
2018‐09‐06

1

DAT093
Introduction to Electronic System Design

Sven Knutsson

svenk@chalmers.se

Dept. Of Computer Science and Engineering

Chalmers University of Technology

Gothenburg

Sweden

Laboratory assignment 1

Basic arithmetic

Goal

Learning to use basic arithmetic methods

• Addition

• Subtraction

•Multiplication

•We leave out division

You should try to make your designs generic which in
these cases mean that you can change the number of
bits in the vectors used in the calculations by just
changing the value of a generic parameter without the
need to rewrite the code

We will continue the work we did in the
introductory lab assignment

2018‐09‐06

2

Testing your designs

You should test your designs using simulation in QuestaSim

You should write script files (do files) to control the
simulation

There are also QuestaSim test benches on the course
homepage that you can use to test your designs but
this doesn´t free you from writing your own do files

If your codes pass the supplied test benches then you
pass the lab

Ripple carry adder

We will start with the ripple carry adder we used in the
introductory lab assignment.

The carry bit ripples from bit to bit (LSB to MSB)

The figure shows a four bit instantiation of the
ripple carry adder.

Note that in this case we have just two four bit vectors,
no carry in or carry out bit

+
+

b(0)

+

a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2)

cint(0)

cint(1)

’0’

+

b(3) a(3) s(3)

cint(2)

2018‐09‐06

3

Overflow

We add overflow indication

Overflow means that the result doesn´t fit within
the given number of bits

In this case we only detect overflow, we don´t do
anything about it

You can see in the lab assignment how to test for
overflow

Saturation

We add the option for saturation

Saturation means that if the result overflows then the
result should be set to maximal positive value or maximal
negative value depending on at what border the overflow
occurs

We add a control to the previous design controlling if the
result should wrap around (overflow) or saturate

2018‐09‐06

4

Subtraction

We don´t create a separate subtracter but we add the
option of subtraction to our adder

Subtraction could easiest be done by using 2´s complement

a – b = a + (-b)

Instead of creating a subtractor we change the sign of the b
value using 2’s complement and use the earlier adder with
some additional functions

Serial implementation

So far the implementations have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let´s look at a four bit example

c3 c2 c1 c0 0
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

First calculation

No carry in

2018‐09‐06

5

Serial implementation

So far the implementation have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let´s look at a four bit example

c3 c2 c1 c0 0
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

Second calculation

Carry in from bit 0

Serial implementation

So far the implementation have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let´s look at a four bit example

c3 c2 c1 c0 0
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

Third calculation

Carry in from bit 1

2018‐09‐06

6

Serial implementation

So far the implementation have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let´s look at a four bit example

c3 c2 c1 c0 0
a3 a2 a1 a0
b3 b2 b1 b0
s3 s2 s1 s0

Fourth calculation

Carry in from bit 2

Serial implementation cont.

If we turn the math into a block diagram we get a design with
only one adder component.

To handle the carry correctly we must go from LSB to MSB

The subtraction is as before done by using 2´s complement

2018‐09‐06

7

Serial implementation cont.

To make it work we must introduce a clock that will control
the shifting in and out of bits

We also introduce a start signal to start the calculation

And a finished signal to indicate when all bits are done

Write your code so that the output is only updated when the
full calculation is done, don´t output any intermediate results

Multiplication using succesive addition

If we look at multiplication done on paper

1011
* 1101

We can interprete this as a number of multiplications,
additions and shifts

Since our values are only one and zero the multiplication
really means adding the value or not, don´t forget the
shift though

The result depends on if we treat our values as signed or
unsigned.

2018‐09‐06

8

Multiplication using succesive addition

1011 -> 11
1101 -> *13

143 -> 10001111

Let´s start with the unsigned case.

Multiplication using succesive addition

1011
* 1101
00000000
00001011

Add vector a
1011

* 1101
00000000
+00001011
00001011

1011
* 1101

2018‐09‐06

9

Multiplication using succesive addition

1011
* 1101
00001011

Shift

1011
* 1101
00001011
+00000000
00001101

1011
* 1101
00001011
+00000000

Don´t add vector a

Multiplication using succesive addition

1011
* 1101
00001011

Shift

Add vector a
1011

* 1101
00001011
+00101100
00110111

1011
* 1101
00001011
+00101100

2018‐09‐06

10

Multiplication using succesive addition

1011
* 1101
00110111
+01011000

1011
* 1101
00110111

Correct!

1011
* 1101
00110111
+01011000
10001111 -> 143

Shift

Add vector a
1011

* 1101
00110111
+01011000
10001111

Multiplication using succesive addition

1011 -> -5
1101 -> *(-3)

15 -> 00001111

Now let´s look at the signed case.

2018‐09‐06

11

Multiplication using succesive addition

1011
* 1101 Add vector a

1011
* 1101
00000000
+11111011

1011
* 1101
00000000
+11111011
11111011

Don´t forget to sign extend

Multiplication using succesive addition

1011
* 1101
11111011

Don´t add vector a
1011

* 1101
11111011
+00000000
11111011

1011
* 1101
11111011
+00000000 Shift

2018‐09‐06

12

Multiplication using succesive addition

1011
* 1101
11111011

1011
* 1101
11111011
+11101100

Add vector a

Shift, don´t forget to
sign extend

1011
* 1101
11111011
+11101100
11100111

Multiplication using succesive addition

1011
* 1101
11100111

This is not correct, we were expecting the result 15.

What´s going on?

1011
* 1101
11100111
+11011000
00111111

Add vector a

Shift, don´t forget to
sign extend

1011
* 1101
11100111
+11011000

1011
* 1101
11100111
+11011000
00111111 -> 63

2018‐09‐06

13

Multiplication using succesive addition

1011
* 1101
11100111

When we have signed number we must do a subtraction for
the MSB, not an addition. We use 2´s complement

Now the result is correct

1011
* 1101
11100111
00100000

1___
00001111 -> 15

We can simplify things by multiplying the absolute values of
the numbers and then take care of the sign afterwards

Add vector a´s 2‐complement

Shift, don´t forget to sign
extend (not needed here)

1011
* 1101
11100111
00100000
+ 1

1011
* 1101
11100111
00100000

1___
00001111

Multiplication using succesive addition
con´t.

In this schematic we don´t shift the operand to the left before
the addition. Instead we shift the result to the right which will
give the same result

We can implement this serially

2018‐09‐06

14

Multiplication using succesive addition
con´t.

The interface is very simular to the serial adder

