
Introduction to Electronic System Design
(DAT093)

Lab 3: Test benches and design synthesis

Sven Knutsson, Lars Svensson

Draft of Version 2.1, September 21, 2018

1 Introduction

The previous lab sessions have illustrated some of the fundamentals of HDL-based
hardware design: description of combinational and sequential behavior; design
hierarchy and parameterization; some fundamental arithmetic implementations;
and the practical tools and tasks involved in development. This session will offer
two additional perspectives:

1. For previous tasks, you have been provided with simple test benches for
verification of your designs. Most probably, these have helped you to find
bugs and oversights in your work. In an industrial design project without
externally-provided verification infrastructure, test bench development is a
necessary skill for the hardware designer: it will help you to arrive quickly
at bug-free implementations.

2. So far, you have used QuestaSim simulations to check your designs for
correctness; but simulation results are rarely the intended end product of
the design effort. Design synthesis produces hardware that implements the
behavior described by the code, either as configurations for reconfigurable
hardware (such as the FPGAs used in this course), or as netlists of com-
ponents for chip integration. The synthesis process is in some ways similar
to the QuestaSim compilation stage, but there are important additional
concerns.

1



DAT093, Lab 3, Draft of Version 2.1 2

2 Preparation

Read through this entire lab PM and work through all tasks marked Prepara-
tion.

3 Test bench design

Test bench

S
ti

m
u
li

ge
n
er

at
io

n

-

-

-

-

DUT

-

-

O
u
tp

u
t

h
an

d
li
n
g

Figure 1: Test bench

Figure 1 illustrates a test bench of the kind you have used in previous labs1.
The Design Under Test (DUT) is included in the test bench as a component,
in the same way as it would be in a larger design. The test bench generates
input stimuli for the DUT, records the DUT output signals, compares these
outputs with the expected values, and generates warnings and error messages if
appropriate. Especially for complex DUTs, test bench development may take as
much effort as the development of the DUT itself.

It can be risky to let the designer of a component also design the test bench for it.
When design errors are caused by misunderstandings of the specifications, the test
bench may suffer from the same misunderstandings and therefore fail to reveal the
erroneous behavior2. Common ways to reduce these risks include letting another
designer (or group of designers) develop the test bench from specifications without
detailed knowledge of the design to be tested, or at least to let the designer first
develop the test bench before continuing on to the design.

In this lab, you will design, from specifications, a test bench for a counter and use

1Other kinds of test benches exist, but as usual, we stay simple in these labs.
2Similar observations are often made for software development (for more information, you

may search for “test-driven development” and “test-first programming”).



DAT093, Lab 3, Draft of Version 2.1 3

The DUT is a synchronous modulo-N up/down counter. It
counts the cycles of the clock signal and wraps around after N
cycles, that is, the value N − 1 is followed by the value 0 when
counting up, and 0 is followed by N − 1 when counting down.

The interface comprises the following ports:

• A clock signal clk

• An asynchronous reset input signal that sets the count
value to 0

• A synchronous enable input signal that enables the count-
ing of clock cycles

• A synchronous load input signal which sets the counter to
the value given on the data inputs

• An up/down input which selects the direction of counting

• An output signal count that shows the current value

The reset signal overrides load and enable. load overrides
enable. Thus, reset and load operations work also when counting
is stopped. All signals are active high. Triggering is on the rising
edge of the clock.

Figure 2: DUT specification

it to test several “black-box” implementations. The specification for the DUT is
shown in Figure 2; its VHDL entity is shown in Figure 3. As you can see, the
counter design is generic with a parameter N for the count range. The parameter
value is used to derive the signal widths. The way this is done requires the use
of the ieee.math real library. Assume N = 20 in your test bench.

Preparation: Design a test bench3 of type 3 for the counter as specified in
Figures 2 and 3. Feel free to use the test benches of the previous labs for
inspiration. Make sure to test all combinations of the control signals, and
also what happens at positive and negative wrap-around. Make an effort
to think of every part of the behavior that may go wrong! Allow the test
bench to run to completion even if an error was detected. Do not forget to
design a do file for the test bench.

• Create a VHDL entity for the test bench, and an architecture in accordance

3See the document “Introduction to QuestaSim”, downloadable from the course homepage.



DAT093, Lab 3, Draft of Version 2.1 4

ENTITY counter IS

GENERIC(N:POSITIVE:=20);

PORT(clk:IN STD_LOGIC;

reset:IN STD_LOGIC;

enable:IN STD_LOGIC;

load:IN STD_LOGIC;

up_down:IN STD_LOGIC;

data:IN STD_LOGIC_VECTOR(INTEGER(CEIL(LOG2(REAL(N))))-1 DOWNTO 0);

count:OUT STD_LOGIC_VECTOR(INTEGER(CEIL(LOG2(REAL(N))))-1 DOWNTO 0));

END counter;

Figure 3: DUT entity. The widths of the data and count signals are derived by
computing the number of bits necessary to represent the value of N.

with your prepared design. Compile and correct any errors.

You will use your test bench to test four different counter implementations. Some
of these do not adhere to the specifications as given above. Your test bench is
supposed to identify the erroneous counters. The counter implementations are
available as encrypted4 VHDL files on the course home page.

• Download the encrypted counter implementations from the home page.

• Compile your test bench with one of the encrypted DUTs and run it. Make
note of the errors flagged. Repeat for the other encrypted DUTs. Check
with the lab assistant to verify that your test bench correctly identifies the
erroneous behaviors and pinpoints the errors.

4Encrypted HDL descriptions are often used in industry to reduce the risk of plagiarism.



DAT093, Lab 3, Draft of Version 2.1 5

4 Design synthesis

Originally and fundamentally, VHDL was conceived to describe the behavior of
digital hardware, and specifically to make it possible to simulate the description.
Thus the language, by design, includes constructs which make sense in simula-
tion but which cannot reasonably be synthesized. (One example is the AFTER

construct, which states that a signal assignment is to be delayed by a certain
time; but the exact time behavior of digital hardware depends on many factors
such as voltage and temperature, and accurate delays therefore cannot be guar-
anteed. Another example is file-system access for test patterns, which is useful
in simulation but not in embedded hardware.)

Any VHDL design intended to be synthesized5 must therefore avoid using the
non-synthesizable constructs, or in other words, must use only the synthesizable
subset of the language. Experienced designers rarely find it difficult to avoid the
problematic constructs.

Your next task in this lab session is to investigate your designs from Labs 1 and 2
to determine if they are synthesizable, and if necessary modify them to eliminate
synthesis problems.

Preparation: Download the document “Introduction to Xilinx Vivado” from
the homepage and study it. Make note of how to create an RTL project; how
to add VHDL files to the project; how to select what FPGA hardware to
synthesize for; how to invoke the QuestaSim simulator from inside Vivado;
and how to synthesize the design for the selected FPGA. (You will not
actually download the resulting configuration to an FPGA in this lab, so
you may postpone reading the parts after the heading Downloading to
the FPGA.)

The first design to synthesize is the ripple-carry adder/subtractor (RCAS) from
Lab 1.

• Launch Vivado. Create a new project and include copies of the files needed
by your Lab-1 RCAS (excluding the test bench which you will not want
to synthesize!). Perform synthesis of your design. Replace any non-synthe-
sizable constructs until synthesis succeeds; consult the lab assistants if you
get stuck.

• Study the Vivado synthesis reports. Check for warnings and contemplate
whether they are serious (again, consult the lab assistants if you have

5Test benches are examples of VHDL designs that don’t need to be synthesizable.



DAT093, Lab 3, Draft of Version 2.1 6

doubts). Save the synthesis logs; you will need to submit them to pass
the lab!

• Make note of size and speed reports after synthesis, for later comparisons.

Successful synthesis is like successful compilation of a software program: it is a
necessary step that may uncover mistakes, but does not guarantee that the final
design is free of bugs. It is possible to simulate the design also after the synthesis
stage. To do this, you need some do files for the simulator.

• Download the Lab-3 do files from the course homepage (since the test bench
files are not used here, the new do files are different from those used for the
same designs in earlier labs).

• Use the appropriate do file to simulate the synthesized RCAS at the post-
route stage (that is, when the code has been synthesized and mapped into
logic of the selected FPGA family, and when signal routing of the design
has been done).

Note that without a separate test bench, it is necessary to manually check
that the results are the expected ones. Inspect the do file to see what to
look for.

Be aware that the synthesis process may have eliminated some internal sig-
nals. If you need these signals for debugging, you can make them accessible
by temporarily adding an extra port for them. Any such extra ports should
be removed once the bugs have been fixed.

• Show the correct simulation result to your teaching assistant.

The same procedure can now be carried out also for the other designs from Labs
1 and 2.

• Repeat the synthesis and simulation stages above for the serial adder/sub-
tractor from Lab 1, and for the direct and the serial FIR filters of Lab
2.

The parallel and serial versions of the adder and the filter should be functionally
equivalent but differ in terms of cost and performance.

• Compare the speed and size ratios of the parallel and serial adders. Is the
hardware expense of the parallel version reasonable in view of the improved
performance?



DAT093, Lab 3, Draft of Version 2.1 7

• Repeat the comparison for the parallel and serial FIR filters.

Again, note that you will need to submit the synthesis logs for the RCAS and for
the serial FIR filter to pass this lab! Submission is done via the course homepage.
If you did not complete this task during the lab session, you may do it later; the
submission deadline is given in the course PM.

Preparation: Consult the course PM to find out the submission deadline for
the synthesis logs.

5 Wrap-up

After completing this lab session, you are expected to be able to carry out the
following tasks:

• Develop a simple VHDL test bench for a sequential digital design, including
the do files for QuestaSim

• Synthesize a simple VHDL design in Vivado

• Verify through simulation that the behavior of the synthesized design cor-
responds to that before synthesis

• Evaluate speed and area reports from a synthesis run

The following questions may be brought up in class later:

• Did you find the English-language specification in Figure 2 sufficiently de-
tailed and accurate to make it easy to develop the test bench?

• Did you find any non-synthesizable constructs in your designs? What did
you do about them?

• Did the speed and area comparisons for serial and parallel implementations
agree with your expectations?


