DAT093
Introduction to Electronic System Design

Laboratory assighnment 1
Basic arithmetic

Sven Knutsson
svenk@chalmers.se
Dept. Of Computer Science and Engineering
Chalmers University of Technology
Gothenburg
Sweden

Goal

Learning to use basic arithmetic methods

* Addition
* Subtraction
* Multiplication

* We leave out division

We will continue the work we did in the
introductory lab assignment

You should try to make your designs generic which in
these cases mean that you can change the number of
bits in the vectors used in the calculations by just
changing the value of a generic parameter without the
need to rewrite the code

2018-09-06

Testing your designs

You should test your designs using simulation in QuestaSim

You should write script files (do files) to control the

simulation

There are also QuestaSim test benches on the course
homepage that you can use to test your designs but
this doesn’t free you from writing your own do files

If your codes pass the supplied test benches then you
pass the lab

Ripple carry adder

We will start with the ripple carry adder we used in the
introductory lab assignment.

The figure shows a four bit instantiation of the
ripple carry adder.

b(0) a(0) s(0) b(1) a(1) s(1) b(2) a(2) s(2) b(3) a(3) s(3)
+
+ + cint(2)
+ cint(1)
cint(0) -~
yov _/
\/

The carry bit ripples from bit to bit (LSB to MSB)

Note that in this case we have just two four bit vectors,
no carry in or carry out bit

2018-09-06

Overflow

We add overflow indication

n

a ——= —— overflow
n + n

b —— ——=y

Overflow means that the result doesn’t fit within
the given number of bits

In this case we only detect overflow, we don’t do
anything about it

You can see in the lab assignment how to test for
overflow

Saturation

We add the option for saturation

n

a ——3
n ———= overflow
bh—e = <4 N
R —
saturate/wrap around —|

Saturation means that if the result overflows then the
result should be set to maximal positive value or maximal
negative value depending on at what border the overflow
occurs

We add a control to the previous design controlling if the
result should wrap around (overflow) or saturate

2018-09-06

Subtraction

We don’t create a separate subtracter but we add the
option of subtraction to our adder

n
a ——=|

n ——: overflow
b ——3f
+ 1.y
saturate/wrap around ———>|

add/sub ——=

Subtraction could easiest be done by using 2's complement
a—-b=a+ (-b)

Instead of creating a subtractor we change the sign of the b

value using 2’s complement and use the earlier adder with
some additional functions

Serial implementation

So far the implementations have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let’s look at a four bit example

C; C, C; O First calculation

d; a, A (4, No carry in

bs b, b, (b

S5 S, 1S9

2018-09-06

2018-09-06

Serial implementation

So far the implementation have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let’s look at a four bit example

Cs; C, Co 0 Second calculation

d; a,|(a;| Qg Carry in from bit 0

S5 2 (S1] So

Serial implementation

So far the implementation have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let’s look at a four bit example

Cs 1 |Co 0 Third calculation

dz |a,| a; Qg Carry in from bit 1
b, [b,) b, b,

Ss [S2] S1 So

Serial implementation

So far the implementation have been parallel meaning that we
use one adder for each bit in our words

We can serialize the design by using only one adder and do the
calculations bit by bit

Let’s look at a four bit example

C2 C, Co 0 Fourth calculation

dz a, a; qg Carry in from bit 2
b, b, b, b,

Ss)'S: Si So

Serial implementation cont.

If we turn the math into a block diagram we get a design with
only one adder component.

The subtraction is as before done by using 2’s complement

_ a —
C_
_ b —= nbits s/d _
- _nbits +/- nbits
add/sub —— cout/bout

cin/bin t

To handle the carry correctly we must go from LSB to MSB

2018-09-06

Serial implementation cont. ==

CoTTITIT]) ITTITIT]

wbe | 4=

To make it work we must introduce a clock that will control
the shifting in and out of bits

We also introduce a start signal to start the calculation

And a Finished signal to indicate when all bits are done

n

a ——=

n
b —-—

start ——=
add/sub ——|
saturate/wrap around —|

clk ———=

Serial
adder
subtracter

n
——=y

——=: finished

Write your code so that the output is only updated when the
full calculation is done, don’t output any intermediate results

Multiplication using succesive addition

If we look at multiplication done on paper

1011
* 1101

We can interprete this as a number of multiplications,

additions and shifts

Since our values are only one and zero the multiplication
really means adding the value or not, don’t forget the

shift though

The result depends on if we treat our values as signed or

unsigned.

2018-09-06

Multiplication using succesive addition

Let’s start with the unsigned case.

1011 -> 11
1101 -> *13

143 -> 10001111

Multiplication using succesive addition

1011

* llgj' ___ Add vector a
00000000
+00001011
00001011

2018-09-06

Multiplication using succesive addition

1011 ,
* 1!g1*4,4ﬂfDontaddvedora
00001011 .
+00000000< —— Shift
00001101

Multiplication using succesive addition

1011
* 1@91 <« Addvector a
00001011 .
+00101100 «——— Shift
00110111

2018-09-06

Multiplication using succesive addition

1011
* EE 01 - — —Addvectora
00110111
+01011000 - Shift
10001111 > 143

Correct!

Multiplication using succesive addition

Now let’s look at the signed case.

1011 -> -5
1101 -> *(-3)
15 -> 00001111

2018-09-06

10

Multiplication using succesive addition

1011

”* 110@ «————— Addvector a
00000000

{11111011 < Don’t forget to sign extend
11111011

Multiplication using succesive addition

1011
* 11@]:_] «—— Don’t add vector a
11111011 .
+00000000«—— Shift
11111011

2018-09-06

11

Multiplication using succesive addition

1011
* 1@ 91 <« Addvector a
11111011
411101100 «—— Shift, don’t forget to
11100111 sign extend

Multiplication using succesive addition

1011
* D_Ol «——— Addvector a

11100111
+11011000 ~—— Shift, don’t forgetto
00111111 -> 63 signextend

This is not correct, we were expecting the result 15.

What's going on?

2018-09-06

12

Multiplication using succesive addition

When we have signed number we must do a subtraction for
the MSB, not an addition. We use 2’s complement

1011 ,
e @!01 <« Add vector a’s 2-complement
11100111
00100000 <« Shift, don’t forget to sign
+ 1 extend (not needed here)

00001111 -> 15

Now the result is correct

We can simplify things by multiplying the absolute values of
the numbers and then take care of the sign afterwards

Multiplication using succesive addition
con’t.

We can implement this serially

_ m bits
) C_ITTTTTTT]
a ——3 p
AR
b — X +
T TTITI I
L- n bits 1{2" =

In this schematic we don’t shift the operand to the left before
the addition. Instead we shift the result to the right which will
give the same result

2018-09-06

13

Multiplication using succesive addition
con’t.

The interface is very simular to the serial adder

n

a—~L =

n
b ——=d

start

clk —=

Serial
multiplier

m
=Y

———= finished

2018-09-06

14

