 
function of wavelength. The empirical absorption coefficient, a from Beer's 
Law (Eq. 8.1, for band-edge absorptions has been found to follow a formula 
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Figure 8.2. The optical absorption edge ofGaAs at room temperature. Notice that the absorp­
tion does not sharply increase for photons above the bandgap energy. Rather, the absorption 
edge shows an exponential increase with increasing energy. 
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Figure 8.3. The three fundamental vibrational modes of the triatomic Si02 molecule. 

called Urbach 's Law 
(8.4) 

where 1iw is the energy of a photon with with angular frequency w (his Planck's 
constant) , and C and Eo are empirical constants for a given material. Using 
Urbach's Law in Beer's law, we see that as wavelength increases, attenuation 
becomes smaller, but never reaches zero - exponential functions just keep 
getting smaller and smaller. So even at long wavelengths there will be some 
residual absorption due to electronic transitions. The Urbach absorption arises 
from numerous weak effects such as multi-photon absorptions and combined 
photon-phonon interactions, as well as the Lorentzian absorption tails described 
in Eqs. 8.2 and 8.3. 

Before we get much farther, we should note that due to the wide range of 
values for the attenuation coefficient, plots of the attenuation of materials are 
usually shown on a semilog axis. The common unit is the decibel, which is 
defined in terms of the logarithm of a power or intensity ratio 

Pout 
dB= lOlog~ 

.<tn 
(8.5) 

For example, a 20 dB attenuation would represent a reduction of power by a 
factor of 100, while 3 dB attenuation would represent a reduction by a factor of 
2. The typical units of attenuation are in dB/km for low loss materials such as 
silica optical fibers, or dB/em for lossy materials such as GaAs waveguides. 

2.2 Absorption due to Vibrational Transitions 
In the infrared region, the photons have typically less than 1 eV of energy, 

so there are few losses due to direct electronic transitions. However, another 
absorption process begins to appears. This absorption is due to vibrational 
transitions occurring in the Si02 structure of glass. Fig. 8.3 shows the possible 
vibrational modes of a Si02 molecule. Because it has three atoms, the Si02 
molecule can vibrate in a bending mode, an asymmetric stretch, or a symmetric 
stretch. 

The fundamental vibrational transitions occurs at a frequency of approxi­
mately 40 THz. This frequency corresponds to light with a wavelength of about 
9 Ji-m . The attenuation coefficient at 9JJ-m is quite large, being over 100 cm-1. 
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Due to nonlinear interactions in the vibrational structure of glass, there are 
absorptions at harmonics (technically called overtones) of the fundamental fre­
quency, in particular at 3.2p.m, 3.8p.m, and 4.4p.m. The absorption coefficients 
for these overtones tend to be several orders of magnitude weaker in strength 
than the fundamental, but they are still large enough to be observed in small 
thicknesses (millimeters) of glass. These absorptions have long tails, and their 
presence is noticeable at wavelengths far from resonance. These tails lead to a 
near infrared absorption that begins to become apparent around 1.5p.m. 

2.3 Attenuation due to Impurities 
The first proposals to use optical glass fibers for long distance communica­

tion were criticized on the basis of measured attenuation coefficients of glass. 
Window glass had attenuations projected to be 1000 dB per kilometer, which 
as we mentioned in Chapter 1, is so attenuative that if all the light emitted by 
the sun were sent through one kilometer of such material, not a single photon 
would make it out the other end. 

Since the intrinsic attenuation of glass could not explain this high loss, 
the problem of excess attenuation had to be rooted in impurities. Fused silica 
often contains intentional dopants, such as sodium, which modify the melting 
temperature or index of refraction of the glass. Glass also often contains trace 
amounts of unintended impurities. Transition metal impurities, such as Cr or Ti, 
have low lying electronic states, which can dramatically increase the absorption 
of visible and near infrared light in glass. At certain wavelengths, concentrations 
as small as 1 part per billion of iron (Fe2+) or chromium (Cr3+) can increase 
absorption losses by 1 dB per kilometer. The pioneering work of Kapron, Keck, 
and Mauer et al.[3] of Corning, Inc. in the early 1970's demonstrated that the 
high loss was in fact due to impurities. They introduced a novel method for 
creating ultrapure glass fibers based on chemical vapor deposition (CVD). Based 
on their work, various schemes have been developed and are commercially 
employed in large scale operations to keep impurity concentration low. 

Perhaps the most pernicious impurity is water. Water will react with many 
materials and form the hydroxyl ion, OH-1. OH-1 has a vibrational stretch that 
corresponds to a wavelength of2.7 p.m, however important overtones occur at 
1.39p.m, 1.25p.m, and 0.95 p.m. Because of its strong optical dipole moment, 
only one part per million of oH-1 in fused silica will increase absorption 
losses by 30 dB per kilometer at 1.38 p.m. It is important to reduce water 
content as much as possible during the manufacture and processing of optical 
fiber. Current values of oH-1 concentration in ultrapure glass are less than a 
few parts per billion. At such levels, the impurity absorptions are less than the 
intrinsic material losses, so there is no advantage in further reduction. However, 
one ofthe biggest concerns in optical fiber packaging and installation is ensuring 
that OH- won't find a way to diffuse into the fiber. For example consider a fiber 
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that goes under the ocean to connect two continents. Installing such a fiber is 
quite an expensive endeavor, so it is critical that the fiber retain its original low 
loss characteristics for decades. Because of the long length of such fibers, even 
a small additional absorption could lead to early (and expensive) failure of the 
link. 

3. Rayleigh Scattering 
Rayleigh scattering is a fundamentally different attenuation mechanism. 

Instead of light being absorbed and converted into stored energy within the 
media, light is simply scattered away from its original direction. Rayleigh 
scattering is responsible for giving the daytime sky its blue color, where more 
blue light from the sun is scattered (some of it downward to Earth) compared to 
the red wavelengths in the solar spectrum. We will consider the "classical" view 
of Rayleigh scattering, relying on electromagnetic theory rather than quantum 
theory to describe the physical process. 

Rayleigh scattering is the scattering oflight off random density fluctuations 
that exist in a dielectric material. When the index fluctuations occur over 
a dimension that is small compared to the wavelength of light, the density 
fluctuation can be viewed as a small dielectric particle which is uniformly 
excited by the field. The instantaneous dipole moment for such a particle is 

~p(t) = ~EE(t) (8.6) 

where ~E is the excess polarizability of the random fluctuation (excess in re­
lation to the homogeneous background). A dipole radiates power by the well 
known expression [ 4] 

w4p2 w4(~E)2 E2 
Prad = 3 3 (8.7) 

127rEQC l27rEQC 

If there are N independent scattering particles in a unit volume, then the total 
power scattered is simply N times the result ofEq. 8.7. The dipole will radiate 
in a plane orthogonal to the polarization of the driving field. A majority of the 
power scattered by the particle will be directed away from the original direction 
of the wave. This represents a loss to the wave. A key thing to note is that the 
radiated power increases as the fourth power of frequency. This explains why 
the sky is blue: statistical fluctuations in the density of air serve as the scattering 
points for the Rayleigh process. Some of this scattered light comes down toward 
the surface of the Earth, and since blue light scatters at a rate ten times that of red 
light, the sky looks blue. At dusk or dawn, the blue light is strongly polarized 
- can you explain why based on the discussion above? 

So what does this have to do with waveguides? Rayleigh scattering in 
dielectrics arises from small density fluctuations that are frozen into the dielec­
tric during manufacture. When an optical fiber is formed, the glass is pulled 
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through an oven, where the molten material is stretched to become a thin fiber. 
After leaving the oven the glass freezes back into an amorphous solid. There 
is a high level of thermal agitation at the transition temperature (melting point) 
of glass, and this thermodynamical disorder leads to compositional and density 
fluctuations. These random variances are frozen in, and serve as the source for 
subsequent Rayleigh scattering. This is a fundamental process: there is nothing 
that can be done to eliminate the thermal agitation that accompanies melting 
material for manufacture of waveguides. In terms of material parameters, the 
scattering loss coefficient is [5] 

871"3 [ (an)2 J an= 3.\~ (n2 - l)kT{J + 2n ac ~02 8V (8.8) 

where k is Boltzmann's constant, Tis the transition temperature, {3 is the isother­
mal compressibility, n is the index of refraction, 8nj8C is the change of index 

with dopant concentration, and ~02 is the mean square dopant concentration 
fluctuation over volume 8V, which is smaller than, but on the order of, A 3. The 
design of long distance communication fibers, where attenuation is critical, is 
influenced both by the temperature at which the fiber solidifies, and by the 
dopants necessary to create the desired refractive index profile. Lowering the 
melting point of the glass reduces subsequent Rayleigh scattering dramatically, 
so additional dopants are sometimes added to intentionally reduce the temper­
ature of the melt as much as possible. Likewise, dopants having large index of 
refraction changes with concentration are avoided if possible, because random 
concentration gradients will lead to large index variations. Nevertheless, since 
the source of the scattering is the random fluctuations, and since these fluc­
tuations arise from thermodynamical reasons, the losses are fundamental and 
cannot be compensated or eliminated. 

3.1 Minimum Attenuation in Fused Silica 
Fig. 8.4 shows a logarithmic plot of the near-infrared attenuation rate in 

a fused silica sample arising from the infrared vibrational absorption and from 
Rayleigh scattering. At 1 J.Lm, the intrinsic UV absorption described by Urbach's 
Law is insignificant compared to Rayleigh scattering. Due to its A - 4 behavior, 
Rayleigh scattering diminishes with increasing wavelength. However at about 
1.6J.Lm, the Rayleigh scattering is overwhelmed by the· increasing vibrational 
absorption. The tails of the strong absorption at 9J.Lm begin to appear, so losses 
increase dramatically as the wavelength extends above 1.6J.Lm. The minimum 
absorption occurs near 1.55 J.Lm with a value of0.2 dB/km. The small absorption 
peak near 1.38 J.Lm is due to residual OH-1 in the material. 

The minimum attenuation value of 0.2 dB/km is a fundamental limit that 
cannot be further reduced in fused silica. This barrier has led some people to 
explore new materials. Since Rayleigh and Urbach losses decrease rapidly with 
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Figure 8.4. The total attenuation that is found in fused silica. The minimum occurs near 1.55 
J-Lm. (Data courtesy Coming, Inc. 

increasing wavelength, attention has been focussed on moving toward materials 
with longer wavelength transmission windows. In SiOz the infrared absorption 
at 9 J.-Lm leads to the increase in attenuation beyond 1.6 J.-Lm. If the vibrational 
infrared absorption features could be moved to longer wavelengths, say 40 J.-Lm, 
then it is possible that the minimum attenuation could be reduced below that of 
SiOz by going toward longer wavelengths. 

A simple way to reduce the frequency of the vibrational absorption (w = 
.jk{m) is to use heavier atoms in the solid. Since the "spring constant", k, 
derived in Eq. 6.7 that describes the bonding between atoms in solids is ap­
proximately the same magnitude for most dielectric materials, our only degree 
of freedom for decreasing the vibrational frequency is to increase the mass. For 
example, if Ag, with atomic weight of 107 AMU, were substituted for Si, with 
atomic weight 14 AMU, we could expect to see the infrared absorption fre­
quency reduced by approximately a factor of three. This would allow low loss 
operation at a longer wavelength, perhaps 2-3J.-Lm, where both the Urbach ab­
sorption and Rayleigh scattering would be significantly lower. For these reasons 
there has been substantial research into materials like AgCl, KRS-5, and other 
"heavy metal" glasses. Because of the higher mass of the atoms, these materials 
have potentially much lower attenuation coefficients than SiOz; unfortunately 
they are difficult to manufacture. To date, they have displayed enormous losses 
due to waveguide imperfections such as polycrystalline structure, rough side 
walls, etc.. Nevertheless, there is continued research into longer wavelength 
optical materials that will potentially have lower loss than presently available 
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Deposited soot layer 

Figure 8.5. A prefonn is created by selectively depositing layers of doped glass powder on the 
inside of a quartz tube. The torch moves back and forth along the tube, initiating the hydrolyzation 
reaction that fonns the soot of glass particles. 

fused silica fibers. It should be noted, however, that the recent introduction of 
low cost, high performance optical amplifiers that are compatible with fused 
silica fiber systems have slowed the thrust into these new materials. 

4. Optical Fiber Manufacture 
To produce fibers with tight tolerances on dimensions and low loss, it is 

necessary to pull fibers from a glass "preform". The manufacture of the preform 
is the critical part of the process. 

We will describe the basic process developed in the early 1970's based 
on Chemical Vapor Deposition (CVD). This technique relies on hydrolyzing a 
mixture ofSiCl4 and 02 with a mixture of an additive such as GeCl4, BCl3, or 
POCh to produce a "soot" of doped Si02. This soot looks like a fine snow, and 
is deposited on the outside or inside of a glass tube to create an index profile. 

Fig. 8.5 depicts a simple preform lathe that uses inside deposition. A 
manifold connecting sources of ultrapure dopant gasses mixes the desired ratios 
ofSiC14, 0 2 and the dopants, and feeds the gas into one end of the rotating tube. 
The outside of the quartz tube is heated by a torch which moves back and forth 
along the entire length of the tube. Once the gas mixture comes in contact with 
the heated zone of the tube, a hydrolyzation reaction occurs, creating a fine 
snowfall of doped glass particles. These fall to the wall of the tube, and are 
fused into a layer on top of previous soot layers. The inside ofthe tube is built 
up layer by layer. Once the soot is deposited in the desired profile, the tube is 
heated and evacuated. This causes the tube to collapse on itself, forming a solid 
cylinder of glass with the desired index profile. The size of this solid preform 
can range from approximately 2-8 em in diameter, depending on the process. 
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The index profile of the preform is controlled by adjusting the gas mixture 
flowing into the tube. Table 8.2 lists the gas reactions and their effect on the 
index of refraction of the soot. 

Table 8.2. Glass mixtures for waveguide preform formation 

Mixture Glass Refractive index 

SiCl4,02 Si02 no 
GeCl4, 02 Ge02 n >no 
POCh, 02 P20s n >no 
BCh,02 B20a n <no 

Gasses are used as a source material for two reasons. First, it is easier to 
chemically purify a gas than a solid or liquid. In this way, undesired impurities 
can be eliminated from the source material before it is incorporated into the 
preform. The second reason involves the use of chlorine to eliminate residual 
OH-1 from the hydrolyzing reactions. Chlorine is very effective in removing 
OH-1 from the soot. One characteristic of preform-making facilities is the 
need for large scrubbers to remove the chlorine from the exhaust gas before 
discharging it into the environment. 

To form a fiber, the preform is lowered into a tube furnace which is operating 
at a temperature sufficient to bring the tip of the preform temperature to the 
melting point. The molten tip is pulled down and stretched into a thin glass 
fiber. This thin fiber leaves the furnace and solidifies, then is fed through a 
diameter measuring diagnostic, and across a mandrel that sets the pulling rate of 
material from the molten preform. The rotation speed of the mandrel is adjusted 
to maintain the diameter of the fiber at the desired value. Most commercial fiber 
is pulled at a rate of several meters per second, and has an outside diameter of 
125 J.Lm. A plastic coating is applied to the fiber add strength and protect the 
glass from mechanical scratches which could lead to fractures. The fiber is then 
wound on a spool. The ultimate length of a single fiber is limited on how long 
the preform can be made. Typical values are in the 10 km range for a single 
fiber. Longer fiber lengths are created by splicing shorter sections together. 

The index profile in the preform is preserved in exact dimensional propor­
tion in the pulled fiber. The glass flows in a pattern exactly as it was formed, 
making it possible to create the precise index profiles in the small fiber. For 
example, if one wanted to create a step-index fiber with a core diameter of 
12.5pm, and a cladding layer extending to a diameter of 125J.Lm, one would 
make a preform where the higher index core comprised the inner 10% of the 
diameter, with the lower index cladding material surrounding it. The spatial 
proportions are maintained when pulling the fiber down to its final dimension. 
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Figure 8. 6. A fiber pulling station consists of a furnace to melt the tip of the preform, a diame\t)r 
probe to provide speed control information to the pulling mandrel, and a plastic coater to add a 
protective outer jacket to the fiber. 

5. Losses in Rectangular Waveguides 
As we noted above, the losses in optical fibers tend to be in the 0.2 dB/km 

range, while for integrated waveguides in materials such as GaAs, the losses 
tend to much higher, such as 5dB/cm. Why is there such a dramatic difference? 
In this section we will describe how typical planar waveguide structures are 
fabricated, and will show that most of the loss arises from scattering at the 
sidewalls. 

For highly integrated systems it is important to be able to guide light in 
waveguides with cross sectional dimensions on the order of 1 micron, and even 
sub-micron in some cases. This requires using waveguides with high index 
of refraction contrast between the core and the cladding. In an optical fiber 
the index difference of b..n = 0.002 was significant; in integrated structures 
the index difference can be 1000 times larger. This dramatically increases the 
sensitivity of the waveguide to scattering losses at the surface. Furthermore, if 
a single mode waveguide is needed, as it often is for modulators, switches, and 
couplers, a large index contrast between the core and cladding creates the need 
for small core dimensions. This can be seen from Eq. 3.40 by considering a 
slab waveguide. For aTE single mode, the waveguide thickness, h, must satisfy 

(8.9) 
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Therefore for hk(n}- n~) 112 ~ 1r, the size of the waveguide will be given by: 

7r 1 
h ~ k (n}- n~)l/2 (8.1°) 

High index of refraction contrast waveguides are usually buried waveguides that 
use a semiconductor core (such as GaAs, InP or Si with n 2.5-3.5) and an oxide 
cladding (AlO, InO and SiO with n 1.5). From Eq. 8.10 typical dimensions for 
a single mode Si waveguide clad with Si02 operating at>.= l.5JLm are 

7r 1 7r 1 
h ~ k (n}- n~) 1/2 211"/1.5 (3.52- 1.52)1/2 = 0·2JLm 

(8.11) 

The manufacture of such waveguides takes advantage of the processing 
technology developed for the semiconductor electronics industry. Most in­
tegrate photic devices are designed to operate on a semiconductor substrate, 
which typically have large refractive indices. The waveguide must be isolated 
from the high-index substrate, otherwise the optical energy would simple cou­
ple to the substrate and disperse. Isolation is accomplished by depositing a 
lower refractive index cladding onto the substate, typically using a Chemical 
Vapor Deposition scheme such as Plasma Enhanced Chemical Vapor Deposi­
tion (PECVD) or Organo-Metallic Vapor Phase Epitaxy (OMVPE). Fig. 8. 7(a). 
shows the result. A waveguide layer of high refractive index is then deposited 
by sputtering. Sputtering is simply vaporizing a solid and directing the vapors 
toward the substrate, where they deposit and coalesce back into a solid. The 
net result is a high-index layer sitting atop a low index layer. 

To make waveguides and devices from this layer, portions of the guiding 
film must be physically removed from the substrate. This is done using pho­
tolithographic processes. First a photoresist is spun onto the coated substate. 
The photoresist is a polymer material that can be cross-linked by exposure to 
blue light. The desired pattern of the waveguides and devices in the guiding 
layer is transferred by exposing the photoresist to blue light through a mask 
which has the a two-dimensional pattern of the device. This is shown schemat­
ically in Fig 8.7c. The photoresist is then developed. Depending on whether it 
is a positive resist or a negative resist, the developer will remove the resist from 
the regions which were exposed, or which were left in the dark, respectively. 
The developed photoresist acts as a barrier for the next step, which is the selec­
tive removal of the guiding layer. This step, called etching, can be done with 
wet chemicals, such as hydrofluoric acid or KOH solution, or via a reactive ion 
plasma (RIE- Reactive Ion Etching). After etching, only the waveguides and 
devices are left in the guiding layer. A final overgrowth oflower index material 
is deposited using PECVD. 

Losses in these waveguides are usually on the order of0.2-5dB/cm. These 
losses are highly dependent on the fabrication process of such waveguides. The 
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Figure 8. 7. a. A low refractive index is deposited, b. a high index guiding layer is deposited, 
c. a pattern is transferred to the photoresist, d. the exposed layer is developed and etched, e. an 
overcoat is deposited over the patterned high-index layer 

main source of the losses is the scattering off the sidewalls due to roughness. The 
top and bottom ofthe waveguide tend to be very smooth. The deposition process 
results in a even and uniform film. But the sidewalls of the waveguide are formed 
by chemically etching through a mask that was photographically transferred 
to the film. The dynamics of the etching always lead to small bumps and 
ridges in the sidewall of the waveguide. These small bumps lead to significant 
scattering. Physically the effect of small perturbations on the waveguide walls 
can be viewed as being identical to the small random fluctuations which lead to 
Rayleigh scattering in glass (refer to Eq. 8.8), except in the waveguide case the 
index difference is large, so the resulting attenuation component is dramatically 
larger. The power radiated due to scattering off a random fluctuation in the 
interface between the high and low index is proportional to (n}- n;) . 

To compound the problem, because the typical waveguide has a small cross 
sectional area to begin with, the sidewall roughness can represent a significant 
percentage of the waveguide cross sectional area. Losses can be reduced using 
geometries that minimize the mode overlaps with the rough surfaces. An exam­
ple of such tailoring is shown in Fig. 8.8, where a numerically simulated mode 
is shown in two possible configurations of rectangular waveguide. The top and 
bottom surfaces of the waveguide were defined by the deposition system and are 
generally smooth, down to a few atomic layers. The vertical sides, however, of 
the waveguides were defined by the etching and photolithography process and 
are generally rough, with roughness on the order of a few nanometers. In Fig. 
8.8a the horizontal geometry of the waveguide ensures that the mode overlap 
with the rough sidewalls is minimal. Losses in such a waveguide are expected 
to be low. In contrast, Fig. 8.8b shows a vertical geometry waveguide in which 
the mode overlap with the rough sidewalls is high. In such a waveguide the 
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Figure 8.8. a. Low loss waveguide where the mode overlap with the rough sidewalls has 
been minimized. b. High loss waveguide where the mode overlap with the rough sidewalls is 
maximum. 

losses are expected to be high. Considering the high-index of most integrated 
waveguide structures, until new processes are developed which provide atomi­
cally smooth sidewalls, designers will have to be very conscience to minimize 
mode overlap with the etched surfaces. 

6. Mechanical Losses 
Optical power can be lost due to leakage due to bending, and from defects 

at connections between waveguides. We will defer discussion of connection 
loss until we discuss coupled modes, however in this section we will discuss 
the effect of bends and packaging on the total attenuation. We will consider a 
single mode fiber in these examples. 

6.1 Bending Loss 
Consider Fig. 8.9, showing the mode field distribution of the LP01 mode 

in a fiber. The exponential tails of the field extend out away from the core, and 
theoretically never reaches zero, although practically speaking there is virtually 
no power in the tails beyond a few characteristic lengths (11-y) from the core. If 
the fiber is bent, the spatial mode is not appreciably changed in shape compared 
to the straight fiber. However, the plane wavefronts associated with the mode 
are now pivoted about the center of curvature of the bend. To keep up with the 
mode, the phase front on the outside of the bend must travel a little faster than 
the phase front in the core. At some critical distance from the core of the fiber, 
the phase front will have to travel faster than the local speed oflight, cfnclad· 
Since this is not possible, the field beyond this critical radius breaks away and 
enters a radiating mode. The power that breaks away is a loss to the waveguide. 
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Figure 8.9. The plane wavefront in a bent waveguide is pivoted about the center of radius of 
curvature of the bend. At some critical radius, the phase velocity must exceed the velocity of 

light, and breaks away. 
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Figure 8.10. The effective index profile of a bent fiber (solid line) is distorted from that of the 
straight fiber (dashed line). The guided mode at value f3 can tunnel across the small barrier and 

couple to the radiation modes. 

A more quantitative explanation of this effect can be derived modelling the 
fiber as having a distorted refractive index profile[6], which we simply quote 
here 

n'(r) = n(r)(l + i cos <I>) (8.12) 

where n( r) is the actual index profile, R is the radius of curvature of the bend, 
and <I> is the azimuthal angle about the fiber axis. This profile is plotted in Fig. 
8.10 

A guided mode is indicated by its value of /3/ ko. A weakly guided mode 
will be near cutoff, and hence will lie at lower values of fJ / k0 . The tail of the 
mode will extend into the region where fJ / ko < n(r), and hence will radiate. 
The lower the value of /3, the more radiation Joss will occur for the bend. Modes 
with relatively large values of fJ will have a further distance to tunnel, and will 
not experience as much loss. The description here is exactly analogous to that 
describing leaky modes. We see that modes near cut-off experience far greater 
bending loss. 
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Figure 8.11. Bending loss calculated from Eq. 8.13 for three different fibers. The cut-off 
wavelength for the fiber is set at 1.2 Jl.ffi, and the operating wavelength is 1.5 Jl.m. 

Quantitatively, the attenuation in a bend can be described as[?] 

where 

7r IW R-1/2 -UR 1 ( ) 1/2 [ ] 2 
a= 2 aV3 1aK1('ya) e 

U = 4~(ra)3 
3aV2nclad 

(8.13) 

(8.14) 

and a is the core radius, and~ is the normalized core-cladding index difference. 
Some representative losses are plotted in Fig. 8.11 from this equation. 

It is evident that the losses increase dramatically as the radius is reduced, 
and as the core-cladding index difference, ~. is reduced. Note that this is one 
reason why integrated waveguides, which have to make small-radius turns on 
substrates, tend to use high-index contrast for waveguiding. Bending loss is 
reduced dramatically as ~n increases. Keep in mind that the bending losses 
shown in Fig. 8.11 are per unit length, and that a single bend of short radius 
will not have significant length. Bending losses become significant when the 
bend is extended over a long distance. This effect is seen in microbending. 

6.2 Microbending Loss 
In the process of putting an optical fiber in a cable, many small bends 

and curves are introduced. Cabling is necessary to protect the fiber and to 
provide sufficient mechanical strength to allow a fiber to be pulled through or 
strung along existing electrical wiring. Typically, an optical fiber is loosely 
wrapped around a strong cord made of nylon or steel, and the entire assembly 
is then encased in a pliant plastic jacket. The jacket protects the fiber from 
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abrasion, while the central cord picks up any tensile stress that might occur 
during installation, leaving the optical fiber unstressed and hence unbroken. 

Inevitably, there will be small bends in the optical fiber as it is wrapped 
about the central cord. This introduces a systematic bending loss into the 
fiber. Tests of fiber attenuation before and after cabling show that cabled fiber 
attenuation is larger. The degree of attenuation depends on the specific cabling 
geometry, because the loss depends critically on the bend radius. A typical 
cable is designed to minimize the total bending that the fiber must do around the 
tensile strength member. Nevertheless, microbending attenuation can become 
significant because of the long length of the fiber; even small effects eventually 
add up. Looking at the data in Fig. 8.11, one can see that increasing !::. reduces 
the effect of bending loss. Therefore it is desirable to use a single mode fiber 
with as large a numerical aperture as possible in order to minimize loss in 
long-distance optical communication links. 

7. Nonlinear Effects in Dielectrics 
Up to now, we have assumed that the material constants t: and /-L were inde­

pendent of the field strength. Linearity implies that the permittivity experienced 
by a field with strength E = 10 V/m would be the same as the permittivity ex­
perienced for a strong field withE= 109 V/m. In the case of most dielectrics, 
for field strengths in this range the assumption is reasonably accurate; the value 
of the permittivity changes only slightly over these huge ranges of applied field. 
But the essential fact is that it often does change slightly, and this slight change 
can lead to some spectacular effects. Among the notable nonlinear interactions 
are the generation of second harmonic radiation of optical frequencies and fre­
quency mixing. Here we want to study the stimulated scattering that leads to 
excess loss, and imposes power limitations on the optical waveguide. 

On a fundamental level, nonlinearities arise from an anharmonic motion 
of the electrons in response to an applied field. Consider the simple illustration 
below of how a nonlinearity can lead to the generation of a second harmonic 
field. A one-dimensional crystal is shown in Fig. 8.12. The crystal does not 
display inversion symmetry. 

The electron, as it is pushed right and left by an applied field, will see 
different potential barriers restricting its motion. For example, the electron will 
be strongly inhibited from moving to the right, but will see less inhibitive force 
when going to the left. This leads to a nonlinear dipole moment in response to 
the applied field. 

If an electromagnetic wave is incident on the crystal, the electron will 
respond by moving back and forth along the crystal in synchronicity with the 
field. When the electron moves to the left, it will see the potential field of atom 
a, and when it moves to the right it will see the potential of atom b. Since atoms 
a and b are different, the potentials they generate will be different. From the 
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Figure 8.12. A molecule with no inversion symmetry. 

Figure 8.13. The motion of the electron under the influence of a sinusoidal driving field in the 
presence of a non-symmetric crystal. 

electron's point-of-view, it sees an asymmetric potential well, as shown in the 
figure . In response to an applied field, the electron will move further to the 
right than the left. The motion of the electron, as plotted in Fig. 8.13, follows a 
distorted sinusoidal path. Using Fourier's theorem, the electron's motion in this 
example could be described as a superposition of several sinusoidal motions. 

This simple illustration relied on a system with no inversion symmetry. Try 
to repeat the arguments made above with a system that is symmetric, and you 
will see why non-inversion symmetry is a necessary condition for second har­
monic generation, although other (odd) harmonics can be generated. Whenever 
the moving electrons fail to maintain a strictly linear relation between applied 
E and position r, there will be a nonlinear term in the polarization. The field 
strength must usually be significant for these effects to occur. The binding 
potential of an electron to a nucleus or molecule is on the order of 1010 V/cm, 
so for applied fields that are orders of magnitude smaller than this value, the 
electrons will not be significantly affected by distortions of the charge distribu­
tions. Once the field strength approaches 1% or more of the binding potential, 
the nonlinearities begin to become significant. This is the reason why we do 
not experience nonlinear optical effects in our everyday terrestrial experience. 



184 INTEGRATED PHOTONICS 

Nonlinear optics was not a widely investigated field prior to the development of 
the laser. With lasers, field strengths exceeding 108 V/cm are easily generated. 

On a more formal level, the induced polarization from the applied electric 
field can be expressed in general form 

P/Eo = X(l) · E Linear optics 

+ x(2) · EE Sum Frequency Mixing, Pockels Effect 

+ x(3) · EEE Third Harmonic, Self Phase Modulation, ... 

+... (8.15) 

where x( i) is the ith order susceptibility. To account for polarization effects, x( i) 

is a tensor of rank i + 1. The linear susceptibility, x(l), is the polarization term 
we explored in Chapter 6 (see Eq. 6.14). The second order susceptibility x(2) 

is responsible for effects such as second-harmonic generation. As explained 
above, it exists only in materials with noninversion symmetry. 

There are many optical nonlinearities that can be studied in optical wave­
guides. We will focus on three topics: Stimulated Raman Scattering, Stimulated 
Brillioun Scattering, and Self Phase Modulation. More detailed reviews can be 
found in specialized texts [see for example refs. [8] and [9]. 

8. Stimulated Raman Scattering 
When an optical wave travels through a material system, the. wave can be 

partially scattered by local imperfections. One example of such scattering is 
Rayleigh scattering, which was described above. Raman scattering is a second 
such mechanism. We will develop a classical picture of Raman scattering in 
this section, although we will invoke quantum concepts such as the photon and 
phonon. Only a qualitative description of the underlying physics of Raman 
scattering will be presented. Interested readers should consult the excellent 
texts listed in the references for more detail. [ 10-13] 

A photon travelling through a material can excite a vibrational transition of 
the material, creating an optical phonon, even if the frequency of the two quanta 
are dissimilar. (A phonon is a quantum of vibrational energy in a lattice. It has 
energy nw, where w is the vibrational frequency of the lattice.) This is a non­
resonant interaction. Fig. 8.14 shows an energy level diagram of the interaction. 
The incident photon with energy nw1 (w1 is the optical frequency) has a small 
but finite probability of exciting a single phonon of the molecular vibration, 
depositing nwp energy in the molecule. To satisfY energy conservation, the 
photon will exit the system with a slightly reduced energy, nw2 , where 

(8.16) 

The net effect of this interaction is that the molecule has been raised to a new 
vibrational state, and the photon energy (and frequency) has been reduced. This 
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Figure 8.14. Energy level diagram for Raman scattering. An incident photon with energy 1iw1 
excites a phonon with energy 1iwp, and is re-emitted with energy 1iw2. 

process is called Raman Scattering. Energy is strictly conserved. Usually the 
photon and phonon frequencies are dramatically different, so the probability 
that the photon actually excites the phonon is very small. One can rely on 
everyday experience to notice that the wavelength of light does not noticeably 
shift when passing through a plate of glass. In other words, most of the light 
goes through a material without suffering Raman scattering. Only an extremely 
small fraction of any incident optical field actually undergoes Raman scattering 
in a material under low intensity conditions. 

Example 8.1: Raman scattering from a variety of gasses 

A laser beam with a well defined wavelength of>. = 514.5 nm is sent 
through a chamber of gas. Looking at the beam from the side, a monochrom­
eter collects scattered light and disperses it according to its wavelength. The 
scattered light from the beam has two components: there is a lot of light at 
>. = 514.5 nm due to scattering from dust particles and Rayleigh scattering in 
the gas, and there is a second wavelength at >. = 584.6 nm. What is the gas in 
the cell? 

Solution: The vibrational frequencies of several gasses are listed in Table 
8.3. The vibrational frequency is listed in units of wavenumber, which is the 
number of wavelengths in a unit length, in this case 1 em. Note that this 
definition is similar to that for the wavevector, k0 , except the wavevector is 
defined as the number of radians per unit length, while wavenumbers are listed 
in waves per unit length. Don't get confused by the units! 

The incident wavelength (514.5 nm) corresponds to 1/ >. = 19436 cm-1. 

The Raman scattered light at 584.6 nm corresponds to a wavenumber of 1/ >. = 
17105 cm-1. The difference in the incident and scattered light is 2331 cm-1. 

Inspection of Table 8.3 indicates that the gas must be N2. This illustrates the 
diagnostic power of Raman scattering-the composition of a material can be 
determined by remote (non-contact) sensing. 
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Table 8.3. Raman frequencies for several gasses 

Gas Vibrational Frequency (cm- 1) 

N2 2331 
02 1556 
H2 4161 
co 2145 
C02 (vl) 1388 
C02 (v2) 1286 
N20 (vl) 1285 
N20 (v2) 2224 

8.1 Mechanism Behind Raman Scattering 
Since the interaction responsible for Raman scattering is nonresonant, how 

does Raman scattering occur? In the classical picture the interaction occurs 
through a slight modulation of the index of refraction due to the molecular 
vibrations of the material. Consider the schematic representation of a molecule 
in Fig. 8.15, consisting of two atoms separated a distance xo by a spring. If an 
electric field is applied to this molecule as shown, there will be a slight change 
in the relative position, xo, of the two charges. The induced polarization for the 
molecule is defined as 

p=qx, (8.17) 

where q is the net charge that moves in response to the field, andx-is- the 
difference in distance between the charge centers under the influence of the 
field and at equilibrium. Often the polarizability of a material is written in 
terms of the applied electric field 

p = a.E, (8.18) 

where a. is called the complex polarizability of the material. This is a micro­
scopic version of the bulk polarization expression, 

(8.19) 

where the term x<1) is used to describe bulk polarizability, as opposed to the 
microscopic polarizability, a.. 

If the molecular length increases, the charge separation increases, so the 
polarizability, a., increases. In practice, molecules at finite temperature vibrate 
due to thermal energy. It is this small vibration, and its effect on the polariz­
ability, that couples energy from the optical field to the vibrational field. 
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Figure 8.15. When a molecule is polarized by an external electric field, the two polar ends can 
be further separated, leading to a change in diploe moment. 

The molecular polarizability of an atom that is vibrating can be described 
through a Taylor series expansion 

aa.l a.(x) = a 0 +-a ox 
X xo 

(8.20) 

where ox is the displacement of the molecular length from its equilibrium value. 
If the molecule is vibrating at its resonant frequency, wp, then the displacement 
will be a periodic function 

(8.21) 

Combining all these terms, the polarization of the molecule becomes 

p(t) a.(t)E(t) 

= (a.o + aa.l OXo e±jwpt) Eoe1W1t 
ax xo 

a.oEoeJWlt + aaa.l Oxo Eoej(wl±Wp)t 
X xo 

(8.22) 

Notice that there are now two frequency components to the polarization: one 
term oscillates synchronously with the electric field, and is responsible for the 
dielectric constant of the material. The second term oscillates at a different 
frequency, given by the sum or difference of the applied frequency and the 
vibrational frequency, and acts as a source for the generation of radiation at the 
new frequency. 

Recall that polarization acts as a driving force for new electromagnetic 
fields, according to Maxwell's equations 

\l x H = t 0aE aP 
at + at 

(8.23) 

The polarization term at the frequency ( w1 ± wp) acts as the driving source to 
generate E and H fields at these shifted frequencies. Classically, the scattered 
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Figure 8.16. (a.) The incident photon excites a phonon from the ground state, and leaves with 
less energy. (b.) The incident photon scatters off of a molecule in the first vibrational excited 
state. The molecule drops back to the ground state, releasing one quanta of energy which appears 
in the exiting photon. The photon leaves with higher energy. 

field can be shifted to higher or lower frequencies than the driving field. In 
practice the frequency depends on the vibrational state of the molecule. Fig. 
8.16 shows an energy level diagram of both processes. A photon with energy 
1iw1 is incident on a molecule with vibrational frequency Wp. If the molecule is 
in the ground state initially (Fig. 8.16a), it can absorb energy from the applied 
field, and the scattered light (w2) will be at a lower energy and frequency. This 
photon is called a "Stokes" photon, indicating that it has a lower frequency than 
the input photon. 

If, on the other hand, the molecule is already in an excited vibrational 
state, as in Fig.8.16b, then it can give up one phonon's worth of energy to the 
field, and drop to the next lower vibrational energy level. The optical photon 
exits with higher energy and frequency, and is called an "anti-Stokes" photon. 
Both processes can be observed in Raman scattering. Due to the Maxwell­
Boltzmann statistics which describe thermal distributions, there are usually 
far more molecules in the ground state than in the excited state in thermal 
equilibrium, so Stoke's radiation usually dominates. 

8.2 Amplification Using Stimulated Raman Scattering 
Close examination of the second term ofEq. 8.22 gives some insight into 

the nature of the Raman process. The induced asynchronous dipole moment is 
given by 

(8.24) 

This is a nonlinear term (the output frequency is different from the input fre­
quency), and it depends on the product of two coupled parameters: the applied 
electric field amplitude, Eo, and the amplitude of the molecular vibration, 8xo. 
The overall size of this term is usually small compared to the linear polar­
ization. For this reason, we do not expect, nor in practice do we see, strong 
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Stokes-shifted signals coming from optical materials using low intensity light 
sources. Nevertheless, there is always some Raman scattered light produced 
when light travels through a material. 

The molecules which contribute to this Raman process are, for the most 
part, independently vibrating. There is no coherence between the various 
molecules, so the phase of the Stokes light that is generated by each molecule 
is statistically distributed over 211' radians. The resulting light is therefore inco­
herent, and comes out in many possible directions. This is called spontaneous 
Raman scattering. Under much stronger driving force (i.e. larger electric field 
amplitudes), the interaction between the electromagnetic fields and the polar­
izability of the material can lead to the imposition of some order among the 
oscillators, and a coherent wave at the Stokes frequency can be generated. 

The polarization at the Stokes frequency is proportional to the product of 
the applied electric field, Eo, and the amplitude of the molecular vibration, 
8x0 • Each time the electric field scatters a photon off of a molecule, the vibra­
tional amplitude increases. From Eq. 8.22, we see that an increased amplitude 
directly increases the polarization at the Stokes frequency. The process can 
feed on itself- the creation of each Stokes photon makes 8x0 larger, making 
it easier to generate even more Stokes photons. For very low intensities, the 
thermal disorder of the system keeps the molecules out of phase, so there is no 
coherent build-up of the Stokes wave. At high intensities, the vibration of each 
molecule can fall in-phase with each other, leading to a large coherent array 
of vibrating oscillators. This regime is called Stimulated Raman Scattering. 
Once a stimulated field begins to form, it will exponentially grow until it has 
saturated the pump field. 

Stimulated Raman Scattering (SRS) can be viewed as a problem, or as an 
effect to be exploited. SRS can be a serious problem for optical communica­
tion: if a sufficiently intense optical field is sent into a fiber, it can generate other 
wavelengths, and eventually deplete the energy at the original input wavelength. 
The creation of additional wavelengths in the communication link will, at the 
least, add to more dispersive pulse spreading, and at the worst, cause the in­
formation to be lost altogether. Thus, Stimulated Raman Scattering establishes 
an operational maximum limit on the amount of power that can be put into an 
optical fiber. 

In the stimulated Raman regime, the Stokes wave will be amplified as it 
travels through the medium. As explained above, the polarization at the Stokes 
frequency is proportional to the applied field amplitude and the amplitude of 
the molecular vibration. Describing this mathematically in terms of intensities, 
the process is characterized by a simple differential equation 

(8.25) 
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Table 8.4. Raman frequencies and gain coefficients[l4] (A= 0.694ttm) 

Material Frequency Shift (em - 1) Raman Gain (m/W) Linewidth !::.v (cm-1) 

LiNb03 258 28.7 x w-13 7 
Benzene 992 2.8 x w-13 2.2 
Si02 467 (peak) o.9 x w-13 200 

where 12 is the intensity of the Stokes-shifted light(w8 = wp- Wvib), h is the 
intensity of the pump light(wp), and Gr is the Raman gain term, which includes 
all the material terms such as 8aj8x and frequency terms which arise in the 
conversion from polarization (Eq. 8.24) to intensity (Eq. 8.25). The gain 
coefficient, Gr, decreases proportional to 1/>..2 . The differential equation can 
be solved in the case of weak Stokes intensity, 12 « h, to be 

12(z) = 12(0)eGr·h ·z (8.26) 

We have assumed that the pump intensity is not significantly depleted through 
SRS. Table 8.4 lists values of G and wp for various materials of interest in 
optoelectronics. The gain values are specified for a pump wavelength of0.694 
p,m, which corresponds to the ruby laser output wavelength. The key points to 
understand are that the gain is proportional to the intensity of the pump light, and 
that optical gain occurs at a frequency that is different from the pump frequency, 
shifted by wp. 

Recall that I cm-1 is equal to 30 GHz. 

Example 8.2 Raman gain in a single mode fiber 

Consider the Raman gain that is generated by sending light down a single 
mode fiber made of fused silica. In this case, assume that the fiber has an 
effective core area of 10-6cm2 (this corresponds to a mode field diameter of 
llp,m, which is typical for a single mode fiber). A laser couples 100 mW of 
light at).. = lp,m onto the fiber. If the fiber is I km long, what is the magnitude 
of the Raman gain, and at what wavelength does the gain appear? 

Solution: From Table 8.4 we see that Si02 has a vibrational frequency of 
467cm-1. (The spectrum is actually a broad distribution with a peak at 467 
em -l ). To convert this into frequency, the wavenumber must be multiplied by 
the speed of light, c. 

v 467cm-1 · 3 x 1010cm/sec 

14 X 1012Hz 

The vibrational frequency of Si02 is approximately 14 THz, so the Raman gain 
will exist for light at a frequency that is 14 THz below the pump frequency. The 
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pump frequency is v = cf >. = 300 THz. 

Vgain = 300 X 1012 - 14 X 1012 = 286 X 1012 

This frequency corresponds to a wavelength of 

C 3 X 1010 
>. = - = = 1.049J.Lm 

V 286 X 1012 
(8.27) 

The Raman gain will be maximum for light with wavelength 1.049J.Lm. The 
magnitude of the gain depends on the intensity of the pump light in the core 
ofthe fiber. The intensity is I= 0.1W/10-6cm2 = 105 W/cm2. The Raman 
gain is then 

exp(0.9 X 10-13rn!W. 105W/cm2 . 104cm2 /m2 . 1000m) 

exp(0.09) = 1.094 

A weak signal with wavelength>. = 1.049J.Lm that enters the fiber with the 
pump beam will see approximately 9% gain in one kilometer. 

The 1 km optical fiber used in Example 8.2 is effectively an amplifier for 
light at>. = 1.049J.Lm, with a net gain of about 9%. In practice, the vibrational 
spectrum of Si02 peaks at 467 cm-1, but is in fact rather broad, decreasing 
approximately linearly with frequency toward lower frequency. Thus, there is 
gain over a large frequency range in a Si02 Raman amplifier, although it is 
maximum near 467 em - 1. If the pump wave does not attenuate seriously after 
travelling this distance, the amplification could easily be increased by extending 
the length of the fiber. Such amplifiers are widely used in long distance optical 
communication links, where they serve as a pre-amplifier at the receiving end 
of the fiber to boost a weak optical signal. They also can provide gain over a 
wide number of wavelengths, since only the frequency of the pump laser needs 
be adjusted to change the center wavelength of the gain. 

Because the pump power decreases along the fiber due to linear absorption 
and scattering, the Raman gain is greater at the input end. To account for this, 
the operator dz in Eq. 8.25 should be replaced by e-azdz. An effective gain 
length, Leff• drops out ofthe integral solution to Eq. 8.25, defined as 

1- e-al 
Lejf= ---

0: 
(8.28) 

where i is the actual fiber length, and o: is the linear attenuation coefficient for 
the fiber. 
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8.3 System Limitation of Stimulated Raman Scattering 
A concern in optical fiber communication links is the limitation imposed 

by the presence of gain in the fiber created by the signal itself. This answers the 
question we posed at the beginning of the chapter, "Why not increase the input 
power of the signal to overcome fiber losses?" Consider the case where an optical 
fiber is used to transmit a signal between two points. The mere presence of the 
signal establishes gain at the Stokes shifted wavelength. Normally, there will be 
no input at the Stokes wavelength, so there will be no build-up or amplification 
of signal at this undesired wavelength. Unfortunately, spontaneous Raman 
scattering occurs all the time, and it is possible for a spontaneous Stokes photons 
to be launched in the guided mode of the fiber. These spontaneous photons will 
see the optical gain caused by the signal light, and will be amplified. Essentially, 
these spontaneous photons will rob power from the signal and convert it into 
light at a shifted wavelength. 

How much optical power is generated in the Stokes wave? This depends 
on the loss of the fiber, the Raman gain, and the number of modes carried by 
the fiber. Spontaneous Raman scattering can occur at any wavelength within 
the bandwidth of the vibrational transition. Fused silica, for example, has a 
bandwidth of about 6 THz, and a central vibration frequency of 14 THz, im­
plying that the scattered light will be frequency downshifted by approximately 
14 ± 3 THz. As the bandwidth of the spontaneous scattering increases, the 
number of modes that the Stokes light can couple to increases. Each Stokes 
photon, no matter which mode it is in, will see gain. Thus, the output of the 
fiber will contain a large number of Stokes photons spread over the bandwidth 
of the medium. In practice, the spontaneous Stokes photons occur throughout 
the fiber length, and see different total gains depending on location. It can be 
rigorously shown that the net effect of this distributed noise source is equivalent 
to injecting one fictitious photon per mode at the beginning of the fiber[ 15]. The 
effective number of modes is given by 

N = v'7r D.VFWHM 

2 [IpGr/ap] 112 
(8.29) 

where lp is the intensity of the pump light, and ap is the loss coefficient for the 
pump light. 

An absolute upper limit for input power into a communication link can be 
defined in terms of the point at which the Stokes power, Pr, equals the signal 
power, Psig· It can be shown that the limiting power is 

p = l67rwfi 
GrLeff 

where wo is the mode radius in the fiber. 

(8.30) 



Attenuation and Nonlinear Effects 193 

Consider for example a single mode fiber operating at Ap = 1.55J.tm. The 
mode radius for a typical fiber is 5 J.tm, yielding a mode area of approximately 
80J.tm2• The loss coefficient for good fibers is approximately 0.2 dB/km, yield­
ing an effective length Lef f = 20 km. Using the data from Table 8.4, the power 
limit for a signal at A= 1.55J.tm is approximately 700 mW. This is quite large 
relative to the commonly used signal powers on the order of 1 m W. 

9. Stimulated Brillouin Scattering 
Brillouin scattering is similar to Raman scattering, except acoustic phonons 

are involved instead of optical phonons. Acoustic phonons consist of collec­
tive vibrations of the atoms in a solid, while optical phonons tend to involve 
vibrations only between a few individual atoms[ 1 0]. Acoustic vibrations occur 
at a much lower frequency than optical phonons, being on the order of 1 em -l 
(~ 30 GHz). Brillouin scattering occurs when optical waves interact with the 
small periodic change in the index of refraction caused by these collective vi­
brations. The gain for Stimulated Brillouin Scattering in glass is about two 
orders of magnitude greater than for SRS, but it occurs over a much narrower 
frequency bandwidth. If the pump radiation has a linewidth larger than the 
Brillouin linewidth, the gain is proportionally reduced. Brillouin linewidths 
are on the order of 60 MHz, compared to Raman gain bandwidths of lO's of 
cm-1. 

Brillouin scattering is essentially caused by a reflection of the input light 
from a moving index variation caused by an acoustic wave in the material. The 
frequency of the scattered light is given by 

(8.31) 

where Va is the velocity of sound waves in the material. This formula effectively 
describes a Doppler shift of light bouncing off of a moving index variation in 
the solid. For the case where the pump linewidth is much narrower than the 
Brillouin linewidth, the gain coefficient is 

21fn7PI2 
GB = A2 V.~ crn/W 

C p s VB 
(8.32) 

where pis the density, P12 is the elasto-optic coefficient, and ~VB is the Brillouin 
linewidth. For plane waves in fused silica in the visible region of the spectrum, 
the frequency shift is approximately 35 GHz, and the gain coefficient is G = 
4.5 x 10-9 crn/W near A = lJ.tm. The Brillouin linewidth, ~vB, is on the order 
of 135 MHz. If the pump linewidth, ~vp, is larger than the gain linewidth, then 

(8.33) 
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The major problem a system designer faces with Stimulated Brillouin Scat­
tering (SBS) is the chance that input power will be reflected backward out of the 
waveguide. The SBS gain can cause a large back reflection, effectively reducing 
power transmission. SBS is usually observed with extremely narrow line pump 
input power, so a common solution is to increase the bandwidth of the input 
signal. Generally for temporally short pulses, the linewidth is much greater 
than Llvb, so the effective Brillouin gain is reduced. Similar to the case for 
SRS, to avoid SBS, one must stay below a critical gain threshold. The critical 
power for backward stimulated Brillouin scattering is given by [ 15] 

p = 21Aeff 
GBLeff 

(8.34) 

SBS can be avoided if the input power has sufficient bandwidth to reduce 
the power spectral density below that established by Eq. 8.34. For optical 
communication systems with information bandwidths exceeding hundreds of 
Megabits/second, this bandwidth restriction is almost trivial to meet, so SBS is 
not generally a problem. 

10. Self-Phase Modulation 
The last significant nonlinearity we will consider in amorphous solids is 

due to x<3), which is responsible for phenomena such as third harmonic gen­
eration, four wave mixing, and self refraction. Unless special efforts are made 
to match the phase velocities of the harmonic frequencies (e.g. for second har­
monic generation, phasematching requires that 2kwnw = k2wn2w), harmonic 
generation is not efficient. Due to the dispersive nature of glass, most harmonic 
generation effects are negligible, leaving nonlinear refraction as the predomi­
nant nonlinearity. Consider the case of a wave, E( r) = E0ei(wt-kor) + c. c., 
propagating in a fixed direction in glass. The polarization resulting from the 
x<3) term is described by 

p 
= X(l) Eoei(wt-kor) +c. c. + X(3) [Eoei(wt-kor) + c.c.]3 

to 
x<l) Eoei(wt-kor) + c.c. + X(3) E3[2(ei(wt-kor) + c.c) 

+ ( e3j(wt-ko?') + c.c)] (8.35) 

[x(l) + 2X(J) E5] Eoei(wt-kor) + c.c. + 3rd harm. terms 

The term in the brackets is the effective polarizability for the medium and as 
you can see, it depends on the intensity of the applied field. Converting this 
expression to intensity, and using the fact that x<3) is extremely small, the index 
of refraction, n, of a material can accurately be written as 

n(I) =no + n2 ·I (8.36) 
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where no is the nonnal index of refraction, and nz is the nonlinear refractive 
component. Formostmaterialsnz is small: nz = 3.2 x 10-16 cm2 /W for fused 
silica, and 3.8 x 10-16 cm2 jW for sapphire. Clearly, n( I) is nearly equal to no 
under common terrestrial conditions (sunlight, etc.), and only deviates under 
extreme high intensities. However, these are exactly the conditions that can be 
easily achieved in an optical fiber: the small core size and long path length of 
optical fiber systems allow even modest fields to create significant nonlinear 
effects. 

How does the x(3) tenn lead to self-phase modulation? First, let's define 
phase modulation. The instantaneous phase of a wave is defined by the argument 
of the exponent in the wave fonnulation. For example, a plane wave propagating 
through a dielectric material is described by 

Noting that ko = wofc, the instantaneous phase,¢, can be described as 

wo 
¢ =wot- -nz 

c 

(8.37) 

(8.38) 

If the wave is a single frequency sine wave, the phase can be expected to 
accumulate at a steady rate, defined by the angular frequency as w radians per 
second. Phase modulation is the tenn describing any alteration of the phase from 
its linear predicted pattern. This can be done intentionally for communication 
purposes using a modulator, or the wave can modulate itself via a nonlinear 
interaction. The latter effect is called self-phase modulation. 

Substituting the expression for the intensity dependent index of refraction, 
Eq. 8.36, into Eq. 8.38 yields 

woz 
¢ = wot- -[no+ nzl(t)] 

c 

The instantaneous frequency of the field is detennined from 

w(t) = - = wo 1- -n2-I(t) d¢ [ z d ] 
dt c dt 

(8.39) 

(8.40) 

Inspection of this equation shows that when the intensity is increasing, the 
instantaneous frequency of the wave is reduced (assuming that nz is positive), 
and when the intensity decreases, the frequency of the wave is increased. The 
time-dependent index of refraction acts like a phase modulator. 

Consider the optical pulse in Fig. 8.17. The intensity is a function of time, 
rapidly rising from zero intensity to a maximum value, and then returning to 
zero. Due to self-phase modulation, the index of refraction at the peak of the 
pulse will be slightly different than the value in the wings of the pulse. If n2 

is positive, the index at the peak will be slightly larger than in the wings. The 
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t..Q!! 
dt 

z 

Figure 8.17. An optical pulse travelling along the z-axis will experience a time-dependent 
increase and decrease in the index of refraction. The leading edge will see an increase in index, 
while the trailing edge will see a decreasing index. 

leading edge of the pulse will see a positive dn/ dt, while the trailing edge will 
see a negative dnjdt. The phase of the optical wave depends on the refractive 
index , <I> = knf, so the time-varying index of refraction will lead to a time­
dependent phase shift, d<I> / dt. This phase modulation leads to the creation of 
additional frequency components. 

A simple way to view this process is to look at the wavelength of the 
fields on both sides of the pulse. Since the leading edge of the pulse has lower 
intensity than the peak, the index of refraction will be lower, and therefore the 
phase velocity, v = cjn, of the field will be slightly faster than at the peak. 
Phase fronts on the leading edge will move away from the center of the pulse, 
effectively stretching out the waves, and lowering the frequency of the light. 
The leading edge ofthe pulse is frequency down-shifted. 

Similarly the trailing edge of the pulse has a lower index than the peak, 
so the trailing edge waves move slightly faster than those at the peak. As they 
propagate, they catch up with the peak, or effectively compress their wavelength. 
Compressed waves lead to shorter wavelengths, which is equivalent to a higher 
frequency optical wave. The trailing edge of the pulse is frequency up-shifted. 

The pulse frequency bandwidth increases due to self-phase modulation, and 
the pulse develops a "chirp" where the frequency of the pulse monotonically 
increases across the pulse. The magnitude of the frequency chirp experienced 
by the pulse is 

ow = f:l.kL = 21r L don 
.X dt 

where on = n2I. The total accumulated phase for this pulse is 

(8.41) 

(8.42) 
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where Jn is the maximum increase in index 

(8.43) 

This excess bandwidth generally has a detrimental effect on pulse propagation, 
as it leads to increased dispersion effects. The pulses are no longer "transform 
limited", meaning that the actual bandwidth of the pulse is larger than that 
predicted by a Fourier transform of the temporal envelope. 

The key problem with SPM is the increased dispersion that results when the 
bandwidth is increased. We can derive a critical length, Lcrit, in which the high 
frequency component of the pulse is retarded by one pulse length time from the 
low frequency component. In other words, the effective temporal pulse width 
doubles. As a rough estimate, let's assume that the rate of change of intensity 
for a pulse can be given as dl I dt = 2/ IT, where T is the pulsewidth and I is the 
peak intensity. The increase in the pulse bandwidth (from Eq. 8.41) traveling 

a distance Lcrit is 

(8.44) 

Define the group velocities ofthe two different wavelength pulses as v1 and v2, 

respectively. In a timeT, each pulse travels a distance z1 = v1 T and z2 = v2 T. 
The time T required for the pulses to separate a distance equal to their pulse 
widths (given by Tcln) is 

T = TCin 
V2- V1 

(8.45) 

Noting that the critical length is Lcrit = Tcln, this equation can be recast as 

(8.46) 

The difference term in the denominator can be replaced by v2 - v1 = dv91 dw · 
.6.w. 

Vg 

dv9 

dw 

c[no + wdnldwr1 

-1 1 >.2 d2n >::; -1 __!_;..2 d2n 
27f no+ wdnldw d)-.2 27f no d>-.2 

Substituting this and Eq. 8.44 into the expression for Lcrit yields 

(8.47) 

(8.48) 
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Example 8.3: Critical length for a pulse 
A Si02 fiber with a 10 J..Lm diameter core is excited with a 10 psec pulse 

at wavelength 1 J..Lm. The pulse has a peak power of 1 0 W. What is the critical 
length of this pulse? 

Solution: The peak change in index is obtained from Eq. 8.42, using 
n2 = 3.2 x 10-16 cm2/W, and calculating the effective intensity in the core of 
the fiber 

We must determine the dispersion term. By evaluation of the Sellmeier equa­
tion, or from Fig. 8.18 we can find that 

>.d2n 
D(lJ.Lm) = -~ d>.2 11J.tm = -38ps/krnlnm 

To convert this to a numeric expression for >.2d2njd>.2 , we need to multiply by 
>.c and convert units in the proper fashion. We leave it as an exercise to show 
that the dimensionless quantity >.2~njd>.2 is 

d2n 
A2 d)..2 h~tm = 0.0114 

Plugging these values into Eq. 8.48 yields 

Lcrit = (0.011· 4 X w-9)-112 3 X 108mjs .1Q-11s 

=452m 

The pulse will double in width due strictly to self-phase modulation in a distance 
of0.45 km. 

11. Optical Solitons 
While Mother Nature sometimes makes our lives difficult with problems 

such as self-phase modulation or stimulated Raman scattering, we can find 
ways to exploit these "problems" to our advantage. The optical amplifier based 
on the stimulated Raman effect is one example of such exploitation. Self­
phase modulation leads to another possible scheme which is rich with potential 
application, namely optical solitons[16],[17]. A soliton, by definition, is a 
solution to a wave equation that propagates without distortion. As we know, 
when we launch a pulse in a real optical material, dispersion will lead to a 
temporal broadening of the pulse. This broadening is a form of distortion. 

To generate an optical soliton it is necessary to cancel out the effect of pulse 
broadening due to dispersion. This can be done with very careful balancing 
of self-phase modulation and negative dispersion. Recall in our discussion 
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Figure 8.18. The dispersion in Si02. The region above 1.3 ttm is called the negative dispersion 
region. 

of the optical properties of matter, that the material dispersion term, D = 
->./ c d2njd>..2, went from a negative value for short wavelengths, through 
zero near >..0 , and then became positive for wavelengths longer than >..o. The 
negative sign in the expression for dispersion adds a misfortunate confusion to 
the language. In the dispersion curve calculated for Si02 shown in Fig. 8.18, 
the "positive dispersion" region occurs for wavelengths less than 1.3 J.Lm. The 
"negative dispersion" region occurs for >.. > l.3J.Lm. Another way of defining 
negative dispersion is to note that material displays negative dispersion when 
dv9 / d>.. < 0. In normal dispersion, lower frequencies travel slightly faster than 
higher frequencies. For example, red light travels faster than blue light in glass. 
The fact that they travel at different velocities is dispersion, and the fact that 
the low frequencies travel faster than the high frequencies is termed "positive 
dispersion." For wavelengths longer than >..o, lower frequencies travel slower 
than the high frequency components. 

For a transform-limited pulse with bandwidth 6.v, negative dispersion will 
have the same type of effect as positive dispersion, namely it will cause the 
pulse to temporally spread. However, if the pulse has a frequency chirp caused 
by SPM, negative dispersion can actually compress the pulse. Consider the 
effect of negative dispersion on a pulse that has been phase shifted by self­
phase modulation. Assume the central wavelength of the pulse is chosen to 
operate in the negative dispersion regime of the material. The leading edge of 
the pulse, which has lower frequency components, will travel slightly slower 
than the rest of the pulse. Similarly, the trailing edge will advance with respect 
to the pulse envelope. The pulse will tend to collapse upon itself as shown in 
Fig. 8.20. Thus, provided that the frequency chirp is large enough, dispersion 
-the former pulse broadener-- now leads to pulse narrowing. 



200 INTEGRATED PHOTONICS 

Chirped Pulse 

Negative 
Dispersion 

Compressed Pulse 

Figure 8.19. A chirped pulse will be temporally compressed by negative dispersion. 

The simple description above can explain pulse compression, it is not suf­
ficient to account for solitons. The correct description requires solution of the 
wave equation. If the pulse is described as 

E(z) = u(z, t)ej(wt-kz) (8.49) 

it can be shown[l7] that the amplitude, u(z, t), satisfies the nonlinear wave 
equation when SPM is included 

(8.50) 

The nonlinear interaction is contained in the last term of the equation. 
The first step in solving a nonlinear differential equation is to reduce it to 
dimensionless form. This can be done with the transformations 

s = ~ [t- akz] 
T OW 

T) = 182k 11 
8w2 r2z 
[ r/2 (kon2)/(2no) 

(8.51) v T f)2k U 
18W"11 

where r is the pulse width. Substituting this into Eq. 8.50 yields 
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(8.52) 

In general, this equation must be solved numerically. However, there are a 
few solitary solutions based on pulses with specific amplitudes and hyperbolic 
secant shape. For example, the fundamental soliton has a envelope described 
by a "secant-squared" shape, 

A 
u(t) = cosh2(t/r) (8.53) 

where A is a critical amplitude. Since the dispersion and self-phase modulation 
must be carefully balanced, the peak intensity of the optical pulse must be 
critically set to be 

(8.54) 

where r is the full width at half maximum for the pulse, and IDI is the mate­
rial dispersion. As the pulse gets shorter, the required peak intensity increases 
quadratically. The absolute value of the dispersion, IDI, is specified only be­
cause of the inconsistent use of the sign of the dispersion in various references. 
The absolute value has no physical implications. 

Fig.8.20 shows graphically the evolution of the pulse intensity for several 
solutions to Eq. 8.52. The fundamental soliton is a pulse that does not change 
shape as it propagates. It represents a pulse with just the right amplitude so 
that the pulse-spreading dispersion effects are exactly cancelled by the pulse 
narrowing effects of the nonlinearity. For higher order solitons, the input pulse 
amplitude must be related to the fundamental soliton amplitude by an integer 
number, n. The peak intensity of the higher order solitons then have n 2 the 
peak intensity of the fundamental soliton, given by Eq. 8.54. The higher order 
solitons exhibit complex behavior, temporally reducing, sometimes breaking 
into several peaks, and then expanding back to their original forr'n after travelling 
a distance, zo, called the soliton period 

0.322n2cr2 

zo = IDIA2 

The soliton period is independent of the order of the soliton. 

(8.55) 

Another fascinating property of solitons is their attraction and repulsion 
to one another. Because of the intensity-induced increase in refractive index, 
the soliton can be viewed as a wave trapped in its own "potential well" along 
the z-axis of propagation. When two solitons get close enough to each other 
so that their fields begin to overlap, they can attract or repel (depending on 
relative phase) due to the potential wells. This interaction can introduce errors 
in communications links if the pulses represent binary information that is placed 
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0 ziZo =1 

0 ziZo =1/2 zJz.o=1 

Figure 8.20. The theoretical behavior of the n = 1 and n = 2 soliton as they propagate 
down a fiber. I o is the peak intensity required for the fundamental soliton, and zo is the soliton 
period. The fundamental soliton never changes shape, while the higher order soliton exhibits a 
compression and then restoration to its original size after one period. 

in certain temporal windows. Generally, interaction is negligible ifthe solitons 
are separated by approximately lOT. 

Example 8.4 Peak power for a soliton 
Calculate the peak power needed to send a I 0 psec and a 20 psec optical 

soliton through a fused silica fiber with a mode field diameter of 5 J.Lm. The 
wavelength is 1.5 J.Lm, and n2 for fused silica is 3.2 x w-16 cm2/W. 

Solution: From Fig. 8.18, we can estimate that the negative dispersion has 
a magnitude of20 ps/nm km. Using Eq. 8.54, we can calculate the necessary 
intensity for each pulse. We must be careful to keep all units consistent, so we 
will convert all units to em or sec. The dispersion can be expressed as 

D = 20 ps/km nm = 2 X w-9sec/cm2 

Plugging values into Eq. 8.54 for the 10 psec pulse yields 

_(1.5x 10-4)3·2x 10-9 

Io = 1.28811'2(3x 1010)(10 11)2·3.2x 10 16 

= 553kW/cm2 

The peak power necessary to create this intensity in the optical fiber is 

P =I. 1r-r2 = 553 x 1031r(5 x w-4) 2 

= 0.434W 

Inspection ofEq. 8.54 tells us that the intensity, and thus power, scales as the 
inverse square of the pulse length. Therefore a 20 psec soliton will require an 
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intensity in the fiber of only 138 kW/cm2, which corresponds to a peak power 
of109 mW. 

An alert reader will notice that the intensities in the optical fiber are suf­
ficient for Stimulated Raman Scattering to become significant. This is indeed 
the case. Experiments have observed what is called the "Soliton self frequency 
shift", where the pulse intensity creates Raman gain, and the pulse bandwidth 
is large enough that the low frequency components of the pulse can experi­
ence gain from the high frequency components[!?]. As the soliton travels, it 
slower transfers energy from the high frequency components to lower frequency 
components, leading to a steady shift toward longer wavelengths. 

The soliton has tremendous potential application to communications and 
optical switching. The ability to send a pulse a long distance without distortion 
leads to the possibility of optical links that can span the oceans without regen­
eration. You might wonder how soliton propagation can exist in lossy fibers, 
since the intensity is critical to the dispersion cancelling effect. For example, 
even the best of fibers displays loss of0.2 dB per kilometer, so after 30 km the 
power will be down by 6 dB, i.e. having only 25% of the original power. It has 
been experimentally observed, and theoretically confirmed, that the soliton adi­
abatically adjusts in temporal width as the amplitude decreases. As the power 
decreases due to attenuation, the pulse duration increases in such a way as to 
satisfy Eq. 8.54. The "soliton-like" behavior of the pulse is maintained, even as 
the power slowly decreases. The soliton is easily amplified using a distributed 
amplifier such as the Raman amplifier or Er-doped amplifier. Amplified links 
have experimentally demonstrated soliton propagation over distances exceeding 
lO,OOOkm. 

12. Summary 
In this chapter, we briefly touched on three important nonlinear effects 

which play significant roles in optical fiber links. The discussion was moti­
vated by the question "Why not compensate for attenuation by coupling more 
power initially into the fiber?" We have found that at sufficient intensities, non­
linear effects can appear, and can totally dominate the optical system. In the 
case of Raman scattering, the nonlinearity will lead to the generation of new 
wavelengths which will dramatically increase the spectral bandwidth of the sig­
nal, making dispersion a severe limitation. We found that Brillouin scattering 
could effectively reflect the input power back out of the fiber, reducing the for­
ward wave. And we saw how self-phase modulation increases the bandwidth 
of a pulse, again making pulse distortion due to dispersion a serious limitation. 
The bottom line of these effects are that there are physical limitations on the 
amount of power that can be coupled into a fiber if linear operation is desired. 

We also tried to show that there is always a way to exploit such effects. 
The problem of stimulated Raman scattering can be turned into an advantage 
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if it is used to amplify weak signals. Self-phase modulation can be used to 
make optical solitons, which propagate without distortion. Such nonlinear 
systems are certainly more complicated than simple linear pulse propagation 
along a fiber, but they offer many new advantages that may make the increased 
complexity well worthwhile. It is important for students of optoelectronics to 
be aware of these developments, as they are likely to become major tools of the 
trade for tomorrow. 
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Practice Problems 
1. A single mode fiber with a mode field radius of 5J.Lm and a core of pure 

Ge02 is to be used to make a Raman amplifier. Ge02 has a characteristic 
phonon frequency of420 cm-1, and a Raman gain of5 x w- 13 / (m/W). 
A signal with wavelength 1.55 J.Lm and input power of 10 nanowatts is to 
be amplified. 

(a) What wavelength should the pump light be? 

(b) What intensity of pump light is required if the signal is to be boosted 
to an exit power of 1 m W in a length of 500 meters? 

(c) What should the power of the pump light be to satisfy part b? Assume 
the MFR is the same for the pump and signal beams. 

(d) How many photons at 1.55 J.Lm are injected per second into the ampli­
fier? How many exit? Compare this to the number of pump photons 
per second. Do we have to worry about pump depletion in this am­
plifier? 

(e) If the bandwidth of the Raman gain is 6 THz, how many noise photons 
due to Spontaneous Raman Scattering would you expect to see at the 
end of the amplifier? 

2. Design an optical amplifier based on the Raman effect that will boost a 
1.3 J.Lm signal by 20 dB. Assume the single mode fiber is identical to that 
used in Pro b. 1, but let the length be 1 000 meters. Specify the pump 
wavelength and power necessary to create such an amplifier. What are 
the power limitations for the signal? In other words, if the amplifier can 
boost a 1 nanowatt signal by 20 dB, can it boost a 1 W input signal by 20 
dB? When does gain saturation start to become important? 

3. For the fiber described in Prob. 1, what is the maximum input signal 
power at 1.55 J.Lm that can be coupled into the fiber before Stimulated 
Raman Scattering begins to become a serious problem? Assume that the 
fiber has 0.2 dB/km of attenuation at 1.55J.Lm. 

4. A 5 psec pulse at 1.55J.Lm is coupled onto a Si02 fiber with a 5J.Lm mode 
field radius. The pulse has a Gaussian temporal profile. If the fiber is 
10 meters long, what peak intensity will lead to the accumulation of 1r 

radians of additional phase between the leading edge and peak of the 
pulse by the time the pulse leaves the fiber? 

5. Nonlinear interactions between two fields are usually dramatically en­
hanced when the two fields travel at the same velocity in the medium. If 
an intense pulse from a laser at 1.06 J.Lm is launched into fused silica, what 
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other wavelength(s) will travel at the same group velocity in the material? 
If the group velocities are identical, will the phase velocities be identical? 

6. The complex dielectric constant of a certain material is given by t/ to = 
2.5 - jO.OlO at A = l.5J.Lm. Find the attenuation coefficient for this 
wavelength, and determine the phase velocity. 

7. A transform-limited pulse of temporal duration T = 500 psec is launched 
into an medium with material dispersion of D =-50 psec/nm·km. How 
far must the pulse travel before the pulse envelope doubles in temporal 
width? Note that you will have to convert the dispersion, D, into a numeric 
value for A2d2n/ dA2 . Is the pulse still transform limited at the end of this 
distance? Justify your answer. 

8. A certain material is made into an optical fiber, and this material has an 
attenuation coefficient of0.7 dB/km. If I mW of light is coupled into the 
fiber, what is the power of the light after traveling 10 km? 

9. What peak power is required to form a soliton with 5 psec duration on 
a fiber with a MFR of 5p,m? Assume the fiber is made of fused silica, 
and the operating wavelength is 1.5 p,m. What is the total energy in the 
solitary pulse? 

10. Using Eq. 8.8, calculate the expected attenuation coefficient for green 
light, A = 0.5J.Lm, travelling through the atmosphere. Assume that the 
density of air displays a Poisson distribution such that if a volume of 
air contains N = n V molecules, there will be a statistical variance of 
6.N = v'nV, where n is the number density of molecules per unit 
volume. Assume the index of refraction of air is 1.0003 at standard 
pressure and temperature, and that is depends linearly on density. 

11. It is desired to make a Raman amplifier for very short optical pulses 
using a Si02 fiber as the gain medium. To maximize the interaction 
between the pump pulse and the Stokes pulse, the two pulse must travel 
at the same velocity. Using the data on Si02 from Table 3.1, determine 
what the optimum pump and Raman wavelength will be. Note that the 
two wavelengths must have the same group velocity, and they must be 
separated by 467 cm-1. 

12. A 5 psec pulse at 1.55 J.Lm is coupled onto a Si02 fiber with a 5 J.Lm 
mode field radius. The peak power is 5W. The pulse has a Gaussian 
temporal profile. How far can the pulse travel before SPM has doubled the 
pulsewidth? What intensity is required if this distance is to be doubled? 



REFERENCES 207 

13. Estimate the effective focal length of a 2mm glass slide when it is illumi­
nated by a field 

I(r) = Ioe-r2 /w2 

where 10 = 108 W/cm2, and w = 1 mm. The lens is caused by the 
nonlinear refractive index induced by the strong optical field. This effect 
is called self focussing, and is responsible for creating lots of damage in 
early solid state lasers. 

14. A 10 psec pulse with .A= lJ.tm is transmitted through 30 em of single 
mode fiber. The bandwidth of the pulse doubles. What is the intensity of 
the pulse? 

15. Design an optical fiber amplifier based on stimulated Raman scattering. 
The desired gain of the amplifier is 20 dB, and the maximum power that 
should be extracted is I 0 m W. The signal wavelength is 1.53 J.tm, and 
the fiber displays a 0.3 dB losslkm at the signal and pump wavelengths. 
Determine the optical pump power required, and the pump wavelength. 
Make sure that the amplifier delivers not only the desired gain, but can 
deliver it at the desired output power. 



Chapter 9 

NUMERICALMETHODSFORANALYZINGOPTICAl 
WAVEGUIDES 

1. Introduction 
Analytical solutions of the wave equation exist for only a few waveguide 

structures. Direct numeric solution of the wave equation is possible for many 
structures, although this usually involves iteration to find the approximate eigen­
value. In this chapter we will discuss two methods used to study modes of 
structures which are not amenable to analytic or approximate solution. These 
methods are the Beam Propagation Method (BPM) and the Finite-Difference 
Time Domain method (FDTD). Numerical simulations are needed to evaluate 
special structures such as waveguides with bends or reflective mirrors, split Y­
couplers, and coupled adjacent waveguides [1, 2, 3], or structures which have 
reflections, such as a grating. A Y-coupler, shown in Fig. 9.1, is a simple device 
that connects one waveguide to two waveguides. Since the mode dynamically 
changes as it enters the structure, it is very difficult to calculate the answers 
to questions such as "How much loss will the mode encounter?", "What is the 
optimum angle to split the waveguide?", and so forth. The numerical simulation 
methods allow us to determine these answers. 

Both BPM and FDTD are numerical simulations of the field in a guide, 
in contrast to the numerical solution of the exact wave equation that we did in 
Chapter 6. Simulations are often the only way to determine the mode profile in 

Figure 9.1. A ¥-coupler is a simple device that couples one waveguide into two waveguides. 
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an unusual waveguide, and to map out the behavior of a mode as the index profile 
changes along z. This latter effect is very common in practical devices, such 
as waveguide tapers, or waveguides perturbed by a second nearby waveguide. 

2. Beam Propagation Method 
The Beam Propagation Method works by decomposing a spatial mode into 

a superposition of plane waves, each travelling in a slightly different direction. 
After advancing each wave a certain distance through the dielectric structure 
of interest, the plane waves are added back together to reconstruct the spatial 
mode. This process requires the use of Fourier transforms to convert from the 
spatial mode into the superposition of plane waves, and back again. Therefore, 
we will spend some time discussing the Fast Fourier Transform in the following 
sections. 

We will describe only the scaler BPM technique. Interested readers can use 
this chapter as a springboard into the current literature which describes vector 
beam propagation methods, and other advanced techniques. Before we begin, 
let us apologize for the heavy use of acronyms in this chapter. Besides BPM 
and FDTD, we will discuss FFTs, and several other nondescript symbols of 
modem computing convenience. We will try to define acronyms several times 
so that the reader can find the translation without too much searching. 

2.1 A Note About Numeric Computations 
We will develop numerical procedures for describing beam propagation 

in this chapter. Problems at the end of the chapter illustrate the principles of 
the techniques. Like many of the examples or problems developed in this text, 
the exercises developed in this chapter were done with either Mathematica, or 
Matlab on a personal computer. If you become a serious numerical simulator 
of waveguides, you will probably want to develop or buy specialized software. 
to increase the calculation speed. However, for initial exploration and learning 
how BPM works, we recommend that you simulate simple structures using a 
numerical package such as Matlab. You should first try the techniques described 
in this chapter with simple, one-dimensional structures that will demonstrate 
the algorithms without consuming a great deal of computation time. 

3. Superposition of Waves 
Consider the planar slab waveguide, where the index profile only varies 

in the x direction (Fig. 9.2). Due to symmetry the spatial field is functionally 
independent of they-direction. A guided field in such a source-free dielectric 
structure must be a solution to the (by now familiar) wave equation 

(9.1) 
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Figure 9.2. An infinite slab dielectric waveguide. The wave is presumed to travel in the z­
direction. 

where w(x, z, t) is a vector function describing the amplitude, polarization, and 
direction of field propagation. If the waveguide consists of isotropic regions, 
i.e. the index does not have a gradient profile, the spatial solution to the scalar 
wave equation in each region of space is simply a plane wave 

(9.2) 

where Ai is the amplitude in the region i, and the k-vector (described in terms 
of its components) depends on the frequency of the wave and the local index 
of refraction, and can be real or imaginary. Note that the k vector components 
are the generalized forms of /3, K-, and 'Y· Boundary conditions connect the 
solutions at the interfaces separating the different regions. Plane waves are the 
natural solution to the wave equation. 

Since the wave equation (Eq. 9.1) is linear, any linear superposition of 
solutions will also constitute a valid solution. This important fact forms the 
foundation of the technique used to numerically analyze the fields in a wave­
guide. We will use a superposition of plane waves, each with identical angular 
frequency w but different values of k, to describe the general mode of a wave­
guide. The plane waves form a basis set for the mode description. 

4. The Fourier Transform in Guided Wave Optics 
Describing a spatia/function, w(x), in terms of a superposition of plane 

waves, exp(jkx), 
(9.3) 

should remind you of the Fourier Transform. To illustrate, consider a one­
dimensional electric field distribution with a Gaussian distribution. 

2/ 2 w(x) = Eoe-x Xo (9.4) 

Fig. 9.3 shows a Gaussian profile, where the characteristic width is chosen to 
bexo = 8J.Lm. 

The Gaussian profile describes the lowest order mode in a parabolic index 
profile waveguide (see Chap.2). Also, readers familiar with the modes oflaser 
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Figure 9. 3. The amplitude distribution of a Gaussian mode. 

beams in free space will recognize this profile as the fundamental TEM00 mode 
of a Hermite-Gaussian beam. 

To describe this transverse spatial mode in terms of a superposition of plane 
waves, eikx, we employ the Fourier transform pair, 

w(x) = 2_ 100 A(kx)dk.,xdkx 
27r -oo L: w(x)e-jk.,xdx (9.5) 

where kx is the x-component of the wavevector, k. The transform of lll(x) 
yields A(kx), which is a complex number that contains information about the 
amplitude and phase of each plane wave component. Eq. 9.5 can be readily 
evaluated to give the amplitudes 

A 1 -1r2x2k2 
k =--e ox 

"'R 
(9.6) 

Recall that the magnitude of k is identical for all components in a mode; only 
the kx and kz components vary. Simple trigonometry provides the value of the 
z-component of the wavevector: kz = Jk2 - k~. The largest k-vector has 
kx = 0, corresponding to a plane wave travelling along the z-axis. From Eq. 
9.6, as the kx component increases, the amplitude of the plane wave decreases. 
The amplitude and direction ofthe individual plane waves that comprise a spatial 
amplitude distribution are shown schematically in Fig. 9 .4. The length of each 
arrow represents the plane wave amplitude, Ak, while the direction indicates 
the orientation of the k-vector. 

The Fourier transform pair in Eq. 9.5 allow us to readily convert a wave 
described in the spatial domain (lll(x) to a wave described in phase space do­
main (lll(k). In the Beam Propagation Method (BPM) propagation effects are 
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Figure 9.4. A spatial amplitude distribution, IJ! ( x), is equivalent to a superposition of plane 
waves, IJ! ( k), each with a slightly different amplitude (indicated by length of arrow) and direction. 

calculated using the phase space representation, and phase shifts caused by the 
waveguide structure are introduced using the spatial representation of a mode. 
We will use both of these transfonns to alternately convert a spatial field into a 
superposition of plane waves, and back again. 

4.1 The Fast Fourier Transform (FFT) 
To take advantage of numerical computers for calculating Fourier trans­

fonns, we will use the discrete Fourier Transfonns based on what are generically 
called Fast Fourier Transfonns (FFT). FFT algorithms are widely available in 
literature[4], and are common features in engineering and mathematical numer­
ical software packages for workstations and personal computers. Application 
of the FFT to optical propagation problems is discussed in ref. [5]. The Fast 
Fourier Transfonn (FFT) is closer in operation to a Fourier series than to a 
Fourier transform. Recall that a Fourier series is used to describe a periodic 
function in tenns of a discrete set of sinusoidal basis states. The FFT describes 
a distribution in tenns of a large but finite number of discrete sinusoidal waves 
with appropriate amplitude. The effect of discrete sampling can lead to the 
creation of aliases of the wavefonn. This fact will introduce a complication in 
the BPM calculation. 

To find the FFT of a spatial profile, the profile must first be represented 
as a numeric array. The sampling resolution must be fine enough to resolve 
all spatial features of the amplitude profile, yet at the same time be sparse 
enough to allow reasonable processing speed on a computer. This trade-off 
is obviously something each designer must address based on their personal 
computing capabilities and patience. In the calculations that follow, an array 
with 100 points proved adequate to see the desired behavior. 

Let's begin a demonstration of the BPM using the Gaussian mode profile 
shown in Fig. 9.3. Since evanescent amplitudes follow an exponential decay, 
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Figure 9.5. The sampled profile of a Gaussian mode, taken with I 00 samples. 

they never truly go to zero. Theoretically there will be some error introduced 
when we restrict the spatial domain to something less than infinity. If we extend 
the sampling domain out to three or four characteristic decay lengths (the decay 
length is defined as lh for a slab waveguide), we will usually get satisfactory 
results. In this example, we sampled the profile in Fig. 9.3 at 100 equally spaced 
discrete points ranging from x = -25p,m to x = 24.5J.I.m. Since the profile is 
assumed to be periodic in an FFT (this means that the algorithm assumes that if 
it looked at points 101 to 200, it would find another gaussian wave ofthe same 
shape and amplitude centered near point 150), the data point at x = - 25J.I.m is 
the same as at x = 25J.I.m, so it is important to not include this point twice in 
the array. That is why the domain is selected as shown. Fig. 9.5 graphically 
shows the resulting array. The abscissa is the array index, not the position. 

Having established an array, we can compute the Discrete Fourier Trans­
form ofthe spatial profile in order to determine the superposition of plane waves 
that comprise the mode. As before, we will use Mathematica for calculations; 
other packages such as Matlab, or Maple have equal abilities. To create the 
data for the Gaussian profile with xo = 8ttm, to find the FFT, and to observe 
the intermediate results, we used the following Mathematica commands 

mode= Table[Exp[-x-2/64], {x, -25, 24.5, 0.5}]//N; 
ListPlot [mode] 
fftmode=Chop[Fourier[mode]]; 
ListPlot[Abs[fftmode], PlotRange-> All] (*magnitude of FFT •) 
ListPlot[Arg[fftmode], PlotRange ->All] (*phase of FFT *) 

Any good Mathematica reference[6] describes these commands. Briefly, 
Table creates an array of 100 points which sample the Gaussian amplitude 
profile over the range from -25ttm to +24.5J.I.m. The data in this table were 
plotted in Fig. 9.5. Chop converts any number less than 10-10 to zero, re­
ducing round-off noise. If we do not do this, the phase of the output, which is 
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Figure 9.6. The FIT of the Gaussian profile is plotted as a function of the array index. Note the 
symmetry of the FFT; the magnitude of the value at s = 2 is identical to the value at s = 100, 
etc. 

determined by the ratio of the imaginary and real components, can show extreme 
variations when, in fact, the magnitude ofthe actual amplitudes are negligible. 
ListPlot plots the values of an array. Since the Fourier transform of an arbi­
trary input will in general be complex, we need to specify the magnitude (Abs) 
or the phase ( Arg) when plotting the output of a FFT computation. 

The FFT of theN-point array is itself anN-point array, found by approximat­
ing the integral in Eq. 9.4 with a discrete summation. TheN complex numbers 
which describe the spatial amplitude are converted into N complex numbers 
which correspond to the amplitude and phase of each planewave component 
with kx = 211'(s- 1)/ H, where His the spatial size of the sample, and s runs 
from 0 toN. 

The magnitude of these amplitudes for the Gaussian profile are plotted in 
Fig. 9.6, where the abscissa is the s index. There are in fact 100 points in the 
FFT, exactly the same number as are in the amplitude array. The appearance of 
the FFT is a little strange at first glance. Instead of producing a smooth peak 
in k-space, we find a distribution with non-negligible values near s ~ 0 and 
8 ~ 100, but very little magnitude at mid-range values. 

The strange structure of the FFT arises because the Fourier transform is 
calculated on a discrete array of samples from the actual waveform. The value 
of the FFT at 8 = 1 corresponds to the average value of the spatial profile, 
the kx = 0 term of the expansion. The next few terms describes the kx = 
271'(8 -1)/ H components of the transverse k-vector, where His the domain of 
the spatial wave. Each additional point corresponds to the next higher transverse 
component. In this example we chose H = 50J.tm. From the FFT, it is clear 
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Figure 9.7. The phase of the DFT of the Gaussian wave shown in Fig. 9.5 is plotted as a 
function of the array number. The phase is either 0 or 1r, indicating that the wave is everywhere 
real. 

that there are not many high order transverse components needed to describe 
this mode. 

Now, what about those terms nears = 100? Due to the periodic sampling 
of the mode profile, the terms with s = 99 corresponds to the s = -1 term, 
or kx = -27T"/ H. Similarly, s = 98 corresponds to s = -2, and so forth. 
Physically, these correspond to plane waves travelling with a slight downward 
inclination, while the plane waves with values such as s = 2 correspond to 
plane waves travelling with a slightly positive inclination. 

Fig. 9.7 shows the plot of the phase of the FFT of the Gaussian beam. 
Notice that in the region where there is significant amplitude for E 8 , the phase 
alternates between 0 and 1r. This is equivalent to multiplying every other term 
in the series expansion ofthe mode profile by -1. The phase tells us what the 
wavefront curvature of the beam is. In this case the field is everywhere real, 
indicating that it represents a plane wave. 

4.2 Wavefront Curvature and Complex Numbers 
A wavefront is a locus of points where the phase is constant. Complex num­

bers convey phase information in a wave. Since the equation which describes 
the Gaussian mode, Eq. 9.4, is purely real, the phase is constant as a function 
of r, so the mode has a planar wavefront. If the phase front of the mode had 
some curvature, the phase would change with distance from the axis, and the 
proper description of this would involve using complex numbers. In general, 
the arrays used to describe the spatial waves and the Fourier amplitudes will be 
complex. To illustrate this, consider the mathematical description of a curved 
wavefront shown in Example 9.1. 
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Figure 9.8. A wave originating from z=O has a spherical wavefront as it propagates away from 
the origin. At a distance z1 = R along the z-axis, the wavefronts have a radius of curvature, R. 

Example 9.1 Phase of a curved wave front 

Consider the picture below of a spherical wave travelling in the z-direction. 
How would you describe this wave at the z = z1 plane in terms of complex 
numbers? 

Solution: The amplitude of a spherical wave is described by 

E(r) = Eo e-j(kr-wt) 
R 

where R is the absolute distance from the origin, and Eo is an arbitrary ampli­
tude. Ignoring the time dependence, and using the small angle approximation, 
we can expand this expression near the z-axis. 

E(x,z) Eoe-ik(.fZI+x'Z) 
R 

= Eo e-ikz(yfl+x2fz2) 

R 
~ Eo -jkz(l+x2 /2z) _ Eo -jkz -jkx2 f2z Re - Re e 

Along a plane z = z1. there will be a propagation phase term, e-ikz1 , and 
a term which changes quadratically as the position increases from the z-axis, 
e-ikx2 / 2z1. This represents the curvature of a spherical wave. 

5. Beam Diffraction 
So why are we belaboring Fourier transforms? By describing a real beam 

as a superposition of plane waves, we can develop an accurate method for 
simulating beam propagation which includes effects such as diffraction. In this 
section, we will show how the previous analysis of plane wave superposition can 
numerically determine the beam diffraction of a propagating field. This step, 
incidentally, is the first step in understanding the Beam Propagation Method. 
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Figure 9.9. Geometrical picture of path a plane must follow to move a distance L along the 
z-axis. 

Let's propagate a wave a distance L in the z-direction using the plane wave 
method. We first decompose the spatial profile into a superposition of plane 
waves, and then advance each plane wave component forward to the plane 
z = L. Once there, we will superimpose these plane waves back together 
to form the new spatial mode. Since each plane wave travels in a different 
direction, each will accumulate a different amount of phase due to the path 
length difference incurred travelling to the plane at z = L. How much phase is 
accumulated? Fig. 9.9 shows a geometric argument for the phase shift. 

Every plane wave component of the expansion has a wavevector with mag­
nitude k, that travels in a unique direction. A component travelling at an angle 
() (() = sin-1(kxllkl))with respect to the z-axis will travel a slightly longer 
distance, L' = Ll cos(), to get to plane at Z = L than would a wave travelling 
parallel to the z-axis. Using the small angle approximation for(), and the fact 
that in the FFT, kx = ( s - 1) 27f I H, and I k I = 27f I>.., the phase accumulated 
by each ray is given by 

(9.7) 

where H is the size of the spatial domain of the amplitude profile. The term, 
s, refers to the index of the (s- 1)th spatial frequency component of the plane 
wave superposition. For example, the s = 1 term corresponds to the kx = 0 
term of the Fourier expansion. Each Fourier component will accumulate a 
different amount of phase after travelling along the z-axis becasue they each 
traverse a slightly different path length. 

We are now ready to propagate the optical mode a distance through space. 
We do this in two steps. First, we must determine the plane wave superposition 
that comprises the initial spatial field. This was described above using the 
FFT of the spatial function, E(x). Next, we let each component of the wave 
propagate up to the plane at z = L. Since nothing alters the magnitude of the 
individual plane waves as they propagate, the amplitude of each component 
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remains the same. However, since they accumulate different amounts of phase 
based on the difference in path length, we must add the proper amount of phase 
to each component. The example below illustrates the procedure. 

Diffraction of a spatial mode in free space 

Consider the Gaussian mode shown in Fig.9.5. We will assume that it rep­
resents a TEMoo laser beam with wavelength 0.8 /-Lm, and furthermore we will 
assume that the profile represents the beam at a focus, so the wavefront is planar. 
We will use the BPM to calculate how the beam spreads and develops wave­
front curvature as it travels through free space. Since diffraction theory has well 
established analytic expressions for describing Gaussian beam diffraction, we 
can use these to confirm the operation of the BPM technique. 

We start with an expression for the beam at z = 0. The beam is a simple 
Gaussian profile with characteristic length of 8/-Lm. 

E(x, 0) = Ae-x2182 (9.8) 

where all dimensions are in /-Lm, and A is an arbitrary amplitude which we will 
set to unity. Notice that the wave is everywhere real, showing that the field is 
a plane wave at z = 0. 

We must determine the FFT of this mode by first creating an array of equally 
spaced samples of the amplitude. By inspection ofFig. 9 .l 0, we can see that the 
mode has negligible amplitude beyond ±20 1-Lm from the core axis. Therefore 
we could probably set a spatial domain, H, equal to 40 /-Lm, and not introduce 
significant clipping. However, since the beam will be expanding in the spatial 
dimension, we will choose a larger domain. We chose H = 120 1-Lm after some 
iteration. The Mathematica file used to generate this array and calculate the 
DFT is listed below. 

xo=B; h=120; del=h/100; wave=Exp [ -x-2/xo-2] ; 
discretewave=Table[wave, x,-h/2, h/2-del,del]//N; 
fftwave= Chop[Fourier[discretewave]] 

Fig. 9.10 shows a plot of the sampled mode profile. The last line of the 
code calculates the FFT of the spatial mode, and creates a complex array called 
fftwave. The magnitude (Abs [dftwave]) and phase ( Arg [dftwave] )of the 
components ofthe FFT array are shown in Fig. 9.11 and Fig. 9.12. 

Now we can simulate the effect of propagating a distance L. Eq. 9. 7 describes 
the phase shift each plane wave will accumulate. In this example, where the 
wavelength of the light is 0.8/-Lm, let's first travel 500 1-Lm in vacuum (the index 
of refraction, n, equals unity) and k = 27r I>.. = 27r 10.81-Lm. 

The phase shift accumulated for the s = 1 component (kx = 0) is simply 
koL. Due to the symmetry of the mode and the nature of the FFT, the phase 
shifts = 2 term (kx = 27r I L) is the same as the s = 100 term. Similarly 
the components labelled 1 < s < 50 are the mirror image of the upper terms, 
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Figure 9.1 0. The waveform described in Eq. 9.8 is sampled at 100 discrete points, and the data 
is plotted to confirm the accuracy of the sampling. The horizontal axis corresponds to positions 
ranging from -60 J.lm to 60 J.lm. 
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Figure 9.11. The magnitude of the FFT of array dftwave is shown as a function of the array 
index. In this case, the array index corresponds to transverse momentum of kx = 27r( s -1) /120 
J.lm-1. 
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Figure 9.12. The phases of the Fourier components of the DFT of the spatial mode are shown 
as a function of array index. There is little to glean from this other than to note that all phases are 
either 0 or 180°, implying that the wave has no curvature, imd is therefore a plane wave. This is 
a good test of our calculations. 
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51 :::; s < 100, because the mode is perfectly symmetric. Recall the Fourier 
components labelled by s ;:::: 50 correspond to transverse components travelling 
in the negative x-direction. Once again being careful about the array indices, 
we calculate the additional phase that each wave will accumulate, as a function 
of its index. The Mathematica code is 

k=2 Pi I 0.8; 
1=500; 
phase1[s_] := Tab1e[k 1 ( 1+0.5 (0.8 /h)-2 (s-1)-2), {s,1,50}]; 
phase2[s_] := Tab1e[k 1 ( 1+0.5 (0.8 /h)-2 (101-s)-2), {s,51,100}]; 

phaseshift=Join[phase1[s], phase2[s]]; 

This set of commands creates an array of 100 points, each with a phase shift 
corresponding to that required by Eq. 9.8. The phase corrections are calculated 
in two 50 element arrays that are then concatenated to form a 100 element array 
called phaseshift. 

Once the phase shifts are computed for each spatial frequency term, they must 
be added to each appropriate plane wave. The Mathematica statement below 
describes the transfer into a new wave called newfft, where the magnitude 
of the plane wave has not been affected, so the magnitude of the old wave 
components and new wave components are identical, but the phases are updated. 

newfft = Abs[fftwave] Exp[I (Arg[fftwave] + phaseshift)]//N; 

Note that fftwave and newfft are arrays, and that the operation listed 
above is implicitly an array operation. The I IN at the end of the statement 
forces Mathematica to convert all symbolic values, such as n, into numeric 
values. Note also that the only difference between fftwave and newdft is 
that each component has accumulated additional phase due to propagation. To 
determine the spatial mode at plane z = L, we simply inverse Fourier transform 
the phase space superposition and plot the result. 

newwave= Chop[InverseFourier[newdft]] 
ListP1ot[Abs[newwave], P1otRange->A11] 

ListP1ot[Arg[newmode], P1otRange->A11] 

The output is shown below in Fig.9.13. As the mode propagates along 
the z-axis, it spreads out in the transverse dimension, as we would expect for 
diffraction. We can compute the mode shape further along the z-axis, and 
compare the relative magnitudes. Fig. 9.15 shows the calculated amplitude at 
z = 0, z = 500, and z = lOOOp,m. The amplitude decreases as the width 
increases, conserving total power. 

The amplitude ripple apparent in Fig. 9.15 for the profile at z = lOOOp,m is 
an artifact of the FFT, and is not a true representation of the profile. Due to the 
periodic nature ofthe FFT, high spatial frequency components that travel out of 
the field on the right side of the spatial domain reappear on the left hand side, 
and vice-versa. These spatial frequency components interfere coherently with 
the same frequency components in the original wave and form small standing 
waves. One way to avoid this is to increase the domain size, H, but this just 
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Figure 9.13. The amplitude of the Gaussian field after travelling 500 J.Lm. The peak amplitude is 
decreased, but the width of the mode has increased. The horizontal axis corresponds to ±60 J.Lm. 
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Figure 9.14. The phase of the mode after travelling 500 J.Lm has picked up considerable cur­
vature. The plot shows the phase shift modulo 21!". The phase shift increases quadratically with 
distance from the axis, however the amplitude rapidly decreases, so the phase information is 
only significant near the axis. 

delays the onset of the problem. A second method is to apodize the domain, 
effectively adding an attenuation near the edge of the spatial domain. In the 
beam propagation method, we will introduce the latter method to dissipate these 
waves before they reappear on the other side. 

6. The Beam Propagation Method 
We can apply the principles of beam propagation to a guided wave problem. 

The beam propagation method is motivated by two physical properties of elec­
tromagnetic waves. First, as we have just seen, a wave travelling through any 
region of space will diffract. Second, the phase shift accumulated by the wave 
as it propagates in the forward direction depends on the local index of refrac­
tion. In an inhomogeneous medium, a wave will accumulate phase depending 
on the distance travelled and on the local index of refraction. 
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Figure 9.15. The amplitude profile of the mode at z = 0, z = 500J.lm, and z = lOOOJ.lm. 
Notice that the overall amplitude maintains the same area, but decreases in peak amplitude and 
increases in width. 

The effects of propagation and local index act continuously on the phase as 
the wave travels, but we numerically simulate this process in a series of small 
steps. The local index is modelled as a sequence of "lenses", separated by 
short regions of homogeneous space with index n, which is the average of the 
refractive index that the beam travels through between adjacent lenses. 

The Beam Propagation Method uses a "split-step" process. In the first step, 
the transverse electric field at position z, w ( x, y, z) is decomposed into a su­
perposition of plane waves, Wi(k) = Aiejk;·r, via the Fast Fourier Transform, 
and propagated a distance Llz as if it were travelling through an index n. We 
have already discussed how to perform this first step. Following the propaga­
tion step, an inverse FFT converts the superposition of plane waves back into a 
spatial field. 

The second step adds the phase correction needed to account for the spatial 
structure of the index profile. As the wave propagates from z to z + Llz, 
different parts of the phase front will experience different amounts of phase 
shift depending on the local index of refraction, n(x, y, z). We adjust the step 
size so that the accumulated phase corrections are small following each step. 
Typical step sizes are on the order of a J..Lm. The spatial phase correction is 
added to the spatial wave. The resulting field is a reasonable representation of 
the actual field distribution at location z + Llz. Fig. 9.16 shows this process 
schematically, where index inhomogeneity is lumped into a "lens" at the end 
of each discrete step. These lenses are not like conventional lenses, but are 
generalized to incorporate all the local index properties between adjacent planes 
of the medium. The new field serves as the source field for the next propagation 
step. The BPM repeats this two-step process until the wave has travelled the 
desired distance. 
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Figure 9.16. The optical path is broken into a sequence of finite steps through an average index, 
n, and generalized lenses that incorporate phase shifts due to index inhomogeneities. 

Introducing the lens step is surprisingly easy. For a field travelling along the 
z-axis a distance D.z, the phase can be approximately described as 

4>(x, y, z) = eikon(x,y,z)Llz (9.9) 

The total phase accumulated in propagating from z1 to z2 depends on the index 
of the media along the path. Since the free space propagation step already 
includes a phase shift exp( -jk0 nD.z), the amount of phase shift due to the 
inhomogeneity is simply added to this 

D.4>(x, y, z) = efko(n(x,y,z)-n)Llz (9.10) 

The influence of the local index distribution on the propagation of the wave is 
included by multiplying the spatial wave, w(x, y, D.z) by the phase correction 
D. 4> ( x, y, z) after each free space propagation step. This process is then repeated 
using 4>(x, y, z + D.x) as the source field for the next propagation step. 

Let's look at some examples of implementation. As before, we have chosen 
a one-dimensional example to allow reasonable speed on a small computer. We 
will describe the steps involved in setting up a simple BPM program using Mat­
lab, a commercially available package that is excellent at performing numeric 
matrix calculations. (We depart from using Mathematica here, as Matlab was 
found to be much faster in dealing with FFTs.) This discussion is based on a 
more complete description found in reference [6]. 

The first step is to propagate the spatial mode a distance Doz. This requires 
using a FFT to determine the plane wave expansion, 4> ( kx), then advancing each 
plane wave a distance D.z, and then reconverting the phase space superposition 
into a spatial field using an inverse FFT. Formally, using continuous variables 
to describe the step, the field at position z + D.z is 

1 100 w(x, y, D.z) = -2 4>(kx)e-jk.,x+k.Llzdkx 
7f -oo 

(9.11) 

where kz is the z-component of the k-vector for each ray. Each ray has a unique 
value of kz, given by 

(9.12) 
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Evaluating the integral in Eq. 9.11 using an FFT is straightforward, however, 
the large magnitude of kz makes the phase vary rapidly with .6.z. Since the 
fast phase variation is of no interest to us, we usually separate it from the slow 
variation. This can be accomplished by writing kz as 

(9.13) 

Note that this is a more exact version of Eq. 9.8. In this form, the fast term 
(nko) is distinct from the slow terms. The wave, after propagating a distance 
.6.z in the homogeneous region, can then be expressed as 

ll!(x, y, .6.z) = <I>(kx) exp x .6.z dkx 
e-jnkotl.z J [ -jk2 l 

271" f3>0 nko + Jn2k5- k; 
(9.14) 

We changed the limits of integration to restrict the argument of the exponent to 
purely imaginary values, ensuring that no evanescent waves become included 
in the description of the wave propagation. Physically speaking, a complete 
description of a plane wave expansion requires evanescent waves, as they rep­
resent the loss mechanism to radiation modes. However, the lens step of the 
BPM technique assumes that the rays are travelling essentially parallel to the 
z-axis. For this reason, the expansion is limited to rays that make small angles 
to the z-axis. Evanescent waves are explicitly excluded from the expansion by 
restricting the possible values of kz to real values only. The beam propagation 
method does not provide for energy loss due to radiation, so artificial means 
must be added to dissipate such modes. Restricting the plane wave expansion 
to beams with large area and to waveguides which are weakly guiding helps 
insure that the k vectors will be nearly parallel to the z-axis. 

Finally, we add the contribution from the lens by multiplying the propagated 
spatial field, ll!(x, y, .6.z) by .6.<I>(x, y, z). The process repeats by advancing 
the field forward by one more .6.z. 

7. A MATLAB program for one-dimensional BPM 
To help drive home these points, there is nothing like actually doing some 

examples. You are strongly encouraged to write a simple BPM program using 
a suitable computer programming language. In this section, we describe such a 
program based on the numerical program, Matlab[8]. There is nothing exclusive 
to Matlab which is required for BPM programming, so do not be discouraged 
if it is not available on your system. For our purposes, Matlab was found 
to calculate DFT's and multiply arrays much faster than most other numeric 
software packages. 
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We start with a very simple example that starts with a trial mode profile, and 
launches it down a waveguide. By iteration, eventually the true eigenmode of the 
waveguide emerges, while the rest of the energy is dissipated away. TheMatlab 
program is described here in functional blocks. We wrote the program in block 
form, calling subroutines to do different functions. The program Waveguide 
is a short program of setup commands and subroutine calls: 

[Waveguide] 
format compact 
format long e 
hold off 
units_stuff 
wg_params 
wg_setup 
wg_iterate 

The first three commands modify the output and can be adjusted to the users 
preference. The core of the program occurs in the next four statements. The 
routine uni ts_stuff defines dimensional MKS units in their mathematical 
form: 

[uni ts_stuff] 
cm=le-2; 
mm=le-3; 
um=le-6; 
nm=le-9; 

The routine wg_params defines the waveguide structure. In this example, 
we described a simple triangular-profile waveguide. We chose an array size of 
512 data points to describe the index profile, the spatial mode, and the phase 
correction. A smaller array would be proportionally faster in calculation speed, 
but we found that this size provided tolerable throughput speed. We arbitrarily 
chose a index profile 150 J.Lm wide, with a guiding region 10J.Lm wide. The 
term sig is the 1/ e length for the initial Gaussian mode profile. The step size 
in the calculation is 4 J.Lm. Most other parameters are self-evident. The index 
difference is small, and n (nave) is set to the average value of the two indices. 

[wg_params] 
ns=1.499; 
nf=1.5; 
nave•(ns+nf)/2; 
cladwidth=200•um; 
wgwidth=10•um; 
sig=3•um 
dz=4•um; 
atten=1500; 
aper=40; 
loopnum=250; 
maxiterations=4000; 

for j=1:512; 
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temp=(j-256)*cladwidth/512; 
triangle(j)=ns+(nf-ns)*(abs(temp*2)<=wgwidth)*(1-abs(temp*2/wgwidth)); 
end 

n=triangle; 

The functions aper and atten apodize the beam. As we saw in the 
first part of this chapter, when an amplitude component moves off one side in 
the spatial FFT, it reappears on the other side of the spatial domain. This is in 
contrast to a real waveguide, where we expect energy to continue travelling away 
from the core once it has been shed. There are several methods of apodizing. 
Signal processing algorithms often use triangular filters or Hamming filters to 
proportionally attenuate the extreme spatial components. For BPM we require 
a flat transmission for the central portion of the waveguide, but wish to add 
attenuation in the cladding region to simulate radiation mode losses, and to 
prevent energy from wrapping around and re-entering the waveguide structure 
from the other side of the data array. 

The exact form of the apodizer is up to the user. In this example, we chose 
to add a small attenuation to the cladding far from the region of the guided mode. 
The parameter aper defines the percentage of the aperture where the core and 
cladding are lossless. Here, we defined the clear aperture to be 40% ofthe total 
aperture. The aperture must be larger than the final spatial extent of the guided 
mode to prevent adding unrealistic loss to the simulation. The magnitude of 
the attenuation is set through trial and error: setting it too small obviously does 
not accomplish the desired results, but making it too large leads to a reflection 
at the transition from the lossless to lossy region. Such a reflection will return 
unwanted energy back to the guiding region, degrading the quality of the sim­
ulation. In the region of loss, the amplitude is attenuated by exp( -atten D.z) 
each step. Since in this simulation, D.z = 4JLm per step, and atten = 1500 
m-1, the effective attenuation leads to a decrease of roughly 0.6% of the am­
plitude outside the aperture per step. This will add up to significant loss after 
hundreds of steps, but does not act as a major perturbation to a field upon in­
cidence to the loss region. You will have to explore different values to find a 
suitable value for new parameters. We found this value after trying several runs 
- in our experience the simulations were not strongly affected by the choice 
of the attenuation. You may wish to explore other types of apodizing function. 

Choosing the step length, D.z, depends on the guiding structure and wave­
length. To stay within the region of validity for the BPM, D.z should satisfy 
[9] 

(9.15) 

where ke is the largest transverse component of the wavevector describing the 
guided electric field, and kw is the largest spatial frequency required to describe 
the index profile, if it were described as a Fourier superposition. To first order, 
the maximum spatial frequencies needed to describe both the electric field and 
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the index profile can be approximated as 

27r 
kE~­

Xo 
(9.16) 

where x0 is the characteristic half width of the mode, and w is the half width of 
the waveguide. If we apply this criterion to the waveguide in this example, where 
x0 is approximately 1 0 J.Lm for the eigenmode, and w is approximately 5 J.Lm, 
we find that ~z < l2J.Lm. Our choice of ~z = 4J.Lm satisfies this requirement. 
The advantage of a larger step size is that the calculations run faster. If ~z is 
chosen to be too large, the simulation might provide an unreliable result. A 
good test is to repeat a calculation with a smaller ~z to see if the final solution 
changes. 

The next subroutine is wg_setup, which defines most of the parameters 
used in the other subroutines, and defines the phaseshifts according to Eq. 9 .14. 

[wg_setup] 
aper=round(512*aper/100); 
iterations=O; 
lambda=1•um; Y,define a wavelength 
k0=2•pi/lambda; 
od=atten•[ones(1,256-fix(aper/2)),zeros(1,aper),ones(1,256-fix((aper+1 
a=cladwidth/2/pi; 
i=sqrt(-1); 
k=[0:255 -256:-1]/a; Y,define the transverse wavevectors 
x=cladwidth•(-0.5+(0:511)/512); 
phase1=exp(i*dz*(k.~)./(nave•kO+sqrt(max(O,nave~•kO~-k.~)))); 
phase2=exp(-(od+i•(n-nave)•kO)•dz); 
phase2=fftshift(phase2); 
axis([-cladwidth/2 cladwidth/2 0 2]); 
plot(x,(n-ns)/(nf-ns)/10+1,'-g' ,x,od/atten,'-b'); 
disp('Press a key ... '); pause; 
v=exp(-(x/sig).~); Y,this is the initial amplitude profile 
initialpower=sum(v.•conj(v)); 
ov=v; 
plot(x,ov); 
hold on; 

The transverse wavevector, kx is an array of 512 points, ranging from 
kx = -256 x 2rr I cladwidth, to kx = +255 x 2rr I cladwidth. We chose 
a Gaussian amplitude profile for convenience, and because it can be adjusted to 
provide a close approximation to most waveguide modes through the parameter 
sig. The array vis our initial guess at what the mode profile will be. 

The phase terms are calculated as described in the text above. Note that 
the attenuation is included in the "lens" term of the phase corrections. We also 
calculate the total power residing in the mode by computing the integral of the 
square of the amplitude. This is done in the variable ini tialpower, and serves 
as a normalization point for future calculations. 
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Finally, we get to the main computational part of the BPM program in 
the final subroutine,wg_i terate. This takes the trial amplitude distribution, 
labelled as v, and performs an fftshift on the data in the array. This simply 
switches the first half of the array with the second half, putting the ends of the 
data array in the middle. This counters the effect we observed earlier where the 
FFT of an array ends up with the Fourier components at the two extremes of the 
array. The heart of the BPM program resides in the single loop, where the trial 
amplitude distribution is repeatedly propagated (fft ( v) . *phase 1 ), multiplied 
with a phase correction ( *phase2) and then inverse FFTed. The results are 
plotted on the computer screen after a reasonable number of iterations, so that 
the user can watch the evolution of the amplitude profile. 

[wg_iterate] 

v=fftshift(v); 
while iterations<maxiterations; 
for loop=l:loopnum, 
v=ifft(fft(v).*phase1).*phase2; 

iterations=iterations+l; 
end 
clg 
plot(x,abs(fftshift(v))); 
end 
v=fftshift(v); 

We will use two examples to demonstrate the utility of the BPM. First we 
will use BPM to find the amplitude distribution in a graded index slab waveguide 
with a triangular profile. Then we will simulate a mode propagating through a 
coupled waveguide. 

Let's first find the shape of the eigenmode for a triangular waveguide. We 
will use the profile triangle described in wg_params, and set the trial mode 
characteristic width to 3JLm. We intentionally made the mode narrower than 
reasonably expected so the dynamics of the BPM process will be illustrated. 
Fig. 9.17 shows a sample of the output as a function of the distance the simulated 
mode has travelled down the waveguide. The initial field distribution is a narrow 
Gaussian spike located at z = 0. This initial spatial mode can be described as 
a superposition of guided and radiation modes of this waveguide. As the initial 
amplitude distribution propagates forward, the non-guided components begin 
to travel away from the guiding layer. The eigenmode becomes distinguished 
after travelling about one millimeter. The broad pedestal that the eigenmode 
sits on represents unguided energy that is radiating away from the waveguide. 
The unguided energy extends beyond the clear aperture, and suffers attenuation 
with each step of the calculation. Eventually the non-guided energy is totally 
dissipated. 

We can see an artifact of the calculation in the ripples that form on the 
pedestal for the plots between z = 1 and z = 2 mm. These ripples arise from 
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Figure 9. 1 7. Results of a BPM run on a triangular index slab waveguide. A trial mode with a 
Gaussian profile is launched at z = 0. As it travels down the guide, the unguided energy radiates 
away, while a guided mode emerges after suitable distance. 

interference between the outward bound waves and those that have wrapped 
around from the other side that were not totally attenuated before reaching 
the boundary of the domain. After sufficient propagation, these interference 
features are damped out. 

The BPM successfully determined the shape ofthe mode for the triangular 
waveguide. The waveguide acted as a spatial filter to the input field distribution, 
eliminating all energy except that in the waveguides fundamental mode. We 
could substitute any reasonable index profile into the program, and use the same 
technique to find the eigenmode. 

8. Waveguide Coupler 
The beam propagation method is often used to evaluate the performance 

of either a coupled waveguide, a Y-junction, or some other complex structure. 
We know that the field of a confined mode extends out beyond the core region. 
These evanescent tails can transfer energy from one waveguide to another if the 
dielectric structure is suitable. We will explore the theory of energy transfer and 
mode coupling in the next chapter. Here, we want to use BPM to "experiment" 
with a coupled waveguide structure. As an example, we will examine the 
propagation of a mode on a waveguide which is located adjacent to an identical 
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Figure 9.18. Index profile oftwo slab waveguides separated by only 4 f.lffi. 

guide. The index profile for this structure is plotted in Fig. 9.18. The coupler 
consists of two identical step-index waveguides with core thickness of 10 J..Lm 
situated approximately 4 J..Lm from each other. The evanescent field of either 
guide extends into the other guide. 

To begin the analysis, we launch a mode which is close to being an eigen­
mode of one of the individual waveguides. We found by simple trial and error 
that a Gaussian profile with a 1/e length (sig) = 7 J..Lm gave an excellent ap­
proximation to the actual mode of the waveguide for 1 J..Lm wavelength light. 
We wrote the program to launch the initial mode into the right hand waveguide 
at z = 0. Fig. 9.19 shows the evolution of the mode profile as it propagates 
down the waveguides. Each snapshot of the mode is taken after the field has 
propagated l mm down the waveguide. We see an evolution of the mode energy 
as it propagates along the coupled waveguide structure. After travelling approx­
imately 4 mm down the waveguide, the energy has completely transferred over 
to the left hand guide. As the beam continues to propagate, the energy transfers 
back to the original guide. This process will continue indefinitely so long as 
the waveguides do not change their relative position or dimension. This is an 
extremely useful effect which can be exploited to make many practical devices 
such as couplers, taps, interferometers, and wavelength selective filters. For ex­
ample, if the waveguides were brought together for only l mm, approximately 
10% of the power from the first waveguide could be tapped, while the remaining 
90% of the energy would continue along the main channel. The BPM method 
can be used to explore the effect of waveguide separation or mismatch on the 
coupling rate and efficiency. We will explore the theoretical basis for this be­
havior in the next chapter. We leave it as an exercise to show that the transfer 
rate of energy decreases as the waveguide separation is increased. 

The relevant Matlab code for the index profile and initial amplitude dis­
tribution are listed below. 
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Figure 9_19. The power in a coupled waveguide transfers back and forth as it propagates along 
the guide. The index profile is shown below the mode profiles. 

wgsep~14•micron; 

for j~1:512; 
coupledindex(j)~s+(nf-ns)•(abs(abs(j-256)-wgsep* 

256/cladwidth)<wgwidth•256/cladwidth); 
end; 

v~2•exp(-((x-wgsep/2)/sig). ~2); where wgsep is the distance between 
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the centers of the coupled waveguides (in 11-ms), and the initial amplitude profile 
is offset to overlap the right hand waveguide. 

9. The Finite-Difference Time-Domain ethod 
The BPM technique provides an excellent way to evaluate the spatial struc­

ture of a mode as it propagates through a waveguide. But if the waveguide 
has sharp changes in index that could result in a reflection, the BPM fails to 
account for the reflected wave, or for possible interference effects between 
the forward and backward wave. Since many optical devices rely on interfer­
ence based on reflections to function. Other techniques are needed to simulate 
such structures. The Finite-Difference Time Domain (FDTD) technique is a 
powerful method for such simulations. FDTD basically calculates a numeric 
solution to Maxwell's equations, therefore so long as errors due to round-off 
do not arise, the simulations are exact. We will outline the basic steps of the 
FDTD method,and develop a simple code to demonstrate how it operates on 
time domain problems. The purpose is not to develop a program that competes 
with commercial code, but simply to provide the user with an operating insight 
into how the program works. We will follow the development by Sullivan in 
reference [ 1 0] 

The time dependent Maxwell curl equations in free space are 

VxE = -!!~ 
aH 

=-J.Lo-at 

VxH _aD aE 
(9.17) -m =Eo-

at 

We will consider the simplest, one dimensional case, where the wave is propa­
gating in the z direction, and the fields are Ex and Hy. In this one-dimensional 
system the curl equations dramatically simplify to 

aEx = _ _!_ aHy 
at Eo at 

aHy 1 aEx 
at =-J.Lo8t (9.18) 

These are exact equations. We now want to put them in discrete form so that 
a computer can evaluate them. From basic calculus we know the derivatives 
come from the limiting values of finite differences. Using this concept we can 
express the curl equations as 

Ex(t + D.t, z)- Ex(t- D.t, z) _ _!_ Hy(t, z + D.z)- Hy(t, z- D.z) 
D.t . Eo D.z 

Hy(t + Llt, z) - Hy(t- D.t, z) _ _ 2_ Ex(t, z + tlz) - Ex(t, z- tlz~ 
tlt - J.Lo D.z 9.19) 
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To implement this on a computer, the fields Ex(z) and Hy(z) will be stored 
as an array of points which represent the spatial distribution of the fields at a 
given point in time. To describe the temporal evolution of the fields,the data in 
each array must be updated according to Eq. 9.19. Using the superscript n to 
denote the time step (real time is t = n ·At), and an array index k to represent 
position (z = k · Az), Eq. 9.19 can be rearranged into an iterative algorithm 

En+l(k) = En(k)- ~[Hn(k)- Hn(k- 1)] 
x x toAz Y Y 

H;+l(k) = H;(k)- J.L~~)E;(k + 1)- E;(k)J (9.20) 

The two arrays are interleaved in space and time. Notice that the next value for 
Ex is found from the present value and the most recent values of Hy. Similarly, 
Hy is determined by its present value and the most recent values of Ex. 

The equations for E and H are very similar, but the magnitudes of E and 
H will differ by several orders of magnitudes, because the impedance of the 
medium, 'TJ, is typically 100-337!1. If we make a change ofvariables using 
the impedance to normalize the fields 

E = f!f.E 
V J.Lo 

we can form a normalized set of equations 

En+l(k) = En(k)- - 1- At [Hn(k)- Hn(k- 1)] 
x x ~Az Y Y 

(9.21) 

Hn+l(k) = Hn(k)- - 1- At [En(k + 1)- En(k)] (9.22) 
Y Y ~Az x x 

The relation between Az and At is fixed by the speed oflight in free space, 
c. In a one-dimensional case the time step is usually set to 

At= Ax 
2c 

(9.23) 

The factor of two arises because it requires two cycles of iteration in the algo­
rithm above before a field point can actually be updated. The normalizing term 
then simplifies to 

1 At 1 
--- -
~Az 2 

Rewriting Eqs.9.20 in Mathematica code yields 
Do [ 
Do[ 

(9.24) 
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Figure 9.20. The gaussian pulse propagates in both directions. The electric field positive in 
both directions, but the magnetic field is negative in the negative propagating direction. 

ex [ [k]] = ex [ [k]] - 0. 5* (hy [ [k]] - hy [ [k - 1]] ) , {k, 2, kmax - 2} 
] ; 

Do[ 
hy[[k]] = hy[[k]] - 0.5(ex[[k + 1]] - ex[[k]]),{k, 1, kmax- 1} 
], 

50] 

There are three Do loops. The first loop advances the "time" by one step each 
time it runs, so n this case we are advancing the field 50 steps. The number of 
steps can be adjusted as desired. The second Do loop updates the value of the 
electric field, which is in array ex. The third loop updates the magnetic field, 
hy, using the new values of ex. 

The array has to be initialized with an electric field distribution before it can 
propagate a wave. As a first example, consider a gaussian shaped pulse. This 
can be created as shown in the next lines 

kmax = 512; 
ex =Table[ Exp[-(k - kmax/2.)2/200], {k, 1, kmax}]; 
hy = Table[O., {k, 1, kmax}]; 

The gaussian electric field after 200 "steps" is shown in Fig. 9.20. Notice the 
pulses propagates in both directions. Ex is positive in both directions, but Hy is 
negative for the negative propagating pulse. Had we set up an initial distribution 
for the magnetic field that was self-consistent with a pulse travelling in one 
direction, the pulse would not have divided. Because we set Hy = 0 initially, 
the first magnetic field was derived from the initial electric field distribution, so 
two directions emerged. 

The FDTD techniques gets much more interesting when we add some struc­
ture to the propagation path. We can introduce material parameters via the 
permittivity, E. Since the time step is defined in terms of Eo, we can introduce 
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the effect of different refractive indices by redefining the timing step as 

1 tlt 1 
(9.25) 

where Er = r:/r:o. Before we add that feature to the code, we need to take 
care of another detail. Normally to calculate the Ex field, we need to know 
the surrounding Hy fields. This is the fundamental assumption of the FDTD 
process. But, at the end of the array we will not have the value on one side, and 
a reflection results. To eliminate the reflection we need a boundary condition at 
the ends. B~cause the current value of E( k) is determined by a previous version 
of H(k), which itself was determined by an even earlier version of E(k), an 
acceptable boundary condition to prevent reflection is to set En(1) = En-2 (2) 
for the k = 1 end of the array, and a similar condition for the kmax end. This 
provides the "look-ahead" that the fields are expecting as they propagate. The 
code below contains the addition of the boundary condition and the inclusion 
of an array that describes a step increase ofthe index of refraction at k = 250 
to a value of n = yz;: = 3. 

kmax = 512; 
cb = Table[If[k >250,0.33,1], k,1,kmax]; 
Do [ 

Do[ 

ex[[k]] = ex[[k]]-0.5*cb[[k]]*(hy[[k]]-hy[[k-1]]),{k,2,kmax-2} 
] ; 

ex([1]] = exm2; 
exm2 = exm1; 
exm1 = ex [ [2]] ; 
Do[ 

hy[[k]] = hy[[k]]-0.5(ex[[k+1]]-ex[[k]]),{k,1, kmax-1} 
], 

{200}] 
ListPlot[ex, PlotRange -> {-1,1}, PlotJoined ->True] 

To illustate the impact of the index change, we launched a two-cycle sinu­
soidal electric field at the interface. Fig. 9.21 shows the wave this example we 
included a portion of a sine wave (defined in the original array for ex), and had it 
propagate into a dielectric interface. You can see the reflection that results, the 
relative changes in amplitude as the wave enters a higher index medium (note 
especially the magnetic field increases in the dielectric), and the shortening of 
the wavelength in the dielectric. 

The FDTD technique provides a powerful and accurate method for determin­
ing the fields of a waveguide structure, and is especially useful for situations 
where there are reflections. This one-dimensional example is trivial, but the 
technique can be extended to two-dimensional structures without much com­
plication. 
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Figure 9.21. A sinusoidal wave is propagated across a dielectric boundary at k = 250. 

10. Summary 
In this section we introduced the use of numeric techniques to evaluate dif­

ficult index profiles, and to simulate the behavior of modes in a coupled wave­
guide. We began with a description of the Fast Fourier Transform, which is the 
standard tool available for performing Fourier Transforms on a computer. Us­
ing the FFT, we showed that a spatial wave can be described as a superposition 
of plane waves. Once we have a plane wave expansion, we can predict how 
a wave will propagate. We applied this knowledge to free-space propagation, 
and demonstrated how a wave with finite transverse dimension will diffract as 
it propagates. 

We then added one more piece of information to our propagation model. 
We allowed the local index of refraction to modify the cumulative phase of a 
propagating wave. By adding a phase correction to the spatial waveform, the 
combined effect of diffraction and guiding was described. 

We listed a simple one-dimensional BPM program written for Matlab, and 
demonstrated the program by finding the mode profile of a triangular waveguide, 
and by demonstrating the mode coupling that occurs between two identical 
waveguides. These are very trivial examples which demonstrate the operation 
of the BPM technique. More sophisticated models, such as 2-dimensional 
analysis, and including vector analysis, have been developed and are described 
in current literature. 
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Practice problems 
I. Using a personal computer, explore the appropriate commands for evalu­

ating the FFT of a smooth spatial profile. Consider the gaussian function 

(a) Plot this function over the range from x = -20J.tm to x = +20J.tm. 

(b) Create an array containing 50 points that are uniformly sampled over 
the range from -25J.tm to 24.5J.tm. 

(c) Calculate the FFT of this array. Observe the amplitude and phase of 
theFFT. 

(d) Explore the effect of altering the domain of the function. For example, 
decrease the domain of the array from -lOJ.tm to+ lOJ.tm, and repeat 
part c. Does the change in the FFT make sense? 

(e) Explore the effect of shifting the array index on the resulting phase 
of the FFT. Modify the array in part b to include 51 points, including 
the point at +25J.tm. What happens to the phase of the DFT? Can 
you explain this? 

2. Repeat the BPM calculations for the triangular waveguide using a mode 
profile that is exponential in shape (as might arise from a weakly bound 
mode in a symmetric waveguide. Specifically, let 

E(x) = Ae-lxlfxo 

where xo = 8J.tm. 
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3. Explore the effect of beam size on diffraction. Modify the gaussian pro­
file in Fig.9.l0 to effectively double its spatial domain. Follow through 
with the calculation of the beam diffraction based on a FFT analysis as 
described in Sect. 9.4.4. Does the larger beam diffract differently than 
the smaller beam? Is the difference consistent with the diffraction of a 
Gaussian mode? 

4. Explore the effect of wavelength on the diffraction of a beam. Modify 
the mode in Fig.9.10 so that it has a wavelength of 1.5 J.Lm, but still has 
the original characteristic width (8 J.Lm) at z = 0. How does increasing 
wavelength affect diffraction? Is your simulated result consistent with 
diffraction theory for a gaussian mode? 

5. The cause of the ripples in Fig. 9.15 was attributed to the finite size of 
.the domain. Try increasing the initial value of H, and see if this in fact 
the case. 

6. What happens ifthe distance separating the waveguides described in Fig. 
9.18 is changed? Repeat the simulation using a separation of 16 J.Lm and 
l2J.Lm. 

7. The total energy exchange demonstrated in the coupled waveguides in 
Fig. 9.17 is a result of their being identical in structure. What happens if 
the waveguides are not identical? Reduce the dimension of the left hand 
waveguide by 2 J.Lm, and then run a similar BPM analysis, observing the 
coupling of energy between the waveguides. Comment on the period of 
the exchange, and on the completeness of the exchange. 

8. Use the BPM to find the mode shape of a step index profile with a total 
width of 6J.Lm, and a symmetric index profile defined as nf = 1.5 and 
n 8 = 1.498. Compare your result with the exact mode shape determined 
from direct solution of the wave equation. 

9. Extend the FDTD technique to evaluate the propagation of a sine wave 
through a dielectric slab. Try to observe the resonance condition, where 
there is perfect transmission and no reflection. 



Chapter 10 

COUPLED MODE THEORY AND APPLICATION 

1. Introduction 
Mutual coupling between optical modes is essential in the design of in­

tegrated optic devices. In this chapter we will describe how optical energy 
couples between modes within and between optical waveguides. Up to now, 
we have treated the waveguide as an ideal optical wire, which conveys light 
from one point to another in the form of a "mode". We have implicitly assumed 
that these modes, once formed, are unchanging except perhaps through atten­
uation due to absorption. In reality, simple mechanisms can lead to significant 
energy exchange among the various modes of a structure. Coupled mode theory 
describes this energy exchange, and serves as the primary tool for designing 
optical couplers, switches, and filters. 

We will explore a coupling technique that describes the scalar electromag­
netic field of a perturbed waveguide in terms of a superposition of modes of 
the ideal waveguide. More advanced coupled theories are being developed 
everyday, based on vector equations and other considerations. The theory we 
present here will serve as a basic step in understanding these advanced theories. 
Interested readers should explore the references cited. 

2. Derivation of the Coupling Equation Using Ideal Modes 
Consider two proximate single mode optical waveguides, as shown in Fig. 

1 0.1. In each waveguide there are two waves: one propagates in the forward 
direction, and one in the backward direction. Energy transfer, i.e. coupling, 
can occur if the evanescent field from one waveguide extends into the core of 
the neighboring waveguide 

The degree to which two modes exchange energy depends on the design 
of the coupler, and the mode structure of the two waveguides. For example, it 
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2 x 2 Optical Coupler 

A+ A-

" 
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/ 

/ ___.. .___ " s+ s-

Figure 1 0.1. Two waveguides in proximity can couple energy. This device is sometimes called 
a 2x2 coupler. There are four fields that must be considered in the analysis. 

seems plausible in the structure shown in Fig. 10.1 that the forward wave in one 
waveguide (say A+) will primarily couple to the forward wave in the adjacent 
waveguide (B+). The coupling from the forward wave (A+) to the backward 
travelling wave of the other waveguide (B-) will be insignificant unless the 
coupling incorporates some means of reflection. 

Using the principles of superposition and completeness, we can describe any 
waveguide amplitude distribution in terms of a superposition of ideal wave­
guide modes. By "ideal," we mean a waveguide with no perturbations. The 
amplitudes of the modes in the superposition will change only when a pertur­
bation is present. As we have often done with new topics, we will restrict our 
discussion to planar or rectangular waveguides in the discussion below. Stay­
ing in the rectilinear coordinate system makes it much easier to calculate node 
coupling, and is conceptually easier to understand and follow. We will follow 
the development of the coupled mode theory as described by Yariv[l]. 

Consider the planar step-index waveguide structure shown in Fig. 10.2 with 
film index n f of thickness h, and substrate and cover indices, n 8 and nc, re­
spectively. The waveguide can support a finite number of guided modes and 
an infinite number of radiation modes. For this example, assume that only TE 
modes are carried. The electric field of the eigenmodes of this structure satisfy 
the wave equation, 

" 2E ( ) _ 82 Ey(x, z, t) 
v y x, z, t - f.f.J- 8t2 {10.1) 

If f. and 11- are a time-invariant quantities, each mode solution to Eq. 10.1 will 
have the familiar form 

E ( t) _ lA·" ( ) -j(f3;z-wt) + y; X,z, - 2 ~"'y; X e C.C. (10.2) 

where Ai is the amplitude for mode i, and Ey; ( x) is the normalized amplitude 
distribution for mode i, given by Eq. 3 .20 for the asymmetric slab waveguide. 
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Figure 10.2. A waveguide can support both guided and unguided modes. These are nominally 
independent of one another in the absence of any coupling. 

If there are no perturbations in the waveguide, (e.g., if the dimensions of the 
waveguide do not change with position, and there are no changes in the dielec­
tric constant of the three films) the modes will be completely independent from 
one another. However, any deviation from this well defined waveguide structure 
perturbs the modes and couples energy between them. In the analysis which fol­
lows, we describe the perturbation in terms of a distributed polarization source, 
Ppert. which accounts for the deviation of the dielectric polarization from that 
which accompanies an unperturbed mode. Perturbations can arise through two 
mechanisms: either the dielectric constant of the structure is modified (~t) 
from what the mode expects to see, or an electric field from a second source 
appears in the waveguide, and excites a mode of the structure. 

Why is polarization the preferred method for solving these problems? Recall 
the constitutive relation for electric flux 

D =tE= toE+P (10.3) 

The effect ofthe media is to increase the local displacement flux by a value of P. 
Any deviation from the normal dielectric constant of a guided wave structure 
leads to a perturbation in the polarization, Ppert. defined through the expression 

D = tE+Ppert (10.4) 

Substituting Eq. 10.4 into the wave equation yields 

V'2 E - 82 Ey 82 Ppert 
y - fJ,f 8t2 + fJ, 8t2 (10.5) 

where the polarization perturbation clearly stands out as a driving force in the 
equation. 

To solve this equation, we use standard perturbation theory techniques. First, 
the term Ppert is set equal to 0, and the eigenmodes of the unperturbed structure 
are found. The eigenmodes are symbolized by the notation, e. Then we seek 
a solution to the perturbed wave equation in terms of a superposition of the or­
thogonal eigenmodes. Since the eigenmodes of the waveguide form a complete 
set, any continuous electric field distribution, E(x), can be described in terms 
of the modes of the system 
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E(x) =! I:i At(z)£i(x)e-i(/3;z-wt) +! I:i Ai(z)£i(x)ei(/3;z+wt) 

+! J::::: A(,B, z)£13(x)e-j(f3z-wt)d,B + c.c (10.6) 

where £i ( x) are the spatial amplitude distributions for each mode, and A± are 
the amplitudes of the forward or backward travelling wave, respectively. The 
terms .Bi represent the mode propagation coefficients for individual modes. The 
factors 1/2 in front of the amplitude terms arise from describing the real elec­
tric fields in terms of their complex exponential form and complex conjugate. 
The complex conjugate terms are implicit in these calculations. Note that the 
superposition includes a sum over modes travelling to the right (A+), as well 
as the left (A-). Each pair of oppositely directed modes has the same spatial 
distribution, £i ( x ), and the same magnitude propagation coefficient, ,B, but they 
differ in the direction of propagation. The superposition also includes the so­
called "radiation modes." These modes are essential to describe any arbitrary 
electric field as a superposition of eigenmodes of the system. All examples 
considered in this chapter concern coupling between discrete guided modes, so 
we will neglect radiation fields. However, radiation modes are important when 
dealing with grating or prism couplers. 

Our goal is to develop an expression for the coupling between the amplitudes 
of the individual modes of the waveguide. If there is no coupling between the 
modes, the individual amplitudes, Ai, will be constant in time and position. If 
coupling exists, the amplitudes will vary with position. To derive an equation 
of motion for the amplitudes, we plug the general solution, Eq.l 0.6, into the 
perturbed wave equation, Eq. 10.6. The eigenmodes, £i(x), satisfy the unper­
turbed equation, so many terms drop out. The details of the algebra are left as 
an exercise. The perturbed wave equation reduces to 

1"" [fPAt 2 ·a oAt] C' ( ) 1·(/3·z wt) 2 "7' {)z2 - JJJiBz '-i X e- ' - + C.C. 

+ ~ I:i [ a;:i + 2j,Bi 8ff[] £i(x)ei(/3;z+wt) + c.c. 

82 n = J.L 8fi .r pert (10.7) 

The effect of the perturbation is to change the amplitudes of the modes in the 
superposition. If we assume that the perturbation causes "slow variations" in 
the amplitude, then the second derivative terms are negligible ( 8 2 Ai/8z2 « 
,B8Ai/ az). The final equation of motion for the amplitude is given by 
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+ ~ Z:i [ +2},8/:;] £i(x)ej(f3iz+wt) + c.c. 

{)2 n = Jl7Jt'1 r pert 
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(10.8) 

This is a complicated equation: it involves the sum over a large number of 
modes. We can simplify the equation using mode orthogonality. The normal­
ized eigensolutions to the wave equation satisfy 

~ j £·(x) x H ·(x)dA = 8 .. 2 2 J . 2) (10.9) 

where H is the normalized magnetic field eigenmode. The term Oij is the 
Kroenecker delta function which is unity if i = j. If the fields can be described 
by a scalar equation (i.e. there is no coupling between the x, y, and z fields 
in this structure), Eq. 10.9 can be cast into simpler form requiring only a 
spatial description of the electric field. Assuming that we are using aTE mode, 
Maxwell's equations can be used to express Hx in terms of Ey, for normalized 
fields ! 00 2WJ-L 

-oo Ci(x)Ej(x)dx = f3i Oij (10.10) 

with units ofW per unit length (time average power). A similar condition can 
be derived for TM modes. 

Using mode orthogonality, we can simplify the series terms in Eq. 10.8 by 
multiplying both sides by £j(x), and integrating over x. 

aA-:- oAf _ · 02 !oo __ 1 ej({Jz+wt)- _1_e-j({Jz-wt) + c c = ___]__ P, t(x). £·(x)dx oz oz · · 2w [)t2 _ 00 per 1 

(10.11) 
This is the primary equation for determining mode coupling. Notice that the 
degree to which the amplitude of mode j changes is directly proportional to the 
overlap of the perturbation (Ppert) and the modal distribution of mode j (Ej). 
The more complete the overlap, the stronger is the coupling. Also note that if 
the perturbation is null, the mode amplitudes will remain constant. 

In spite ofthe simplifications, Eq. 10.11 is still a difficult differential equation 
to solve. The right hand side of the equation is the driving force for changing 
the amplitude of the forward and backward waves. The differential equation 
is solved by integration over z, keeping in mind a few tricks. If the driving 
term and guided mode have different temporal frequencies, the interaction will 
average out to zero over a time long compared to their difference in frequencies. 
Therefore, only terms of similar frequency need be retained in the equation. 
Second, the driving term and guided mode should have nearly the same spatial 
phase dependence so that the interaction does not average out to zero over 
distance. Terms which do not satisfy this condition have negligible impact on 
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Figure 10. 3. A dielectric waveguide with a notch defect in it acts as a perturbation to the guided 
modes. The notch extends a distance 2a, and is h/1 0 deep. 

the solution. Based on these considerations, we can usually disregard one of 
the terms on the left hand side of Eq. 1 0.11. 

Finally, there are two regimes of coupled mode theory: weakly coupled, and 
strongly coupled. In a weakly coupled system, we can to first order ignore 
changes in the amplitude of the driving field. The amplitude of the driving 
field will only change in second order. In strongly coupled situations, the mode 
amplitudes will oscillate, sometimes exchanging all of their energy between 
each other. These cases require exact solution of the coupling equations. We 
will examine examples of both. 

3. Nondegenerate Coupling Between Modes in a 
Waveguide 

When two orthonormal modes have identical values of (3, we must use degen­
erate perturbation methods for solving the equation of motion. Such examples 
arise in circular fibers where one spatial mode can have two orthogonal polariza­
tions, or in codirectional couplers was shown in Fig. 10.1. "Non-degenerate" 
coupled mode theory applies when two modes with different (3s are coupled. 
Non-degenerate modes generally display weak coupling. We will explore non­
degenerate coupling in this section. 

3.1 Coupling Due to a Dielectric Perturbation. 
We begin with the simple case of a perturbed single mode waveguide, and see 

how a dielectric defect can couple a mode's forward wave to its backward wave. 
Consider the symmetric slab waveguide shown in Fig. 10.3. The waveguide 
consists of a guiding film, n 1, of thickness h, surrounded by a cladding index, n2. 
A small dielectric notch of depth h/10 and length 2a in the core region perturbs 
the waveguide structure. Assume that the waveguide is a single mode structure, 
and that for z >a there is no backward travelling wave, A- (z >a)= 0. 

The mode expects to see an index of n 1 when it gets to the notch region, but 
instead finds the index is n2. This is a perturbation. To begin our analysis, we 
must determine the unperturbed modes of the waveguide. In the case of the 
symmetric waveguide, we have already calculated the exact form of the ampli-
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tude distribution (Eq. 3.26). We can use Eq. 3.29 to describe the eigenmode 
of the waveguide 

ce-"t(x-h/2) forx 2': h/2 

Ccos K,X/ cos /'\,h/2 for- h/2:::; x:::; h/2 

Ce"t(x+h/2) for x:::; -h/2 (10.12) 

where the coefficient, C, is chosen to normalize the power in the waveguide 
to a value of 1 W per unit length (in agreement with Eq. 10.9). The specific 
values of K,, "f, and {3 are determined from the eigenvalue equation (Eq. 3.30 
or 3.31) for this structure once h, n1, and n2 are specified. We assume this has 
been done, and all eigenvalues are known. 

To determine the coupling, we must describe the perturbation term. In this 
example, the polarization perturbation, Ppert(x), is the product of the change 
in dielectric constant, Eo ( n~ - ni), and the electric field of the forward wave, 
E(x) 

Ppert(X) b. EEl 

Eo(n~- ni) [~A+£(x)e-j(J9z-wt) + c.c.] 

for 0.4h < x < 0.5h, -a< z <a (10.13) 

0 elsewhere. 

Notice that the perturbation term exists only in the notch region. Everywhere 
else in the waveguide the mode sees an index distribution that it would normally 
see without the perturbation. The amplitude equation of motion becomes 

8A- oA+ 
8zej(}9z+wt) _ 8ze-j(}9z-wt) + c.c. 

lo0.5h 

PpertEy (X) dx 
0.4h 

(10.14) 

. 2 0.5h 2 -] ~ I ( 2- 2)ICI2 ( COS K,X ) [~A+ -j((3z-wt)d ] 2w 8t2 Eo n2 nl cos /'\,h/2 2 e x + c.c. 
0.4h 

jwEo(n§-ni) [~A+ -j((3z-wt)d ]lo0.5hiC12( COSK,X )2d 
2 2 e X + C.C. hj X 

0.4h cos/'\, 2 
jK(A+e-j(}9z-wt) + c.c.) 

where K is the coupling constant defined as 
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2 2 0.5h 2 

JC wt0(n2 - n 1) j ICI2 ( cos,..x ) dx 
4 COSK,h/2 

for -a< z <a 
0.4h 

= 0 elsewhere. (10.15) 

Notice that the coupling constant is determined by the overlap of the coupled 
modes in the perturbation region. In this one dimensional problem, we only 
integrate over the x coordinate to determine the coupling coefficient. Multiply­
ing both sides of Eq. 10.14 by ei(f3z-wt) yields an equation of motion for the 
amplitudes 

(10.16) 

To solve Eq. 10.16, we must integrate both sides. The first term average to a 
small value when integrated over a distance large compared to ( 2/3) -l. Thus to 
first order we can drop the A- term, leaving the simplified equation of motion 

_ dA+ = jJCA+ 
dz 

(10.17) 

which, when integrated over z, and applying the initial condition that Ao = 
A( -a), has solution 

(10.18) 

Thus we see that the amplitude of the field does not change (to first order), but 
the perturbation ( a small region oflower index material) alters the phase of the 
wave. The forward wave in the region of the perturbation will be (note IC is 
negative) 

A+(-a) . 
E(z) = e-J(f3+JC)z for -a< z < a 

2 
(10.19) 

You should see an analogy between this solution and that obtained when we 
used perturbation theory to clean-up the solutions to rectangular waveguide 
structures in Chapter 5, Section 5.3. 

What about the reflected component, A- ? To find a first order solution 
for A-, we must assume that the forward wave, A+, does not change, so 
oA+ foz = 0. Except for a slight phase change, this is true. The coupling 
equation becomes 

-a<z<a 

This can be directly integrated, noting that A-(a) = 0, to yield 

- 'JCA+ 
A- (-a) = J f3 sin[2f3a] 

(10.20) 

(10.21) 
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Figure 10.4. A dielectric perturbation can couple one mode to another within the waveguide. 

To first order, the coupling of the forward wave to the backward wave is maxi­
mized when 2(3a = (q + 1/2)-rr, where q is an integer. In terms of a, maximum 
reflection occurs when 

(q + 1/2)71" 
a= 2(3 (10.22) 

The behavior of this structure is similar to that of a half-wave dielectric stack 
used to make mirrors. Similarly, choosing a quarter-wave length for a will min­
imize the reflected term. The maximum amplitude of the reflection depends on 
the ratio K/ (3 , which is usually small. Generally speaking, maximum coupling 
will occur between a forward and backward wave when the spatial frequency 
of the perturbation is approximately 2(3. 

3.2 Intermode Coupling 
Consider the same structure as in Fig. 10.3, but let it now be a multimode 

waveguide. Assume that mode A consists of a forward wave, and it strikes the 
defect at z = -a. How much power does this defect couple from the first mode 
into a second mode? 

As before, we first solve the unperturbed wave equation to determine the 
eigenmodes of the waveguide. These modes will be of the same form as in Eq. 
2.29, but each mode will have a distinct value of (3 . The specific form for the 
two spatial modes is: 

Ea(x, t) = [(A/2)Ea(x)e- j(.Baz-wt) + c.c.] 

Eb(x, t) = [(B/2)£b(x)e-j(,6bz-wt) + c.c.] (10.23) 

We assume that for z < -a, all the optical energy is in mode A. The coupled 
mode equation for the amplitude of mode B is then 

- oB+ e-i(f3bz-wt) + {)B- ei(f3bz+wt) + c.c. = _j_!:_ !"" P, ertEb(x) dx 
oz 8z 2w 8t2 -oo P 

(10.24) 
In this case, the perturbation term arises from the presence of electric field from 
mode A in the dielectric notch, Ppert = to(n§- nf)Ea(x , t). The constants 
and integral are combined in the coupling constant K, 
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Figure 10.5. Power in mode Bas a function of the perturbation length. 

JC 

2 2 0.5h 

wt:o(n~- nl) j Ea(x)Eb(x)dx for- a< z <a 
0.4h 

0 elsewhere. (10.25) 

Substituting the coupling coefficient into the equation, and multiplying both 
sides with ei(f3bz-wt) yields 

_ 8B+ + 8B- e2if3bz = jJCA+e-i(f3a-f3b)z 
8z 8z 

(10.26) 

We solve this equation by direct integration over z, from -a to a. If the perturba­
tion length, a, is long enough to satisfy ,Bba > 71', then the term (8B- j8z)e2if3bz 
will average to zero due to the rapid oscillation of the phase term. The term is 
relatively small anyway. The term ei(f3a-f3b)z on the right hand side oscillates 
at a slower rate because it depends on the difference between the two values of 
,8, not the sum. Solving the integral, assuming that B( -a) = 0, yields 

B+(a) = -jJCA+ /_: e-j(f3a-f3b)zdz 

JCA+ [e-i(f3a-f3b)a _ ei(f3a-f3b)a] 
(,Ba- .Bb) 
-2jJCA+ . 
(.Ba _ ,Bb) sm[(.Ba- .Bb)a)] (10.27) 

The coupled power periodically goes from zero to maximum over the length 
of the interaction region. Fig. 10.5 illustrates the power (proportional to IBI2) 

in the second mode at position z = a as a function of the perturbation region 
length. 

The above formula illustrate several important characteristics of mode cou­
pling. First, if the two modes have dramatically different values of ,8, the overall 
power coupling will be weak due to the inverse square dependence on the dif­
ference in the propagation constants. Only modes that are closely related in ,B 
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Figure 10. 6. A symmetric waveguide is perturbed by a dielectric notch on the top and bottom 
of the guiding film. The film is 20 J.Lm thick, and the notches are each I J,Lm deep. 

will couple significantly; modes with large differences in {3 do not couple ef­
fectively, unless the spatial structure of the perturbation somehow makes up the 
difference, as in a diffraction grating. Second, the coupling depends directly on 
the value ofthe coupling constant, /C . Third, as before, the coupling is periodic. 
Energy flows back and forth between the two modes in the perturbation region, 
and the ultimate coupling depends on the termination point of the perturbation. 
Coupling is maximum when 

(10.28) 

When the spatial period of the perturbation makes up the difference between 
the two propagation constants, there will be enhanced coupling. We will see 
an example of this with the diffraction grating coupler. 

Note what happens when the two modes become degenerate: as the value 
of f3a approaches f3b, the coupled mode amplitude approaches infinity, which is 
unphysical. Clearly, perturbation theory as we have applied it to this problem 
fails for degenerate modes. To solve problems involving degeneracy, we must 
find exact solutions to the perturbed equations. 

Example 10.1 Coupling due to a symmetric notch in a slab waveguide 

Consider the symmetric slab waveguide shown in Fig.l 0.6. A notch is sym­
metrically located about z = 0. In this waveguide, we will determine the 
normalized modes of the structure, and calculate the coupling between the fun­
damental TE mode and the other TE modes of the structure. Assume that 
>. = 1.3J,Lm, n 1 = 3.5, and nz = 3.498. 

Solution: The first step is to determine the normalized modes of the ideal 
waveguide. We find the eigenvalues;;_ and 'Y using Eq. 3.28 

tan r;_h / 2 '!.. for even modes 
/';_ 

-;;_ 
- for odd modes 

"( 
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There are two even modes and two odd modes supported by this structure. 
Numerically evaluated values for K. and f3 for each of mode are listed below in 
Table 10.1. 

The electric field distributions for the modes are given by Eq. 3.27 

ce-"((x-h/2) for x > h/2 

C' = C cos K.X C sin K.X fi h/2 h/2 c-y cos K-h/2 or sin K-h/2 or - < x :::; 

ey ±Ce'Y(x+h/2) for X :::; -h/2 

We know every variable in these equations except the normalization coeffi­
cient, C. To normalize, we must adjust the amplitude, C, to satisfy 

The necessary values of Care listed in Table I 0.1. (Note: to use consistent units 
in the calculation, the value for J.lo had units of Henry/em, not Henry/meter.) 
These mode amplitudes will produce a normalized power of I W per em of 
width in the slab waveguide. Fig. I 0. 7 shows the four normalized modes taken 
from this data shows the calculated mode distributions. 

Having found the modes of the ideal waveguide, we can now calculate the 
coupling constant for each pair of modes. The polarization perturbation in this 
example is generated by the electric field of the TEo mode in the dielectric 
notches. Explicitly, the perturbation is (for 9~-tm < jxj < 10~-tm, and -a < 
z < a) 

Ppert = fo(n~- ni)Eo(x, z, t) 

( 2 2)C cos(K-ox) [At -j(f3oz-wt) ] 
fo n2 - n 1 ( h/ ) -e + c.c. cos K-o 2 2 

Table 1 0.1. Propagation coefficients for the four allowed modes. 

Mode Designation K, (3 Normalization Amplitude 

TEo 1335.12 cm-1 169157 cm-1 99.7 V/cm 
TE1 2658.1 cm-1 169142 cm-1 197.2 V/cm 
TE2 3949.8 cm-1 169117 cm-1 287.7 V/cm 
TE3 5158.45 cm-1 169084 cm-1 353.3 V/cm 
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V/cm 

Figure 10.7. The four mode amplitudes are plotted on the same scale. The horizontal axis is 
in units of em. 

[ A+ . ] = -2.647 X 10-13 cos(1335.12x) -!fe-J(f3oz-wt) + C.C. 

Knowing Ppert, we can next calculate the coupling coefficients between the 
modes. Plugging the result into Eq. 10.11, the formula for the general coupling 
coefficient between the TEo and TEi mode is 

- -2.647 x 10-13 cos(1335.12x) £idx w [lo0.5h 

2 . 0.45h 

1-0.45h ] + -2.65 X 10-13 cos(1335.12x)£idX 
-0.5h 

There are two integrals because there are two dielectric regions in the per­
turbation. By symmetry, we can see that modes TE1 and TE3 will not couple 
to mode TEo. The product of an even and odd function in a symmetric integral 
always yields a null result. Therefore two of the coupling coefficients equal 
zero. The only mode that the TE0 mode can couple to is the even symmetry 
TE2 mode. The coupling coefficient will be 

0.5h 

2 ~ j 13 cos(3949.8x) 
K02 2 -2.647 x w- cos(1335.12x) 287.7 cos(3949 .Shj2) dx 

0.45h 

-3.912 cm-1 
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Figure 10.8. The power transfer from mode TEo to mode TE2 as a function of the notch length 
in Fig.! 0.6. The coupling varies periodically with notch length. 

The coupled mode equation relating the TE2 mode to the TEo mode is then 

a:: ei(f32z+wt) _ a:! e-i(/32z-wt) + c.c. = j1Co2At e-i(f3oz-wt) 

Multiplying both sides by ei(f32z-wt) converts the equation to 

aA- . aA+ . 
a: e2Jf32z - az2 + C.C. = jJCo2At e-J(f3o-f32)z 

Integrating over z from -a to a, the first term on the left hand side averages to 
zero to first order. The amplitude of mode TE2 at the end of the perturbation, 
assuming that At (-a) = 0, is 

(2j/Co2/(f3o- f32))At sin(f3o- fJ2)a 
j(7.83/40)At sin(f3o- fJ2)a 

Squaring this amplitude gives the actual power in the mode. The power in 
mode TE2 as a function of perturbation length a is shown in Fig. 10.8. The 
coupling length ranges from 0 to 0.1 em in the plot. 

We can see that a small fraction(< 4%) of the mode energy transfers into 
mode TE2 at the optimum interaction length. One of the assumptions we made 
in solving for At is that the amplitude of mode TEo stays constant. While this 
is not rigorously true, the amplitude, At, is reduced by less than I% at the peak 
of the transfer, so this is an excellent assumption. 

It is hoped that this example, with all its brutal detail, shows you how to 
normalize a mode, how to systematically apply the perturbation equations, and 
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how to deal with the units. Also note the difference in magnitude between the 
phase constants in the terms of Eq. 1 0.28. One term oscillates at a rate of 
approximately 300,000 rads per em, and the other oscillates at approximately 
40 rads per em. Our assumption that only one of the terms is significant is valid. 

3.3 Reciprocity 
It can be shown [2] that if energy is conserved the coupling will be recipro­

cal. This means that if mode i couples to mode j, then mode j couples with 
equal strength to mode i. Because of this reciprocity, the equations governing 
coupling between modes A and B can be written in the general form 

dA 
dz 
dB 

dz 
(10.29) 

where A and Bare the amplitudes of two modes, and K is a coupling constant. 
We will develop an expression for the coupling constant in the next section. 
The conservation of energy is expressed as 

(10.30) 

4. Degenerate Mode Coupling 
There are many examples of structures where two modes with identical prop­

agation constants are coupled. This leads to degenerate coupling, and a different 
approach is required to solve the problem. Consider the structure involving two 
coupled waveguides shown in Fig. 10.9. This device is a coupler, where two 
waveguides are brought into proximity to each other for a short length a. The 
evanescent field of one guide extends out and partially overlaps the adjacent 
guide. Energy can tunnel from one guide to the other through the interac­
tion of the evanescent tail. Being symmetric, energy can flow either way in 
this structure. Structures of this type serve as mode combiners for heterodyne 
receivers,and optical taps. In this example, we will calculate the amount of 
coupling between the two guides. We will assume that initially only one of 
the waveguides carries energy. At the conclusion of this section we will com­
pare the coupling predicted by the Beam Propagation Method for a coupled 
waveguide in Chapter 9.8 with the coupling predicted by coupled mode theory. 

In this device, the polarization perturbation arises from the presence of an 
external electric field in the waveguide, rather than from a dielectric defect. We 
assume that the waveguides are single mode structures. Fig. 10.10 shows the 
geometry of the structure. 
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A B 

Figure 10.9. A directional coupler can be made by placing two waveguides in close proximity 
to one another for a finite distance. The evanescent field from one waveguide overlaps the core 
of the second waveguide, leading to coupling. 

ry 

hbJ• a "I" a •12bi 
Figure I 0.1 0. The coupled waveguides are separated in the y-direction by a distance of 2a, 
and are 2b wide. The origin is on the surface between the two waveguides. 

The fields in the cores of the ideal (uncoupled) waveguides will be of the 
form 

EA(x, y, z) =A cos(KxX + ¢x) cos(Ky(Y +(a+ b))e-jf3z 
EB(x, y, z) = B cos(KxX + ¢x) cos(Ky(Y- (a+ b))e-jf3z (10.31) 

where both waveguides have the same transverse and longitudinal wavevectors, 
Kx, Ky, and {3, respectively, and the center for each waveguide is a distance a+b 
from the origin of the coordinate system. Outside the core, the fields decay 
exponentially. 

The polarization perturbation in waveguide B arises from the presence of the 
evanescent tail of mode A. The perturbation is actually due to the difference in 
index the evanescent field sees when it is in the core of waveguide B, compared 
to the normal cladding index. The polarization induced by mode A acts as a 
source to excite mode B. From mode B's perspective, the perturbation is 

Ppert(X, y, z) = t:o(ni(x, y)- n~)EA(X, y) 

= t:o(ni(x, y)- n~) [ ~£A(y)e-j(f3z-wt) + c.c.] (10.32) 
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The device shown in Fig. 10.9 operates with codirectional coupling, so we 
need not include the backward waves in the amplitude equation of motion. In 
fact, due to phase matching, it is impossible to couple energy into the backward 
wave of mode B. The general equation of motion (Eq. 10.11) for the structure 
will then be 

8B -j((3z-wt) _ j 82 { " ( ) n dS 
- 8z e + c.c.-- 2w 8t2 Js '-'B x, y rpert 

jw 100 [A . ] = 2 -oo Eo(n2 (x, y)- n~)eB(X, y) 2eA(y)e-J({3z-wt) + c.c. dx dy 

j/CAe-j((3z-wt) (10.33) 

where the coupling constant lC in the last equation represents the integral and 
all the fixed terms. By symmetry, the coupling between waveguide A and B 
will be identical to the coupling between B and A. (See prob.l 0.1 ). We can 
therefore write down an equivalent coupling equation for amplitude flowing 
from waveguide B to waveguide A. 

_ 8A e-i(f3z-wt) = jKBe-i(f3z-wt) 
az (10.34) 

Eqs. 10.33 and 10.34 are strongly coupled, and must be solved simultane­
ously. Since the propagation constants are identical for each waveguide, the 
formulae reduce to 

a A 
=-jKB az 

8B 
=-jKA az (10.35) 

Taking the derivative of the first equation, and plugging it into the second equa­
tion reduces these two first order differential equations into a single (uncoupled) 
second order equation 

(10.36) 

which can be directly solved. If we assume the initial conditions for the problem 
are A(O) = 1, and B(O) = 0, then the solutions become 

A(z) = 

B(z) 
cos(/Cz) 
-j sin(/Cz) (10.37) 
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Figure 1 0.11. The power in waveguide B varies sinusoidally as a function of coupling length, 
a. 

Note that the power can travel back and forth between the waveguides with 
I 00% transfer efficiency. Fig. I O.II plots the power in mode B as a function 
of coupling length, a. Also note there is a distinct phase difference between 
the driving and driven field. The phase in the driven field always lags by 90°. 
This phase relationship results from the basic mechanism of coherent energy 
transfer: when polarization leads the field, the polarization does work on the 
field, and effectively increases the amplitude of the field. Likewise, when the 
material polarization lags the field, the field does work on the material, and 
dissipation of the field occurs. Thus we expect to have a leading polarization 
in the driven waveguide. 

The energy transfer from one waveguide to the other will continue until 
the driving waveguide is totally depleted of energy. At that point, the driven 
waveguide suddenly becomes the source which perturbs the original waveguide, 
and the energy flows in the opposite direction. Also, because of this phase 
relation, no energy transfers into the backward wave direction. For this reason, 
such couplers are often called directional couplers. 

The length of the interaction region determines the exact value of coupling. 
If coupling distance z0 is set to be 

1f q1f 
zo = 2/C + lC ( q integer) (10.38) 

then complete energy transfer will occur. Other lengths produce values between 
0 and 100%. This freedom allows the designer to make couplers of any desired 
strength. For example, to tap a broadcast signal, a coupler might extract only 1% 
ofthe signal, ( -20dB coupling), passing the rest on. There are other applications, 
such as heterodyne detection, where a 50% (3dB) coupler would be desired. 
The freedom to choose the coupling strength comes with a price. Since the 
coupling constant depends on {3, a change in wavelength can lead to a change 
in the coupling ratio. Thus, a 3dB coupler at 1.3 J.Lm might not be a 3 dB 
coupler at 1.5 J.Lm. And since the coupling constant depends critically on {3, 
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Figure 10.12. Two identical slab waveguides are separated by 4 !J.m. The eigenmode for one 
of the slabs is superimposed on the right waveguide. 

multimode waveguides will not display the strong power contrast that a single 
mode coupler will. 

The wavelength dependence allows new opportunities as well. It is possible 
to make couplers which couple strongly at one wavelength while letting another 
wavelength pass freely with no coupling. Such devices are used commonly to 
couple pump energy into fiber amplifiers, allowing the signal to be amplified 
remain on the amplifier waveguide. 

What happens if the two waveguides have slightly different values of (3? This 
is a realistic question, and it has practical implications. It turns out that it is 
difficult to fabricate waveguides which are exactly matched in characteristics. 
Power transfer will still occur, but it will not be complete[3]. The actual behavior 
[8] will fall between the 100% transfer predicted for the degenerate case, and 
the non-degenerate case graphically depicted in Fig. 10.5. 

Example 10.2 Analysis ofa co-directional waveguide coupler 

In Chapter 9, we examined the operation of a coupled waveguide using the 
Beam Propagation Method. In this example, we will use coupled mode theory 
to calculate the performance, and compare theory to simulatioh. To review, the 
coupled slab waveguide structure is shown in Fig. 1 0.12. Plotted on top of one 
waveguide is the amplitude eigenmode solution for one of the uncoupled slabs. 

To calculate the coupling between the waveguides, we must first determine 
the eigenmodes of the uncoupled waveguides. Using techniques that are by now 
familiar, f3 was found to be f3 = 94227 cm-1 (). = lJ.Lm), and the normalized 
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mode for the right-hand waveguide is 

ea(x) = c exp[-2840(x- 0.0012)] (x > 0.0012cm) 

= Ccos[1942(X- 0.0007)] (0.0002 <X< 0.0012cm) 
cos[1942 * 0.0005] 

= C exp[+2840(x- 0.0002)] (x < 0.0002cm) 

The amplitude distribution for the left-hand mode is identical in form, requiring 
only appropriate offset of the coordinates. The modes are normalized according 
to Eq. 10.10. Two identical slab waveguides are separated by 4 J.Lm. The 
eigenmode for one of the slabs is superimposed on the right waveguide. 

where w = 2rr300 X 1012 sec-1' and f..L = 4rr X w-9 Henry/em. Note that 
all units describing the amplitude distribution and physical constants are in 
centimeters. Eq. 10.10 was numerically evaluated using Mathematica, yielding 
c = 433.56. 

The coupling coefficient, /C, is found using Eq. 1 0.21. In this example, we 
assume that initially the mode energy is completely contained in the right hand 
waveguide. The perturbation therefore only exists in the core of waveguide B, 
equaling 

Ppert ea(x)Eo(n~- n~) [ ~e-i(.Bz-wt) + c.c.J 
for( -0.0012 < x < -0.0002) 

= 0 elsewhere 

Noting the the permittivity, Eo, has units Eo = 8.85 X w-14 Farad/em, the 
coupling coefficient is found from 

EOW 1-0.0002 
lC - 4 (1.52 - 1.4992)£b(x)ea(x)dx 

-0.0012 

3.6217 cm-1 

So how does this result compare to the BPM simulation shown of Chapter 
9? Since this is a degenerate coupled system, there will be strong coupling. 
The amplitude will couple periodically back and forth between the waveguides 
according to Eq. 10.29 

A(z) = Ao cos(JCz) 
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Figure 10.13. The power in the original waveguide couples back and forth between the two 
waveguides. The coupling period for the power is approximately 0.4 em. 

The power is proportional to the square of the amplitude. Therefore we would 
predict the power will couple back and forth as 

A(z) 2 = A6 cos(X:z) 2 

Fig. 10.13 shows how the power couples back and forth between the wave­
guides. By inspection, we see that the spatial coupling period is approximately 
0.4 em, which is exactly what we observed in the BPM example. 

5. Coupling by a Periodic Perturbation: Bragg Gratings 
As a last example of mode coupling based on the scalar theory of ideal 

modes, we will consider a very practical problem used in many semiconductor 
laser diodes and more recently in fiber Bragg gratings. Placing a corrugated 
index structure in a waveguide can provide strong coupling between forward 
and backward waves for selected wavelengths. Such wavelength dependence 
is used to advantage in lasers to control the output wavelength, or in Bragg 
gratings to make selective filters. The so-called DFB (Distributed FeedBack) 
laser utilizes a periodic structure on top of the waveguide to couple forward and 
backward waves of a specific wavelength, thereby restricting laser operation to a 
narrow and well-defined wavelength. Narrow line operation is a requirement for 
long-distance, low dispersion optical communication in fibers. In this section 
we will explore the operation of a similar example of periodic perturbation, 
the Bragg grating in an optical fiber. The example also serves to illustrate the 
concept of phase matching between the perturbation and coupled modes. 

The fiber Bragg grating is widely used in optical fibers to create spectrally­
defined reflectors in the optical fiber. Based on the length of the grating and 
the strength of the modulation, it is possible to create extremely narrow-band 
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Figure I 0.14. Two UV laser beams are crossed to form an interference pattern in the core of a 
single mode optical fiber. The period of the modulation is controlled by the angle of the crossed 
beams. 

spectral reflections, or broad spectral reflections, or even periodic series of 
spectral reflections. Coupled mode theory allows the analysis and design of 
such structures. 

The basic Bragg grating is made by exposing a single mode optical fiber to 
ultraviolet light with a wavelength of248 nm. This wavelength causes defects in 
the Ge-doped core of the fused silica fiber to coalesce, effectively densifying the 
glass and hence increasing the index of refraction. This effect only occurs where 
there is Ge-doping, and hence only the core experiences this index modulation. 
The index change is essentially permanent, so it is possible to "write" index 
modulations into the core of a fiber with an external laser. To make a grating, 
it is necessary to establish an interference pattern of the UV light in the core. 
A simple way to create such a standing wave of UV light in a single mode 
fiber is shown in Fig. 10.14, where two beams from a UV laser (typically a 
KrF excimer laser) are crossed at an angle B as they travel through the core. 
By adjusting B it is possible to adjust the period of the index grating. Other 
techniques can be used, the most common being the use of a phase mask to 
create the two crossed beams. 

Since the interference pattern of two crossed beams has a sinusoidal pat­
tern, the index modulation in the core of the fiber has a sinusoidal modulation. 
Further, because the UV light can only increase the index, the core index will 
described as 

n(r, z) = ncore+~n[l/2+ cos(27rz/A)/2] forr<a 

n( r, z) = nclad for r > a (I 0.39) 

where ~n is the peak change in index following the exposure to UV light, and 
A is the spatial period of the modulation. Typical index values used in practice 
range from ~n = 0.001 to ~n = 0.005. The period A is chosen to provide 
reflectivity at a specified wavelength, as described below. 

We will assume that the waveguide carries a single HEn mode. Since this 
mode is degenerate in polarization we need only consider the scalar equations. 
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To make the calculations straightforward, we will assume the guided mode has 
a gaussian shape, and the forward travelling wave can be described by 

(10.40) 

where A+ is the amplitude of the unperturbed waveguide, £o is the normalized 
amplitude of the mode, and w is the mode radius. We want to calculate the 
coupling between the forward wave and the backward wave of the same spatial 
mode. The perturbation can be described as 

Ppert(r, z, t) = Eo~n2 (r, z) [(1/2)A+£oe-r2 /w2 e-j({3z-wt) + c.c.J (10.41) 

where ~n2 (r, z) contains all the spatial structure of the modulated region, and 
the perturbation only exists in the region between z = 0 and z = L. Substituting 
this into Eq. 10.1 0, the coupling between the forward and backward wave is 
described by 

aA- aA+ -2j{3z- JWfOA+ -2j{3zlo00 A 2( )"2 -2r2/w22 d --- --e --- e u.n r,z c..0 e 1r-r r oz oz 4 0 
(10.42) 

where the integral is over the cross-section of the fiber. 
As we observed in the previous examples, there will be negligible coupling 

between the forward (A+) and backward (A-) wave unless the index modula­
tion ~n( r, z) contains a periodic term with a spatial frequency of approximately 
2(3. It turns out that this is easy to arrange if we choose the period of the cor­
rugated index modulation properly. The perturbation term can be expanded 

(10.43) 

If we set 
27r/A = 2(3 (10.44) 

one of the phase terms in Eq. 10.42 will equal unity, and a reflection will 
form. Note that the condition on A is equivalent to saying the period of the 
index modulation should be one-half that of the incident wavelength, forming 
effectively what is known as a "half~wave" stack of reflectors. The reflection at 
each period is small because the perturbation is small (~n ~ 0.001), but in a 
long grating, many small reflections add up in phase to build a significant value 
if the number of cycles, N is sufficiently large. 

The forward and backward wave are coupled when this condition is satisfied. 
If we define 8 = 2{3- 21r /A, and extract the middle term from Eq.10.43 which 
satisfies Eq. 10.44, the coupled mode equation becomes 

aA- - JWfOA+ -j8zlooo A 2( )"2(1) -2r2jw22 d -- - -- e u.n r c..0 - e 1rr r oz 4 0 2 
(10.45) 
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The r integral is straightforward to evaluate. In this case, the perturbation, n( r) 
is constant and lies inside the core, so only the field in the region r < a couples 
to the perturbation. The spatial integral evaluates to 

fa fin2 (r)£6( ~)e-2r2 /w2 2rrrdr = !in2£6[~(1- e-2a2 /w2 )rrw2] {10.46) 
lo 2 4 

The final coupled mode equation is thus 

{10.47) 

We cannot directly solve Eq. 10.47 for A- (z) until we have an expression for 
A+(z). Fortunately, using reciprocity, we know that the backward wave will 
act as a source for the forward wave in exactly the same manner as we have just 
calculated for the forward to backward coupling. After some straightforward 
calculations, the coupled equation is derived 

= i~•o A-e+i~z~n2e6[i(l- e-2a2 /w2 )rrw2] 

= K:_A-ei~z (10.48) 

Under conditions ofphasematching (~ = 0), we can solve these equations 
simultaneously to get 

(10.49) 

These functions are plotted in Fig. 10.15. Here, by appropriate choice oflength, 
L, we can adjust the reflectivity of the mirror in a corrugated waveguide. This 
is very useful for laser design. When the phasematching condition is not met, 
there can still be reflection, however there will be reduced efficiency over a 
limited bandwidth. Details of non-phasematched operation is described in Ref. 
[ 1 ]. 

Because the Bragg grating in an optical fiber has become a commodity item, 
numerous ways have been developed to calculate the transmission and reflection 
of fiber Bragg gratings. Recognizing that the reflection occurs from a periodic 
series of half-wave layers, matrix techniques developed for the design of thin­
film coatings can be applied to the design of gratings, and are typically used 
instead of the technique shown above. Nevertheless, the coupling parametes 
needed for matrix techniques ultimately depends on a couped mode analysis as 
shown here. 
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Figure 10.15. The forward and backward amplitudes of an H Eu mode in a fiber. Note that 
amplitudes, not power, are plotted. 

6. Summary 
The theory we have just developed works well on ideal waveguides with 

small localized perturbations. Some waveguide defects cannot be localized to 
a finite region, however. For example, a tapered waveguide has a perturbation 
which changes along the z-direction. The propagation along such waveguides 
can be described if the variations occur slowly. The description uses the concept 
oflocal modes. We will leave exploration of such techniques to more advanced 
texts, such as Snyder and Love[5], or Marcuse[6]. 

In this chapter we explored some examples of amplitude coupling between 
two waveguides based on a simple scalar theory. We found that coupling is 
maximized when the propagation coefficient, {3, for the two modes is equal. 
We also found that coupling between dissimilar waveguides is enhanced by 
adding periodic structures such as gratings which alter the effective {3 of a 
waveguide. The coupling of radiation from a waveguide into free space is 
an important problem in optoelectronics. The calculation is difficult because 
the guided modes couple to free space modes, which are not normalizable. 
The design of such couplers is as much art as engineering. As more advance 
optoelectronic circuits are devised, coupled mode theory will become one of 
the key tools in the designers toolchest. 

The theory developed here is based on a scalar analysis. More advanced 
theories are being developed to address modem problems such as coupled semi­
conductor lasers. References [7],[8],and [9] introduce the recent vector mode 
coupling theory of three research groups. 
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Practice Problems 

1. Conservation of total power in a waveguide is expressed as 

for codirectional coupling between two modes. Show that this can only 
be satisfied when 

2. Confirm that the normalization constant used in Eq. 10.10 for the TE 
orthogonal modes of a waveguide is in fact equal to 2wJ.L/ fk 

3. Show that the proper normalization coefficient for TM modes is 

I 2wE 
Hy;Hy;dx= p 

4. Complete the missing steps in the derivation ofEq. 10.7. 

5. Assume that two infinite slab waveguides are build on top of each other, 
separated by 4 J.Lm. Each slab waveguide is 2 J.Lm thick, and has an index 
of refraction of 1.52. The cladding indices of refraction are 1.5. The 
wavelength is l J.Lm. 
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Figure 10.16. Notch coupled structure for Problem 6. 

(a) Write down the perturbation polarization in waveguide 2 caused by 
the field in waveguide 1. 

(b) Calculate the coupling coefficient,"'' for these two waveguides. 

(c) Determine the length of the interaction region required to make the 
energy in one waveguide completely couple over to the other wave­
guide. 

(d) Imagine that the interaction length is made to be infinite. Note that 
if one waveguide is initially excited, the energy will transfer back 
and forth between the two waveguides forever. It is possible to cre­
ate "Supermodes" that consists of a superposition of two individual 
modes that will propagate down the system without any change in 
energy distribution. Find the two lowest order supermodes. This is 
a classic eigenvalue problem- you want to find an eigenmode of the 
total system. 

6. Consider a symmetric planar waveguide as shown in Fig.l0.16. The 
waveguide has a symmetric notch of length 2a in the cladding index 
surrounding the guiding layer. The waveguide is designed to only carry 
the two lowest order modes, which will have even (cosine) and odd (sine) 
symmetry. Assume the cladding is infinitely thick except in the region of 
the notch, and the core has thickness h. 

(a) Derive an expression for the phase shift observed for the lowest order 
forward waves as they propagate past the defect. 

(b) Will there any coupling between mode 1 and mode 2 due to the notch 
in the cladding? Justify your answer. 

7. Consider the planar waveguide shown in Fig. 10.17 with a notch on one 
side. Assume >. = lp,m. 

n1 = 1.5, n2 = 1.48, and n3 = 1. The guiding film is 5J.Lm thick. 

(a) Determine the exact electric field amplitude distributions, for the first 
two lowest order TE modes for this structure. 
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Figure 10.17. Notch coupled structure for Prob.6.b 

Figure 1 0.18. Semiconductor laser with a grating for Prob. 8. 

(b) Calculate the coupling coefficient, "'12 that couples the forward wave 
of mode l to the forward wave of mode 2. 

(c) What is the coupling coefficient that couples the forward and back­
ward waves of mode 1? 

(d) Develop an expression for the amplitude of the electric field for the 
second mode, A2(z), at the end ofthe notch (i. e., find A(z =a). 

8. A semiconductor laser is designed with a grating section on the top surface 
to act as a wavelength selective mirror. Fig. l 0.18 shows the index profile 
of the waveguide. Assume the guiding layer has index n 2 = 3.5, the 
substrate has index n 3 = 3.49, the cladding layer has index n1 = 1.5, 
and the thickness of the guiding layer is l p.m. 

(a) What is the period, A, necessary to make the waveguide reflect light 
with vacuum wavelength ,\ = 0.8J.Lm? 

(b) If a is set to a height ofO.lJ.Lm, what is the effective coupling coeffi­
cient for connecting the forward wave to the backward wave? 

(c) How long, L, should the grating structure be in order to reflect 90% 
of the power incident in the forward wave? 

9. Design a tunable filter by putting a periodic step structure on top of a 
semiconductor waveguide. Design your waveguide to carry a single mode 
at 1.3 J.Lm. Design the grating to selectively reflect signals at 1.31 J.Lm 
(with 20 dB reflectivity) , but pass (with less than 3 dB loss) signals 50 
nm away from this central wavelength. Using the fact that the index 
of refraction can be varied by injecting charge into the semiconductor, 
calculate the effect on the wavelength selectivity of this filter as the index 
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Figure 10.19. Waveguide structure for Prob. 10 .. 

of refraction ofthe waveguide material decreases. How much should the 
index be changed to change the wavelength of the reflected signal by 50 
nm? 

I 0. Design a 2 x 2 coupler based on two single mode waveguides in close prox­
imity to each other. Let the waveguides have rectangular cross section, 
5pm by lOJLm, with core index n = 1.5, and cladding index n = 1.499. 
Let the wavelength of operation be ,\ = 1.55JLm. 

(a) Determine the distance between the two waveguides, a, such that 
100% of the power in one waveguide is coupled to the other in a 
length of 500 JLm. 

(b) For your design in part a, what is the effective coupling at.\ = l.3JLm? 



Chapter 11 

COUPLING BETWEEN OPTICAL SOURCES AND 
WAVEGUIDES 

1. Introduction 

There can be significant loss in optical connections due to misalignment or 
mismatch of the modes between the two devices. Misalignment between a 
source and a single mode waveguide by dimensions ofless than 1 J.Lm can cause 
coupling loss exceeding 1 dB. Coupling problems are exaggerated by the small 
dimensions of typical optical waveguides and sources, which makes alignment 
a critical and challenging task. In this chapter, we will establish the fundamental 
rules for coupling optical power between two waveguides and between a source 
and waveguide. The coupling techniques are based on the concepts developed 
in previous discussion on coupled mode theory. 

2. Coupling of Modes Between Waveguides 

Calculating the coupling between two optical waveguides is based on a modal 
description of the waveguides, and depends on alignment, dimensional differ­
ences, and geometric shape. Following this section, you should be able to 
calculate the coupling efficiency between any two waveguides. Large core 
waveguides which have many modes are not well served by this theory, and 
require a different approach. Multimode coupling is discussed in the next sec­
tion. 

Consider the problem of coupling two single mode slab waveguides. Fig. 
11.1 below shows the electric field distributions of the source and input wave­
guides. To efficiently excite the TEo mode of the input waveguide, the incident 
field should spatially overlap the mode profile in the waveguide as closely as 
possible. Any deviation between the input field and the guided mode shape will 
simply excite other waveguide and radiation modes. 
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Figure Jl.l . An incident mode can have a different spatial profile than the field in the input 

waveguide. The overlap of the two modes determines the degree of coupling between the input 

and guided mode. 

To formally calculate the coupling efficiency between waveguides, we apply 
the requirement for continuity of the transverse electric and magnetic fields at 
a dielectric interface. There are several fields involved in the coupling: the 
forward waves of the waveguide; the reflected wave of the incident field; and 
radiation modes for both the reflected and transmitted field due to unguided 
propagation. If we define the normalized input spatial mode as £i(x), the nor­
malized transmitted mode as tt(x), and radiation modes as £{J(x) the fields 
must satisfy the equation 

00 

£i(x) + r£i(x) + j r({3)£{J(x)d{3 
0 
00 

7-ii(x)- r'Hi(x)- j r({3)'H[J (x)d{3 
0 

00 

ttt(x) + j t({3)£{J(x)d/1.11.1) 
0 

00 

t'Ht(x) + j t({3)'H[J(x)df3 
0 

where r and t are the amplitude reflection and transmission coefficients for the 
guided modes, and r (/3) and t (/3) are the reflection and transmission coefficients 
for the radiation modes, respectively. If the phase of the mode is described by 
exp( - j(f3z - wt)), then the guided power per unit length flowing in the z­
direction is 

1 /_00 WJ.t - tn(x)tm(x)dx= ---{3 8nm 
2 - oo n 

(11.2) 

This follows from the relation 

(11.3) 

It is impossible to obtain exact solutions to the expressions in Eq. 11 .1, 
because there are an infinite number of radiation modes. We can make an 
approximate solution by assuming that the amount of energy scattering into 
radiation modes is negligible, which will be true when the incident field and 
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waveguide mode are not too dissimilar. Thus, we drop the integral terms from 

Eq. 11.1. We can isolate the transmission terms, t, by taking advantage of 

the orthonormality of the modes. We multiply both sides of the electric field 

equation by Et, and integrate over all space. We get 

f3t 100 t = -(1 + r) £i(x)£;(x)dx 
WJ.l -oo 

(11.4) 

We can repeat the process for the magnetic field equation, using Eq. 11.3, 

to get 

(J 100 t = -2 ' (1- r) £i(x)£t(x)dx 
WJ.l -oo 

( 11.5) 

Now we have two equations and two unknowns. Solving fort and r respectively 

yields 

t 

r (11.6) 

It is important to realize that 1t12 + lrl2 =/=- 1 for most situations, because the 
incident power can couple into modes other than £i and Et. From Eq. 11.6 we 

see an overlap integral is used to determine the coupling between the incident 

mode and exiting mode. Based on the coupled mode theory that was discussed 
in the last chapter, this should seem reasonable to you. The overlap integral 

simply calculates the fraction of the incident field that "looks like" the desired 

mode. Also note that the reflection coefficient, r, is very similar to the Fresnel 
reflection formula derived in Chapter 2 when the wave is incident normal to the 

surface. Replacing {3 by konef.f in r in fact produces the Fresnel expression. 
The power coupling efficiency is equal to the square of the amplitude cou­

pling, 

(11.7) 

Often, mode amplitudes will not be formally normalized. In such a case, a 

working formula for coupling efficiency can be derived from Eq. 11.6 to be 

[ 4{Jif3t ] [IEt(r,¢)Ei(r,¢)drd¢] 2 

17 = ({Ji + f3t) 2 I Et(r, ¢)E;(r, ¢) rdr d¢ I Ei(r, ¢)Ei(r, ¢) rdr d¢ 
(11.8) 

where Ei(r, ¢) is the input field amplitude, and Et(r, ¢) is the transmitted field 
amplitude. 
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Example 11.1 Power coupling between two fibers with different MFDs 

Let's calculate the coupling between two single mode fibers as a function 
of their relative mode field diameters (MFD). To simplify the calculation, we 
assume that the spatial HEn modes can' be approximated by Gaussian profiles. 
Define one fiber as having a beam radius w1 and amplitude A1, and the second 
fiber has beam radius w2 and amplitude A2. We will assume that these fibers 
have nearly identical propagation coefficients, so we will neglect the effect of 
{3 mismatch. 
The power coupling efficiency is given by Eq.ll.7 

[fo00 Ji'~~" A1e-r2jw~ A2e-r2jw~r dr dqf 

fooo Ji'~~" A~e-2r2fw~r dr d¢ fooo Jrf'~~" A~e-2r2fw~r dr d¢ 

[2rrA1A2 f000 re-r2 (l/w~+l/w~)drr 

This integral can be evaluated in closed form 

2 2 
-4 wlw2 

TJ- (w? + w~)2 

Note that the amplitudes of the modes drop out of the equation. 
The coupling efficiency is plotted in Fig. 11.2 below as a ratio of wl/w2. 

Coupling is maximized when the fibers have identical mode field diameters, 
and decrease for all other ratios. It is especially interesting to note that the 
coupling is reciprocal, meaning that it does not matter which fiber has the larger 
mode. Geometrically, one might expect that a smaller mode would couple more 
efficiently into a large mode, while it seems intuitively obvious that a large mode 
will not couple as well to a small mode. Physically, the coupling symmetry 
arises because we are discussing coupling between two modes, not waveguides. 
A small mode may couple very efficiently into a large core fiber, but it does 

~ 
CD ·o 
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w 0.5 
. ~ a. 
8 

0.1 1.0 10 100 

Figure 11.2 Coupling effi­
ciency between two fibers . 
Notice that the horizontal axis 
is the log ofthe ratio of wd W2. 
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so by exciting a superposition of modes in the larger core fiber. The coupling 
between the two fundamental HEn modes is reciprocal in this and every case. 
It makes no difference which way the energy flows. If the mode field diameters 
are not identical, there will be a reduced overlap integral. 

Example 11.2 Coupling a single mode fiber to a Gaussian beam 

The 1.52 f..Lm output from a HeNe laser is to be coupled onto a commercial 
fused silica single mode optical fiber. The laser beam has a Gaussian amplitude 
profile, with a characteristic beam radius, wo = 0. 70 mm. The fiber has a mode 
field diameter of 1 0 f..Lm. What focal length lens should be used to focus the 
beam onto the fiber to maximize coupling efficiency? What is the maximum 
possible coupling efficiency? 

To answer this, we must know some features of Gaussian optics[l]. When 
a Gaussian beam is focussed using a high quality lens with focal length f, the 
focal spot size is approximately described by the formula 

2,\ f 
W1=--

7r 2w0 

Plugging in numbers, we find a relation between the spot size at the focal point 
of the lens 

W1 = 6.9 X 10-4 j 

To maximize the coupling between the laser and the fiber, the spot size of the 
focussed beam should exactly match the mode field radius of the fiber. 

(6.9 x 10-4!) = 5 x 10-4 em 

Solve for f 
f = 0.723cm 

This is amoderately short focal length lens, and is difficult to achieve with a 
simple lens. Examination of several optics catalogs reveals that a 1 Ox micro­
scope objective has an effective focal length of 1.48 em, a 20x objective has 
a 0.83 em focal length, and a 40x objective has a 0.43 em focal length. The 
20x objective would be the best choice for this fiber. Using the results of the 
last section, the power coupling efficiency, rJ would equal 0.98. The Fresnel 
reflection at the input surface will further reduce the coupling efficiency. In this 
case the reflection coefficient will be given by 

R _ /31 - /32 _ konef f - ko _ neff - 1 2 ( )2 ( )2 - (/31 + /3J - koneff + ko - neff+ 1 

Since neff is not exactly defined, we cannot proceed. But note that this is in 
fact the Fresnel reflection that would be expected when crossing a dielectric 
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interface, and neff ~ nsw2 ~ 1.5. For fused silica with index n = 1.5, 
the power reflection is on the order of 4%, so the maximum coupling will be 
approximately 0.96 x 0.98 = 0.94. Practically speaking, this limit is rarely 
reached. Achieving 80% coupling efficiency between a laser and a single mode 
fiber is considered excellent by most practitioners. 

3. Coupling From an Optical Fiber to an Integrated 
Waveguide 

The previous examples illustrate the difficulty in connecting two different 
waveguides efficiently. For this reason industry has standardized to a few mode 
sizes in order to allow fiber-based instruments and generic devices to be added 
to a network without a great concern over coupling loss. But coupling a fiber 
to a chip is still a challenge. In this section we will describe how a knowledge 
of mode profiles can be used to enhance coupling between different types of 
single mode waveguide. 

Silica optical fibers are the de facto standard for transmitting light over any 
significant distance (anything greater than a few centimeters). Many integrated 
photonic devices are constructed using thin films of high-index material, so a 
problem arises when coupling from a fiber to an integrated device due to the 
dramatic difference in mode size between the two waveguide systems. Silica 
optical fibers rely on a very small An to provide waveguiding, and so the mode 
size can be relatively large (on the order of 10 J.Lm diameter). In contrast, 
integrated waveguides are typically made from high index materials such as 
Si. The high index material provides strong confinement of the mode, allowing 
tight bends on the chip which conserves space, but the strong confinement also 
requires that the waveguides have very small dimensions (on the order oflJ.Lm) 
to sustain single mode operation. This leads to a serious interconnect problem at 
the chip-fiber interface. We are left with the problem of coupling dramatically 
different modes (I J.Lm mode versus a 10 J.Lm mode) and dramatically different 
effective indices. 

In microwave electronics, such mis-matches can be corrected by creating an 
impedance matching circuit between the two waveguides. A similar solution 
can be applied to optical waveguides, as is shown in the next example. 

Example 11.3 Coupling between a fiber and a high confinement 
waveguide 

Consider the coupling of a fiber with a 10 J.Lm mode field diameter to a 
square waveguide, 0.5J.Lm x 0.5J.Lm, composed of a Si core and a Si02 cladding. 
Because of the high index contrast between the core and cladding of the Si 
waveguide, we can safely assume the mode is tightly confined within the Si, 
and the approximate mode field diameter of the mode must be 0.5J.Lm. To 
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Figure 1 1.3. Top view of different schemes for fiber-to-waveguide coupling. (a) simple butt 
coupling, (b) using a hom taper, and (c) using an inverse taper. 

expedite a calculation of the coupling, we will assume both guided modes are 
gaussian. If we simply butt-couple the two waveguides, the coupling efficiency 
can be estimated ssing Eqs.ll.7 and 11.8 and the results from Example 11.2 

[ n~ffn~ff ] 4wrw~ 
ry=2 . t 2 22 

n~ff +neff (wl + w2) 

Taking w1 ::::::: 0.25J.Lm and n~f f ::::::: 3.5 for the integrated waveguide, and w2 ::::::: 

5J.Lm and n~ff ::::::: l.5J.Lm for the fiber, the coupling efficiency turns out to 

be approximately 10-2, or I%. Clearly simple butt-coupling is not a viable 
scheme. 

Inverse taper coupling 

Fig.ll.3 shows some examples fiber-to-waveguide coupling schemes. Sim­
ple butt-coupling 11.3(a) leads to poor coupling as we just calculated. Hom­
type tapers as shown in 11.3(b) improve coupling efficiency, however in order 
to avoid excessive coupling to radiation modes in the taper, the required taper 
length must be on the order of millimeters. This is usually impractical, and it 
would also require the manufacture and packaging of special tapers for each 
connection. Ideally one would like to simply attach a commercial fiber to the 
chip and make the connection without a great deal of fuss. Consider the struc­
ture in 11.3( c), which is an inverse taper. To see how this might work, consider 
a mode on the waveguide travelling toward the fiber. Recall that coupling is 
maximized when the overlap between the two waveguide modes is maximized, 
so we want to transform the mode in one of the waveguides so to look similar 
to the other. The inverse taper provides this mode transformation. 

Consider a mode in the Si waveguide heading toward the taper. As the Si 
waveguide becomes smaller, the mode will become less well confined within the 
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Buried oxide 

r1gure 11.4. :scnemauc or a wavegutae wan a nano-taper coupler. 

Si, and will actually start to grow in size and become more and more decoupled 
from the Si core. At some point the size of the decoupled mode will increase 
to match that of the fibers mode. Placing the fiber at that spot will maximize 
the overlap and ensure strong coupling. Example 11.4 shows how this occurs. 

Example 11.4 Mode size as a function of waveguide dimension 

A simple way to see that the mode enlarges as it leaves the inverse taper is 
to calculate the size of the mode as a function of waveguide dimension. We 
can do this simply using the normalized parameters developed in Chapter 3. 
Consider a Si/Si02 waveguide operating at 1.5 J..Lm. What is the mode size if 
the waveguide has a thickness of 0.15 J..Lm? and with 0.02J..Lm? 

Solution: We can quickly estimate the size of the mode by estimating the 
penetration depth, lh, in the cladding using Eq. 3.6 and noting that f3 
koneff 

1 A 1 
1h= = --,===== 

. fk2n2 _ k2n2 21r . f((n2 _ n2)1f2b) y 0 eff 0 c y f s 

From Eq. 3.42 the normalized frequency is 

V = 27r h(n2 - n 2)112 = 27r h(3 52 - 1 52)112 = 20 77h A f s 1.5 . . . 

From Fig. 3.14 for h = 0.15J.tm the normalized effective index for the TEo 
mode is b1 ~ 0.64, and ford= 0.02J..Lm it is b2 ~ 0.02. Using these values in 
the expression for 1 h we get 

For h = 0.15um 1/"' = (U) 1 = 0 llum 
,_.. I 211' y'(J.52-1.52)1/2Q.64 . ,_.. 

For h=0.02um 1/"~=(1.5 ) 1 =37um 
,.... 1 211' y'(J.S2-I.S2)1/2o.o2 · ,.... 

It is easy to see how reducing the size of the guiding layer causes the mode to 
expand. Simulations based on FDTD and BPM methods show that the coupling 
efficiency can reach 95% for properly tapered waveguides. 
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4. Coupling to an Optical Source 
None of the information we have discussed in this text so far would be very 

interesting if it were not possible to somehow couple light onto the waveguide 
in the first place. In this section we will describe the relative parameters that 
are essential for estimating coupling efficiency. The discussion in this section 
is primarily directed at multimode structures, where exact modal calculations 
are impractical. 

A useful measure of an optical source is its brightness, B. Brightness is 
defined as the optical power radiated into a unit solid angle per unit surface 
area. Brightness is specified in terms of watts per square centimeter per stera­
dian. Brightness is the critical parameter for determining source-to-waveguide 
coupling for multimode waveguides. 

Consider the case shown in Fig.ll.5, showing an optical source end-fire 
coupling onto the end of a waveguide. The source emits light into a cone, or 
solid angle, that partially overlaps the numerical aperture of the waveguide. Any 
light falling outside either the numerical aperture or the physical core dimension 
obviously will not couple to the waveguide. The total power coupled to the 
waveguide will be given by [2) 

P = j dAs f dO.sB(As, O.s) 
A1 ln1 

rmin {21r [ {21r {Omax ] 
lo lo Jo Jo B(B,¢)sinBdBd¢ d88 rdr (11.9) 

where the subscript f refers to the fiber or waveguide, subscript s refers to 
the source, and rmin is the smaller radius of either the fiber or the source. In 
this expression, the Brightness, B ( (J, ¢ ), is integrated over the acceptance solid 
angle of the fiber. The maximum acceptance angle, Bmax, is defined through the 
numerical aperture, sin Bmax = ( n~ore- nclad) 112 . We have implicitly assumed 
circular symmetry for the waveguide, but this is not essential to the arguments. 
You should use common sense when choosing the spatial and angular limits for 
the integral in Eq. I I .9. 

Figure ll.5. An optical source couples light to a multimode waveguide by launching light 
within the numerical aperture of the guide. 
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4.1 Optical Source Characterization 
It is clear from the coupling equation (Eq. 11.9) that the brightness of the 

source is critical to coupling, and must be known. The radiation pattern from 
a source can be fairly complex. There are two extremes of source character­
ization: Lambertian, and spatial single mode. Most sources fall somewhere 
in-between these extremes. 

A Lambertian source has emission which is uniform across the surface area. 
A sheet of paper is a good example of a Lambertian source: the light falling 
on it from a light source is uniformly scattered away in all directions. For a 
Lamberti an source of fixed area, the power delivered from the source measured 
relative to the normal decreases as cos(} because the projected area of the source 
decreases as cos (}. The brightness is therefore 

B(B,¢) = BocosfJ (11.10) 

where B0 is the brightness normal to the surface. The other extreme source, the 
single spatial mode, is best illustrated by lasers, especially gas lasers such as 
the HeNe laser. Lasers can emit power into a single spatial mode, and can have 
extremely narrow beams with angular divergence on the order of a milliradian. 
These sources are extremely bright, even when the total power is only a few 
milliwatts. 

A surface-emitting LED is a Lambertian source, while edge-emitting LEDs 
and laser diodes have more complicated angular structure. In general, one must 
refer to the manufacturer's data sheet accompanying such devices in order to 
describe the brightness. For example, a typical commercial semiconductor laser 
is specified to have radiation angle of 11° parallel to the junction, but a radiation 
angle of 33° perpendicular to the junction. This difference in divergence angle 
arises because the spatial mode of the laser is smaller in the perpendicular 
direction than in the vertical direction. Such sources can be approximated by 
the generalized formula[3] 

1 sin2 ¢ cos2 ¢ 
Bo cosT(}+ _B_o_co-s"""L-(} (11.11) 

B(B,¢) 

The integers T and L are the transverse and lateral power distribution coef­
ficients, respectively. A Lambertian source has T = L = 1, while a laser 
might have values in the hundreds. Fig. 11.4 shows the radiation pattern for 
a Lambertian (cos B) and a laser ( cos100 B). The distance from the origin to 
the particular solid curve represents the magnitude of the power emitted in that 
direction. 

The values of several types oflight source are listed in Table 11.1. Commonly 
available sources include the tungsten filament bulb, an LED, a semiconductor 
laser, and a gas laser. A filament bulb will radiate according to blackbody 
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Table 11.1. Brightness of common optical sources 

Source Power 6..>. Area I 
(nm) (W/m2 ) 

Filament 14.4 w 20 I cm2 14.4 
LED 20mW 20 (50 J.Lm)2 800 
Diode Laser IOmW 10 5 by IOJ.Lm 2 X 104 

HeNe laser lmW 0.1 lmm2 0.1 
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Figure 11.6 The radiance 
pattern of a Lambertian 
(cos 0) source and of a laser 
( cos100 0). The plots are 
normalized to unity B0 • 

Sterads Brightness 
(W/cm2/sr) 

271" 2.3 
271" 125 
0.1 2 X 105 

w-7 1 X 106 

radiation laws over a large spectral bandwidth. For the purposes of this table, 
we restricted the source bandwidth to be 20 nm or less, centered at 1 JLm. 

Inspection of the data in Table 11.1 shows the reason why lasers and LEDS 
are the preferred sources for optical waveguide communication. The com­
mon filament light source, calculated in this case for a filament temperature of 
2700°K, is relatively low in brightness compared to the other sources. That, 
along with the poor overall optical conversion efficiency and relatively slow 
modulation rate, effectively rules out the use of blackbody sources for efficient 
waveguide excitation. 

The semiconductor LED is also a Lambertian source which radiates over 2tr 
sterads, but due to its small size, and relatively narrow spectral emission band­
width, its brightness is sufficient for many purposes, especially in low frequency 
(less than 100 MHz) communication links. The semiconductor laser, due to its 
much smaller area, and smaller solid angle of emission, has a brightness sev­
eral orders of magnitude greater than the LED. This is the reason single mode 
waveguides are almost exclusively excited by laser sources rather than LEDs. 
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Finally, a low power gas laser is included for comparison. The HeNe laser has 
relatively low power and intensity, but the extremely clean spatial mode of the 
gas laser allows for extremely well collimated beams which have a small solid 
angle. Due to this, the HeNe laser is the brightest source listed in the table. 
Due to its bulky size, and the need for high voltage discharges, gas lasers are 
not preferred sources for most waveguide applications. It is clear from Table 
11.1 that the semiconductor LED and semiconductor laser are well suited for 
waveguide excitation. It is truly fortunate that the emission spectrum of the 
semiconductor devices can be made to coincide with the minimum dispersion 
and minimum attenuation wavelengths (1.3 (..LID and 1.55 f..LID, respectively) of 
fused silica fibers. This overall compatibility has been one of the key reasons 
for the dramatic success of optical fiber communications in the last 20 years. 

4.2 Coupling an LED to a Step-Index Waveguide 
The most efficient coupling between a waveguide and an LED occurs when 

the LED is butted up against the cleaved end face of the waveguide. This is 
called "butt coupling", or "end-fire coupling." Since the surface emitting LED 
is a Lambertian source, we can apply Eq. 11.9 directly to the problem of 
calculating the power coupled onto a waveguide. In this case, lets assume the 
waveguide is a circular step-index fiber with core radius a. Eq. 11.9 becomes 

(11.12) 

Notice that the numerical aperture of the waveguide is the critical parameter in 
the coupling. If the optical source is smaller than the core of the fiber, then the 
power coupled becomes 

P = 1r2r~Bo(NA)2 

The total power emitted by an LED, P8 , is simply 

Ps = As fo2
7r fo"12 B(B, ¢)sin (}dOd¢ 

= 1r2r~Bo 

(11.13) 

(11.14) 

Combining the results of Eq. 11.13 and 11.14, we get a simple formula for 
calculating the power coupled to a step-index multimode fiber 

(11.15) 
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If the source radius is larger than the core, then Eq. 11.15 can be easily modified 
to become 

(11.16) 

4.3 Coupling an LED to a Graded Index Waveguide 
The coupling models we have been using are based on ray tracing. For a 

step-index waveguide, it is simple to characterize an acceptance angle based on 
the maximum angle that will support total internal reflection inside the core. 
What do we do if the core is graded? In such a case, the numerical aperture 
becomes a local function of the distance from the axis of the waveguide. For a 
circular core graded index fiber with cladding index n2, the numerical aperture 
is defined as 

NA(r) = .Jn2(r)- n~ (11.17) 

Since the maximum acceptance angle is defined as Bo,max = sin-1NA, the 
acceptance angle depends on radius. The coupled power is simply derived by 
modifying Eq. 11.12 for the step-index fiber, using the factthat sin Bo,max =NA 

Pgraded = 27r2Bo for[n2(r)- n~]rdr (11.18) 

This integral cannot be evaluated until the index profile is defined. The inte­
gration limit is the smaller of the core or source radius. 

Example 11.5 Coupling power to a step-index fiber 

Consider coupling a large area surface emitting LED to a step-index fiber 
with core diameter of 50 J.Lm. If the brightness of the LED is 125 W/cm2/sr, 
how much power is coupled onto the fiber if the LED is butt-coupled to the end 
of the fiber? The fiber has anNA= 0.12. 

Solution: Since the core is smaller than the LED, we simply need to let 
r = 25J.Lm in Eq. 11.13. 

P = 7r2 (25 X 10-4) 2 125 (0.12)2 = 1.1 X 10-4 W 

4.4 Using a Lens to Improve Coupling 
Lenses can be used in certain circumstances to improve coupling between a 

waveguide and a source. A lens can be thought of as an optical transformer: it 
trades off divergence angle for area. A large collimated beam can be transformed 
into a tightly focussed, but strongly diverging beam by passing through a lens. 
The brightness of the source is not changed by the lens. 
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If the emitting area of the source is smaller than the guiding core of the 
waveguide, then a lens can improve the coupling efficiency compared to simple 
butt-coupling. The function of the lens is to magnifY the image of the source 
by a factor M to match exactly the core area of the waveguide. In the process, 
the solid angle in which the source emits is reduced by the magnification factor, 
M, so that more of the emitted light falls in the NA of the waveguide. 

If the Lambertian source area is larger than the core, then the lens will not 
help improve the coupling. In the case of a single spatial mode beam, such 
as a laser beam, where the solid angle of the beam is much smaller than the 
NA of the waveguide, a lens may be useful for converting the large collimated 
beam into a small focal point that matches the core dimension and NA of the 
waveguide. Optimum coupling of a source to a waveguide requires matching 
the dimension of the optical beam, and its numerical aperture, to that of the 
waveguide. 

5. Surface Coupling a Beam to a Slab Waveguide 
There are two basic methods for coupling an external beam to a slab or surface 

waveguide. The most direct is to "end-fire" couple, where the beam is focussed 
onto the end of the waveguide. This method works well if a clean edge of the 
waveguide is optically accessible, and if one has the ability to tightly focus and 
position the external beam. Unfortunately this is often not the case. The second 
method relies on surface coupling of a beam to one of the waveguide modes. 
Since an unguided beam (effectively, a radiation mode) cannot directly couple 
to a guided mode of a waveguide, some coupling mechanism must be invoked 
to transfer energy between the field and the mode. The most common ways are 
to I) use a prism to evanescently couple the optical fields, or to 2) use a grating 
on the waveguide to couple radiation and guided modes. Both surface methods 
are examined in this section. 

5.1 Prism coupling 
The prism coupler is widely used for characterizing thin films on substrates. 

The process is totally non-intrusive, and requires no clean, exposed edges of the 
waveguide for end-fire coupling. Large planar substrates can be characterized 
quickly and nondestructively for their mode structure. 

Consider the problem of coupling a radiation mode to a guided mode inside 
a waveguide. Fig. II. 7 illustrates a radiation mode travelling parallel to a 
guided mode in a waveguide. Both fields have the same frequency (and vacuum 
wavevector, ko). The external field will extend into the waveguide, either as an 
evanescent field, or as a travelling wave passing through the structure, and it 
will induce a polarization perturbation within the waveguide. So why doesn't 
this external field couple energy into the guided mode? The reason is due to 
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the lack of "phase matching," i.e. the phase velocities of the two waves are 
different. The field in the waveguide propagates with a spatial wavevector {3, 
which is nearly equal to {3 ~ kon1. The radiation field propagates with spatial 
wavevector ko. The polarization perturbation created by the radiation field 
within the waveguide does in fact excite the guided field . However, due to the 
phase velocity difference between the induced guided wave and the radiation 
field, they rapidly get out of phase. In a distance, L, such that 

({3 - ko)L = 1r (11.19) 

the field induced at z = 0 will be exactly out of phase with the field being 
induced at z = L. For fused silica, this distance is about one wavelength. The 
net effect is that no energy is transferred to the guided mode. 

Effective coupling between two fields requires that they be phase matched, 
i.e. the two waves travel at the same phase velocity in the waveguide. One 
method of accomplishing this is to use a prism to effectively slow down the 
radiation field. Consider the optical structure in Fig. 11 .8, where a prism is 
located a distance h from the surface of a waveguide. The prism has an index of 
refraction np, while the waveguide on the surface has guiding film index n f, on 
a substrate with index n 8 • The cover index, nc, is assumed to be unity, although 
it is only critical that it's value be less than that of the waveguide or the prism. 

The incident beam is directed into the prism at an angle such that total 
internal reflection occurs at the np-nc interface. This is satisfied if the angle of 
incidence,() as defined in Fig. 11.9, is greater than the critical angle 

(11 .20) 

Satisfying this condition requires that the prism have a higher index of refraction 
than the substrate. Inside the prism, the incident and reflected waves form a 
standing wave pattern. The k-vector for the field in the prism can be described 

Radiation Field -

Guided Field 

Figure 11. 7. The lines of constant phase for a radiation mode propagating parallel to a guided 
mode are shown. Because of the difference in propagation coefficients, the radiation mode 
accumulates phase at a slower rate than does the guided mode, and therefore rapidly becomes 
out of phase with the guided field. 
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Figure 11.8. The prism with index np is located a small distance above the guiding film, nf. 
A beam is incident in the prism, and under proper conditions can couple into the waveguide. 

in tenns of its components 

konp = np(±kxx + kzi) 

np( ±ko cos Ox+ kosin Bz) (11.21) 

Below the prism-air interface, the field decays exponentially with increasing 
distance. The x-component of the propagation coefficient is imaginary in this 
region, but the z-component remains the same as inside the prism. Since the 
z-component of k depends on the angle of incidence, it is possible to adjust the 
angle so that the waves travel at the same velocity as those in the waveguide. 
When this happens, strong coupling occurs. Specifically, to maximize the 
interaction between the fields in the prism and the waveguide, the angle of 
incidence of the beam with respect to the bottom surface should be 

konpsinO = f3J (11.22) 

This is called the phasematching condition. Note that this angle is measured 
inside the prism. The external angle at which the beam enters the prism must 
be adjusted to account for refraction at the prism-air interface to satisfy this 
equation. The utility of prism coupling is that the angle of incidence can be 
adjusted to satisfy Eq. 11.22 for each and every mode in the waveguide (not si­
multaneously, however), allowing the selective coupling of energy to individual 
modes, and allowing the experimental detennination of mode structure. 

5.2 The Coupling Constant for Prism Coupling 
We cannot easily use coupled mode theory to describe the interaction of 

between the prism and the waveguide, because the radiation field is difficult to 
nonnalize. In view of this, one usually resorts to a full-field description of the 
interaction. Such an analysis is not conceptually difficult, but it is beyond the 
scope of this book, especially in view of the limited application prism couplers 
have to current devices. 
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Figure 11.9. A side-view of the prism coupler. The evanescent wave from a wave that is total 
internal reflected by the glass-air interface couples to the guided mode in the slab waveguide. 
The coupling depends strongly on the distance, h, separating the prism and substrate. 

Coupling depends critically on the separation between the prism and guiding 
film. As the gap decreases, weak fields from each region can extend across the 
gap and couple to the opposite region. This evanescent overlap is the source of 
the weak coupling that occurs between the prism and waveguide. The energy 
exchange can be considered a tunneling event. It should be intuitively obvious 
based on the discussion above that the coupling will become stronger as the 
distance between the prism and waveguide decreases. Exact analysis of the full 
wave problem is required to find a coupling coefficient for the structure. The 
interested reader is referred to the literature for a full wave description of the 
coupling[6, 7, 8]. Typical separations are less than one-half wavelength, which 
in practice is difficult to achieve over a broad area. Generally one must resort 
to clamps which press the prism onto the surface. The clamping pressure is 
experimentally adjusted to give the desired coupling. 

Example 11.6 Mode analysis using a prism coupler 

A step index thin film waveguide is constructed on a glass substrate. The 
guiding film has an index of 1.53, and the guiding film has an index of 1.6, 
with thickness 2 p,m. The waveguide is excited by a HeNe laser operating at 
>. = 0.6328p,m. We can assume that all possible spatial modes in the waveguide 
have been excited by the source. If a 45-45-90° prism made from SF- 14 glass 
with an index 1. 73 is placed on the surface of the waveguide, at what angle will 
each mode couple out ofthe prism? 

Solution: The waveguide and prism are shown in Fig. 11.1 0. We can assume 
that the prism is gently pushed into the surface and that optical coupling between 
the guide and prism occurs. 

The first step is to calculate the values of f3 for the allowed modes in the 
waveguide. Using a numerical routine, we find that there are three allowed T E 
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n=1.53 

Figure 11. 10. A prism coupler is used to couple radiation from a waveguide. 

modes, with f3o = 15.826JLm-1, fJ1 = 15.651JLm-1, and fJ2 = 15.369JLm-1. 
There are also three T M modes, but we will assume that the excitation source 
was polarized to only excite the T E modes. 

Using Eq. 11.22, we can calculate the angle of each coupled mode within 
the prism, using ko = 9.93JLm-1. 

Bo = sin-1 /3o = 15.826 = 67 13o 
konv 1.73·9.93 · 

()1 = sin- 1 i3I = 15.651 = 65 65o 
konv 1. 73·9.93 · 

()2 = sin -1 /32 = 15.369 = 63 46o 
konp 1.73·9.93 · 

Straightforward geometry allows us to determine the angle of incidence of each 
ray with respect to the hypotenuse of the prism. Refer to Fig. 11 .11 The incident 
angle on the interface is given by 

Using Snell's law, we can solve for the exit angles of the beams from the prism. 

For the three angles determined above, the exit angles with respect to the prism 
hypotenuse are 40.67°,37.64°, and 33.25° for {30 , fJ1. and {32, respectively. 
Since the hypotenuse makes a 45° angle with respect to the substrate, we should 
subtract these angles from 45° to find the angle, () as indicated in the figure for 
each of the modes. In this case we find that the lowest order modes travels at 
an angle of 4.33° from the substrate, while the other modes travel at 7.36° and 
11.75° from the substrate. These modes can be easily distinguished from each 
other on a card placed a small distance from the prism coupler. 
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Figure 11.11. Determining the final exit angle of a ray involves evaluating the refraction of the 
beam at several surfaces. 

5.3 Disadvantages of Prism Coupling 
Prism coupling is useful for characterizing large thin film structures, but it 

has several disadvantages that have limited its application in integrated optics. 
First, prism coupling is inconvenient. It requires precision location of a rela­
tively large bulk optic over a waveguide. This effectively precludes the use of 
prism coupling in any sort of integrated structure due to manufacturing diffi­
culties. Second, the air gap adjustment is critical for controlled coupling. This 
can be circumvented to some extent by putting down a low index cover over 
the waveguide, to which the prism can be directly glued with index matching 
cement. Nevertheless, there is little room for error, and no simple adjustment 
is possible to accommodate tolerances. Finally, the index of the prism must 
be larger than that of the waveguide. For fused silica waveguides, this is not 
a major problem. But for waveguides made on Si or GaAs substrates with in­
dices on the order of 3.5, or even on a material like Lithium Niobate with index 
on the order of 1.8, it is very difficult to find optically transparent material of 
sufficiently large index. Such prisms, if they do exist, are extremely expensive 
and not particularly rugged. 

6. Grating Couplers 
A second technique for coupling an optical beam onto a thin film waveguide 

is to use corrugations in the waveguide. We examined one example of this in 
Chap.l 0, where a corrugation was used as a wavelength-dependent reflector, 
coupling forward waves to backward waves in a waveguide. In the case of a 
surface coupler, we want to couple a guided wave into a radiation mode of 
the field. While we used coupled mode theory in the last chapter to describe 
the effect of a waveguide corrugation, we do not have the luxury of having 
normalized modes when dealing with radiation modes, so other techniques 
must be used to determine the effective coupling. As with the prism coupler, 
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Figure 11.12. A grating coupler illuminated with an incident beam. The incident beam is 
broken into a transmitted, reflected, and diffracted beams. Under proper conditions, power can 
also be coupled into the guided mode of the waveguide. 

such analysis is beyond the scope of this book. In this section we will describe 
qualitatively the operation of the coupler, and refer interested readers to selected 
papers. 

The grating coupler is shown in Fig. 11.12. An incident beam strikes the 
grating on the waveguide. This grating can be created through lithography, 
holographic development, or volume index variations through ion implanta­
tion, to mention only a few techniques. Here, we are only concerned with the 
fact that there will be a grating. The incident wave strikes the grating, and is 
broken into several other beams. There is usually reflected wave, and if the 
substrate is transparent, there will be a transmitted beam. The directions of 
these beams follow Snell's law. There can also be several diffracted waves, 
where the direction of the beam is dramatically altered from what would be 
expected through reflection or refraction. If conditions are correct, a portion 
of the wave can couple into the guided mode of the waveguide. We will show 
that the effect of the grating is to modify the longitudinal component of the k 
vector of the wave. 

6.1 Basic Grating Physics 
If the grating structure is oriented along the z-direction, then it can modify 

the z (longitudinal) component of the incident wavevector. Specifically, if the 
grating has a period A, the vector relation between incident and diffracted light 
is 

(11.23) 

where q is an integer, subject to the condition that the magnitude of the wavevec­
tor does not change 

(11.24) 
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Figure 11.13. k-space diagram of a wave diffracting off of a grating. The grating subtracts a 
value K from the z component of the input wavevector, resulting in a backward directed wave. 
Note the backward wave has the same magnitude, lkl 

when the diffracted wave stays in the same index medium. This is most easily 
viewed graphically. Fig. 11.13 shows the input, reflected, and diffracted wave 
from a surface grating. The period of the waveguide satisfies K = 211' /A. The 
incident wave has a wavevector kona where na is the index of the medium 
above. the grating. Upon striking the grating, a reflected and diffracted wave 
are generated. The reflected waye has the same longitudinal wavevector, kz = 
kona sin () as the input wave, but the transverse ( x-directed) component of the 
wavevector is reversed. The magnitude of the reflected wavevector is identical 
to the input. The grating can add or subtract integer units of K to the z­
component of the incident wave. The radius kona shows the locus of allowed 
wavevector values based on Eq. 11.24. Any diffracted wavevector must fall on 
this radius. Graphically, we add or subtract the vector K from the z-component 
of the incident wave, and see where it intersects the radius. In this case, it is 
impossible to add a vector K and remain on the proscribed radius. Only when 
K is subtracted from the incident wave is there an allowed solution. This is 
shown by the shaded arrow. 

Now consider what would happen if the beam is incident on a grating placed 
in a thin film waveguide structure, sitting on a transparent substrate. The same 
type of k-space diagram can be drawn, as shown in Fig. 11.14. In this case, 
the magnitude of the transmitted wave is larger due to the increased index. 
The lower radius in the figure represents the allowed values of the diffracted or 
transmitted wavevectors in the substrate. The allowed k values ofthe waveguide 
are represented by the small section of a radius horizontally located at kon f. 
In this case we can see that there can be one diffracted beam backward into the 
substrate, and one beam diffracted forward into the waveguide. 

The horizontal diffracted beam corresponds to the grating scattering a wave 
into the waveguide, which has an effective wavevector, kon 1. If the incident 
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Figure 11 .14. k-space diagram of a grating on a high index thin film, placed on a moderate 
index substrate. In this special case, the angle of incidence is exactly right for the grating to 
couple light into the waveguide. 

angle is(), then by geometry, the guided wave propagation coefficient is 

{3 = kona sin() + K (11.25) 

From these diagrams, we can see how the longitudinal value of the wavevector 
is converted by the grating into new values. The value ko stays the same in 
all media, but the influence of the dielectric constant, Tti, is seen to scale the 
wavevector in each media. However, the effective wavenumber of the grating, 
K, is independent of the index, and simply adds or subtracts to the longitudinal 
component. If total wavenumber can be preserved after adding in the effect of 
the grating, then a diffracted order can occur. 

6.2 Output Coupling with a Grating Coupler 
The waveguide grating is advantageous over prism coupling because it can 

be manufactured using lithographic techniques that are standard in the semi­
conductor industry. This means that it is possible to mass-produce integrated 
optical devices with waveguide couplers. In this section we want to consider 
some of the details of such a coupler. Consider the case where a guided mode 
in a waveguide is incident upon a section of waveguide with a grating. The 
grating will act as a coupler, and coherently scatter some of the light out of the 
waveguide. This technique is becoming popular for semiconductor laser output 
coupling, because it is not necessary to cleave the substrate in order to create 
an output mirror. An example of such a structure is shown in Fig.ll.l5. The 
top figure shows the waveguide configuration, with the incident and transmitted 
wave, and the diffracted waves going into the substrate and the air. 
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Figure 11.15. A guided wave incident upon a grating will couple some energy into a diffracted 
waves. The angle at which the diffracted beams leaves is determined by the phase matching 
conditions shown in the lower diagram. 

The incident wave is a guided mode with propagation coefficient /3, which 
by definition is the z-component of the wavevector. The grating can add or 
subtract to this z-component. By inspection of Fig. 11.15, we can see that it 
is impossible for a photon to scatter off the grating in a forward direction and 
have kz = f3 + K. We must consider only cases where the z-component is 
reduced. For the case shown, we see that there are four cases where 

koni sin()= /3- qK (11.26) 

can be satisfied. These are represented by two rays going into the substrate, 
and two into the air. This illustrates one difficulty with grating couplers: they 
tend to couple light in both directions out of the waveguide. If we were trying 
to efficiently couple light from a waveguide for an application, we might try 
to adjust the grating period so that only one beam was coupled into the air. 
But there would still be a beam coupled into the substrate, which represents 
a potential power loss of 50 %. This can be combatted by placing a reflector 
under the active waveguide, reflecting the power back out of the structure, 
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Figure 11.16. A single beam coupler can be built by making the grating wavenumber so large 
that the phase matching condition cannot be met in the cover region. The only coupled power 
radiates into the substrate. 

aithough one has to be very careful about interference effects between the two 
coherent waves combining above the waveguide. A second method is to design 
the grating such that only one beam can couple out of it. If the index of the 
substrate is greater that the cover index, it is possible to make it impossible for 
the phase matching conditions to be realized in the cover region. Fig. 11.16 
shows the phase diagram of such a structure. 

In this case the grating wavenumber is chosen to almost retroreflect the beam 
back down the grating. Graphically, we can see that this condition will be met 
if 

(3 + kons > K > (3 + konc (11.27) 

Unfortunately, there are several problems with this scheme. First, the exiting 
beam will strike the lower substrate-air interface above the critical angle, and 
will not couple into free space. To get light out, it is necessary to deform the 
lower substrate surface by adding a prism or another grating. This defeats many 
of the reasons for using gratings in the first place. However, there are situations 
where it could useful to couple light out of the waveguide and into other regions 
of the substrate, such as into a detector. The second problem has to do with 
the fact that most semiconductors operate in a standing wave. The laser light 
travels back and forth along the waveguide axis. Using a coupler as shown in 
Fig. 11.16, two light beams would be coupled out, in nearly opposite directions. 
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This is essentially the same problem as in the air coupling, when the power was 
divided between two beams. 

Another approach to the multiple beam problem is to use a blazed grating, 
where the dielectric grating has an asymmetric profile[?]. The effect of the 
blaze (i.e. the asymmetry) is to cause certain diffraction orders to preferen­
tially receive more of the power. This technique has been used for years in 
the manufacture of diffraction gratings for scientific instruments such as spec­
trophotometers and laser tuners. 

6.3 The Coupling Coefficient 

As noted above, we cannot directly use coupled mode theory to derive the 
coupling coefficient for a diffraction grating. There have been many calcula­
tions of these structures, using Green's functions, Bloch waves, and variational 
techniques. There is currently a great deal of research being done on gratings 
couplers for semiconductor lasers. The grating can serve as both an output 
coupler and as a combination mirror-tuned filter for providing the necessary 
optical feedback to sustain laser operation. The interested reader is directed 
at much of the current literature to see the latest in design methodology[8]. 
The overview presented here is intended only to show the qualitative aspects of 
grating coupling. 

7. Summary 

In this chapter, we introduced a set of very important rules for calculating 
coupling efficiency between waveguides and free space optical beams. Cal­
culations can be done for determining the coupling efficiency between two 
waveguides that are slightly tilted with respect to each other, or slightly offset 
to each other. As problem 11.5 will show, misalignment of less than lJLm can 
result in 1 dB of loss. This is a major problem for the manufacturers of single 
mode fiber connectors. It is very difficult to mass produce connector ferrules to 
tolerances ofless than I J.tm. Even if it can be done, thermal expansion caused 
by everyday temperature variation can easily introduce creep and distortion of 
noticeable magnitude. 

Multimode waveguides are much more tolerant of misalignment, because 
there are more guided modes available to create the necessary superposition. 

We found that most coupling problems can be described by an overlap integral 
between the incident and exiting field. Maximum coupling arises when the 
spatial fields are similar. We explored two examples of coupling for which 
coupled mode theory was not applicable, namely prism and grating coupling. 
Coupled mode theory does not work in these cases because it is difficult to 
normalize the radiation modes. We described qualitatively how these couplers 
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worked, hoping that the reader can explore more involved solutions with greater 
insight and understanding. 
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Practice Problems 
1. Consider coupling a laser beam into the slab waveguide described in 

Example 11.1. Use the data in Table 11.1 to calculate the exact wave­
functions for the first three TE modes of the unperturbed structure. A 
laser beam is focussed in one direction using cylinder lens so that the y­
component of the beam remains wide (several mm's), but the x-dimension 
of the beam is focussed down to a Gaussian profile with characteristic ra­
dius Wx = lOJ.tm. (The characteristic radius is the distance from the 
beam center at which the amplitude is reduced to e-1 of the peak value.) 
Assume the wavelength of the incident radiation is 1.3 J.tm, as in the 
example. 

(a) If the x-axis of the beam is perfectly centered on the waveguide, how 
much power is coupled to the TEo mode? The TE1 mode? the TE2 

mode? 

(b) If the beam is lowered so that the center of the optical beam strikes 5 
J.tm below the center of the waveguide axis, determine the coupling 
to the TEo and TEi modes. 
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Figure 1 1.17. Two identical fibers are angularly misaligned by an angle 0. 

2. Extend the derivation of Eq. 11.6 to derive Eq.11.8 for unnormalized 
modes. 

3. An LED with circular radius of 40 J.Lm and a Lambertian emission pattern 
of 125 W!cm2/sr is used to excite two optical fibers. The first has a core 
radius of25 J.Lm, and an NA=0.15. The second fiber has a core radius of 
31 J.Lm and an NA=0.12. How much optical power is coupled into both 
fibers if the LED is butted against the end of the cleaved fiber. You may 
neglect Fresnel loss. 

4. Consider the problem of coupling two single mode step-index fibers to­
gether as a function of bending angle between the two fibers. Assume 
that the fibers are identical, with electric field amplitude described by a 
Gaussian function 

E(r) = Aexp(-r2jw~) 

where wo = 5J.Lm is the Gaussian beam radius. The wavelength is l.3J.Lm. 
Fig. 11.17 illustrates the geometry of the problem. 

5. If the two fibers have the same beam radius, numerically calculate the 
effect of relative tilt between the core axis on the coupling efficiency. 
Calculate and plot the coupling efficiency between the two fibers as the 
tilt angle between the fibers increases from 0 to 10° in steps of 2 o. 

6. For the same fiber as described in Problem 11.4, calculate the coupling 
efficiency as a function of translational offset, 8r, between the two fibers. 
See Fig. 11.16. Assume that fibers are parallel to one another, but that the 
core axes are separated radially by a distance r. Calculate the coupling 
efficiency as a function of r for r = 0 -t 2wo. 

7. A tnajor problem in optical fiber systems is the reflection that can couple 
back into a waveguide from the end of the fiber. The dielectric surface 
will display a Fresnel reflection unless it is carefully index-matched with 
the outside world. 

8. One way to fix this problem is to polish the end of the fiber at a slight 
angle with respect to the fiber axis. If the core index is 1.45, the cladding 
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Figure 11.18. Two identical fibers translationally offset. 

Figure 11.19. A fiber is cut and polished at an angle (} with respect to the plane perpendicular 
to the core axis. 

index is 1.44, the core diameter is I OJLm, and the outside index is unity, 
at what angle should the end of the fiber be polished in order to reduce 
the coupling ofback-reflected light to less than 20 dB? (Hint: you don't 
need all of these parameters.) 

9. Another way to fix this problem is to "index-match" the end of the fiber 
with its mate, and leave the angle of the fiber perpendicular to the axis. 
What is the maximum allowable difference index of refraction between 
the core and interface that can be tolerated if reflections are to be kept 
below 30dB? 

I 0. Calculate the coupling efficiency of a Gaussian beam to a symmetric 
slab waveguide. Assume the waveguide is 3 JL m thick, has a core index 
ncore = 1.5, and a cladding index nclad = 1.485. Assume the incident 
Gaussian beam has a characteristic radius, wo = 3JLm. 

11. Determine the accuracy ofthe Gaussian approximation for the HEu mode 
by calculating the coupling of a Gaussian beam to a single mode fiber with 
core radius a= 5JLm, .X= l.3JLm, and normalized frequency V = 1.8. 
Use Eq. 5.53 to determine the input Gaussian beam size. Calculate the 
coupling efficiency by numerically evaluating the overlap integral of the 
true mode of the fiber. 

12. Prove that ifEq. 11.38 is satisfied, the beam coupled from the diffrac­
tion grating into the substrate will be totally internally reflected by the 
substrate-air interface on the bottom of the substrate. 

13. A diffraction grating is designed for operation in the head of a CD player 
for coupling light from a laser onto the probe head. Assume the head is 
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madefromapolymerwaveguideonglass, withsubstrateindexns = 1.45, 
waveguide index n f = 1, 5, and cover index nc = 1. The laser has a 
design wavelength of750 nm. 

(a) What grating period, A, should be chosen if the laser is to be coupled 
into the waveguide from directly above, so the angle of incidence is 
90°? 

(b) Assume the laser beam has a diffraction angle of2°. Over what range 
of wavelengths will the waveguide still couple light from the laser, 
assuming that all light enters within ±2° of normal? 

(c) If the grating has a spectral acceptance width of 5 nm, meaning that 
it will couple light at normal incidence over a spectral range of 5 nm, 
what is the maximum angular mis-alignment that the laser can be 
mounted at, and still couple light to the waveguide? 

14. A prism is to be used to couple light onto a waveguide with thickness Sf-lm, 
ns = 1.55, n1 = 1.65, and nc = 1. If the prism has index np = 1.7, 
what angle(s) should the light be sent into the prism in order to couple to 
the TE mode(s)? 



Chapter 12 

WAVEGUIDE MODULATORS 

1. Introduction 

There are two common methods for encoding a signal onto an optical beam: 
either directly modulate the optical source, or externally modulate a continuous 
wave optical source. Direct modulation is the most widespread method of 
modulation today, but it introduces demanding constraints on the semiconductor 
lasers. For example, it is difficult to directly modulate a semiconductor laser 
at frequencies above a few GHz. Furthermore, it is difficult to maintain single 
mode operation of these pulsed lasers. Non-single-mode lasers have a larger 
spectral bandwidth which leads to increased pulse spreading due to dispersion. 
External modulators offer several advantages over direct modulation. First, one 
can use a relatively simple and inexpensive continuous wave laser as the primary 
optical source. Second, since a modulator can encode information based on a 
number of externally controlled effects, it is not compromised by the need to 
maintain a population inversion or single mode control. Finally, direct phase 
modulation (for FM or PM systems) is possible in external modulators, but is 
nearly impossible to achieve in a laser. 

Fig. 12.1 shows a modulator in an optical system. A continuous wave laser 
couples through the modulator onto an optical fiber. The laser can be a simple 
and inexpensive source, since the burden of information encoding is placed on 
the modulator. Separating the generation and the modulation functions between 
two devices often makes the system work better, although it adds to the system 
complexity. 

In this chapter, we will examine two methods for modulation. For commu­
nications and high speed links, electro-optic thin-film modulators are today's 
choice. For signal processing and detection, acousto-optic modulation is used. 
Most physical processes that can be exploited to modulate light require a sig-
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Figure 12.1. An intensity modulator installed between a continuous wave laser and an optical 
fiber. 

Applied Electric Field 

Figure 12.2. The transmission of a modulator can be described in terms of the minimum 
and maximum intensity transmitted through the device. The transmission of an electro-optic 
modulator is a function of applied field. 

nificant power per unit volume. By miniaturizing the interaction volume using 
thin films and guided wave optics, the required modulation power can be sig­
nificantly reduced. Integration often also leads to increased speed. 

2. Figures-of-Merit For a Modulator 
There are five basic parameters used to characterize a modulator: modu­

lation efficiency, bandwidth, insertion loss, power consumption, and isolation 
between different channels. 

The Modulation Efficiency, 'TJ, depends on the form of modulation. For 
intensity modulation, 'f/ is defined as 

'f/ = lmax - lmin (x lOO%) 
I max 

(12.1) 

where I max is the maximum transmitted light, and Imin is the intensity trans­
mitted when the modulator is adjusted for minimum transmission. An example 
is shown in Figl2.2. 
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Figure 12.3. The modulator will introduce some passive losses between the optical source and 
the end user of the light. This is due to reflections, absorption and scattering in the modulator, 
and mode mismatch between the source, modulator, and waveguide, if used. 

Often the modulation depth is described in decibels, using the term Contrast 
Ratio 

. Imax 
Contrast Ratto= lOlog -1 . (12.2) 

mtn 

Electro-optic modulators can be configured for either intensity or phase modu­
lation. Eq. 12.1 is relevant to intensity modulation. For phase modulators, the 
modulation index is 'TJ = sin2 (6.¢/2), where 6.¢ is the extreme value of the 
phase modulation. This form of 'TJ describes the intensity contrast derived from 
an interferometric measurement of the phase shift. 

Modulation bandwidth, D.v, is defined by the 3 dB points of the frequency 
transfer function for the modulator (i.e. the frequencies where the modulation 
index is reduced to 50% of its maximum value). Bandwidth establishes the 
maximum information transfer rate for a modulator. If the switching time, T, 

is defined instead of a frequency bandwidth, then the equivalent bandwidth is 

D.v = 0.35 Hz (12.3) 
T 

where T is the 10-to 90-percent rise time. 
Insertion loss, L, describes the fraction of power lost when the modulator 

is placed in the system. The insertion loss does not include the additional 
modulation losses induced by the modulator. The definition is 

L = 10 log Pout (12.4) 
Pin 

where Pout is the transmitted power of the system when the modulator is not 
in the beam, and Pin is the transmitted power when the modulator is placed in 
the beam and adjusted to provide maximum transmission. 

Do not confuse insertion loss with modulation index. The insertion loss is a 
passive loss, arising from reflections, absorption, and imperfect mode coupling 
between the modulator and source. Insertion loss must be compensated with 
either a higher power optical source, a more sensitive detector, or an optical 
amplifier. All these schemes are less than optimum, so insertion loss should 
be minimized. Insertion loss does provide a crude isolation between the opti­
cal source and any reflections coming back from the destination of the light, 
however there are better ways to eliminate this coupling. 
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Figure 12.4. An optical switch can connect one of several ports. Isolation is the degree to 
which unconnected ports are coupled. 

Power consumption is determined by the power per unit bandwidth required 
for intensity modulation, or in the case of phase modulators, the power per unit 
bandwidth per unit radian of modulation. This value depends on the electro­
optic or acoustooptic properties of the material, but is most affected by the 
volume of the modulator. Waveguide modulators with small effective volumes 
have better power consumption performance than bulk modulators. Total power 
consumption determines how many devices can be put on a single substrate 
before thermal loading or power supply loading becomes a serious problem. 

The final issue, isolation, describes how effectively a signal is isolated be­
tween two unconnected channels. Fig. 12.4 shows a switch with one input and 
two outputs. The signal from the Input connects to Channel 1 of the output. 
Isolation in this case describes how much of the Input signal appears on Chan­
nel 2. Ideally there would be no feedthrough from the input to the unselected 
channel. Unfortunately, there is always some coupling due to evanescent fields, 
scattering, or unwanted reflections. Isolation is specified in decibels, 

12 
Isolation [dB] = lOlog h (12.5) 

where h is the intensity in the driven channel, and 12 is the intensity in the 
unselected, or off channel. A switch which coupled 0.1% energy between the 
two channels would have an isolation of30 dB. The degree to which isolation is 
required depends on the application. Local Area Networks (LANs) sometimes 
specify isolation in excess of 40 dB. 

3. Electrooptic Modulators and the Electrooptic Effect 
In 1875, Kerr discovered that amorphous, optically isotropic material became 

birefringent in a strong electric field, with the optic axis parallel to the applied 
field [I]. You may recall the optical Kerr effect that we discussed in Chapter 7 
concerning self phase modulation in optical fibers. About 20 years later, Pockel 
discovered a similar but much weaker effect in certain crystals[2]. Isotropic 
crystals became uniaxial in the presence of electric fields. Uniaxial crystals 
become biaxial. In the Kerr effect, the polarization depends quadratically on 
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E. The Pockel's effect is linear in E, and is therefore better suited for making 
modulators. Symmetry arguments can be applied to show that the crystal must 
not possess inversion symmetry in order to display a Pocket's effect. 

3.1 The Propagation of Electromagnetic Waves in an 
Anisotropic Medium 

Before we describe the Pockel 's effect, and how it is used in modulators, it is 
necessary to understand how light travels through an anisotropic crystal. This 
all depends on the index of refraction, and the key point we will make is that 
the index of refraction is a function of both the propagation direction and the 
wave polarization. 

In an anisotropic crystal, the electric displacement vector, D, is related to the 
electric field by a dielectric tensor, 

(12.6) 

where the subscripts represent cartesian coordinates. It can be shown through 
energy conservation arguments[3] that 

Eij = Eji (12.7) 

so there are only six possible values of Eij. Unlike the isotropic media, the 
electric field, E, and displacement vector, D, are not necessarily parallel. 

This difference in direction between the electric field and displacement vector 
has a major effect in the propagation of a wave through a crystal. The power in 
a beam follows the Poynting vector 

S= ExH (12.8) 

and keep in mind that the Poynting vector, S, travels perpendicular to both E 
and H. Maxwell's equations for a single frequency plane wave can be written 
as 

k x E = WJLoH 

kx H = -wD 

Eliminating H from the equations yields 

J.tow2D = k2E - (k · E)k 

(12.9) 

{12.10) 

where the term (k ·E) does not necessarily equal zero. Therefore, since the 
power flows perpendicular to E, the power does not travel in the same direction 
ask. The angle between k and Sis a complicated function of the susceptibilities. 
This effect leads to "walk-off'' of the power from the phasefront direction, and 
is responsible for the distortion seen in double-refracting crystals. 
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To describe electro-optic modulation we want to develop a general formalism 
for describing plane wave propagation through an anisotropic crystal. It is our 
goal to describe the effective index of refraction that an arbitrary plane will "see" 
inside a crystal. The next few paragraphs will derive the expression for the Index 
Ellipsoid which is the essential tool for wave calculations. The dis-interested 
reader can jump ahead to the gist of the discussion, Eq. 12.16. 

The stored electric energy in the medium is 

1 1 
w = -E · D = -EiEijEj (12.11) 

2 2 

where Eij is the dielectric tensor for the medium. Using cartesian coordinates, 
and expanding the stored energy term yields 

2w = ExxE;+EyyE~+EzzE;+2EyzEyEz+2ExzExEz+2ExyExEy (12.12) 

This expression can be simplified if we use the principal dielectric axes, which 
depend on the crystal structure. For many crystals these axes lie along the fa­
miliar x, y, and z axes, while others lie in non-orthogonal directions. Examples 
that follow will illustrate some of these orientations. The principal axes are the 
orientations where an applied electric field, E, produces a parallel displace­
ment, D. The principal axes are found by diagonalizing the dielectric tensor. 
In terms of the principle axes, x', y', and z', the energy is defined as 

(12.13) 

Recasting this in terms of the displacement vector, 

D 2, D~, Dz' 
2Wf.o = __ x_ + -- + --

fx' I f.Q fytj f.Q Ez' I f.Q 
(12.14) 

Using the little-known identity, Dl J2WEij = r, Eq. 12.14 becomes 

(12.15) 

This expression describes the Index Ellipsoid. The index ellipsoid is a locus 
of points which form a 3-dimensional ellipse. The distance from the origin to 
the surface of the ellipse is equal to the index of refraction for an electric field 
polarized along that direction. 

To find the effective indices of refraction for a beam we follow this recipe: 
draw a line parallel to the k vector through the origin of the index ellipsoid. A 
plane wave travelling along this direction will have an electric field polarized 
perpendicular to the k vector, so it will lie somewhere in the plane perpendicular 
to k, as shown in Fig. 17.6. The index ofrefraction experienced by the wave 
depends on the orientation of the polarization. 
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z 

y 

Figure 12.5. The index ellipsoid is a three dimension ellipse. A wave propagating in the yz 
plane makes an angle e to the z-axis. A plane perpendicular to the ray intersects the walls of the 
ellipse. 

A special case occurs if the field is polarized along one of the principle axes. 
Consider the case of a wave polarized in the x-direction, travelling in the yz 
plane. As the angle e varies, the width in the x-direction remains constant, 
indicating that the index, nx, is independent of angle e. This is called the 
ordinary wave. If the polarization lies in the yz plane, then the index depends 
on the angle e, ranging from ny when e = 0, to nz when e = 90°. This is the 
extraordinary wave. The extraordinary index that such a wave will experience 
is given by 

1 cos2 e sin2 e 
-2- = --2- + --2-
next ny nz 

(12.16) 

For the ellipse shown, the ellipse major and minor axes lie along the x, y, 
and z directions. The most common example of an anisotropic medium is 
called a uniaxial crystal, where the index of refraction is identical along two 
axes. This is called the ordinary index, n0 • The index of refraction along 
the third axis is called the extraordinary index, ne. Common examples of 
uniaxial crystals include quartz and sapphire. Biaxial crystals have three unique 
indices of refraction. Examples include minerals such as calcite, tourmaline, 
and forsterite. 

So what does all of this have to do with wave propagation? A plane wave 
in a crystal has two polarization eigenstates. An eigen-polarization is one that 
does not change as it propagates. In this case, if the field is linearly polarized 
along either axis of the ellipse, it will remain linearly polarized. Fields with 
polarizations that do not lie along the major or minor axis will not remain linear 
polarized. The electric field will be decomposed into two linear polarized 
components oriented along each axis. These components will travel separately, 
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Figure 12.6. The cross-section depicted in Fig. 12.5 is plotted in 2-dimensions. The two 
directions correspond to eigenstates for the polarization: a wave polarized along either axis will 
remain in that axis. Polarizations that are not parallel to the major or minor axis will change as 
they propagate through the crystal. 

accumulating phase according to the index of the axis. The general field will 
be elliptically polarized as it propagates through the crystal. 

3.2 The Pockel's Effect 
The linear electro-optic effect, or Pocket's effect, is the change in the index 

of refraction that occurs when an external electric field is applied to a crystal. 
The magnitude of the change is critically dependent on the orientation of the 
electric field and crystal. Since we are interested in how the Pocket's effect 
will alter the propagation through a crystal, it is most convenient to describe 
the effect in terms of the general modified index ellipsoid 

(12.17) 

where (1/n2)i represents the appropriate dielectric tensor terms along the reg­
ular cartesian coordinates. If x', y', and z' are chosen to be the principle axis, 
the terms ofEq.l2.17 reduce (forE= 0) to those ofEq.l2.15, so 

(12.18) 
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Since the applied electric field modifies the index of refraction, we define 
the change of the index ellipsoid in terms of electro-optic coefficients, r, 

~ (~)1 
~ (~)2 ru r12 r13 

~ (~)3 
r21 r22 r23 

[i:l r31 r32 r33 (12.19) 
~ (~)4 r41 r42 r43 

~ (~)5 
rs1 rs2 rs3 
r51 r52 r53 

~ (~)6 

The matrix, rij, is called the electro-optic tensor. Unlike the dielectric tensor, 
even if the axes are aligned along the principle axes, the cross terms (elements 
4, 5, and 6) are not necessarily zero. Crystals with an inversion symmetry will 
have all r coefficients identical to zero. In fact, due to the high symmetry of 
most crystals, most values of the electro-optic tensor will be equal to zero. For 
example, GaAs, which is a cubic crystal with 43m symmetry, has an electro­
optic tensor in the form 

0 0 0 
0 0 0 
0 0 0 

(12.20) rij = 
r41 0 0 
0 r41 0 
0 0 r41 

We will illustrate how to use these in the following example. The form of 
the electro-optic tensor can be determined strictly from a knowledge of the 
crystal symmetry. The magnitudes of the coefficients are determined through 
molecular polarizability calculations or experimental measurement. Table 17.1 
lists the non-zero electro-optic coefficients for some relevant materials. Note 
that the values depend on wavelength. More extensive tables are available in 
the references [5, 6]. 

Example 12.2 The electro-optic effect in GaAs 

GaAs is a popular substrate for active and passive optical devices. Con­
sider the effect of an electric field oriented along the propagation direction of a 
waveguide oriented along the [001] axis (z-axis) of the crystal. Let's determine 
how the electric field will affect the propagation of light being carried by the 
waveguide. 
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Table 12.1. Linear Electro-optic Coefficients for Some Relevant Crystals 

Material Symmetry Wavelength Electro-optic coefficient Index of Refraction 
(J.Lm) (10- 12 m!V) 

LiNbOa 3m 0.632 T!J = 9.6 no= 1.8830 
T22 = 6.8 ne = 1.7367 
T33 = 30.9 
rs1 = 32.6 

LiiOa 6 0.633 T!3 = 4.1 no= 1.8830 
T41 = 1.4 ne = 1.7376 

GaAs 43m 0.9 T41 = 1.1 n = 3.60 
1.15 T41 = 1.43 

KDP 42m 0.633 T63 = 11 no= 1.5074 
T41 = 8 ne = 1.4669 

ADP 42m 0.633 T63 = 8.5 no= 1.52 
T41 = 28 ne = 1.48 

Quartz 32 ~ 0.632 T41 = 0.2 no= 1.54 
T63 = 0.93 ne = 1.55 

BaTiOa 4mm ~ 0.632 T33 = 23 no= 2.437 
T13 = 8 n. = 2.180 
T42 = 820 

LiTaOa 3m ~ 0.632 T33 = 30.3 no= 2.175 
T!3 = 5.7 ne = 2.365 

Figure 12. 7. GaAs waveguide, where the modulating electric field is parallel to the axis of the 
waveguide. 

Using Eqs. 12.17 and 12.19, and the infonnation in Eq. 12.20, the index 
ellipsoid from GaAs can be written as 

x2 y2 z2 
2 + 2 + 2 + 2r41Exyz + 2r41Eyxz + 2r41EzXY = 1 
n n n 

where the first three tenns are independent of the applied field. For a z-directed 
field, the expression reduces to 

x2 + y2 + z2 
----:2...---- + 2r41EzXY = 1 

n 



Waveguide Modulators 311 

y y 

E=O 

Figure 12.8. The index ellipsoid with zero field is simply a circle in the x-y plane. When a 
field is added in the z-direction, the ellipsoid constricts along the xy axis, and expands along the 
xjj axis. 

The effective index ellipsoid has a mixed term. This means that in the presence 
of a z-directed electric field, the cartesian x, y, and z coordinates are no longer 
the principle axes of the system (in fact, they never were, but because GaAs is 
isotropic with zero field, it is a matter of convenience to define the coordinate 
axes to lie parallel to the crystal axes). The coupled term can be removed (diag­
onalized) by finding a new coordinate system that lies parallel to the principle 
axes, x 1, y1, and z1• The index ellipsoid in the presence of a field is shown in 
Fig. 12.8. We see that the ellipsoid changes from a circle when no field is 
present, to an ellipse rotated 45° from the x and y axes when the z-directed 
field is applied. 

By inspection, we can identify the principal axes from Fig. 12.7, to be 
45° rotated from the original axes. Remember that when the principal axes 
are properly chosen, there will be no terms in the ellipsoid which couple two 
directions. You can verify by substitution that the proper transformation to form 
the principle axes is 

x x1 cos45° + y1 sin45° 

y -x1 sin45° + y1 cos45° 

The transformed equation becomes 

( 1 ) 12 ( 1 ) 12 z
2 

n2 - T14Ez X + n2 + T14Ez y + n2 = 1 

Since there are no cross terms, the principle axes of the perturbed system are 
indeed x1 and y1• The propagating field will see the index structure as shown in 
Fig. 12.9. 

The length of the index ellipsoid along the two axes yields the effective 
indices of refraction: 
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Figure 12. 9. The principle axes of the perturbed waveguide are the x' and y' directions, which 
are rotated by 45° from the crystal axes. 

If the magnitude ofr14Ez is small compared to n2 , which is usually the case, 
the expression can be inverted and simplified using a simple binomial expansion 
of the quadratic terms to yield 

n 3 
nx' n + 2r14Ez 

n3 
ny' n - 2r14Ez 
n z n 

We see that the principle indices are linearly modified by the applied field . We 
will examine how this index change affects propagation in the next section. 

4. Phase Modulators 
The Pockel effect makes it possible for an electric field to alter the index of 

refraction of a material. It is possible to construct devices which use this index 
change to directly modulate the phase, the intensity, or the polarization of the 
light. All of these effects rely on optical retardation. We will consider phase 
modulation first. 

Consider the case of aTE wave in a GaAs waveguide. As we saw in Example 
12.2, the application of an electric field in the z-direction will alter the index 
of refraction along the x' and y' axes. These axes lie along the [ 11 OJ and [ 101] 
directions in the crystal. Because the r-coefficients in GaAs are identical, 
applying an electric field along any single axis will alter the indices along 
the remaining axes. Keeping this in mind, let 's try to make a GaAs based 
phase modulator. To make an efficient phase modulator, we will orient the 
waveguide along the z'-axis, or in the [ 101] direction (Fig. 12.1 0), and place an 
electrode over the waveguide so that the applied electric field is oriented along 
the y-axis. The conductive substrate act as a ground plane. The applied field 
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Figure 12.10. An electro-optic modulator based on GaAs. The waveguide on the doped sub­
strate is made of low conductivity material, so essentially all of the applied field appears across 
the thickness t9 . The substrate is moderately doped so that it has a high conductivity. A metal 
electrode is applied over the waveguide for a distance, L, to create the modulator zone. 

will cause the index to change in the z'- and x' directions. The index change 
in the z'-direction has no effect on the phase of the guided wave, because 
the electric field polarization does not lie in the z' -direction. However, any 
changes inn~ will be felt by the TE mode. The TM mode, with its electric field 
predominantly polarized in the y-direction (there is a small component along 
the z' -direction, but in the weakly guided mode approximation, this component 
is almost negligible) will not be effectively modulated by the applied field. 

A TE wave will experience a phase shift approximately as 

(12.21) 

The total phase shift due to the interaction of an applied field, Eo, over a length 
Lin this GaAs structure will be (using the results from Ex. 12.2) 

D..¢ = D..{3L = koLD..n~ 

271' Ln3r14Ey 

A 2 
(12.22) 

The electric field required to achieve a phase modulation of 1r /2 can be directly 
solved from Eq. 12.22 to be 

A 1 
E /2----

11' - 2 Ln3r14 
(12.23) 

This can also be written in terms of the applied voltage to the electrode, using 
E = V jt9 . The half-wave voltage is then 

(12.24) 

The longer the modulation length, the lower the required voltage. We have 
implicitly assumed that the guided mode is entirely confined within the modu­
lated thin film. In fact, some of the mode will exist as an evanescent wave in the 
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substrate, and will not experience phase modulation. The effective modulation 
will be reduced proportional to the confinement factor, r, of the mode. 

What are the limitations of such a phase modulator? There are two major 
problems. First, the bandwidth is limited by the capacitance of the electrode 
on the waveguide. GaAs has a large DC dielectric constant, so this capacitance 
can be significant. Second, the modulation only works for the TE mode. If the 
modulator were connected to a circular fiber, where polarization is uncontrolled, 
both TE and TM modes would be excited in the modulator. The absence of 
modulation on the TM mode would reduce the total modulation efficiency of 
the device. Finally, whenever the index of refraction of a material is modified, 
the imaginary component of the index also changes. This is a statement of the 
Kramers-Kronig relations[4]. The change of the imaginary component causes 
a change in the intrinsic attenuation of the waveguide. An applied electric 
field will in practice modulate both the phase and intensity of the transmitted 
light. Ideally, a phase modulator would not modulate the amplitude ofthe carrier 
wave. The coupling between phase and intensity must be treated as an additional 
source of noise on the signal. Fortunately the magnitude of the change in the 
imaginary component of n is small, and decreases as the wavelength gets further 
from the absorption edge of the material, so proper selection of materials and 
operating wavelengths can reduce the magnitude of this problem (see Section 
12.8 on electro-absorption). 

5. Power Required to Drive a Phase Modulator 
The power required to drive a phase modulator can be directly calculated with 

some simple approximations. Assume that a digital signal is being transmitted. 
Modulation of the signal to send one bit requires an amount of energy, W, which 
is stored in the capacitor formed by the electrode and substrate. The power 
required to send a signal will depend on the fraction of marks and spaces, but 
is approximately 

(12.25) 

where !:l.f is the data rate, or bandwidth of the signal. If the electro-optic 
modulator is ideal (no ohmic losses), the energy will be stored in the electrostatic 
field 

(12.26) 

where Vis the volume of the device. For simple structures, Eo will be constant 
over the volume of the modulator. The integral is then simple to evaluate 

(12.27) 
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Figure 12.11. A simple phase modulator made by placing an electrode over a 3 by 10 J.Lm 
waveguide. 

where H, L, and t9 are the height, length, and thickness of the active region of 
the modulator. The required power is then 

(12.28) 

To illustrate in a GaAs modulator, if we assume that sending a mark or space 
requires changing the phase by 7r /2, then in terms of the 7r /2 field ofEq.l2.24, 
the power per unit bandwidth is 

Example 12.3 Electro-optic phase modulator: voltage and power 
considerations 

(12.29) 

To illustrate the power required to operate a modulator, let's reexamine the 
TE rectangular waveguide described above, oriented along the [110] axis on 
a GaAs substrate. Fig. 12.11 shows the structure. The waveguide has the 
following characteristics: 

n 3.6_:_ = 12 
EO 

r41 = 1.1 X 10- 12 m/V 

H lOp,m 

tg 3JLm 

L = 0.5cm 

.X 0.9JLm 
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The half-wave voltage required to achieve a rr /2 phase-shift in this modulator 
is given by Eq.l2.24 

A t9 
v11" /2 = - -=--'""*--

2 L n 3r14 

0.9 X 10-6m 3 X 10-6m 
= 2 (5 X 10-3m) (3.6)3 (1.1 X 1Q-12m/V) 

5.26V 

The applied field would need a peak amplitude of 5.26 V to delay or advance 
the phase ofthe TE carrier wave by rr /2 radians. This corresponds to an electric 
field of E = 1.73 x 106 V/m across the 311-m film. The power required to 
create this modulation is given by Eq. 12.28 

p 

!:1f 
E H t9 A2 

BL n6r?4 

12 . 8.85 x w-12 10 x w-6 . (3 x w-6 ) (0.9 x w-6)2 

8 5 X lQ-3 3.66(1.1 X lQ-12)2 

2.45 x 10-11 W/Hz = 24.5{LW/MHz 

This value should be compared to that required to drive a bulk (non-waveguide) 
modulator. We keep the modulator length the same as in the example (L = 0.5 
em). To minimize the size of the bulk modulator, the optical beam should 
be focussed through the crystal. The smallest that the beam can be made, 
and still get through the crystal without excessive losses due to vignetting, is 
determined by the confocal parameter, 2zo ofthe beam.(The confocal parameter 
is the distance over which an optical beam doubles its area due to diffraction 
from a focal spot. It represents the region where the optical beam is the most 
collimated.) The beam radius, wo, at the focus is determined directly from the 
confocal parameter: 

2zo = 2rrnw5 
A 

Setting this equal to 0.5 em, and solving for wo yields w0 = 14{Lm. At the face 
of the crystal, the beam will have it's largest radius, w = v'2w0 = 20{Lm. To 
avoid serious aperture loss, the crystal should have a lateral dimension at least 
twice the diameter of the beam at the input/output faces, or 80 {Lm. Let's set the 
dimensions of the bulk modulator as being 80 x 80 x 5000{Lm3. Using these 
dimensions we find a modulation voltage (Eq. 12.24) to be 

o.9 x w-6 80 x w-6 

V1r/2 = 2 (5 X lQ-3) (3.6)3 (1.1 x lQ-12) = 140V 
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The applied electric field is still the same, namely 140/80 x w-6 ~ 1.73 x 
106 V / m. The power per unit bandwidth to drive the bulk modulator is then 

p 

!:::.f 
= 

12 . 8.85 x w- 12 80 x w-6 • (80 x w-6) (0.9 x w-6)2 

8 5 X lQ-3 3.66(1.1 X lQ-12)2 

5.22 X w-9 W/Hz = 5.2 mW/MHz 

which is approximately 200 times greater than the power required for an inte­
grated modulator. This contrast illustrates perhaps the greatest virtue of inte­
grated modulators. 

6. Electro-optic Intensity Modulators 
The phase modulation introduced by the electro-optic effect can be used to 

create an intensity modulation via changes in polarization, and through inter­
ferometric effects. 

6.1 Polarization Modulation 
Polarization modulation can be achieved using the differential retardation 

between two orthogonal polarizations of the optical wave. Fig.l2.12 illustrates 
a wave linearly polarized at 45° to the x-axis propagating into a birefringent 
crystal. The crystal has two indices of refraction, the ordinary index, n0 , and 
the extraordinary index, ne, oriented along the x and y axis, respectively. The 
incident wave is broken into an ordinary and extraordinary component, each of 
which travels with a different phase velocity. As they propagate a distance L, 
the waves will accumulate a relative phase difference, 

(12.30) 

The superposition of the two waves will in general describe an elliptically 
polarized wave. When the phase difference is !:::.¢ = 1r, 37r, 57r, ... , the super­
position will result in a linear polarization that is rotated by 90° relative to the 
input polarization. This is illustrated in Fig. 12.12, where the two waves emerge 
with the proper delay such that the superposition of the two waves produces 
a polarization that is orthogonal to the input polarization. A relative delay of 
!:::.¢ = 21r, 47r, 61r, ... will restore the wave to its original state of polarization. 

If the crystal is electro-optic, then application of an electric field along one 
axis of the crystal can lead to an electronically-controlled relative phase shift 
between the ordinary and extraordinary waves. This effect can be used to control 
(modulate) the polarization through the Pockel's effect. The crystal need not 
be birefringent to begin with (for example, GaAs), but the applied field must 
introduce a relative retardation between two components of the field. Note that 
it is essential that the input light excite both the ordinary and extraordinary 
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Figure 12.12. A linearly polarized wave at 45° to the polarization axes of the crystal will travel 
as two waves, an ordinary wave, and an extraordinary wave. They travel with different phase 
velocities. At certain lengths, a half-wave retardation exists where the two fields add to form a 
linear polarized wave rotated by 90 ° from the input. 

Polarization 
Modulated lnout 

Polarizer 

g Rejected 

~ Wavo 

Intensity 
Modulated Output 

CJ CJ 

Figure 12.13. A polarization-modulated input beam is split into vertically and horizontally 
polarized components by passing through a linear polarizer. 

fields. If only one of these is excited, there will be a phase delay introduced by 
the external field, but there will be no polarization rotation. 

To convert this polarization rotation into an intensity modulation, it is nec­
essary to run the output through a linear polarizer, also known as an analyzer. 
The analyzer transmits only one polarization component, either ejecting the 
other component into another direction or attenuating it. As the polarization is 
electro-optically rotated over 90°, the transmitted intensity will continuously 
vary from maximum to zero. Fig. 12.13 illustrates an optical system that 
converts polarization modulation into intensity modulation. 

Polarization modulation has not been widely adopted in optical communica­
tion systems for a variety of reasons. A major problem is that most materials that 
are electro-optic are also naturally birefringent (nx =/= ny). This natural birefrin­
gence usually overwhelms the induced birefringence of the electro-optic effect 
(f:inpockels is on the order of 10-5 for reasonable fields, while !:inbirefringence 

is typically 10-2), and this makes choosing the absolute length of the modulator 
extremely critical. Second, the indices of these crystals are temperature depen­
dent, and in general do not track each other. Any small change in temperature 
can lead to a polarization drift. Third, there are not many integrable polarizers 
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Figure 12.1 4. A solid Fabry-Perot etalon is made by putting a reflective coating on the facets 
of the substrate. At resonance, the wave intensity builds inside the mirrors. 

yet available. Certain types of polarization maintaining fiber can now be used 
in fiber optic systems, but for pure integrated optics applications, the lack of a 
simple polarizer remains a problem. 

7. Interferometric Modulators 
Phase modulation can be converted into an intensity modulation through 

constructive interference between two waves. The Fabry-Perot interferometer 
and the Mach-Zender interferometer represent two examples for converting 
phase modulation into intensity modulation. 

7.1 Fabry-Perot Modulators 
The Fabry-Perot interferometer is commonly used in high resolution spec­

troscopy and for tuning oflasers. Fig. 12.14 shows the construction of a typical 
Fabry-Perot interferometer, also known as an eta/on. Two partially transmitting 
mirrors are aligned parallel to one another, separated by a distance L. An etalon 
is constructed using either two mirrors separated by an air gap, or by coating 
reflective coatings on the parallel faces of a dielectric. Fig. 12.14 shows the 
latter case. The material has an index of refraction n. Transmission through the 
Fabry-Perot is maximum when the optical path length between the two mirrors 
is equal to an integer number of half-wavelengths, L = m>..j2n, where m is an 
integer, and the effective wavelength in the material is >..jn. 

For non-integer wavelength separations, the transmission is given by 

T= 1 
1 + 4R . 2 ( 411" L) 

(l-R)2 sm -x-n 
(12.31) 

A plot of the transmission function for several reflectivities is shown in Fig. 
12.15. The selectivity of the Fabry-Perot increases with reflectivity, R. For a 
reflection equivalent to the Fresnel reflection from fused silica (approximately 
4% per surface) the modulation depth is approximately 8% between the min­
imum and maximum transmission points. For reflectivity of 30% (equivalent 
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Figure 12.15. Transmission peaks for R=0.04, 0.3, and 0.9. The horizontal axis is the phase 
shift in raqians that a wave accumulates per round trip. 

to the Fresnel reflection from GaAs), the modulation depth is close to 80%. 
Generally, the reflectivity is adjusted using dielectric coatings to achieve the 
desired contrast ratio. As the reflectivity increases, the contrast between maxi­
mum and minimum transmission increases, while the width of the transmission 
peak becomes narrower. 

This interferometer can operate as an intensity modulator by making the ma­
terial between the mirrors electro-optic. When an electric field is applied to the 
material, the index is modified, which changes the effective optical path length 
between the mirrors. The goal in making a modulator is to switch the device 
from sitting at T max toT min by application of an external field. Fig.l2.16 shows 
a schematic of one such device. The Fabry-Perot is made of a semiconductor 
material (GaAs) that is electro-optic. The entire structure is made through epi­
taxial growth of semiconducting material. First, a stack of alternating high/low 
index layers of >../4 thickness is grown on the substrate. A bulk layer ofGaAs 
is then grown on top of the dielectric stack to the desired thickness to achieve 
the proper spacing between transmission maxima. A second dielectric stack is 
grown on top of the bulk layer to form the final reflector. The entire structure 
can be fabricated in a epitaxial growth facility. 

If an electric field is applied across the bulk layer, the index of the material 
changes, which shifts the transmission peak to a different wavelength. The 
spectral distance between two adjacent transmission maxima is called the Free 
Spectral Range, (FSR). A properly designed modulator must have a FSR that 
is larger than the bandwidth of the modulated signal. Equally important, the 
spectral transmission at resonance must be broad enough to transmit the entire 
signal, and not reject a significant portion of it due to the spectral filtering prop­
erties of the Fabry-Perot. The FSR of a Fabry-Perot etalon is straightforward to 
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Figure 12.16. A Fabry-Perot modulator. 
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derive based on the requirement that the optical path length between the mirrors 
be an integer number of half-wavelengths. The FSR is defined as 

c 
FSR = 2nL (12.32) 

The spectral bandwidth of an etalon depends on the FSR and on the reflectivity 
ofthe mirrors, as is apparent from Fig. 12.15. The resolution is often defined 
in terms of.finesse, which is 

F= FSR 
Full width at Half Maximum 

1r(R1R2)(1/4) 

1- (R1R2)1/2 (12.33) 

To reduce the insertion loss for this type of modulator, the output from this device 
is usually taken from the reflection off the front surface. In anti-resonance, the 
reflection is nearly 100%, while at resonance the reflection is minimum. Devices 
to date have demonstrated contrast ratios up to 10 dB, at frequencies exceeding 
10 GHz. 

7.2 Mach-Zender Modulators 
In a waveguide structure, the Mach-Zender interferometer can use interfer­

ence between two waves to convert phase modulation into intensity variation. 
Fig. 12.17 shows a schematic Mach-Zender interferometer. The single mode 
waveguide input is split into two single mode waveguides by a 3 dB Y-junction. 
The split beams travel different paths of length h and h, and then recombine 
at another Y-junction. If the optical path lengths of the two arms have an inte­
ger number of optical wavelengths, the two waves will arrive at the Y-junction 
in-phase, and constructively interfere. They will combine into a guided mode 
which then propagates down the remaining waveguide. If the optical path 
lengths are unequal, and the relative phase difference between the two combin­
ing beams is 1r /2, the two beams will destructively interfere and not couple into 
the following single mode waveguide. 
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Figure 12.17. The Mach-Zender interferometer is made with two 3 dB couplers which split 
and recombine the beam, and two arms which can be modulated by application of an electric 
field. 

The relative phase difference of the two beams can be electro-optically con­
trolled by applying a voltage to the center electrode in the structure shown in 
Fig. 12.17. Because the change in index, 6.n, depends on the direction ofthe 
crystal and the applied electric field, appropriate choice of the crystal axes will 
cause the applied field to increase the index in one arm, and decrease it in the 
other arm. This differential change in index is used to alter the relative phase 
ofthe recombining fields. 

Results with Mach-Zender interferometers made from Lithium Niobate have 
demonstrated contrast ratios exceeding 20 dB with bandwidths ex ceding 5 GHz. 
Much of the challenge in getting good contrast rations is caused by non-ideal 
3 dB couplers. If the intensities of the two beams are not exactly balanced, 
the interference will not cancel entirely. Since there is only one output beam, 
isolation and contrast ratio are the same parameter for these devices. 

8. Electro-Absorption Modulators 
Another way to modulate an optical field with an electric field is through 

electro-absorption. This type of modulator is based on the Franz-Keldysh effect, 
in which the absorption edge of a semiconductor shifts in the presence of an 
electric field. Applying a large field to a semiconductor shifts the absorption 
profile toward the long wavelength direction. Fig. 12.18 shows the absorption 
spectrum for a GaAs sample with an applied field and with no field. With no 
field, the absorption coefficient shows the typical increase for optical energies 
that equal or exceed the bandgap energy of the material. Over a range of about 
50 nm, the absorption coefficient, a, increases from 20 em - 1 to over 103 em - 1. 

An optical signal at wavelength >.o = 0.9J.Lm will experience an absorption 
coefficient of approximately 10 cm-1 absorption with no electric field on the 
sample. If an electric field of 105 V /m is applied, the absorption coefficient will 
increase to approximately 600 em - 1. The total change in intensity will depend 
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Figure 12.18. The Franz-Keldysh effect leads to a shift in the absorption bandedge for semi­
conductors. GaAs is shown in this example, with an applied field of 105 V/m. 

on the path length through the modulator. Since the transmitted signal goes as 

I(z) = I(O)e-az (12.34) 

the contrast ratio will be 

= (12.35) 
Imin e-CX2Z 

Devices to date have demonstrates modulation depths of up to 20 dB using this 
effect. 

The Franz-Keldysh effect arises due to band-bending near the surface of the 
semiconductor. Fig. 12.19 shows the energy band diagram of a semiconductor 
exhibiting the Franz-Keldysh effect. The left-hand side of the diagram corre­
sponds to the Schottky barrier contact on the surface. Application of a reverse 
bias causes a charge depletion layer to form. A non-uniform field is formed as 
the charge depletion decays away from the surface, ending in flat bands well 
within the material. In the flat band region, a photon can only be absorbed if its 
energy exceeds the bandgap potential. In the band bending region, absorption 
can occur for a lower energy photon. The photon lifts an electron far enough 
into the bandgap that it can horizontally tunnel into the conduction band. Hor­
izontal movement in this figure requires no energy, so energy conservation is 
not violated. The effective change in the bandgap energy is 

(12.36) 

where E is the applied field strength, and m* is the effective mass of the electron 
in the semiconductor. 

A basic electro-absorption modulator is shown in Fig. 17.23. A lightly 
doped waveguide layer is grown on a conductive substrate, and a Schottky 
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Figure 12.19. The band structure of the semiconductor becomes bent near the surface. This 
bandbending allows electrons to tunnel into the conduction band. 
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Figure 12.20. A simple electro-absorption modulator. The optical signal passes through the 
surface waveguide. The applied field is developed across the lightly doped waveguide. 

barrier is placed on the top surface of the waveguide. Light which is slightly 
sub-bandgap in energy propagates down the waveguide. The length of the 
electrode is chosen to maximize the contrast experienced by the guided light 
when the field is applied. Because the absorption tails of the semiconductor die 
off slowly, these modulators have moderate insertion loss. 3 dB is not unusual, 
however when active, the attenuation can increase by 20 dB. 

9. Acousto-optic Modulators 
Like electro-optic modulators, acousto-optic modulators control the trans­

mission of light by local changes in the index of refraction of the transmission 
medium. However, acousto-optic modulators differ from electro-optic devices 
in three important respects. First, the modulation occurs by means of a travel­
ling sound wave which induces a stress-related modification of the local index. 
The sound wave can be transverse, longitudinal, or a combination of both, as 
in the case of a surface acoustic wave (SAW). The second difference is that 
acoustic interactions travel at the speed of sound in the material, while electro­
optic interactions can occur at nearly the speed oflight (actually they are limited 
by RC circuit time constants). Finally, while electro-optic interactions can be 
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established with DC fields, acousto-optic modulation, being based on sound 
waves, always involves interacting with a travelling or standing wave in the 
solid. Good reviews of acousto-optic interaction and devices can be found in 
references [6, 8, 10, 11, 12]. 

9.1 The Photoelastic Effect 
The photoelastic effect involves reflecting light off ofthe change of the index 

of refraction in a dielectric due to strain. Formally, the effect is characterized 
by a fourth rank tensor, Pijkl• called the photoelastic tensor, via 

6. (~) = Pijklskz 
n ij 

(12.37) 

where 1/nrj is the term in the index ellipsoid, and skl is the strain, defined as 

Skl(r) = ~ [ouk(r) + 8u1(r)] 
2 OX! OXk 

(12.38) 

The photoelastic effect is nonlinear, as it depends on the product of two interact­
ing fields. Being nonlinear, we expect that the frequency of the scattered light 
can be different from either the frequency of the strain field or of the incident 
optical field. The frequency shift is usually attributed to a Doppler shift of the 
scattered light from a traveling acoustic wave. For a thorough discussion on 
the fourth rank photoelastic tensor, see Nye[9]. 

The acousto-optic strain interacts with an electric field component Ej to 
generate a polarization 6.?;,. The strain therefore causes a change in the index 
of refraction [ 1 0]. The change in index of refraction, 6. n, is related to the 
acoustic power, Pa, through the relation 

(12.39) 

where n is the index of refraction in the unstrained medium, pis the appropriate 
element of the photoelastic tensor, Pais the acoustic power (in Watts), pis the 
mass density, Va is the acoustic velocity, and A is the cross-sectional area that 
the acoustic wave travels through. This expression is somewhat unwieldy, so it 
is often rewritten in terms of a .figure of merit, M, defined as 

(12.40) 

in the simplified form 

(12.41) 

The value of M depends on the material and, in the case of crystals, on the 
orientation. Table 12.2 lists some values of M for common acousto-optic 
materials 
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Table 12.2. Materials commonly used in Acousto-optic Modulators [10] 

Materials A(JLm) n p(gfcm3) v.(103 rnls M 

Fused Quartz 0.63 1.46 2.2 5.95 1.51 x w-15 

GaAs 1.15 3.37 5.34 5.15 104 x w-15 

LiNb03 0.63 2.20 4.7 6.57 6.99 x w-15 

YAG 0.63 1.83 4.2 8.53 0.012 x w- 15 

As2S3 l.15 2.46 3.20 2.6 433 x w-15 

PbM04 0:63 2.4 3.75 73 x w-15 

Acousto-optic modulators used in integrated optics generally use travelling 
wave acoustic fields. The acoustic field creates a grating structure which can 
diffract the incident optical field. Light reflected from the moving grating is 
Doppler shifted in frequency by an amount equal to ±mfo where fo is the 
acoustic frequency, and m is the order of the reflection. Plugging numbers 
into the expression for An, using fused quartz as an example and an acoustic 
intensity of 100 W/cm2, the magnitude of An is on the order oflo-4, which 
is not a very large change. However, the interaction of an optical field with the 
strain field can be significant because the acoustic field has many periods of 
oscillation, so the small reflections at each crest can accumulate constructively 
(or destructively) if proper phase matching is arranged. Reflections approaching 
1 00% can be generated from the grating. 

Optical wave interaction can be produced by either bulk acoustic waves 
travelling in the volume of the material, or by surface acoustic waves (SAW) 
which propagates on the surface within approximately one acoustic wavelength 
of the surface. SAW devices are well suited to integrated optics applications, 
because the energy of the acoustic field is concentrated in the region of the 
optical waveguide.[!!] 

There are two basic configurations used in acousto-optic modulation. If the 
optical field propagates transverse to the acoustic beam, and the interaction 
length of the two beams is relatively short so that multiple diffraction does not 
occur, then Raman-Nath type diffraction occurs. If the acoustic field is large 
so that multiple refraction can occur, the interaction is called Bragg modula­
tion. Bragg modulation tends to provide larger modulation depth, and is more 
commonly implemented in integrated optic devices. 

9.2 Raman-Nath modulators 
The basic structure of a Raman-Nath modulator is shown in Fig. 12.21. 

An optical field travels through a thin region of acoustic waves with spatial 
wavelength A. The phase that the optical beam accumulates on passing through 
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Figure 12.21. A Raman-Nath type interaction. Incident light travels through a thin region of 
acoustic energy, and is diffracted into a number of different orders. 

the acoustic beam is 
A .y,. 6n27rl . 2 /A 
u..,.,.=~sin 1ry (12.42) 

Notice that this has a spatial component (sin 21ryj A) which adds a corrugated 
structure to the phase front of the transmitted light. 

There are two ways to view the scattering process. If the index structure 
created by the acoustic wave is considered to be a diffraction grating, the trans­
mitted light reflects off the grating into many orders. In such a case, the grating 
analysis shows that the orders will leave the crystal at angles 

sinO=:_).., m=0,±1, ±2, . . . (12.43) 

The second point of view is to consider the modulated wavefront that emerges 
from the modulator as being a superposition of several plane waves, each di­
rected in a different direction. 

The Raman-Nath condition will hold so long as the interaction length is short 
enough to ensure that multiple refractions do not occur. This is the case when 
the interaction length, l, satisfies 

(12.44) 

The intensity of the diffracted orders are described by Bessel functions[l2] 

lm 
Io = lJm(6~maxF /2, m o 

= [Jo(6~maxJ2 , m = 0) (12.45) 
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where ~Pmax is the peak amplitude of the index change, given in Eq. 12.42. 
For use as a modulator, the output is usually taken as the zeroth order beam. 

The modulation index is then 

Io- I(m = 0) 2 
'f/RN = Io = 1 - [Jo(~~Pmax] (12.46) 

A problem with the Raman-Nath modulator is that due to the short interaction 
length, the modulation depth is not as great as can be obtained from the Bragg 
modulator. So it is not typically used as a modulator in information systems. 
Also, since the output is spread out over several orders, it is not useful as a 
switch. In contrast, the Bragg modulator has been widely used as a modulator, 
beam deflector, and as a switch. 

9.3 ·Bragg Modulators 
The Bragg condition for scattering is satisfied when the interaction length of 

the acoustically-generated diffraction grating is large enough to allow multiple 
diffractions. Quantitatively 

(12.47) 

For optimum performance, the input angle of the optical beam should satisfy 
the Bragg condition 

. () ,\ 
sm B = 2A (12.48) 

as illustrated in Fig. 12.21. For modulators, the output of the zeroth order beam 
is generally taken as the output. The modulation depth is then [12] 

Io- I = sin2 (~cp) 
Io 2 

(12.49) 

Devices demonstrating modulation depths exceeding 95% have been demon­
strated. 

Waveguide acousto-optic devices have been developed for applications in­
cluding switching, modulation, and spectrum analysis. The complication of 
non-uniform optical and acoustic fields in thin film structures modifies the 
analysis presented here slightly. To accurately determine phase shift of an op­
tical beam, an overlap integral between the optical and acoustic fields must be 
calculated. Details can be found in ref. [13]. 

10. Applications of Acousto-Optic Waveguide Devices 
One of the most significant applications of acousto-optic modulation in in­

tegrated optics is in spectral analysis of radio frequency signals. The direct 



Waveguide Modulators 329 

application ofthis device is to allow a pilot to obtain an instantaneous spectrum 
analysis of a radar signal, in order to determine if his plane is being tracked by 
a ground-based station, air-to-air missile, or other vehicle. The signature of the 
radar signal can be deciphered to extract this information. 

Fig. 12.22 shows a schematic representation of a hybrid integrated optical 
spectrum analyzer. A laser is butt-coupled into a planar slab waveguide, and 
the beam is expanded and collimated by a pair of integrated lenses on the 
waveguide. These lenses can take the form of simple domes on top of the 
waveguide, or can look like cross-sections of conventional lenses placed on top 
of the guiding layer. The collimated beam then passes through a region where 
a surface acoustic wave (SAW) is established. 

The SAW is generated by the incoming electrical signal. An antenna collects 
the RF signal, and sends it to an amplifier. The amplified signal is applied to 
an interdigitated array of electrodes on the surface of the planar waveguide. 
If the waveguide is constructed using a piezo-electric material, such as X-cut 
LiNb03, the electric field established between the fingers of the electrode will 
periodically constrict and expand the surface material, establishing an acoustic 
wave that propagates across the waveguide. The spatial period of the acoustic 
wave depends on the frequency of the applied RF signal. 

The collimated optical beam is Bragg scattered off ofthis SAW structure. The 
angles of the scattered beams are described by Eq. 12.48, so each RF frequency 
will scatter the optical beam in a different direction. The scattering efficiency 
can approach 50%/W of applied electrical signal. The scattered beams are again 
passed through a lens to focus them on a detector array. Here, the fact that the 
lens acts as a Fourier transformer is exploited. The optical beam leaving the 
SAW region contains several distinct beams travelling in different directions, 
depending on the spectral content of the applied electrical signal. But the beams 
are essentially fully spatially overlapped. To separate the beams would require 
propagation over a long distance. A lens solves this problem by converting 
the angular variation of the incoming rays (k-space description) into a spatial 
variation (x-space) at the focus of the output beam. This is what is meant when 
we say a lens performs a Fourier transform. The focussed output of this lens 
is directed onto an array of detectors. Each pixel of the array corresponds to a 
specific frequency of the incoming electrical signal. All frequencies present on 
the incoming signal are simulataneously detected at the array, so the signature 
of an incoming signal can be readily determined. Performance of such devices 
have shown 5 MHz resolution over a bandwidth of 400 MHz. [14] 

11. Summary 
We reviewed the two major methods used for modulating light. Electro­

optic effects are currently being explored for high speed, high performance 
modulators that will be suitable for the communication industry. These devices 
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Figure 12.22. An integrated optic spectrum analyzer consists of a cw laser source, a collimating 
lens, a SW region, a transfonn lens, and a detector array. 

are built using either semiconductor materials, or nonlinear dielectrics such as 
LiNb03. Only a fool would make a prediction about the future in this field, but 
it appears that there will be more interest in integrated sources and modulators, 
which can be made using semiconductors, than there will be for hybrid systems 
consisting of semiconductor lasers, optical interfaces, and dielectric modula­
tors. However, the hybrid devices at present provide many of the best results. 
Manufacturing cost is the pressure pushing toward integrated systems. 

Acousto-optic modulators, because oftheir inherently slow modulation speed, 
will probably never be serious competitors for communication modulation. 
However, acousto-optic devices are playing critical roles in optical computers, 
where convolutions, beam switching, and frequency shifting are used to per­
form various signal processing functions. We have discussed only a few of the 
possible implementations of electro-optic and acousto-optic modulators in this 
chapter. There are many other possible schemes. Interested readers should con­
sult many of the references for overviews of some of these techniques. Entire 
texts have been devoted to single aspects of the discussion presented here. 
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Practice Problems 

1. Confirm the expression of Maxwell's equations as listed in Eq. 12.8 by 
deriving them from the general form of Maxwells Equations listed in 
Chap.2, using a single frequency plane wave with phase exp( -j(wt­
kz)). 

2. Consider the waveguide phase modulator shown in Figure 12.23. 

(a) Assume that only the TE wave is to be modulated. What is the correct 
orientation for the GaAs crystal ifthe applied field is as shown? Make 
a sketch of the modulator, and identify the x, y, and z-axes. 
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Figure 1 2.24. Intensity modulator for problem 3. 

(b) Assume that the electric field strength in the waveguide is equal to 
V/20f1m. What length should the electrodes be if a 10 V input is to 
produce a 1r phase shift? 

(c) If you only had this device in your lab, and you wanted to make a 
polarization rotator using it, how would you do it? 

3. An intensity modulator is built based on the concept of turning a single 
mode waveguide on and off via the electro-optic effect. Consider the 
semiconductor structure shown in Fig. 12.24. The top layer of GaAs 
is lightly doped, and is 5 11m thick. The substrate is heavily doped. A 
Schottky barrier is placed on the surface for a distance L. Due to the light 
doping of the top layer, a reverse biased field will develop most of the 
field in the thin layer. 

(a) What orientation should the crystal be if a positive voltage is to in­
crease the index of the top layer? 

(b) How much voltage is required to increase the index sufficiently to 
cause the top layer to become a waveguide for the lowest order mode 
of an asymmetric waveguide? 

(c) How would you determine the length of the electrodes? 

4. Find the effective index of refraction, neff for an extraordinary wave 
travelling at an angle of 50° with respect to the c-axis in a crystal of 
LiNb03 . Use the data in Table 12.1 for refractive indices of the ordinary 
and extraordinary directions. 

5. Consider the problem described in Example 12.2. How large an electric 
field, Ez is required to change the index of refraction by 0.0001? What 
voltage would be required to achieve this field across a waveguide 1 0 11m 
thick? 

6. What is the index of refraction in a crystal of GaAs if an electric field 
is applied along the x direction of the crystal? Describe the index of 
refraction for GaAs when the applied field is directed along the xy axis. 
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7. The LiNb03 cystal has a crystal symmetry of3m. The electroptic tensor 
for this crystal is given by 

0 -r12 r13 

0 r22 r13 

0 0 r13 

0 T51 0 
r51 0 0 

-r22 0 0 

Show that if an electric field is applied along the z axis, the index of 
refraction becomes 

8. Develop an expression for the half-wave voltage similar to Eq. 12.23 for 
a LiNb03 modulator cut so that light propagates along the x-axis, and the 
modulating electric field is applied along the z-axis. Use the electrooptic 
tensor in Prob. 7. and data from Table 12.1 for this problem. 

9. Design a TE to TM converted based on the electro-optic effect in GaAs. 
Assume the waveguide is 3 J.Lm thick, has a core index nf = 3.6, a 
substrate index ns = 3.59, and a cover index of n = 1. Assume that 
electrodes are placed on both sides of the guiding dielectric, so that a 
planar electric field is established in the guide. Choose the correct orien­
tation of the GaAs crstal so that an applied field will rotate the polarization 
of the field. 

10. A Fabry-Perot modulator is made as shown in Fig. 12.25. 

(a) Plot the reflectivity of this device as a function of .X over two free 
spectral ranges (FSR) of the device. 

(b) How much does the index of the Fabry-Perot have to change to shift 
the transmission peak by 112 FSR? 

(c) What E-field is necessary to create the shift decribed in part b? 

(d) Will this modulator work as well with with unpolarized light as with 
polarized light? If not, which polarization is preferred? 

(e) What is the spectral bandwidth of this device? 
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Input Output 

R=100% 

Figure 12.25. Fabry-Perot structure for problem I 0. 

Figure 12.26. Mach-Zender structure for problem II. 

11. The Mach-Zender interferometer shown in Fig. 12.26 is made ofGaAs. 
What E-field is required to make the device switch from "on" to "off"? 

12. A Franz-Keldysh modulator is' built using GaAs. If the contrast ratio 
between "on" and "off'' is to be 10 dB, and the operating wavelength is 
900 nm, how thick should the GaAs device be made? Use the data in Fig. 
12.18. What is the minimum insertion loss for this device? 

13. How much acoustic power is required to change the index of refraction 
in a GaAs layer 2~-tm thick and 100 11-m wide by 0.0001? 

14. An acousto-optic modulator is built using PbM04. If an RF signal at 100 
MHz drives the acoustic wave in this crystal, and an optical wave with 
A = 0.6328 nm is Bragg reflected of the acoustic wave, what is the angle 
between the incident and reflected optical beam? 



Chapter 13 

PHOTONIC CRYSTALS 

1. Introduction 

In the previous chapters of this text we have explored how light can be guided 
by high index regions of a dielectric. Many types of waveguide were examined, 
including graded index slabs, circular step-index fibers, and rectangular ridge 
structures. In all of these cases we found that light can be guided by high index 
regions and as a result can go around bends, couple to other waveguides, and 
be manipulated to perform certain functions. The guiding mechanism in all 
cases arose from the "attraction" light has toward higher index regions. We 
described this attraction in a variety of terms, including total internal reflection, 
the eikonal equation, or spatial resonances forming from reflections on index 
changes, but in all cases the basic mechanism is the same: higher index regions 
of a dielectric act like a "potential well" for light, and so long as things change 
slowly (bends are gentle, or dimensions vary slowly), light tends to remain 
trapped in that potential well. 

In this chapter we explore a dramatically different method for guiding light. 
Instead of using materials with high refractive indices to attract and trap light, 
we will consider materials called photonic crystals that actually repel light. Op­
tical waveguides are made in photonic crystals by removing material, creating 
channels through which light can propagate. Without sounding too anthropo­
morphic, this is similar to the difference between doing something because you 
want to do it and doing something because its the only thing that you possi­
bly can do. The difference may sound subtle, but we will see that by using 
photonic crystals it is possible to guide light through low index materials (even 
vacuum), and to make light tum extremely sharp comers. Because photonic 
crystals operate by a different mechanism than index-guided structures, they 
offer new opportunities for devices and systems. 

335 
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Figure 13.1. Cross-section of a one dimensional photonic crystal, with alternating high and 
low index dielectric layers. 

2. Basic Physics of the Photonic Crystal 
In the broadest sense photonic crystals are periodic dielectric structures com­

posed of alternating high and low index of refraction dielectric materials, with 
periodicity on the order of the wavelength of light. In principle the periodicity 
can be in one-, two-, or three-dimensions, so they resemble large-scale ver­
sions of the crystalline structure of many solid state materials. This periodic 
structure is one reason they are called "crystals". We will discuss one- and two­
dimensional photonic crystals in this chapter. Using conventional lithographic 
processes developed originally for the semiconductor electronics industry, it 
is possible to fabricate planar two-dimensional structures today, but extending 
this technology to the third dimension is still a challenge. 

Because light experiences a small reflection each time it crosses a dielec­
tric boundary (recall the discussion on Fresnel reflections in Chapter 2), light 
travelling through a periodic structure will experience multiple reflections that 
constructively and destructively interfere with one another. As we will see, 
when the period of the structure is comparable to >. j 2 of the incident light, 
these reflections dominate the optical behaviour of the material. In order to de­
velop the principle of operation for a photonic crystal we will first analyze the 
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Figure 13.2. Field amplitudes at the interface between layers and s- 1 
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one-dimension (1-D) case as shown in Fig. 13.1. This is a stack of alternating 
layers of high and low index material. If the indices and layer thicknesses are 
chosen properly, the multilayer film will reflect light from all directions, not 
just along the single axis that forms the stack. 

Each layer of the stack is characterized by refractive index n8 and thickness 
d8 , where s indicates a the sth layer. We will first consider light incident on the 
multilayer stack perpendicular to the layer's surface plane, along the z-axis. In 
each layer there will be two waves propagating in the forward and backward 
direction with complex amplitudes EJ and E;. As a wave propagates across 
a layer, it accumulates a phase equal to k0 n 8 d8 • As shown in Fig. 13.2, if EJ 
and E; are the amplitudes on right side of layer s, the amplitudes at the left 
side are given by EJ exp(jk0 n 8 d8 ) and E; exp( -jk0 n 8 d8 ). 

The electric field is continuous at the interface between layer s and layer 
s-1 

(13.1) 

The magnetic field amplitudes in the forward and backward direction can 
be found using the impedance of the medium, yielding Ht = Ef !TJs and 
H; = -E; !TJs· The tangential magnetic field also must be continuous at the 
interface, so 

(13.2) 

If we define the total field at each plane H = Hf + H; and E = EJ + E;, 
Eqs. 13.1 and 13.2 can be combined using some trigonometric identities to 
yield 

1 
Es cos( konsdo) + j-Hs sin k0 n 8 d8 

'f}s 
J'f}sEs sin(konsdo) + Hs cos konsds 

(13.3) 
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To simplify the evaluation of many multilayers, we can put this in matrix form 

[Es-l] = [ cos(konsdo) j#;sin(konsds)] [Es] =Ms [Es] 
Hs-l j'T]8 sin(kon8 do) cos(konsds) Hs Hs 

(13.4) 
The incident field amplitudes are related to the field amplitudes at layer n by 
multiplication of a series of matrices where each matrix contains the thickness 
d8 and the index n 8 of each layer in the film 

(13.5) 

The total reflection and transmission of a general multilayer film with a total of 
N layers can now be calculated. [2] 

Example 13.1 Reflectivity of a 10 layer stack 
Most dielectric mirrors are made by depositing a stack of alternating high and 

low index layers onto a substrate such as glass. Let's calculate the reflectivity 
and transmissivity of a film consisting of 5 alternating quarter wavelength thick 
layers of Si and Si02. 

Since this stack repeats a sequence of low-index/high-index layers, let's first 
calculate the transmission and reflection of a pair of quarter wavelength thick 
layers of high and low index of refraction using Eq. 13.5. The matrix describing 
one period consisting of a pair of high and low index layers is given by: 

M [ cos(konHdH) j..l sinkonHdH] 
j'T]H sin(konHdH) 71%os konHdH 

[ cos(konLdL) jl sink0 nLdL] 
X 7JL 

j'T]L sin(konLdL) cos konLdL 
(13.6) 

For quarter wavelength thick layer, konHdH = konLdL = 1r /2, and the matrix 
is equal to 

M = J TJ.H J !ZL = 7JH [ 0 ·_l_] [ 0 ·_1_] [=!lk 0 ] 
j'T]H U j'T]L U 0 ~1H 

(13.7) 

From Eq. 13.5, the reflectivity and transmissivity of a multilayer stack with q 
periods, surrounded by air (n0 = nN = 1), are then given by 

[ Eo ] = [ ~ 0 ] q [ E8 ] 
Ho 0 -ryH Hs 

7JL 

(13.8) 

We can directly calculate the power transmitted and reflected by this stack 
using Eo = 1 - R, Ho = 1 + R, and E8 = Hs = T, where R and T are the 
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Figure 13.3. Reflectivity of the dielectric stack with quarter wave layers 

transmission and reflection amplitudes. The reflectivity, R2 = 1 - T 2 is given 
by 

R2 = [(-~)q- (-~)q]2 
(-~)q + (-~)q 

(13.9) 

For q = 5 periods with nH = 3.5 (Si layer) and nL = 1.5 (Si02 layer), the 
reflectivity and transmissivity are equal to R2 = 0.999 and T 2 = 0.001. Such 
multilayer films with high reflectivity are called Distributed Bragg Reflectors 
(DBR). 

This is a very high reflectivity, far exceeding what can be achieved with a 
simple metal film. For example, a silvered mirror used commonly in residences 
has a reflectivity of approximately R2 = 0.92, or effectively an 8% power loss 
for each reflection. So the multilayer mirror is desired when low absorption is 
needed. The comparative disadvantage of the multistack mirror is that it has a 
limited spectral bandwidth, because the layers are only quarter-wave thickness 
for one particular wavelength. However, the spectral width can be controlled 
by choosing the index difference, and by adjusting the layer thicknesses in the 

stack. 

3. The Photonic Band Gap 
Using Eq. 13.5 we can calculate numerically the reflection and transmis­

sion coefficient as a function of frequency. In Fig. 13.3 we have plotted the 
reflectivity of the multilayer film from Example 13.1 with optical thickness 

nHdH = A/4 and nLdL = A/4. 
One can see that over a frequency range centered at v = c/ >.o there is a 

spectral range in which light is totally reflected and cannot propagate through 
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the ,crystal. This spectral range is called the Photonic Band Gap. Points A 
and Bin Fig. 13.3 correspond to the upper and lower frequency limits of the 
reflectivity. The bandwidth of the reflectivity (~v = VB - v A) depends on the 
index difference between the layers and on the relative thicknesses of the high 
and low index layers. A similar system, with total periodicity nHdH +nLdL = 
A./2, but with thicknesses of the layers differing from >..0j4nH and >..0j4n£, 
will form a photonic band gap, but its bandwidth will be reduced compared to 
the quarter wavelength layer system. 

Intuitive picture of the photonic band gap 

Since only one wavelength will match the period of the lattice, why does a 
band gap occur? Why isn't the reflection only at one wavelenth? 

There is a simple reason why a broad range of wavelengths are reflected by 
the structure. From the previous section we saw that a photonic band gap occurs 
when the wavelength corresponds to twice the periodicity of the structure, >.. = 
2a, where a = nHdH + nLdL is the period. In a periodic structure the field 
distribution will be periodic relative to the structure, i.e., at any point x the field 
must be the same as at the points x + ma, where m is an integer number and a 
being the periodicity of the structure. There are many ways to position a wave 
inside the grating, but we gain insight by looking at the two extreme cases. In 
one case (see Fig. 13.4a) the nodes of the field will be in the high index of 
refraction layers and the antinodes in the minima , and in the other case (see 
13.4b) the nodes of the field will be in the low index of refraction layers and 
the antinodes in the high index of refraction layers (Fig 13.4b) 

In Fig. 13.4a the wave's energy (proportional to E 2) is concentrated in the 
low index layers, while in Fig. 13.4b the energy is concentrated in the high index 
layers. Because the wavelength is shorter in the high index material, when the 
wave energy is concentrated in the high index layer it corresponds to a longer 
>..o (recall, >..o is the wavelength of the wave in vacuum) When the energy is 
concentrated in the lower index layer, the vacuum wavelength >..o will be shorter. 
Using the relation between frequency and wavelength, w = (c/ko)/ ~'the 
wave in case (a), corresponds to a field with lower frequency (point A in Fig. 
13.3) and the wave in case (b) corresponds to a field with a higher frequency 
(point B in Fig. 13.3). For all frequencies in-between these values, the nodes 
will lie somewhere between the two extreme points and will still find themselves 
in-phase with the lattice. The difference between these two extreme frequencies, 
~v, corresponds to the photonic band gap. This is why the spectral width of 
the quarter-wave stack depends on the index difference between the layers, and 
on the asymmetry of the layers. 
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a) 

b) 

Figure 13.4. Field distribution inside a periodic structure. (a) the antinodes are in the low index 
region, (b) the antinodes are in the high index region 

4. Photonic States of a lD Photonic Crystal 
So far all calculations have been done for normal incidence(()= 0°). Does 

the photonic gap exists for all angles incident on the multilayer film? Using 
Snell's law one can rigorously derive Eq. 13.5 for oblique angles. In practice, 
the frequencies for which light can propagate through the crystal are found using 
numerical calculations that solve the eigenvalues of the wave equations, in the 
same way that it is done for semiconductors. For greater angles the spectrum of 
the crystal shifts to higher frequencies . The blue shift of the spectrum is due to 
the fact that the effective kx-vector in the direction perpendicular to the surface 
plane becomes smaller than k, given by 

k = 7r 

(dHnH + dLnL) 
(13.10) 

If kx < k, for the same dimensions of the structure dH and d£, the condition of 
half-wave is satisfied at higher frequencies than ckx. Fig.13 .5 shows a calculated 
spectrum of a Distributed Bragg Reflector at several different angles. 

To determine the angular reflectivity of the multilayer stack, let us now 
plot the dispersion of the multilayer stack, i.e., the lower and higher limiting 
frequencies of the photonic band gap, as a function of the ky-vector in the 
direction parallel to the layers plane. ky is given by 

ky = k sin () = 2; sin () (13.11) 



342 INTEGRATED PHOTONICS 

1.0 
I·. 

ct'A0 Frequency 

Figure 13.5. Reflectivity of a Distributed Bragg reflector calculated for different incident an­
gles. The polarization difference is negligible for small angles. 

The results of the calculation are shown in Fig. 13.6. The vertical line at 
ky = 0 indicates an angle of 0° . At this angle, the reflectivity of the structure 
is shown in Fig 13.5. Points A and B of Fig. 13.5 are shown on the dispersion 
diagram. One can see that due to the curved nature of the dispersion, for both 
polarizations, the band gap between w A and w B des not occur at all values of 
ky (i.e. all angles). For example, for TM polarization, one can see that at a 
frequency of w1 light is reflected at angles ranging from 0 to(} = sin - I ( ky j k) = 
sin- 1 0.8 = 53° At a frequency w2 light is reflected at a maximum angle of 
(} = sin-1(ky/k) = sin-1 0.3 = 17.4°. 

Fig. 13.7 shows that for a 1-D photonic structure the photonic band gap does 
not necessarily exist for all angles. In the next sections we will see however that 
if the photonic states of the surrounding medium are taken into account, light 
can be made to totally reflect in all directions, despite the fact that the periodicity 
is only in one direction. This is called an omni-directional reflector. A truly 
omni-directional reflector would be useful for applications such as coating the 
inside of a tube to make a waveguide in which light propagates in a low-index 
core such as air or vacuum. 

5. Photonic States of a Continuous Medium 
Let us analyze the dispersion of light in a continuous medium. For light 

travelling at an angle(} with respect to the z axis as shown in Fig.13.7, the 
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Figure 13.6. Dispersion diagram for a multilayer. Both the TM (solid) and TE (dashed) cases 
are plotted. 

frequency of light in such a medium is given by: 

w=ck=~ 
sin08 

(13.12) 

The relationship in Eq .13 .12 is called the light line. Consider light incident from 
a medium with a high index of refraction onto an interface with a surrounding 
medium of lower index. All states with OH < Ocrit are states that propagate 
in the high index medium and are transmitted to the surrounding medium. All 
states with angle above the critical angle, OH > Ocrit• do not couple to the 
surrounding medium. From Eq. 13.12 all states with OH > Ocrit obey 

k 
w < y 

sin Ocrit 
(13.13) 

Therefore all states below the light line (Eq. 13.13) remain in the high 
index medium due to total internal reflection. Similarly, light incident from the 
surrounding medium with frequency obeying Eq. 13.13 does not couple to the 
high index medium and remains in the surrounding medium. 

Fig. 13.8 plots the light line for light propagating in a high index media 
surrounded by air and by oxide. The photonic states of the surrounding medium 
that do not couple to the high index medium are shown by the shaded areas. 
For convenience we again use the normalized axis. Here the periodicity a is 
defined artificially for a continuous medium. 

6. Onmnidirectional Photonic Band Gap of a Crystal in a 
Continuous Medium 

In order to ensure that a photonic crystal reflects in all directions it is sufficient 
to ensure that only those states above the light line are indeed reflected. This 
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Figure 13. 7. Light incident from a high index to a low index medium 
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Figure 13.8. Dispersion diagram for a semiconductor based medium surrounded by a contin­
uous medium of air and of oxide. The shaded areas show the photonic states of the surrounded 
medium 

is because, as we saw in the last section, light travelling below the light line 
cannot couple to the surrounding medium and is totally reflected back into the 
high index medium due to total internal reflection. 

Fig. 13.9 shows the dispersion diagram of multilayer film with indices n1 = 
3.4 and n2 = 1.46 as a function of the incident k-vector parallel to the film 
plane. This dispersion diagram was calculated using the MIT Photonic-Bands 
software package [1]. The wave vector k and frequency are normalized in terms 
of a, where a is the thickness of one period in the DBR. 

The white space between the two dark gray areas is the photonic band gap. 
All the modes in dark gray areas between the light lines c>.ja < 21fky/a 
(note the left and the right sides of the plot are for TM and TE polarization, 
respectively) can propagate in the multilayer film. 
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Figure 13.9. Normalized Frequency (a is the period of the Bragg reflector) versus the parallel 
wave vector for a distributed Bragg reflector. The light gray region is the omnidirectional band. 

The light solid lines are for light incident from air corresponding to an angle 
of 90 , or, equivalently, light incident from the photonic crystal with a critical 
angle. The photonic band gap between the light lines shown in the light gray 
area is a range of frequencies where light at any incident angle is perfectly 
reflected. In this frequency range there are no allowed DBR modes in this 
region, regardless of angle or polarization. In this case the photonic band gap 
is called omnidirectional band, or complete band gap. Such thin films have 
very unusual applications. For example, imagine putting such a structure on 
the inside of a tube, as shown in Fig. 13.10. Light propagating down the tube 
would be totally confined to the center region due to the photonic crystal nature 
of the multilayer. Hollow guides such as this have been constructed, and display 
very unusual properties. The usual problems of material dispersion and optical 
nonlinearities are removed, creating the ability to make new types of optical 
device. Such fibers can be fabricated, for example, coating a glass rod followed 
by chemical removal of the supporting rod [3]. 

For a surrounding medium with a higher index of refraction than air, the light 
lines fall at a greater angle, as indicated by the dotted lines in Fig.13.9. Such 
structure is important for application such as waveguiding in photonic crystals, 
where the waveguide is composed by dielectric material with index higher than 
air. One can see in Fig. 13.9 that in this case, for TM polarization, there are 
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Figure 13.10. An omnidirectional reflector is placed on the inside of a hollow tube to create a 
waveguide that operates in air. 

Figure 13.11. Photonic crystal designed as a periodic array of holes in Silicon on insulator 

allowed modes at higher angles of approximately 80°, and therefore the gap is 
incomplete. 

7. Two-Dimensional Photonic Band Gap Structures 
To ensure that a complete omnidirectional photonic band gap can be created 

for light incident from high index of refraction materials, a photonic crystal 
with a periodicity in more than one direction is required. Planar slabs of 2-D 
photonic crystal waveguides have been fabricated using standard semiconductor 
lithographic techniques, however a true 2-D photonic crystal would have infinite 
extension along one axis. Planar two dimensional periodic structures typically 
are constructed as array of posts or holes in a semiconductor (see Fig. 13.11). 

The applications for an omni-directional mirror are limited, but there is great 
interest in creating channels in such structures which would act as optical wave­
guides. Since any light travelling down such a channel would be completely 
reflected by the surrounding region of space, the light could be guided in man un­
conventional ways, including sharp bends as schematically shown in Fig.l3.12. 
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Figure 13.12. A schematic representation of a two-dimensional photonic crystal waveguide. 

8. Summary 
In this chapter we reviewed the basic physics of the photonic crystal. We 

emphasized the calculation of the reflectivity of the crystal as a function of angle, 
with the goal of identifying structures in which certain spectral wavelengths 
of light would not exist in any polarization or propagation direction. Such 
omnidirectional reflectors can be used to create impenetrable barriers to light. 
By using an omnireflector on the inside of a tube, an optical waveguide can 
be made where light propagates through vacuum or air, not through a high 
index material. By making two-dimensional slab photonic crystals, it should 
be possible to create waveguides on substrates which can be forced around sharp 
comers. 

The key issues to be resolved concerning photonic crystals are primarily 
related to the fabrication of the crystals. It is difficult, if not impossible today, 
to lithographically create true 3-dimensional structures with the feature sizes 
needed to act as photonic crystals for visible and near infrared light. Also, 
because the light is constantly reflecting off of the crystal, scattering losses 
in photonic crystal devices has proven to be a significant issue. Nevertheless 
if there is progress on these issues, it is likely that photonic crystals will find 
unique applications in integrated photonics. 
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Practice Problems 
1. Design a multilayer that has a reflectivity of more than 99% at a wave­

length of 1.5 microns using Si0-2 (n=1.5) and Si0N(n=1.6) . You will 
need to use Matlab, Matchcad or a similar numerical tool. 

(a) What are the layer thicknesses and the number of layers required for 
such high reflectivity? 

(b) Plot the reflectivity as a function of wavelength. Estimate the photonic 
bandgap range (~v) in which the reflectivity is high. 

(c) NowvarythecompositionoftheSiON,fromn = 1.6 ~ 2instepsof 
on = 0.1. Plot the photonic band gap as a function of index contrast. 
d. For a composition of n=1.5/n=1.6, vary the thickness of layers 
to decrease the photonic band gap range. Plot the reflectivity and 
compare it with the one in part (b). 

2. Complete the calculation showing that Eq.l3.5 folios from Eq. 13.4 



Chapter 14 

INTEGRATED RESONATORS AND FILTERS 

1. Introduction 
In optical telecommunication of today, wavelength division multiplexing and 

demultiplexing (WDM) is extensively used for increasing the accessible band­
width in a single fiber. In WDM, a series of discrete wavelengths are transmitted 
through the same fiber (the bus), each one them encoded individually. Adjacent 
channels are separated from one another by 200 GHz, and typically are mod­
ulated to carry signals with 10 or 40 GB/s of information. Over one hundred 
separate wavelengths (or channels) can be carried on a fiber simultaneously, 
which means that terabytes of data can be carried on a single fiber. The key 
issue in WDM systems is finding ways to add and drop individual wavelengths 
from the fiber while letting the rest pass on to their ultimate destination. This 
add/drop process requires optical multiplexers and demultiplexers. Fig. 14.1 
shows a schematic representation of an optical add/drop multiplexer. A single 
waveguide carrying a number of discrete wavelengths enters the multiplexor. It 
is desired that one channel be extracted ("dropped") while the rest pass through 
without loss. Conversely, it is necessary that information at one particular 
wavelength be able to be put onto the waveguide without interfering with the 
other channels. This is called an "add". Finding an effective and inexpensive 
way to create ad/drop filters for WDM applications is a major issue today. In 
this chapter we will look at some of the key technologies involved in this prob­
lem, including the fiber Bragg grating, Mach-Zender interferometers, and Hi-Q 
resonators made from integrated waveguide structures. 

2. Fiber Bragg Gratings 
The fiber Bragg grating has probably pushed the telecommunication industry 

toward wavelength division multiplexing more than any other development in 

349 
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Demultiplexer 

Multiplexer 

Figure 14.1. A multiplexer on a WDM system has to add or drop one specific wavelength 
channel on the waveguide, and let the rest of the channels proceed unattenuated 

the last decade. Ten years ago it was an open question time division multiplex­
ing or wavelength division multiplexing would be the best choice for the future. 
The biggest problem facing WDM systems was the need for stable wavelength 
sources and references that could be installed in many situations, and still op­
erate within a certain bandwidth. The fiber grating, when properly packaged, 
can provide an absolute wavelength stability to better than a nanometer, which 
is sufficient for the WDM standards today. 

In Chapter 10.5 we discussed how coupled mode theory can be applied to the 
analysis of the Bragg grating. While rigorous, the analysis is cumbersome. To­
day most Bragg grating design is performed using matrix methods as developed 
in Chapter 12 for the photonic crystal. The fiber Bragg grating can be formed 
in fibers either by UV exposure, by ion implantation, or by photolithography. 
Most commercial processes use UV exposure through a phase mask to create a 
spatially modulated index within the core. The UV light slightly increases the 
local index of the fiber's core. The index modulation must have a period equal 
to one half the wavelength they are intended to reflect. 

Waveguide gratings are generally formed lithographically by etching into 
the cladding near the core. The period of the grating has to be at one-half the 
wavelength of interest, however this is not the vacuum wavelength, it is the 
wavelength inside the waveguide given by A = -Xo/neff where neff is the 
effective index of the mode in the waveguide. For glass substrates operating at 
telecommunication wavelengths(~ 1.5~.tm), the wavelength in the waveguide 
will be~ l~.tm, and thus the period of the grating will be on the orderof0.5~.tm. 
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Figure 14.2. A waveguide Bragg grating with an etched core has an index modulation with 
a period of >.n /2 to reflect a desired wavelength >.n. Non-resonant waves travel through the 
grating without reflection 

This dimension is right at the limit of what conventional optical lithography 
can provide, so most waveguide gratings are written with e-beam lithography. 
In high confinement systems such as Si/Si02 this is even more of an issue. A 
cross section of a planar waveguide with a Bragg grating is shown in Fig.14.2 

There are several ways to analyze this grating, including coupled mode the­
ory. We would like to apply the powerful matrix multilayer analysis to this 
structure, but in order to do that we would need to know the effective index of 
each region in the spatially modulated grating. Let us consider two slab wave­
guides with thickness dA and ds. We will consider here a single polarization 
and assume that both thicknesses are such that the slabs are single mode. For 
each slab waveguide, the modes are slightly different, with different effective 
indices nA = f3A/ko and ns = f3s/ko. The fiber grating can be viewed as 
being equivalent to a multilayer dielectric stack as discussed previously in Sec­
tion 13.2, with periodicity of half a wavelength and layers of indices nA and 
ns. We already saw in Section 13.2 that the reflectivity and bandwidth of a 
multilayer structure is a function of the index difference and of the number of 
periods. The reflectivity increases with both index contrast and the number of 
layers, while the spectral bandwidth narrows (which is to say, becomes more 
selective) as the index difference decreases. In fiber Bragg gratings, the ef­
fective index difference is usually on the order of 10-3, so the bandwidth can 
be made to be narrow. The small index difference leads to small reflections 
at each stack, so many "stacks" are needed to get a substantial reflection. In 
fibers, a typical grating will be two millimeters long, which means there will be 
approximately 2000 quarter-wave stacks in the waveguide. The combination of 
a small ~nand a long interaction region provide the narrow, highly selective, 
spectral bandwidth that is necessary for WDM systems. 

Waveguide gratings have many applications other than spectral filters. It is 
possible to write a grating that has a period that slowly increases with position. 
This is called a "chirped" grating, and provides a spatially modulated spectral 
response. Chirped gratings are often used in telecommunication links to equal­
ize a dispersive medium. A pulse which has become spectrally dispersed due 
to waveguide and material dispersion effects can be almost restored back to its 
original shape by reflecting off of a chirped grating. 
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Figure 14.3. A cross-section of a spatially modulated waveguide. 

3. Resonators 
In this section we will describe a general resonator and its quality factor. The 

analysis follows the development of Haus [1]. The most general and familiar 
resonance phenomena is the one of circuit theory, namely the LC circuit. The 
basic characteristic of a resonator is that it will build up energy at a specific 
frequency (or wavelength. The dissipation of this power occurs due to losses, 
or through coupling to the outside world. In the case of integrated optics, 
the resonator is usually a reflective cavity where light is confined, and power 
dissipation occurs through coupling to nearby waveguides or layers, and losses 
due to scattering and absorption. 

The field in the cavity oscillates in time with a frequency w0 and decays 
exponentially in time with a lifetime ofT. The basic equation for the time 
dependence of the amplitude of the field inside the cavity resonator is given by: 

da 1 
- = (jwo- -)a 
dt T 

(14.1) 

The total energy in the cavity is proportional to lal2. The rate at which power 
dissipates from the cavity is given by the rate of change of this energy 

dlal2 = 2lal dial = ~ lal2 
dt dt T 

(14.2) 

The last step in Eq. 14.2 is derived from Eq. 14.1 
The quality factor Q of a resonator is given by the ratio of the total energy 

stored in the cavity divided by the total power dissipated in one cycle of the 
oscillation 

Q = lal2wo = wor 
~la12 2 

(14.3) 

We can also define the quality factor in terms of its spectral properties. The 
lifetime T can be defined as the time that it takes for the amplitude to decay to 
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DBR 

Figure 14.4. Schematic of a 1-D cavity, formed by surrounding a thin layer of material by two 
Distributed Bragg Gratings. 

its half value. In the frequency domain, Eq. 14.1 becomes 

a max 
a = --c-:---'-7'----:----:-

j(w- wo) + 1/r 
(14.4) 

From Eq. 14.4,~w1;2 = 2/r, where ~w1;2 = lw- wol is the spectral full 
width at half maximum. Therefore Eq.14.3 in the spectral domain is given by: 

Q=~ 
~wl/2 

(14.5) 

In the next sections we will consider two examples of cavity resonators: i)a 
one-dimensional multilayer stack that forms a standing wave, and 2) a ring 
resonator, which is a two dimensional, travelling wave device. Both devices 
are used for Wavelength division multiplexing applications. 

4. 1-D Cavity Resonator 
An example of an integrated 1-D resonator is the interference filter formed 

by embedding a "defect" layer (the cavity) between two distributed Bragg re­
flectors discussed in Section 12.3. The cavity layer has a thickness equal to the 
periodicity of the multilayer. 

The multilayerinFig.14.4cande described symbolically as (H L )2 H H(LH) 2 , 

in which the two consecutive H layers make the half-wave layer. The trans­
mission and reflection of such a multilayer can be derived using the matrix 
formalism discussed in Section 12.3. The calculated reflection of such a multi­
layer is shown in Fig. 14.5. One can see that the reflection is very similar to a 
plain DBR, but with a deep notch in the reflectivity at the center of the band at 
a frequency wo = c/ >.o where >.0 is equal to twice the thickness of the cavity. 
This frequency is called a "cavity mode" frequency. At the cavity mode the 
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Figure 14.5. Numerically calculated reflection of a multilayer described in Fig.l4.4 

transmission through the entire structure is equal to one, and the field inside the 
cavity layer is built up. In order to estimate the lifetime of this resonator, let us 
consider only the spectral region around the cavity mode, shown in dashed line. 
In this region, the transmission can be derived analytically if we assume that 
the mirror reflectivity is RDBR ~ 1 and if we recognize the structure is exactly 
like a Fabry-Perot interferometer with mirror reflectivity RDBR separated by 
the cavity thickness dcav· The transmission is then given by [2]: 

T(A) = 4R2 
1 + ~BR 81•0 217rnndcav _ 7rnndcav 1 

(1-R ) A Ao DBR 

1 
(14.6) 

The transmission decreases to half of its value when 

(14.7) 

. Around the cavity mode, ~A = A - Ao ~ 0 so 

(14.8) 

The last step in Eq. 14.8 is obtained from Eq. 13.9 for the reflectivity of 
a DBR. One can see that the when the reflectivity of the mirrors increases the 
quality factor of the cavity increases. This is because the cavity becomes more 
isolated from the outside world and the coupling to the continuum modes of the 
surrounding medium decreases. 
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------+---------+------- -

s+2 

Receiver Waveguide s-14 

Figure 14.6. Schematics of a 2D resonator coupled to a bus waveguide and a receiver waveguide. 

5. 2-D Cavity Resonators 
In this session we will expand the concepts discussed previously for lD 

cavity to 2D cavities using the coupled mode theory. Examples of 2D resonators 
are rings, racetracks , and disk-shaped waveguiding structures. Here we will 
consider a general resonator with any geometry and analyze its transmission 
properties as a function of frequency. The exact geometry of the resonator is 
accounted for only by the coupling coefficients between the resonator and the 
adjacent waveguides. 

Consider the configuration shown in Fig. 14.6 of a resonator coupled to two 
waveguides. Light carrying information is coupled to the top waveguide, called 
the bus. The information is then either transmitted or coupled to the bottom 
waveguide through the resonator. The bottom waveguide is called the receiver. 

Consider light incident from the left side of the waveguide with amplitude 
s+l. The incoming and outgoing fields from the bus waveguide are denoted as 
s+l and s-1 at z = ZA and s+2 and s-2 at z = ZB. Similarly the fields at the 
receiver waveguide are denoted as s+3 and s-3 at z = ZA and S+4 and S-4 at 
z = z B. Here we will assume that the waveguides are single mode. 

Using the coupled mode theory formalism, the outgoing amplitudes s -1 ,s _ 2 ,s -3 

and B-4 are given by 

S-1 e-if3B1(s+2- kia) 

S-2 = e-if3Bl(s+l- kia) 

S-3 e-Jf3R1(s+4- k,ia) 

S-4 e-if3Rl(s+3- kja) (14.9) 

Where k1, (k2),k3 and (k4) are the coupling coefficients of the waveguide to 
the resonator in the forward (and backward) direction. 
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Let us assume that the only incoming field is the 8+1, i.e., (8+2= 8+3= 

8+4=0). One can see from Eq.14.9 that in the absence of the resonator, the 
waveguide mode in the bus propagates undisturbed with a wavector f3s and the 
phase delay between the two points 1 and 2 separated by l = ( z A - z B) is 
simply f3sl. Similarly to the analysis in Section 10.3, the coupling coefficients 
are given by the overlap of the modes of the waveguides with the modes of the 
resonator 

K1 _j~Eo h~2 dz j j dxdy(n2 - n;)£r£~e-jf3B(z1 -z2 ) 

K2 _j~Eo h~2 dz j j dxdy(n2 - n;)£r£!!e-}f3B(z1-z2 ) 

Ka _j~Eo h~2 dz j j dxdy(n2 - n;)£r£!;e-jf3R(z1 -z2 ) 

K4 = _j~Eo h~2 dz j j dxdy(n2 - n;)£r£~e-jf3R(z1 -z2 {14.10) 

where £r, £ 8 , and £R are the mode profiles of the resonator and the bus and 
receiver waveguides. Here for simplicity we are dropping the indices for the 
different resonator modes. The evolution of the resonator in time is given by 
a modified Eq. 14.1, including the coupling of the resonator to the incoming 
waveguide modes 8i 

where 1/ro is the decay rate due to loss, 1/re, 1/TJ are the decay rates due to 
the coupling to the bus and the receiver. The change in energy in the resonator 
mode is equal to the difference between the incoming and outgoing powers. 

(14.12) 

Where Lis the power lost due to loss. Substituting Eq.14.9 into Eq.14.12, we 
have 

(14.13) 

The change in energy can also be derived from Eq.14.11 
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Comparing Eq.14.13 and Eq.14.14 we have 

2 2 2 2 2 2 
k1 + k2 = - and k3 + k4 = -

Te TJ 

The quality factor of the resonator is given by Eq.14.3 

Q= WT 

2 
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(14.15) 

(14.16) 

where 1/r = (1/re) + (1/rJ) + (1/ro) From Eq. 14.17 and Eq. 14.15 one can 
see that the higher the overlap between the resonator and the waveguide modes, 
i.e. the smaller the gap between the resonator and waveguides, the smaller the 
quality factor of the cavity. 

Now we need to determine the amplitudes a, s-1 and B-2. From Eq.14.4 
we have 

k1s1+ a = -,---..,-----.,.--,--,-'-:---,---,-------,---.,.--,--
j(w- w0 ) + (1/re) + (1/rJ) + (1/ro) 

(14.17) 

Therefore Eq. 14.9 becomes: 

-j~l klk2 
-e j(w- wo) + (1/re) + (1/TJ) + (1/ro) 8 +1 

-j~l (1 klki ) 
e - j(w- wo) + (1/re) + (1/rJ) + (1/ro) 8 +1 

-j~l klk4 
-e s+l 

j(w- wo) + (1/re) + (1/rJ) + (1/ro) 
-j~l klk3 

e j(w- wo) + (1/re) + (1/rJ) + (1/ro) 8+1 °4·18) 

6. 2D Resonator Coupled to a Single Waveguide 
Let us consider the configuration in Fig 14.6, with a negligible coupling of 

the bus to the resonator 1/TJ = k4 = k3 = 0. For a travelling wave, coupling 
to the backward direction is zero, therefore k2 = 0. From Eq. 14.18, the 
transmission response at resonance wo = w is given by 

(14.19) 

Off resonance, lw - W0 I > > 1/ ro the transmission is equal to 1. At the 
resonance wavelength the transmission from Eq.14.15 is equal to: 

(14.20) 
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Figure 14. 7. SEM photo showing the topview of a ring resonator coupled to a single waveguide. 
Inset shows the whole ring structure. 

Therefore the effect of the loss on the transmission response is strongly depen­
dent on the cavity geometry. Let us consider high losses. For a cavity with high 
Q, or T0 ::::::: Te, the loss affects strongly the transmission response: T::::::: 0. For a 
cavity with low Q, orTo > Te, then the effect ofthe loss is small, i.e.,T ::::::: 1. This 
explains why cavities with high Q's are so difficult to fabricate. If Q increases, 
the effect of the losses becomes stronger. This is precisely why achieving high 
Q resonators in practice is challenging: once the Q is increased, any small loss 
becomes very significant and decreases the transmission response. 

An example of a 2-D cavity is a ring resonator. In such a ring resonator, the 
resonance wavelengths satisfy the condition: 

_~!._[n=ef"-:'f ('-->.o=) ]'--· _L = m 
>-o 

(14.21) 

where neff is the complex effective index of the eigenmode inside the resonator, 
>-o is the free-space wavelength, L = 2nr is the ring resonator perimeter, and m 
is an integer. Figure 14.7 shows an example of a fabricated ring resonator with 
Si core and Si02 cladding and a diameter of 1 0~-t m. Fig 14.8. shows the spectral 
response of the ring resonator. One can see that, as predicted from Eq.14.20, 
the transmission is close to 1 except for the wavelengths that correspond to the 
resonances. At these resonances, light is scattered off the sidewall roughness 
of the waveguides and the transmission decreases. 

7. Ring Resonator as an Add/Drop Filter 
Ring resonators coupled to two waveguides can be used an add/drop filter 

for WDM. In such filter, light is coupled in to the bus waveguide with several 



Integrated Resonators and Filters 359 

100 

100 

80 
~ 

~ 
~ 
c 60 0 

"(ij 
en .E 

40 
Ill 
c 
~ 
I- 20 

15 1550--· 1 60 - 15 0 --1580 

Probe Wavelength (nm) 

Figure 14.8. TM spectral response of a ring resonator coupled to a single mode waveguide. 

wavelength. A small spectral range of those wavelengths coupled to the struc­
ture are coupled to the resonator and "dropped" into the receiver waveguide. 
Similarly, light coupled into the Bus can be added to the Bus waveguide (see 
Fig. 14.9). By cascading several of these resonators, one can demultiplex or 
multiplex signals for WDM applications. In order to understand the principle 
of operation of the add/drop filter, we will first analyze the ring resonator as 
a demultiplexer with an incoming traveling wave as an input as described in 
Fig. 14.9(a). In this case, the waves propagating backward in the bus and the 
waves propagating forward in the receiver can be neglected. Therefore, from 
Eq.l4.9 k2 = k3 = 0. From Eq.l4.14,8-4 = 8+1 = 0. The coupling rate of 
the resonator mode to the bus and receiver waveguides is then 

and k~ = 2_ 
Tj 

(14.22) 

The light intensity Ir transmitted through the bus waveguide and the light 
intensity ID exiting the receiver waveguide in the "drop" channel, are given by: 

Ir = 8_2 = 1 - 2 Te 2 I I 12 
I 8+11 j(w- wo) + 1/To + 1/Te + 1/TJ 

(14.23) 
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2 

Iv = ~s-312 = 
S+l j(w- wo) + 1/ro + 1/re + 1/rt 

(14.24) 

Off resonance, IT = 1 and Iv = 0. If a maximum power-transfer condition 
hold, 

1 1 1 
=---

ro re 1"J 

then at resonance Eqs.14.23 and 14.24 become: 

IT 0 

Iv = 1- 7"e 
ro 

(14.25) 

(14.26) 

Therefore, if loss can be neglected, the channel coupled into the ring resonator 
with a wavelength corresponding to the resonance frequency of the ring is 
coupled to the bottom channel. All the other channels with wavelength that do 
not correspond to the resonance frequency of the ring are transmitted through the 
bus waveguide. The net result is a drop of a channel from the bus waveguide. 
From symmetry consideration, the response of the multiplexer shown in Fig 
14.8 can be understood from eq. (23) as well. Light traveling in the bus with 
wavelength that do not correspond to the resonance frequency of the ring are 
transmitted through the bus waveguide. Light coupled to the add channel in 
the bottom waveguide, with a frequency corresponding to the one of the rings 
resonances, will couple to top waveguide and will be transmitted through the 
bus in addition to the off-resonance signals propagating through the same bus. 
The net result is an addition of a channel to the bus waveguide. 

8. Sharp Bends Using Resonators 
Waveguide bends are basic structures for optical interconnects, and are there­

fore very important photonic integrated circuits. For highly dense photonic 
circuits, these bends are required to be extremely sharp in order to minimize 
real estate and maximize integration. However, as we saw in Section 8.6, any 
abrupt directional change in the dielectric waveguide cause mode conversion 
into radiation losses. Here we will show how resonators can be used for sharp 
waveguide bends with low loss. 

The transmission of the resonator given by Eq. 14.19 is solely governed by 
the resonator properties and the coupling of the waveguides to the resonator. 
The relative configuration of the bus and receiver waveguides is not included 
in the expression. For example, one could envision two waveguides in a sharp 
angle, connected by a resonator (see Fig. 14.10). If the resonator is lossless, 
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Figure 14.9. A ring resonator can serve as drop ((a), or as an add (b). 

j 
a) b) 

Figure 14.1 0. Two possible configurations for a waveguide bend. A) a harsh 90° bend that will 
suffer tremendous radiation losses, and b) a bend with an impedance matching resonator which 
couples one waveguide to the other. 

at the r~sonance wavelength the transmission is equal to one). Therefore a 
resonator can "bridge" between the incoming field and the outgoing field in 
a configuration of the waveguides that would otherwise induce high losses. 
Figure 14.10 shows an example of a 90° bend (a) and a 90° bend modified 
into a cavity (b). In case (a) most of the light at the bend will be coupled into 
radiation modes. In case (a) light will be totally coupled to the neighboring 
waveguide through the resonator involving only loss of the resonator. 
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Figure 14.11. A further modification on the resonator idea. 

In practice, the resonator has losses, both due to radiation and due to fabrica­
tion losses. In this case, from Eq.14.26 one can see that in order to minimize the 
effect of the losses, the coupling of the waveguide to the resonator 1/re must 
be increased relative to radiation losses 1/ro, so that the transmission of the 
bend is equal ton = 1 - Te/To ~ 1. A better coupling between the incoming 
waveguide to resonator can be obtained by pushing the mode of the resonator 
inward. The structure shown in Fig. 14.11 is a square resonator, with a "cut" in 
the comer of the bend for better resonator-waveguide matching. The structure 
is designed for Si (n=3.2) surrounded by air. The waveguide widths are 0.2 JLm 
and the dimension of the resonator d shown in the figure is equal to 0.7 JLm. 
Using such structures, the authors in [1] have shown a 90° bed with submicron 
dimensions and with losses less than 1% per bend. 

9. Summary 
The use of high index waveguides provides the ability to make very small 

optical structures, but the issues of bending the light around comers without 
suffering excess loss has always been a limitation. We tried to show here that 
by taking advantage of resonant structures one could dramatically enhance the 
usefulness of integrated optical structures. The ability to couple between wave­
guides, and to make resonant structures which show high wavelength selectivity 
is a critical step in eventually making complex optical circuits completely based 
on couplers and filters. 
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Appendix A 
The Goos-Hanchen Shift 

When describing total internal reflection of a plane wave, we developed expressions for 

the phase shift that occurs between the incident and reflected waves as a function of angle of 

incidence. We explained the phase shift as being due to the fact that some energy is stored in 

the evanescent field of the interface before returning to the reflected wave. This relative storage 

delay introduced a phase shift. 
A second way to look at this problem is using rays, and to describe the phase shift as being 

due to the ray actually travelling a small distance into the lower index medium before being 
reflected (?). Figure ?? shows a ray incident on an interface at an angle greater than the critical 

angle. An incident ray behaves as if it were laterally displaced upon reflection. 

If we examined this problem with a plane wave, we would see no shift simply because there 

is no lateral variance or structure in a plane wave. We will study the reflection using a packet 

of plane waves that form a beam of light. The incident beam is labelled A. A simple way to 

describe a spatial beam is to superimpose two plane waves with slightly different angles. If the 

z-component of the corresponding wave vectors are {3 ± 6.{3, then the incident wave can be 

described (at x = 0) as 

A(z) [ejl:>/lz + e -jl:>fl• ]e -jf)z 

2 cos(b.{3z )e -jflz (A. l) 

Figure A.l. A ray that undergoes total internal reflection is laterally shifted a distance 2z, . 
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The phase shift that occurs upon reflection is a function of(} and {3. For small l!.f3 we can use 
the expansion 

~({3 + f!.{3) = ~({3) + f!,~ = ~({3) + ~: l!.f3 (A.2) 

Applying the appropriate phase shift to each component of the superposition, the reflected wave 
atx=Ois 

B(z) 

where 

[ej(Ll.tlz-2Ll.<I>) + e -j(Ll.tlz-2Ll.<I>)]e -j(tlz-2<1>) 

2cosl!.f3(z- 2z,) e-itl• 

Zs = d~/d{3 

(A.3) 

(A.4) 

Thus, the phase shifts accumulated by the various components of the wave packet have the net 
effect of displacing the beam along the z axis a distance of2z,. The spatial shift is largest where 
the derivative of the phase shift with respect to incident angle is largest. Inspection of Fig. 2.18 
in Chapter 2 shows that this shift is largest near the critical angle. In terms of wave parameters, 
we can evaluate the derivative in Eq. ?? using Eq. 2.108 to get 

ta.nO 
kozs= ~ 

V (J2 -n~ 

for the TE modes. The TM modes are described by 

ta.nO 1 
kozs = (32 - n~ ((32 /n} + (32 /n~ - 1) 

(A.5) 

(A.6) 

This lateral shift is called the Goos-Hiinchen shift. Notice that the ray picture can be used to 
describe how far the field penetrates into the low index medium. From Fig. ?? , this distance is 

1 1 
x = z,ftanO = ---2 =-

{32 - nc 'Y 
(A.7) 

The depth described by the Goos-Hiinchen shift is exactly the same as the characteristic length 
described by the decaying evanescent field using the wave picture. 

All of this may seem like a needlessly complicated way to look at phase shifts. But there is 
a practical application. The phase shifts that occur on reflection really do lead to an effective 
displacement of the beam. This is critical in optical waveguides which use reflecting bends. 
Consider the waveguide structure shown in Fig. ?? . A rectangular waveguide is bent by using 
TIR to redirect the guided light around a comer. Such a structure saves a great deal of area on 
an integrated optical circuit. 

We know that coupling efficiency depends on having the input mode profile match the output 
mode profile. To take account of the Goos-Hiinchen shift, the reflecting facet must be moved 
toward the inside comer of the bend. Calculations and measurements have shown losses on the 
order of I dB due to this shift [?]. These losses are critical in photonic integrated circuits, and in 
laser designs. In practice the position of the reflecting facet is adjusted based on Goos-Hiinchen 
calculations to maximize the overlap of the reflected and guided mode. 

The "impedance matched" bends described in Chapter 13 alleviate some of the issues pre­
sented here. 
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Figure A.2. A surface waveguide bend that operates using total internal reflection on the re­

flecting facet. 
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AppendixB 
Bessel Functions 

1. Bessel Functions of the First Kind 
Bessel Functions are the solution to the differential equation (in real variables) 

(B.l) 

where 11 is called the order. When 11 is not an integer, there are two independent solutions to the 
equation, J.,(x) and L.,(x), 

co (-1)k (x)"+2k 
J.,(x) = L k!r(11 + k + 1) 2 

k=O 

(B.2) 

For the cases examined in this book, II is always an integer, so the r function, r(ll + k + 1), 
can be replaced by a simple factorial, ( 11 + k)!. In such a case, the solutions have the form 

x" [ x2 x4 ] 
J.,(x) = 2"11! 1 - 22 · 1!(11 + 1) + 24 · 2!(11 + 1)(11 + 2) - · · · (B.3) 

The integer 11 can be positive or negative, and the relevant solutions are related through 

J_.,(x) = (-1)" J.,(x) (B.4) 

Using the recurrence relations, it is possible to relate various solutions. Some of the relations 
we found useful in deriving certain formula in this text are 

Jv-l(x) + Jv+l(x) 

Jv-l(x)- Jv+l(x) 
11J.,(x) + xJ~(x) 
11J.,(x)- xJ~(x) 

J~(x) 

211 J.,(x) 
X 

2J~(x) 
xJv-l(x) 

xJ.,+l(x) 

-h(x) (B.5) 
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Explicit differential forms of the Bessel functions are derivable from the above equations: 

J~(x) 

J~(x) 

v 
Jv-1 - -Jv(x) 

X 
v 

-Jv+1 + -Jv(x) 
X 

2. Modified Bessel Functions 

(8.6) 

The modified Bessel functions of the second kind that are used to describe evanescent waves 
can be derived from the integral representation 

Kv(x) = ..;1r(z/2t {oo e-xcoshtsinh2vtdt 
r(v + 1/2) } 0 

(8.7) 

For integer values of v, the following recurrence identities can be used to convert from one 
order to another: 

2v(-1tKv(x) 
X 

(-lt-1Kv-1(x)- (-1t+1Kv+1(x) 

(-1tK~(x) 

( -1t-1 Kv-1(x) + ( -lt+1 Kv+1(x) 

(-1tK~(x) 

(-lt-1Kv-1(x)- ::(-1tKv(x) 
X 

2(-ltK~(x) (Bo8) 

( -1t+l Kv+1(x) + ::( -1t Kv(x) 
X 

3. Asymptotic Expansions 
For fixed order v (v =/= -1, -2, -3, 0 o o), and x __. 0, 

For fixed order v and JxJ --> oo, 

(x/2t 
Jv(x) ~ r(v + 1) 

( 2 )1/2 ( V'lr 71") 
Jv(x) ~ 11"X cos X- 2 - 4 

For fixed v and large JxJ, 

( 71") 1/ 2 -x[ 4v2 -1 (4v2 -1)(4v2 -9) ] 
Kv(x) ~ 2x e 1- --gx + 2!(Sx)2 + · · · 

(Bo9) 

(B.lO) 

(Boll) 

(B.12) 



Appendix C 
Optical Power Limit of a Waveguide due to 
Stimulated Raman Scattering 

Consider an optical fiber with area A and length L. Let a pump wave with frequency Wp be 
injected at z = 0 with power Pp. The pump intensity in the waveguide is therefore Ip = Pp/ A. 
In the absence of any nonlinear interaction, the pump propagates as 

(C.l) 

The Stokes wave is described by the following differential equation 

[d/dz + et8 ]P,(z) = Grlp(z)P.(z) (C.2) 

where Gr is the Raman gain coefficient for the medium and wavelength. If we make the 
simplifying assumption that the pump power is not depleted by nonlinear processes (this will 
give us an upper limit), the Stokes wave then follows 

The solution to this is 

P,(z) = P,(O) exp( -et,z + Grlp(O) [1- e-<>pz]) 
O<p 

If we assume that the fiber is very long, so that etpL » 1, then Eq. ?? becomes 

P,(L) = P,(O) exp[-et,L + Grlp(O)] 
O<p 

(C.3) 

(C.4) 

(C.5) 

The gain term in Eq. ?? is equivalent to saying the gain is produced by the incident pump power 
over an effectivelength, Le!J = 1/etp. 

If no Stokes wave is injected at z = 0, then all output appearing at z = L will be due to 
amplified spontaneous Raman scattering. The summation over the length of the fiber for all the 
spontaneous emission weighted by its net gain is equivalent to assuming an input flux of 1 photon 
per mode of the fiber. Ref. [?) shows that this is equivalent to defining the input power as 

P,(O)eJ 1 = (hv,)(Bef 1 )(number of transverse modes) (C.6) 



370 INTEGRATED PHOTONICS 

where 

(C.7) 

Now, to ensure that nonlinear conversion of pump power into Stokes power is not a problem, we 
demand that the Stokes power at z = L is less than the signal power at z = L 

(C.8) 

The absolute upper limit to the pump power will be Eq. ?? is satisfied with an equality. This 

power is defined as Pcrit· For a single mode fiber, and assuming as = ap, the relation becomes 

.Ji (h ) ( G - r) A - ( GrPcrit) 312 
(- GrPcrit) 

2 v. A w.Vfwhm - A exp A 
ap ap ap 

(C.9) 

This is a fairly complex equation. It turns out that the critical power is only weakly dependent 
on the choice of Llvfwhm, but is critically dependent on a, G- r, and A. For the range of 
parameters used for fused silica (Llvfwhm ~ 6THz, a ~ w-s (which corresponds to about 4 

dB/km), and Gr in the range of 10-13 W /m, the critical power can be described to a very good 

approximation as [?] 
(C.lO) 
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Appendix D 
Useful Data 

Table D. I. Physical Constants 

Name Symbol 

Velocity of light in vacuum c 
Permittivity of vacuum eo 
Permeability of vacuum /LO 
Electron charge e 
Electron mass m. 
Planck's constant h 
Proton mass mp 
Bohr radius ao 
Avogadro's number NA 
Boltzmann's constant k 

Table D.2. Energy Conversion factors 

I eV = 1.602 x 10-19 J 
I eV = 2.42 x 1014 Hz 
I eV = 8.07 x 103cm-1 

300 K = 2.59 x 10-3 eV::::: fo eV 

Value 

2.99792 x 108 m/sec 
8.8542 x 10-12 Farad/m 
47T x 10-7 Henry/m 
1.60219 X 10-19 C 
9.1095 X 10-31 kg 
6.6262 x 10-34 J-sec 
1.67265 X 10-27 kg 
o.528A. 
6.023 X 1023 

1.380 X 10-23 J/K 

Table D.3. The Electromagnetic Spectrum 

(em) 
sphline AM radio 
FM radio 
Radar 
Infrared 
Visible 
Ultraviolet 
X-rays 

Typical Wavelength 
(Hz) 
3 X 104 

3 X 102 

3 
3 X 10-4 

6 X 10-5 

1 X 10-5 

3 X 10-8 

Frequency 
(eV) 
106 

108 

1010 

1014 

5 X 1014 

3 X 1015 

1018 

Photon Energy 

4 x w-9 

4 x w-7 

4 X 10-5 

0.4 
2 
12 
4000 



Index 

(transverse electric mode 
slab waveguide 

characteristic equation for, 50 

E~;i{ mode, 101 

absorption loss, 166 
acoustooptic modulators, 324 
ad/drop filters, 358 
analytic profiles, 155 
anti-reflection coating, 29 
apodizer, 227 
attenuation, 166 
attenuation coefficient, -y, 34, 46 

band gap 
photonic, 340 

Beer's Law, 166 
bending loss, 179 
Bessel functions, 76 
boundary condition 

FDTD method, 236 
boundary conditions 

cylindrical fiber, 78 
rectangular waveguide, I 02 

BPM, Beam Propagation Method,numerical 
techniques 

FDTD,209 
Bragg grating, 350 
Bragg gratings, 261, 290 
Bragg modulators, 328 
brightness, B, 280 
Brillouin scattering, 193 

cavity Q, 357 
characteristic coupling length, Lc, 139 
characteristic equation, 50 

step-index fiber, 80 
graphical solution to, 50 
rectangular waveguide, I 05 

characteristic impedance;l), 19 
codirectional coupler, 246 
confocal parameter, 316 
constitutive relations, 12 
coupled mode theory, 241 
coupled waveguides, 230 
coupling 

fiber to slab waveguide, 276 
graded index waveguide, 283 
surface, coupling 

grating, grating coupler, prism coupler, 
284 

coupling constant, K, 247 
coupling efficiency, 273 
critical angle, (h, 30 
cut off conditions 

step index fiber, 90 
cut-off 

conditions, 61 

datacom, 6 
degenerate mode coupling, mode copling 

degenerate, 255 
dielectric constant, 21, 130 
dielectric interfaces 

boundary conditions in, 23 
diffraction, 217 
dispersion, 125 

modal, modal dispersion, 126 
photonic crystal, 343 
waveguide, 126 

effective index, 62 
effective index method, 113 
eigenvalue 

equation, 50 
slab waveguide, 48 

Eikonal equation, 151 
electric field 
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transverse, 24 
transverse electric, 44 
transverse magnetic, 44 

electric field, E, II 
electric flux, 12 
electric permittivity,£, 12 
electro-absorption, 323 
electro-optic tensor, 309 
electromagnetic waves 

transverse, 18 
electronic transitions, 167 
embedded waveguide, I 07 
evanescent field, 34 

Fabry-Perot interferometer, 319, 354 
FDTD, 233 
FDTD, Finite-Difference Time Domain, numer­

ical techniques 
FDTD, 209 

Fermat's principle, 24 
FFT, 213 
fiber nonlinearities, nonlinear fiber optics, 182 
fields 

step index cylinder, 77 
filament bulb, 280 
flux 

electric, 12 
electric, D, II 
magnetic, B, II 

Fourier transforms, 212 
free spectral range, 3 21 
frequency 

normalized, 61 
Fresnel 

formulae, 27 
reflection, 28 

gaussian profile, 213 
glass 

ultrapure, 5 
glass fiber, 4 
Goos-Hiinchen shift, 35 
group delay, 132, 140 
group index, 133 
group velocity, 22 
group velocity dispersion, GVD, dispersion 

group velocity, 133 
group velocity, v9 , 21 
guassian mode profile, 235 

HEn mode, 91 
Hybrid modes, HE modes, EH modes, 83 

impurity absorption, 170 
index of refraction, 130 

extraordinary, 13 
ordinary, 13 

index of refraction, n, 20 
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integrated spectrum analyzer, 329 
inverse taper, 277 

Kerr efect, 304 

Lambertian source, 280 
Laplacian 

scalar, 15, 16 
vector, 15 

law of reflection, 29 
LC circuit resonance, 352 
lens coupling, 283 
light line, 343 
longitudinal fields 

Ez, 75 
Lorentz model, 128 
LP modes, 86 

Mach-Zender interferometer, 321 
magnetic field, H, II 
magnetic permeability, mu, 12 
Manufacture 

circular fibers, 174 
manufacture 

planar waveguides, 177 
material dispersion, dispersion 

material, 12 7 
Maxwell's equations, I, 10, 18 
microbending, 182 
MKS units, II 
modal dispersion, 154 
modal dispersion, dispersion 

modal, 136 
mode 

completeness, 60 
degenerate, 59 
intuitive picture, 56 
properties of, 58 
superposition, 60 

mode coupling, 271 
mode coupling equation, 245 
mode designation, 54 
mode number 

angular, 80 
radial, 80 

modes 
guided 

number of, 60 
number of nodes, 54 
symmetry, 54 

modlators 
figures of merit, 302 

modulation efficiency, 302 
modulator 

bandwidth, 302 
phase, phase modulator, 312 
power, 314 



INDEX 

modulators 
polarization, 317 

multilayer film, 337 
multimode waveguides, 149 
multiplexer, 349 

normalized 
index, b, 62 
values, 62 

normalized frequency 
rectangular waveguide, I 06 
step-index fiber, 90 

normalized modes, 245, 252 
notch perturbation, 249 
numeric aperture, NA, 67 
numerical aperture, 65 
numerical solutions, !58 

omnidirectional reflector, photonic crystal 
omnidirectional reflector, 345 

optical fiber 
waveguide, 4 

optical source coupling, coupling 
optical souree, 279 

optics 
geometric, 9 
physical, 9 
quantum, 10 
wave, 10 

oscillator strength, 131 

parabolic index profile, !53 
permitivity, 127 
permittivity tensor, 12 
perturbation theory, II 0, 243 
phase fronts, 216 
phase shift 

reflection, 35 
phase shift calculations, 221 
phase space, 212 
phase velocity, 19 
photoelastic effect, 325 
photonic crystal, 336 

1-D, 342 
2-D, 346 

Pockel's effect, 304, 308 
polarization, 243 
polarization modulation, modulators 

polarization, 318 
Poynting vector, 19 
preform, 175 
principal axes, 306 
propagation coefficient, {3, 34 

Q, Quality Factor, 352 
quantum optics, I 0 
quarter-wave stack, 338 
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Raman scattering, 184 
Raman-Nath acousto-optic modulation, 326 
Rayleigh scattering, 171 
reciprocity, 255 
rectangular waveguides 

losses, 176 
resonator 

2-D, 354 
1-D, 353 

resonators, 361 
ridge waveguide, 99, 115 
ring resonators, 358 

sapphire refractive index, 134 
self phase modulation, 195 
Sellmeier coefficients, 132 
Sellmeier equation, 131 
Si-Ge waveguides, 115 
slab waveguide 

characteristic equation, 50 
graphical solution to, 50 

Snell's Law, 26,29 
soliton, 2 
solitons 

optical, 6 
solitons, optical solitons, 198 
spatial frequency, 17, 249 
speed of light 

c, 16 
split step process, 223 
Stimulated Raman scattering, 189 
Stokes Theorem, II 
symmetric waveguide, 55 

TEmodes 
step-index fiber, 82 

telecom, 5 
TMmodes 

step index fiber, 82 
Total Internal Reflection 

ray tracing, 29 
wave description, 3 I 

Total Internal Reflection, TIR, 29 
transmission window, 172 
transverse electric field 

amplitude transmission, 27 
reflection, 27 

transverse electric field, TE, 24 
transverse magnetic wave, 27 

vector 
Poynting, 19 

velocity 
phase, 19 

vibrational transitions, 169 

wave 
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transverse magnetic (TM), 27 
wave equation, 14 

cylindrical coordinates, 74 
rectangular waveguides, I 0 I 
solutions, 16 

wave optics, I 0 
Waveguide 

development 
optical, 3 

waveguide 
effective index, 62 
glass, 4 
lens,4 

continuous, 4 
modes 

number, 60 
multimode 

numerical aperture, 67 
normalized index, 62 
numerical aperture, 65 
optical, 2 

Total internal Reflection, 31 
optical fiber, 4 
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planar, 43 
slab, 43 

eigenvalues, 48 
normalized propagation parameters in, 

62 
symmetric, 55 

waveguide dispersion, dispersion 
waveguide, 140 

waveguides 
photonic crystal, 346 

wavelength 
optical fields, 18 

wavelength division multiplexing, 6 
wavevector 

longitudinal, {3, 46 
wavevector, k, 17 
wavevector, transverse, K., 46 
WDM, Wavelength Division Multiplexing (WDM), 

349 
WKB aproximation, 150 

zero dispersion point, 136 




